1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/FunctionLoweringInfo.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/IntrinsicsAArch64.h" 78 #include "llvm/IR/IntrinsicsWebAssembly.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Statepoint.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/Support/AtomicOrdering.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <cstddef> 101 #include <iterator> 102 #include <limits> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace PatternMatch; 107 using namespace SwitchCG; 108 109 #define DEBUG_TYPE "isel" 110 111 /// LimitFloatPrecision - Generate low-precision inline sequences for 112 /// some float libcalls (6, 8 or 12 bits). 113 static unsigned LimitFloatPrecision; 114 115 static cl::opt<bool> 116 InsertAssertAlign("insert-assert-align", cl::init(true), 117 cl::desc("Insert the experimental `assertalign` node."), 118 cl::ReallyHidden); 119 120 static cl::opt<unsigned, true> 121 LimitFPPrecision("limit-float-precision", 122 cl::desc("Generate low-precision inline sequences " 123 "for some float libcalls"), 124 cl::location(LimitFloatPrecision), cl::Hidden, 125 cl::init(0)); 126 127 static cl::opt<unsigned> SwitchPeelThreshold( 128 "switch-peel-threshold", cl::Hidden, cl::init(66), 129 cl::desc("Set the case probability threshold for peeling the case from a " 130 "switch statement. A value greater than 100 will void this " 131 "optimization")); 132 133 // Limit the width of DAG chains. This is important in general to prevent 134 // DAG-based analysis from blowing up. For example, alias analysis and 135 // load clustering may not complete in reasonable time. It is difficult to 136 // recognize and avoid this situation within each individual analysis, and 137 // future analyses are likely to have the same behavior. Limiting DAG width is 138 // the safe approach and will be especially important with global DAGs. 139 // 140 // MaxParallelChains default is arbitrarily high to avoid affecting 141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 142 // sequence over this should have been converted to llvm.memcpy by the 143 // frontend. It is easy to induce this behavior with .ll code such as: 144 // %buffer = alloca [4096 x i8] 145 // %data = load [4096 x i8]* %argPtr 146 // store [4096 x i8] %data, [4096 x i8]* %buffer 147 static const unsigned MaxParallelChains = 64; 148 149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 150 const SDValue *Parts, unsigned NumParts, 151 MVT PartVT, EVT ValueVT, const Value *V, 152 Optional<CallingConv::ID> CC); 153 154 /// getCopyFromParts - Create a value that contains the specified legal parts 155 /// combined into the value they represent. If the parts combine to a type 156 /// larger than ValueVT then AssertOp can be used to specify whether the extra 157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 158 /// (ISD::AssertSext). 159 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 160 const SDValue *Parts, unsigned NumParts, 161 MVT PartVT, EVT ValueVT, const Value *V, 162 Optional<CallingConv::ID> CC = None, 163 Optional<ISD::NodeType> AssertOp = None) { 164 // Let the target assemble the parts if it wants to 165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 166 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 167 PartVT, ValueVT, CC)) 168 return Val; 169 170 if (ValueVT.isVector()) 171 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 172 CC); 173 174 assert(NumParts > 0 && "No parts to assemble!"); 175 SDValue Val = Parts[0]; 176 177 if (NumParts > 1) { 178 // Assemble the value from multiple parts. 179 if (ValueVT.isInteger()) { 180 unsigned PartBits = PartVT.getSizeInBits(); 181 unsigned ValueBits = ValueVT.getSizeInBits(); 182 183 // Assemble the power of 2 part. 184 unsigned RoundParts = 185 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 Optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the element type of the source/dest vectors are the same, but the 402 // parts vector has more elements than the value vector, then we have a 403 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 404 // elements we want. 405 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 406 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 407 ValueVT.getVectorElementCount().getKnownMinValue()) && 408 (PartEVT.getVectorElementCount().isScalable() == 409 ValueVT.getVectorElementCount().isScalable()) && 410 "Cannot narrow, it would be a lossy transformation"); 411 PartEVT = 412 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 413 ValueVT.getVectorElementCount()); 414 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 415 DAG.getVectorIdxConstant(0, DL)); 416 if (PartEVT == ValueVT) 417 return Val; 418 } 419 420 // Promoted vector extract 421 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 422 } 423 424 // Trivial bitcast if the types are the same size and the destination 425 // vector type is legal. 426 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 427 TLI.isTypeLegal(ValueVT)) 428 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 429 430 if (ValueVT.getVectorNumElements() != 1) { 431 // Certain ABIs require that vectors are passed as integers. For vectors 432 // are the same size, this is an obvious bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 } else if (ValueVT.bitsLT(PartEVT)) { 436 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 437 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 438 // Drop the extra bits. 439 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 440 return DAG.getBitcast(ValueVT, Val); 441 } 442 443 diagnosePossiblyInvalidConstraint( 444 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 445 return DAG.getUNDEF(ValueVT); 446 } 447 448 // Handle cases such as i8 -> <1 x i1> 449 EVT ValueSVT = ValueVT.getVectorElementType(); 450 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 451 unsigned ValueSize = ValueSVT.getSizeInBits(); 452 if (ValueSize == PartEVT.getSizeInBits()) { 453 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 454 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 455 // It's possible a scalar floating point type gets softened to integer and 456 // then promoted to a larger integer. If PartEVT is the larger integer 457 // we need to truncate it and then bitcast to the FP type. 458 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 459 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 460 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 461 Val = DAG.getBitcast(ValueSVT, Val); 462 } else { 463 Val = ValueVT.isFloatingPoint() 464 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 465 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 466 } 467 } 468 469 return DAG.getBuildVector(ValueVT, DL, Val); 470 } 471 472 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 473 SDValue Val, SDValue *Parts, unsigned NumParts, 474 MVT PartVT, const Value *V, 475 Optional<CallingConv::ID> CallConv); 476 477 /// getCopyToParts - Create a series of nodes that contain the specified value 478 /// split into legal parts. If the parts contain more bits than Val, then, for 479 /// integers, ExtendKind can be used to specify how to generate the extra bits. 480 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 481 SDValue *Parts, unsigned NumParts, MVT PartVT, 482 const Value *V, 483 Optional<CallingConv::ID> CallConv = None, 484 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 485 // Let the target split the parts if it wants to 486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 487 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 488 CallConv)) 489 return; 490 EVT ValueVT = Val.getValueType(); 491 492 // Handle the vector case separately. 493 if (ValueVT.isVector()) 494 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 495 CallConv); 496 497 unsigned PartBits = PartVT.getSizeInBits(); 498 unsigned OrigNumParts = NumParts; 499 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 500 "Copying to an illegal type!"); 501 502 if (NumParts == 0) 503 return; 504 505 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 506 EVT PartEVT = PartVT; 507 if (PartEVT == ValueVT) { 508 assert(NumParts == 1 && "No-op copy with multiple parts!"); 509 Parts[0] = Val; 510 return; 511 } 512 513 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 514 // If the parts cover more bits than the value has, promote the value. 515 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 516 assert(NumParts == 1 && "Do not know what to promote to!"); 517 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 518 } else { 519 if (ValueVT.isFloatingPoint()) { 520 // FP values need to be bitcast, then extended if they are being put 521 // into a larger container. 522 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 523 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 524 } 525 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 526 ValueVT.isInteger() && 527 "Unknown mismatch!"); 528 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 529 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 530 if (PartVT == MVT::x86mmx) 531 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 532 } 533 } else if (PartBits == ValueVT.getSizeInBits()) { 534 // Different types of the same size. 535 assert(NumParts == 1 && PartEVT != ValueVT); 536 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 537 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 538 // If the parts cover less bits than value has, truncate the value. 539 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 540 ValueVT.isInteger() && 541 "Unknown mismatch!"); 542 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 543 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 544 if (PartVT == MVT::x86mmx) 545 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 546 } 547 548 // The value may have changed - recompute ValueVT. 549 ValueVT = Val.getValueType(); 550 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 551 "Failed to tile the value with PartVT!"); 552 553 if (NumParts == 1) { 554 if (PartEVT != ValueVT) { 555 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 556 "scalar-to-vector conversion failed"); 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 560 Parts[0] = Val; 561 return; 562 } 563 564 // Expand the value into multiple parts. 565 if (NumParts & (NumParts - 1)) { 566 // The number of parts is not a power of 2. Split off and copy the tail. 567 assert(PartVT.isInteger() && ValueVT.isInteger() && 568 "Do not know what to expand to!"); 569 unsigned RoundParts = 1 << Log2_32(NumParts); 570 unsigned RoundBits = RoundParts * PartBits; 571 unsigned OddParts = NumParts - RoundParts; 572 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 573 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 574 575 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 576 CallConv); 577 578 if (DAG.getDataLayout().isBigEndian()) 579 // The odd parts were reversed by getCopyToParts - unreverse them. 580 std::reverse(Parts + RoundParts, Parts + NumParts); 581 582 NumParts = RoundParts; 583 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 584 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 585 } 586 587 // The number of parts is a power of 2. Repeatedly bisect the value using 588 // EXTRACT_ELEMENT. 589 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 590 EVT::getIntegerVT(*DAG.getContext(), 591 ValueVT.getSizeInBits()), 592 Val); 593 594 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 595 for (unsigned i = 0; i < NumParts; i += StepSize) { 596 unsigned ThisBits = StepSize * PartBits / 2; 597 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 598 SDValue &Part0 = Parts[i]; 599 SDValue &Part1 = Parts[i+StepSize/2]; 600 601 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 602 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 603 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 604 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 605 606 if (ThisBits == PartBits && ThisVT != PartVT) { 607 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 608 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 609 } 610 } 611 } 612 613 if (DAG.getDataLayout().isBigEndian()) 614 std::reverse(Parts, Parts + OrigNumParts); 615 } 616 617 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 618 const SDLoc &DL, EVT PartVT) { 619 if (!PartVT.isVector()) 620 return SDValue(); 621 622 EVT ValueVT = Val.getValueType(); 623 ElementCount PartNumElts = PartVT.getVectorElementCount(); 624 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 625 626 // We only support widening vectors with equivalent element types and 627 // fixed/scalable properties. If a target needs to widen a fixed-length type 628 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 629 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 630 PartNumElts.isScalable() != ValueNumElts.isScalable() || 631 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 632 return SDValue(); 633 634 // Widening a scalable vector to another scalable vector is done by inserting 635 // the vector into a larger undef one. 636 if (PartNumElts.isScalable()) 637 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 638 Val, DAG.getVectorIdxConstant(0, DL)); 639 640 EVT ElementVT = PartVT.getVectorElementType(); 641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 642 // undef elements. 643 SmallVector<SDValue, 16> Ops; 644 DAG.ExtractVectorElements(Val, Ops); 645 SDValue EltUndef = DAG.getUNDEF(ElementVT); 646 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 647 648 // FIXME: Use CONCAT for 2x -> 4x. 649 return DAG.getBuildVector(PartVT, DL, Ops); 650 } 651 652 /// getCopyToPartsVector - Create a series of nodes that contain the specified 653 /// value split into legal parts. 654 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 655 SDValue Val, SDValue *Parts, unsigned NumParts, 656 MVT PartVT, const Value *V, 657 Optional<CallingConv::ID> CallConv) { 658 EVT ValueVT = Val.getValueType(); 659 assert(ValueVT.isVector() && "Not a vector"); 660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 661 const bool IsABIRegCopy = CallConv.has_value(); 662 663 if (NumParts == 1) { 664 EVT PartEVT = PartVT; 665 if (PartEVT == ValueVT) { 666 // Nothing to do. 667 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 668 // Bitconvert vector->vector case. 669 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 670 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 671 Val = Widened; 672 } else if (PartVT.isVector() && 673 PartEVT.getVectorElementType().bitsGE( 674 ValueVT.getVectorElementType()) && 675 PartEVT.getVectorElementCount() == 676 ValueVT.getVectorElementCount()) { 677 678 // Promoted vector extract 679 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 680 } else if (PartEVT.isVector() && 681 PartEVT.getVectorElementType() != 682 ValueVT.getVectorElementType() && 683 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 684 TargetLowering::TypeWidenVector) { 685 // Combination of widening and promotion. 686 EVT WidenVT = 687 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 688 PartVT.getVectorElementCount()); 689 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 690 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 691 } else { 692 // Don't extract an integer from a float vector. This can happen if the 693 // FP type gets softened to integer and then promoted. The promotion 694 // prevents it from being picked up by the earlier bitcast case. 695 if (ValueVT.getVectorElementCount().isScalar() && 696 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 697 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 698 DAG.getVectorIdxConstant(0, DL)); 699 } else { 700 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 701 assert(PartVT.getFixedSizeInBits() > ValueSize && 702 "lossy conversion of vector to scalar type"); 703 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 704 Val = DAG.getBitcast(IntermediateType, Val); 705 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 706 } 707 } 708 709 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 710 Parts[0] = Val; 711 return; 712 } 713 714 // Handle a multi-element vector. 715 EVT IntermediateVT; 716 MVT RegisterVT; 717 unsigned NumIntermediates; 718 unsigned NumRegs; 719 if (IsABIRegCopy) { 720 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 721 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 722 NumIntermediates, RegisterVT); 723 } else { 724 NumRegs = 725 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 726 NumIntermediates, RegisterVT); 727 } 728 729 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 730 NumParts = NumRegs; // Silence a compiler warning. 731 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 732 733 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 734 "Mixing scalable and fixed vectors when copying in parts"); 735 736 Optional<ElementCount> DestEltCnt; 737 738 if (IntermediateVT.isVector()) 739 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 740 else 741 DestEltCnt = ElementCount::getFixed(NumIntermediates); 742 743 EVT BuiltVectorTy = EVT::getVectorVT( 744 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 745 746 if (ValueVT == BuiltVectorTy) { 747 // Nothing to do. 748 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 749 // Bitconvert vector->vector case. 750 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 751 } else { 752 if (BuiltVectorTy.getVectorElementType().bitsGT( 753 ValueVT.getVectorElementType())) { 754 // Integer promotion. 755 ValueVT = EVT::getVectorVT(*DAG.getContext(), 756 BuiltVectorTy.getVectorElementType(), 757 ValueVT.getVectorElementCount()); 758 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 759 } 760 761 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 762 Val = Widened; 763 } 764 } 765 766 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 767 768 // Split the vector into intermediate operands. 769 SmallVector<SDValue, 8> Ops(NumIntermediates); 770 for (unsigned i = 0; i != NumIntermediates; ++i) { 771 if (IntermediateVT.isVector()) { 772 // This does something sensible for scalable vectors - see the 773 // definition of EXTRACT_SUBVECTOR for further details. 774 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 775 Ops[i] = 776 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 777 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 778 } else { 779 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 780 DAG.getVectorIdxConstant(i, DL)); 781 } 782 } 783 784 // Split the intermediate operands into legal parts. 785 if (NumParts == NumIntermediates) { 786 // If the register was not expanded, promote or copy the value, 787 // as appropriate. 788 for (unsigned i = 0; i != NumParts; ++i) 789 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 790 } else if (NumParts > 0) { 791 // If the intermediate type was expanded, split each the value into 792 // legal parts. 793 assert(NumIntermediates != 0 && "division by zero"); 794 assert(NumParts % NumIntermediates == 0 && 795 "Must expand into a divisible number of parts!"); 796 unsigned Factor = NumParts / NumIntermediates; 797 for (unsigned i = 0; i != NumIntermediates; ++i) 798 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 799 CallConv); 800 } 801 } 802 803 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 804 EVT valuevt, Optional<CallingConv::ID> CC) 805 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 806 RegCount(1, regs.size()), CallConv(CC) {} 807 808 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 809 const DataLayout &DL, unsigned Reg, Type *Ty, 810 Optional<CallingConv::ID> CC) { 811 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 812 813 CallConv = CC; 814 815 for (EVT ValueVT : ValueVTs) { 816 unsigned NumRegs = 817 isABIMangled() 818 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 819 : TLI.getNumRegisters(Context, ValueVT); 820 MVT RegisterVT = 821 isABIMangled() 822 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 823 : TLI.getRegisterType(Context, ValueVT); 824 for (unsigned i = 0; i != NumRegs; ++i) 825 Regs.push_back(Reg + i); 826 RegVTs.push_back(RegisterVT); 827 RegCount.push_back(NumRegs); 828 Reg += NumRegs; 829 } 830 } 831 832 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 833 FunctionLoweringInfo &FuncInfo, 834 const SDLoc &dl, SDValue &Chain, 835 SDValue *Flag, const Value *V) const { 836 // A Value with type {} or [0 x %t] needs no registers. 837 if (ValueVTs.empty()) 838 return SDValue(); 839 840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 841 842 // Assemble the legal parts into the final values. 843 SmallVector<SDValue, 4> Values(ValueVTs.size()); 844 SmallVector<SDValue, 8> Parts; 845 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 846 // Copy the legal parts from the registers. 847 EVT ValueVT = ValueVTs[Value]; 848 unsigned NumRegs = RegCount[Value]; 849 MVT RegisterVT = 850 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 851 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 852 : RegVTs[Value]; 853 854 Parts.resize(NumRegs); 855 for (unsigned i = 0; i != NumRegs; ++i) { 856 SDValue P; 857 if (!Flag) { 858 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 859 } else { 860 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 861 *Flag = P.getValue(2); 862 } 863 864 Chain = P.getValue(1); 865 Parts[i] = P; 866 867 // If the source register was virtual and if we know something about it, 868 // add an assert node. 869 if (!Register::isVirtualRegister(Regs[Part + i]) || 870 !RegisterVT.isInteger()) 871 continue; 872 873 const FunctionLoweringInfo::LiveOutInfo *LOI = 874 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 875 if (!LOI) 876 continue; 877 878 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 879 unsigned NumSignBits = LOI->NumSignBits; 880 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 881 882 if (NumZeroBits == RegSize) { 883 // The current value is a zero. 884 // Explicitly express that as it would be easier for 885 // optimizations to kick in. 886 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 887 continue; 888 } 889 890 // FIXME: We capture more information than the dag can represent. For 891 // now, just use the tightest assertzext/assertsext possible. 892 bool isSExt; 893 EVT FromVT(MVT::Other); 894 if (NumZeroBits) { 895 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 896 isSExt = false; 897 } else if (NumSignBits > 1) { 898 FromVT = 899 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 900 isSExt = true; 901 } else { 902 continue; 903 } 904 // Add an assertion node. 905 assert(FromVT != MVT::Other); 906 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 907 RegisterVT, P, DAG.getValueType(FromVT)); 908 } 909 910 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 911 RegisterVT, ValueVT, V, CallConv); 912 Part += NumRegs; 913 Parts.clear(); 914 } 915 916 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 917 } 918 919 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 920 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 921 const Value *V, 922 ISD::NodeType PreferredExtendType) const { 923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 924 ISD::NodeType ExtendKind = PreferredExtendType; 925 926 // Get the list of the values's legal parts. 927 unsigned NumRegs = Regs.size(); 928 SmallVector<SDValue, 8> Parts(NumRegs); 929 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 930 unsigned NumParts = RegCount[Value]; 931 932 MVT RegisterVT = 933 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 934 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 935 : RegVTs[Value]; 936 937 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 938 ExtendKind = ISD::ZERO_EXTEND; 939 940 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 941 NumParts, RegisterVT, V, CallConv, ExtendKind); 942 Part += NumParts; 943 } 944 945 // Copy the parts into the registers. 946 SmallVector<SDValue, 8> Chains(NumRegs); 947 for (unsigned i = 0; i != NumRegs; ++i) { 948 SDValue Part; 949 if (!Flag) { 950 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 951 } else { 952 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 953 *Flag = Part.getValue(1); 954 } 955 956 Chains[i] = Part.getValue(0); 957 } 958 959 if (NumRegs == 1 || Flag) 960 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 961 // flagged to it. That is the CopyToReg nodes and the user are considered 962 // a single scheduling unit. If we create a TokenFactor and return it as 963 // chain, then the TokenFactor is both a predecessor (operand) of the 964 // user as well as a successor (the TF operands are flagged to the user). 965 // c1, f1 = CopyToReg 966 // c2, f2 = CopyToReg 967 // c3 = TokenFactor c1, c2 968 // ... 969 // = op c3, ..., f2 970 Chain = Chains[NumRegs-1]; 971 else 972 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 973 } 974 975 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 976 unsigned MatchingIdx, const SDLoc &dl, 977 SelectionDAG &DAG, 978 std::vector<SDValue> &Ops) const { 979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 980 981 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 982 if (HasMatching) 983 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 984 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 985 // Put the register class of the virtual registers in the flag word. That 986 // way, later passes can recompute register class constraints for inline 987 // assembly as well as normal instructions. 988 // Don't do this for tied operands that can use the regclass information 989 // from the def. 990 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 991 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 992 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 993 } 994 995 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 996 Ops.push_back(Res); 997 998 if (Code == InlineAsm::Kind_Clobber) { 999 // Clobbers should always have a 1:1 mapping with registers, and may 1000 // reference registers that have illegal (e.g. vector) types. Hence, we 1001 // shouldn't try to apply any sort of splitting logic to them. 1002 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1003 "No 1:1 mapping from clobbers to regs?"); 1004 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1005 (void)SP; 1006 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1007 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1008 assert( 1009 (Regs[I] != SP || 1010 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1011 "If we clobbered the stack pointer, MFI should know about it."); 1012 } 1013 return; 1014 } 1015 1016 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1017 MVT RegisterVT = RegVTs[Value]; 1018 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1019 RegisterVT); 1020 for (unsigned i = 0; i != NumRegs; ++i) { 1021 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1022 unsigned TheReg = Regs[Reg++]; 1023 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1024 } 1025 } 1026 } 1027 1028 SmallVector<std::pair<unsigned, TypeSize>, 4> 1029 RegsForValue::getRegsAndSizes() const { 1030 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1031 unsigned I = 0; 1032 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1033 unsigned RegCount = std::get<0>(CountAndVT); 1034 MVT RegisterVT = std::get<1>(CountAndVT); 1035 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1036 for (unsigned E = I + RegCount; I != E; ++I) 1037 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1038 } 1039 return OutVec; 1040 } 1041 1042 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1043 AssumptionCache *ac, 1044 const TargetLibraryInfo *li) { 1045 AA = aa; 1046 AC = ac; 1047 GFI = gfi; 1048 LibInfo = li; 1049 Context = DAG.getContext(); 1050 LPadToCallSiteMap.clear(); 1051 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1052 } 1053 1054 void SelectionDAGBuilder::clear() { 1055 NodeMap.clear(); 1056 UnusedArgNodeMap.clear(); 1057 PendingLoads.clear(); 1058 PendingExports.clear(); 1059 PendingConstrainedFP.clear(); 1060 PendingConstrainedFPStrict.clear(); 1061 CurInst = nullptr; 1062 HasTailCall = false; 1063 SDNodeOrder = LowestSDNodeOrder; 1064 StatepointLowering.clear(); 1065 } 1066 1067 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1068 DanglingDebugInfoMap.clear(); 1069 } 1070 1071 // Update DAG root to include dependencies on Pending chains. 1072 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1073 SDValue Root = DAG.getRoot(); 1074 1075 if (Pending.empty()) 1076 return Root; 1077 1078 // Add current root to PendingChains, unless we already indirectly 1079 // depend on it. 1080 if (Root.getOpcode() != ISD::EntryToken) { 1081 unsigned i = 0, e = Pending.size(); 1082 for (; i != e; ++i) { 1083 assert(Pending[i].getNode()->getNumOperands() > 1); 1084 if (Pending[i].getNode()->getOperand(0) == Root) 1085 break; // Don't add the root if we already indirectly depend on it. 1086 } 1087 1088 if (i == e) 1089 Pending.push_back(Root); 1090 } 1091 1092 if (Pending.size() == 1) 1093 Root = Pending[0]; 1094 else 1095 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1096 1097 DAG.setRoot(Root); 1098 Pending.clear(); 1099 return Root; 1100 } 1101 1102 SDValue SelectionDAGBuilder::getMemoryRoot() { 1103 return updateRoot(PendingLoads); 1104 } 1105 1106 SDValue SelectionDAGBuilder::getRoot() { 1107 // Chain up all pending constrained intrinsics together with all 1108 // pending loads, by simply appending them to PendingLoads and 1109 // then calling getMemoryRoot(). 1110 PendingLoads.reserve(PendingLoads.size() + 1111 PendingConstrainedFP.size() + 1112 PendingConstrainedFPStrict.size()); 1113 PendingLoads.append(PendingConstrainedFP.begin(), 1114 PendingConstrainedFP.end()); 1115 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1116 PendingConstrainedFPStrict.end()); 1117 PendingConstrainedFP.clear(); 1118 PendingConstrainedFPStrict.clear(); 1119 return getMemoryRoot(); 1120 } 1121 1122 SDValue SelectionDAGBuilder::getControlRoot() { 1123 // We need to emit pending fpexcept.strict constrained intrinsics, 1124 // so append them to the PendingExports list. 1125 PendingExports.append(PendingConstrainedFPStrict.begin(), 1126 PendingConstrainedFPStrict.end()); 1127 PendingConstrainedFPStrict.clear(); 1128 return updateRoot(PendingExports); 1129 } 1130 1131 void SelectionDAGBuilder::visit(const Instruction &I) { 1132 // Set up outgoing PHI node register values before emitting the terminator. 1133 if (I.isTerminator()) { 1134 HandlePHINodesInSuccessorBlocks(I.getParent()); 1135 } 1136 1137 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1138 if (!isa<DbgInfoIntrinsic>(I)) 1139 ++SDNodeOrder; 1140 1141 CurInst = &I; 1142 1143 // Set inserted listener only if required. 1144 bool NodeInserted = false; 1145 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1146 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1147 if (PCSectionsMD) { 1148 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1149 DAG, [&](SDNode *) { NodeInserted = true; }); 1150 } 1151 1152 visit(I.getOpcode(), I); 1153 1154 if (!I.isTerminator() && !HasTailCall && 1155 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1156 CopyToExportRegsIfNeeded(&I); 1157 1158 // Handle metadata. 1159 if (PCSectionsMD) { 1160 auto It = NodeMap.find(&I); 1161 if (It != NodeMap.end()) { 1162 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1163 } else if (NodeInserted) { 1164 // This should not happen; if it does, don't let it go unnoticed so we can 1165 // fix it. Relevant visit*() function is probably missing a setValue(). 1166 errs() << "warning: loosing !pcsections metadata [" 1167 << I.getModule()->getName() << "]\n"; 1168 LLVM_DEBUG(I.dump()); 1169 assert(false); 1170 } 1171 } 1172 1173 CurInst = nullptr; 1174 } 1175 1176 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1177 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1178 } 1179 1180 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1181 // Note: this doesn't use InstVisitor, because it has to work with 1182 // ConstantExpr's in addition to instructions. 1183 switch (Opcode) { 1184 default: llvm_unreachable("Unknown instruction type encountered!"); 1185 // Build the switch statement using the Instruction.def file. 1186 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1187 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1188 #include "llvm/IR/Instruction.def" 1189 } 1190 } 1191 1192 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1193 DebugLoc DL, unsigned Order) { 1194 // We treat variadic dbg_values differently at this stage. 1195 if (DI->hasArgList()) { 1196 // For variadic dbg_values we will now insert an undef. 1197 // FIXME: We can potentially recover these! 1198 SmallVector<SDDbgOperand, 2> Locs; 1199 for (const Value *V : DI->getValues()) { 1200 auto Undef = UndefValue::get(V->getType()); 1201 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1202 } 1203 SDDbgValue *SDV = DAG.getDbgValueList( 1204 DI->getVariable(), DI->getExpression(), Locs, {}, 1205 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1206 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1207 } else { 1208 // TODO: Dangling debug info will eventually either be resolved or produce 1209 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1210 // between the original dbg.value location and its resolved DBG_VALUE, 1211 // which we should ideally fill with an extra Undef DBG_VALUE. 1212 assert(DI->getNumVariableLocationOps() == 1 && 1213 "DbgValueInst without an ArgList should have a single location " 1214 "operand."); 1215 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1216 } 1217 } 1218 1219 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1220 const DIExpression *Expr) { 1221 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1222 const DbgValueInst *DI = DDI.getDI(); 1223 DIVariable *DanglingVariable = DI->getVariable(); 1224 DIExpression *DanglingExpr = DI->getExpression(); 1225 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1226 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1227 return true; 1228 } 1229 return false; 1230 }; 1231 1232 for (auto &DDIMI : DanglingDebugInfoMap) { 1233 DanglingDebugInfoVector &DDIV = DDIMI.second; 1234 1235 // If debug info is to be dropped, run it through final checks to see 1236 // whether it can be salvaged. 1237 for (auto &DDI : DDIV) 1238 if (isMatchingDbgValue(DDI)) 1239 salvageUnresolvedDbgValue(DDI); 1240 1241 erase_if(DDIV, isMatchingDbgValue); 1242 } 1243 } 1244 1245 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1246 // generate the debug data structures now that we've seen its definition. 1247 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1248 SDValue Val) { 1249 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1250 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1251 return; 1252 1253 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1254 for (auto &DDI : DDIV) { 1255 const DbgValueInst *DI = DDI.getDI(); 1256 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1257 assert(DI && "Ill-formed DanglingDebugInfo"); 1258 DebugLoc dl = DDI.getdl(); 1259 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1260 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1261 DILocalVariable *Variable = DI->getVariable(); 1262 DIExpression *Expr = DI->getExpression(); 1263 assert(Variable->isValidLocationForIntrinsic(dl) && 1264 "Expected inlined-at fields to agree"); 1265 SDDbgValue *SDV; 1266 if (Val.getNode()) { 1267 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1268 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1269 // we couldn't resolve it directly when examining the DbgValue intrinsic 1270 // in the first place we should not be more successful here). Unless we 1271 // have some test case that prove this to be correct we should avoid 1272 // calling EmitFuncArgumentDbgValue here. 1273 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1274 FuncArgumentDbgValueKind::Value, Val)) { 1275 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1276 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1277 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1278 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1279 // inserted after the definition of Val when emitting the instructions 1280 // after ISel. An alternative could be to teach 1281 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1282 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1283 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1284 << ValSDNodeOrder << "\n"); 1285 SDV = getDbgValue(Val, Variable, Expr, dl, 1286 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1287 DAG.AddDbgValue(SDV, false); 1288 } else 1289 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1290 << "in EmitFuncArgumentDbgValue\n"); 1291 } else { 1292 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1293 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1294 auto SDV = 1295 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1296 DAG.AddDbgValue(SDV, false); 1297 } 1298 } 1299 DDIV.clear(); 1300 } 1301 1302 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1303 // TODO: For the variadic implementation, instead of only checking the fail 1304 // state of `handleDebugValue`, we need know specifically which values were 1305 // invalid, so that we attempt to salvage only those values when processing 1306 // a DIArgList. 1307 assert(!DDI.getDI()->hasArgList() && 1308 "Not implemented for variadic dbg_values"); 1309 Value *V = DDI.getDI()->getValue(0); 1310 DILocalVariable *Var = DDI.getDI()->getVariable(); 1311 DIExpression *Expr = DDI.getDI()->getExpression(); 1312 DebugLoc DL = DDI.getdl(); 1313 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1314 unsigned SDOrder = DDI.getSDNodeOrder(); 1315 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1316 // that DW_OP_stack_value is desired. 1317 assert(isa<DbgValueInst>(DDI.getDI())); 1318 bool StackValue = true; 1319 1320 // Can this Value can be encoded without any further work? 1321 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1322 return; 1323 1324 // Attempt to salvage back through as many instructions as possible. Bail if 1325 // a non-instruction is seen, such as a constant expression or global 1326 // variable. FIXME: Further work could recover those too. 1327 while (isa<Instruction>(V)) { 1328 Instruction &VAsInst = *cast<Instruction>(V); 1329 // Temporary "0", awaiting real implementation. 1330 SmallVector<uint64_t, 16> Ops; 1331 SmallVector<Value *, 4> AdditionalValues; 1332 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1333 AdditionalValues); 1334 // If we cannot salvage any further, and haven't yet found a suitable debug 1335 // expression, bail out. 1336 if (!V) 1337 break; 1338 1339 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1340 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1341 // here for variadic dbg_values, remove that condition. 1342 if (!AdditionalValues.empty()) 1343 break; 1344 1345 // New value and expr now represent this debuginfo. 1346 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1347 1348 // Some kind of simplification occurred: check whether the operand of the 1349 // salvaged debug expression can be encoded in this DAG. 1350 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1351 /*IsVariadic=*/false)) { 1352 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1353 << *DDI.getDI() << "\nBy stripping back to:\n " << *V); 1354 return; 1355 } 1356 } 1357 1358 // This was the final opportunity to salvage this debug information, and it 1359 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1360 // any earlier variable location. 1361 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1362 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1363 DAG.AddDbgValue(SDV, false); 1364 1365 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << *DDI.getDI() 1366 << "\n"); 1367 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1368 << "\n"); 1369 } 1370 1371 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1372 DILocalVariable *Var, 1373 DIExpression *Expr, DebugLoc dl, 1374 DebugLoc InstDL, unsigned Order, 1375 bool IsVariadic) { 1376 if (Values.empty()) 1377 return true; 1378 SmallVector<SDDbgOperand> LocationOps; 1379 SmallVector<SDNode *> Dependencies; 1380 for (const Value *V : Values) { 1381 // Constant value. 1382 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1383 isa<ConstantPointerNull>(V)) { 1384 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1385 continue; 1386 } 1387 1388 // Look through IntToPtr constants. 1389 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1390 if (CE->getOpcode() == Instruction::IntToPtr) { 1391 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1392 continue; 1393 } 1394 1395 // If the Value is a frame index, we can create a FrameIndex debug value 1396 // without relying on the DAG at all. 1397 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1398 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1399 if (SI != FuncInfo.StaticAllocaMap.end()) { 1400 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1401 continue; 1402 } 1403 } 1404 1405 // Do not use getValue() in here; we don't want to generate code at 1406 // this point if it hasn't been done yet. 1407 SDValue N = NodeMap[V]; 1408 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1409 N = UnusedArgNodeMap[V]; 1410 if (N.getNode()) { 1411 // Only emit func arg dbg value for non-variadic dbg.values for now. 1412 if (!IsVariadic && 1413 EmitFuncArgumentDbgValue(V, Var, Expr, dl, 1414 FuncArgumentDbgValueKind::Value, N)) 1415 return true; 1416 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1417 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1418 // describe stack slot locations. 1419 // 1420 // Consider "int x = 0; int *px = &x;". There are two kinds of 1421 // interesting debug values here after optimization: 1422 // 1423 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1424 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1425 // 1426 // Both describe the direct values of their associated variables. 1427 Dependencies.push_back(N.getNode()); 1428 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1429 continue; 1430 } 1431 LocationOps.emplace_back( 1432 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1433 continue; 1434 } 1435 1436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1437 // Special rules apply for the first dbg.values of parameter variables in a 1438 // function. Identify them by the fact they reference Argument Values, that 1439 // they're parameters, and they are parameters of the current function. We 1440 // need to let them dangle until they get an SDNode. 1441 bool IsParamOfFunc = 1442 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1443 if (IsParamOfFunc) 1444 return false; 1445 1446 // The value is not used in this block yet (or it would have an SDNode). 1447 // We still want the value to appear for the user if possible -- if it has 1448 // an associated VReg, we can refer to that instead. 1449 auto VMI = FuncInfo.ValueMap.find(V); 1450 if (VMI != FuncInfo.ValueMap.end()) { 1451 unsigned Reg = VMI->second; 1452 // If this is a PHI node, it may be split up into several MI PHI nodes 1453 // (in FunctionLoweringInfo::set). 1454 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1455 V->getType(), None); 1456 if (RFV.occupiesMultipleRegs()) { 1457 // FIXME: We could potentially support variadic dbg_values here. 1458 if (IsVariadic) 1459 return false; 1460 unsigned Offset = 0; 1461 unsigned BitsToDescribe = 0; 1462 if (auto VarSize = Var->getSizeInBits()) 1463 BitsToDescribe = *VarSize; 1464 if (auto Fragment = Expr->getFragmentInfo()) 1465 BitsToDescribe = Fragment->SizeInBits; 1466 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1467 // Bail out if all bits are described already. 1468 if (Offset >= BitsToDescribe) 1469 break; 1470 // TODO: handle scalable vectors. 1471 unsigned RegisterSize = RegAndSize.second; 1472 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1473 ? BitsToDescribe - Offset 1474 : RegisterSize; 1475 auto FragmentExpr = DIExpression::createFragmentExpression( 1476 Expr, Offset, FragmentSize); 1477 if (!FragmentExpr) 1478 continue; 1479 SDDbgValue *SDV = DAG.getVRegDbgValue( 1480 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1481 DAG.AddDbgValue(SDV, false); 1482 Offset += RegisterSize; 1483 } 1484 return true; 1485 } 1486 // We can use simple vreg locations for variadic dbg_values as well. 1487 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1488 continue; 1489 } 1490 // We failed to create a SDDbgOperand for V. 1491 return false; 1492 } 1493 1494 // We have created a SDDbgOperand for each Value in Values. 1495 // Should use Order instead of SDNodeOrder? 1496 assert(!LocationOps.empty()); 1497 SDDbgValue *SDV = 1498 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1499 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1500 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1501 return true; 1502 } 1503 1504 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1505 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1506 for (auto &Pair : DanglingDebugInfoMap) 1507 for (auto &DDI : Pair.second) 1508 salvageUnresolvedDbgValue(DDI); 1509 clearDanglingDebugInfo(); 1510 } 1511 1512 /// getCopyFromRegs - If there was virtual register allocated for the value V 1513 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1514 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1515 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1516 SDValue Result; 1517 1518 if (It != FuncInfo.ValueMap.end()) { 1519 Register InReg = It->second; 1520 1521 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1522 DAG.getDataLayout(), InReg, Ty, 1523 None); // This is not an ABI copy. 1524 SDValue Chain = DAG.getEntryNode(); 1525 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1526 V); 1527 resolveDanglingDebugInfo(V, Result); 1528 } 1529 1530 return Result; 1531 } 1532 1533 /// getValue - Return an SDValue for the given Value. 1534 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1535 // If we already have an SDValue for this value, use it. It's important 1536 // to do this first, so that we don't create a CopyFromReg if we already 1537 // have a regular SDValue. 1538 SDValue &N = NodeMap[V]; 1539 if (N.getNode()) return N; 1540 1541 // If there's a virtual register allocated and initialized for this 1542 // value, use it. 1543 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1544 return copyFromReg; 1545 1546 // Otherwise create a new SDValue and remember it. 1547 SDValue Val = getValueImpl(V); 1548 NodeMap[V] = Val; 1549 resolveDanglingDebugInfo(V, Val); 1550 return Val; 1551 } 1552 1553 /// getNonRegisterValue - Return an SDValue for the given Value, but 1554 /// don't look in FuncInfo.ValueMap for a virtual register. 1555 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1556 // If we already have an SDValue for this value, use it. 1557 SDValue &N = NodeMap[V]; 1558 if (N.getNode()) { 1559 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1560 // Remove the debug location from the node as the node is about to be used 1561 // in a location which may differ from the original debug location. This 1562 // is relevant to Constant and ConstantFP nodes because they can appear 1563 // as constant expressions inside PHI nodes. 1564 N->setDebugLoc(DebugLoc()); 1565 } 1566 return N; 1567 } 1568 1569 // Otherwise create a new SDValue and remember it. 1570 SDValue Val = getValueImpl(V); 1571 NodeMap[V] = Val; 1572 resolveDanglingDebugInfo(V, Val); 1573 return Val; 1574 } 1575 1576 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1577 /// Create an SDValue for the given value. 1578 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1580 1581 if (const Constant *C = dyn_cast<Constant>(V)) { 1582 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1583 1584 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1585 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1586 1587 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1588 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1589 1590 if (isa<ConstantPointerNull>(C)) { 1591 unsigned AS = V->getType()->getPointerAddressSpace(); 1592 return DAG.getConstant(0, getCurSDLoc(), 1593 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1594 } 1595 1596 if (match(C, m_VScale(DAG.getDataLayout()))) 1597 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1598 1599 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1600 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1601 1602 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1603 return DAG.getUNDEF(VT); 1604 1605 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1606 visit(CE->getOpcode(), *CE); 1607 SDValue N1 = NodeMap[V]; 1608 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1609 return N1; 1610 } 1611 1612 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1613 SmallVector<SDValue, 4> Constants; 1614 for (const Use &U : C->operands()) { 1615 SDNode *Val = getValue(U).getNode(); 1616 // If the operand is an empty aggregate, there are no values. 1617 if (!Val) continue; 1618 // Add each leaf value from the operand to the Constants list 1619 // to form a flattened list of all the values. 1620 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1621 Constants.push_back(SDValue(Val, i)); 1622 } 1623 1624 return DAG.getMergeValues(Constants, getCurSDLoc()); 1625 } 1626 1627 if (const ConstantDataSequential *CDS = 1628 dyn_cast<ConstantDataSequential>(C)) { 1629 SmallVector<SDValue, 4> Ops; 1630 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1631 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1632 // Add each leaf value from the operand to the Constants list 1633 // to form a flattened list of all the values. 1634 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1635 Ops.push_back(SDValue(Val, i)); 1636 } 1637 1638 if (isa<ArrayType>(CDS->getType())) 1639 return DAG.getMergeValues(Ops, getCurSDLoc()); 1640 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1641 } 1642 1643 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1644 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1645 "Unknown struct or array constant!"); 1646 1647 SmallVector<EVT, 4> ValueVTs; 1648 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1649 unsigned NumElts = ValueVTs.size(); 1650 if (NumElts == 0) 1651 return SDValue(); // empty struct 1652 SmallVector<SDValue, 4> Constants(NumElts); 1653 for (unsigned i = 0; i != NumElts; ++i) { 1654 EVT EltVT = ValueVTs[i]; 1655 if (isa<UndefValue>(C)) 1656 Constants[i] = DAG.getUNDEF(EltVT); 1657 else if (EltVT.isFloatingPoint()) 1658 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1659 else 1660 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1661 } 1662 1663 return DAG.getMergeValues(Constants, getCurSDLoc()); 1664 } 1665 1666 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1667 return DAG.getBlockAddress(BA, VT); 1668 1669 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1670 return getValue(Equiv->getGlobalValue()); 1671 1672 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1673 return getValue(NC->getGlobalValue()); 1674 1675 VectorType *VecTy = cast<VectorType>(V->getType()); 1676 1677 // Now that we know the number and type of the elements, get that number of 1678 // elements into the Ops array based on what kind of constant it is. 1679 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1680 SmallVector<SDValue, 16> Ops; 1681 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1682 for (unsigned i = 0; i != NumElements; ++i) 1683 Ops.push_back(getValue(CV->getOperand(i))); 1684 1685 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1686 } 1687 1688 if (isa<ConstantAggregateZero>(C)) { 1689 EVT EltVT = 1690 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1691 1692 SDValue Op; 1693 if (EltVT.isFloatingPoint()) 1694 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1695 else 1696 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1697 1698 if (isa<ScalableVectorType>(VecTy)) 1699 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1700 return NodeMap[V] = DAG.getSplatBuildVector(VT, getCurSDLoc(), Op); 1701 } 1702 1703 llvm_unreachable("Unknown vector constant"); 1704 } 1705 1706 // If this is a static alloca, generate it as the frameindex instead of 1707 // computation. 1708 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1709 DenseMap<const AllocaInst*, int>::iterator SI = 1710 FuncInfo.StaticAllocaMap.find(AI); 1711 if (SI != FuncInfo.StaticAllocaMap.end()) 1712 return DAG.getFrameIndex(SI->second, 1713 TLI.getFrameIndexTy(DAG.getDataLayout())); 1714 } 1715 1716 // If this is an instruction which fast-isel has deferred, select it now. 1717 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1718 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1719 1720 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1721 Inst->getType(), None); 1722 SDValue Chain = DAG.getEntryNode(); 1723 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1724 } 1725 1726 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1727 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1728 1729 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1730 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1731 1732 llvm_unreachable("Can't get register for value!"); 1733 } 1734 1735 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1736 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1737 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1738 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1739 bool IsSEH = isAsynchronousEHPersonality(Pers); 1740 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1741 if (!IsSEH) 1742 CatchPadMBB->setIsEHScopeEntry(); 1743 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1744 if (IsMSVCCXX || IsCoreCLR) 1745 CatchPadMBB->setIsEHFuncletEntry(); 1746 } 1747 1748 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1749 // Update machine-CFG edge. 1750 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1751 FuncInfo.MBB->addSuccessor(TargetMBB); 1752 TargetMBB->setIsEHCatchretTarget(true); 1753 DAG.getMachineFunction().setHasEHCatchret(true); 1754 1755 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1756 bool IsSEH = isAsynchronousEHPersonality(Pers); 1757 if (IsSEH) { 1758 // If this is not a fall-through branch or optimizations are switched off, 1759 // emit the branch. 1760 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1761 TM.getOptLevel() == CodeGenOpt::None) 1762 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1763 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1764 return; 1765 } 1766 1767 // Figure out the funclet membership for the catchret's successor. 1768 // This will be used by the FuncletLayout pass to determine how to order the 1769 // BB's. 1770 // A 'catchret' returns to the outer scope's color. 1771 Value *ParentPad = I.getCatchSwitchParentPad(); 1772 const BasicBlock *SuccessorColor; 1773 if (isa<ConstantTokenNone>(ParentPad)) 1774 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1775 else 1776 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1777 assert(SuccessorColor && "No parent funclet for catchret!"); 1778 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1779 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1780 1781 // Create the terminator node. 1782 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1783 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1784 DAG.getBasicBlock(SuccessorColorMBB)); 1785 DAG.setRoot(Ret); 1786 } 1787 1788 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1789 // Don't emit any special code for the cleanuppad instruction. It just marks 1790 // the start of an EH scope/funclet. 1791 FuncInfo.MBB->setIsEHScopeEntry(); 1792 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1793 if (Pers != EHPersonality::Wasm_CXX) { 1794 FuncInfo.MBB->setIsEHFuncletEntry(); 1795 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1796 } 1797 } 1798 1799 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1800 // not match, it is OK to add only the first unwind destination catchpad to the 1801 // successors, because there will be at least one invoke instruction within the 1802 // catch scope that points to the next unwind destination, if one exists, so 1803 // CFGSort cannot mess up with BB sorting order. 1804 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1805 // call within them, and catchpads only consisting of 'catch (...)' have a 1806 // '__cxa_end_catch' call within them, both of which generate invokes in case 1807 // the next unwind destination exists, i.e., the next unwind destination is not 1808 // the caller.) 1809 // 1810 // Having at most one EH pad successor is also simpler and helps later 1811 // transformations. 1812 // 1813 // For example, 1814 // current: 1815 // invoke void @foo to ... unwind label %catch.dispatch 1816 // catch.dispatch: 1817 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1818 // catch.start: 1819 // ... 1820 // ... in this BB or some other child BB dominated by this BB there will be an 1821 // invoke that points to 'next' BB as an unwind destination 1822 // 1823 // next: ; We don't need to add this to 'current' BB's successor 1824 // ... 1825 static void findWasmUnwindDestinations( 1826 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1827 BranchProbability Prob, 1828 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1829 &UnwindDests) { 1830 while (EHPadBB) { 1831 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1832 if (isa<CleanupPadInst>(Pad)) { 1833 // Stop on cleanup pads. 1834 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1835 UnwindDests.back().first->setIsEHScopeEntry(); 1836 break; 1837 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1838 // Add the catchpad handlers to the possible destinations. We don't 1839 // continue to the unwind destination of the catchswitch for wasm. 1840 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1841 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1842 UnwindDests.back().first->setIsEHScopeEntry(); 1843 } 1844 break; 1845 } else { 1846 continue; 1847 } 1848 } 1849 } 1850 1851 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1852 /// many places it could ultimately go. In the IR, we have a single unwind 1853 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1854 /// This function skips over imaginary basic blocks that hold catchswitch 1855 /// instructions, and finds all the "real" machine 1856 /// basic block destinations. As those destinations may not be successors of 1857 /// EHPadBB, here we also calculate the edge probability to those destinations. 1858 /// The passed-in Prob is the edge probability to EHPadBB. 1859 static void findUnwindDestinations( 1860 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1861 BranchProbability Prob, 1862 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1863 &UnwindDests) { 1864 EHPersonality Personality = 1865 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1866 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1867 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1868 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1869 bool IsSEH = isAsynchronousEHPersonality(Personality); 1870 1871 if (IsWasmCXX) { 1872 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1873 assert(UnwindDests.size() <= 1 && 1874 "There should be at most one unwind destination for wasm"); 1875 return; 1876 } 1877 1878 while (EHPadBB) { 1879 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1880 BasicBlock *NewEHPadBB = nullptr; 1881 if (isa<LandingPadInst>(Pad)) { 1882 // Stop on landingpads. They are not funclets. 1883 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1884 break; 1885 } else if (isa<CleanupPadInst>(Pad)) { 1886 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1887 // personalities. 1888 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1889 UnwindDests.back().first->setIsEHScopeEntry(); 1890 UnwindDests.back().first->setIsEHFuncletEntry(); 1891 break; 1892 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1893 // Add the catchpad handlers to the possible destinations. 1894 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1895 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1896 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1897 if (IsMSVCCXX || IsCoreCLR) 1898 UnwindDests.back().first->setIsEHFuncletEntry(); 1899 if (!IsSEH) 1900 UnwindDests.back().first->setIsEHScopeEntry(); 1901 } 1902 NewEHPadBB = CatchSwitch->getUnwindDest(); 1903 } else { 1904 continue; 1905 } 1906 1907 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1908 if (BPI && NewEHPadBB) 1909 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1910 EHPadBB = NewEHPadBB; 1911 } 1912 } 1913 1914 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1915 // Update successor info. 1916 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1917 auto UnwindDest = I.getUnwindDest(); 1918 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1919 BranchProbability UnwindDestProb = 1920 (BPI && UnwindDest) 1921 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1922 : BranchProbability::getZero(); 1923 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1924 for (auto &UnwindDest : UnwindDests) { 1925 UnwindDest.first->setIsEHPad(); 1926 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1927 } 1928 FuncInfo.MBB->normalizeSuccProbs(); 1929 1930 // Create the terminator node. 1931 SDValue Ret = 1932 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1933 DAG.setRoot(Ret); 1934 } 1935 1936 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1937 report_fatal_error("visitCatchSwitch not yet implemented!"); 1938 } 1939 1940 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1942 auto &DL = DAG.getDataLayout(); 1943 SDValue Chain = getControlRoot(); 1944 SmallVector<ISD::OutputArg, 8> Outs; 1945 SmallVector<SDValue, 8> OutVals; 1946 1947 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1948 // lower 1949 // 1950 // %val = call <ty> @llvm.experimental.deoptimize() 1951 // ret <ty> %val 1952 // 1953 // differently. 1954 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1955 LowerDeoptimizingReturn(); 1956 return; 1957 } 1958 1959 if (!FuncInfo.CanLowerReturn) { 1960 unsigned DemoteReg = FuncInfo.DemoteRegister; 1961 const Function *F = I.getParent()->getParent(); 1962 1963 // Emit a store of the return value through the virtual register. 1964 // Leave Outs empty so that LowerReturn won't try to load return 1965 // registers the usual way. 1966 SmallVector<EVT, 1> PtrValueVTs; 1967 ComputeValueVTs(TLI, DL, 1968 F->getReturnType()->getPointerTo( 1969 DAG.getDataLayout().getAllocaAddrSpace()), 1970 PtrValueVTs); 1971 1972 SDValue RetPtr = 1973 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1974 SDValue RetOp = getValue(I.getOperand(0)); 1975 1976 SmallVector<EVT, 4> ValueVTs, MemVTs; 1977 SmallVector<uint64_t, 4> Offsets; 1978 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1979 &Offsets); 1980 unsigned NumValues = ValueVTs.size(); 1981 1982 SmallVector<SDValue, 4> Chains(NumValues); 1983 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1984 for (unsigned i = 0; i != NumValues; ++i) { 1985 // An aggregate return value cannot wrap around the address space, so 1986 // offsets to its parts don't wrap either. 1987 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1988 TypeSize::Fixed(Offsets[i])); 1989 1990 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1991 if (MemVTs[i] != ValueVTs[i]) 1992 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1993 Chains[i] = DAG.getStore( 1994 Chain, getCurSDLoc(), Val, 1995 // FIXME: better loc info would be nice. 1996 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1997 commonAlignment(BaseAlign, Offsets[i])); 1998 } 1999 2000 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2001 MVT::Other, Chains); 2002 } else if (I.getNumOperands() != 0) { 2003 SmallVector<EVT, 4> ValueVTs; 2004 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2005 unsigned NumValues = ValueVTs.size(); 2006 if (NumValues) { 2007 SDValue RetOp = getValue(I.getOperand(0)); 2008 2009 const Function *F = I.getParent()->getParent(); 2010 2011 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2012 I.getOperand(0)->getType(), F->getCallingConv(), 2013 /*IsVarArg*/ false, DL); 2014 2015 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2016 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2017 ExtendKind = ISD::SIGN_EXTEND; 2018 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2019 ExtendKind = ISD::ZERO_EXTEND; 2020 2021 LLVMContext &Context = F->getContext(); 2022 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2023 2024 for (unsigned j = 0; j != NumValues; ++j) { 2025 EVT VT = ValueVTs[j]; 2026 2027 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2028 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2029 2030 CallingConv::ID CC = F->getCallingConv(); 2031 2032 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2033 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2034 SmallVector<SDValue, 4> Parts(NumParts); 2035 getCopyToParts(DAG, getCurSDLoc(), 2036 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2037 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2038 2039 // 'inreg' on function refers to return value 2040 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2041 if (RetInReg) 2042 Flags.setInReg(); 2043 2044 if (I.getOperand(0)->getType()->isPointerTy()) { 2045 Flags.setPointer(); 2046 Flags.setPointerAddrSpace( 2047 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2048 } 2049 2050 if (NeedsRegBlock) { 2051 Flags.setInConsecutiveRegs(); 2052 if (j == NumValues - 1) 2053 Flags.setInConsecutiveRegsLast(); 2054 } 2055 2056 // Propagate extension type if any 2057 if (ExtendKind == ISD::SIGN_EXTEND) 2058 Flags.setSExt(); 2059 else if (ExtendKind == ISD::ZERO_EXTEND) 2060 Flags.setZExt(); 2061 2062 for (unsigned i = 0; i < NumParts; ++i) { 2063 Outs.push_back(ISD::OutputArg(Flags, 2064 Parts[i].getValueType().getSimpleVT(), 2065 VT, /*isfixed=*/true, 0, 0)); 2066 OutVals.push_back(Parts[i]); 2067 } 2068 } 2069 } 2070 } 2071 2072 // Push in swifterror virtual register as the last element of Outs. This makes 2073 // sure swifterror virtual register will be returned in the swifterror 2074 // physical register. 2075 const Function *F = I.getParent()->getParent(); 2076 if (TLI.supportSwiftError() && 2077 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2078 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2079 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2080 Flags.setSwiftError(); 2081 Outs.push_back(ISD::OutputArg( 2082 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2083 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2084 // Create SDNode for the swifterror virtual register. 2085 OutVals.push_back( 2086 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2087 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2088 EVT(TLI.getPointerTy(DL)))); 2089 } 2090 2091 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2092 CallingConv::ID CallConv = 2093 DAG.getMachineFunction().getFunction().getCallingConv(); 2094 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2095 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2096 2097 // Verify that the target's LowerReturn behaved as expected. 2098 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2099 "LowerReturn didn't return a valid chain!"); 2100 2101 // Update the DAG with the new chain value resulting from return lowering. 2102 DAG.setRoot(Chain); 2103 } 2104 2105 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2106 /// created for it, emit nodes to copy the value into the virtual 2107 /// registers. 2108 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2109 // Skip empty types 2110 if (V->getType()->isEmptyTy()) 2111 return; 2112 2113 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2114 if (VMI != FuncInfo.ValueMap.end()) { 2115 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2116 CopyValueToVirtualRegister(V, VMI->second); 2117 } 2118 } 2119 2120 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2121 /// the current basic block, add it to ValueMap now so that we'll get a 2122 /// CopyTo/FromReg. 2123 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2124 // No need to export constants. 2125 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2126 2127 // Already exported? 2128 if (FuncInfo.isExportedInst(V)) return; 2129 2130 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2131 CopyValueToVirtualRegister(V, Reg); 2132 } 2133 2134 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2135 const BasicBlock *FromBB) { 2136 // The operands of the setcc have to be in this block. We don't know 2137 // how to export them from some other block. 2138 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2139 // Can export from current BB. 2140 if (VI->getParent() == FromBB) 2141 return true; 2142 2143 // Is already exported, noop. 2144 return FuncInfo.isExportedInst(V); 2145 } 2146 2147 // If this is an argument, we can export it if the BB is the entry block or 2148 // if it is already exported. 2149 if (isa<Argument>(V)) { 2150 if (FromBB->isEntryBlock()) 2151 return true; 2152 2153 // Otherwise, can only export this if it is already exported. 2154 return FuncInfo.isExportedInst(V); 2155 } 2156 2157 // Otherwise, constants can always be exported. 2158 return true; 2159 } 2160 2161 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2162 BranchProbability 2163 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2164 const MachineBasicBlock *Dst) const { 2165 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2166 const BasicBlock *SrcBB = Src->getBasicBlock(); 2167 const BasicBlock *DstBB = Dst->getBasicBlock(); 2168 if (!BPI) { 2169 // If BPI is not available, set the default probability as 1 / N, where N is 2170 // the number of successors. 2171 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2172 return BranchProbability(1, SuccSize); 2173 } 2174 return BPI->getEdgeProbability(SrcBB, DstBB); 2175 } 2176 2177 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2178 MachineBasicBlock *Dst, 2179 BranchProbability Prob) { 2180 if (!FuncInfo.BPI) 2181 Src->addSuccessorWithoutProb(Dst); 2182 else { 2183 if (Prob.isUnknown()) 2184 Prob = getEdgeProbability(Src, Dst); 2185 Src->addSuccessor(Dst, Prob); 2186 } 2187 } 2188 2189 static bool InBlock(const Value *V, const BasicBlock *BB) { 2190 if (const Instruction *I = dyn_cast<Instruction>(V)) 2191 return I->getParent() == BB; 2192 return true; 2193 } 2194 2195 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2196 /// This function emits a branch and is used at the leaves of an OR or an 2197 /// AND operator tree. 2198 void 2199 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2200 MachineBasicBlock *TBB, 2201 MachineBasicBlock *FBB, 2202 MachineBasicBlock *CurBB, 2203 MachineBasicBlock *SwitchBB, 2204 BranchProbability TProb, 2205 BranchProbability FProb, 2206 bool InvertCond) { 2207 const BasicBlock *BB = CurBB->getBasicBlock(); 2208 2209 // If the leaf of the tree is a comparison, merge the condition into 2210 // the caseblock. 2211 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2212 // The operands of the cmp have to be in this block. We don't know 2213 // how to export them from some other block. If this is the first block 2214 // of the sequence, no exporting is needed. 2215 if (CurBB == SwitchBB || 2216 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2217 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2218 ISD::CondCode Condition; 2219 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2220 ICmpInst::Predicate Pred = 2221 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2222 Condition = getICmpCondCode(Pred); 2223 } else { 2224 const FCmpInst *FC = cast<FCmpInst>(Cond); 2225 FCmpInst::Predicate Pred = 2226 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2227 Condition = getFCmpCondCode(Pred); 2228 if (TM.Options.NoNaNsFPMath) 2229 Condition = getFCmpCodeWithoutNaN(Condition); 2230 } 2231 2232 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2233 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2234 SL->SwitchCases.push_back(CB); 2235 return; 2236 } 2237 } 2238 2239 // Create a CaseBlock record representing this branch. 2240 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2241 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2242 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2243 SL->SwitchCases.push_back(CB); 2244 } 2245 2246 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2247 MachineBasicBlock *TBB, 2248 MachineBasicBlock *FBB, 2249 MachineBasicBlock *CurBB, 2250 MachineBasicBlock *SwitchBB, 2251 Instruction::BinaryOps Opc, 2252 BranchProbability TProb, 2253 BranchProbability FProb, 2254 bool InvertCond) { 2255 // Skip over not part of the tree and remember to invert op and operands at 2256 // next level. 2257 Value *NotCond; 2258 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2259 InBlock(NotCond, CurBB->getBasicBlock())) { 2260 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2261 !InvertCond); 2262 return; 2263 } 2264 2265 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2266 const Value *BOpOp0, *BOpOp1; 2267 // Compute the effective opcode for Cond, taking into account whether it needs 2268 // to be inverted, e.g. 2269 // and (not (or A, B)), C 2270 // gets lowered as 2271 // and (and (not A, not B), C) 2272 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2273 if (BOp) { 2274 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2275 ? Instruction::And 2276 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2277 ? Instruction::Or 2278 : (Instruction::BinaryOps)0); 2279 if (InvertCond) { 2280 if (BOpc == Instruction::And) 2281 BOpc = Instruction::Or; 2282 else if (BOpc == Instruction::Or) 2283 BOpc = Instruction::And; 2284 } 2285 } 2286 2287 // If this node is not part of the or/and tree, emit it as a branch. 2288 // Note that all nodes in the tree should have same opcode. 2289 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2290 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2291 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2292 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2293 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2294 TProb, FProb, InvertCond); 2295 return; 2296 } 2297 2298 // Create TmpBB after CurBB. 2299 MachineFunction::iterator BBI(CurBB); 2300 MachineFunction &MF = DAG.getMachineFunction(); 2301 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2302 CurBB->getParent()->insert(++BBI, TmpBB); 2303 2304 if (Opc == Instruction::Or) { 2305 // Codegen X | Y as: 2306 // BB1: 2307 // jmp_if_X TBB 2308 // jmp TmpBB 2309 // TmpBB: 2310 // jmp_if_Y TBB 2311 // jmp FBB 2312 // 2313 2314 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2315 // The requirement is that 2316 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2317 // = TrueProb for original BB. 2318 // Assuming the original probabilities are A and B, one choice is to set 2319 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2320 // A/(1+B) and 2B/(1+B). This choice assumes that 2321 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2322 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2323 // TmpBB, but the math is more complicated. 2324 2325 auto NewTrueProb = TProb / 2; 2326 auto NewFalseProb = TProb / 2 + FProb; 2327 // Emit the LHS condition. 2328 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2329 NewFalseProb, InvertCond); 2330 2331 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2332 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2333 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2334 // Emit the RHS condition into TmpBB. 2335 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2336 Probs[1], InvertCond); 2337 } else { 2338 assert(Opc == Instruction::And && "Unknown merge op!"); 2339 // Codegen X & Y as: 2340 // BB1: 2341 // jmp_if_X TmpBB 2342 // jmp FBB 2343 // TmpBB: 2344 // jmp_if_Y TBB 2345 // jmp FBB 2346 // 2347 // This requires creation of TmpBB after CurBB. 2348 2349 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2350 // The requirement is that 2351 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2352 // = FalseProb for original BB. 2353 // Assuming the original probabilities are A and B, one choice is to set 2354 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2355 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2356 // TrueProb for BB1 * FalseProb for TmpBB. 2357 2358 auto NewTrueProb = TProb + FProb / 2; 2359 auto NewFalseProb = FProb / 2; 2360 // Emit the LHS condition. 2361 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2362 NewFalseProb, InvertCond); 2363 2364 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2365 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2366 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2367 // Emit the RHS condition into TmpBB. 2368 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2369 Probs[1], InvertCond); 2370 } 2371 } 2372 2373 /// If the set of cases should be emitted as a series of branches, return true. 2374 /// If we should emit this as a bunch of and/or'd together conditions, return 2375 /// false. 2376 bool 2377 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2378 if (Cases.size() != 2) return true; 2379 2380 // If this is two comparisons of the same values or'd or and'd together, they 2381 // will get folded into a single comparison, so don't emit two blocks. 2382 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2383 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2384 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2385 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2386 return false; 2387 } 2388 2389 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2390 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2391 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2392 Cases[0].CC == Cases[1].CC && 2393 isa<Constant>(Cases[0].CmpRHS) && 2394 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2395 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2396 return false; 2397 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2398 return false; 2399 } 2400 2401 return true; 2402 } 2403 2404 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2405 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2406 2407 // Update machine-CFG edges. 2408 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2409 2410 if (I.isUnconditional()) { 2411 // Update machine-CFG edges. 2412 BrMBB->addSuccessor(Succ0MBB); 2413 2414 // If this is not a fall-through branch or optimizations are switched off, 2415 // emit the branch. 2416 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2417 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2418 MVT::Other, getControlRoot(), 2419 DAG.getBasicBlock(Succ0MBB))); 2420 2421 return; 2422 } 2423 2424 // If this condition is one of the special cases we handle, do special stuff 2425 // now. 2426 const Value *CondVal = I.getCondition(); 2427 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2428 2429 // If this is a series of conditions that are or'd or and'd together, emit 2430 // this as a sequence of branches instead of setcc's with and/or operations. 2431 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2432 // unpredictable branches, and vector extracts because those jumps are likely 2433 // expensive for any target), this should improve performance. 2434 // For example, instead of something like: 2435 // cmp A, B 2436 // C = seteq 2437 // cmp D, E 2438 // F = setle 2439 // or C, F 2440 // jnz foo 2441 // Emit: 2442 // cmp A, B 2443 // je foo 2444 // cmp D, E 2445 // jle foo 2446 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2447 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2448 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2449 Value *Vec; 2450 const Value *BOp0, *BOp1; 2451 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2452 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2453 Opcode = Instruction::And; 2454 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2455 Opcode = Instruction::Or; 2456 2457 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2458 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2459 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2460 getEdgeProbability(BrMBB, Succ0MBB), 2461 getEdgeProbability(BrMBB, Succ1MBB), 2462 /*InvertCond=*/false); 2463 // If the compares in later blocks need to use values not currently 2464 // exported from this block, export them now. This block should always 2465 // be the first entry. 2466 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2467 2468 // Allow some cases to be rejected. 2469 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2470 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2471 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2472 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2473 } 2474 2475 // Emit the branch for this block. 2476 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2477 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2478 return; 2479 } 2480 2481 // Okay, we decided not to do this, remove any inserted MBB's and clear 2482 // SwitchCases. 2483 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2484 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2485 2486 SL->SwitchCases.clear(); 2487 } 2488 } 2489 2490 // Create a CaseBlock record representing this branch. 2491 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2492 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2493 2494 // Use visitSwitchCase to actually insert the fast branch sequence for this 2495 // cond branch. 2496 visitSwitchCase(CB, BrMBB); 2497 } 2498 2499 /// visitSwitchCase - Emits the necessary code to represent a single node in 2500 /// the binary search tree resulting from lowering a switch instruction. 2501 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2502 MachineBasicBlock *SwitchBB) { 2503 SDValue Cond; 2504 SDValue CondLHS = getValue(CB.CmpLHS); 2505 SDLoc dl = CB.DL; 2506 2507 if (CB.CC == ISD::SETTRUE) { 2508 // Branch or fall through to TrueBB. 2509 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2510 SwitchBB->normalizeSuccProbs(); 2511 if (CB.TrueBB != NextBlock(SwitchBB)) { 2512 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2513 DAG.getBasicBlock(CB.TrueBB))); 2514 } 2515 return; 2516 } 2517 2518 auto &TLI = DAG.getTargetLoweringInfo(); 2519 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2520 2521 // Build the setcc now. 2522 if (!CB.CmpMHS) { 2523 // Fold "(X == true)" to X and "(X == false)" to !X to 2524 // handle common cases produced by branch lowering. 2525 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2526 CB.CC == ISD::SETEQ) 2527 Cond = CondLHS; 2528 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2529 CB.CC == ISD::SETEQ) { 2530 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2531 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2532 } else { 2533 SDValue CondRHS = getValue(CB.CmpRHS); 2534 2535 // If a pointer's DAG type is larger than its memory type then the DAG 2536 // values are zero-extended. This breaks signed comparisons so truncate 2537 // back to the underlying type before doing the compare. 2538 if (CondLHS.getValueType() != MemVT) { 2539 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2540 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2541 } 2542 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2543 } 2544 } else { 2545 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2546 2547 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2548 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2549 2550 SDValue CmpOp = getValue(CB.CmpMHS); 2551 EVT VT = CmpOp.getValueType(); 2552 2553 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2554 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2555 ISD::SETLE); 2556 } else { 2557 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2558 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2559 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2560 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2561 } 2562 } 2563 2564 // Update successor info 2565 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2566 // TrueBB and FalseBB are always different unless the incoming IR is 2567 // degenerate. This only happens when running llc on weird IR. 2568 if (CB.TrueBB != CB.FalseBB) 2569 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2570 SwitchBB->normalizeSuccProbs(); 2571 2572 // If the lhs block is the next block, invert the condition so that we can 2573 // fall through to the lhs instead of the rhs block. 2574 if (CB.TrueBB == NextBlock(SwitchBB)) { 2575 std::swap(CB.TrueBB, CB.FalseBB); 2576 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2577 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2578 } 2579 2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2581 MVT::Other, getControlRoot(), Cond, 2582 DAG.getBasicBlock(CB.TrueBB)); 2583 2584 setValue(CurInst, BrCond); 2585 2586 // Insert the false branch. Do this even if it's a fall through branch, 2587 // this makes it easier to do DAG optimizations which require inverting 2588 // the branch condition. 2589 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2590 DAG.getBasicBlock(CB.FalseBB)); 2591 2592 DAG.setRoot(BrCond); 2593 } 2594 2595 /// visitJumpTable - Emit JumpTable node in the current MBB 2596 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2597 // Emit the code for the jump table 2598 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2599 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2600 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2601 JT.Reg, PTy); 2602 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2603 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2604 MVT::Other, Index.getValue(1), 2605 Table, Index); 2606 DAG.setRoot(BrJumpTable); 2607 } 2608 2609 /// visitJumpTableHeader - This function emits necessary code to produce index 2610 /// in the JumpTable from switch case. 2611 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2612 JumpTableHeader &JTH, 2613 MachineBasicBlock *SwitchBB) { 2614 SDLoc dl = getCurSDLoc(); 2615 2616 // Subtract the lowest switch case value from the value being switched on. 2617 SDValue SwitchOp = getValue(JTH.SValue); 2618 EVT VT = SwitchOp.getValueType(); 2619 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2620 DAG.getConstant(JTH.First, dl, VT)); 2621 2622 // The SDNode we just created, which holds the value being switched on minus 2623 // the smallest case value, needs to be copied to a virtual register so it 2624 // can be used as an index into the jump table in a subsequent basic block. 2625 // This value may be smaller or larger than the target's pointer type, and 2626 // therefore require extension or truncating. 2627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2628 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2629 2630 unsigned JumpTableReg = 2631 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2632 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2633 JumpTableReg, SwitchOp); 2634 JT.Reg = JumpTableReg; 2635 2636 if (!JTH.FallthroughUnreachable) { 2637 // Emit the range check for the jump table, and branch to the default block 2638 // for the switch statement if the value being switched on exceeds the 2639 // largest case in the switch. 2640 SDValue CMP = DAG.getSetCC( 2641 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2642 Sub.getValueType()), 2643 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2644 2645 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2646 MVT::Other, CopyTo, CMP, 2647 DAG.getBasicBlock(JT.Default)); 2648 2649 // Avoid emitting unnecessary branches to the next block. 2650 if (JT.MBB != NextBlock(SwitchBB)) 2651 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2652 DAG.getBasicBlock(JT.MBB)); 2653 2654 DAG.setRoot(BrCond); 2655 } else { 2656 // Avoid emitting unnecessary branches to the next block. 2657 if (JT.MBB != NextBlock(SwitchBB)) 2658 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2659 DAG.getBasicBlock(JT.MBB))); 2660 else 2661 DAG.setRoot(CopyTo); 2662 } 2663 } 2664 2665 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2666 /// variable if there exists one. 2667 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2668 SDValue &Chain) { 2669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2670 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2671 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2672 MachineFunction &MF = DAG.getMachineFunction(); 2673 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2674 MachineSDNode *Node = 2675 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2676 if (Global) { 2677 MachinePointerInfo MPInfo(Global); 2678 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2679 MachineMemOperand::MODereferenceable; 2680 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2681 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2682 DAG.setNodeMemRefs(Node, {MemRef}); 2683 } 2684 if (PtrTy != PtrMemTy) 2685 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2686 return SDValue(Node, 0); 2687 } 2688 2689 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2690 /// tail spliced into a stack protector check success bb. 2691 /// 2692 /// For a high level explanation of how this fits into the stack protector 2693 /// generation see the comment on the declaration of class 2694 /// StackProtectorDescriptor. 2695 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2696 MachineBasicBlock *ParentBB) { 2697 2698 // First create the loads to the guard/stack slot for the comparison. 2699 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2700 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2701 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2702 2703 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2704 int FI = MFI.getStackProtectorIndex(); 2705 2706 SDValue Guard; 2707 SDLoc dl = getCurSDLoc(); 2708 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2709 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2710 Align Align = 2711 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2712 2713 // Generate code to load the content of the guard slot. 2714 SDValue GuardVal = DAG.getLoad( 2715 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2716 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2717 MachineMemOperand::MOVolatile); 2718 2719 if (TLI.useStackGuardXorFP()) 2720 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2721 2722 // Retrieve guard check function, nullptr if instrumentation is inlined. 2723 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2724 // The target provides a guard check function to validate the guard value. 2725 // Generate a call to that function with the content of the guard slot as 2726 // argument. 2727 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2728 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2729 2730 TargetLowering::ArgListTy Args; 2731 TargetLowering::ArgListEntry Entry; 2732 Entry.Node = GuardVal; 2733 Entry.Ty = FnTy->getParamType(0); 2734 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2735 Entry.IsInReg = true; 2736 Args.push_back(Entry); 2737 2738 TargetLowering::CallLoweringInfo CLI(DAG); 2739 CLI.setDebugLoc(getCurSDLoc()) 2740 .setChain(DAG.getEntryNode()) 2741 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2742 getValue(GuardCheckFn), std::move(Args)); 2743 2744 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2745 DAG.setRoot(Result.second); 2746 return; 2747 } 2748 2749 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2750 // Otherwise, emit a volatile load to retrieve the stack guard value. 2751 SDValue Chain = DAG.getEntryNode(); 2752 if (TLI.useLoadStackGuardNode()) { 2753 Guard = getLoadStackGuard(DAG, dl, Chain); 2754 } else { 2755 const Value *IRGuard = TLI.getSDagStackGuard(M); 2756 SDValue GuardPtr = getValue(IRGuard); 2757 2758 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2759 MachinePointerInfo(IRGuard, 0), Align, 2760 MachineMemOperand::MOVolatile); 2761 } 2762 2763 // Perform the comparison via a getsetcc. 2764 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2765 *DAG.getContext(), 2766 Guard.getValueType()), 2767 Guard, GuardVal, ISD::SETNE); 2768 2769 // If the guard/stackslot do not equal, branch to failure MBB. 2770 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2771 MVT::Other, GuardVal.getOperand(0), 2772 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2773 // Otherwise branch to success MBB. 2774 SDValue Br = DAG.getNode(ISD::BR, dl, 2775 MVT::Other, BrCond, 2776 DAG.getBasicBlock(SPD.getSuccessMBB())); 2777 2778 DAG.setRoot(Br); 2779 } 2780 2781 /// Codegen the failure basic block for a stack protector check. 2782 /// 2783 /// A failure stack protector machine basic block consists simply of a call to 2784 /// __stack_chk_fail(). 2785 /// 2786 /// For a high level explanation of how this fits into the stack protector 2787 /// generation see the comment on the declaration of class 2788 /// StackProtectorDescriptor. 2789 void 2790 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2792 TargetLowering::MakeLibCallOptions CallOptions; 2793 CallOptions.setDiscardResult(true); 2794 SDValue Chain = 2795 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2796 None, CallOptions, getCurSDLoc()).second; 2797 // On PS4/PS5, the "return address" must still be within the calling 2798 // function, even if it's at the very end, so emit an explicit TRAP here. 2799 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2800 if (TM.getTargetTriple().isPS()) 2801 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2802 // WebAssembly needs an unreachable instruction after a non-returning call, 2803 // because the function return type can be different from __stack_chk_fail's 2804 // return type (void). 2805 if (TM.getTargetTriple().isWasm()) 2806 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2807 2808 DAG.setRoot(Chain); 2809 } 2810 2811 /// visitBitTestHeader - This function emits necessary code to produce value 2812 /// suitable for "bit tests" 2813 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2814 MachineBasicBlock *SwitchBB) { 2815 SDLoc dl = getCurSDLoc(); 2816 2817 // Subtract the minimum value. 2818 SDValue SwitchOp = getValue(B.SValue); 2819 EVT VT = SwitchOp.getValueType(); 2820 SDValue RangeSub = 2821 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2822 2823 // Determine the type of the test operands. 2824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2825 bool UsePtrType = false; 2826 if (!TLI.isTypeLegal(VT)) { 2827 UsePtrType = true; 2828 } else { 2829 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2830 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2831 // Switch table case range are encoded into series of masks. 2832 // Just use pointer type, it's guaranteed to fit. 2833 UsePtrType = true; 2834 break; 2835 } 2836 } 2837 SDValue Sub = RangeSub; 2838 if (UsePtrType) { 2839 VT = TLI.getPointerTy(DAG.getDataLayout()); 2840 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2841 } 2842 2843 B.RegVT = VT.getSimpleVT(); 2844 B.Reg = FuncInfo.CreateReg(B.RegVT); 2845 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2846 2847 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2848 2849 if (!B.FallthroughUnreachable) 2850 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2851 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2852 SwitchBB->normalizeSuccProbs(); 2853 2854 SDValue Root = CopyTo; 2855 if (!B.FallthroughUnreachable) { 2856 // Conditional branch to the default block. 2857 SDValue RangeCmp = DAG.getSetCC(dl, 2858 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2859 RangeSub.getValueType()), 2860 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2861 ISD::SETUGT); 2862 2863 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2864 DAG.getBasicBlock(B.Default)); 2865 } 2866 2867 // Avoid emitting unnecessary branches to the next block. 2868 if (MBB != NextBlock(SwitchBB)) 2869 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2870 2871 DAG.setRoot(Root); 2872 } 2873 2874 /// visitBitTestCase - this function produces one "bit test" 2875 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2876 MachineBasicBlock* NextMBB, 2877 BranchProbability BranchProbToNext, 2878 unsigned Reg, 2879 BitTestCase &B, 2880 MachineBasicBlock *SwitchBB) { 2881 SDLoc dl = getCurSDLoc(); 2882 MVT VT = BB.RegVT; 2883 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2884 SDValue Cmp; 2885 unsigned PopCount = countPopulation(B.Mask); 2886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2887 if (PopCount == 1) { 2888 // Testing for a single bit; just compare the shift count with what it 2889 // would need to be to shift a 1 bit in that position. 2890 Cmp = DAG.getSetCC( 2891 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2892 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2893 ISD::SETEQ); 2894 } else if (PopCount == BB.Range) { 2895 // There is only one zero bit in the range, test for it directly. 2896 Cmp = DAG.getSetCC( 2897 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2898 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2899 ISD::SETNE); 2900 } else { 2901 // Make desired shift 2902 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2903 DAG.getConstant(1, dl, VT), ShiftOp); 2904 2905 // Emit bit tests and jumps 2906 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2907 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2908 Cmp = DAG.getSetCC( 2909 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2910 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2911 } 2912 2913 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2914 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2915 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2916 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2917 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2918 // one as they are relative probabilities (and thus work more like weights), 2919 // and hence we need to normalize them to let the sum of them become one. 2920 SwitchBB->normalizeSuccProbs(); 2921 2922 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2923 MVT::Other, getControlRoot(), 2924 Cmp, DAG.getBasicBlock(B.TargetBB)); 2925 2926 // Avoid emitting unnecessary branches to the next block. 2927 if (NextMBB != NextBlock(SwitchBB)) 2928 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2929 DAG.getBasicBlock(NextMBB)); 2930 2931 DAG.setRoot(BrAnd); 2932 } 2933 2934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2935 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2936 2937 // Retrieve successors. Look through artificial IR level blocks like 2938 // catchswitch for successors. 2939 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2940 const BasicBlock *EHPadBB = I.getSuccessor(1); 2941 2942 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2943 // have to do anything here to lower funclet bundles. 2944 assert(!I.hasOperandBundlesOtherThan( 2945 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2946 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2947 LLVMContext::OB_cfguardtarget, 2948 LLVMContext::OB_clang_arc_attachedcall}) && 2949 "Cannot lower invokes with arbitrary operand bundles yet!"); 2950 2951 const Value *Callee(I.getCalledOperand()); 2952 const Function *Fn = dyn_cast<Function>(Callee); 2953 if (isa<InlineAsm>(Callee)) 2954 visitInlineAsm(I, EHPadBB); 2955 else if (Fn && Fn->isIntrinsic()) { 2956 switch (Fn->getIntrinsicID()) { 2957 default: 2958 llvm_unreachable("Cannot invoke this intrinsic"); 2959 case Intrinsic::donothing: 2960 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2961 case Intrinsic::seh_try_begin: 2962 case Intrinsic::seh_scope_begin: 2963 case Intrinsic::seh_try_end: 2964 case Intrinsic::seh_scope_end: 2965 break; 2966 case Intrinsic::experimental_patchpoint_void: 2967 case Intrinsic::experimental_patchpoint_i64: 2968 visitPatchpoint(I, EHPadBB); 2969 break; 2970 case Intrinsic::experimental_gc_statepoint: 2971 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2972 break; 2973 case Intrinsic::wasm_rethrow: { 2974 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2975 // special because it can be invoked, so we manually lower it to a DAG 2976 // node here. 2977 SmallVector<SDValue, 8> Ops; 2978 Ops.push_back(getRoot()); // inchain 2979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2980 Ops.push_back( 2981 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2982 TLI.getPointerTy(DAG.getDataLayout()))); 2983 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2984 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2985 break; 2986 } 2987 } 2988 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2989 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2990 // Eventually we will support lowering the @llvm.experimental.deoptimize 2991 // intrinsic, and right now there are no plans to support other intrinsics 2992 // with deopt state. 2993 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2994 } else { 2995 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2996 } 2997 2998 // If the value of the invoke is used outside of its defining block, make it 2999 // available as a virtual register. 3000 // We already took care of the exported value for the statepoint instruction 3001 // during call to the LowerStatepoint. 3002 if (!isa<GCStatepointInst>(I)) { 3003 CopyToExportRegsIfNeeded(&I); 3004 } 3005 3006 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3007 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3008 BranchProbability EHPadBBProb = 3009 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3010 : BranchProbability::getZero(); 3011 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3012 3013 // Update successor info. 3014 addSuccessorWithProb(InvokeMBB, Return); 3015 for (auto &UnwindDest : UnwindDests) { 3016 UnwindDest.first->setIsEHPad(); 3017 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3018 } 3019 InvokeMBB->normalizeSuccProbs(); 3020 3021 // Drop into normal successor. 3022 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3023 DAG.getBasicBlock(Return))); 3024 } 3025 3026 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3027 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3028 3029 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3030 // have to do anything here to lower funclet bundles. 3031 assert(!I.hasOperandBundlesOtherThan( 3032 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3033 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3034 3035 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3036 visitInlineAsm(I); 3037 CopyToExportRegsIfNeeded(&I); 3038 3039 // Retrieve successors. 3040 SmallPtrSet<BasicBlock *, 8> Dests; 3041 Dests.insert(I.getDefaultDest()); 3042 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3043 3044 // Update successor info. 3045 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3046 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3047 BasicBlock *Dest = I.getIndirectDest(i); 3048 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3049 Target->setIsInlineAsmBrIndirectTarget(); 3050 Target->setMachineBlockAddressTaken(); 3051 Target->setLabelMustBeEmitted(); 3052 // Don't add duplicate machine successors. 3053 if (Dests.insert(Dest).second) 3054 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3055 } 3056 CallBrMBB->normalizeSuccProbs(); 3057 3058 // Drop into default successor. 3059 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3060 MVT::Other, getControlRoot(), 3061 DAG.getBasicBlock(Return))); 3062 } 3063 3064 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3065 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3066 } 3067 3068 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3069 assert(FuncInfo.MBB->isEHPad() && 3070 "Call to landingpad not in landing pad!"); 3071 3072 // If there aren't registers to copy the values into (e.g., during SjLj 3073 // exceptions), then don't bother to create these DAG nodes. 3074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3075 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3076 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3077 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3078 return; 3079 3080 // If landingpad's return type is token type, we don't create DAG nodes 3081 // for its exception pointer and selector value. The extraction of exception 3082 // pointer or selector value from token type landingpads is not currently 3083 // supported. 3084 if (LP.getType()->isTokenTy()) 3085 return; 3086 3087 SmallVector<EVT, 2> ValueVTs; 3088 SDLoc dl = getCurSDLoc(); 3089 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3090 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3091 3092 // Get the two live-in registers as SDValues. The physregs have already been 3093 // copied into virtual registers. 3094 SDValue Ops[2]; 3095 if (FuncInfo.ExceptionPointerVirtReg) { 3096 Ops[0] = DAG.getZExtOrTrunc( 3097 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3098 FuncInfo.ExceptionPointerVirtReg, 3099 TLI.getPointerTy(DAG.getDataLayout())), 3100 dl, ValueVTs[0]); 3101 } else { 3102 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3103 } 3104 Ops[1] = DAG.getZExtOrTrunc( 3105 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3106 FuncInfo.ExceptionSelectorVirtReg, 3107 TLI.getPointerTy(DAG.getDataLayout())), 3108 dl, ValueVTs[1]); 3109 3110 // Merge into one. 3111 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3112 DAG.getVTList(ValueVTs), Ops); 3113 setValue(&LP, Res); 3114 } 3115 3116 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3117 MachineBasicBlock *Last) { 3118 // Update JTCases. 3119 for (JumpTableBlock &JTB : SL->JTCases) 3120 if (JTB.first.HeaderBB == First) 3121 JTB.first.HeaderBB = Last; 3122 3123 // Update BitTestCases. 3124 for (BitTestBlock &BTB : SL->BitTestCases) 3125 if (BTB.Parent == First) 3126 BTB.Parent = Last; 3127 } 3128 3129 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3130 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3131 3132 // Update machine-CFG edges with unique successors. 3133 SmallSet<BasicBlock*, 32> Done; 3134 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3135 BasicBlock *BB = I.getSuccessor(i); 3136 bool Inserted = Done.insert(BB).second; 3137 if (!Inserted) 3138 continue; 3139 3140 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3141 addSuccessorWithProb(IndirectBrMBB, Succ); 3142 } 3143 IndirectBrMBB->normalizeSuccProbs(); 3144 3145 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3146 MVT::Other, getControlRoot(), 3147 getValue(I.getAddress()))); 3148 } 3149 3150 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3151 if (!DAG.getTarget().Options.TrapUnreachable) 3152 return; 3153 3154 // We may be able to ignore unreachable behind a noreturn call. 3155 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3156 const BasicBlock &BB = *I.getParent(); 3157 if (&I != &BB.front()) { 3158 BasicBlock::const_iterator PredI = 3159 std::prev(BasicBlock::const_iterator(&I)); 3160 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3161 if (Call->doesNotReturn()) 3162 return; 3163 } 3164 } 3165 } 3166 3167 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3168 } 3169 3170 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3171 SDNodeFlags Flags; 3172 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3173 Flags.copyFMF(*FPOp); 3174 3175 SDValue Op = getValue(I.getOperand(0)); 3176 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3177 Op, Flags); 3178 setValue(&I, UnNodeValue); 3179 } 3180 3181 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3182 SDNodeFlags Flags; 3183 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3184 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3185 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3186 } 3187 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3188 Flags.setExact(ExactOp->isExact()); 3189 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3190 Flags.copyFMF(*FPOp); 3191 3192 SDValue Op1 = getValue(I.getOperand(0)); 3193 SDValue Op2 = getValue(I.getOperand(1)); 3194 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3195 Op1, Op2, Flags); 3196 setValue(&I, BinNodeValue); 3197 } 3198 3199 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3200 SDValue Op1 = getValue(I.getOperand(0)); 3201 SDValue Op2 = getValue(I.getOperand(1)); 3202 3203 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3204 Op1.getValueType(), DAG.getDataLayout()); 3205 3206 // Coerce the shift amount to the right type if we can. This exposes the 3207 // truncate or zext to optimization early. 3208 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3209 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3210 "Unexpected shift type"); 3211 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3212 } 3213 3214 bool nuw = false; 3215 bool nsw = false; 3216 bool exact = false; 3217 3218 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3219 3220 if (const OverflowingBinaryOperator *OFBinOp = 3221 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3222 nuw = OFBinOp->hasNoUnsignedWrap(); 3223 nsw = OFBinOp->hasNoSignedWrap(); 3224 } 3225 if (const PossiblyExactOperator *ExactOp = 3226 dyn_cast<const PossiblyExactOperator>(&I)) 3227 exact = ExactOp->isExact(); 3228 } 3229 SDNodeFlags Flags; 3230 Flags.setExact(exact); 3231 Flags.setNoSignedWrap(nsw); 3232 Flags.setNoUnsignedWrap(nuw); 3233 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3234 Flags); 3235 setValue(&I, Res); 3236 } 3237 3238 void SelectionDAGBuilder::visitSDiv(const User &I) { 3239 SDValue Op1 = getValue(I.getOperand(0)); 3240 SDValue Op2 = getValue(I.getOperand(1)); 3241 3242 SDNodeFlags Flags; 3243 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3244 cast<PossiblyExactOperator>(&I)->isExact()); 3245 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3246 Op2, Flags)); 3247 } 3248 3249 void SelectionDAGBuilder::visitICmp(const User &I) { 3250 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3251 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3252 predicate = IC->getPredicate(); 3253 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3254 predicate = ICmpInst::Predicate(IC->getPredicate()); 3255 SDValue Op1 = getValue(I.getOperand(0)); 3256 SDValue Op2 = getValue(I.getOperand(1)); 3257 ISD::CondCode Opcode = getICmpCondCode(predicate); 3258 3259 auto &TLI = DAG.getTargetLoweringInfo(); 3260 EVT MemVT = 3261 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3262 3263 // If a pointer's DAG type is larger than its memory type then the DAG values 3264 // are zero-extended. This breaks signed comparisons so truncate back to the 3265 // underlying type before doing the compare. 3266 if (Op1.getValueType() != MemVT) { 3267 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3268 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3269 } 3270 3271 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3272 I.getType()); 3273 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3274 } 3275 3276 void SelectionDAGBuilder::visitFCmp(const User &I) { 3277 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3278 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3279 predicate = FC->getPredicate(); 3280 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3281 predicate = FCmpInst::Predicate(FC->getPredicate()); 3282 SDValue Op1 = getValue(I.getOperand(0)); 3283 SDValue Op2 = getValue(I.getOperand(1)); 3284 3285 ISD::CondCode Condition = getFCmpCondCode(predicate); 3286 auto *FPMO = cast<FPMathOperator>(&I); 3287 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3288 Condition = getFCmpCodeWithoutNaN(Condition); 3289 3290 SDNodeFlags Flags; 3291 Flags.copyFMF(*FPMO); 3292 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3293 3294 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3295 I.getType()); 3296 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3297 } 3298 3299 // Check if the condition of the select has one use or two users that are both 3300 // selects with the same condition. 3301 static bool hasOnlySelectUsers(const Value *Cond) { 3302 return llvm::all_of(Cond->users(), [](const Value *V) { 3303 return isa<SelectInst>(V); 3304 }); 3305 } 3306 3307 void SelectionDAGBuilder::visitSelect(const User &I) { 3308 SmallVector<EVT, 4> ValueVTs; 3309 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3310 ValueVTs); 3311 unsigned NumValues = ValueVTs.size(); 3312 if (NumValues == 0) return; 3313 3314 SmallVector<SDValue, 4> Values(NumValues); 3315 SDValue Cond = getValue(I.getOperand(0)); 3316 SDValue LHSVal = getValue(I.getOperand(1)); 3317 SDValue RHSVal = getValue(I.getOperand(2)); 3318 SmallVector<SDValue, 1> BaseOps(1, Cond); 3319 ISD::NodeType OpCode = 3320 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3321 3322 bool IsUnaryAbs = false; 3323 bool Negate = false; 3324 3325 SDNodeFlags Flags; 3326 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3327 Flags.copyFMF(*FPOp); 3328 3329 // Min/max matching is only viable if all output VTs are the same. 3330 if (all_equal(ValueVTs)) { 3331 EVT VT = ValueVTs[0]; 3332 LLVMContext &Ctx = *DAG.getContext(); 3333 auto &TLI = DAG.getTargetLoweringInfo(); 3334 3335 // We care about the legality of the operation after it has been type 3336 // legalized. 3337 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3338 VT = TLI.getTypeToTransformTo(Ctx, VT); 3339 3340 // If the vselect is legal, assume we want to leave this as a vector setcc + 3341 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3342 // min/max is legal on the scalar type. 3343 bool UseScalarMinMax = VT.isVector() && 3344 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3345 3346 Value *LHS, *RHS; 3347 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3348 ISD::NodeType Opc = ISD::DELETED_NODE; 3349 switch (SPR.Flavor) { 3350 case SPF_UMAX: Opc = ISD::UMAX; break; 3351 case SPF_UMIN: Opc = ISD::UMIN; break; 3352 case SPF_SMAX: Opc = ISD::SMAX; break; 3353 case SPF_SMIN: Opc = ISD::SMIN; break; 3354 case SPF_FMINNUM: 3355 switch (SPR.NaNBehavior) { 3356 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3357 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3358 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3359 case SPNB_RETURNS_ANY: { 3360 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3361 Opc = ISD::FMINNUM; 3362 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3363 Opc = ISD::FMINIMUM; 3364 else if (UseScalarMinMax) 3365 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3366 ISD::FMINNUM : ISD::FMINIMUM; 3367 break; 3368 } 3369 } 3370 break; 3371 case SPF_FMAXNUM: 3372 switch (SPR.NaNBehavior) { 3373 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3374 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3375 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3376 case SPNB_RETURNS_ANY: 3377 3378 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3379 Opc = ISD::FMAXNUM; 3380 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3381 Opc = ISD::FMAXIMUM; 3382 else if (UseScalarMinMax) 3383 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3384 ISD::FMAXNUM : ISD::FMAXIMUM; 3385 break; 3386 } 3387 break; 3388 case SPF_NABS: 3389 Negate = true; 3390 [[fallthrough]]; 3391 case SPF_ABS: 3392 IsUnaryAbs = true; 3393 Opc = ISD::ABS; 3394 break; 3395 default: break; 3396 } 3397 3398 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3399 (TLI.isOperationLegalOrCustom(Opc, VT) || 3400 (UseScalarMinMax && 3401 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3402 // If the underlying comparison instruction is used by any other 3403 // instruction, the consumed instructions won't be destroyed, so it is 3404 // not profitable to convert to a min/max. 3405 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3406 OpCode = Opc; 3407 LHSVal = getValue(LHS); 3408 RHSVal = getValue(RHS); 3409 BaseOps.clear(); 3410 } 3411 3412 if (IsUnaryAbs) { 3413 OpCode = Opc; 3414 LHSVal = getValue(LHS); 3415 BaseOps.clear(); 3416 } 3417 } 3418 3419 if (IsUnaryAbs) { 3420 for (unsigned i = 0; i != NumValues; ++i) { 3421 SDLoc dl = getCurSDLoc(); 3422 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3423 Values[i] = 3424 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3425 if (Negate) 3426 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3427 Values[i]); 3428 } 3429 } else { 3430 for (unsigned i = 0; i != NumValues; ++i) { 3431 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3432 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3433 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3434 Values[i] = DAG.getNode( 3435 OpCode, getCurSDLoc(), 3436 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3437 } 3438 } 3439 3440 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3441 DAG.getVTList(ValueVTs), Values)); 3442 } 3443 3444 void SelectionDAGBuilder::visitTrunc(const User &I) { 3445 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3446 SDValue N = getValue(I.getOperand(0)); 3447 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3448 I.getType()); 3449 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3450 } 3451 3452 void SelectionDAGBuilder::visitZExt(const User &I) { 3453 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3454 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3455 SDValue N = getValue(I.getOperand(0)); 3456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3457 I.getType()); 3458 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3459 } 3460 3461 void SelectionDAGBuilder::visitSExt(const User &I) { 3462 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3463 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3464 SDValue N = getValue(I.getOperand(0)); 3465 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3466 I.getType()); 3467 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3468 } 3469 3470 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3471 // FPTrunc is never a no-op cast, no need to check 3472 SDValue N = getValue(I.getOperand(0)); 3473 SDLoc dl = getCurSDLoc(); 3474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3475 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3476 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3477 DAG.getTargetConstant( 3478 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3479 } 3480 3481 void SelectionDAGBuilder::visitFPExt(const User &I) { 3482 // FPExt is never a no-op cast, no need to check 3483 SDValue N = getValue(I.getOperand(0)); 3484 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3485 I.getType()); 3486 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3487 } 3488 3489 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3490 // FPToUI is never a no-op cast, no need to check 3491 SDValue N = getValue(I.getOperand(0)); 3492 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3493 I.getType()); 3494 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3495 } 3496 3497 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3498 // FPToSI is never a no-op cast, no need to check 3499 SDValue N = getValue(I.getOperand(0)); 3500 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3501 I.getType()); 3502 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3503 } 3504 3505 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3506 // UIToFP is never a no-op cast, no need to check 3507 SDValue N = getValue(I.getOperand(0)); 3508 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3509 I.getType()); 3510 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3511 } 3512 3513 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3514 // SIToFP is never a no-op cast, no need to check 3515 SDValue N = getValue(I.getOperand(0)); 3516 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3517 I.getType()); 3518 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3519 } 3520 3521 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3522 // What to do depends on the size of the integer and the size of the pointer. 3523 // We can either truncate, zero extend, or no-op, accordingly. 3524 SDValue N = getValue(I.getOperand(0)); 3525 auto &TLI = DAG.getTargetLoweringInfo(); 3526 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3527 I.getType()); 3528 EVT PtrMemVT = 3529 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3530 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3531 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3532 setValue(&I, N); 3533 } 3534 3535 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3536 // What to do depends on the size of the integer and the size of the pointer. 3537 // We can either truncate, zero extend, or no-op, accordingly. 3538 SDValue N = getValue(I.getOperand(0)); 3539 auto &TLI = DAG.getTargetLoweringInfo(); 3540 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3541 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3542 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3543 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3544 setValue(&I, N); 3545 } 3546 3547 void SelectionDAGBuilder::visitBitCast(const User &I) { 3548 SDValue N = getValue(I.getOperand(0)); 3549 SDLoc dl = getCurSDLoc(); 3550 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3551 I.getType()); 3552 3553 // BitCast assures us that source and destination are the same size so this is 3554 // either a BITCAST or a no-op. 3555 if (DestVT != N.getValueType()) 3556 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3557 DestVT, N)); // convert types. 3558 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3559 // might fold any kind of constant expression to an integer constant and that 3560 // is not what we are looking for. Only recognize a bitcast of a genuine 3561 // constant integer as an opaque constant. 3562 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3563 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3564 /*isOpaque*/true)); 3565 else 3566 setValue(&I, N); // noop cast. 3567 } 3568 3569 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3571 const Value *SV = I.getOperand(0); 3572 SDValue N = getValue(SV); 3573 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3574 3575 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3576 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3577 3578 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3579 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3580 3581 setValue(&I, N); 3582 } 3583 3584 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3586 SDValue InVec = getValue(I.getOperand(0)); 3587 SDValue InVal = getValue(I.getOperand(1)); 3588 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3589 TLI.getVectorIdxTy(DAG.getDataLayout())); 3590 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3591 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3592 InVec, InVal, InIdx)); 3593 } 3594 3595 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3596 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3597 SDValue InVec = getValue(I.getOperand(0)); 3598 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3599 TLI.getVectorIdxTy(DAG.getDataLayout())); 3600 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3601 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3602 InVec, InIdx)); 3603 } 3604 3605 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3606 SDValue Src1 = getValue(I.getOperand(0)); 3607 SDValue Src2 = getValue(I.getOperand(1)); 3608 ArrayRef<int> Mask; 3609 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3610 Mask = SVI->getShuffleMask(); 3611 else 3612 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3613 SDLoc DL = getCurSDLoc(); 3614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3615 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3616 EVT SrcVT = Src1.getValueType(); 3617 3618 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3619 VT.isScalableVector()) { 3620 // Canonical splat form of first element of first input vector. 3621 SDValue FirstElt = 3622 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3623 DAG.getVectorIdxConstant(0, DL)); 3624 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3625 return; 3626 } 3627 3628 // For now, we only handle splats for scalable vectors. 3629 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3630 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3631 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3632 3633 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3634 unsigned MaskNumElts = Mask.size(); 3635 3636 if (SrcNumElts == MaskNumElts) { 3637 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3638 return; 3639 } 3640 3641 // Normalize the shuffle vector since mask and vector length don't match. 3642 if (SrcNumElts < MaskNumElts) { 3643 // Mask is longer than the source vectors. We can use concatenate vector to 3644 // make the mask and vectors lengths match. 3645 3646 if (MaskNumElts % SrcNumElts == 0) { 3647 // Mask length is a multiple of the source vector length. 3648 // Check if the shuffle is some kind of concatenation of the input 3649 // vectors. 3650 unsigned NumConcat = MaskNumElts / SrcNumElts; 3651 bool IsConcat = true; 3652 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3653 for (unsigned i = 0; i != MaskNumElts; ++i) { 3654 int Idx = Mask[i]; 3655 if (Idx < 0) 3656 continue; 3657 // Ensure the indices in each SrcVT sized piece are sequential and that 3658 // the same source is used for the whole piece. 3659 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3660 (ConcatSrcs[i / SrcNumElts] >= 0 && 3661 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3662 IsConcat = false; 3663 break; 3664 } 3665 // Remember which source this index came from. 3666 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3667 } 3668 3669 // The shuffle is concatenating multiple vectors together. Just emit 3670 // a CONCAT_VECTORS operation. 3671 if (IsConcat) { 3672 SmallVector<SDValue, 8> ConcatOps; 3673 for (auto Src : ConcatSrcs) { 3674 if (Src < 0) 3675 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3676 else if (Src == 0) 3677 ConcatOps.push_back(Src1); 3678 else 3679 ConcatOps.push_back(Src2); 3680 } 3681 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3682 return; 3683 } 3684 } 3685 3686 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3687 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3688 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3689 PaddedMaskNumElts); 3690 3691 // Pad both vectors with undefs to make them the same length as the mask. 3692 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3693 3694 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3695 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3696 MOps1[0] = Src1; 3697 MOps2[0] = Src2; 3698 3699 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3700 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3701 3702 // Readjust mask for new input vector length. 3703 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3704 for (unsigned i = 0; i != MaskNumElts; ++i) { 3705 int Idx = Mask[i]; 3706 if (Idx >= (int)SrcNumElts) 3707 Idx -= SrcNumElts - PaddedMaskNumElts; 3708 MappedOps[i] = Idx; 3709 } 3710 3711 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3712 3713 // If the concatenated vector was padded, extract a subvector with the 3714 // correct number of elements. 3715 if (MaskNumElts != PaddedMaskNumElts) 3716 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3717 DAG.getVectorIdxConstant(0, DL)); 3718 3719 setValue(&I, Result); 3720 return; 3721 } 3722 3723 if (SrcNumElts > MaskNumElts) { 3724 // Analyze the access pattern of the vector to see if we can extract 3725 // two subvectors and do the shuffle. 3726 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3727 bool CanExtract = true; 3728 for (int Idx : Mask) { 3729 unsigned Input = 0; 3730 if (Idx < 0) 3731 continue; 3732 3733 if (Idx >= (int)SrcNumElts) { 3734 Input = 1; 3735 Idx -= SrcNumElts; 3736 } 3737 3738 // If all the indices come from the same MaskNumElts sized portion of 3739 // the sources we can use extract. Also make sure the extract wouldn't 3740 // extract past the end of the source. 3741 int NewStartIdx = alignDown(Idx, MaskNumElts); 3742 if (NewStartIdx + MaskNumElts > SrcNumElts || 3743 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3744 CanExtract = false; 3745 // Make sure we always update StartIdx as we use it to track if all 3746 // elements are undef. 3747 StartIdx[Input] = NewStartIdx; 3748 } 3749 3750 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3751 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3752 return; 3753 } 3754 if (CanExtract) { 3755 // Extract appropriate subvector and generate a vector shuffle 3756 for (unsigned Input = 0; Input < 2; ++Input) { 3757 SDValue &Src = Input == 0 ? Src1 : Src2; 3758 if (StartIdx[Input] < 0) 3759 Src = DAG.getUNDEF(VT); 3760 else { 3761 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3762 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3763 } 3764 } 3765 3766 // Calculate new mask. 3767 SmallVector<int, 8> MappedOps(Mask); 3768 for (int &Idx : MappedOps) { 3769 if (Idx >= (int)SrcNumElts) 3770 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3771 else if (Idx >= 0) 3772 Idx -= StartIdx[0]; 3773 } 3774 3775 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3776 return; 3777 } 3778 } 3779 3780 // We can't use either concat vectors or extract subvectors so fall back to 3781 // replacing the shuffle with extract and build vector. 3782 // to insert and build vector. 3783 EVT EltVT = VT.getVectorElementType(); 3784 SmallVector<SDValue,8> Ops; 3785 for (int Idx : Mask) { 3786 SDValue Res; 3787 3788 if (Idx < 0) { 3789 Res = DAG.getUNDEF(EltVT); 3790 } else { 3791 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3792 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3793 3794 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3795 DAG.getVectorIdxConstant(Idx, DL)); 3796 } 3797 3798 Ops.push_back(Res); 3799 } 3800 3801 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3802 } 3803 3804 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3805 ArrayRef<unsigned> Indices = I.getIndices(); 3806 const Value *Op0 = I.getOperand(0); 3807 const Value *Op1 = I.getOperand(1); 3808 Type *AggTy = I.getType(); 3809 Type *ValTy = Op1->getType(); 3810 bool IntoUndef = isa<UndefValue>(Op0); 3811 bool FromUndef = isa<UndefValue>(Op1); 3812 3813 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3814 3815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3816 SmallVector<EVT, 4> AggValueVTs; 3817 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3818 SmallVector<EVT, 4> ValValueVTs; 3819 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3820 3821 unsigned NumAggValues = AggValueVTs.size(); 3822 unsigned NumValValues = ValValueVTs.size(); 3823 SmallVector<SDValue, 4> Values(NumAggValues); 3824 3825 // Ignore an insertvalue that produces an empty object 3826 if (!NumAggValues) { 3827 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3828 return; 3829 } 3830 3831 SDValue Agg = getValue(Op0); 3832 unsigned i = 0; 3833 // Copy the beginning value(s) from the original aggregate. 3834 for (; i != LinearIndex; ++i) 3835 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3836 SDValue(Agg.getNode(), Agg.getResNo() + i); 3837 // Copy values from the inserted value(s). 3838 if (NumValValues) { 3839 SDValue Val = getValue(Op1); 3840 for (; i != LinearIndex + NumValValues; ++i) 3841 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3842 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3843 } 3844 // Copy remaining value(s) from the original aggregate. 3845 for (; i != NumAggValues; ++i) 3846 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3847 SDValue(Agg.getNode(), Agg.getResNo() + i); 3848 3849 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3850 DAG.getVTList(AggValueVTs), Values)); 3851 } 3852 3853 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3854 ArrayRef<unsigned> Indices = I.getIndices(); 3855 const Value *Op0 = I.getOperand(0); 3856 Type *AggTy = Op0->getType(); 3857 Type *ValTy = I.getType(); 3858 bool OutOfUndef = isa<UndefValue>(Op0); 3859 3860 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3861 3862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3863 SmallVector<EVT, 4> ValValueVTs; 3864 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3865 3866 unsigned NumValValues = ValValueVTs.size(); 3867 3868 // Ignore a extractvalue that produces an empty object 3869 if (!NumValValues) { 3870 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3871 return; 3872 } 3873 3874 SmallVector<SDValue, 4> Values(NumValValues); 3875 3876 SDValue Agg = getValue(Op0); 3877 // Copy out the selected value(s). 3878 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3879 Values[i - LinearIndex] = 3880 OutOfUndef ? 3881 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3882 SDValue(Agg.getNode(), Agg.getResNo() + i); 3883 3884 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3885 DAG.getVTList(ValValueVTs), Values)); 3886 } 3887 3888 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3889 Value *Op0 = I.getOperand(0); 3890 // Note that the pointer operand may be a vector of pointers. Take the scalar 3891 // element which holds a pointer. 3892 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3893 SDValue N = getValue(Op0); 3894 SDLoc dl = getCurSDLoc(); 3895 auto &TLI = DAG.getTargetLoweringInfo(); 3896 3897 // Normalize Vector GEP - all scalar operands should be converted to the 3898 // splat vector. 3899 bool IsVectorGEP = I.getType()->isVectorTy(); 3900 ElementCount VectorElementCount = 3901 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3902 : ElementCount::getFixed(0); 3903 3904 if (IsVectorGEP && !N.getValueType().isVector()) { 3905 LLVMContext &Context = *DAG.getContext(); 3906 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3907 if (VectorElementCount.isScalable()) 3908 N = DAG.getSplatVector(VT, dl, N); 3909 else 3910 N = DAG.getSplatBuildVector(VT, dl, N); 3911 } 3912 3913 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3914 GTI != E; ++GTI) { 3915 const Value *Idx = GTI.getOperand(); 3916 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3917 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3918 if (Field) { 3919 // N = N + Offset 3920 uint64_t Offset = 3921 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3922 3923 // In an inbounds GEP with an offset that is nonnegative even when 3924 // interpreted as signed, assume there is no unsigned overflow. 3925 SDNodeFlags Flags; 3926 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3927 Flags.setNoUnsignedWrap(true); 3928 3929 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3930 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3931 } 3932 } else { 3933 // IdxSize is the width of the arithmetic according to IR semantics. 3934 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3935 // (and fix up the result later). 3936 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3937 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3938 TypeSize ElementSize = 3939 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3940 // We intentionally mask away the high bits here; ElementSize may not 3941 // fit in IdxTy. 3942 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3943 bool ElementScalable = ElementSize.isScalable(); 3944 3945 // If this is a scalar constant or a splat vector of constants, 3946 // handle it quickly. 3947 const auto *C = dyn_cast<Constant>(Idx); 3948 if (C && isa<VectorType>(C->getType())) 3949 C = C->getSplatValue(); 3950 3951 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3952 if (CI && CI->isZero()) 3953 continue; 3954 if (CI && !ElementScalable) { 3955 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3956 LLVMContext &Context = *DAG.getContext(); 3957 SDValue OffsVal; 3958 if (IsVectorGEP) 3959 OffsVal = DAG.getConstant( 3960 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3961 else 3962 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3963 3964 // In an inbounds GEP with an offset that is nonnegative even when 3965 // interpreted as signed, assume there is no unsigned overflow. 3966 SDNodeFlags Flags; 3967 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3968 Flags.setNoUnsignedWrap(true); 3969 3970 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3971 3972 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3973 continue; 3974 } 3975 3976 // N = N + Idx * ElementMul; 3977 SDValue IdxN = getValue(Idx); 3978 3979 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3980 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3981 VectorElementCount); 3982 if (VectorElementCount.isScalable()) 3983 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3984 else 3985 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3986 } 3987 3988 // If the index is smaller or larger than intptr_t, truncate or extend 3989 // it. 3990 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3991 3992 if (ElementScalable) { 3993 EVT VScaleTy = N.getValueType().getScalarType(); 3994 SDValue VScale = DAG.getNode( 3995 ISD::VSCALE, dl, VScaleTy, 3996 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3997 if (IsVectorGEP) 3998 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3999 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4000 } else { 4001 // If this is a multiply by a power of two, turn it into a shl 4002 // immediately. This is a very common case. 4003 if (ElementMul != 1) { 4004 if (ElementMul.isPowerOf2()) { 4005 unsigned Amt = ElementMul.logBase2(); 4006 IdxN = DAG.getNode(ISD::SHL, dl, 4007 N.getValueType(), IdxN, 4008 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4009 } else { 4010 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4011 IdxN.getValueType()); 4012 IdxN = DAG.getNode(ISD::MUL, dl, 4013 N.getValueType(), IdxN, Scale); 4014 } 4015 } 4016 } 4017 4018 N = DAG.getNode(ISD::ADD, dl, 4019 N.getValueType(), N, IdxN); 4020 } 4021 } 4022 4023 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4024 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4025 if (IsVectorGEP) { 4026 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4027 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4028 } 4029 4030 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4031 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4032 4033 setValue(&I, N); 4034 } 4035 4036 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4037 // If this is a fixed sized alloca in the entry block of the function, 4038 // allocate it statically on the stack. 4039 if (FuncInfo.StaticAllocaMap.count(&I)) 4040 return; // getValue will auto-populate this. 4041 4042 SDLoc dl = getCurSDLoc(); 4043 Type *Ty = I.getAllocatedType(); 4044 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4045 auto &DL = DAG.getDataLayout(); 4046 TypeSize TySize = DL.getTypeAllocSize(Ty); 4047 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4048 4049 SDValue AllocSize = getValue(I.getArraySize()); 4050 4051 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4052 if (AllocSize.getValueType() != IntPtr) 4053 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4054 4055 if (TySize.isScalable()) 4056 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4057 DAG.getVScale(dl, IntPtr, 4058 APInt(IntPtr.getScalarSizeInBits(), 4059 TySize.getKnownMinValue()))); 4060 else 4061 AllocSize = 4062 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4063 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4064 4065 // Handle alignment. If the requested alignment is less than or equal to 4066 // the stack alignment, ignore it. If the size is greater than or equal to 4067 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4068 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4069 if (*Alignment <= StackAlign) 4070 Alignment = None; 4071 4072 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4073 // Round the size of the allocation up to the stack alignment size 4074 // by add SA-1 to the size. This doesn't overflow because we're computing 4075 // an address inside an alloca. 4076 SDNodeFlags Flags; 4077 Flags.setNoUnsignedWrap(true); 4078 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4079 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4080 4081 // Mask out the low bits for alignment purposes. 4082 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4083 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4084 4085 SDValue Ops[] = { 4086 getRoot(), AllocSize, 4087 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4088 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4089 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4090 setValue(&I, DSA); 4091 DAG.setRoot(DSA.getValue(1)); 4092 4093 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4094 } 4095 4096 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4097 if (I.isAtomic()) 4098 return visitAtomicLoad(I); 4099 4100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4101 const Value *SV = I.getOperand(0); 4102 if (TLI.supportSwiftError()) { 4103 // Swifterror values can come from either a function parameter with 4104 // swifterror attribute or an alloca with swifterror attribute. 4105 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4106 if (Arg->hasSwiftErrorAttr()) 4107 return visitLoadFromSwiftError(I); 4108 } 4109 4110 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4111 if (Alloca->isSwiftError()) 4112 return visitLoadFromSwiftError(I); 4113 } 4114 } 4115 4116 SDValue Ptr = getValue(SV); 4117 4118 Type *Ty = I.getType(); 4119 SmallVector<EVT, 4> ValueVTs, MemVTs; 4120 SmallVector<uint64_t, 4> Offsets; 4121 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4122 unsigned NumValues = ValueVTs.size(); 4123 if (NumValues == 0) 4124 return; 4125 4126 Align Alignment = I.getAlign(); 4127 AAMDNodes AAInfo = I.getAAMetadata(); 4128 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4129 bool isVolatile = I.isVolatile(); 4130 MachineMemOperand::Flags MMOFlags = 4131 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4132 4133 SDValue Root; 4134 bool ConstantMemory = false; 4135 if (isVolatile) 4136 // Serialize volatile loads with other side effects. 4137 Root = getRoot(); 4138 else if (NumValues > MaxParallelChains) 4139 Root = getMemoryRoot(); 4140 else if (AA && 4141 AA->pointsToConstantMemory(MemoryLocation( 4142 SV, 4143 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4144 AAInfo))) { 4145 // Do not serialize (non-volatile) loads of constant memory with anything. 4146 Root = DAG.getEntryNode(); 4147 ConstantMemory = true; 4148 MMOFlags |= MachineMemOperand::MOInvariant; 4149 } else { 4150 // Do not serialize non-volatile loads against each other. 4151 Root = DAG.getRoot(); 4152 } 4153 4154 if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(), 4155 &I, AC, nullptr, LibInfo)) 4156 MMOFlags |= MachineMemOperand::MODereferenceable; 4157 4158 SDLoc dl = getCurSDLoc(); 4159 4160 if (isVolatile) 4161 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4162 4163 // An aggregate load cannot wrap around the address space, so offsets to its 4164 // parts don't wrap either. 4165 SDNodeFlags Flags; 4166 Flags.setNoUnsignedWrap(true); 4167 4168 SmallVector<SDValue, 4> Values(NumValues); 4169 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4170 EVT PtrVT = Ptr.getValueType(); 4171 4172 unsigned ChainI = 0; 4173 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4174 // Serializing loads here may result in excessive register pressure, and 4175 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4176 // could recover a bit by hoisting nodes upward in the chain by recognizing 4177 // they are side-effect free or do not alias. The optimizer should really 4178 // avoid this case by converting large object/array copies to llvm.memcpy 4179 // (MaxParallelChains should always remain as failsafe). 4180 if (ChainI == MaxParallelChains) { 4181 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4182 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4183 makeArrayRef(Chains.data(), ChainI)); 4184 Root = Chain; 4185 ChainI = 0; 4186 } 4187 SDValue A = DAG.getNode(ISD::ADD, dl, 4188 PtrVT, Ptr, 4189 DAG.getConstant(Offsets[i], dl, PtrVT), 4190 Flags); 4191 4192 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4193 MachinePointerInfo(SV, Offsets[i]), Alignment, 4194 MMOFlags, AAInfo, Ranges); 4195 Chains[ChainI] = L.getValue(1); 4196 4197 if (MemVTs[i] != ValueVTs[i]) 4198 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4199 4200 Values[i] = L; 4201 } 4202 4203 if (!ConstantMemory) { 4204 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4205 makeArrayRef(Chains.data(), ChainI)); 4206 if (isVolatile) 4207 DAG.setRoot(Chain); 4208 else 4209 PendingLoads.push_back(Chain); 4210 } 4211 4212 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4213 DAG.getVTList(ValueVTs), Values)); 4214 } 4215 4216 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4217 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4218 "call visitStoreToSwiftError when backend supports swifterror"); 4219 4220 SmallVector<EVT, 4> ValueVTs; 4221 SmallVector<uint64_t, 4> Offsets; 4222 const Value *SrcV = I.getOperand(0); 4223 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4224 SrcV->getType(), ValueVTs, &Offsets); 4225 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4226 "expect a single EVT for swifterror"); 4227 4228 SDValue Src = getValue(SrcV); 4229 // Create a virtual register, then update the virtual register. 4230 Register VReg = 4231 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4232 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4233 // Chain can be getRoot or getControlRoot. 4234 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4235 SDValue(Src.getNode(), Src.getResNo())); 4236 DAG.setRoot(CopyNode); 4237 } 4238 4239 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4240 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4241 "call visitLoadFromSwiftError when backend supports swifterror"); 4242 4243 assert(!I.isVolatile() && 4244 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4245 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4246 "Support volatile, non temporal, invariant for load_from_swift_error"); 4247 4248 const Value *SV = I.getOperand(0); 4249 Type *Ty = I.getType(); 4250 assert( 4251 (!AA || 4252 !AA->pointsToConstantMemory(MemoryLocation( 4253 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4254 I.getAAMetadata()))) && 4255 "load_from_swift_error should not be constant memory"); 4256 4257 SmallVector<EVT, 4> ValueVTs; 4258 SmallVector<uint64_t, 4> Offsets; 4259 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4260 ValueVTs, &Offsets); 4261 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4262 "expect a single EVT for swifterror"); 4263 4264 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4265 SDValue L = DAG.getCopyFromReg( 4266 getRoot(), getCurSDLoc(), 4267 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4268 4269 setValue(&I, L); 4270 } 4271 4272 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4273 if (I.isAtomic()) 4274 return visitAtomicStore(I); 4275 4276 const Value *SrcV = I.getOperand(0); 4277 const Value *PtrV = I.getOperand(1); 4278 4279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4280 if (TLI.supportSwiftError()) { 4281 // Swifterror values can come from either a function parameter with 4282 // swifterror attribute or an alloca with swifterror attribute. 4283 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4284 if (Arg->hasSwiftErrorAttr()) 4285 return visitStoreToSwiftError(I); 4286 } 4287 4288 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4289 if (Alloca->isSwiftError()) 4290 return visitStoreToSwiftError(I); 4291 } 4292 } 4293 4294 SmallVector<EVT, 4> ValueVTs, MemVTs; 4295 SmallVector<uint64_t, 4> Offsets; 4296 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4297 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4298 unsigned NumValues = ValueVTs.size(); 4299 if (NumValues == 0) 4300 return; 4301 4302 // Get the lowered operands. Note that we do this after 4303 // checking if NumResults is zero, because with zero results 4304 // the operands won't have values in the map. 4305 SDValue Src = getValue(SrcV); 4306 SDValue Ptr = getValue(PtrV); 4307 4308 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4309 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4310 SDLoc dl = getCurSDLoc(); 4311 Align Alignment = I.getAlign(); 4312 AAMDNodes AAInfo = I.getAAMetadata(); 4313 4314 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4315 4316 // An aggregate load cannot wrap around the address space, so offsets to its 4317 // parts don't wrap either. 4318 SDNodeFlags Flags; 4319 Flags.setNoUnsignedWrap(true); 4320 4321 unsigned ChainI = 0; 4322 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4323 // See visitLoad comments. 4324 if (ChainI == MaxParallelChains) { 4325 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4326 makeArrayRef(Chains.data(), ChainI)); 4327 Root = Chain; 4328 ChainI = 0; 4329 } 4330 SDValue Add = 4331 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4332 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4333 if (MemVTs[i] != ValueVTs[i]) 4334 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4335 SDValue St = 4336 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4337 Alignment, MMOFlags, AAInfo); 4338 Chains[ChainI] = St; 4339 } 4340 4341 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4342 makeArrayRef(Chains.data(), ChainI)); 4343 setValue(&I, StoreNode); 4344 DAG.setRoot(StoreNode); 4345 } 4346 4347 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4348 bool IsCompressing) { 4349 SDLoc sdl = getCurSDLoc(); 4350 4351 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4352 MaybeAlign &Alignment) { 4353 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4354 Src0 = I.getArgOperand(0); 4355 Ptr = I.getArgOperand(1); 4356 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4357 Mask = I.getArgOperand(3); 4358 }; 4359 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4360 MaybeAlign &Alignment) { 4361 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4362 Src0 = I.getArgOperand(0); 4363 Ptr = I.getArgOperand(1); 4364 Mask = I.getArgOperand(2); 4365 Alignment = None; 4366 }; 4367 4368 Value *PtrOperand, *MaskOperand, *Src0Operand; 4369 MaybeAlign Alignment; 4370 if (IsCompressing) 4371 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4372 else 4373 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4374 4375 SDValue Ptr = getValue(PtrOperand); 4376 SDValue Src0 = getValue(Src0Operand); 4377 SDValue Mask = getValue(MaskOperand); 4378 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4379 4380 EVT VT = Src0.getValueType(); 4381 if (!Alignment) 4382 Alignment = DAG.getEVTAlign(VT); 4383 4384 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4385 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4386 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4387 SDValue StoreNode = 4388 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4389 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4390 DAG.setRoot(StoreNode); 4391 setValue(&I, StoreNode); 4392 } 4393 4394 // Get a uniform base for the Gather/Scatter intrinsic. 4395 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4396 // We try to represent it as a base pointer + vector of indices. 4397 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4398 // The first operand of the GEP may be a single pointer or a vector of pointers 4399 // Example: 4400 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4401 // or 4402 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4403 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4404 // 4405 // When the first GEP operand is a single pointer - it is the uniform base we 4406 // are looking for. If first operand of the GEP is a splat vector - we 4407 // extract the splat value and use it as a uniform base. 4408 // In all other cases the function returns 'false'. 4409 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4410 ISD::MemIndexType &IndexType, SDValue &Scale, 4411 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4412 uint64_t ElemSize) { 4413 SelectionDAG& DAG = SDB->DAG; 4414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4415 const DataLayout &DL = DAG.getDataLayout(); 4416 4417 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4418 4419 // Handle splat constant pointer. 4420 if (auto *C = dyn_cast<Constant>(Ptr)) { 4421 C = C->getSplatValue(); 4422 if (!C) 4423 return false; 4424 4425 Base = SDB->getValue(C); 4426 4427 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4428 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4429 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4430 IndexType = ISD::SIGNED_SCALED; 4431 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4432 return true; 4433 } 4434 4435 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4436 if (!GEP || GEP->getParent() != CurBB) 4437 return false; 4438 4439 if (GEP->getNumOperands() != 2) 4440 return false; 4441 4442 const Value *BasePtr = GEP->getPointerOperand(); 4443 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4444 4445 // Make sure the base is scalar and the index is a vector. 4446 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4447 return false; 4448 4449 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4450 4451 // Target may not support the required addressing mode. 4452 if (ScaleVal != 1 && 4453 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4454 return false; 4455 4456 Base = SDB->getValue(BasePtr); 4457 Index = SDB->getValue(IndexVal); 4458 IndexType = ISD::SIGNED_SCALED; 4459 4460 Scale = 4461 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4462 return true; 4463 } 4464 4465 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4466 SDLoc sdl = getCurSDLoc(); 4467 4468 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4469 const Value *Ptr = I.getArgOperand(1); 4470 SDValue Src0 = getValue(I.getArgOperand(0)); 4471 SDValue Mask = getValue(I.getArgOperand(3)); 4472 EVT VT = Src0.getValueType(); 4473 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4474 ->getMaybeAlignValue() 4475 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4477 4478 SDValue Base; 4479 SDValue Index; 4480 ISD::MemIndexType IndexType; 4481 SDValue Scale; 4482 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4483 I.getParent(), VT.getScalarStoreSize()); 4484 4485 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4486 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4487 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4488 // TODO: Make MachineMemOperands aware of scalable 4489 // vectors. 4490 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4491 if (!UniformBase) { 4492 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4493 Index = getValue(Ptr); 4494 IndexType = ISD::SIGNED_SCALED; 4495 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4496 } 4497 4498 EVT IdxVT = Index.getValueType(); 4499 EVT EltTy = IdxVT.getVectorElementType(); 4500 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4501 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4502 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4503 } 4504 4505 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4506 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4507 Ops, MMO, IndexType, false); 4508 DAG.setRoot(Scatter); 4509 setValue(&I, Scatter); 4510 } 4511 4512 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4513 SDLoc sdl = getCurSDLoc(); 4514 4515 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4516 MaybeAlign &Alignment) { 4517 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4518 Ptr = I.getArgOperand(0); 4519 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4520 Mask = I.getArgOperand(2); 4521 Src0 = I.getArgOperand(3); 4522 }; 4523 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4524 MaybeAlign &Alignment) { 4525 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4526 Ptr = I.getArgOperand(0); 4527 Alignment = None; 4528 Mask = I.getArgOperand(1); 4529 Src0 = I.getArgOperand(2); 4530 }; 4531 4532 Value *PtrOperand, *MaskOperand, *Src0Operand; 4533 MaybeAlign Alignment; 4534 if (IsExpanding) 4535 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4536 else 4537 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4538 4539 SDValue Ptr = getValue(PtrOperand); 4540 SDValue Src0 = getValue(Src0Operand); 4541 SDValue Mask = getValue(MaskOperand); 4542 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4543 4544 EVT VT = Src0.getValueType(); 4545 if (!Alignment) 4546 Alignment = DAG.getEVTAlign(VT); 4547 4548 AAMDNodes AAInfo = I.getAAMetadata(); 4549 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4550 4551 // Do not serialize masked loads of constant memory with anything. 4552 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4553 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4554 4555 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4556 4557 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4558 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4559 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4560 4561 SDValue Load = 4562 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4563 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4564 if (AddToChain) 4565 PendingLoads.push_back(Load.getValue(1)); 4566 setValue(&I, Load); 4567 } 4568 4569 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4570 SDLoc sdl = getCurSDLoc(); 4571 4572 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4573 const Value *Ptr = I.getArgOperand(0); 4574 SDValue Src0 = getValue(I.getArgOperand(3)); 4575 SDValue Mask = getValue(I.getArgOperand(2)); 4576 4577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4578 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4579 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4580 ->getMaybeAlignValue() 4581 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4582 4583 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4584 4585 SDValue Root = DAG.getRoot(); 4586 SDValue Base; 4587 SDValue Index; 4588 ISD::MemIndexType IndexType; 4589 SDValue Scale; 4590 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4591 I.getParent(), VT.getScalarStoreSize()); 4592 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4593 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4594 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4595 // TODO: Make MachineMemOperands aware of scalable 4596 // vectors. 4597 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4598 4599 if (!UniformBase) { 4600 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4601 Index = getValue(Ptr); 4602 IndexType = ISD::SIGNED_SCALED; 4603 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4604 } 4605 4606 EVT IdxVT = Index.getValueType(); 4607 EVT EltTy = IdxVT.getVectorElementType(); 4608 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4609 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4610 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4611 } 4612 4613 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4614 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4615 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4616 4617 PendingLoads.push_back(Gather.getValue(1)); 4618 setValue(&I, Gather); 4619 } 4620 4621 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4622 SDLoc dl = getCurSDLoc(); 4623 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4624 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4625 SyncScope::ID SSID = I.getSyncScopeID(); 4626 4627 SDValue InChain = getRoot(); 4628 4629 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4630 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4631 4632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4633 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4634 4635 MachineFunction &MF = DAG.getMachineFunction(); 4636 MachineMemOperand *MMO = MF.getMachineMemOperand( 4637 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4638 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4639 FailureOrdering); 4640 4641 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4642 dl, MemVT, VTs, InChain, 4643 getValue(I.getPointerOperand()), 4644 getValue(I.getCompareOperand()), 4645 getValue(I.getNewValOperand()), MMO); 4646 4647 SDValue OutChain = L.getValue(2); 4648 4649 setValue(&I, L); 4650 DAG.setRoot(OutChain); 4651 } 4652 4653 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4654 SDLoc dl = getCurSDLoc(); 4655 ISD::NodeType NT; 4656 switch (I.getOperation()) { 4657 default: llvm_unreachable("Unknown atomicrmw operation"); 4658 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4659 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4660 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4661 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4662 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4663 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4664 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4665 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4666 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4667 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4668 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4669 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4670 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4671 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4672 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4673 } 4674 AtomicOrdering Ordering = I.getOrdering(); 4675 SyncScope::ID SSID = I.getSyncScopeID(); 4676 4677 SDValue InChain = getRoot(); 4678 4679 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4681 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4682 4683 MachineFunction &MF = DAG.getMachineFunction(); 4684 MachineMemOperand *MMO = MF.getMachineMemOperand( 4685 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4686 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4687 4688 SDValue L = 4689 DAG.getAtomic(NT, dl, MemVT, InChain, 4690 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4691 MMO); 4692 4693 SDValue OutChain = L.getValue(1); 4694 4695 setValue(&I, L); 4696 DAG.setRoot(OutChain); 4697 } 4698 4699 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4700 SDLoc dl = getCurSDLoc(); 4701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4702 SDValue Ops[3]; 4703 Ops[0] = getRoot(); 4704 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4705 TLI.getFenceOperandTy(DAG.getDataLayout())); 4706 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4707 TLI.getFenceOperandTy(DAG.getDataLayout())); 4708 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4709 setValue(&I, N); 4710 DAG.setRoot(N); 4711 } 4712 4713 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4714 SDLoc dl = getCurSDLoc(); 4715 AtomicOrdering Order = I.getOrdering(); 4716 SyncScope::ID SSID = I.getSyncScopeID(); 4717 4718 SDValue InChain = getRoot(); 4719 4720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4721 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4722 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4723 4724 if (!TLI.supportsUnalignedAtomics() && 4725 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4726 report_fatal_error("Cannot generate unaligned atomic load"); 4727 4728 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4729 4730 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4731 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4732 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4733 4734 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4735 4736 SDValue Ptr = getValue(I.getPointerOperand()); 4737 4738 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4739 // TODO: Once this is better exercised by tests, it should be merged with 4740 // the normal path for loads to prevent future divergence. 4741 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4742 if (MemVT != VT) 4743 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4744 4745 setValue(&I, L); 4746 SDValue OutChain = L.getValue(1); 4747 if (!I.isUnordered()) 4748 DAG.setRoot(OutChain); 4749 else 4750 PendingLoads.push_back(OutChain); 4751 return; 4752 } 4753 4754 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4755 Ptr, MMO); 4756 4757 SDValue OutChain = L.getValue(1); 4758 if (MemVT != VT) 4759 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4760 4761 setValue(&I, L); 4762 DAG.setRoot(OutChain); 4763 } 4764 4765 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4766 SDLoc dl = getCurSDLoc(); 4767 4768 AtomicOrdering Ordering = I.getOrdering(); 4769 SyncScope::ID SSID = I.getSyncScopeID(); 4770 4771 SDValue InChain = getRoot(); 4772 4773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4774 EVT MemVT = 4775 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4776 4777 if (!TLI.supportsUnalignedAtomics() && 4778 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4779 report_fatal_error("Cannot generate unaligned atomic store"); 4780 4781 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4782 4783 MachineFunction &MF = DAG.getMachineFunction(); 4784 MachineMemOperand *MMO = MF.getMachineMemOperand( 4785 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4786 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4787 4788 SDValue Val = getValue(I.getValueOperand()); 4789 if (Val.getValueType() != MemVT) 4790 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4791 SDValue Ptr = getValue(I.getPointerOperand()); 4792 4793 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4794 // TODO: Once this is better exercised by tests, it should be merged with 4795 // the normal path for stores to prevent future divergence. 4796 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4797 setValue(&I, S); 4798 DAG.setRoot(S); 4799 return; 4800 } 4801 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4802 Ptr, Val, MMO); 4803 4804 setValue(&I, OutChain); 4805 DAG.setRoot(OutChain); 4806 } 4807 4808 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4809 /// node. 4810 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4811 unsigned Intrinsic) { 4812 // Ignore the callsite's attributes. A specific call site may be marked with 4813 // readnone, but the lowering code will expect the chain based on the 4814 // definition. 4815 const Function *F = I.getCalledFunction(); 4816 bool HasChain = !F->doesNotAccessMemory(); 4817 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4818 4819 // Build the operand list. 4820 SmallVector<SDValue, 8> Ops; 4821 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4822 if (OnlyLoad) { 4823 // We don't need to serialize loads against other loads. 4824 Ops.push_back(DAG.getRoot()); 4825 } else { 4826 Ops.push_back(getRoot()); 4827 } 4828 } 4829 4830 // Info is set by getTgtMemIntrinsic 4831 TargetLowering::IntrinsicInfo Info; 4832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4833 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4834 DAG.getMachineFunction(), 4835 Intrinsic); 4836 4837 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4838 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4839 Info.opc == ISD::INTRINSIC_W_CHAIN) 4840 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4841 TLI.getPointerTy(DAG.getDataLayout()))); 4842 4843 // Add all operands of the call to the operand list. 4844 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4845 const Value *Arg = I.getArgOperand(i); 4846 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4847 Ops.push_back(getValue(Arg)); 4848 continue; 4849 } 4850 4851 // Use TargetConstant instead of a regular constant for immarg. 4852 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4853 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4854 assert(CI->getBitWidth() <= 64 && 4855 "large intrinsic immediates not handled"); 4856 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4857 } else { 4858 Ops.push_back( 4859 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4860 } 4861 } 4862 4863 SmallVector<EVT, 4> ValueVTs; 4864 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4865 4866 if (HasChain) 4867 ValueVTs.push_back(MVT::Other); 4868 4869 SDVTList VTs = DAG.getVTList(ValueVTs); 4870 4871 // Propagate fast-math-flags from IR to node(s). 4872 SDNodeFlags Flags; 4873 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4874 Flags.copyFMF(*FPMO); 4875 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4876 4877 // Create the node. 4878 SDValue Result; 4879 // In some cases, custom collection of operands from CallInst I may be needed. 4880 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4881 if (IsTgtIntrinsic) { 4882 // This is target intrinsic that touches memory 4883 Result = 4884 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4885 MachinePointerInfo(Info.ptrVal, Info.offset), 4886 Info.align, Info.flags, Info.size, 4887 I.getAAMetadata()); 4888 } else if (!HasChain) { 4889 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4890 } else if (!I.getType()->isVoidTy()) { 4891 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4892 } else { 4893 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4894 } 4895 4896 if (HasChain) { 4897 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4898 if (OnlyLoad) 4899 PendingLoads.push_back(Chain); 4900 else 4901 DAG.setRoot(Chain); 4902 } 4903 4904 if (!I.getType()->isVoidTy()) { 4905 if (!isa<VectorType>(I.getType())) 4906 Result = lowerRangeToAssertZExt(DAG, I, Result); 4907 4908 MaybeAlign Alignment = I.getRetAlign(); 4909 if (!Alignment) 4910 Alignment = F->getAttributes().getRetAlignment(); 4911 // Insert `assertalign` node if there's an alignment. 4912 if (InsertAssertAlign && Alignment) { 4913 Result = 4914 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4915 } 4916 4917 setValue(&I, Result); 4918 } 4919 } 4920 4921 /// GetSignificand - Get the significand and build it into a floating-point 4922 /// number with exponent of 1: 4923 /// 4924 /// Op = (Op & 0x007fffff) | 0x3f800000; 4925 /// 4926 /// where Op is the hexadecimal representation of floating point value. 4927 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4928 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4929 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4930 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4931 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4932 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4933 } 4934 4935 /// GetExponent - Get the exponent: 4936 /// 4937 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4938 /// 4939 /// where Op is the hexadecimal representation of floating point value. 4940 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4941 const TargetLowering &TLI, const SDLoc &dl) { 4942 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4943 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4944 SDValue t1 = DAG.getNode( 4945 ISD::SRL, dl, MVT::i32, t0, 4946 DAG.getConstant(23, dl, 4947 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4948 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4949 DAG.getConstant(127, dl, MVT::i32)); 4950 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4951 } 4952 4953 /// getF32Constant - Get 32-bit floating point constant. 4954 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4955 const SDLoc &dl) { 4956 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4957 MVT::f32); 4958 } 4959 4960 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4961 SelectionDAG &DAG) { 4962 // TODO: What fast-math-flags should be set on the floating-point nodes? 4963 4964 // IntegerPartOfX = ((int32_t)(t0); 4965 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4966 4967 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4968 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4969 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4970 4971 // IntegerPartOfX <<= 23; 4972 IntegerPartOfX = 4973 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4974 DAG.getConstant(23, dl, 4975 DAG.getTargetLoweringInfo().getShiftAmountTy( 4976 MVT::i32, DAG.getDataLayout()))); 4977 4978 SDValue TwoToFractionalPartOfX; 4979 if (LimitFloatPrecision <= 6) { 4980 // For floating-point precision of 6: 4981 // 4982 // TwoToFractionalPartOfX = 4983 // 0.997535578f + 4984 // (0.735607626f + 0.252464424f * x) * x; 4985 // 4986 // error 0.0144103317, which is 6 bits 4987 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4988 getF32Constant(DAG, 0x3e814304, dl)); 4989 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4990 getF32Constant(DAG, 0x3f3c50c8, dl)); 4991 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4992 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4993 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4994 } else if (LimitFloatPrecision <= 12) { 4995 // For floating-point precision of 12: 4996 // 4997 // TwoToFractionalPartOfX = 4998 // 0.999892986f + 4999 // (0.696457318f + 5000 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5001 // 5002 // error 0.000107046256, which is 13 to 14 bits 5003 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5004 getF32Constant(DAG, 0x3da235e3, dl)); 5005 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5006 getF32Constant(DAG, 0x3e65b8f3, dl)); 5007 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5008 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5009 getF32Constant(DAG, 0x3f324b07, dl)); 5010 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5011 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5012 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5013 } else { // LimitFloatPrecision <= 18 5014 // For floating-point precision of 18: 5015 // 5016 // TwoToFractionalPartOfX = 5017 // 0.999999982f + 5018 // (0.693148872f + 5019 // (0.240227044f + 5020 // (0.554906021e-1f + 5021 // (0.961591928e-2f + 5022 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5023 // error 2.47208000*10^(-7), which is better than 18 bits 5024 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5025 getF32Constant(DAG, 0x3924b03e, dl)); 5026 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5027 getF32Constant(DAG, 0x3ab24b87, dl)); 5028 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5029 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5030 getF32Constant(DAG, 0x3c1d8c17, dl)); 5031 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5032 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5033 getF32Constant(DAG, 0x3d634a1d, dl)); 5034 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5035 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5036 getF32Constant(DAG, 0x3e75fe14, dl)); 5037 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5038 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5039 getF32Constant(DAG, 0x3f317234, dl)); 5040 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5041 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5042 getF32Constant(DAG, 0x3f800000, dl)); 5043 } 5044 5045 // Add the exponent into the result in integer domain. 5046 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5047 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5048 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5049 } 5050 5051 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5052 /// limited-precision mode. 5053 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5054 const TargetLowering &TLI, SDNodeFlags Flags) { 5055 if (Op.getValueType() == MVT::f32 && 5056 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5057 5058 // Put the exponent in the right bit position for later addition to the 5059 // final result: 5060 // 5061 // t0 = Op * log2(e) 5062 5063 // TODO: What fast-math-flags should be set here? 5064 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5065 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5066 return getLimitedPrecisionExp2(t0, dl, DAG); 5067 } 5068 5069 // No special expansion. 5070 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5071 } 5072 5073 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5074 /// limited-precision mode. 5075 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5076 const TargetLowering &TLI, SDNodeFlags Flags) { 5077 // TODO: What fast-math-flags should be set on the floating-point nodes? 5078 5079 if (Op.getValueType() == MVT::f32 && 5080 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5081 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5082 5083 // Scale the exponent by log(2). 5084 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5085 SDValue LogOfExponent = 5086 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5087 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5088 5089 // Get the significand and build it into a floating-point number with 5090 // exponent of 1. 5091 SDValue X = GetSignificand(DAG, Op1, dl); 5092 5093 SDValue LogOfMantissa; 5094 if (LimitFloatPrecision <= 6) { 5095 // For floating-point precision of 6: 5096 // 5097 // LogofMantissa = 5098 // -1.1609546f + 5099 // (1.4034025f - 0.23903021f * x) * x; 5100 // 5101 // error 0.0034276066, which is better than 8 bits 5102 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5103 getF32Constant(DAG, 0xbe74c456, dl)); 5104 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5105 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5106 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5107 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5108 getF32Constant(DAG, 0x3f949a29, dl)); 5109 } else if (LimitFloatPrecision <= 12) { 5110 // For floating-point precision of 12: 5111 // 5112 // LogOfMantissa = 5113 // -1.7417939f + 5114 // (2.8212026f + 5115 // (-1.4699568f + 5116 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5117 // 5118 // error 0.000061011436, which is 14 bits 5119 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5120 getF32Constant(DAG, 0xbd67b6d6, dl)); 5121 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5122 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5123 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5124 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5125 getF32Constant(DAG, 0x3fbc278b, dl)); 5126 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5127 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5128 getF32Constant(DAG, 0x40348e95, dl)); 5129 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5130 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5131 getF32Constant(DAG, 0x3fdef31a, dl)); 5132 } else { // LimitFloatPrecision <= 18 5133 // For floating-point precision of 18: 5134 // 5135 // LogOfMantissa = 5136 // -2.1072184f + 5137 // (4.2372794f + 5138 // (-3.7029485f + 5139 // (2.2781945f + 5140 // (-0.87823314f + 5141 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5142 // 5143 // error 0.0000023660568, which is better than 18 bits 5144 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5145 getF32Constant(DAG, 0xbc91e5ac, dl)); 5146 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5147 getF32Constant(DAG, 0x3e4350aa, dl)); 5148 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5149 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5150 getF32Constant(DAG, 0x3f60d3e3, dl)); 5151 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5152 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5153 getF32Constant(DAG, 0x4011cdf0, dl)); 5154 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5155 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5156 getF32Constant(DAG, 0x406cfd1c, dl)); 5157 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5158 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5159 getF32Constant(DAG, 0x408797cb, dl)); 5160 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5161 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5162 getF32Constant(DAG, 0x4006dcab, dl)); 5163 } 5164 5165 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5166 } 5167 5168 // No special expansion. 5169 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5170 } 5171 5172 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5173 /// limited-precision mode. 5174 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5175 const TargetLowering &TLI, SDNodeFlags Flags) { 5176 // TODO: What fast-math-flags should be set on the floating-point nodes? 5177 5178 if (Op.getValueType() == MVT::f32 && 5179 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5180 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5181 5182 // Get the exponent. 5183 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5184 5185 // Get the significand and build it into a floating-point number with 5186 // exponent of 1. 5187 SDValue X = GetSignificand(DAG, Op1, dl); 5188 5189 // Different possible minimax approximations of significand in 5190 // floating-point for various degrees of accuracy over [1,2]. 5191 SDValue Log2ofMantissa; 5192 if (LimitFloatPrecision <= 6) { 5193 // For floating-point precision of 6: 5194 // 5195 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5196 // 5197 // error 0.0049451742, which is more than 7 bits 5198 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5199 getF32Constant(DAG, 0xbeb08fe0, dl)); 5200 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5201 getF32Constant(DAG, 0x40019463, dl)); 5202 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5203 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5204 getF32Constant(DAG, 0x3fd6633d, dl)); 5205 } else if (LimitFloatPrecision <= 12) { 5206 // For floating-point precision of 12: 5207 // 5208 // Log2ofMantissa = 5209 // -2.51285454f + 5210 // (4.07009056f + 5211 // (-2.12067489f + 5212 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5213 // 5214 // error 0.0000876136000, which is better than 13 bits 5215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5216 getF32Constant(DAG, 0xbda7262e, dl)); 5217 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5218 getF32Constant(DAG, 0x3f25280b, dl)); 5219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5220 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5221 getF32Constant(DAG, 0x4007b923, dl)); 5222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5224 getF32Constant(DAG, 0x40823e2f, dl)); 5225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5226 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5227 getF32Constant(DAG, 0x4020d29c, dl)); 5228 } else { // LimitFloatPrecision <= 18 5229 // For floating-point precision of 18: 5230 // 5231 // Log2ofMantissa = 5232 // -3.0400495f + 5233 // (6.1129976f + 5234 // (-5.3420409f + 5235 // (3.2865683f + 5236 // (-1.2669343f + 5237 // (0.27515199f - 5238 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5239 // 5240 // error 0.0000018516, which is better than 18 bits 5241 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5242 getF32Constant(DAG, 0xbcd2769e, dl)); 5243 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5244 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5245 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5246 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5247 getF32Constant(DAG, 0x3fa22ae7, dl)); 5248 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5249 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5250 getF32Constant(DAG, 0x40525723, dl)); 5251 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5252 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5253 getF32Constant(DAG, 0x40aaf200, dl)); 5254 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5255 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5256 getF32Constant(DAG, 0x40c39dad, dl)); 5257 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5258 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5259 getF32Constant(DAG, 0x4042902c, dl)); 5260 } 5261 5262 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5263 } 5264 5265 // No special expansion. 5266 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5267 } 5268 5269 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5270 /// limited-precision mode. 5271 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5272 const TargetLowering &TLI, SDNodeFlags Flags) { 5273 // TODO: What fast-math-flags should be set on the floating-point nodes? 5274 5275 if (Op.getValueType() == MVT::f32 && 5276 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5277 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5278 5279 // Scale the exponent by log10(2) [0.30102999f]. 5280 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5281 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5282 getF32Constant(DAG, 0x3e9a209a, dl)); 5283 5284 // Get the significand and build it into a floating-point number with 5285 // exponent of 1. 5286 SDValue X = GetSignificand(DAG, Op1, dl); 5287 5288 SDValue Log10ofMantissa; 5289 if (LimitFloatPrecision <= 6) { 5290 // For floating-point precision of 6: 5291 // 5292 // Log10ofMantissa = 5293 // -0.50419619f + 5294 // (0.60948995f - 0.10380950f * x) * x; 5295 // 5296 // error 0.0014886165, which is 6 bits 5297 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5298 getF32Constant(DAG, 0xbdd49a13, dl)); 5299 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5300 getF32Constant(DAG, 0x3f1c0789, dl)); 5301 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5302 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5303 getF32Constant(DAG, 0x3f011300, dl)); 5304 } else if (LimitFloatPrecision <= 12) { 5305 // For floating-point precision of 12: 5306 // 5307 // Log10ofMantissa = 5308 // -0.64831180f + 5309 // (0.91751397f + 5310 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5311 // 5312 // error 0.00019228036, which is better than 12 bits 5313 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5314 getF32Constant(DAG, 0x3d431f31, dl)); 5315 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5316 getF32Constant(DAG, 0x3ea21fb2, dl)); 5317 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5318 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5319 getF32Constant(DAG, 0x3f6ae232, dl)); 5320 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5321 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5322 getF32Constant(DAG, 0x3f25f7c3, dl)); 5323 } else { // LimitFloatPrecision <= 18 5324 // For floating-point precision of 18: 5325 // 5326 // Log10ofMantissa = 5327 // -0.84299375f + 5328 // (1.5327582f + 5329 // (-1.0688956f + 5330 // (0.49102474f + 5331 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5332 // 5333 // error 0.0000037995730, which is better than 18 bits 5334 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5335 getF32Constant(DAG, 0x3c5d51ce, dl)); 5336 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5337 getF32Constant(DAG, 0x3e00685a, dl)); 5338 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5339 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5340 getF32Constant(DAG, 0x3efb6798, dl)); 5341 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5342 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5343 getF32Constant(DAG, 0x3f88d192, dl)); 5344 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5345 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5346 getF32Constant(DAG, 0x3fc4316c, dl)); 5347 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5348 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5349 getF32Constant(DAG, 0x3f57ce70, dl)); 5350 } 5351 5352 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5353 } 5354 5355 // No special expansion. 5356 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5357 } 5358 5359 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5360 /// limited-precision mode. 5361 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5362 const TargetLowering &TLI, SDNodeFlags Flags) { 5363 if (Op.getValueType() == MVT::f32 && 5364 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5365 return getLimitedPrecisionExp2(Op, dl, DAG); 5366 5367 // No special expansion. 5368 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5369 } 5370 5371 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5372 /// limited-precision mode with x == 10.0f. 5373 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5374 SelectionDAG &DAG, const TargetLowering &TLI, 5375 SDNodeFlags Flags) { 5376 bool IsExp10 = false; 5377 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5378 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5379 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5380 APFloat Ten(10.0f); 5381 IsExp10 = LHSC->isExactlyValue(Ten); 5382 } 5383 } 5384 5385 // TODO: What fast-math-flags should be set on the FMUL node? 5386 if (IsExp10) { 5387 // Put the exponent in the right bit position for later addition to the 5388 // final result: 5389 // 5390 // #define LOG2OF10 3.3219281f 5391 // t0 = Op * LOG2OF10; 5392 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5393 getF32Constant(DAG, 0x40549a78, dl)); 5394 return getLimitedPrecisionExp2(t0, dl, DAG); 5395 } 5396 5397 // No special expansion. 5398 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5399 } 5400 5401 /// ExpandPowI - Expand a llvm.powi intrinsic. 5402 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5403 SelectionDAG &DAG) { 5404 // If RHS is a constant, we can expand this out to a multiplication tree if 5405 // it's beneficial on the target, otherwise we end up lowering to a call to 5406 // __powidf2 (for example). 5407 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5408 unsigned Val = RHSC->getSExtValue(); 5409 5410 // powi(x, 0) -> 1.0 5411 if (Val == 0) 5412 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5413 5414 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5415 Val, DAG.shouldOptForSize())) { 5416 // Get the exponent as a positive value. 5417 if ((int)Val < 0) 5418 Val = -Val; 5419 // We use the simple binary decomposition method to generate the multiply 5420 // sequence. There are more optimal ways to do this (for example, 5421 // powi(x,15) generates one more multiply than it should), but this has 5422 // the benefit of being both really simple and much better than a libcall. 5423 SDValue Res; // Logically starts equal to 1.0 5424 SDValue CurSquare = LHS; 5425 // TODO: Intrinsics should have fast-math-flags that propagate to these 5426 // nodes. 5427 while (Val) { 5428 if (Val & 1) { 5429 if (Res.getNode()) 5430 Res = 5431 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5432 else 5433 Res = CurSquare; // 1.0*CurSquare. 5434 } 5435 5436 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5437 CurSquare, CurSquare); 5438 Val >>= 1; 5439 } 5440 5441 // If the original was negative, invert the result, producing 1/(x*x*x). 5442 if (RHSC->getSExtValue() < 0) 5443 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5444 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5445 return Res; 5446 } 5447 } 5448 5449 // Otherwise, expand to a libcall. 5450 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5451 } 5452 5453 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5454 SDValue LHS, SDValue RHS, SDValue Scale, 5455 SelectionDAG &DAG, const TargetLowering &TLI) { 5456 EVT VT = LHS.getValueType(); 5457 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5458 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5459 LLVMContext &Ctx = *DAG.getContext(); 5460 5461 // If the type is legal but the operation isn't, this node might survive all 5462 // the way to operation legalization. If we end up there and we do not have 5463 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5464 // node. 5465 5466 // Coax the legalizer into expanding the node during type legalization instead 5467 // by bumping the size by one bit. This will force it to Promote, enabling the 5468 // early expansion and avoiding the need to expand later. 5469 5470 // We don't have to do this if Scale is 0; that can always be expanded, unless 5471 // it's a saturating signed operation. Those can experience true integer 5472 // division overflow, a case which we must avoid. 5473 5474 // FIXME: We wouldn't have to do this (or any of the early 5475 // expansion/promotion) if it was possible to expand a libcall of an 5476 // illegal type during operation legalization. But it's not, so things 5477 // get a bit hacky. 5478 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5479 if ((ScaleInt > 0 || (Saturating && Signed)) && 5480 (TLI.isTypeLegal(VT) || 5481 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5482 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5483 Opcode, VT, ScaleInt); 5484 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5485 EVT PromVT; 5486 if (VT.isScalarInteger()) 5487 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5488 else if (VT.isVector()) { 5489 PromVT = VT.getVectorElementType(); 5490 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5491 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5492 } else 5493 llvm_unreachable("Wrong VT for DIVFIX?"); 5494 if (Signed) { 5495 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5496 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5497 } else { 5498 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5499 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5500 } 5501 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5502 // For saturating operations, we need to shift up the LHS to get the 5503 // proper saturation width, and then shift down again afterwards. 5504 if (Saturating) 5505 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5506 DAG.getConstant(1, DL, ShiftTy)); 5507 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5508 if (Saturating) 5509 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5510 DAG.getConstant(1, DL, ShiftTy)); 5511 return DAG.getZExtOrTrunc(Res, DL, VT); 5512 } 5513 } 5514 5515 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5516 } 5517 5518 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5519 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5520 static void 5521 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5522 const SDValue &N) { 5523 switch (N.getOpcode()) { 5524 case ISD::CopyFromReg: { 5525 SDValue Op = N.getOperand(1); 5526 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5527 Op.getValueType().getSizeInBits()); 5528 return; 5529 } 5530 case ISD::BITCAST: 5531 case ISD::AssertZext: 5532 case ISD::AssertSext: 5533 case ISD::TRUNCATE: 5534 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5535 return; 5536 case ISD::BUILD_PAIR: 5537 case ISD::BUILD_VECTOR: 5538 case ISD::CONCAT_VECTORS: 5539 for (SDValue Op : N->op_values()) 5540 getUnderlyingArgRegs(Regs, Op); 5541 return; 5542 default: 5543 return; 5544 } 5545 } 5546 5547 /// If the DbgValueInst is a dbg_value of a function argument, create the 5548 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5549 /// instruction selection, they will be inserted to the entry BB. 5550 /// We don't currently support this for variadic dbg_values, as they shouldn't 5551 /// appear for function arguments or in the prologue. 5552 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5553 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5554 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5555 const Argument *Arg = dyn_cast<Argument>(V); 5556 if (!Arg) 5557 return false; 5558 5559 MachineFunction &MF = DAG.getMachineFunction(); 5560 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5561 5562 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5563 // we've been asked to pursue. 5564 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5565 bool Indirect) { 5566 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5567 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5568 // pointing at the VReg, which will be patched up later. 5569 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5570 auto MIB = BuildMI(MF, DL, Inst); 5571 MIB.addReg(Reg); 5572 MIB.addImm(0); 5573 MIB.addMetadata(Variable); 5574 auto *NewDIExpr = FragExpr; 5575 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5576 // the DIExpression. 5577 if (Indirect) 5578 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5579 MIB.addMetadata(NewDIExpr); 5580 return MIB; 5581 } else { 5582 // Create a completely standard DBG_VALUE. 5583 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5584 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5585 } 5586 }; 5587 5588 if (Kind == FuncArgumentDbgValueKind::Value) { 5589 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5590 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5591 // the entry block. 5592 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5593 if (!IsInEntryBlock) 5594 return false; 5595 5596 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5597 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5598 // variable that also is a param. 5599 // 5600 // Although, if we are at the top of the entry block already, we can still 5601 // emit using ArgDbgValue. This might catch some situations when the 5602 // dbg.value refers to an argument that isn't used in the entry block, so 5603 // any CopyToReg node would be optimized out and the only way to express 5604 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5605 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5606 // we should only emit as ArgDbgValue if the Variable is an argument to the 5607 // current function, and the dbg.value intrinsic is found in the entry 5608 // block. 5609 bool VariableIsFunctionInputArg = Variable->isParameter() && 5610 !DL->getInlinedAt(); 5611 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5612 if (!IsInPrologue && !VariableIsFunctionInputArg) 5613 return false; 5614 5615 // Here we assume that a function argument on IR level only can be used to 5616 // describe one input parameter on source level. If we for example have 5617 // source code like this 5618 // 5619 // struct A { long x, y; }; 5620 // void foo(struct A a, long b) { 5621 // ... 5622 // b = a.x; 5623 // ... 5624 // } 5625 // 5626 // and IR like this 5627 // 5628 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5629 // entry: 5630 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5631 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5632 // call void @llvm.dbg.value(metadata i32 %b, "b", 5633 // ... 5634 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5635 // ... 5636 // 5637 // then the last dbg.value is describing a parameter "b" using a value that 5638 // is an argument. But since we already has used %a1 to describe a parameter 5639 // we should not handle that last dbg.value here (that would result in an 5640 // incorrect hoisting of the DBG_VALUE to the function entry). 5641 // Notice that we allow one dbg.value per IR level argument, to accommodate 5642 // for the situation with fragments above. 5643 if (VariableIsFunctionInputArg) { 5644 unsigned ArgNo = Arg->getArgNo(); 5645 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5646 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5647 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5648 return false; 5649 FuncInfo.DescribedArgs.set(ArgNo); 5650 } 5651 } 5652 5653 bool IsIndirect = false; 5654 Optional<MachineOperand> Op; 5655 // Some arguments' frame index is recorded during argument lowering. 5656 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5657 if (FI != std::numeric_limits<int>::max()) 5658 Op = MachineOperand::CreateFI(FI); 5659 5660 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5661 if (!Op && N.getNode()) { 5662 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5663 Register Reg; 5664 if (ArgRegsAndSizes.size() == 1) 5665 Reg = ArgRegsAndSizes.front().first; 5666 5667 if (Reg && Reg.isVirtual()) { 5668 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5669 Register PR = RegInfo.getLiveInPhysReg(Reg); 5670 if (PR) 5671 Reg = PR; 5672 } 5673 if (Reg) { 5674 Op = MachineOperand::CreateReg(Reg, false); 5675 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5676 } 5677 } 5678 5679 if (!Op && N.getNode()) { 5680 // Check if frame index is available. 5681 SDValue LCandidate = peekThroughBitcasts(N); 5682 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5683 if (FrameIndexSDNode *FINode = 5684 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5685 Op = MachineOperand::CreateFI(FINode->getIndex()); 5686 } 5687 5688 if (!Op) { 5689 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5690 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5691 SplitRegs) { 5692 unsigned Offset = 0; 5693 for (const auto &RegAndSize : SplitRegs) { 5694 // If the expression is already a fragment, the current register 5695 // offset+size might extend beyond the fragment. In this case, only 5696 // the register bits that are inside the fragment are relevant. 5697 int RegFragmentSizeInBits = RegAndSize.second; 5698 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5699 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5700 // The register is entirely outside the expression fragment, 5701 // so is irrelevant for debug info. 5702 if (Offset >= ExprFragmentSizeInBits) 5703 break; 5704 // The register is partially outside the expression fragment, only 5705 // the low bits within the fragment are relevant for debug info. 5706 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5707 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5708 } 5709 } 5710 5711 auto FragmentExpr = DIExpression::createFragmentExpression( 5712 Expr, Offset, RegFragmentSizeInBits); 5713 Offset += RegAndSize.second; 5714 // If a valid fragment expression cannot be created, the variable's 5715 // correct value cannot be determined and so it is set as Undef. 5716 if (!FragmentExpr) { 5717 SDDbgValue *SDV = DAG.getConstantDbgValue( 5718 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5719 DAG.AddDbgValue(SDV, false); 5720 continue; 5721 } 5722 MachineInstr *NewMI = 5723 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5724 Kind != FuncArgumentDbgValueKind::Value); 5725 FuncInfo.ArgDbgValues.push_back(NewMI); 5726 } 5727 }; 5728 5729 // Check if ValueMap has reg number. 5730 DenseMap<const Value *, Register>::const_iterator 5731 VMI = FuncInfo.ValueMap.find(V); 5732 if (VMI != FuncInfo.ValueMap.end()) { 5733 const auto &TLI = DAG.getTargetLoweringInfo(); 5734 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5735 V->getType(), None); 5736 if (RFV.occupiesMultipleRegs()) { 5737 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5738 return true; 5739 } 5740 5741 Op = MachineOperand::CreateReg(VMI->second, false); 5742 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5743 } else if (ArgRegsAndSizes.size() > 1) { 5744 // This was split due to the calling convention, and no virtual register 5745 // mapping exists for the value. 5746 splitMultiRegDbgValue(ArgRegsAndSizes); 5747 return true; 5748 } 5749 } 5750 5751 if (!Op) 5752 return false; 5753 5754 assert(Variable->isValidLocationForIntrinsic(DL) && 5755 "Expected inlined-at fields to agree"); 5756 MachineInstr *NewMI = nullptr; 5757 5758 if (Op->isReg()) 5759 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5760 else 5761 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5762 Variable, Expr); 5763 5764 // Otherwise, use ArgDbgValues. 5765 FuncInfo.ArgDbgValues.push_back(NewMI); 5766 return true; 5767 } 5768 5769 /// Return the appropriate SDDbgValue based on N. 5770 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5771 DILocalVariable *Variable, 5772 DIExpression *Expr, 5773 const DebugLoc &dl, 5774 unsigned DbgSDNodeOrder) { 5775 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5776 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5777 // stack slot locations. 5778 // 5779 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5780 // debug values here after optimization: 5781 // 5782 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5783 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5784 // 5785 // Both describe the direct values of their associated variables. 5786 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5787 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5788 } 5789 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5790 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5791 } 5792 5793 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5794 switch (Intrinsic) { 5795 case Intrinsic::smul_fix: 5796 return ISD::SMULFIX; 5797 case Intrinsic::umul_fix: 5798 return ISD::UMULFIX; 5799 case Intrinsic::smul_fix_sat: 5800 return ISD::SMULFIXSAT; 5801 case Intrinsic::umul_fix_sat: 5802 return ISD::UMULFIXSAT; 5803 case Intrinsic::sdiv_fix: 5804 return ISD::SDIVFIX; 5805 case Intrinsic::udiv_fix: 5806 return ISD::UDIVFIX; 5807 case Intrinsic::sdiv_fix_sat: 5808 return ISD::SDIVFIXSAT; 5809 case Intrinsic::udiv_fix_sat: 5810 return ISD::UDIVFIXSAT; 5811 default: 5812 llvm_unreachable("Unhandled fixed point intrinsic"); 5813 } 5814 } 5815 5816 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5817 const char *FunctionName) { 5818 assert(FunctionName && "FunctionName must not be nullptr"); 5819 SDValue Callee = DAG.getExternalSymbol( 5820 FunctionName, 5821 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5822 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5823 } 5824 5825 /// Given a @llvm.call.preallocated.setup, return the corresponding 5826 /// preallocated call. 5827 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5828 assert(cast<CallBase>(PreallocatedSetup) 5829 ->getCalledFunction() 5830 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5831 "expected call_preallocated_setup Value"); 5832 for (const auto *U : PreallocatedSetup->users()) { 5833 auto *UseCall = cast<CallBase>(U); 5834 const Function *Fn = UseCall->getCalledFunction(); 5835 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5836 return UseCall; 5837 } 5838 } 5839 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5840 } 5841 5842 /// Lower the call to the specified intrinsic function. 5843 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5844 unsigned Intrinsic) { 5845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5846 SDLoc sdl = getCurSDLoc(); 5847 DebugLoc dl = getCurDebugLoc(); 5848 SDValue Res; 5849 5850 SDNodeFlags Flags; 5851 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5852 Flags.copyFMF(*FPOp); 5853 5854 switch (Intrinsic) { 5855 default: 5856 // By default, turn this into a target intrinsic node. 5857 visitTargetIntrinsic(I, Intrinsic); 5858 return; 5859 case Intrinsic::vscale: { 5860 match(&I, m_VScale(DAG.getDataLayout())); 5861 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5862 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5863 return; 5864 } 5865 case Intrinsic::vastart: visitVAStart(I); return; 5866 case Intrinsic::vaend: visitVAEnd(I); return; 5867 case Intrinsic::vacopy: visitVACopy(I); return; 5868 case Intrinsic::returnaddress: 5869 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5870 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5871 getValue(I.getArgOperand(0)))); 5872 return; 5873 case Intrinsic::addressofreturnaddress: 5874 setValue(&I, 5875 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5876 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5877 return; 5878 case Intrinsic::sponentry: 5879 setValue(&I, 5880 DAG.getNode(ISD::SPONENTRY, sdl, 5881 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5882 return; 5883 case Intrinsic::frameaddress: 5884 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5885 TLI.getFrameIndexTy(DAG.getDataLayout()), 5886 getValue(I.getArgOperand(0)))); 5887 return; 5888 case Intrinsic::read_volatile_register: 5889 case Intrinsic::read_register: { 5890 Value *Reg = I.getArgOperand(0); 5891 SDValue Chain = getRoot(); 5892 SDValue RegName = 5893 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5894 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5895 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5896 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5897 setValue(&I, Res); 5898 DAG.setRoot(Res.getValue(1)); 5899 return; 5900 } 5901 case Intrinsic::write_register: { 5902 Value *Reg = I.getArgOperand(0); 5903 Value *RegValue = I.getArgOperand(1); 5904 SDValue Chain = getRoot(); 5905 SDValue RegName = 5906 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5907 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5908 RegName, getValue(RegValue))); 5909 return; 5910 } 5911 case Intrinsic::memcpy: { 5912 const auto &MCI = cast<MemCpyInst>(I); 5913 SDValue Op1 = getValue(I.getArgOperand(0)); 5914 SDValue Op2 = getValue(I.getArgOperand(1)); 5915 SDValue Op3 = getValue(I.getArgOperand(2)); 5916 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5917 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5918 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5919 Align Alignment = std::min(DstAlign, SrcAlign); 5920 bool isVol = MCI.isVolatile(); 5921 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5922 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5923 // node. 5924 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5925 SDValue MC = DAG.getMemcpy( 5926 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5927 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5928 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5929 updateDAGForMaybeTailCall(MC); 5930 return; 5931 } 5932 case Intrinsic::memcpy_inline: { 5933 const auto &MCI = cast<MemCpyInlineInst>(I); 5934 SDValue Dst = getValue(I.getArgOperand(0)); 5935 SDValue Src = getValue(I.getArgOperand(1)); 5936 SDValue Size = getValue(I.getArgOperand(2)); 5937 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5938 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5939 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5940 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5941 Align Alignment = std::min(DstAlign, SrcAlign); 5942 bool isVol = MCI.isVolatile(); 5943 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5944 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5945 // node. 5946 SDValue MC = DAG.getMemcpy( 5947 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5948 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5949 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5950 updateDAGForMaybeTailCall(MC); 5951 return; 5952 } 5953 case Intrinsic::memset: { 5954 const auto &MSI = cast<MemSetInst>(I); 5955 SDValue Op1 = getValue(I.getArgOperand(0)); 5956 SDValue Op2 = getValue(I.getArgOperand(1)); 5957 SDValue Op3 = getValue(I.getArgOperand(2)); 5958 // @llvm.memset defines 0 and 1 to both mean no alignment. 5959 Align Alignment = MSI.getDestAlign().valueOrOne(); 5960 bool isVol = MSI.isVolatile(); 5961 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5962 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5963 SDValue MS = DAG.getMemset( 5964 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5965 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5966 updateDAGForMaybeTailCall(MS); 5967 return; 5968 } 5969 case Intrinsic::memset_inline: { 5970 const auto &MSII = cast<MemSetInlineInst>(I); 5971 SDValue Dst = getValue(I.getArgOperand(0)); 5972 SDValue Value = getValue(I.getArgOperand(1)); 5973 SDValue Size = getValue(I.getArgOperand(2)); 5974 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5975 // @llvm.memset defines 0 and 1 to both mean no alignment. 5976 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5977 bool isVol = MSII.isVolatile(); 5978 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5979 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5980 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5981 /* AlwaysInline */ true, isTC, 5982 MachinePointerInfo(I.getArgOperand(0)), 5983 I.getAAMetadata()); 5984 updateDAGForMaybeTailCall(MC); 5985 return; 5986 } 5987 case Intrinsic::memmove: { 5988 const auto &MMI = cast<MemMoveInst>(I); 5989 SDValue Op1 = getValue(I.getArgOperand(0)); 5990 SDValue Op2 = getValue(I.getArgOperand(1)); 5991 SDValue Op3 = getValue(I.getArgOperand(2)); 5992 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5993 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5994 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5995 Align Alignment = std::min(DstAlign, SrcAlign); 5996 bool isVol = MMI.isVolatile(); 5997 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5998 // FIXME: Support passing different dest/src alignments to the memmove DAG 5999 // node. 6000 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6001 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6002 isTC, MachinePointerInfo(I.getArgOperand(0)), 6003 MachinePointerInfo(I.getArgOperand(1)), 6004 I.getAAMetadata(), AA); 6005 updateDAGForMaybeTailCall(MM); 6006 return; 6007 } 6008 case Intrinsic::memcpy_element_unordered_atomic: { 6009 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6010 SDValue Dst = getValue(MI.getRawDest()); 6011 SDValue Src = getValue(MI.getRawSource()); 6012 SDValue Length = getValue(MI.getLength()); 6013 6014 Type *LengthTy = MI.getLength()->getType(); 6015 unsigned ElemSz = MI.getElementSizeInBytes(); 6016 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6017 SDValue MC = 6018 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6019 isTC, MachinePointerInfo(MI.getRawDest()), 6020 MachinePointerInfo(MI.getRawSource())); 6021 updateDAGForMaybeTailCall(MC); 6022 return; 6023 } 6024 case Intrinsic::memmove_element_unordered_atomic: { 6025 auto &MI = cast<AtomicMemMoveInst>(I); 6026 SDValue Dst = getValue(MI.getRawDest()); 6027 SDValue Src = getValue(MI.getRawSource()); 6028 SDValue Length = getValue(MI.getLength()); 6029 6030 Type *LengthTy = MI.getLength()->getType(); 6031 unsigned ElemSz = MI.getElementSizeInBytes(); 6032 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6033 SDValue MC = 6034 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6035 isTC, MachinePointerInfo(MI.getRawDest()), 6036 MachinePointerInfo(MI.getRawSource())); 6037 updateDAGForMaybeTailCall(MC); 6038 return; 6039 } 6040 case Intrinsic::memset_element_unordered_atomic: { 6041 auto &MI = cast<AtomicMemSetInst>(I); 6042 SDValue Dst = getValue(MI.getRawDest()); 6043 SDValue Val = getValue(MI.getValue()); 6044 SDValue Length = getValue(MI.getLength()); 6045 6046 Type *LengthTy = MI.getLength()->getType(); 6047 unsigned ElemSz = MI.getElementSizeInBytes(); 6048 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6049 SDValue MC = 6050 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6051 isTC, MachinePointerInfo(MI.getRawDest())); 6052 updateDAGForMaybeTailCall(MC); 6053 return; 6054 } 6055 case Intrinsic::call_preallocated_setup: { 6056 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6057 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6058 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6059 getRoot(), SrcValue); 6060 setValue(&I, Res); 6061 DAG.setRoot(Res); 6062 return; 6063 } 6064 case Intrinsic::call_preallocated_arg: { 6065 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6066 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6067 SDValue Ops[3]; 6068 Ops[0] = getRoot(); 6069 Ops[1] = SrcValue; 6070 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6071 MVT::i32); // arg index 6072 SDValue Res = DAG.getNode( 6073 ISD::PREALLOCATED_ARG, sdl, 6074 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6075 setValue(&I, Res); 6076 DAG.setRoot(Res.getValue(1)); 6077 return; 6078 } 6079 case Intrinsic::dbg_addr: 6080 case Intrinsic::dbg_declare: { 6081 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6082 // they are non-variadic. 6083 const auto &DI = cast<DbgVariableIntrinsic>(I); 6084 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6085 DILocalVariable *Variable = DI.getVariable(); 6086 DIExpression *Expression = DI.getExpression(); 6087 dropDanglingDebugInfo(Variable, Expression); 6088 assert(Variable && "Missing variable"); 6089 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6090 << "\n"); 6091 // Check if address has undef value. 6092 const Value *Address = DI.getVariableLocationOp(0); 6093 if (!Address || isa<UndefValue>(Address) || 6094 (Address->use_empty() && !isa<Argument>(Address))) { 6095 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6096 << " (bad/undef/unused-arg address)\n"); 6097 return; 6098 } 6099 6100 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6101 6102 // Check if this variable can be described by a frame index, typically 6103 // either as a static alloca or a byval parameter. 6104 int FI = std::numeric_limits<int>::max(); 6105 if (const auto *AI = 6106 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6107 if (AI->isStaticAlloca()) { 6108 auto I = FuncInfo.StaticAllocaMap.find(AI); 6109 if (I != FuncInfo.StaticAllocaMap.end()) 6110 FI = I->second; 6111 } 6112 } else if (const auto *Arg = dyn_cast<Argument>( 6113 Address->stripInBoundsConstantOffsets())) { 6114 FI = FuncInfo.getArgumentFrameIndex(Arg); 6115 } 6116 6117 // llvm.dbg.addr is control dependent and always generates indirect 6118 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6119 // the MachineFunction variable table. 6120 if (FI != std::numeric_limits<int>::max()) { 6121 if (Intrinsic == Intrinsic::dbg_addr) { 6122 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6123 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6124 dl, SDNodeOrder); 6125 DAG.AddDbgValue(SDV, isParameter); 6126 } else { 6127 LLVM_DEBUG(dbgs() << "Skipping " << DI 6128 << " (variable info stashed in MF side table)\n"); 6129 } 6130 return; 6131 } 6132 6133 SDValue &N = NodeMap[Address]; 6134 if (!N.getNode() && isa<Argument>(Address)) 6135 // Check unused arguments map. 6136 N = UnusedArgNodeMap[Address]; 6137 SDDbgValue *SDV; 6138 if (N.getNode()) { 6139 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6140 Address = BCI->getOperand(0); 6141 // Parameters are handled specially. 6142 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6143 if (isParameter && FINode) { 6144 // Byval parameter. We have a frame index at this point. 6145 SDV = 6146 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6147 /*IsIndirect*/ true, dl, SDNodeOrder); 6148 } else if (isa<Argument>(Address)) { 6149 // Address is an argument, so try to emit its dbg value using 6150 // virtual register info from the FuncInfo.ValueMap. 6151 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6152 FuncArgumentDbgValueKind::Declare, N); 6153 return; 6154 } else { 6155 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6156 true, dl, SDNodeOrder); 6157 } 6158 DAG.AddDbgValue(SDV, isParameter); 6159 } else { 6160 // If Address is an argument then try to emit its dbg value using 6161 // virtual register info from the FuncInfo.ValueMap. 6162 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6163 FuncArgumentDbgValueKind::Declare, N)) { 6164 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6165 << " (could not emit func-arg dbg_value)\n"); 6166 } 6167 } 6168 return; 6169 } 6170 case Intrinsic::dbg_label: { 6171 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6172 DILabel *Label = DI.getLabel(); 6173 assert(Label && "Missing label"); 6174 6175 SDDbgLabel *SDV; 6176 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6177 DAG.AddDbgLabel(SDV); 6178 return; 6179 } 6180 case Intrinsic::dbg_value: { 6181 const DbgValueInst &DI = cast<DbgValueInst>(I); 6182 assert(DI.getVariable() && "Missing variable"); 6183 6184 DILocalVariable *Variable = DI.getVariable(); 6185 DIExpression *Expression = DI.getExpression(); 6186 dropDanglingDebugInfo(Variable, Expression); 6187 SmallVector<Value *, 4> Values(DI.getValues()); 6188 if (Values.empty()) 6189 return; 6190 6191 if (llvm::is_contained(Values, nullptr)) 6192 return; 6193 6194 bool IsVariadic = DI.hasArgList(); 6195 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6196 SDNodeOrder, IsVariadic)) 6197 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6198 return; 6199 } 6200 6201 case Intrinsic::eh_typeid_for: { 6202 // Find the type id for the given typeinfo. 6203 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6204 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6205 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6206 setValue(&I, Res); 6207 return; 6208 } 6209 6210 case Intrinsic::eh_return_i32: 6211 case Intrinsic::eh_return_i64: 6212 DAG.getMachineFunction().setCallsEHReturn(true); 6213 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6214 MVT::Other, 6215 getControlRoot(), 6216 getValue(I.getArgOperand(0)), 6217 getValue(I.getArgOperand(1)))); 6218 return; 6219 case Intrinsic::eh_unwind_init: 6220 DAG.getMachineFunction().setCallsUnwindInit(true); 6221 return; 6222 case Intrinsic::eh_dwarf_cfa: 6223 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6224 TLI.getPointerTy(DAG.getDataLayout()), 6225 getValue(I.getArgOperand(0)))); 6226 return; 6227 case Intrinsic::eh_sjlj_callsite: { 6228 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6229 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6230 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6231 6232 MMI.setCurrentCallSite(CI->getZExtValue()); 6233 return; 6234 } 6235 case Intrinsic::eh_sjlj_functioncontext: { 6236 // Get and store the index of the function context. 6237 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6238 AllocaInst *FnCtx = 6239 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6240 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6241 MFI.setFunctionContextIndex(FI); 6242 return; 6243 } 6244 case Intrinsic::eh_sjlj_setjmp: { 6245 SDValue Ops[2]; 6246 Ops[0] = getRoot(); 6247 Ops[1] = getValue(I.getArgOperand(0)); 6248 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6249 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6250 setValue(&I, Op.getValue(0)); 6251 DAG.setRoot(Op.getValue(1)); 6252 return; 6253 } 6254 case Intrinsic::eh_sjlj_longjmp: 6255 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6256 getRoot(), getValue(I.getArgOperand(0)))); 6257 return; 6258 case Intrinsic::eh_sjlj_setup_dispatch: 6259 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6260 getRoot())); 6261 return; 6262 case Intrinsic::masked_gather: 6263 visitMaskedGather(I); 6264 return; 6265 case Intrinsic::masked_load: 6266 visitMaskedLoad(I); 6267 return; 6268 case Intrinsic::masked_scatter: 6269 visitMaskedScatter(I); 6270 return; 6271 case Intrinsic::masked_store: 6272 visitMaskedStore(I); 6273 return; 6274 case Intrinsic::masked_expandload: 6275 visitMaskedLoad(I, true /* IsExpanding */); 6276 return; 6277 case Intrinsic::masked_compressstore: 6278 visitMaskedStore(I, true /* IsCompressing */); 6279 return; 6280 case Intrinsic::powi: 6281 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6282 getValue(I.getArgOperand(1)), DAG)); 6283 return; 6284 case Intrinsic::log: 6285 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6286 return; 6287 case Intrinsic::log2: 6288 setValue(&I, 6289 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6290 return; 6291 case Intrinsic::log10: 6292 setValue(&I, 6293 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6294 return; 6295 case Intrinsic::exp: 6296 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6297 return; 6298 case Intrinsic::exp2: 6299 setValue(&I, 6300 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6301 return; 6302 case Intrinsic::pow: 6303 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6304 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6305 return; 6306 case Intrinsic::sqrt: 6307 case Intrinsic::fabs: 6308 case Intrinsic::sin: 6309 case Intrinsic::cos: 6310 case Intrinsic::floor: 6311 case Intrinsic::ceil: 6312 case Intrinsic::trunc: 6313 case Intrinsic::rint: 6314 case Intrinsic::nearbyint: 6315 case Intrinsic::round: 6316 case Intrinsic::roundeven: 6317 case Intrinsic::canonicalize: { 6318 unsigned Opcode; 6319 switch (Intrinsic) { 6320 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6321 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6322 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6323 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6324 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6325 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6326 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6327 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6328 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6329 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6330 case Intrinsic::round: Opcode = ISD::FROUND; break; 6331 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6332 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6333 } 6334 6335 setValue(&I, DAG.getNode(Opcode, sdl, 6336 getValue(I.getArgOperand(0)).getValueType(), 6337 getValue(I.getArgOperand(0)), Flags)); 6338 return; 6339 } 6340 case Intrinsic::lround: 6341 case Intrinsic::llround: 6342 case Intrinsic::lrint: 6343 case Intrinsic::llrint: { 6344 unsigned Opcode; 6345 switch (Intrinsic) { 6346 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6347 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6348 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6349 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6350 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6351 } 6352 6353 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6354 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6355 getValue(I.getArgOperand(0)))); 6356 return; 6357 } 6358 case Intrinsic::minnum: 6359 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6360 getValue(I.getArgOperand(0)).getValueType(), 6361 getValue(I.getArgOperand(0)), 6362 getValue(I.getArgOperand(1)), Flags)); 6363 return; 6364 case Intrinsic::maxnum: 6365 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6366 getValue(I.getArgOperand(0)).getValueType(), 6367 getValue(I.getArgOperand(0)), 6368 getValue(I.getArgOperand(1)), Flags)); 6369 return; 6370 case Intrinsic::minimum: 6371 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6372 getValue(I.getArgOperand(0)).getValueType(), 6373 getValue(I.getArgOperand(0)), 6374 getValue(I.getArgOperand(1)), Flags)); 6375 return; 6376 case Intrinsic::maximum: 6377 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6378 getValue(I.getArgOperand(0)).getValueType(), 6379 getValue(I.getArgOperand(0)), 6380 getValue(I.getArgOperand(1)), Flags)); 6381 return; 6382 case Intrinsic::copysign: 6383 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6384 getValue(I.getArgOperand(0)).getValueType(), 6385 getValue(I.getArgOperand(0)), 6386 getValue(I.getArgOperand(1)), Flags)); 6387 return; 6388 case Intrinsic::arithmetic_fence: { 6389 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6390 getValue(I.getArgOperand(0)).getValueType(), 6391 getValue(I.getArgOperand(0)), Flags)); 6392 return; 6393 } 6394 case Intrinsic::fma: 6395 setValue(&I, DAG.getNode( 6396 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6397 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6398 getValue(I.getArgOperand(2)), Flags)); 6399 return; 6400 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6401 case Intrinsic::INTRINSIC: 6402 #include "llvm/IR/ConstrainedOps.def" 6403 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6404 return; 6405 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6406 #include "llvm/IR/VPIntrinsics.def" 6407 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6408 return; 6409 case Intrinsic::fptrunc_round: { 6410 // Get the last argument, the metadata and convert it to an integer in the 6411 // call 6412 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6413 Optional<RoundingMode> RoundMode = 6414 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6415 6416 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6417 6418 // Propagate fast-math-flags from IR to node(s). 6419 SDNodeFlags Flags; 6420 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6421 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6422 6423 SDValue Result; 6424 Result = DAG.getNode( 6425 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6426 DAG.getTargetConstant((int)*RoundMode, sdl, 6427 TLI.getPointerTy(DAG.getDataLayout()))); 6428 setValue(&I, Result); 6429 6430 return; 6431 } 6432 case Intrinsic::fmuladd: { 6433 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6434 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6435 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6436 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6437 getValue(I.getArgOperand(0)).getValueType(), 6438 getValue(I.getArgOperand(0)), 6439 getValue(I.getArgOperand(1)), 6440 getValue(I.getArgOperand(2)), Flags)); 6441 } else { 6442 // TODO: Intrinsic calls should have fast-math-flags. 6443 SDValue Mul = DAG.getNode( 6444 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6445 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6446 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6447 getValue(I.getArgOperand(0)).getValueType(), 6448 Mul, getValue(I.getArgOperand(2)), Flags); 6449 setValue(&I, Add); 6450 } 6451 return; 6452 } 6453 case Intrinsic::convert_to_fp16: 6454 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6455 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6456 getValue(I.getArgOperand(0)), 6457 DAG.getTargetConstant(0, sdl, 6458 MVT::i32)))); 6459 return; 6460 case Intrinsic::convert_from_fp16: 6461 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6462 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6463 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6464 getValue(I.getArgOperand(0))))); 6465 return; 6466 case Intrinsic::fptosi_sat: { 6467 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6468 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6469 getValue(I.getArgOperand(0)), 6470 DAG.getValueType(VT.getScalarType()))); 6471 return; 6472 } 6473 case Intrinsic::fptoui_sat: { 6474 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6475 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6476 getValue(I.getArgOperand(0)), 6477 DAG.getValueType(VT.getScalarType()))); 6478 return; 6479 } 6480 case Intrinsic::set_rounding: 6481 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6482 {getRoot(), getValue(I.getArgOperand(0))}); 6483 setValue(&I, Res); 6484 DAG.setRoot(Res.getValue(0)); 6485 return; 6486 case Intrinsic::is_fpclass: { 6487 const DataLayout DLayout = DAG.getDataLayout(); 6488 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6489 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6490 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6491 MachineFunction &MF = DAG.getMachineFunction(); 6492 const Function &F = MF.getFunction(); 6493 SDValue Op = getValue(I.getArgOperand(0)); 6494 SDNodeFlags Flags; 6495 Flags.setNoFPExcept( 6496 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6497 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6498 // expansion can use illegal types. Making expansion early allows 6499 // legalizing these types prior to selection. 6500 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6501 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6502 setValue(&I, Result); 6503 return; 6504 } 6505 6506 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6507 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6508 setValue(&I, V); 6509 return; 6510 } 6511 case Intrinsic::pcmarker: { 6512 SDValue Tmp = getValue(I.getArgOperand(0)); 6513 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6514 return; 6515 } 6516 case Intrinsic::readcyclecounter: { 6517 SDValue Op = getRoot(); 6518 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6519 DAG.getVTList(MVT::i64, MVT::Other), Op); 6520 setValue(&I, Res); 6521 DAG.setRoot(Res.getValue(1)); 6522 return; 6523 } 6524 case Intrinsic::bitreverse: 6525 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6526 getValue(I.getArgOperand(0)).getValueType(), 6527 getValue(I.getArgOperand(0)))); 6528 return; 6529 case Intrinsic::bswap: 6530 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6531 getValue(I.getArgOperand(0)).getValueType(), 6532 getValue(I.getArgOperand(0)))); 6533 return; 6534 case Intrinsic::cttz: { 6535 SDValue Arg = getValue(I.getArgOperand(0)); 6536 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6537 EVT Ty = Arg.getValueType(); 6538 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6539 sdl, Ty, Arg)); 6540 return; 6541 } 6542 case Intrinsic::ctlz: { 6543 SDValue Arg = getValue(I.getArgOperand(0)); 6544 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6545 EVT Ty = Arg.getValueType(); 6546 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6547 sdl, Ty, Arg)); 6548 return; 6549 } 6550 case Intrinsic::ctpop: { 6551 SDValue Arg = getValue(I.getArgOperand(0)); 6552 EVT Ty = Arg.getValueType(); 6553 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6554 return; 6555 } 6556 case Intrinsic::fshl: 6557 case Intrinsic::fshr: { 6558 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6559 SDValue X = getValue(I.getArgOperand(0)); 6560 SDValue Y = getValue(I.getArgOperand(1)); 6561 SDValue Z = getValue(I.getArgOperand(2)); 6562 EVT VT = X.getValueType(); 6563 6564 if (X == Y) { 6565 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6566 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6567 } else { 6568 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6569 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6570 } 6571 return; 6572 } 6573 case Intrinsic::sadd_sat: { 6574 SDValue Op1 = getValue(I.getArgOperand(0)); 6575 SDValue Op2 = getValue(I.getArgOperand(1)); 6576 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6577 return; 6578 } 6579 case Intrinsic::uadd_sat: { 6580 SDValue Op1 = getValue(I.getArgOperand(0)); 6581 SDValue Op2 = getValue(I.getArgOperand(1)); 6582 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6583 return; 6584 } 6585 case Intrinsic::ssub_sat: { 6586 SDValue Op1 = getValue(I.getArgOperand(0)); 6587 SDValue Op2 = getValue(I.getArgOperand(1)); 6588 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6589 return; 6590 } 6591 case Intrinsic::usub_sat: { 6592 SDValue Op1 = getValue(I.getArgOperand(0)); 6593 SDValue Op2 = getValue(I.getArgOperand(1)); 6594 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6595 return; 6596 } 6597 case Intrinsic::sshl_sat: { 6598 SDValue Op1 = getValue(I.getArgOperand(0)); 6599 SDValue Op2 = getValue(I.getArgOperand(1)); 6600 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6601 return; 6602 } 6603 case Intrinsic::ushl_sat: { 6604 SDValue Op1 = getValue(I.getArgOperand(0)); 6605 SDValue Op2 = getValue(I.getArgOperand(1)); 6606 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6607 return; 6608 } 6609 case Intrinsic::smul_fix: 6610 case Intrinsic::umul_fix: 6611 case Intrinsic::smul_fix_sat: 6612 case Intrinsic::umul_fix_sat: { 6613 SDValue Op1 = getValue(I.getArgOperand(0)); 6614 SDValue Op2 = getValue(I.getArgOperand(1)); 6615 SDValue Op3 = getValue(I.getArgOperand(2)); 6616 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6617 Op1.getValueType(), Op1, Op2, Op3)); 6618 return; 6619 } 6620 case Intrinsic::sdiv_fix: 6621 case Intrinsic::udiv_fix: 6622 case Intrinsic::sdiv_fix_sat: 6623 case Intrinsic::udiv_fix_sat: { 6624 SDValue Op1 = getValue(I.getArgOperand(0)); 6625 SDValue Op2 = getValue(I.getArgOperand(1)); 6626 SDValue Op3 = getValue(I.getArgOperand(2)); 6627 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6628 Op1, Op2, Op3, DAG, TLI)); 6629 return; 6630 } 6631 case Intrinsic::smax: { 6632 SDValue Op1 = getValue(I.getArgOperand(0)); 6633 SDValue Op2 = getValue(I.getArgOperand(1)); 6634 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6635 return; 6636 } 6637 case Intrinsic::smin: { 6638 SDValue Op1 = getValue(I.getArgOperand(0)); 6639 SDValue Op2 = getValue(I.getArgOperand(1)); 6640 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6641 return; 6642 } 6643 case Intrinsic::umax: { 6644 SDValue Op1 = getValue(I.getArgOperand(0)); 6645 SDValue Op2 = getValue(I.getArgOperand(1)); 6646 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6647 return; 6648 } 6649 case Intrinsic::umin: { 6650 SDValue Op1 = getValue(I.getArgOperand(0)); 6651 SDValue Op2 = getValue(I.getArgOperand(1)); 6652 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6653 return; 6654 } 6655 case Intrinsic::abs: { 6656 // TODO: Preserve "int min is poison" arg in SDAG? 6657 SDValue Op1 = getValue(I.getArgOperand(0)); 6658 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6659 return; 6660 } 6661 case Intrinsic::stacksave: { 6662 SDValue Op = getRoot(); 6663 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6664 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6665 setValue(&I, Res); 6666 DAG.setRoot(Res.getValue(1)); 6667 return; 6668 } 6669 case Intrinsic::stackrestore: 6670 Res = getValue(I.getArgOperand(0)); 6671 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6672 return; 6673 case Intrinsic::get_dynamic_area_offset: { 6674 SDValue Op = getRoot(); 6675 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6676 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6677 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6678 // target. 6679 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6680 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6681 " intrinsic!"); 6682 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6683 Op); 6684 DAG.setRoot(Op); 6685 setValue(&I, Res); 6686 return; 6687 } 6688 case Intrinsic::stackguard: { 6689 MachineFunction &MF = DAG.getMachineFunction(); 6690 const Module &M = *MF.getFunction().getParent(); 6691 SDValue Chain = getRoot(); 6692 if (TLI.useLoadStackGuardNode()) { 6693 Res = getLoadStackGuard(DAG, sdl, Chain); 6694 } else { 6695 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6696 const Value *Global = TLI.getSDagStackGuard(M); 6697 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6698 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6699 MachinePointerInfo(Global, 0), Align, 6700 MachineMemOperand::MOVolatile); 6701 } 6702 if (TLI.useStackGuardXorFP()) 6703 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6704 DAG.setRoot(Chain); 6705 setValue(&I, Res); 6706 return; 6707 } 6708 case Intrinsic::stackprotector: { 6709 // Emit code into the DAG to store the stack guard onto the stack. 6710 MachineFunction &MF = DAG.getMachineFunction(); 6711 MachineFrameInfo &MFI = MF.getFrameInfo(); 6712 SDValue Src, Chain = getRoot(); 6713 6714 if (TLI.useLoadStackGuardNode()) 6715 Src = getLoadStackGuard(DAG, sdl, Chain); 6716 else 6717 Src = getValue(I.getArgOperand(0)); // The guard's value. 6718 6719 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6720 6721 int FI = FuncInfo.StaticAllocaMap[Slot]; 6722 MFI.setStackProtectorIndex(FI); 6723 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6724 6725 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6726 6727 // Store the stack protector onto the stack. 6728 Res = DAG.getStore( 6729 Chain, sdl, Src, FIN, 6730 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6731 MaybeAlign(), MachineMemOperand::MOVolatile); 6732 setValue(&I, Res); 6733 DAG.setRoot(Res); 6734 return; 6735 } 6736 case Intrinsic::objectsize: 6737 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6738 6739 case Intrinsic::is_constant: 6740 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6741 6742 case Intrinsic::annotation: 6743 case Intrinsic::ptr_annotation: 6744 case Intrinsic::launder_invariant_group: 6745 case Intrinsic::strip_invariant_group: 6746 // Drop the intrinsic, but forward the value 6747 setValue(&I, getValue(I.getOperand(0))); 6748 return; 6749 6750 case Intrinsic::assume: 6751 case Intrinsic::experimental_noalias_scope_decl: 6752 case Intrinsic::var_annotation: 6753 case Intrinsic::sideeffect: 6754 // Discard annotate attributes, noalias scope declarations, assumptions, and 6755 // artificial side-effects. 6756 return; 6757 6758 case Intrinsic::codeview_annotation: { 6759 // Emit a label associated with this metadata. 6760 MachineFunction &MF = DAG.getMachineFunction(); 6761 MCSymbol *Label = 6762 MF.getMMI().getContext().createTempSymbol("annotation", true); 6763 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6764 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6765 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6766 DAG.setRoot(Res); 6767 return; 6768 } 6769 6770 case Intrinsic::init_trampoline: { 6771 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6772 6773 SDValue Ops[6]; 6774 Ops[0] = getRoot(); 6775 Ops[1] = getValue(I.getArgOperand(0)); 6776 Ops[2] = getValue(I.getArgOperand(1)); 6777 Ops[3] = getValue(I.getArgOperand(2)); 6778 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6779 Ops[5] = DAG.getSrcValue(F); 6780 6781 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6782 6783 DAG.setRoot(Res); 6784 return; 6785 } 6786 case Intrinsic::adjust_trampoline: 6787 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6788 TLI.getPointerTy(DAG.getDataLayout()), 6789 getValue(I.getArgOperand(0)))); 6790 return; 6791 case Intrinsic::gcroot: { 6792 assert(DAG.getMachineFunction().getFunction().hasGC() && 6793 "only valid in functions with gc specified, enforced by Verifier"); 6794 assert(GFI && "implied by previous"); 6795 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6796 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6797 6798 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6799 GFI->addStackRoot(FI->getIndex(), TypeMap); 6800 return; 6801 } 6802 case Intrinsic::gcread: 6803 case Intrinsic::gcwrite: 6804 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6805 case Intrinsic::flt_rounds: 6806 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6807 setValue(&I, Res); 6808 DAG.setRoot(Res.getValue(1)); 6809 return; 6810 6811 case Intrinsic::expect: 6812 // Just replace __builtin_expect(exp, c) with EXP. 6813 setValue(&I, getValue(I.getArgOperand(0))); 6814 return; 6815 6816 case Intrinsic::ubsantrap: 6817 case Intrinsic::debugtrap: 6818 case Intrinsic::trap: { 6819 StringRef TrapFuncName = 6820 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6821 if (TrapFuncName.empty()) { 6822 switch (Intrinsic) { 6823 case Intrinsic::trap: 6824 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6825 break; 6826 case Intrinsic::debugtrap: 6827 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6828 break; 6829 case Intrinsic::ubsantrap: 6830 DAG.setRoot(DAG.getNode( 6831 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6832 DAG.getTargetConstant( 6833 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6834 MVT::i32))); 6835 break; 6836 default: llvm_unreachable("unknown trap intrinsic"); 6837 } 6838 return; 6839 } 6840 TargetLowering::ArgListTy Args; 6841 if (Intrinsic == Intrinsic::ubsantrap) { 6842 Args.push_back(TargetLoweringBase::ArgListEntry()); 6843 Args[0].Val = I.getArgOperand(0); 6844 Args[0].Node = getValue(Args[0].Val); 6845 Args[0].Ty = Args[0].Val->getType(); 6846 } 6847 6848 TargetLowering::CallLoweringInfo CLI(DAG); 6849 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6850 CallingConv::C, I.getType(), 6851 DAG.getExternalSymbol(TrapFuncName.data(), 6852 TLI.getPointerTy(DAG.getDataLayout())), 6853 std::move(Args)); 6854 6855 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6856 DAG.setRoot(Result.second); 6857 return; 6858 } 6859 6860 case Intrinsic::uadd_with_overflow: 6861 case Intrinsic::sadd_with_overflow: 6862 case Intrinsic::usub_with_overflow: 6863 case Intrinsic::ssub_with_overflow: 6864 case Intrinsic::umul_with_overflow: 6865 case Intrinsic::smul_with_overflow: { 6866 ISD::NodeType Op; 6867 switch (Intrinsic) { 6868 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6869 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6870 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6871 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6872 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6873 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6874 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6875 } 6876 SDValue Op1 = getValue(I.getArgOperand(0)); 6877 SDValue Op2 = getValue(I.getArgOperand(1)); 6878 6879 EVT ResultVT = Op1.getValueType(); 6880 EVT OverflowVT = MVT::i1; 6881 if (ResultVT.isVector()) 6882 OverflowVT = EVT::getVectorVT( 6883 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6884 6885 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6886 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6887 return; 6888 } 6889 case Intrinsic::prefetch: { 6890 SDValue Ops[5]; 6891 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6892 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6893 Ops[0] = DAG.getRoot(); 6894 Ops[1] = getValue(I.getArgOperand(0)); 6895 Ops[2] = getValue(I.getArgOperand(1)); 6896 Ops[3] = getValue(I.getArgOperand(2)); 6897 Ops[4] = getValue(I.getArgOperand(3)); 6898 SDValue Result = DAG.getMemIntrinsicNode( 6899 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6900 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6901 /* align */ None, Flags); 6902 6903 // Chain the prefetch in parallell with any pending loads, to stay out of 6904 // the way of later optimizations. 6905 PendingLoads.push_back(Result); 6906 Result = getRoot(); 6907 DAG.setRoot(Result); 6908 return; 6909 } 6910 case Intrinsic::lifetime_start: 6911 case Intrinsic::lifetime_end: { 6912 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6913 // Stack coloring is not enabled in O0, discard region information. 6914 if (TM.getOptLevel() == CodeGenOpt::None) 6915 return; 6916 6917 const int64_t ObjectSize = 6918 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6919 Value *const ObjectPtr = I.getArgOperand(1); 6920 SmallVector<const Value *, 4> Allocas; 6921 getUnderlyingObjects(ObjectPtr, Allocas); 6922 6923 for (const Value *Alloca : Allocas) { 6924 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6925 6926 // Could not find an Alloca. 6927 if (!LifetimeObject) 6928 continue; 6929 6930 // First check that the Alloca is static, otherwise it won't have a 6931 // valid frame index. 6932 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6933 if (SI == FuncInfo.StaticAllocaMap.end()) 6934 return; 6935 6936 const int FrameIndex = SI->second; 6937 int64_t Offset; 6938 if (GetPointerBaseWithConstantOffset( 6939 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6940 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6941 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6942 Offset); 6943 DAG.setRoot(Res); 6944 } 6945 return; 6946 } 6947 case Intrinsic::pseudoprobe: { 6948 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6949 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6950 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6951 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6952 DAG.setRoot(Res); 6953 return; 6954 } 6955 case Intrinsic::invariant_start: 6956 // Discard region information. 6957 setValue(&I, 6958 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6959 return; 6960 case Intrinsic::invariant_end: 6961 // Discard region information. 6962 return; 6963 case Intrinsic::clear_cache: 6964 /// FunctionName may be null. 6965 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6966 lowerCallToExternalSymbol(I, FunctionName); 6967 return; 6968 case Intrinsic::donothing: 6969 case Intrinsic::seh_try_begin: 6970 case Intrinsic::seh_scope_begin: 6971 case Intrinsic::seh_try_end: 6972 case Intrinsic::seh_scope_end: 6973 // ignore 6974 return; 6975 case Intrinsic::experimental_stackmap: 6976 visitStackmap(I); 6977 return; 6978 case Intrinsic::experimental_patchpoint_void: 6979 case Intrinsic::experimental_patchpoint_i64: 6980 visitPatchpoint(I); 6981 return; 6982 case Intrinsic::experimental_gc_statepoint: 6983 LowerStatepoint(cast<GCStatepointInst>(I)); 6984 return; 6985 case Intrinsic::experimental_gc_result: 6986 visitGCResult(cast<GCResultInst>(I)); 6987 return; 6988 case Intrinsic::experimental_gc_relocate: 6989 visitGCRelocate(cast<GCRelocateInst>(I)); 6990 return; 6991 case Intrinsic::instrprof_cover: 6992 llvm_unreachable("instrprof failed to lower a cover"); 6993 case Intrinsic::instrprof_increment: 6994 llvm_unreachable("instrprof failed to lower an increment"); 6995 case Intrinsic::instrprof_value_profile: 6996 llvm_unreachable("instrprof failed to lower a value profiling call"); 6997 case Intrinsic::localescape: { 6998 MachineFunction &MF = DAG.getMachineFunction(); 6999 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7000 7001 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7002 // is the same on all targets. 7003 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7004 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7005 if (isa<ConstantPointerNull>(Arg)) 7006 continue; // Skip null pointers. They represent a hole in index space. 7007 AllocaInst *Slot = cast<AllocaInst>(Arg); 7008 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7009 "can only escape static allocas"); 7010 int FI = FuncInfo.StaticAllocaMap[Slot]; 7011 MCSymbol *FrameAllocSym = 7012 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7013 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7015 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7016 .addSym(FrameAllocSym) 7017 .addFrameIndex(FI); 7018 } 7019 7020 return; 7021 } 7022 7023 case Intrinsic::localrecover: { 7024 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7025 MachineFunction &MF = DAG.getMachineFunction(); 7026 7027 // Get the symbol that defines the frame offset. 7028 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7029 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7030 unsigned IdxVal = 7031 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7032 MCSymbol *FrameAllocSym = 7033 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7034 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7035 7036 Value *FP = I.getArgOperand(1); 7037 SDValue FPVal = getValue(FP); 7038 EVT PtrVT = FPVal.getValueType(); 7039 7040 // Create a MCSymbol for the label to avoid any target lowering 7041 // that would make this PC relative. 7042 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7043 SDValue OffsetVal = 7044 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7045 7046 // Add the offset to the FP. 7047 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7048 setValue(&I, Add); 7049 7050 return; 7051 } 7052 7053 case Intrinsic::eh_exceptionpointer: 7054 case Intrinsic::eh_exceptioncode: { 7055 // Get the exception pointer vreg, copy from it, and resize it to fit. 7056 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7057 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7058 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7059 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7060 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7061 if (Intrinsic == Intrinsic::eh_exceptioncode) 7062 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7063 setValue(&I, N); 7064 return; 7065 } 7066 case Intrinsic::xray_customevent: { 7067 // Here we want to make sure that the intrinsic behaves as if it has a 7068 // specific calling convention, and only for x86_64. 7069 // FIXME: Support other platforms later. 7070 const auto &Triple = DAG.getTarget().getTargetTriple(); 7071 if (Triple.getArch() != Triple::x86_64) 7072 return; 7073 7074 SmallVector<SDValue, 8> Ops; 7075 7076 // We want to say that we always want the arguments in registers. 7077 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7078 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7079 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7080 SDValue Chain = getRoot(); 7081 Ops.push_back(LogEntryVal); 7082 Ops.push_back(StrSizeVal); 7083 Ops.push_back(Chain); 7084 7085 // We need to enforce the calling convention for the callsite, so that 7086 // argument ordering is enforced correctly, and that register allocation can 7087 // see that some registers may be assumed clobbered and have to preserve 7088 // them across calls to the intrinsic. 7089 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7090 sdl, NodeTys, Ops); 7091 SDValue patchableNode = SDValue(MN, 0); 7092 DAG.setRoot(patchableNode); 7093 setValue(&I, patchableNode); 7094 return; 7095 } 7096 case Intrinsic::xray_typedevent: { 7097 // Here we want to make sure that the intrinsic behaves as if it has a 7098 // specific calling convention, and only for x86_64. 7099 // FIXME: Support other platforms later. 7100 const auto &Triple = DAG.getTarget().getTargetTriple(); 7101 if (Triple.getArch() != Triple::x86_64) 7102 return; 7103 7104 SmallVector<SDValue, 8> Ops; 7105 7106 // We want to say that we always want the arguments in registers. 7107 // It's unclear to me how manipulating the selection DAG here forces callers 7108 // to provide arguments in registers instead of on the stack. 7109 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7110 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7111 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7112 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7113 SDValue Chain = getRoot(); 7114 Ops.push_back(LogTypeId); 7115 Ops.push_back(LogEntryVal); 7116 Ops.push_back(StrSizeVal); 7117 Ops.push_back(Chain); 7118 7119 // We need to enforce the calling convention for the callsite, so that 7120 // argument ordering is enforced correctly, and that register allocation can 7121 // see that some registers may be assumed clobbered and have to preserve 7122 // them across calls to the intrinsic. 7123 MachineSDNode *MN = DAG.getMachineNode( 7124 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7125 SDValue patchableNode = SDValue(MN, 0); 7126 DAG.setRoot(patchableNode); 7127 setValue(&I, patchableNode); 7128 return; 7129 } 7130 case Intrinsic::experimental_deoptimize: 7131 LowerDeoptimizeCall(&I); 7132 return; 7133 case Intrinsic::experimental_stepvector: 7134 visitStepVector(I); 7135 return; 7136 case Intrinsic::vector_reduce_fadd: 7137 case Intrinsic::vector_reduce_fmul: 7138 case Intrinsic::vector_reduce_add: 7139 case Intrinsic::vector_reduce_mul: 7140 case Intrinsic::vector_reduce_and: 7141 case Intrinsic::vector_reduce_or: 7142 case Intrinsic::vector_reduce_xor: 7143 case Intrinsic::vector_reduce_smax: 7144 case Intrinsic::vector_reduce_smin: 7145 case Intrinsic::vector_reduce_umax: 7146 case Intrinsic::vector_reduce_umin: 7147 case Intrinsic::vector_reduce_fmax: 7148 case Intrinsic::vector_reduce_fmin: 7149 visitVectorReduce(I, Intrinsic); 7150 return; 7151 7152 case Intrinsic::icall_branch_funnel: { 7153 SmallVector<SDValue, 16> Ops; 7154 Ops.push_back(getValue(I.getArgOperand(0))); 7155 7156 int64_t Offset; 7157 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7158 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7159 if (!Base) 7160 report_fatal_error( 7161 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7162 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7163 7164 struct BranchFunnelTarget { 7165 int64_t Offset; 7166 SDValue Target; 7167 }; 7168 SmallVector<BranchFunnelTarget, 8> Targets; 7169 7170 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7171 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7172 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7173 if (ElemBase != Base) 7174 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7175 "to the same GlobalValue"); 7176 7177 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7178 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7179 if (!GA) 7180 report_fatal_error( 7181 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7182 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7183 GA->getGlobal(), sdl, Val.getValueType(), 7184 GA->getOffset())}); 7185 } 7186 llvm::sort(Targets, 7187 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7188 return T1.Offset < T2.Offset; 7189 }); 7190 7191 for (auto &T : Targets) { 7192 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7193 Ops.push_back(T.Target); 7194 } 7195 7196 Ops.push_back(DAG.getRoot()); // Chain 7197 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7198 MVT::Other, Ops), 7199 0); 7200 DAG.setRoot(N); 7201 setValue(&I, N); 7202 HasTailCall = true; 7203 return; 7204 } 7205 7206 case Intrinsic::wasm_landingpad_index: 7207 // Information this intrinsic contained has been transferred to 7208 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7209 // delete it now. 7210 return; 7211 7212 case Intrinsic::aarch64_settag: 7213 case Intrinsic::aarch64_settag_zero: { 7214 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7215 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7216 SDValue Val = TSI.EmitTargetCodeForSetTag( 7217 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7218 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7219 ZeroMemory); 7220 DAG.setRoot(Val); 7221 setValue(&I, Val); 7222 return; 7223 } 7224 case Intrinsic::ptrmask: { 7225 SDValue Ptr = getValue(I.getOperand(0)); 7226 SDValue Const = getValue(I.getOperand(1)); 7227 7228 EVT PtrVT = Ptr.getValueType(); 7229 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7230 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7231 return; 7232 } 7233 case Intrinsic::threadlocal_address: { 7234 setValue(&I, getValue(I.getOperand(0))); 7235 return; 7236 } 7237 case Intrinsic::get_active_lane_mask: { 7238 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7239 SDValue Index = getValue(I.getOperand(0)); 7240 EVT ElementVT = Index.getValueType(); 7241 7242 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7243 visitTargetIntrinsic(I, Intrinsic); 7244 return; 7245 } 7246 7247 SDValue TripCount = getValue(I.getOperand(1)); 7248 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7249 7250 SDValue VectorIndex, VectorTripCount; 7251 if (VecTy.isScalableVector()) { 7252 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7253 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7254 } else { 7255 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7256 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7257 } 7258 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7259 SDValue VectorInduction = DAG.getNode( 7260 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7261 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7262 VectorTripCount, ISD::CondCode::SETULT); 7263 setValue(&I, SetCC); 7264 return; 7265 } 7266 case Intrinsic::vector_insert: { 7267 SDValue Vec = getValue(I.getOperand(0)); 7268 SDValue SubVec = getValue(I.getOperand(1)); 7269 SDValue Index = getValue(I.getOperand(2)); 7270 7271 // The intrinsic's index type is i64, but the SDNode requires an index type 7272 // suitable for the target. Convert the index as required. 7273 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7274 if (Index.getValueType() != VectorIdxTy) 7275 Index = DAG.getVectorIdxConstant( 7276 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7277 7278 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7279 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7280 Index)); 7281 return; 7282 } 7283 case Intrinsic::vector_extract: { 7284 SDValue Vec = getValue(I.getOperand(0)); 7285 SDValue Index = getValue(I.getOperand(1)); 7286 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7287 7288 // The intrinsic's index type is i64, but the SDNode requires an index type 7289 // suitable for the target. Convert the index as required. 7290 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7291 if (Index.getValueType() != VectorIdxTy) 7292 Index = DAG.getVectorIdxConstant( 7293 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7294 7295 setValue(&I, 7296 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7297 return; 7298 } 7299 case Intrinsic::experimental_vector_reverse: 7300 visitVectorReverse(I); 7301 return; 7302 case Intrinsic::experimental_vector_splice: 7303 visitVectorSplice(I); 7304 return; 7305 } 7306 } 7307 7308 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7309 const ConstrainedFPIntrinsic &FPI) { 7310 SDLoc sdl = getCurSDLoc(); 7311 7312 // We do not need to serialize constrained FP intrinsics against 7313 // each other or against (nonvolatile) loads, so they can be 7314 // chained like loads. 7315 SDValue Chain = DAG.getRoot(); 7316 SmallVector<SDValue, 4> Opers; 7317 Opers.push_back(Chain); 7318 if (FPI.isUnaryOp()) { 7319 Opers.push_back(getValue(FPI.getArgOperand(0))); 7320 } else if (FPI.isTernaryOp()) { 7321 Opers.push_back(getValue(FPI.getArgOperand(0))); 7322 Opers.push_back(getValue(FPI.getArgOperand(1))); 7323 Opers.push_back(getValue(FPI.getArgOperand(2))); 7324 } else { 7325 Opers.push_back(getValue(FPI.getArgOperand(0))); 7326 Opers.push_back(getValue(FPI.getArgOperand(1))); 7327 } 7328 7329 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7330 assert(Result.getNode()->getNumValues() == 2); 7331 7332 // Push node to the appropriate list so that future instructions can be 7333 // chained up correctly. 7334 SDValue OutChain = Result.getValue(1); 7335 switch (EB) { 7336 case fp::ExceptionBehavior::ebIgnore: 7337 // The only reason why ebIgnore nodes still need to be chained is that 7338 // they might depend on the current rounding mode, and therefore must 7339 // not be moved across instruction that may change that mode. 7340 [[fallthrough]]; 7341 case fp::ExceptionBehavior::ebMayTrap: 7342 // These must not be moved across calls or instructions that may change 7343 // floating-point exception masks. 7344 PendingConstrainedFP.push_back(OutChain); 7345 break; 7346 case fp::ExceptionBehavior::ebStrict: 7347 // These must not be moved across calls or instructions that may change 7348 // floating-point exception masks or read floating-point exception flags. 7349 // In addition, they cannot be optimized out even if unused. 7350 PendingConstrainedFPStrict.push_back(OutChain); 7351 break; 7352 } 7353 }; 7354 7355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7356 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7357 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7358 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7359 7360 SDNodeFlags Flags; 7361 if (EB == fp::ExceptionBehavior::ebIgnore) 7362 Flags.setNoFPExcept(true); 7363 7364 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7365 Flags.copyFMF(*FPOp); 7366 7367 unsigned Opcode; 7368 switch (FPI.getIntrinsicID()) { 7369 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7370 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7371 case Intrinsic::INTRINSIC: \ 7372 Opcode = ISD::STRICT_##DAGN; \ 7373 break; 7374 #include "llvm/IR/ConstrainedOps.def" 7375 case Intrinsic::experimental_constrained_fmuladd: { 7376 Opcode = ISD::STRICT_FMA; 7377 // Break fmuladd into fmul and fadd. 7378 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7379 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7380 Opers.pop_back(); 7381 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7382 pushOutChain(Mul, EB); 7383 Opcode = ISD::STRICT_FADD; 7384 Opers.clear(); 7385 Opers.push_back(Mul.getValue(1)); 7386 Opers.push_back(Mul.getValue(0)); 7387 Opers.push_back(getValue(FPI.getArgOperand(2))); 7388 } 7389 break; 7390 } 7391 } 7392 7393 // A few strict DAG nodes carry additional operands that are not 7394 // set up by the default code above. 7395 switch (Opcode) { 7396 default: break; 7397 case ISD::STRICT_FP_ROUND: 7398 Opers.push_back( 7399 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7400 break; 7401 case ISD::STRICT_FSETCC: 7402 case ISD::STRICT_FSETCCS: { 7403 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7404 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7405 if (TM.Options.NoNaNsFPMath) 7406 Condition = getFCmpCodeWithoutNaN(Condition); 7407 Opers.push_back(DAG.getCondCode(Condition)); 7408 break; 7409 } 7410 } 7411 7412 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7413 pushOutChain(Result, EB); 7414 7415 SDValue FPResult = Result.getValue(0); 7416 setValue(&FPI, FPResult); 7417 } 7418 7419 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7420 Optional<unsigned> ResOPC; 7421 switch (VPIntrin.getIntrinsicID()) { 7422 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7423 case Intrinsic::VPID: \ 7424 ResOPC = ISD::VPSD; \ 7425 break; 7426 #include "llvm/IR/VPIntrinsics.def" 7427 } 7428 7429 if (!ResOPC) 7430 llvm_unreachable( 7431 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7432 7433 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7434 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7435 if (VPIntrin.getFastMathFlags().allowReassoc()) 7436 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7437 : ISD::VP_REDUCE_FMUL; 7438 } 7439 7440 return *ResOPC; 7441 } 7442 7443 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7444 SmallVector<SDValue, 7> &OpValues) { 7445 SDLoc DL = getCurSDLoc(); 7446 Value *PtrOperand = VPIntrin.getArgOperand(0); 7447 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7448 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7449 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7450 SDValue LD; 7451 bool AddToChain = true; 7452 // Do not serialize variable-length loads of constant memory with 7453 // anything. 7454 if (!Alignment) 7455 Alignment = DAG.getEVTAlign(VT); 7456 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7457 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7458 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7459 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7460 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7461 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7462 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7463 MMO, false /*IsExpanding */); 7464 if (AddToChain) 7465 PendingLoads.push_back(LD.getValue(1)); 7466 setValue(&VPIntrin, LD); 7467 } 7468 7469 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7470 SmallVector<SDValue, 7> &OpValues) { 7471 SDLoc DL = getCurSDLoc(); 7472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7473 Value *PtrOperand = VPIntrin.getArgOperand(0); 7474 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7475 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7476 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7477 SDValue LD; 7478 if (!Alignment) 7479 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7480 unsigned AS = 7481 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7482 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7483 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7484 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7485 SDValue Base, Index, Scale; 7486 ISD::MemIndexType IndexType; 7487 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7488 this, VPIntrin.getParent(), 7489 VT.getScalarStoreSize()); 7490 if (!UniformBase) { 7491 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7492 Index = getValue(PtrOperand); 7493 IndexType = ISD::SIGNED_SCALED; 7494 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7495 } 7496 EVT IdxVT = Index.getValueType(); 7497 EVT EltTy = IdxVT.getVectorElementType(); 7498 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7499 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7500 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7501 } 7502 LD = DAG.getGatherVP( 7503 DAG.getVTList(VT, MVT::Other), VT, DL, 7504 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7505 IndexType); 7506 PendingLoads.push_back(LD.getValue(1)); 7507 setValue(&VPIntrin, LD); 7508 } 7509 7510 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7511 SmallVector<SDValue, 7> &OpValues) { 7512 SDLoc DL = getCurSDLoc(); 7513 Value *PtrOperand = VPIntrin.getArgOperand(1); 7514 EVT VT = OpValues[0].getValueType(); 7515 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7516 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7517 SDValue ST; 7518 if (!Alignment) 7519 Alignment = DAG.getEVTAlign(VT); 7520 SDValue Ptr = OpValues[1]; 7521 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7522 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7523 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7524 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7525 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7526 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7527 /* IsTruncating */ false, /*IsCompressing*/ false); 7528 DAG.setRoot(ST); 7529 setValue(&VPIntrin, ST); 7530 } 7531 7532 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7533 SmallVector<SDValue, 7> &OpValues) { 7534 SDLoc DL = getCurSDLoc(); 7535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7536 Value *PtrOperand = VPIntrin.getArgOperand(1); 7537 EVT VT = OpValues[0].getValueType(); 7538 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7539 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7540 SDValue ST; 7541 if (!Alignment) 7542 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7543 unsigned AS = 7544 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7545 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7546 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7547 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7548 SDValue Base, Index, Scale; 7549 ISD::MemIndexType IndexType; 7550 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7551 this, VPIntrin.getParent(), 7552 VT.getScalarStoreSize()); 7553 if (!UniformBase) { 7554 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7555 Index = getValue(PtrOperand); 7556 IndexType = ISD::SIGNED_SCALED; 7557 Scale = 7558 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7559 } 7560 EVT IdxVT = Index.getValueType(); 7561 EVT EltTy = IdxVT.getVectorElementType(); 7562 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7563 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7564 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7565 } 7566 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7567 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7568 OpValues[2], OpValues[3]}, 7569 MMO, IndexType); 7570 DAG.setRoot(ST); 7571 setValue(&VPIntrin, ST); 7572 } 7573 7574 void SelectionDAGBuilder::visitVPStridedLoad( 7575 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7576 SDLoc DL = getCurSDLoc(); 7577 Value *PtrOperand = VPIntrin.getArgOperand(0); 7578 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7579 if (!Alignment) 7580 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7581 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7582 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7583 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7584 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7585 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7586 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7587 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7588 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7589 7590 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7591 OpValues[2], OpValues[3], MMO, 7592 false /*IsExpanding*/); 7593 7594 if (AddToChain) 7595 PendingLoads.push_back(LD.getValue(1)); 7596 setValue(&VPIntrin, LD); 7597 } 7598 7599 void SelectionDAGBuilder::visitVPStridedStore( 7600 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7601 SDLoc DL = getCurSDLoc(); 7602 Value *PtrOperand = VPIntrin.getArgOperand(1); 7603 EVT VT = OpValues[0].getValueType(); 7604 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7605 if (!Alignment) 7606 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7607 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7608 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7609 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7610 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7611 7612 SDValue ST = DAG.getStridedStoreVP( 7613 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7614 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7615 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7616 /*IsCompressing*/ false); 7617 7618 DAG.setRoot(ST); 7619 setValue(&VPIntrin, ST); 7620 } 7621 7622 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7624 SDLoc DL = getCurSDLoc(); 7625 7626 ISD::CondCode Condition; 7627 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7628 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7629 if (IsFP) { 7630 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7631 // flags, but calls that don't return floating-point types can't be 7632 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7633 Condition = getFCmpCondCode(CondCode); 7634 if (TM.Options.NoNaNsFPMath) 7635 Condition = getFCmpCodeWithoutNaN(Condition); 7636 } else { 7637 Condition = getICmpCondCode(CondCode); 7638 } 7639 7640 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7641 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7642 // #2 is the condition code 7643 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7644 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7645 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7646 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7647 "Unexpected target EVL type"); 7648 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7649 7650 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7651 VPIntrin.getType()); 7652 setValue(&VPIntrin, 7653 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7654 } 7655 7656 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7657 const VPIntrinsic &VPIntrin) { 7658 SDLoc DL = getCurSDLoc(); 7659 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7660 7661 auto IID = VPIntrin.getIntrinsicID(); 7662 7663 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7664 return visitVPCmp(*CmpI); 7665 7666 SmallVector<EVT, 4> ValueVTs; 7667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7668 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7669 SDVTList VTs = DAG.getVTList(ValueVTs); 7670 7671 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7672 7673 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7674 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7675 "Unexpected target EVL type"); 7676 7677 // Request operands. 7678 SmallVector<SDValue, 7> OpValues; 7679 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7680 auto Op = getValue(VPIntrin.getArgOperand(I)); 7681 if (I == EVLParamPos) 7682 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7683 OpValues.push_back(Op); 7684 } 7685 7686 switch (Opcode) { 7687 default: { 7688 SDNodeFlags SDFlags; 7689 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7690 SDFlags.copyFMF(*FPMO); 7691 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7692 setValue(&VPIntrin, Result); 7693 break; 7694 } 7695 case ISD::VP_LOAD: 7696 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7697 break; 7698 case ISD::VP_GATHER: 7699 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7700 break; 7701 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7702 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7703 break; 7704 case ISD::VP_STORE: 7705 visitVPStore(VPIntrin, OpValues); 7706 break; 7707 case ISD::VP_SCATTER: 7708 visitVPScatter(VPIntrin, OpValues); 7709 break; 7710 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7711 visitVPStridedStore(VPIntrin, OpValues); 7712 break; 7713 case ISD::VP_FMULADD: { 7714 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7715 SDNodeFlags SDFlags; 7716 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7717 SDFlags.copyFMF(*FPMO); 7718 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7719 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7720 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7721 } else { 7722 SDValue Mul = DAG.getNode( 7723 ISD::VP_FMUL, DL, VTs, 7724 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7725 SDValue Add = 7726 DAG.getNode(ISD::VP_FADD, DL, VTs, 7727 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7728 setValue(&VPIntrin, Add); 7729 } 7730 break; 7731 } 7732 } 7733 } 7734 7735 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7736 const BasicBlock *EHPadBB, 7737 MCSymbol *&BeginLabel) { 7738 MachineFunction &MF = DAG.getMachineFunction(); 7739 MachineModuleInfo &MMI = MF.getMMI(); 7740 7741 // Insert a label before the invoke call to mark the try range. This can be 7742 // used to detect deletion of the invoke via the MachineModuleInfo. 7743 BeginLabel = MMI.getContext().createTempSymbol(); 7744 7745 // For SjLj, keep track of which landing pads go with which invokes 7746 // so as to maintain the ordering of pads in the LSDA. 7747 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7748 if (CallSiteIndex) { 7749 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7750 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7751 7752 // Now that the call site is handled, stop tracking it. 7753 MMI.setCurrentCallSite(0); 7754 } 7755 7756 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7757 } 7758 7759 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7760 const BasicBlock *EHPadBB, 7761 MCSymbol *BeginLabel) { 7762 assert(BeginLabel && "BeginLabel should've been set"); 7763 7764 MachineFunction &MF = DAG.getMachineFunction(); 7765 MachineModuleInfo &MMI = MF.getMMI(); 7766 7767 // Insert a label at the end of the invoke call to mark the try range. This 7768 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7769 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7770 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7771 7772 // Inform MachineModuleInfo of range. 7773 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7774 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7775 // actually use outlined funclets and their LSDA info style. 7776 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7777 assert(II && "II should've been set"); 7778 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7779 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7780 } else if (!isScopedEHPersonality(Pers)) { 7781 assert(EHPadBB); 7782 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7783 } 7784 7785 return Chain; 7786 } 7787 7788 std::pair<SDValue, SDValue> 7789 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7790 const BasicBlock *EHPadBB) { 7791 MCSymbol *BeginLabel = nullptr; 7792 7793 if (EHPadBB) { 7794 // Both PendingLoads and PendingExports must be flushed here; 7795 // this call might not return. 7796 (void)getRoot(); 7797 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7798 CLI.setChain(getRoot()); 7799 } 7800 7801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7802 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7803 7804 assert((CLI.IsTailCall || Result.second.getNode()) && 7805 "Non-null chain expected with non-tail call!"); 7806 assert((Result.second.getNode() || !Result.first.getNode()) && 7807 "Null value expected with tail call!"); 7808 7809 if (!Result.second.getNode()) { 7810 // As a special case, a null chain means that a tail call has been emitted 7811 // and the DAG root is already updated. 7812 HasTailCall = true; 7813 7814 // Since there's no actual continuation from this block, nothing can be 7815 // relying on us setting vregs for them. 7816 PendingExports.clear(); 7817 } else { 7818 DAG.setRoot(Result.second); 7819 } 7820 7821 if (EHPadBB) { 7822 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7823 BeginLabel)); 7824 } 7825 7826 return Result; 7827 } 7828 7829 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7830 bool isTailCall, 7831 bool isMustTailCall, 7832 const BasicBlock *EHPadBB) { 7833 auto &DL = DAG.getDataLayout(); 7834 FunctionType *FTy = CB.getFunctionType(); 7835 Type *RetTy = CB.getType(); 7836 7837 TargetLowering::ArgListTy Args; 7838 Args.reserve(CB.arg_size()); 7839 7840 const Value *SwiftErrorVal = nullptr; 7841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7842 7843 if (isTailCall) { 7844 // Avoid emitting tail calls in functions with the disable-tail-calls 7845 // attribute. 7846 auto *Caller = CB.getParent()->getParent(); 7847 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7848 "true" && !isMustTailCall) 7849 isTailCall = false; 7850 7851 // We can't tail call inside a function with a swifterror argument. Lowering 7852 // does not support this yet. It would have to move into the swifterror 7853 // register before the call. 7854 if (TLI.supportSwiftError() && 7855 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7856 isTailCall = false; 7857 } 7858 7859 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7860 TargetLowering::ArgListEntry Entry; 7861 const Value *V = *I; 7862 7863 // Skip empty types 7864 if (V->getType()->isEmptyTy()) 7865 continue; 7866 7867 SDValue ArgNode = getValue(V); 7868 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7869 7870 Entry.setAttributes(&CB, I - CB.arg_begin()); 7871 7872 // Use swifterror virtual register as input to the call. 7873 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7874 SwiftErrorVal = V; 7875 // We find the virtual register for the actual swifterror argument. 7876 // Instead of using the Value, we use the virtual register instead. 7877 Entry.Node = 7878 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7879 EVT(TLI.getPointerTy(DL))); 7880 } 7881 7882 Args.push_back(Entry); 7883 7884 // If we have an explicit sret argument that is an Instruction, (i.e., it 7885 // might point to function-local memory), we can't meaningfully tail-call. 7886 if (Entry.IsSRet && isa<Instruction>(V)) 7887 isTailCall = false; 7888 } 7889 7890 // If call site has a cfguardtarget operand bundle, create and add an 7891 // additional ArgListEntry. 7892 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7893 TargetLowering::ArgListEntry Entry; 7894 Value *V = Bundle->Inputs[0]; 7895 SDValue ArgNode = getValue(V); 7896 Entry.Node = ArgNode; 7897 Entry.Ty = V->getType(); 7898 Entry.IsCFGuardTarget = true; 7899 Args.push_back(Entry); 7900 } 7901 7902 // Check if target-independent constraints permit a tail call here. 7903 // Target-dependent constraints are checked within TLI->LowerCallTo. 7904 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7905 isTailCall = false; 7906 7907 // Disable tail calls if there is an swifterror argument. Targets have not 7908 // been updated to support tail calls. 7909 if (TLI.supportSwiftError() && SwiftErrorVal) 7910 isTailCall = false; 7911 7912 ConstantInt *CFIType = nullptr; 7913 if (CB.isIndirectCall()) { 7914 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7915 if (!TLI.supportKCFIBundles()) 7916 report_fatal_error( 7917 "Target doesn't support calls with kcfi operand bundles."); 7918 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7919 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7920 } 7921 } 7922 7923 TargetLowering::CallLoweringInfo CLI(DAG); 7924 CLI.setDebugLoc(getCurSDLoc()) 7925 .setChain(getRoot()) 7926 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7927 .setTailCall(isTailCall) 7928 .setConvergent(CB.isConvergent()) 7929 .setIsPreallocated( 7930 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7931 .setCFIType(CFIType); 7932 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7933 7934 if (Result.first.getNode()) { 7935 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7936 setValue(&CB, Result.first); 7937 } 7938 7939 // The last element of CLI.InVals has the SDValue for swifterror return. 7940 // Here we copy it to a virtual register and update SwiftErrorMap for 7941 // book-keeping. 7942 if (SwiftErrorVal && TLI.supportSwiftError()) { 7943 // Get the last element of InVals. 7944 SDValue Src = CLI.InVals.back(); 7945 Register VReg = 7946 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7947 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7948 DAG.setRoot(CopyNode); 7949 } 7950 } 7951 7952 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7953 SelectionDAGBuilder &Builder) { 7954 // Check to see if this load can be trivially constant folded, e.g. if the 7955 // input is from a string literal. 7956 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7957 // Cast pointer to the type we really want to load. 7958 Type *LoadTy = 7959 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7960 if (LoadVT.isVector()) 7961 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7962 7963 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7964 PointerType::getUnqual(LoadTy)); 7965 7966 if (const Constant *LoadCst = 7967 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7968 LoadTy, Builder.DAG.getDataLayout())) 7969 return Builder.getValue(LoadCst); 7970 } 7971 7972 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7973 // still constant memory, the input chain can be the entry node. 7974 SDValue Root; 7975 bool ConstantMemory = false; 7976 7977 // Do not serialize (non-volatile) loads of constant memory with anything. 7978 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7979 Root = Builder.DAG.getEntryNode(); 7980 ConstantMemory = true; 7981 } else { 7982 // Do not serialize non-volatile loads against each other. 7983 Root = Builder.DAG.getRoot(); 7984 } 7985 7986 SDValue Ptr = Builder.getValue(PtrVal); 7987 SDValue LoadVal = 7988 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7989 MachinePointerInfo(PtrVal), Align(1)); 7990 7991 if (!ConstantMemory) 7992 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7993 return LoadVal; 7994 } 7995 7996 /// Record the value for an instruction that produces an integer result, 7997 /// converting the type where necessary. 7998 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7999 SDValue Value, 8000 bool IsSigned) { 8001 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8002 I.getType(), true); 8003 if (IsSigned) 8004 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 8005 else 8006 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 8007 setValue(&I, Value); 8008 } 8009 8010 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8011 /// true and lower it. Otherwise return false, and it will be lowered like a 8012 /// normal call. 8013 /// The caller already checked that \p I calls the appropriate LibFunc with a 8014 /// correct prototype. 8015 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8016 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8017 const Value *Size = I.getArgOperand(2); 8018 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8019 if (CSize && CSize->getZExtValue() == 0) { 8020 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8021 I.getType(), true); 8022 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8023 return true; 8024 } 8025 8026 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8027 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8028 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8029 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8030 if (Res.first.getNode()) { 8031 processIntegerCallValue(I, Res.first, true); 8032 PendingLoads.push_back(Res.second); 8033 return true; 8034 } 8035 8036 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8037 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8038 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8039 return false; 8040 8041 // If the target has a fast compare for the given size, it will return a 8042 // preferred load type for that size. Require that the load VT is legal and 8043 // that the target supports unaligned loads of that type. Otherwise, return 8044 // INVALID. 8045 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8047 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8048 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8049 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8050 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8051 // TODO: Check alignment of src and dest ptrs. 8052 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8053 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8054 if (!TLI.isTypeLegal(LVT) || 8055 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8056 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8057 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8058 } 8059 8060 return LVT; 8061 }; 8062 8063 // This turns into unaligned loads. We only do this if the target natively 8064 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8065 // we'll only produce a small number of byte loads. 8066 MVT LoadVT; 8067 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8068 switch (NumBitsToCompare) { 8069 default: 8070 return false; 8071 case 16: 8072 LoadVT = MVT::i16; 8073 break; 8074 case 32: 8075 LoadVT = MVT::i32; 8076 break; 8077 case 64: 8078 case 128: 8079 case 256: 8080 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8081 break; 8082 } 8083 8084 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8085 return false; 8086 8087 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8088 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8089 8090 // Bitcast to a wide integer type if the loads are vectors. 8091 if (LoadVT.isVector()) { 8092 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8093 LoadL = DAG.getBitcast(CmpVT, LoadL); 8094 LoadR = DAG.getBitcast(CmpVT, LoadR); 8095 } 8096 8097 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8098 processIntegerCallValue(I, Cmp, false); 8099 return true; 8100 } 8101 8102 /// See if we can lower a memchr call into an optimized form. If so, return 8103 /// true and lower it. Otherwise return false, and it will be lowered like a 8104 /// normal call. 8105 /// The caller already checked that \p I calls the appropriate LibFunc with a 8106 /// correct prototype. 8107 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8108 const Value *Src = I.getArgOperand(0); 8109 const Value *Char = I.getArgOperand(1); 8110 const Value *Length = I.getArgOperand(2); 8111 8112 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8113 std::pair<SDValue, SDValue> Res = 8114 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8115 getValue(Src), getValue(Char), getValue(Length), 8116 MachinePointerInfo(Src)); 8117 if (Res.first.getNode()) { 8118 setValue(&I, Res.first); 8119 PendingLoads.push_back(Res.second); 8120 return true; 8121 } 8122 8123 return false; 8124 } 8125 8126 /// See if we can lower a mempcpy call into an optimized form. If so, return 8127 /// true and lower it. Otherwise return false, and it will be lowered like a 8128 /// normal call. 8129 /// The caller already checked that \p I calls the appropriate LibFunc with a 8130 /// correct prototype. 8131 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8132 SDValue Dst = getValue(I.getArgOperand(0)); 8133 SDValue Src = getValue(I.getArgOperand(1)); 8134 SDValue Size = getValue(I.getArgOperand(2)); 8135 8136 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8137 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8138 // DAG::getMemcpy needs Alignment to be defined. 8139 Align Alignment = std::min(DstAlign, SrcAlign); 8140 8141 bool isVol = false; 8142 SDLoc sdl = getCurSDLoc(); 8143 8144 // In the mempcpy context we need to pass in a false value for isTailCall 8145 // because the return pointer needs to be adjusted by the size of 8146 // the copied memory. 8147 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8148 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8149 /*isTailCall=*/false, 8150 MachinePointerInfo(I.getArgOperand(0)), 8151 MachinePointerInfo(I.getArgOperand(1)), 8152 I.getAAMetadata()); 8153 assert(MC.getNode() != nullptr && 8154 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8155 DAG.setRoot(MC); 8156 8157 // Check if Size needs to be truncated or extended. 8158 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8159 8160 // Adjust return pointer to point just past the last dst byte. 8161 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8162 Dst, Size); 8163 setValue(&I, DstPlusSize); 8164 return true; 8165 } 8166 8167 /// See if we can lower a strcpy call into an optimized form. If so, return 8168 /// true and lower it, otherwise return false and it will be lowered like a 8169 /// normal call. 8170 /// The caller already checked that \p I calls the appropriate LibFunc with a 8171 /// correct prototype. 8172 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8173 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8174 8175 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8176 std::pair<SDValue, SDValue> Res = 8177 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8178 getValue(Arg0), getValue(Arg1), 8179 MachinePointerInfo(Arg0), 8180 MachinePointerInfo(Arg1), isStpcpy); 8181 if (Res.first.getNode()) { 8182 setValue(&I, Res.first); 8183 DAG.setRoot(Res.second); 8184 return true; 8185 } 8186 8187 return false; 8188 } 8189 8190 /// See if we can lower a strcmp call into an optimized form. If so, return 8191 /// true and lower it, otherwise return false and it will be lowered like a 8192 /// normal call. 8193 /// The caller already checked that \p I calls the appropriate LibFunc with a 8194 /// correct prototype. 8195 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8196 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8197 8198 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8199 std::pair<SDValue, SDValue> Res = 8200 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8201 getValue(Arg0), getValue(Arg1), 8202 MachinePointerInfo(Arg0), 8203 MachinePointerInfo(Arg1)); 8204 if (Res.first.getNode()) { 8205 processIntegerCallValue(I, Res.first, true); 8206 PendingLoads.push_back(Res.second); 8207 return true; 8208 } 8209 8210 return false; 8211 } 8212 8213 /// See if we can lower a strlen call into an optimized form. If so, return 8214 /// true and lower it, otherwise return false and it will be lowered like a 8215 /// normal call. 8216 /// The caller already checked that \p I calls the appropriate LibFunc with a 8217 /// correct prototype. 8218 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8219 const Value *Arg0 = I.getArgOperand(0); 8220 8221 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8222 std::pair<SDValue, SDValue> Res = 8223 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8224 getValue(Arg0), MachinePointerInfo(Arg0)); 8225 if (Res.first.getNode()) { 8226 processIntegerCallValue(I, Res.first, false); 8227 PendingLoads.push_back(Res.second); 8228 return true; 8229 } 8230 8231 return false; 8232 } 8233 8234 /// See if we can lower a strnlen call into an optimized form. If so, return 8235 /// true and lower it, otherwise return false and it will be lowered like a 8236 /// normal call. 8237 /// The caller already checked that \p I calls the appropriate LibFunc with a 8238 /// correct prototype. 8239 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8240 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8241 8242 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8243 std::pair<SDValue, SDValue> Res = 8244 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8245 getValue(Arg0), getValue(Arg1), 8246 MachinePointerInfo(Arg0)); 8247 if (Res.first.getNode()) { 8248 processIntegerCallValue(I, Res.first, false); 8249 PendingLoads.push_back(Res.second); 8250 return true; 8251 } 8252 8253 return false; 8254 } 8255 8256 /// See if we can lower a unary floating-point operation into an SDNode with 8257 /// the specified Opcode. If so, return true and lower it, otherwise return 8258 /// false and it will be lowered like a normal call. 8259 /// The caller already checked that \p I calls the appropriate LibFunc with a 8260 /// correct prototype. 8261 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8262 unsigned Opcode) { 8263 // We already checked this call's prototype; verify it doesn't modify errno. 8264 if (!I.onlyReadsMemory()) 8265 return false; 8266 8267 SDNodeFlags Flags; 8268 Flags.copyFMF(cast<FPMathOperator>(I)); 8269 8270 SDValue Tmp = getValue(I.getArgOperand(0)); 8271 setValue(&I, 8272 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8273 return true; 8274 } 8275 8276 /// See if we can lower a binary floating-point operation into an SDNode with 8277 /// the specified Opcode. If so, return true and lower it. Otherwise return 8278 /// false, and it will be lowered like a normal call. 8279 /// The caller already checked that \p I calls the appropriate LibFunc with a 8280 /// correct prototype. 8281 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8282 unsigned Opcode) { 8283 // We already checked this call's prototype; verify it doesn't modify errno. 8284 if (!I.onlyReadsMemory()) 8285 return false; 8286 8287 SDNodeFlags Flags; 8288 Flags.copyFMF(cast<FPMathOperator>(I)); 8289 8290 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8291 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8292 EVT VT = Tmp0.getValueType(); 8293 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8294 return true; 8295 } 8296 8297 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8298 // Handle inline assembly differently. 8299 if (I.isInlineAsm()) { 8300 visitInlineAsm(I); 8301 return; 8302 } 8303 8304 if (Function *F = I.getCalledFunction()) { 8305 diagnoseDontCall(I); 8306 8307 if (F->isDeclaration()) { 8308 // Is this an LLVM intrinsic or a target-specific intrinsic? 8309 unsigned IID = F->getIntrinsicID(); 8310 if (!IID) 8311 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8312 IID = II->getIntrinsicID(F); 8313 8314 if (IID) { 8315 visitIntrinsicCall(I, IID); 8316 return; 8317 } 8318 } 8319 8320 // Check for well-known libc/libm calls. If the function is internal, it 8321 // can't be a library call. Don't do the check if marked as nobuiltin for 8322 // some reason or the call site requires strict floating point semantics. 8323 LibFunc Func; 8324 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8325 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8326 LibInfo->hasOptimizedCodeGen(Func)) { 8327 switch (Func) { 8328 default: break; 8329 case LibFunc_bcmp: 8330 if (visitMemCmpBCmpCall(I)) 8331 return; 8332 break; 8333 case LibFunc_copysign: 8334 case LibFunc_copysignf: 8335 case LibFunc_copysignl: 8336 // We already checked this call's prototype; verify it doesn't modify 8337 // errno. 8338 if (I.onlyReadsMemory()) { 8339 SDValue LHS = getValue(I.getArgOperand(0)); 8340 SDValue RHS = getValue(I.getArgOperand(1)); 8341 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8342 LHS.getValueType(), LHS, RHS)); 8343 return; 8344 } 8345 break; 8346 case LibFunc_fabs: 8347 case LibFunc_fabsf: 8348 case LibFunc_fabsl: 8349 if (visitUnaryFloatCall(I, ISD::FABS)) 8350 return; 8351 break; 8352 case LibFunc_fmin: 8353 case LibFunc_fminf: 8354 case LibFunc_fminl: 8355 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8356 return; 8357 break; 8358 case LibFunc_fmax: 8359 case LibFunc_fmaxf: 8360 case LibFunc_fmaxl: 8361 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8362 return; 8363 break; 8364 case LibFunc_sin: 8365 case LibFunc_sinf: 8366 case LibFunc_sinl: 8367 if (visitUnaryFloatCall(I, ISD::FSIN)) 8368 return; 8369 break; 8370 case LibFunc_cos: 8371 case LibFunc_cosf: 8372 case LibFunc_cosl: 8373 if (visitUnaryFloatCall(I, ISD::FCOS)) 8374 return; 8375 break; 8376 case LibFunc_sqrt: 8377 case LibFunc_sqrtf: 8378 case LibFunc_sqrtl: 8379 case LibFunc_sqrt_finite: 8380 case LibFunc_sqrtf_finite: 8381 case LibFunc_sqrtl_finite: 8382 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8383 return; 8384 break; 8385 case LibFunc_floor: 8386 case LibFunc_floorf: 8387 case LibFunc_floorl: 8388 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8389 return; 8390 break; 8391 case LibFunc_nearbyint: 8392 case LibFunc_nearbyintf: 8393 case LibFunc_nearbyintl: 8394 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8395 return; 8396 break; 8397 case LibFunc_ceil: 8398 case LibFunc_ceilf: 8399 case LibFunc_ceill: 8400 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8401 return; 8402 break; 8403 case LibFunc_rint: 8404 case LibFunc_rintf: 8405 case LibFunc_rintl: 8406 if (visitUnaryFloatCall(I, ISD::FRINT)) 8407 return; 8408 break; 8409 case LibFunc_round: 8410 case LibFunc_roundf: 8411 case LibFunc_roundl: 8412 if (visitUnaryFloatCall(I, ISD::FROUND)) 8413 return; 8414 break; 8415 case LibFunc_trunc: 8416 case LibFunc_truncf: 8417 case LibFunc_truncl: 8418 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8419 return; 8420 break; 8421 case LibFunc_log2: 8422 case LibFunc_log2f: 8423 case LibFunc_log2l: 8424 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8425 return; 8426 break; 8427 case LibFunc_exp2: 8428 case LibFunc_exp2f: 8429 case LibFunc_exp2l: 8430 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8431 return; 8432 break; 8433 case LibFunc_memcmp: 8434 if (visitMemCmpBCmpCall(I)) 8435 return; 8436 break; 8437 case LibFunc_mempcpy: 8438 if (visitMemPCpyCall(I)) 8439 return; 8440 break; 8441 case LibFunc_memchr: 8442 if (visitMemChrCall(I)) 8443 return; 8444 break; 8445 case LibFunc_strcpy: 8446 if (visitStrCpyCall(I, false)) 8447 return; 8448 break; 8449 case LibFunc_stpcpy: 8450 if (visitStrCpyCall(I, true)) 8451 return; 8452 break; 8453 case LibFunc_strcmp: 8454 if (visitStrCmpCall(I)) 8455 return; 8456 break; 8457 case LibFunc_strlen: 8458 if (visitStrLenCall(I)) 8459 return; 8460 break; 8461 case LibFunc_strnlen: 8462 if (visitStrNLenCall(I)) 8463 return; 8464 break; 8465 } 8466 } 8467 } 8468 8469 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8470 // have to do anything here to lower funclet bundles. 8471 // CFGuardTarget bundles are lowered in LowerCallTo. 8472 assert(!I.hasOperandBundlesOtherThan( 8473 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8474 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8475 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8476 "Cannot lower calls with arbitrary operand bundles!"); 8477 8478 SDValue Callee = getValue(I.getCalledOperand()); 8479 8480 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8481 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8482 else 8483 // Check if we can potentially perform a tail call. More detailed checking 8484 // is be done within LowerCallTo, after more information about the call is 8485 // known. 8486 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8487 } 8488 8489 namespace { 8490 8491 /// AsmOperandInfo - This contains information for each constraint that we are 8492 /// lowering. 8493 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8494 public: 8495 /// CallOperand - If this is the result output operand or a clobber 8496 /// this is null, otherwise it is the incoming operand to the CallInst. 8497 /// This gets modified as the asm is processed. 8498 SDValue CallOperand; 8499 8500 /// AssignedRegs - If this is a register or register class operand, this 8501 /// contains the set of register corresponding to the operand. 8502 RegsForValue AssignedRegs; 8503 8504 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8505 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8506 } 8507 8508 /// Whether or not this operand accesses memory 8509 bool hasMemory(const TargetLowering &TLI) const { 8510 // Indirect operand accesses access memory. 8511 if (isIndirect) 8512 return true; 8513 8514 for (const auto &Code : Codes) 8515 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8516 return true; 8517 8518 return false; 8519 } 8520 }; 8521 8522 8523 } // end anonymous namespace 8524 8525 /// Make sure that the output operand \p OpInfo and its corresponding input 8526 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8527 /// out). 8528 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8529 SDISelAsmOperandInfo &MatchingOpInfo, 8530 SelectionDAG &DAG) { 8531 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8532 return; 8533 8534 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8535 const auto &TLI = DAG.getTargetLoweringInfo(); 8536 8537 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8538 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8539 OpInfo.ConstraintVT); 8540 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8541 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8542 MatchingOpInfo.ConstraintVT); 8543 if ((OpInfo.ConstraintVT.isInteger() != 8544 MatchingOpInfo.ConstraintVT.isInteger()) || 8545 (MatchRC.second != InputRC.second)) { 8546 // FIXME: error out in a more elegant fashion 8547 report_fatal_error("Unsupported asm: input constraint" 8548 " with a matching output constraint of" 8549 " incompatible type!"); 8550 } 8551 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8552 } 8553 8554 /// Get a direct memory input to behave well as an indirect operand. 8555 /// This may introduce stores, hence the need for a \p Chain. 8556 /// \return The (possibly updated) chain. 8557 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8558 SDISelAsmOperandInfo &OpInfo, 8559 SelectionDAG &DAG) { 8560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8561 8562 // If we don't have an indirect input, put it in the constpool if we can, 8563 // otherwise spill it to a stack slot. 8564 // TODO: This isn't quite right. We need to handle these according to 8565 // the addressing mode that the constraint wants. Also, this may take 8566 // an additional register for the computation and we don't want that 8567 // either. 8568 8569 // If the operand is a float, integer, or vector constant, spill to a 8570 // constant pool entry to get its address. 8571 const Value *OpVal = OpInfo.CallOperandVal; 8572 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8573 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8574 OpInfo.CallOperand = DAG.getConstantPool( 8575 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8576 return Chain; 8577 } 8578 8579 // Otherwise, create a stack slot and emit a store to it before the asm. 8580 Type *Ty = OpVal->getType(); 8581 auto &DL = DAG.getDataLayout(); 8582 uint64_t TySize = DL.getTypeAllocSize(Ty); 8583 MachineFunction &MF = DAG.getMachineFunction(); 8584 int SSFI = MF.getFrameInfo().CreateStackObject( 8585 TySize, DL.getPrefTypeAlign(Ty), false); 8586 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8587 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8588 MachinePointerInfo::getFixedStack(MF, SSFI), 8589 TLI.getMemValueType(DL, Ty)); 8590 OpInfo.CallOperand = StackSlot; 8591 8592 return Chain; 8593 } 8594 8595 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8596 /// specified operand. We prefer to assign virtual registers, to allow the 8597 /// register allocator to handle the assignment process. However, if the asm 8598 /// uses features that we can't model on machineinstrs, we have SDISel do the 8599 /// allocation. This produces generally horrible, but correct, code. 8600 /// 8601 /// OpInfo describes the operand 8602 /// RefOpInfo describes the matching operand if any, the operand otherwise 8603 static llvm::Optional<unsigned> 8604 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8605 SDISelAsmOperandInfo &OpInfo, 8606 SDISelAsmOperandInfo &RefOpInfo) { 8607 LLVMContext &Context = *DAG.getContext(); 8608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8609 8610 MachineFunction &MF = DAG.getMachineFunction(); 8611 SmallVector<unsigned, 4> Regs; 8612 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8613 8614 // No work to do for memory/address operands. 8615 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8616 OpInfo.ConstraintType == TargetLowering::C_Address) 8617 return None; 8618 8619 // If this is a constraint for a single physreg, or a constraint for a 8620 // register class, find it. 8621 unsigned AssignedReg; 8622 const TargetRegisterClass *RC; 8623 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8624 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8625 // RC is unset only on failure. Return immediately. 8626 if (!RC) 8627 return None; 8628 8629 // Get the actual register value type. This is important, because the user 8630 // may have asked for (e.g.) the AX register in i32 type. We need to 8631 // remember that AX is actually i16 to get the right extension. 8632 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8633 8634 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8635 // If this is an FP operand in an integer register (or visa versa), or more 8636 // generally if the operand value disagrees with the register class we plan 8637 // to stick it in, fix the operand type. 8638 // 8639 // If this is an input value, the bitcast to the new type is done now. 8640 // Bitcast for output value is done at the end of visitInlineAsm(). 8641 if ((OpInfo.Type == InlineAsm::isOutput || 8642 OpInfo.Type == InlineAsm::isInput) && 8643 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8644 // Try to convert to the first EVT that the reg class contains. If the 8645 // types are identical size, use a bitcast to convert (e.g. two differing 8646 // vector types). Note: output bitcast is done at the end of 8647 // visitInlineAsm(). 8648 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8649 // Exclude indirect inputs while they are unsupported because the code 8650 // to perform the load is missing and thus OpInfo.CallOperand still 8651 // refers to the input address rather than the pointed-to value. 8652 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8653 OpInfo.CallOperand = 8654 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8655 OpInfo.ConstraintVT = RegVT; 8656 // If the operand is an FP value and we want it in integer registers, 8657 // use the corresponding integer type. This turns an f64 value into 8658 // i64, which can be passed with two i32 values on a 32-bit machine. 8659 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8660 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8661 if (OpInfo.Type == InlineAsm::isInput) 8662 OpInfo.CallOperand = 8663 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8664 OpInfo.ConstraintVT = VT; 8665 } 8666 } 8667 } 8668 8669 // No need to allocate a matching input constraint since the constraint it's 8670 // matching to has already been allocated. 8671 if (OpInfo.isMatchingInputConstraint()) 8672 return None; 8673 8674 EVT ValueVT = OpInfo.ConstraintVT; 8675 if (OpInfo.ConstraintVT == MVT::Other) 8676 ValueVT = RegVT; 8677 8678 // Initialize NumRegs. 8679 unsigned NumRegs = 1; 8680 if (OpInfo.ConstraintVT != MVT::Other) 8681 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8682 8683 // If this is a constraint for a specific physical register, like {r17}, 8684 // assign it now. 8685 8686 // If this associated to a specific register, initialize iterator to correct 8687 // place. If virtual, make sure we have enough registers 8688 8689 // Initialize iterator if necessary 8690 TargetRegisterClass::iterator I = RC->begin(); 8691 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8692 8693 // Do not check for single registers. 8694 if (AssignedReg) { 8695 I = std::find(I, RC->end(), AssignedReg); 8696 if (I == RC->end()) { 8697 // RC does not contain the selected register, which indicates a 8698 // mismatch between the register and the required type/bitwidth. 8699 return {AssignedReg}; 8700 } 8701 } 8702 8703 for (; NumRegs; --NumRegs, ++I) { 8704 assert(I != RC->end() && "Ran out of registers to allocate!"); 8705 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8706 Regs.push_back(R); 8707 } 8708 8709 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8710 return None; 8711 } 8712 8713 static unsigned 8714 findMatchingInlineAsmOperand(unsigned OperandNo, 8715 const std::vector<SDValue> &AsmNodeOperands) { 8716 // Scan until we find the definition we already emitted of this operand. 8717 unsigned CurOp = InlineAsm::Op_FirstOperand; 8718 for (; OperandNo; --OperandNo) { 8719 // Advance to the next operand. 8720 unsigned OpFlag = 8721 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8722 assert((InlineAsm::isRegDefKind(OpFlag) || 8723 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8724 InlineAsm::isMemKind(OpFlag)) && 8725 "Skipped past definitions?"); 8726 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8727 } 8728 return CurOp; 8729 } 8730 8731 namespace { 8732 8733 class ExtraFlags { 8734 unsigned Flags = 0; 8735 8736 public: 8737 explicit ExtraFlags(const CallBase &Call) { 8738 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8739 if (IA->hasSideEffects()) 8740 Flags |= InlineAsm::Extra_HasSideEffects; 8741 if (IA->isAlignStack()) 8742 Flags |= InlineAsm::Extra_IsAlignStack; 8743 if (Call.isConvergent()) 8744 Flags |= InlineAsm::Extra_IsConvergent; 8745 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8746 } 8747 8748 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8749 // Ideally, we would only check against memory constraints. However, the 8750 // meaning of an Other constraint can be target-specific and we can't easily 8751 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8752 // for Other constraints as well. 8753 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8754 OpInfo.ConstraintType == TargetLowering::C_Other) { 8755 if (OpInfo.Type == InlineAsm::isInput) 8756 Flags |= InlineAsm::Extra_MayLoad; 8757 else if (OpInfo.Type == InlineAsm::isOutput) 8758 Flags |= InlineAsm::Extra_MayStore; 8759 else if (OpInfo.Type == InlineAsm::isClobber) 8760 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8761 } 8762 } 8763 8764 unsigned get() const { return Flags; } 8765 }; 8766 8767 } // end anonymous namespace 8768 8769 /// visitInlineAsm - Handle a call to an InlineAsm object. 8770 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8771 const BasicBlock *EHPadBB) { 8772 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8773 8774 /// ConstraintOperands - Information about all of the constraints. 8775 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8776 8777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8778 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8779 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8780 8781 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8782 // AsmDialect, MayLoad, MayStore). 8783 bool HasSideEffect = IA->hasSideEffects(); 8784 ExtraFlags ExtraInfo(Call); 8785 8786 for (auto &T : TargetConstraints) { 8787 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8788 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8789 8790 if (OpInfo.CallOperandVal) 8791 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8792 8793 if (!HasSideEffect) 8794 HasSideEffect = OpInfo.hasMemory(TLI); 8795 8796 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8797 // FIXME: Could we compute this on OpInfo rather than T? 8798 8799 // Compute the constraint code and ConstraintType to use. 8800 TLI.ComputeConstraintToUse(T, SDValue()); 8801 8802 if (T.ConstraintType == TargetLowering::C_Immediate && 8803 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8804 // We've delayed emitting a diagnostic like the "n" constraint because 8805 // inlining could cause an integer showing up. 8806 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8807 "' expects an integer constant " 8808 "expression"); 8809 8810 ExtraInfo.update(T); 8811 } 8812 8813 // We won't need to flush pending loads if this asm doesn't touch 8814 // memory and is nonvolatile. 8815 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8816 8817 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8818 if (EmitEHLabels) { 8819 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8820 } 8821 bool IsCallBr = isa<CallBrInst>(Call); 8822 8823 if (IsCallBr || EmitEHLabels) { 8824 // If this is a callbr or invoke we need to flush pending exports since 8825 // inlineasm_br and invoke are terminators. 8826 // We need to do this before nodes are glued to the inlineasm_br node. 8827 Chain = getControlRoot(); 8828 } 8829 8830 MCSymbol *BeginLabel = nullptr; 8831 if (EmitEHLabels) { 8832 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8833 } 8834 8835 // Second pass over the constraints: compute which constraint option to use. 8836 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8837 // If this is an output operand with a matching input operand, look up the 8838 // matching input. If their types mismatch, e.g. one is an integer, the 8839 // other is floating point, or their sizes are different, flag it as an 8840 // error. 8841 if (OpInfo.hasMatchingInput()) { 8842 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8843 patchMatchingInput(OpInfo, Input, DAG); 8844 } 8845 8846 // Compute the constraint code and ConstraintType to use. 8847 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8848 8849 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8850 OpInfo.Type == InlineAsm::isClobber) || 8851 OpInfo.ConstraintType == TargetLowering::C_Address) 8852 continue; 8853 8854 // If this is a memory input, and if the operand is not indirect, do what we 8855 // need to provide an address for the memory input. 8856 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8857 !OpInfo.isIndirect) { 8858 assert((OpInfo.isMultipleAlternative || 8859 (OpInfo.Type == InlineAsm::isInput)) && 8860 "Can only indirectify direct input operands!"); 8861 8862 // Memory operands really want the address of the value. 8863 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8864 8865 // There is no longer a Value* corresponding to this operand. 8866 OpInfo.CallOperandVal = nullptr; 8867 8868 // It is now an indirect operand. 8869 OpInfo.isIndirect = true; 8870 } 8871 8872 } 8873 8874 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8875 std::vector<SDValue> AsmNodeOperands; 8876 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8877 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8878 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8879 8880 // If we have a !srcloc metadata node associated with it, we want to attach 8881 // this to the ultimately generated inline asm machineinstr. To do this, we 8882 // pass in the third operand as this (potentially null) inline asm MDNode. 8883 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8884 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8885 8886 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8887 // bits as operand 3. 8888 AsmNodeOperands.push_back(DAG.getTargetConstant( 8889 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8890 8891 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8892 // this, assign virtual and physical registers for inputs and otput. 8893 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8894 // Assign Registers. 8895 SDISelAsmOperandInfo &RefOpInfo = 8896 OpInfo.isMatchingInputConstraint() 8897 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8898 : OpInfo; 8899 const auto RegError = 8900 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8901 if (RegError) { 8902 const MachineFunction &MF = DAG.getMachineFunction(); 8903 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8904 const char *RegName = TRI.getName(RegError.value()); 8905 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8906 "' allocated for constraint '" + 8907 Twine(OpInfo.ConstraintCode) + 8908 "' does not match required type"); 8909 return; 8910 } 8911 8912 auto DetectWriteToReservedRegister = [&]() { 8913 const MachineFunction &MF = DAG.getMachineFunction(); 8914 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8915 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8916 if (Register::isPhysicalRegister(Reg) && 8917 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8918 const char *RegName = TRI.getName(Reg); 8919 emitInlineAsmError(Call, "write to reserved register '" + 8920 Twine(RegName) + "'"); 8921 return true; 8922 } 8923 } 8924 return false; 8925 }; 8926 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8927 (OpInfo.Type == InlineAsm::isInput && 8928 !OpInfo.isMatchingInputConstraint())) && 8929 "Only address as input operand is allowed."); 8930 8931 switch (OpInfo.Type) { 8932 case InlineAsm::isOutput: 8933 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8934 unsigned ConstraintID = 8935 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8936 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8937 "Failed to convert memory constraint code to constraint id."); 8938 8939 // Add information to the INLINEASM node to know about this output. 8940 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8941 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8942 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8943 MVT::i32)); 8944 AsmNodeOperands.push_back(OpInfo.CallOperand); 8945 } else { 8946 // Otherwise, this outputs to a register (directly for C_Register / 8947 // C_RegisterClass, and a target-defined fashion for 8948 // C_Immediate/C_Other). Find a register that we can use. 8949 if (OpInfo.AssignedRegs.Regs.empty()) { 8950 emitInlineAsmError( 8951 Call, "couldn't allocate output register for constraint '" + 8952 Twine(OpInfo.ConstraintCode) + "'"); 8953 return; 8954 } 8955 8956 if (DetectWriteToReservedRegister()) 8957 return; 8958 8959 // Add information to the INLINEASM node to know that this register is 8960 // set. 8961 OpInfo.AssignedRegs.AddInlineAsmOperands( 8962 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8963 : InlineAsm::Kind_RegDef, 8964 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8965 } 8966 break; 8967 8968 case InlineAsm::isInput: 8969 case InlineAsm::isLabel: { 8970 SDValue InOperandVal = OpInfo.CallOperand; 8971 8972 if (OpInfo.isMatchingInputConstraint()) { 8973 // If this is required to match an output register we have already set, 8974 // just use its register. 8975 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8976 AsmNodeOperands); 8977 unsigned OpFlag = 8978 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8979 if (InlineAsm::isRegDefKind(OpFlag) || 8980 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8981 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8982 if (OpInfo.isIndirect) { 8983 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8984 emitInlineAsmError(Call, "inline asm not supported yet: " 8985 "don't know how to handle tied " 8986 "indirect register inputs"); 8987 return; 8988 } 8989 8990 SmallVector<unsigned, 4> Regs; 8991 MachineFunction &MF = DAG.getMachineFunction(); 8992 MachineRegisterInfo &MRI = MF.getRegInfo(); 8993 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8994 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8995 Register TiedReg = R->getReg(); 8996 MVT RegVT = R->getSimpleValueType(0); 8997 const TargetRegisterClass *RC = 8998 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8999 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9000 : TRI.getMinimalPhysRegClass(TiedReg); 9001 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9002 for (unsigned i = 0; i != NumRegs; ++i) 9003 Regs.push_back(MRI.createVirtualRegister(RC)); 9004 9005 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9006 9007 SDLoc dl = getCurSDLoc(); 9008 // Use the produced MatchedRegs object to 9009 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9010 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9011 true, OpInfo.getMatchedOperand(), dl, 9012 DAG, AsmNodeOperands); 9013 break; 9014 } 9015 9016 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9017 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9018 "Unexpected number of operands"); 9019 // Add information to the INLINEASM node to know about this input. 9020 // See InlineAsm.h isUseOperandTiedToDef. 9021 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9022 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9023 OpInfo.getMatchedOperand()); 9024 AsmNodeOperands.push_back(DAG.getTargetConstant( 9025 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9026 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9027 break; 9028 } 9029 9030 // Treat indirect 'X' constraint as memory. 9031 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9032 OpInfo.isIndirect) 9033 OpInfo.ConstraintType = TargetLowering::C_Memory; 9034 9035 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9036 OpInfo.ConstraintType == TargetLowering::C_Other) { 9037 std::vector<SDValue> Ops; 9038 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9039 Ops, DAG); 9040 if (Ops.empty()) { 9041 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9042 if (isa<ConstantSDNode>(InOperandVal)) { 9043 emitInlineAsmError(Call, "value out of range for constraint '" + 9044 Twine(OpInfo.ConstraintCode) + "'"); 9045 return; 9046 } 9047 9048 emitInlineAsmError(Call, 9049 "invalid operand for inline asm constraint '" + 9050 Twine(OpInfo.ConstraintCode) + "'"); 9051 return; 9052 } 9053 9054 // Add information to the INLINEASM node to know about this input. 9055 unsigned ResOpType = 9056 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9057 AsmNodeOperands.push_back(DAG.getTargetConstant( 9058 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9059 llvm::append_range(AsmNodeOperands, Ops); 9060 break; 9061 } 9062 9063 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9064 OpInfo.ConstraintType == TargetLowering::C_Address) { 9065 assert((OpInfo.isIndirect || 9066 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9067 "Operand must be indirect to be a mem!"); 9068 assert(InOperandVal.getValueType() == 9069 TLI.getPointerTy(DAG.getDataLayout()) && 9070 "Memory operands expect pointer values"); 9071 9072 unsigned ConstraintID = 9073 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9074 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9075 "Failed to convert memory constraint code to constraint id."); 9076 9077 // Add information to the INLINEASM node to know about this input. 9078 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9079 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9080 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9081 getCurSDLoc(), 9082 MVT::i32)); 9083 AsmNodeOperands.push_back(InOperandVal); 9084 break; 9085 } 9086 9087 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9088 OpInfo.ConstraintType == TargetLowering::C_Register) && 9089 "Unknown constraint type!"); 9090 9091 // TODO: Support this. 9092 if (OpInfo.isIndirect) { 9093 emitInlineAsmError( 9094 Call, "Don't know how to handle indirect register inputs yet " 9095 "for constraint '" + 9096 Twine(OpInfo.ConstraintCode) + "'"); 9097 return; 9098 } 9099 9100 // Copy the input into the appropriate registers. 9101 if (OpInfo.AssignedRegs.Regs.empty()) { 9102 emitInlineAsmError(Call, 9103 "couldn't allocate input reg for constraint '" + 9104 Twine(OpInfo.ConstraintCode) + "'"); 9105 return; 9106 } 9107 9108 if (DetectWriteToReservedRegister()) 9109 return; 9110 9111 SDLoc dl = getCurSDLoc(); 9112 9113 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9114 &Call); 9115 9116 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9117 dl, DAG, AsmNodeOperands); 9118 break; 9119 } 9120 case InlineAsm::isClobber: 9121 // Add the clobbered value to the operand list, so that the register 9122 // allocator is aware that the physreg got clobbered. 9123 if (!OpInfo.AssignedRegs.Regs.empty()) 9124 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9125 false, 0, getCurSDLoc(), DAG, 9126 AsmNodeOperands); 9127 break; 9128 } 9129 } 9130 9131 // Finish up input operands. Set the input chain and add the flag last. 9132 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9133 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9134 9135 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9136 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9137 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9138 Flag = Chain.getValue(1); 9139 9140 // Do additional work to generate outputs. 9141 9142 SmallVector<EVT, 1> ResultVTs; 9143 SmallVector<SDValue, 1> ResultValues; 9144 SmallVector<SDValue, 8> OutChains; 9145 9146 llvm::Type *CallResultType = Call.getType(); 9147 ArrayRef<Type *> ResultTypes; 9148 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9149 ResultTypes = StructResult->elements(); 9150 else if (!CallResultType->isVoidTy()) 9151 ResultTypes = makeArrayRef(CallResultType); 9152 9153 auto CurResultType = ResultTypes.begin(); 9154 auto handleRegAssign = [&](SDValue V) { 9155 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9156 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9157 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9158 ++CurResultType; 9159 // If the type of the inline asm call site return value is different but has 9160 // same size as the type of the asm output bitcast it. One example of this 9161 // is for vectors with different width / number of elements. This can 9162 // happen for register classes that can contain multiple different value 9163 // types. The preg or vreg allocated may not have the same VT as was 9164 // expected. 9165 // 9166 // This can also happen for a return value that disagrees with the register 9167 // class it is put in, eg. a double in a general-purpose register on a 9168 // 32-bit machine. 9169 if (ResultVT != V.getValueType() && 9170 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9171 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9172 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9173 V.getValueType().isInteger()) { 9174 // If a result value was tied to an input value, the computed result 9175 // may have a wider width than the expected result. Extract the 9176 // relevant portion. 9177 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9178 } 9179 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9180 ResultVTs.push_back(ResultVT); 9181 ResultValues.push_back(V); 9182 }; 9183 9184 // Deal with output operands. 9185 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9186 if (OpInfo.Type == InlineAsm::isOutput) { 9187 SDValue Val; 9188 // Skip trivial output operands. 9189 if (OpInfo.AssignedRegs.Regs.empty()) 9190 continue; 9191 9192 switch (OpInfo.ConstraintType) { 9193 case TargetLowering::C_Register: 9194 case TargetLowering::C_RegisterClass: 9195 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9196 Chain, &Flag, &Call); 9197 break; 9198 case TargetLowering::C_Immediate: 9199 case TargetLowering::C_Other: 9200 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9201 OpInfo, DAG); 9202 break; 9203 case TargetLowering::C_Memory: 9204 break; // Already handled. 9205 case TargetLowering::C_Address: 9206 break; // Silence warning. 9207 case TargetLowering::C_Unknown: 9208 assert(false && "Unexpected unknown constraint"); 9209 } 9210 9211 // Indirect output manifest as stores. Record output chains. 9212 if (OpInfo.isIndirect) { 9213 const Value *Ptr = OpInfo.CallOperandVal; 9214 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9215 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9216 MachinePointerInfo(Ptr)); 9217 OutChains.push_back(Store); 9218 } else { 9219 // generate CopyFromRegs to associated registers. 9220 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9221 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9222 for (const SDValue &V : Val->op_values()) 9223 handleRegAssign(V); 9224 } else 9225 handleRegAssign(Val); 9226 } 9227 } 9228 } 9229 9230 // Set results. 9231 if (!ResultValues.empty()) { 9232 assert(CurResultType == ResultTypes.end() && 9233 "Mismatch in number of ResultTypes"); 9234 assert(ResultValues.size() == ResultTypes.size() && 9235 "Mismatch in number of output operands in asm result"); 9236 9237 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9238 DAG.getVTList(ResultVTs), ResultValues); 9239 setValue(&Call, V); 9240 } 9241 9242 // Collect store chains. 9243 if (!OutChains.empty()) 9244 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9245 9246 if (EmitEHLabels) { 9247 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9248 } 9249 9250 // Only Update Root if inline assembly has a memory effect. 9251 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9252 EmitEHLabels) 9253 DAG.setRoot(Chain); 9254 } 9255 9256 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9257 const Twine &Message) { 9258 LLVMContext &Ctx = *DAG.getContext(); 9259 Ctx.emitError(&Call, Message); 9260 9261 // Make sure we leave the DAG in a valid state 9262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9263 SmallVector<EVT, 1> ValueVTs; 9264 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9265 9266 if (ValueVTs.empty()) 9267 return; 9268 9269 SmallVector<SDValue, 1> Ops; 9270 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9271 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9272 9273 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9274 } 9275 9276 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9277 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9278 MVT::Other, getRoot(), 9279 getValue(I.getArgOperand(0)), 9280 DAG.getSrcValue(I.getArgOperand(0)))); 9281 } 9282 9283 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9284 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9285 const DataLayout &DL = DAG.getDataLayout(); 9286 SDValue V = DAG.getVAArg( 9287 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9288 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9289 DL.getABITypeAlign(I.getType()).value()); 9290 DAG.setRoot(V.getValue(1)); 9291 9292 if (I.getType()->isPointerTy()) 9293 V = DAG.getPtrExtOrTrunc( 9294 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9295 setValue(&I, V); 9296 } 9297 9298 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9299 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9300 MVT::Other, getRoot(), 9301 getValue(I.getArgOperand(0)), 9302 DAG.getSrcValue(I.getArgOperand(0)))); 9303 } 9304 9305 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9306 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9307 MVT::Other, getRoot(), 9308 getValue(I.getArgOperand(0)), 9309 getValue(I.getArgOperand(1)), 9310 DAG.getSrcValue(I.getArgOperand(0)), 9311 DAG.getSrcValue(I.getArgOperand(1)))); 9312 } 9313 9314 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9315 const Instruction &I, 9316 SDValue Op) { 9317 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9318 if (!Range) 9319 return Op; 9320 9321 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9322 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9323 return Op; 9324 9325 APInt Lo = CR.getUnsignedMin(); 9326 if (!Lo.isMinValue()) 9327 return Op; 9328 9329 APInt Hi = CR.getUnsignedMax(); 9330 unsigned Bits = std::max(Hi.getActiveBits(), 9331 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9332 9333 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9334 9335 SDLoc SL = getCurSDLoc(); 9336 9337 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9338 DAG.getValueType(SmallVT)); 9339 unsigned NumVals = Op.getNode()->getNumValues(); 9340 if (NumVals == 1) 9341 return ZExt; 9342 9343 SmallVector<SDValue, 4> Ops; 9344 9345 Ops.push_back(ZExt); 9346 for (unsigned I = 1; I != NumVals; ++I) 9347 Ops.push_back(Op.getValue(I)); 9348 9349 return DAG.getMergeValues(Ops, SL); 9350 } 9351 9352 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9353 /// the call being lowered. 9354 /// 9355 /// This is a helper for lowering intrinsics that follow a target calling 9356 /// convention or require stack pointer adjustment. Only a subset of the 9357 /// intrinsic's operands need to participate in the calling convention. 9358 void SelectionDAGBuilder::populateCallLoweringInfo( 9359 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9360 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9361 bool IsPatchPoint) { 9362 TargetLowering::ArgListTy Args; 9363 Args.reserve(NumArgs); 9364 9365 // Populate the argument list. 9366 // Attributes for args start at offset 1, after the return attribute. 9367 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9368 ArgI != ArgE; ++ArgI) { 9369 const Value *V = Call->getOperand(ArgI); 9370 9371 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9372 9373 TargetLowering::ArgListEntry Entry; 9374 Entry.Node = getValue(V); 9375 Entry.Ty = V->getType(); 9376 Entry.setAttributes(Call, ArgI); 9377 Args.push_back(Entry); 9378 } 9379 9380 CLI.setDebugLoc(getCurSDLoc()) 9381 .setChain(getRoot()) 9382 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9383 .setDiscardResult(Call->use_empty()) 9384 .setIsPatchPoint(IsPatchPoint) 9385 .setIsPreallocated( 9386 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9387 } 9388 9389 /// Add a stack map intrinsic call's live variable operands to a stackmap 9390 /// or patchpoint target node's operand list. 9391 /// 9392 /// Constants are converted to TargetConstants purely as an optimization to 9393 /// avoid constant materialization and register allocation. 9394 /// 9395 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9396 /// generate addess computation nodes, and so FinalizeISel can convert the 9397 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9398 /// address materialization and register allocation, but may also be required 9399 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9400 /// alloca in the entry block, then the runtime may assume that the alloca's 9401 /// StackMap location can be read immediately after compilation and that the 9402 /// location is valid at any point during execution (this is similar to the 9403 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9404 /// only available in a register, then the runtime would need to trap when 9405 /// execution reaches the StackMap in order to read the alloca's location. 9406 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9407 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9408 SelectionDAGBuilder &Builder) { 9409 SelectionDAG &DAG = Builder.DAG; 9410 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9411 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9412 9413 // Things on the stack are pointer-typed, meaning that they are already 9414 // legal and can be emitted directly to target nodes. 9415 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9416 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9417 } else { 9418 // Otherwise emit a target independent node to be legalised. 9419 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9420 } 9421 } 9422 } 9423 9424 /// Lower llvm.experimental.stackmap. 9425 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9426 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9427 // [live variables...]) 9428 9429 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9430 9431 SDValue Chain, InFlag, Callee; 9432 SmallVector<SDValue, 32> Ops; 9433 9434 SDLoc DL = getCurSDLoc(); 9435 Callee = getValue(CI.getCalledOperand()); 9436 9437 // The stackmap intrinsic only records the live variables (the arguments 9438 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9439 // intrinsic, this won't be lowered to a function call. This means we don't 9440 // have to worry about calling conventions and target specific lowering code. 9441 // Instead we perform the call lowering right here. 9442 // 9443 // chain, flag = CALLSEQ_START(chain, 0, 0) 9444 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9445 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9446 // 9447 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9448 InFlag = Chain.getValue(1); 9449 9450 // Add the STACKMAP operands, starting with DAG house-keeping. 9451 Ops.push_back(Chain); 9452 Ops.push_back(InFlag); 9453 9454 // Add the <id>, <numShadowBytes> operands. 9455 // 9456 // These do not require legalisation, and can be emitted directly to target 9457 // constant nodes. 9458 SDValue ID = getValue(CI.getArgOperand(0)); 9459 assert(ID.getValueType() == MVT::i64); 9460 SDValue IDConst = DAG.getTargetConstant( 9461 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9462 Ops.push_back(IDConst); 9463 9464 SDValue Shad = getValue(CI.getArgOperand(1)); 9465 assert(Shad.getValueType() == MVT::i32); 9466 SDValue ShadConst = DAG.getTargetConstant( 9467 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9468 Ops.push_back(ShadConst); 9469 9470 // Add the live variables. 9471 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9472 9473 // Create the STACKMAP node. 9474 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9475 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9476 InFlag = Chain.getValue(1); 9477 9478 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9479 9480 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9481 9482 // Set the root to the target-lowered call chain. 9483 DAG.setRoot(Chain); 9484 9485 // Inform the Frame Information that we have a stackmap in this function. 9486 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9487 } 9488 9489 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9490 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9491 const BasicBlock *EHPadBB) { 9492 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9493 // i32 <numBytes>, 9494 // i8* <target>, 9495 // i32 <numArgs>, 9496 // [Args...], 9497 // [live variables...]) 9498 9499 CallingConv::ID CC = CB.getCallingConv(); 9500 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9501 bool HasDef = !CB.getType()->isVoidTy(); 9502 SDLoc dl = getCurSDLoc(); 9503 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9504 9505 // Handle immediate and symbolic callees. 9506 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9507 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9508 /*isTarget=*/true); 9509 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9510 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9511 SDLoc(SymbolicCallee), 9512 SymbolicCallee->getValueType(0)); 9513 9514 // Get the real number of arguments participating in the call <numArgs> 9515 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9516 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9517 9518 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9519 // Intrinsics include all meta-operands up to but not including CC. 9520 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9521 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9522 "Not enough arguments provided to the patchpoint intrinsic"); 9523 9524 // For AnyRegCC the arguments are lowered later on manually. 9525 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9526 Type *ReturnTy = 9527 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9528 9529 TargetLowering::CallLoweringInfo CLI(DAG); 9530 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9531 ReturnTy, true); 9532 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9533 9534 SDNode *CallEnd = Result.second.getNode(); 9535 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9536 CallEnd = CallEnd->getOperand(0).getNode(); 9537 9538 /// Get a call instruction from the call sequence chain. 9539 /// Tail calls are not allowed. 9540 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9541 "Expected a callseq node."); 9542 SDNode *Call = CallEnd->getOperand(0).getNode(); 9543 bool HasGlue = Call->getGluedNode(); 9544 9545 // Replace the target specific call node with the patchable intrinsic. 9546 SmallVector<SDValue, 8> Ops; 9547 9548 // Push the chain. 9549 Ops.push_back(*(Call->op_begin())); 9550 9551 // Optionally, push the glue (if any). 9552 if (HasGlue) 9553 Ops.push_back(*(Call->op_end() - 1)); 9554 9555 // Push the register mask info. 9556 if (HasGlue) 9557 Ops.push_back(*(Call->op_end() - 2)); 9558 else 9559 Ops.push_back(*(Call->op_end() - 1)); 9560 9561 // Add the <id> and <numBytes> constants. 9562 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9563 Ops.push_back(DAG.getTargetConstant( 9564 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9565 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9566 Ops.push_back(DAG.getTargetConstant( 9567 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9568 MVT::i32)); 9569 9570 // Add the callee. 9571 Ops.push_back(Callee); 9572 9573 // Adjust <numArgs> to account for any arguments that have been passed on the 9574 // stack instead. 9575 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9576 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9577 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9578 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9579 9580 // Add the calling convention 9581 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9582 9583 // Add the arguments we omitted previously. The register allocator should 9584 // place these in any free register. 9585 if (IsAnyRegCC) 9586 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9587 Ops.push_back(getValue(CB.getArgOperand(i))); 9588 9589 // Push the arguments from the call instruction. 9590 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9591 Ops.append(Call->op_begin() + 2, e); 9592 9593 // Push live variables for the stack map. 9594 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9595 9596 SDVTList NodeTys; 9597 if (IsAnyRegCC && HasDef) { 9598 // Create the return types based on the intrinsic definition 9599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9600 SmallVector<EVT, 3> ValueVTs; 9601 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9602 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9603 9604 // There is always a chain and a glue type at the end 9605 ValueVTs.push_back(MVT::Other); 9606 ValueVTs.push_back(MVT::Glue); 9607 NodeTys = DAG.getVTList(ValueVTs); 9608 } else 9609 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9610 9611 // Replace the target specific call node with a PATCHPOINT node. 9612 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9613 9614 // Update the NodeMap. 9615 if (HasDef) { 9616 if (IsAnyRegCC) 9617 setValue(&CB, SDValue(PPV.getNode(), 0)); 9618 else 9619 setValue(&CB, Result.first); 9620 } 9621 9622 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9623 // call sequence. Furthermore the location of the chain and glue can change 9624 // when the AnyReg calling convention is used and the intrinsic returns a 9625 // value. 9626 if (IsAnyRegCC && HasDef) { 9627 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9628 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9629 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9630 } else 9631 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9632 DAG.DeleteNode(Call); 9633 9634 // Inform the Frame Information that we have a patchpoint in this function. 9635 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9636 } 9637 9638 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9639 unsigned Intrinsic) { 9640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9641 SDValue Op1 = getValue(I.getArgOperand(0)); 9642 SDValue Op2; 9643 if (I.arg_size() > 1) 9644 Op2 = getValue(I.getArgOperand(1)); 9645 SDLoc dl = getCurSDLoc(); 9646 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9647 SDValue Res; 9648 SDNodeFlags SDFlags; 9649 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9650 SDFlags.copyFMF(*FPMO); 9651 9652 switch (Intrinsic) { 9653 case Intrinsic::vector_reduce_fadd: 9654 if (SDFlags.hasAllowReassociation()) 9655 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9656 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9657 SDFlags); 9658 else 9659 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9660 break; 9661 case Intrinsic::vector_reduce_fmul: 9662 if (SDFlags.hasAllowReassociation()) 9663 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9664 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9665 SDFlags); 9666 else 9667 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9668 break; 9669 case Intrinsic::vector_reduce_add: 9670 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9671 break; 9672 case Intrinsic::vector_reduce_mul: 9673 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9674 break; 9675 case Intrinsic::vector_reduce_and: 9676 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9677 break; 9678 case Intrinsic::vector_reduce_or: 9679 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9680 break; 9681 case Intrinsic::vector_reduce_xor: 9682 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9683 break; 9684 case Intrinsic::vector_reduce_smax: 9685 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9686 break; 9687 case Intrinsic::vector_reduce_smin: 9688 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9689 break; 9690 case Intrinsic::vector_reduce_umax: 9691 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9692 break; 9693 case Intrinsic::vector_reduce_umin: 9694 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9695 break; 9696 case Intrinsic::vector_reduce_fmax: 9697 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9698 break; 9699 case Intrinsic::vector_reduce_fmin: 9700 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9701 break; 9702 default: 9703 llvm_unreachable("Unhandled vector reduce intrinsic"); 9704 } 9705 setValue(&I, Res); 9706 } 9707 9708 /// Returns an AttributeList representing the attributes applied to the return 9709 /// value of the given call. 9710 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9711 SmallVector<Attribute::AttrKind, 2> Attrs; 9712 if (CLI.RetSExt) 9713 Attrs.push_back(Attribute::SExt); 9714 if (CLI.RetZExt) 9715 Attrs.push_back(Attribute::ZExt); 9716 if (CLI.IsInReg) 9717 Attrs.push_back(Attribute::InReg); 9718 9719 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9720 Attrs); 9721 } 9722 9723 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9724 /// implementation, which just calls LowerCall. 9725 /// FIXME: When all targets are 9726 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9727 std::pair<SDValue, SDValue> 9728 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9729 // Handle the incoming return values from the call. 9730 CLI.Ins.clear(); 9731 Type *OrigRetTy = CLI.RetTy; 9732 SmallVector<EVT, 4> RetTys; 9733 SmallVector<uint64_t, 4> Offsets; 9734 auto &DL = CLI.DAG.getDataLayout(); 9735 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9736 9737 if (CLI.IsPostTypeLegalization) { 9738 // If we are lowering a libcall after legalization, split the return type. 9739 SmallVector<EVT, 4> OldRetTys; 9740 SmallVector<uint64_t, 4> OldOffsets; 9741 RetTys.swap(OldRetTys); 9742 Offsets.swap(OldOffsets); 9743 9744 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9745 EVT RetVT = OldRetTys[i]; 9746 uint64_t Offset = OldOffsets[i]; 9747 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9748 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9749 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9750 RetTys.append(NumRegs, RegisterVT); 9751 for (unsigned j = 0; j != NumRegs; ++j) 9752 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9753 } 9754 } 9755 9756 SmallVector<ISD::OutputArg, 4> Outs; 9757 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9758 9759 bool CanLowerReturn = 9760 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9761 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9762 9763 SDValue DemoteStackSlot; 9764 int DemoteStackIdx = -100; 9765 if (!CanLowerReturn) { 9766 // FIXME: equivalent assert? 9767 // assert(!CS.hasInAllocaArgument() && 9768 // "sret demotion is incompatible with inalloca"); 9769 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9770 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9771 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9772 DemoteStackIdx = 9773 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9774 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9775 DL.getAllocaAddrSpace()); 9776 9777 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9778 ArgListEntry Entry; 9779 Entry.Node = DemoteStackSlot; 9780 Entry.Ty = StackSlotPtrType; 9781 Entry.IsSExt = false; 9782 Entry.IsZExt = false; 9783 Entry.IsInReg = false; 9784 Entry.IsSRet = true; 9785 Entry.IsNest = false; 9786 Entry.IsByVal = false; 9787 Entry.IsByRef = false; 9788 Entry.IsReturned = false; 9789 Entry.IsSwiftSelf = false; 9790 Entry.IsSwiftAsync = false; 9791 Entry.IsSwiftError = false; 9792 Entry.IsCFGuardTarget = false; 9793 Entry.Alignment = Alignment; 9794 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9795 CLI.NumFixedArgs += 1; 9796 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9797 9798 // sret demotion isn't compatible with tail-calls, since the sret argument 9799 // points into the callers stack frame. 9800 CLI.IsTailCall = false; 9801 } else { 9802 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9803 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9804 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9805 ISD::ArgFlagsTy Flags; 9806 if (NeedsRegBlock) { 9807 Flags.setInConsecutiveRegs(); 9808 if (I == RetTys.size() - 1) 9809 Flags.setInConsecutiveRegsLast(); 9810 } 9811 EVT VT = RetTys[I]; 9812 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9813 CLI.CallConv, VT); 9814 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9815 CLI.CallConv, VT); 9816 for (unsigned i = 0; i != NumRegs; ++i) { 9817 ISD::InputArg MyFlags; 9818 MyFlags.Flags = Flags; 9819 MyFlags.VT = RegisterVT; 9820 MyFlags.ArgVT = VT; 9821 MyFlags.Used = CLI.IsReturnValueUsed; 9822 if (CLI.RetTy->isPointerTy()) { 9823 MyFlags.Flags.setPointer(); 9824 MyFlags.Flags.setPointerAddrSpace( 9825 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9826 } 9827 if (CLI.RetSExt) 9828 MyFlags.Flags.setSExt(); 9829 if (CLI.RetZExt) 9830 MyFlags.Flags.setZExt(); 9831 if (CLI.IsInReg) 9832 MyFlags.Flags.setInReg(); 9833 CLI.Ins.push_back(MyFlags); 9834 } 9835 } 9836 } 9837 9838 // We push in swifterror return as the last element of CLI.Ins. 9839 ArgListTy &Args = CLI.getArgs(); 9840 if (supportSwiftError()) { 9841 for (const ArgListEntry &Arg : Args) { 9842 if (Arg.IsSwiftError) { 9843 ISD::InputArg MyFlags; 9844 MyFlags.VT = getPointerTy(DL); 9845 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9846 MyFlags.Flags.setSwiftError(); 9847 CLI.Ins.push_back(MyFlags); 9848 } 9849 } 9850 } 9851 9852 // Handle all of the outgoing arguments. 9853 CLI.Outs.clear(); 9854 CLI.OutVals.clear(); 9855 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9856 SmallVector<EVT, 4> ValueVTs; 9857 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9858 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9859 Type *FinalType = Args[i].Ty; 9860 if (Args[i].IsByVal) 9861 FinalType = Args[i].IndirectType; 9862 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9863 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9864 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9865 ++Value) { 9866 EVT VT = ValueVTs[Value]; 9867 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9868 SDValue Op = SDValue(Args[i].Node.getNode(), 9869 Args[i].Node.getResNo() + Value); 9870 ISD::ArgFlagsTy Flags; 9871 9872 // Certain targets (such as MIPS), may have a different ABI alignment 9873 // for a type depending on the context. Give the target a chance to 9874 // specify the alignment it wants. 9875 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9876 Flags.setOrigAlign(OriginalAlignment); 9877 9878 if (Args[i].Ty->isPointerTy()) { 9879 Flags.setPointer(); 9880 Flags.setPointerAddrSpace( 9881 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9882 } 9883 if (Args[i].IsZExt) 9884 Flags.setZExt(); 9885 if (Args[i].IsSExt) 9886 Flags.setSExt(); 9887 if (Args[i].IsInReg) { 9888 // If we are using vectorcall calling convention, a structure that is 9889 // passed InReg - is surely an HVA 9890 if (CLI.CallConv == CallingConv::X86_VectorCall && 9891 isa<StructType>(FinalType)) { 9892 // The first value of a structure is marked 9893 if (0 == Value) 9894 Flags.setHvaStart(); 9895 Flags.setHva(); 9896 } 9897 // Set InReg Flag 9898 Flags.setInReg(); 9899 } 9900 if (Args[i].IsSRet) 9901 Flags.setSRet(); 9902 if (Args[i].IsSwiftSelf) 9903 Flags.setSwiftSelf(); 9904 if (Args[i].IsSwiftAsync) 9905 Flags.setSwiftAsync(); 9906 if (Args[i].IsSwiftError) 9907 Flags.setSwiftError(); 9908 if (Args[i].IsCFGuardTarget) 9909 Flags.setCFGuardTarget(); 9910 if (Args[i].IsByVal) 9911 Flags.setByVal(); 9912 if (Args[i].IsByRef) 9913 Flags.setByRef(); 9914 if (Args[i].IsPreallocated) { 9915 Flags.setPreallocated(); 9916 // Set the byval flag for CCAssignFn callbacks that don't know about 9917 // preallocated. This way we can know how many bytes we should've 9918 // allocated and how many bytes a callee cleanup function will pop. If 9919 // we port preallocated to more targets, we'll have to add custom 9920 // preallocated handling in the various CC lowering callbacks. 9921 Flags.setByVal(); 9922 } 9923 if (Args[i].IsInAlloca) { 9924 Flags.setInAlloca(); 9925 // Set the byval flag for CCAssignFn callbacks that don't know about 9926 // inalloca. This way we can know how many bytes we should've allocated 9927 // and how many bytes a callee cleanup function will pop. If we port 9928 // inalloca to more targets, we'll have to add custom inalloca handling 9929 // in the various CC lowering callbacks. 9930 Flags.setByVal(); 9931 } 9932 Align MemAlign; 9933 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9934 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9935 Flags.setByValSize(FrameSize); 9936 9937 // info is not there but there are cases it cannot get right. 9938 if (auto MA = Args[i].Alignment) 9939 MemAlign = *MA; 9940 else 9941 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9942 } else if (auto MA = Args[i].Alignment) { 9943 MemAlign = *MA; 9944 } else { 9945 MemAlign = OriginalAlignment; 9946 } 9947 Flags.setMemAlign(MemAlign); 9948 if (Args[i].IsNest) 9949 Flags.setNest(); 9950 if (NeedsRegBlock) 9951 Flags.setInConsecutiveRegs(); 9952 9953 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9954 CLI.CallConv, VT); 9955 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9956 CLI.CallConv, VT); 9957 SmallVector<SDValue, 4> Parts(NumParts); 9958 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9959 9960 if (Args[i].IsSExt) 9961 ExtendKind = ISD::SIGN_EXTEND; 9962 else if (Args[i].IsZExt) 9963 ExtendKind = ISD::ZERO_EXTEND; 9964 9965 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9966 // for now. 9967 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9968 CanLowerReturn) { 9969 assert((CLI.RetTy == Args[i].Ty || 9970 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9971 CLI.RetTy->getPointerAddressSpace() == 9972 Args[i].Ty->getPointerAddressSpace())) && 9973 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9974 // Before passing 'returned' to the target lowering code, ensure that 9975 // either the register MVT and the actual EVT are the same size or that 9976 // the return value and argument are extended in the same way; in these 9977 // cases it's safe to pass the argument register value unchanged as the 9978 // return register value (although it's at the target's option whether 9979 // to do so) 9980 // TODO: allow code generation to take advantage of partially preserved 9981 // registers rather than clobbering the entire register when the 9982 // parameter extension method is not compatible with the return 9983 // extension method 9984 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9985 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9986 CLI.RetZExt == Args[i].IsZExt)) 9987 Flags.setReturned(); 9988 } 9989 9990 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9991 CLI.CallConv, ExtendKind); 9992 9993 for (unsigned j = 0; j != NumParts; ++j) { 9994 // if it isn't first piece, alignment must be 1 9995 // For scalable vectors the scalable part is currently handled 9996 // by individual targets, so we just use the known minimum size here. 9997 ISD::OutputArg MyFlags( 9998 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9999 i < CLI.NumFixedArgs, i, 10000 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 10001 if (NumParts > 1 && j == 0) 10002 MyFlags.Flags.setSplit(); 10003 else if (j != 0) { 10004 MyFlags.Flags.setOrigAlign(Align(1)); 10005 if (j == NumParts - 1) 10006 MyFlags.Flags.setSplitEnd(); 10007 } 10008 10009 CLI.Outs.push_back(MyFlags); 10010 CLI.OutVals.push_back(Parts[j]); 10011 } 10012 10013 if (NeedsRegBlock && Value == NumValues - 1) 10014 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10015 } 10016 } 10017 10018 SmallVector<SDValue, 4> InVals; 10019 CLI.Chain = LowerCall(CLI, InVals); 10020 10021 // Update CLI.InVals to use outside of this function. 10022 CLI.InVals = InVals; 10023 10024 // Verify that the target's LowerCall behaved as expected. 10025 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10026 "LowerCall didn't return a valid chain!"); 10027 assert((!CLI.IsTailCall || InVals.empty()) && 10028 "LowerCall emitted a return value for a tail call!"); 10029 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10030 "LowerCall didn't emit the correct number of values!"); 10031 10032 // For a tail call, the return value is merely live-out and there aren't 10033 // any nodes in the DAG representing it. Return a special value to 10034 // indicate that a tail call has been emitted and no more Instructions 10035 // should be processed in the current block. 10036 if (CLI.IsTailCall) { 10037 CLI.DAG.setRoot(CLI.Chain); 10038 return std::make_pair(SDValue(), SDValue()); 10039 } 10040 10041 #ifndef NDEBUG 10042 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10043 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10044 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10045 "LowerCall emitted a value with the wrong type!"); 10046 } 10047 #endif 10048 10049 SmallVector<SDValue, 4> ReturnValues; 10050 if (!CanLowerReturn) { 10051 // The instruction result is the result of loading from the 10052 // hidden sret parameter. 10053 SmallVector<EVT, 1> PVTs; 10054 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10055 10056 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10057 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10058 EVT PtrVT = PVTs[0]; 10059 10060 unsigned NumValues = RetTys.size(); 10061 ReturnValues.resize(NumValues); 10062 SmallVector<SDValue, 4> Chains(NumValues); 10063 10064 // An aggregate return value cannot wrap around the address space, so 10065 // offsets to its parts don't wrap either. 10066 SDNodeFlags Flags; 10067 Flags.setNoUnsignedWrap(true); 10068 10069 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10070 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10071 for (unsigned i = 0; i < NumValues; ++i) { 10072 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10073 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10074 PtrVT), Flags); 10075 SDValue L = CLI.DAG.getLoad( 10076 RetTys[i], CLI.DL, CLI.Chain, Add, 10077 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10078 DemoteStackIdx, Offsets[i]), 10079 HiddenSRetAlign); 10080 ReturnValues[i] = L; 10081 Chains[i] = L.getValue(1); 10082 } 10083 10084 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10085 } else { 10086 // Collect the legal value parts into potentially illegal values 10087 // that correspond to the original function's return values. 10088 Optional<ISD::NodeType> AssertOp; 10089 if (CLI.RetSExt) 10090 AssertOp = ISD::AssertSext; 10091 else if (CLI.RetZExt) 10092 AssertOp = ISD::AssertZext; 10093 unsigned CurReg = 0; 10094 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10095 EVT VT = RetTys[I]; 10096 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10097 CLI.CallConv, VT); 10098 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10099 CLI.CallConv, VT); 10100 10101 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10102 NumRegs, RegisterVT, VT, nullptr, 10103 CLI.CallConv, AssertOp)); 10104 CurReg += NumRegs; 10105 } 10106 10107 // For a function returning void, there is no return value. We can't create 10108 // such a node, so we just return a null return value in that case. In 10109 // that case, nothing will actually look at the value. 10110 if (ReturnValues.empty()) 10111 return std::make_pair(SDValue(), CLI.Chain); 10112 } 10113 10114 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10115 CLI.DAG.getVTList(RetTys), ReturnValues); 10116 return std::make_pair(Res, CLI.Chain); 10117 } 10118 10119 /// Places new result values for the node in Results (their number 10120 /// and types must exactly match those of the original return values of 10121 /// the node), or leaves Results empty, which indicates that the node is not 10122 /// to be custom lowered after all. 10123 void TargetLowering::LowerOperationWrapper(SDNode *N, 10124 SmallVectorImpl<SDValue> &Results, 10125 SelectionDAG &DAG) const { 10126 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10127 10128 if (!Res.getNode()) 10129 return; 10130 10131 // If the original node has one result, take the return value from 10132 // LowerOperation as is. It might not be result number 0. 10133 if (N->getNumValues() == 1) { 10134 Results.push_back(Res); 10135 return; 10136 } 10137 10138 // If the original node has multiple results, then the return node should 10139 // have the same number of results. 10140 assert((N->getNumValues() == Res->getNumValues()) && 10141 "Lowering returned the wrong number of results!"); 10142 10143 // Places new result values base on N result number. 10144 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10145 Results.push_back(Res.getValue(I)); 10146 } 10147 10148 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10149 llvm_unreachable("LowerOperation not implemented for this target!"); 10150 } 10151 10152 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10153 unsigned Reg, 10154 ISD::NodeType ExtendType) { 10155 SDValue Op = getNonRegisterValue(V); 10156 assert((Op.getOpcode() != ISD::CopyFromReg || 10157 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10158 "Copy from a reg to the same reg!"); 10159 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10160 10161 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10162 // If this is an InlineAsm we have to match the registers required, not the 10163 // notional registers required by the type. 10164 10165 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10166 None); // This is not an ABI copy. 10167 SDValue Chain = DAG.getEntryNode(); 10168 10169 if (ExtendType == ISD::ANY_EXTEND) { 10170 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10171 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10172 ExtendType = PreferredExtendIt->second; 10173 } 10174 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10175 PendingExports.push_back(Chain); 10176 } 10177 10178 #include "llvm/CodeGen/SelectionDAGISel.h" 10179 10180 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10181 /// entry block, return true. This includes arguments used by switches, since 10182 /// the switch may expand into multiple basic blocks. 10183 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10184 // With FastISel active, we may be splitting blocks, so force creation 10185 // of virtual registers for all non-dead arguments. 10186 if (FastISel) 10187 return A->use_empty(); 10188 10189 const BasicBlock &Entry = A->getParent()->front(); 10190 for (const User *U : A->users()) 10191 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10192 return false; // Use not in entry block. 10193 10194 return true; 10195 } 10196 10197 using ArgCopyElisionMapTy = 10198 DenseMap<const Argument *, 10199 std::pair<const AllocaInst *, const StoreInst *>>; 10200 10201 /// Scan the entry block of the function in FuncInfo for arguments that look 10202 /// like copies into a local alloca. Record any copied arguments in 10203 /// ArgCopyElisionCandidates. 10204 static void 10205 findArgumentCopyElisionCandidates(const DataLayout &DL, 10206 FunctionLoweringInfo *FuncInfo, 10207 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10208 // Record the state of every static alloca used in the entry block. Argument 10209 // allocas are all used in the entry block, so we need approximately as many 10210 // entries as we have arguments. 10211 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10212 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10213 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10214 StaticAllocas.reserve(NumArgs * 2); 10215 10216 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10217 if (!V) 10218 return nullptr; 10219 V = V->stripPointerCasts(); 10220 const auto *AI = dyn_cast<AllocaInst>(V); 10221 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10222 return nullptr; 10223 auto Iter = StaticAllocas.insert({AI, Unknown}); 10224 return &Iter.first->second; 10225 }; 10226 10227 // Look for stores of arguments to static allocas. Look through bitcasts and 10228 // GEPs to handle type coercions, as long as the alloca is fully initialized 10229 // by the store. Any non-store use of an alloca escapes it and any subsequent 10230 // unanalyzed store might write it. 10231 // FIXME: Handle structs initialized with multiple stores. 10232 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10233 // Look for stores, and handle non-store uses conservatively. 10234 const auto *SI = dyn_cast<StoreInst>(&I); 10235 if (!SI) { 10236 // We will look through cast uses, so ignore them completely. 10237 if (I.isCast()) 10238 continue; 10239 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10240 // to allocas. 10241 if (I.isDebugOrPseudoInst()) 10242 continue; 10243 // This is an unknown instruction. Assume it escapes or writes to all 10244 // static alloca operands. 10245 for (const Use &U : I.operands()) { 10246 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10247 *Info = StaticAllocaInfo::Clobbered; 10248 } 10249 continue; 10250 } 10251 10252 // If the stored value is a static alloca, mark it as escaped. 10253 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10254 *Info = StaticAllocaInfo::Clobbered; 10255 10256 // Check if the destination is a static alloca. 10257 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10258 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10259 if (!Info) 10260 continue; 10261 const AllocaInst *AI = cast<AllocaInst>(Dst); 10262 10263 // Skip allocas that have been initialized or clobbered. 10264 if (*Info != StaticAllocaInfo::Unknown) 10265 continue; 10266 10267 // Check if the stored value is an argument, and that this store fully 10268 // initializes the alloca. 10269 // If the argument type has padding bits we can't directly forward a pointer 10270 // as the upper bits may contain garbage. 10271 // Don't elide copies from the same argument twice. 10272 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10273 const auto *Arg = dyn_cast<Argument>(Val); 10274 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10275 Arg->getType()->isEmptyTy() || 10276 DL.getTypeStoreSize(Arg->getType()) != 10277 DL.getTypeAllocSize(AI->getAllocatedType()) || 10278 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10279 ArgCopyElisionCandidates.count(Arg)) { 10280 *Info = StaticAllocaInfo::Clobbered; 10281 continue; 10282 } 10283 10284 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10285 << '\n'); 10286 10287 // Mark this alloca and store for argument copy elision. 10288 *Info = StaticAllocaInfo::Elidable; 10289 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10290 10291 // Stop scanning if we've seen all arguments. This will happen early in -O0 10292 // builds, which is useful, because -O0 builds have large entry blocks and 10293 // many allocas. 10294 if (ArgCopyElisionCandidates.size() == NumArgs) 10295 break; 10296 } 10297 } 10298 10299 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10300 /// ArgVal is a load from a suitable fixed stack object. 10301 static void tryToElideArgumentCopy( 10302 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10303 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10304 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10305 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10306 SDValue ArgVal, bool &ArgHasUses) { 10307 // Check if this is a load from a fixed stack object. 10308 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10309 if (!LNode) 10310 return; 10311 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10312 if (!FINode) 10313 return; 10314 10315 // Check that the fixed stack object is the right size and alignment. 10316 // Look at the alignment that the user wrote on the alloca instead of looking 10317 // at the stack object. 10318 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10319 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10320 const AllocaInst *AI = ArgCopyIter->second.first; 10321 int FixedIndex = FINode->getIndex(); 10322 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10323 int OldIndex = AllocaIndex; 10324 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10325 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10326 LLVM_DEBUG( 10327 dbgs() << " argument copy elision failed due to bad fixed stack " 10328 "object size\n"); 10329 return; 10330 } 10331 Align RequiredAlignment = AI->getAlign(); 10332 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10333 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10334 "greater than stack argument alignment (" 10335 << DebugStr(RequiredAlignment) << " vs " 10336 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10337 return; 10338 } 10339 10340 // Perform the elision. Delete the old stack object and replace its only use 10341 // in the variable info map. Mark the stack object as mutable. 10342 LLVM_DEBUG({ 10343 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10344 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10345 << '\n'; 10346 }); 10347 MFI.RemoveStackObject(OldIndex); 10348 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10349 AllocaIndex = FixedIndex; 10350 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10351 Chains.push_back(ArgVal.getValue(1)); 10352 10353 // Avoid emitting code for the store implementing the copy. 10354 const StoreInst *SI = ArgCopyIter->second.second; 10355 ElidedArgCopyInstrs.insert(SI); 10356 10357 // Check for uses of the argument again so that we can avoid exporting ArgVal 10358 // if it is't used by anything other than the store. 10359 for (const Value *U : Arg.users()) { 10360 if (U != SI) { 10361 ArgHasUses = true; 10362 break; 10363 } 10364 } 10365 } 10366 10367 void SelectionDAGISel::LowerArguments(const Function &F) { 10368 SelectionDAG &DAG = SDB->DAG; 10369 SDLoc dl = SDB->getCurSDLoc(); 10370 const DataLayout &DL = DAG.getDataLayout(); 10371 SmallVector<ISD::InputArg, 16> Ins; 10372 10373 // In Naked functions we aren't going to save any registers. 10374 if (F.hasFnAttribute(Attribute::Naked)) 10375 return; 10376 10377 if (!FuncInfo->CanLowerReturn) { 10378 // Put in an sret pointer parameter before all the other parameters. 10379 SmallVector<EVT, 1> ValueVTs; 10380 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10381 F.getReturnType()->getPointerTo( 10382 DAG.getDataLayout().getAllocaAddrSpace()), 10383 ValueVTs); 10384 10385 // NOTE: Assuming that a pointer will never break down to more than one VT 10386 // or one register. 10387 ISD::ArgFlagsTy Flags; 10388 Flags.setSRet(); 10389 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10390 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10391 ISD::InputArg::NoArgIndex, 0); 10392 Ins.push_back(RetArg); 10393 } 10394 10395 // Look for stores of arguments to static allocas. Mark such arguments with a 10396 // flag to ask the target to give us the memory location of that argument if 10397 // available. 10398 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10399 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10400 ArgCopyElisionCandidates); 10401 10402 // Set up the incoming argument description vector. 10403 for (const Argument &Arg : F.args()) { 10404 unsigned ArgNo = Arg.getArgNo(); 10405 SmallVector<EVT, 4> ValueVTs; 10406 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10407 bool isArgValueUsed = !Arg.use_empty(); 10408 unsigned PartBase = 0; 10409 Type *FinalType = Arg.getType(); 10410 if (Arg.hasAttribute(Attribute::ByVal)) 10411 FinalType = Arg.getParamByValType(); 10412 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10413 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10414 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10415 Value != NumValues; ++Value) { 10416 EVT VT = ValueVTs[Value]; 10417 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10418 ISD::ArgFlagsTy Flags; 10419 10420 10421 if (Arg.getType()->isPointerTy()) { 10422 Flags.setPointer(); 10423 Flags.setPointerAddrSpace( 10424 cast<PointerType>(Arg.getType())->getAddressSpace()); 10425 } 10426 if (Arg.hasAttribute(Attribute::ZExt)) 10427 Flags.setZExt(); 10428 if (Arg.hasAttribute(Attribute::SExt)) 10429 Flags.setSExt(); 10430 if (Arg.hasAttribute(Attribute::InReg)) { 10431 // If we are using vectorcall calling convention, a structure that is 10432 // passed InReg - is surely an HVA 10433 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10434 isa<StructType>(Arg.getType())) { 10435 // The first value of a structure is marked 10436 if (0 == Value) 10437 Flags.setHvaStart(); 10438 Flags.setHva(); 10439 } 10440 // Set InReg Flag 10441 Flags.setInReg(); 10442 } 10443 if (Arg.hasAttribute(Attribute::StructRet)) 10444 Flags.setSRet(); 10445 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10446 Flags.setSwiftSelf(); 10447 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10448 Flags.setSwiftAsync(); 10449 if (Arg.hasAttribute(Attribute::SwiftError)) 10450 Flags.setSwiftError(); 10451 if (Arg.hasAttribute(Attribute::ByVal)) 10452 Flags.setByVal(); 10453 if (Arg.hasAttribute(Attribute::ByRef)) 10454 Flags.setByRef(); 10455 if (Arg.hasAttribute(Attribute::InAlloca)) { 10456 Flags.setInAlloca(); 10457 // Set the byval flag for CCAssignFn callbacks that don't know about 10458 // inalloca. This way we can know how many bytes we should've allocated 10459 // and how many bytes a callee cleanup function will pop. If we port 10460 // inalloca to more targets, we'll have to add custom inalloca handling 10461 // in the various CC lowering callbacks. 10462 Flags.setByVal(); 10463 } 10464 if (Arg.hasAttribute(Attribute::Preallocated)) { 10465 Flags.setPreallocated(); 10466 // Set the byval flag for CCAssignFn callbacks that don't know about 10467 // preallocated. This way we can know how many bytes we should've 10468 // allocated and how many bytes a callee cleanup function will pop. If 10469 // we port preallocated to more targets, we'll have to add custom 10470 // preallocated handling in the various CC lowering callbacks. 10471 Flags.setByVal(); 10472 } 10473 10474 // Certain targets (such as MIPS), may have a different ABI alignment 10475 // for a type depending on the context. Give the target a chance to 10476 // specify the alignment it wants. 10477 const Align OriginalAlignment( 10478 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10479 Flags.setOrigAlign(OriginalAlignment); 10480 10481 Align MemAlign; 10482 Type *ArgMemTy = nullptr; 10483 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10484 Flags.isByRef()) { 10485 if (!ArgMemTy) 10486 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10487 10488 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10489 10490 // For in-memory arguments, size and alignment should be passed from FE. 10491 // BE will guess if this info is not there but there are cases it cannot 10492 // get right. 10493 if (auto ParamAlign = Arg.getParamStackAlign()) 10494 MemAlign = *ParamAlign; 10495 else if ((ParamAlign = Arg.getParamAlign())) 10496 MemAlign = *ParamAlign; 10497 else 10498 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10499 if (Flags.isByRef()) 10500 Flags.setByRefSize(MemSize); 10501 else 10502 Flags.setByValSize(MemSize); 10503 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10504 MemAlign = *ParamAlign; 10505 } else { 10506 MemAlign = OriginalAlignment; 10507 } 10508 Flags.setMemAlign(MemAlign); 10509 10510 if (Arg.hasAttribute(Attribute::Nest)) 10511 Flags.setNest(); 10512 if (NeedsRegBlock) 10513 Flags.setInConsecutiveRegs(); 10514 if (ArgCopyElisionCandidates.count(&Arg)) 10515 Flags.setCopyElisionCandidate(); 10516 if (Arg.hasAttribute(Attribute::Returned)) 10517 Flags.setReturned(); 10518 10519 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10520 *CurDAG->getContext(), F.getCallingConv(), VT); 10521 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10522 *CurDAG->getContext(), F.getCallingConv(), VT); 10523 for (unsigned i = 0; i != NumRegs; ++i) { 10524 // For scalable vectors, use the minimum size; individual targets 10525 // are responsible for handling scalable vector arguments and 10526 // return values. 10527 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10528 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10529 if (NumRegs > 1 && i == 0) 10530 MyFlags.Flags.setSplit(); 10531 // if it isn't first piece, alignment must be 1 10532 else if (i > 0) { 10533 MyFlags.Flags.setOrigAlign(Align(1)); 10534 if (i == NumRegs - 1) 10535 MyFlags.Flags.setSplitEnd(); 10536 } 10537 Ins.push_back(MyFlags); 10538 } 10539 if (NeedsRegBlock && Value == NumValues - 1) 10540 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10541 PartBase += VT.getStoreSize().getKnownMinSize(); 10542 } 10543 } 10544 10545 // Call the target to set up the argument values. 10546 SmallVector<SDValue, 8> InVals; 10547 SDValue NewRoot = TLI->LowerFormalArguments( 10548 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10549 10550 // Verify that the target's LowerFormalArguments behaved as expected. 10551 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10552 "LowerFormalArguments didn't return a valid chain!"); 10553 assert(InVals.size() == Ins.size() && 10554 "LowerFormalArguments didn't emit the correct number of values!"); 10555 LLVM_DEBUG({ 10556 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10557 assert(InVals[i].getNode() && 10558 "LowerFormalArguments emitted a null value!"); 10559 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10560 "LowerFormalArguments emitted a value with the wrong type!"); 10561 } 10562 }); 10563 10564 // Update the DAG with the new chain value resulting from argument lowering. 10565 DAG.setRoot(NewRoot); 10566 10567 // Set up the argument values. 10568 unsigned i = 0; 10569 if (!FuncInfo->CanLowerReturn) { 10570 // Create a virtual register for the sret pointer, and put in a copy 10571 // from the sret argument into it. 10572 SmallVector<EVT, 1> ValueVTs; 10573 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10574 F.getReturnType()->getPointerTo( 10575 DAG.getDataLayout().getAllocaAddrSpace()), 10576 ValueVTs); 10577 MVT VT = ValueVTs[0].getSimpleVT(); 10578 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10579 Optional<ISD::NodeType> AssertOp; 10580 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10581 nullptr, F.getCallingConv(), AssertOp); 10582 10583 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10584 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10585 Register SRetReg = 10586 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10587 FuncInfo->DemoteRegister = SRetReg; 10588 NewRoot = 10589 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10590 DAG.setRoot(NewRoot); 10591 10592 // i indexes lowered arguments. Bump it past the hidden sret argument. 10593 ++i; 10594 } 10595 10596 SmallVector<SDValue, 4> Chains; 10597 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10598 for (const Argument &Arg : F.args()) { 10599 SmallVector<SDValue, 4> ArgValues; 10600 SmallVector<EVT, 4> ValueVTs; 10601 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10602 unsigned NumValues = ValueVTs.size(); 10603 if (NumValues == 0) 10604 continue; 10605 10606 bool ArgHasUses = !Arg.use_empty(); 10607 10608 // Elide the copying store if the target loaded this argument from a 10609 // suitable fixed stack object. 10610 if (Ins[i].Flags.isCopyElisionCandidate()) { 10611 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10612 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10613 InVals[i], ArgHasUses); 10614 } 10615 10616 // If this argument is unused then remember its value. It is used to generate 10617 // debugging information. 10618 bool isSwiftErrorArg = 10619 TLI->supportSwiftError() && 10620 Arg.hasAttribute(Attribute::SwiftError); 10621 if (!ArgHasUses && !isSwiftErrorArg) { 10622 SDB->setUnusedArgValue(&Arg, InVals[i]); 10623 10624 // Also remember any frame index for use in FastISel. 10625 if (FrameIndexSDNode *FI = 10626 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10627 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10628 } 10629 10630 for (unsigned Val = 0; Val != NumValues; ++Val) { 10631 EVT VT = ValueVTs[Val]; 10632 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10633 F.getCallingConv(), VT); 10634 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10635 *CurDAG->getContext(), F.getCallingConv(), VT); 10636 10637 // Even an apparent 'unused' swifterror argument needs to be returned. So 10638 // we do generate a copy for it that can be used on return from the 10639 // function. 10640 if (ArgHasUses || isSwiftErrorArg) { 10641 Optional<ISD::NodeType> AssertOp; 10642 if (Arg.hasAttribute(Attribute::SExt)) 10643 AssertOp = ISD::AssertSext; 10644 else if (Arg.hasAttribute(Attribute::ZExt)) 10645 AssertOp = ISD::AssertZext; 10646 10647 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10648 PartVT, VT, nullptr, 10649 F.getCallingConv(), AssertOp)); 10650 } 10651 10652 i += NumParts; 10653 } 10654 10655 // We don't need to do anything else for unused arguments. 10656 if (ArgValues.empty()) 10657 continue; 10658 10659 // Note down frame index. 10660 if (FrameIndexSDNode *FI = 10661 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10662 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10663 10664 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10665 SDB->getCurSDLoc()); 10666 10667 SDB->setValue(&Arg, Res); 10668 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10669 // We want to associate the argument with the frame index, among 10670 // involved operands, that correspond to the lowest address. The 10671 // getCopyFromParts function, called earlier, is swapping the order of 10672 // the operands to BUILD_PAIR depending on endianness. The result of 10673 // that swapping is that the least significant bits of the argument will 10674 // be in the first operand of the BUILD_PAIR node, and the most 10675 // significant bits will be in the second operand. 10676 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10677 if (LoadSDNode *LNode = 10678 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10679 if (FrameIndexSDNode *FI = 10680 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10681 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10682 } 10683 10684 // Analyses past this point are naive and don't expect an assertion. 10685 if (Res.getOpcode() == ISD::AssertZext) 10686 Res = Res.getOperand(0); 10687 10688 // Update the SwiftErrorVRegDefMap. 10689 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10690 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10691 if (Register::isVirtualRegister(Reg)) 10692 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10693 Reg); 10694 } 10695 10696 // If this argument is live outside of the entry block, insert a copy from 10697 // wherever we got it to the vreg that other BB's will reference it as. 10698 if (Res.getOpcode() == ISD::CopyFromReg) { 10699 // If we can, though, try to skip creating an unnecessary vreg. 10700 // FIXME: This isn't very clean... it would be nice to make this more 10701 // general. 10702 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10703 if (Register::isVirtualRegister(Reg)) { 10704 FuncInfo->ValueMap[&Arg] = Reg; 10705 continue; 10706 } 10707 } 10708 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10709 FuncInfo->InitializeRegForValue(&Arg); 10710 SDB->CopyToExportRegsIfNeeded(&Arg); 10711 } 10712 } 10713 10714 if (!Chains.empty()) { 10715 Chains.push_back(NewRoot); 10716 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10717 } 10718 10719 DAG.setRoot(NewRoot); 10720 10721 assert(i == InVals.size() && "Argument register count mismatch!"); 10722 10723 // If any argument copy elisions occurred and we have debug info, update the 10724 // stale frame indices used in the dbg.declare variable info table. 10725 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10726 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10727 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10728 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10729 if (I != ArgCopyElisionFrameIndexMap.end()) 10730 VI.Slot = I->second; 10731 } 10732 } 10733 10734 // Finally, if the target has anything special to do, allow it to do so. 10735 emitFunctionEntryCode(); 10736 } 10737 10738 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10739 /// ensure constants are generated when needed. Remember the virtual registers 10740 /// that need to be added to the Machine PHI nodes as input. We cannot just 10741 /// directly add them, because expansion might result in multiple MBB's for one 10742 /// BB. As such, the start of the BB might correspond to a different MBB than 10743 /// the end. 10744 void 10745 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10747 const Instruction *TI = LLVMBB->getTerminator(); 10748 10749 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10750 10751 // Check PHI nodes in successors that expect a value to be available from this 10752 // block. 10753 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10754 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10755 if (!isa<PHINode>(SuccBB->begin())) continue; 10756 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10757 10758 // If this terminator has multiple identical successors (common for 10759 // switches), only handle each succ once. 10760 if (!SuccsHandled.insert(SuccMBB).second) 10761 continue; 10762 10763 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10764 10765 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10766 // nodes and Machine PHI nodes, but the incoming operands have not been 10767 // emitted yet. 10768 for (const PHINode &PN : SuccBB->phis()) { 10769 // Ignore dead phi's. 10770 if (PN.use_empty()) 10771 continue; 10772 10773 // Skip empty types 10774 if (PN.getType()->isEmptyTy()) 10775 continue; 10776 10777 unsigned Reg; 10778 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10779 10780 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10781 unsigned &RegOut = ConstantsOut[C]; 10782 if (RegOut == 0) { 10783 RegOut = FuncInfo.CreateRegs(C); 10784 // We need to zero/sign extend ConstantInt phi operands to match 10785 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10786 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10787 if (auto *CI = dyn_cast<ConstantInt>(C)) 10788 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10789 : ISD::ZERO_EXTEND; 10790 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10791 } 10792 Reg = RegOut; 10793 } else { 10794 DenseMap<const Value *, Register>::iterator I = 10795 FuncInfo.ValueMap.find(PHIOp); 10796 if (I != FuncInfo.ValueMap.end()) 10797 Reg = I->second; 10798 else { 10799 assert(isa<AllocaInst>(PHIOp) && 10800 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10801 "Didn't codegen value into a register!??"); 10802 Reg = FuncInfo.CreateRegs(PHIOp); 10803 CopyValueToVirtualRegister(PHIOp, Reg); 10804 } 10805 } 10806 10807 // Remember that this register needs to added to the machine PHI node as 10808 // the input for this MBB. 10809 SmallVector<EVT, 4> ValueVTs; 10810 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10811 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10812 EVT VT = ValueVTs[vti]; 10813 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10814 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10815 FuncInfo.PHINodesToUpdate.push_back( 10816 std::make_pair(&*MBBI++, Reg + i)); 10817 Reg += NumRegisters; 10818 } 10819 } 10820 } 10821 10822 ConstantsOut.clear(); 10823 } 10824 10825 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10826 MachineFunction::iterator I(MBB); 10827 if (++I == FuncInfo.MF->end()) 10828 return nullptr; 10829 return &*I; 10830 } 10831 10832 /// During lowering new call nodes can be created (such as memset, etc.). 10833 /// Those will become new roots of the current DAG, but complications arise 10834 /// when they are tail calls. In such cases, the call lowering will update 10835 /// the root, but the builder still needs to know that a tail call has been 10836 /// lowered in order to avoid generating an additional return. 10837 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10838 // If the node is null, we do have a tail call. 10839 if (MaybeTC.getNode() != nullptr) 10840 DAG.setRoot(MaybeTC); 10841 else 10842 HasTailCall = true; 10843 } 10844 10845 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10846 MachineBasicBlock *SwitchMBB, 10847 MachineBasicBlock *DefaultMBB) { 10848 MachineFunction *CurMF = FuncInfo.MF; 10849 MachineBasicBlock *NextMBB = nullptr; 10850 MachineFunction::iterator BBI(W.MBB); 10851 if (++BBI != FuncInfo.MF->end()) 10852 NextMBB = &*BBI; 10853 10854 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10855 10856 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10857 10858 if (Size == 2 && W.MBB == SwitchMBB) { 10859 // If any two of the cases has the same destination, and if one value 10860 // is the same as the other, but has one bit unset that the other has set, 10861 // use bit manipulation to do two compares at once. For example: 10862 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10863 // TODO: This could be extended to merge any 2 cases in switches with 3 10864 // cases. 10865 // TODO: Handle cases where W.CaseBB != SwitchBB. 10866 CaseCluster &Small = *W.FirstCluster; 10867 CaseCluster &Big = *W.LastCluster; 10868 10869 if (Small.Low == Small.High && Big.Low == Big.High && 10870 Small.MBB == Big.MBB) { 10871 const APInt &SmallValue = Small.Low->getValue(); 10872 const APInt &BigValue = Big.Low->getValue(); 10873 10874 // Check that there is only one bit different. 10875 APInt CommonBit = BigValue ^ SmallValue; 10876 if (CommonBit.isPowerOf2()) { 10877 SDValue CondLHS = getValue(Cond); 10878 EVT VT = CondLHS.getValueType(); 10879 SDLoc DL = getCurSDLoc(); 10880 10881 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10882 DAG.getConstant(CommonBit, DL, VT)); 10883 SDValue Cond = DAG.getSetCC( 10884 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10885 ISD::SETEQ); 10886 10887 // Update successor info. 10888 // Both Small and Big will jump to Small.BB, so we sum up the 10889 // probabilities. 10890 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10891 if (BPI) 10892 addSuccessorWithProb( 10893 SwitchMBB, DefaultMBB, 10894 // The default destination is the first successor in IR. 10895 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10896 else 10897 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10898 10899 // Insert the true branch. 10900 SDValue BrCond = 10901 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10902 DAG.getBasicBlock(Small.MBB)); 10903 // Insert the false branch. 10904 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10905 DAG.getBasicBlock(DefaultMBB)); 10906 10907 DAG.setRoot(BrCond); 10908 return; 10909 } 10910 } 10911 } 10912 10913 if (TM.getOptLevel() != CodeGenOpt::None) { 10914 // Here, we order cases by probability so the most likely case will be 10915 // checked first. However, two clusters can have the same probability in 10916 // which case their relative ordering is non-deterministic. So we use Low 10917 // as a tie-breaker as clusters are guaranteed to never overlap. 10918 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10919 [](const CaseCluster &a, const CaseCluster &b) { 10920 return a.Prob != b.Prob ? 10921 a.Prob > b.Prob : 10922 a.Low->getValue().slt(b.Low->getValue()); 10923 }); 10924 10925 // Rearrange the case blocks so that the last one falls through if possible 10926 // without changing the order of probabilities. 10927 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10928 --I; 10929 if (I->Prob > W.LastCluster->Prob) 10930 break; 10931 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10932 std::swap(*I, *W.LastCluster); 10933 break; 10934 } 10935 } 10936 } 10937 10938 // Compute total probability. 10939 BranchProbability DefaultProb = W.DefaultProb; 10940 BranchProbability UnhandledProbs = DefaultProb; 10941 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10942 UnhandledProbs += I->Prob; 10943 10944 MachineBasicBlock *CurMBB = W.MBB; 10945 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10946 bool FallthroughUnreachable = false; 10947 MachineBasicBlock *Fallthrough; 10948 if (I == W.LastCluster) { 10949 // For the last cluster, fall through to the default destination. 10950 Fallthrough = DefaultMBB; 10951 FallthroughUnreachable = isa<UnreachableInst>( 10952 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10953 } else { 10954 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10955 CurMF->insert(BBI, Fallthrough); 10956 // Put Cond in a virtual register to make it available from the new blocks. 10957 ExportFromCurrentBlock(Cond); 10958 } 10959 UnhandledProbs -= I->Prob; 10960 10961 switch (I->Kind) { 10962 case CC_JumpTable: { 10963 // FIXME: Optimize away range check based on pivot comparisons. 10964 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10965 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10966 10967 // The jump block hasn't been inserted yet; insert it here. 10968 MachineBasicBlock *JumpMBB = JT->MBB; 10969 CurMF->insert(BBI, JumpMBB); 10970 10971 auto JumpProb = I->Prob; 10972 auto FallthroughProb = UnhandledProbs; 10973 10974 // If the default statement is a target of the jump table, we evenly 10975 // distribute the default probability to successors of CurMBB. Also 10976 // update the probability on the edge from JumpMBB to Fallthrough. 10977 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10978 SE = JumpMBB->succ_end(); 10979 SI != SE; ++SI) { 10980 if (*SI == DefaultMBB) { 10981 JumpProb += DefaultProb / 2; 10982 FallthroughProb -= DefaultProb / 2; 10983 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10984 JumpMBB->normalizeSuccProbs(); 10985 break; 10986 } 10987 } 10988 10989 if (FallthroughUnreachable) 10990 JTH->FallthroughUnreachable = true; 10991 10992 if (!JTH->FallthroughUnreachable) 10993 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10994 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10995 CurMBB->normalizeSuccProbs(); 10996 10997 // The jump table header will be inserted in our current block, do the 10998 // range check, and fall through to our fallthrough block. 10999 JTH->HeaderBB = CurMBB; 11000 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11001 11002 // If we're in the right place, emit the jump table header right now. 11003 if (CurMBB == SwitchMBB) { 11004 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11005 JTH->Emitted = true; 11006 } 11007 break; 11008 } 11009 case CC_BitTests: { 11010 // FIXME: Optimize away range check based on pivot comparisons. 11011 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11012 11013 // The bit test blocks haven't been inserted yet; insert them here. 11014 for (BitTestCase &BTC : BTB->Cases) 11015 CurMF->insert(BBI, BTC.ThisBB); 11016 11017 // Fill in fields of the BitTestBlock. 11018 BTB->Parent = CurMBB; 11019 BTB->Default = Fallthrough; 11020 11021 BTB->DefaultProb = UnhandledProbs; 11022 // If the cases in bit test don't form a contiguous range, we evenly 11023 // distribute the probability on the edge to Fallthrough to two 11024 // successors of CurMBB. 11025 if (!BTB->ContiguousRange) { 11026 BTB->Prob += DefaultProb / 2; 11027 BTB->DefaultProb -= DefaultProb / 2; 11028 } 11029 11030 if (FallthroughUnreachable) 11031 BTB->FallthroughUnreachable = true; 11032 11033 // If we're in the right place, emit the bit test header right now. 11034 if (CurMBB == SwitchMBB) { 11035 visitBitTestHeader(*BTB, SwitchMBB); 11036 BTB->Emitted = true; 11037 } 11038 break; 11039 } 11040 case CC_Range: { 11041 const Value *RHS, *LHS, *MHS; 11042 ISD::CondCode CC; 11043 if (I->Low == I->High) { 11044 // Check Cond == I->Low. 11045 CC = ISD::SETEQ; 11046 LHS = Cond; 11047 RHS=I->Low; 11048 MHS = nullptr; 11049 } else { 11050 // Check I->Low <= Cond <= I->High. 11051 CC = ISD::SETLE; 11052 LHS = I->Low; 11053 MHS = Cond; 11054 RHS = I->High; 11055 } 11056 11057 // If Fallthrough is unreachable, fold away the comparison. 11058 if (FallthroughUnreachable) 11059 CC = ISD::SETTRUE; 11060 11061 // The false probability is the sum of all unhandled cases. 11062 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11063 getCurSDLoc(), I->Prob, UnhandledProbs); 11064 11065 if (CurMBB == SwitchMBB) 11066 visitSwitchCase(CB, SwitchMBB); 11067 else 11068 SL->SwitchCases.push_back(CB); 11069 11070 break; 11071 } 11072 } 11073 CurMBB = Fallthrough; 11074 } 11075 } 11076 11077 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11078 CaseClusterIt First, 11079 CaseClusterIt Last) { 11080 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11081 if (X.Prob != CC.Prob) 11082 return X.Prob > CC.Prob; 11083 11084 // Ties are broken by comparing the case value. 11085 return X.Low->getValue().slt(CC.Low->getValue()); 11086 }); 11087 } 11088 11089 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11090 const SwitchWorkListItem &W, 11091 Value *Cond, 11092 MachineBasicBlock *SwitchMBB) { 11093 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11094 "Clusters not sorted?"); 11095 11096 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11097 11098 // Balance the tree based on branch probabilities to create a near-optimal (in 11099 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11100 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11101 CaseClusterIt LastLeft = W.FirstCluster; 11102 CaseClusterIt FirstRight = W.LastCluster; 11103 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11104 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11105 11106 // Move LastLeft and FirstRight towards each other from opposite directions to 11107 // find a partitioning of the clusters which balances the probability on both 11108 // sides. If LeftProb and RightProb are equal, alternate which side is 11109 // taken to ensure 0-probability nodes are distributed evenly. 11110 unsigned I = 0; 11111 while (LastLeft + 1 < FirstRight) { 11112 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11113 LeftProb += (++LastLeft)->Prob; 11114 else 11115 RightProb += (--FirstRight)->Prob; 11116 I++; 11117 } 11118 11119 while (true) { 11120 // Our binary search tree differs from a typical BST in that ours can have up 11121 // to three values in each leaf. The pivot selection above doesn't take that 11122 // into account, which means the tree might require more nodes and be less 11123 // efficient. We compensate for this here. 11124 11125 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11126 unsigned NumRight = W.LastCluster - FirstRight + 1; 11127 11128 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11129 // If one side has less than 3 clusters, and the other has more than 3, 11130 // consider taking a cluster from the other side. 11131 11132 if (NumLeft < NumRight) { 11133 // Consider moving the first cluster on the right to the left side. 11134 CaseCluster &CC = *FirstRight; 11135 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11136 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11137 if (LeftSideRank <= RightSideRank) { 11138 // Moving the cluster to the left does not demote it. 11139 ++LastLeft; 11140 ++FirstRight; 11141 continue; 11142 } 11143 } else { 11144 assert(NumRight < NumLeft); 11145 // Consider moving the last element on the left to the right side. 11146 CaseCluster &CC = *LastLeft; 11147 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11148 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11149 if (RightSideRank <= LeftSideRank) { 11150 // Moving the cluster to the right does not demot it. 11151 --LastLeft; 11152 --FirstRight; 11153 continue; 11154 } 11155 } 11156 } 11157 break; 11158 } 11159 11160 assert(LastLeft + 1 == FirstRight); 11161 assert(LastLeft >= W.FirstCluster); 11162 assert(FirstRight <= W.LastCluster); 11163 11164 // Use the first element on the right as pivot since we will make less-than 11165 // comparisons against it. 11166 CaseClusterIt PivotCluster = FirstRight; 11167 assert(PivotCluster > W.FirstCluster); 11168 assert(PivotCluster <= W.LastCluster); 11169 11170 CaseClusterIt FirstLeft = W.FirstCluster; 11171 CaseClusterIt LastRight = W.LastCluster; 11172 11173 const ConstantInt *Pivot = PivotCluster->Low; 11174 11175 // New blocks will be inserted immediately after the current one. 11176 MachineFunction::iterator BBI(W.MBB); 11177 ++BBI; 11178 11179 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11180 // we can branch to its destination directly if it's squeezed exactly in 11181 // between the known lower bound and Pivot - 1. 11182 MachineBasicBlock *LeftMBB; 11183 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11184 FirstLeft->Low == W.GE && 11185 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11186 LeftMBB = FirstLeft->MBB; 11187 } else { 11188 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11189 FuncInfo.MF->insert(BBI, LeftMBB); 11190 WorkList.push_back( 11191 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11192 // Put Cond in a virtual register to make it available from the new blocks. 11193 ExportFromCurrentBlock(Cond); 11194 } 11195 11196 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11197 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11198 // directly if RHS.High equals the current upper bound. 11199 MachineBasicBlock *RightMBB; 11200 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11201 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11202 RightMBB = FirstRight->MBB; 11203 } else { 11204 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11205 FuncInfo.MF->insert(BBI, RightMBB); 11206 WorkList.push_back( 11207 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11208 // Put Cond in a virtual register to make it available from the new blocks. 11209 ExportFromCurrentBlock(Cond); 11210 } 11211 11212 // Create the CaseBlock record that will be used to lower the branch. 11213 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11214 getCurSDLoc(), LeftProb, RightProb); 11215 11216 if (W.MBB == SwitchMBB) 11217 visitSwitchCase(CB, SwitchMBB); 11218 else 11219 SL->SwitchCases.push_back(CB); 11220 } 11221 11222 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11223 // from the swith statement. 11224 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11225 BranchProbability PeeledCaseProb) { 11226 if (PeeledCaseProb == BranchProbability::getOne()) 11227 return BranchProbability::getZero(); 11228 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11229 11230 uint32_t Numerator = CaseProb.getNumerator(); 11231 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11232 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11233 } 11234 11235 // Try to peel the top probability case if it exceeds the threshold. 11236 // Return current MachineBasicBlock for the switch statement if the peeling 11237 // does not occur. 11238 // If the peeling is performed, return the newly created MachineBasicBlock 11239 // for the peeled switch statement. Also update Clusters to remove the peeled 11240 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11241 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11242 const SwitchInst &SI, CaseClusterVector &Clusters, 11243 BranchProbability &PeeledCaseProb) { 11244 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11245 // Don't perform if there is only one cluster or optimizing for size. 11246 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11247 TM.getOptLevel() == CodeGenOpt::None || 11248 SwitchMBB->getParent()->getFunction().hasMinSize()) 11249 return SwitchMBB; 11250 11251 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11252 unsigned PeeledCaseIndex = 0; 11253 bool SwitchPeeled = false; 11254 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11255 CaseCluster &CC = Clusters[Index]; 11256 if (CC.Prob < TopCaseProb) 11257 continue; 11258 TopCaseProb = CC.Prob; 11259 PeeledCaseIndex = Index; 11260 SwitchPeeled = true; 11261 } 11262 if (!SwitchPeeled) 11263 return SwitchMBB; 11264 11265 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11266 << TopCaseProb << "\n"); 11267 11268 // Record the MBB for the peeled switch statement. 11269 MachineFunction::iterator BBI(SwitchMBB); 11270 ++BBI; 11271 MachineBasicBlock *PeeledSwitchMBB = 11272 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11273 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11274 11275 ExportFromCurrentBlock(SI.getCondition()); 11276 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11277 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11278 nullptr, nullptr, TopCaseProb.getCompl()}; 11279 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11280 11281 Clusters.erase(PeeledCaseIt); 11282 for (CaseCluster &CC : Clusters) { 11283 LLVM_DEBUG( 11284 dbgs() << "Scale the probablity for one cluster, before scaling: " 11285 << CC.Prob << "\n"); 11286 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11287 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11288 } 11289 PeeledCaseProb = TopCaseProb; 11290 return PeeledSwitchMBB; 11291 } 11292 11293 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11294 // Extract cases from the switch. 11295 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11296 CaseClusterVector Clusters; 11297 Clusters.reserve(SI.getNumCases()); 11298 for (auto I : SI.cases()) { 11299 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11300 const ConstantInt *CaseVal = I.getCaseValue(); 11301 BranchProbability Prob = 11302 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11303 : BranchProbability(1, SI.getNumCases() + 1); 11304 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11305 } 11306 11307 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11308 11309 // Cluster adjacent cases with the same destination. We do this at all 11310 // optimization levels because it's cheap to do and will make codegen faster 11311 // if there are many clusters. 11312 sortAndRangeify(Clusters); 11313 11314 // The branch probablity of the peeled case. 11315 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11316 MachineBasicBlock *PeeledSwitchMBB = 11317 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11318 11319 // If there is only the default destination, jump there directly. 11320 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11321 if (Clusters.empty()) { 11322 assert(PeeledSwitchMBB == SwitchMBB); 11323 SwitchMBB->addSuccessor(DefaultMBB); 11324 if (DefaultMBB != NextBlock(SwitchMBB)) { 11325 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11326 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11327 } 11328 return; 11329 } 11330 11331 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11332 SL->findBitTestClusters(Clusters, &SI); 11333 11334 LLVM_DEBUG({ 11335 dbgs() << "Case clusters: "; 11336 for (const CaseCluster &C : Clusters) { 11337 if (C.Kind == CC_JumpTable) 11338 dbgs() << "JT:"; 11339 if (C.Kind == CC_BitTests) 11340 dbgs() << "BT:"; 11341 11342 C.Low->getValue().print(dbgs(), true); 11343 if (C.Low != C.High) { 11344 dbgs() << '-'; 11345 C.High->getValue().print(dbgs(), true); 11346 } 11347 dbgs() << ' '; 11348 } 11349 dbgs() << '\n'; 11350 }); 11351 11352 assert(!Clusters.empty()); 11353 SwitchWorkList WorkList; 11354 CaseClusterIt First = Clusters.begin(); 11355 CaseClusterIt Last = Clusters.end() - 1; 11356 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11357 // Scale the branchprobability for DefaultMBB if the peel occurs and 11358 // DefaultMBB is not replaced. 11359 if (PeeledCaseProb != BranchProbability::getZero() && 11360 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11361 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11362 WorkList.push_back( 11363 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11364 11365 while (!WorkList.empty()) { 11366 SwitchWorkListItem W = WorkList.pop_back_val(); 11367 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11368 11369 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11370 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11371 // For optimized builds, lower large range as a balanced binary tree. 11372 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11373 continue; 11374 } 11375 11376 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11377 } 11378 } 11379 11380 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11382 auto DL = getCurSDLoc(); 11383 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11384 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11385 } 11386 11387 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11389 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11390 11391 SDLoc DL = getCurSDLoc(); 11392 SDValue V = getValue(I.getOperand(0)); 11393 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11394 11395 if (VT.isScalableVector()) { 11396 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11397 return; 11398 } 11399 11400 // Use VECTOR_SHUFFLE for the fixed-length vector 11401 // to maintain existing behavior. 11402 SmallVector<int, 8> Mask; 11403 unsigned NumElts = VT.getVectorMinNumElements(); 11404 for (unsigned i = 0; i != NumElts; ++i) 11405 Mask.push_back(NumElts - 1 - i); 11406 11407 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11408 } 11409 11410 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11411 SmallVector<EVT, 4> ValueVTs; 11412 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11413 ValueVTs); 11414 unsigned NumValues = ValueVTs.size(); 11415 if (NumValues == 0) return; 11416 11417 SmallVector<SDValue, 4> Values(NumValues); 11418 SDValue Op = getValue(I.getOperand(0)); 11419 11420 for (unsigned i = 0; i != NumValues; ++i) 11421 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11422 SDValue(Op.getNode(), Op.getResNo() + i)); 11423 11424 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11425 DAG.getVTList(ValueVTs), Values)); 11426 } 11427 11428 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11430 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11431 11432 SDLoc DL = getCurSDLoc(); 11433 SDValue V1 = getValue(I.getOperand(0)); 11434 SDValue V2 = getValue(I.getOperand(1)); 11435 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11436 11437 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11438 if (VT.isScalableVector()) { 11439 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11440 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11441 DAG.getConstant(Imm, DL, IdxVT))); 11442 return; 11443 } 11444 11445 unsigned NumElts = VT.getVectorNumElements(); 11446 11447 uint64_t Idx = (NumElts + Imm) % NumElts; 11448 11449 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11450 SmallVector<int, 8> Mask; 11451 for (unsigned i = 0; i < NumElts; ++i) 11452 Mask.push_back(Idx + i); 11453 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11454 } 11455