1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 87 static cl::opt<bool> 88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 89 cl::desc("Enable fast-math-flags for DAG nodes")); 90 91 /// Minimum jump table density for normal functions. 92 static cl::opt<unsigned> 93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 94 cl::desc("Minimum density for building a jump table in " 95 "a normal function")); 96 97 /// Minimum jump table density for -Os or -Oz functions. 98 static cl::opt<unsigned> 99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 100 cl::desc("Minimum density for building a jump table in " 101 "an optsize function")); 102 103 104 // Limit the width of DAG chains. This is important in general to prevent 105 // DAG-based analysis from blowing up. For example, alias analysis and 106 // load clustering may not complete in reasonable time. It is difficult to 107 // recognize and avoid this situation within each individual analysis, and 108 // future analyses are likely to have the same behavior. Limiting DAG width is 109 // the safe approach and will be especially important with global DAGs. 110 // 111 // MaxParallelChains default is arbitrarily high to avoid affecting 112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 113 // sequence over this should have been converted to llvm.memcpy by the 114 // frontend. It is easy to induce this behavior with .ll code such as: 115 // %buffer = alloca [4096 x i8] 116 // %data = load [4096 x i8]* %argPtr 117 // store [4096 x i8] %data, [4096 x i8]* %buffer 118 static const unsigned MaxParallelChains = 64; 119 120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 121 const SDValue *Parts, unsigned NumParts, 122 MVT PartVT, EVT ValueVT, const Value *V); 123 124 /// getCopyFromParts - Create a value that contains the specified legal parts 125 /// combined into the value they represent. If the parts combine to a type 126 /// larger than ValueVT then AssertOp can be used to specify whether the extra 127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 128 /// (ISD::AssertSext). 129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 130 const SDValue *Parts, unsigned NumParts, 131 MVT PartVT, EVT ValueVT, const Value *V, 132 Optional<ISD::NodeType> AssertOp = None) { 133 if (ValueVT.isVector()) 134 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 135 PartVT, ValueVT, V); 136 137 assert(NumParts > 0 && "No parts to assemble!"); 138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 139 SDValue Val = Parts[0]; 140 141 if (NumParts > 1) { 142 // Assemble the value from multiple parts. 143 if (ValueVT.isInteger()) { 144 unsigned PartBits = PartVT.getSizeInBits(); 145 unsigned ValueBits = ValueVT.getSizeInBits(); 146 147 // Assemble the power of 2 part. 148 unsigned RoundParts = NumParts & (NumParts - 1) ? 149 1 << Log2_32(NumParts) : NumParts; 150 unsigned RoundBits = PartBits * RoundParts; 151 EVT RoundVT = RoundBits == ValueBits ? 152 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 153 SDValue Lo, Hi; 154 155 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 156 157 if (RoundParts > 2) { 158 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 159 PartVT, HalfVT, V); 160 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 161 RoundParts / 2, PartVT, HalfVT, V); 162 } else { 163 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 165 } 166 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 170 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 171 172 if (RoundParts < NumParts) { 173 // Assemble the trailing non-power-of-2 part. 174 unsigned OddParts = NumParts - RoundParts; 175 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 176 Hi = getCopyFromParts(DAG, DL, 177 Parts + RoundParts, OddParts, PartVT, OddVT, V); 178 179 // Combine the round and odd parts. 180 Lo = Val; 181 if (DAG.getDataLayout().isBigEndian()) 182 std::swap(Lo, Hi); 183 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 184 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 185 Hi = 186 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 187 DAG.getConstant(Lo.getValueSizeInBits(), DL, 188 TLI.getPointerTy(DAG.getDataLayout()))); 189 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 190 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 191 } 192 } else if (PartVT.isFloatingPoint()) { 193 // FP split into multiple FP parts (for ppcf128) 194 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 195 "Unexpected split"); 196 SDValue Lo, Hi; 197 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 199 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 200 std::swap(Lo, Hi); 201 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 202 } else { 203 // FP split into integer parts (soft fp) 204 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 205 !PartVT.isVector() && "Unexpected split"); 206 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 208 } 209 } 210 211 // There is now one part, held in Val. Correct it to match ValueVT. 212 // PartEVT is the type of the register class that holds the value. 213 // ValueVT is the type of the inline asm operation. 214 EVT PartEVT = Val.getValueType(); 215 216 if (PartEVT == ValueVT) 217 return Val; 218 219 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 220 ValueVT.bitsLT(PartEVT)) { 221 // For an FP value in an integer part, we need to truncate to the right 222 // width first. 223 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 224 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 225 } 226 227 // Handle types that have the same size. 228 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 229 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 230 231 // Handle types with different sizes. 232 if (PartEVT.isInteger() && ValueVT.isInteger()) { 233 if (ValueVT.bitsLT(PartEVT)) { 234 // For a truncate, see if we have any information to 235 // indicate whether the truncated bits will always be 236 // zero or sign-extension. 237 if (AssertOp.hasValue()) 238 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 239 DAG.getValueType(ValueVT)); 240 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 241 } 242 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 243 } 244 245 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 246 // FP_ROUND's are always exact here. 247 if (ValueVT.bitsLT(Val.getValueType())) 248 return DAG.getNode( 249 ISD::FP_ROUND, DL, ValueVT, Val, 250 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 251 252 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 253 } 254 255 llvm_unreachable("Unknown mismatch!"); 256 } 257 258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 259 const Twine &ErrMsg) { 260 const Instruction *I = dyn_cast_or_null<Instruction>(V); 261 if (!V) 262 return Ctx.emitError(ErrMsg); 263 264 const char *AsmError = ", possible invalid constraint for vector type"; 265 if (const CallInst *CI = dyn_cast<CallInst>(I)) 266 if (isa<InlineAsm>(CI->getCalledValue())) 267 return Ctx.emitError(I, ErrMsg + AsmError); 268 269 return Ctx.emitError(I, ErrMsg); 270 } 271 272 /// getCopyFromPartsVector - Create a value that contains the specified legal 273 /// parts combined into the value they represent. If the parts combine to a 274 /// type larger than ValueVT then AssertOp can be used to specify whether the 275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 276 /// ValueVT (ISD::AssertSext). 277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 278 const SDValue *Parts, unsigned NumParts, 279 MVT PartVT, EVT ValueVT, const Value *V) { 280 assert(ValueVT.isVector() && "Not a vector value"); 281 assert(NumParts > 0 && "No parts to assemble!"); 282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 283 SDValue Val = Parts[0]; 284 285 // Handle a multi-element vector. 286 if (NumParts > 1) { 287 EVT IntermediateVT; 288 MVT RegisterVT; 289 unsigned NumIntermediates; 290 unsigned NumRegs = 291 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 292 NumIntermediates, RegisterVT); 293 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 294 NumParts = NumRegs; // Silence a compiler warning. 295 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 296 assert(RegisterVT.getSizeInBits() == 297 Parts[0].getSimpleValueType().getSizeInBits() && 298 "Part type sizes don't match!"); 299 300 // Assemble the parts into intermediate operands. 301 SmallVector<SDValue, 8> Ops(NumIntermediates); 302 if (NumIntermediates == NumParts) { 303 // If the register was not expanded, truncate or copy the value, 304 // as appropriate. 305 for (unsigned i = 0; i != NumParts; ++i) 306 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 307 PartVT, IntermediateVT, V); 308 } else if (NumParts > 0) { 309 // If the intermediate type was expanded, build the intermediate 310 // operands from the parts. 311 assert(NumParts % NumIntermediates == 0 && 312 "Must expand into a divisible number of parts!"); 313 unsigned Factor = NumParts / NumIntermediates; 314 for (unsigned i = 0; i != NumIntermediates; ++i) 315 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 316 PartVT, IntermediateVT, V); 317 } 318 319 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 320 // intermediate operands. 321 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 322 : ISD::BUILD_VECTOR, 323 DL, ValueVT, Ops); 324 } 325 326 // There is now one part, held in Val. Correct it to match ValueVT. 327 EVT PartEVT = Val.getValueType(); 328 329 if (PartEVT == ValueVT) 330 return Val; 331 332 if (PartEVT.isVector()) { 333 // If the element type of the source/dest vectors are the same, but the 334 // parts vector has more elements than the value vector, then we have a 335 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 336 // elements we want. 337 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 338 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 339 "Cannot narrow, it would be a lossy transformation"); 340 return DAG.getNode( 341 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 342 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 343 } 344 345 // Vector/Vector bitcast. 346 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 347 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 348 349 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 350 "Cannot handle this kind of promotion"); 351 // Promoted vector extract 352 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 353 354 } 355 356 // Trivial bitcast if the types are the same size and the destination 357 // vector type is legal. 358 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 359 TLI.isTypeLegal(ValueVT)) 360 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 361 362 // Handle cases such as i8 -> <1 x i1> 363 if (ValueVT.getVectorNumElements() != 1) { 364 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 365 "non-trivial scalar-to-vector conversion"); 366 return DAG.getUNDEF(ValueVT); 367 } 368 369 if (ValueVT.getVectorNumElements() == 1 && 370 ValueVT.getVectorElementType() != PartEVT) 371 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 372 373 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 374 } 375 376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 377 SDValue Val, SDValue *Parts, unsigned NumParts, 378 MVT PartVT, const Value *V); 379 380 /// getCopyToParts - Create a series of nodes that contain the specified value 381 /// split into legal parts. If the parts contain more bits than Val, then, for 382 /// integers, ExtendKind can be used to specify how to generate the extra bits. 383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 384 SDValue *Parts, unsigned NumParts, MVT PartVT, 385 const Value *V, 386 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 387 EVT ValueVT = Val.getValueType(); 388 389 // Handle the vector case separately. 390 if (ValueVT.isVector()) 391 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 392 393 unsigned PartBits = PartVT.getSizeInBits(); 394 unsigned OrigNumParts = NumParts; 395 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 396 "Copying to an illegal type!"); 397 398 if (NumParts == 0) 399 return; 400 401 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 402 EVT PartEVT = PartVT; 403 if (PartEVT == ValueVT) { 404 assert(NumParts == 1 && "No-op copy with multiple parts!"); 405 Parts[0] = Val; 406 return; 407 } 408 409 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 410 // If the parts cover more bits than the value has, promote the value. 411 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 412 assert(NumParts == 1 && "Do not know what to promote to!"); 413 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 414 } else { 415 if (ValueVT.isFloatingPoint()) { 416 // FP values need to be bitcast, then extended if they are being put 417 // into a larger container. 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 419 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 } 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 } else if (PartBits == ValueVT.getSizeInBits()) { 430 // Different types of the same size. 431 assert(NumParts == 1 && PartEVT != ValueVT); 432 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 433 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 434 // If the parts cover less bits than value has, truncate the value. 435 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 436 ValueVT.isInteger() && 437 "Unknown mismatch!"); 438 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 439 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 440 if (PartVT == MVT::x86mmx) 441 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 442 } 443 444 // The value may have changed - recompute ValueVT. 445 ValueVT = Val.getValueType(); 446 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 447 "Failed to tile the value with PartVT!"); 448 449 if (NumParts == 1) { 450 if (PartEVT != ValueVT) { 451 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 452 "scalar-to-vector conversion failed"); 453 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 454 } 455 456 Parts[0] = Val; 457 return; 458 } 459 460 // Expand the value into multiple parts. 461 if (NumParts & (NumParts - 1)) { 462 // The number of parts is not a power of 2. Split off and copy the tail. 463 assert(PartVT.isInteger() && ValueVT.isInteger() && 464 "Do not know what to expand to!"); 465 unsigned RoundParts = 1 << Log2_32(NumParts); 466 unsigned RoundBits = RoundParts * PartBits; 467 unsigned OddParts = NumParts - RoundParts; 468 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 469 DAG.getIntPtrConstant(RoundBits, DL)); 470 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 471 472 if (DAG.getDataLayout().isBigEndian()) 473 // The odd parts were reversed by getCopyToParts - unreverse them. 474 std::reverse(Parts + RoundParts, Parts + NumParts); 475 476 NumParts = RoundParts; 477 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 478 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 479 } 480 481 // The number of parts is a power of 2. Repeatedly bisect the value using 482 // EXTRACT_ELEMENT. 483 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 484 EVT::getIntegerVT(*DAG.getContext(), 485 ValueVT.getSizeInBits()), 486 Val); 487 488 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 489 for (unsigned i = 0; i < NumParts; i += StepSize) { 490 unsigned ThisBits = StepSize * PartBits / 2; 491 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 492 SDValue &Part0 = Parts[i]; 493 SDValue &Part1 = Parts[i+StepSize/2]; 494 495 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 496 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 497 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 498 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 499 500 if (ThisBits == PartBits && ThisVT != PartVT) { 501 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 502 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 503 } 504 } 505 } 506 507 if (DAG.getDataLayout().isBigEndian()) 508 std::reverse(Parts, Parts + OrigNumParts); 509 } 510 511 512 /// getCopyToPartsVector - Create a series of nodes that contain the specified 513 /// value split into legal parts. 514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 515 SDValue Val, SDValue *Parts, unsigned NumParts, 516 MVT PartVT, const Value *V) { 517 EVT ValueVT = Val.getValueType(); 518 assert(ValueVT.isVector() && "Not a vector"); 519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 520 521 if (NumParts == 1) { 522 EVT PartEVT = PartVT; 523 if (PartEVT == ValueVT) { 524 // Nothing to do. 525 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 526 // Bitconvert vector->vector case. 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 530 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 531 EVT ElementVT = PartVT.getVectorElementType(); 532 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 533 // undef elements. 534 SmallVector<SDValue, 16> Ops; 535 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 536 Ops.push_back(DAG.getNode( 537 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 538 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 539 540 for (unsigned i = ValueVT.getVectorNumElements(), 541 e = PartVT.getVectorNumElements(); i != e; ++i) 542 Ops.push_back(DAG.getUNDEF(ElementVT)); 543 544 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 545 546 // FIXME: Use CONCAT for 2x -> 4x. 547 548 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 549 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 550 } else if (PartVT.isVector() && 551 PartEVT.getVectorElementType().bitsGE( 552 ValueVT.getVectorElementType()) && 553 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 554 555 // Promoted vector extract 556 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 557 } else{ 558 // Vector -> scalar conversion. 559 assert(ValueVT.getVectorNumElements() == 1 && 560 "Only trivial vector-to-scalar conversions should get here!"); 561 Val = DAG.getNode( 562 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 563 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 565 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Handle a multi-element vector. 573 EVT IntermediateVT; 574 MVT RegisterVT; 575 unsigned NumIntermediates; 576 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 577 IntermediateVT, 578 NumIntermediates, RegisterVT); 579 unsigned NumElements = ValueVT.getVectorNumElements(); 580 581 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 582 NumParts = NumRegs; // Silence a compiler warning. 583 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 584 585 // Split the vector into intermediate operands. 586 SmallVector<SDValue, 8> Ops(NumIntermediates); 587 for (unsigned i = 0; i != NumIntermediates; ++i) { 588 if (IntermediateVT.isVector()) 589 Ops[i] = 590 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 591 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 592 TLI.getVectorIdxTy(DAG.getDataLayout()))); 593 else 594 Ops[i] = DAG.getNode( 595 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 596 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 597 } 598 599 // Split the intermediate operands into legal parts. 600 if (NumParts == NumIntermediates) { 601 // If the register was not expanded, promote or copy the value, 602 // as appropriate. 603 for (unsigned i = 0; i != NumParts; ++i) 604 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 605 } else if (NumParts > 0) { 606 // If the intermediate type was expanded, split each the value into 607 // legal parts. 608 assert(NumIntermediates != 0 && "division by zero"); 609 assert(NumParts % NumIntermediates == 0 && 610 "Must expand into a divisible number of parts!"); 611 unsigned Factor = NumParts / NumIntermediates; 612 for (unsigned i = 0; i != NumIntermediates; ++i) 613 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 614 } 615 } 616 617 RegsForValue::RegsForValue() {} 618 619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 620 EVT valuevt) 621 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 622 623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 624 const DataLayout &DL, unsigned Reg, Type *Ty) { 625 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 626 627 for (EVT ValueVT : ValueVTs) { 628 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 629 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 630 for (unsigned i = 0; i != NumRegs; ++i) 631 Regs.push_back(Reg + i); 632 RegVTs.push_back(RegisterVT); 633 Reg += NumRegs; 634 } 635 } 636 637 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 638 FunctionLoweringInfo &FuncInfo, 639 const SDLoc &dl, SDValue &Chain, 640 SDValue *Flag, const Value *V) const { 641 // A Value with type {} or [0 x %t] needs no registers. 642 if (ValueVTs.empty()) 643 return SDValue(); 644 645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 646 647 // Assemble the legal parts into the final values. 648 SmallVector<SDValue, 4> Values(ValueVTs.size()); 649 SmallVector<SDValue, 8> Parts; 650 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 651 // Copy the legal parts from the registers. 652 EVT ValueVT = ValueVTs[Value]; 653 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 654 MVT RegisterVT = RegVTs[Value]; 655 656 Parts.resize(NumRegs); 657 for (unsigned i = 0; i != NumRegs; ++i) { 658 SDValue P; 659 if (!Flag) { 660 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 661 } else { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 663 *Flag = P.getValue(2); 664 } 665 666 Chain = P.getValue(1); 667 Parts[i] = P; 668 669 // If the source register was virtual and if we know something about it, 670 // add an assert node. 671 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 672 !RegisterVT.isInteger() || RegisterVT.isVector()) 673 continue; 674 675 const FunctionLoweringInfo::LiveOutInfo *LOI = 676 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 677 if (!LOI) 678 continue; 679 680 unsigned RegSize = RegisterVT.getSizeInBits(); 681 unsigned NumSignBits = LOI->NumSignBits; 682 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 683 684 if (NumZeroBits == RegSize) { 685 // The current value is a zero. 686 // Explicitly express that as it would be easier for 687 // optimizations to kick in. 688 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 689 continue; 690 } 691 692 // FIXME: We capture more information than the dag can represent. For 693 // now, just use the tightest assertzext/assertsext possible. 694 bool isSExt = true; 695 EVT FromVT(MVT::Other); 696 if (NumSignBits == RegSize) { 697 isSExt = true; // ASSERT SEXT 1 698 FromVT = MVT::i1; 699 } else if (NumZeroBits >= RegSize - 1) { 700 isSExt = false; // ASSERT ZEXT 1 701 FromVT = MVT::i1; 702 } else if (NumSignBits > RegSize - 8) { 703 isSExt = true; // ASSERT SEXT 8 704 FromVT = MVT::i8; 705 } else if (NumZeroBits >= RegSize - 8) { 706 isSExt = false; // ASSERT ZEXT 8 707 FromVT = MVT::i8; 708 } else if (NumSignBits > RegSize - 16) { 709 isSExt = true; // ASSERT SEXT 16 710 FromVT = MVT::i16; 711 } else if (NumZeroBits >= RegSize - 16) { 712 isSExt = false; // ASSERT ZEXT 16 713 FromVT = MVT::i16; 714 } else if (NumSignBits > RegSize - 32) { 715 isSExt = true; // ASSERT SEXT 32 716 FromVT = MVT::i32; 717 } else if (NumZeroBits >= RegSize - 32) { 718 isSExt = false; // ASSERT ZEXT 32 719 FromVT = MVT::i32; 720 } else { 721 continue; 722 } 723 // Add an assertion node. 724 assert(FromVT != MVT::Other); 725 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 726 RegisterVT, P, DAG.getValueType(FromVT)); 727 } 728 729 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 730 NumRegs, RegisterVT, ValueVT, V); 731 Part += NumRegs; 732 Parts.clear(); 733 } 734 735 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 736 } 737 738 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 739 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 740 const Value *V, 741 ISD::NodeType PreferredExtendType) const { 742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 743 ISD::NodeType ExtendKind = PreferredExtendType; 744 745 // Get the list of the values's legal parts. 746 unsigned NumRegs = Regs.size(); 747 SmallVector<SDValue, 8> Parts(NumRegs); 748 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 749 EVT ValueVT = ValueVTs[Value]; 750 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 751 MVT RegisterVT = RegVTs[Value]; 752 753 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 754 ExtendKind = ISD::ZERO_EXTEND; 755 756 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 757 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 758 Part += NumParts; 759 } 760 761 // Copy the parts into the registers. 762 SmallVector<SDValue, 8> Chains(NumRegs); 763 for (unsigned i = 0; i != NumRegs; ++i) { 764 SDValue Part; 765 if (!Flag) { 766 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 767 } else { 768 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 769 *Flag = Part.getValue(1); 770 } 771 772 Chains[i] = Part.getValue(0); 773 } 774 775 if (NumRegs == 1 || Flag) 776 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 777 // flagged to it. That is the CopyToReg nodes and the user are considered 778 // a single scheduling unit. If we create a TokenFactor and return it as 779 // chain, then the TokenFactor is both a predecessor (operand) of the 780 // user as well as a successor (the TF operands are flagged to the user). 781 // c1, f1 = CopyToReg 782 // c2, f2 = CopyToReg 783 // c3 = TokenFactor c1, c2 784 // ... 785 // = op c3, ..., f2 786 Chain = Chains[NumRegs-1]; 787 else 788 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 789 } 790 791 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 792 unsigned MatchingIdx, const SDLoc &dl, 793 SelectionDAG &DAG, 794 std::vector<SDValue> &Ops) const { 795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 796 797 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 798 if (HasMatching) 799 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 800 else if (!Regs.empty() && 801 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 802 // Put the register class of the virtual registers in the flag word. That 803 // way, later passes can recompute register class constraints for inline 804 // assembly as well as normal instructions. 805 // Don't do this for tied operands that can use the regclass information 806 // from the def. 807 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 808 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 809 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 810 } 811 812 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 813 Ops.push_back(Res); 814 815 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 816 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 818 MVT RegisterVT = RegVTs[Value]; 819 for (unsigned i = 0; i != NumRegs; ++i) { 820 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 821 unsigned TheReg = Regs[Reg++]; 822 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 823 824 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 825 // If we clobbered the stack pointer, MFI should know about it. 826 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 827 } 828 } 829 } 830 } 831 832 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 833 const TargetLibraryInfo *li) { 834 AA = &aa; 835 GFI = gfi; 836 LibInfo = li; 837 DL = &DAG.getDataLayout(); 838 Context = DAG.getContext(); 839 LPadToCallSiteMap.clear(); 840 } 841 842 void SelectionDAGBuilder::clear() { 843 NodeMap.clear(); 844 UnusedArgNodeMap.clear(); 845 PendingLoads.clear(); 846 PendingExports.clear(); 847 CurInst = nullptr; 848 HasTailCall = false; 849 SDNodeOrder = LowestSDNodeOrder; 850 StatepointLowering.clear(); 851 } 852 853 void SelectionDAGBuilder::clearDanglingDebugInfo() { 854 DanglingDebugInfoMap.clear(); 855 } 856 857 SDValue SelectionDAGBuilder::getRoot() { 858 if (PendingLoads.empty()) 859 return DAG.getRoot(); 860 861 if (PendingLoads.size() == 1) { 862 SDValue Root = PendingLoads[0]; 863 DAG.setRoot(Root); 864 PendingLoads.clear(); 865 return Root; 866 } 867 868 // Otherwise, we have to make a token factor node. 869 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 870 PendingLoads); 871 PendingLoads.clear(); 872 DAG.setRoot(Root); 873 return Root; 874 } 875 876 SDValue SelectionDAGBuilder::getControlRoot() { 877 SDValue Root = DAG.getRoot(); 878 879 if (PendingExports.empty()) 880 return Root; 881 882 // Turn all of the CopyToReg chains into one factored node. 883 if (Root.getOpcode() != ISD::EntryToken) { 884 unsigned i = 0, e = PendingExports.size(); 885 for (; i != e; ++i) { 886 assert(PendingExports[i].getNode()->getNumOperands() > 1); 887 if (PendingExports[i].getNode()->getOperand(0) == Root) 888 break; // Don't add the root if we already indirectly depend on it. 889 } 890 891 if (i == e) 892 PendingExports.push_back(Root); 893 } 894 895 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingExports); 897 PendingExports.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 void SelectionDAGBuilder::visit(const Instruction &I) { 903 // Set up outgoing PHI node register values before emitting the terminator. 904 if (isa<TerminatorInst>(&I)) { 905 HandlePHINodesInSuccessorBlocks(I.getParent()); 906 } 907 908 // Increase the SDNodeOrder if dealing with a non-debug instruction. 909 if (!isa<DbgInfoIntrinsic>(I)) 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 SDDbgValue *SDV; 954 if (Val.getNode()) { 955 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 956 Val)) { 957 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 958 DAG.AddDbgValue(SDV, Val.getNode(), false); 959 } 960 } else 961 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 962 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 963 } 964 } 965 966 /// getCopyFromRegs - If there was virtual register allocated for the value V 967 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 968 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 969 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 970 SDValue Result; 971 972 if (It != FuncInfo.ValueMap.end()) { 973 unsigned InReg = It->second; 974 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 975 DAG.getDataLayout(), InReg, Ty); 976 SDValue Chain = DAG.getEntryNode(); 977 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 978 resolveDanglingDebugInfo(V, Result); 979 } 980 981 return Result; 982 } 983 984 /// getValue - Return an SDValue for the given Value. 985 SDValue SelectionDAGBuilder::getValue(const Value *V) { 986 // If we already have an SDValue for this value, use it. It's important 987 // to do this first, so that we don't create a CopyFromReg if we already 988 // have a regular SDValue. 989 SDValue &N = NodeMap[V]; 990 if (N.getNode()) return N; 991 992 // If there's a virtual register allocated and initialized for this 993 // value, use it. 994 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 995 return copyFromReg; 996 997 // Otherwise create a new SDValue and remember it. 998 SDValue Val = getValueImpl(V); 999 NodeMap[V] = Val; 1000 resolveDanglingDebugInfo(V, Val); 1001 return Val; 1002 } 1003 1004 // Return true if SDValue exists for the given Value 1005 bool SelectionDAGBuilder::findValue(const Value *V) const { 1006 return (NodeMap.find(V) != NodeMap.end()) || 1007 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1008 } 1009 1010 /// getNonRegisterValue - Return an SDValue for the given Value, but 1011 /// don't look in FuncInfo.ValueMap for a virtual register. 1012 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1013 // If we already have an SDValue for this value, use it. 1014 SDValue &N = NodeMap[V]; 1015 if (N.getNode()) { 1016 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1017 // Remove the debug location from the node as the node is about to be used 1018 // in a location which may differ from the original debug location. This 1019 // is relevant to Constant and ConstantFP nodes because they can appear 1020 // as constant expressions inside PHI nodes. 1021 N->setDebugLoc(DebugLoc()); 1022 } 1023 return N; 1024 } 1025 1026 // Otherwise create a new SDValue and remember it. 1027 SDValue Val = getValueImpl(V); 1028 NodeMap[V] = Val; 1029 resolveDanglingDebugInfo(V, Val); 1030 return Val; 1031 } 1032 1033 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1034 /// Create an SDValue for the given value. 1035 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1037 1038 if (const Constant *C = dyn_cast<Constant>(V)) { 1039 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1040 1041 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1042 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1043 1044 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1045 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1046 1047 if (isa<ConstantPointerNull>(C)) { 1048 unsigned AS = V->getType()->getPointerAddressSpace(); 1049 return DAG.getConstant(0, getCurSDLoc(), 1050 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1051 } 1052 1053 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1054 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1055 1056 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1057 return DAG.getUNDEF(VT); 1058 1059 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1060 visit(CE->getOpcode(), *CE); 1061 SDValue N1 = NodeMap[V]; 1062 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1063 return N1; 1064 } 1065 1066 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1067 SmallVector<SDValue, 4> Constants; 1068 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1069 OI != OE; ++OI) { 1070 SDNode *Val = getValue(*OI).getNode(); 1071 // If the operand is an empty aggregate, there are no values. 1072 if (!Val) continue; 1073 // Add each leaf value from the operand to the Constants list 1074 // to form a flattened list of all the values. 1075 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1076 Constants.push_back(SDValue(Val, i)); 1077 } 1078 1079 return DAG.getMergeValues(Constants, getCurSDLoc()); 1080 } 1081 1082 if (const ConstantDataSequential *CDS = 1083 dyn_cast<ConstantDataSequential>(C)) { 1084 SmallVector<SDValue, 4> Ops; 1085 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1086 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1087 // Add each leaf value from the operand to the Constants list 1088 // to form a flattened list of all the values. 1089 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1090 Ops.push_back(SDValue(Val, i)); 1091 } 1092 1093 if (isa<ArrayType>(CDS->getType())) 1094 return DAG.getMergeValues(Ops, getCurSDLoc()); 1095 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1096 VT, Ops); 1097 } 1098 1099 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1100 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1101 "Unknown struct or array constant!"); 1102 1103 SmallVector<EVT, 4> ValueVTs; 1104 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1105 unsigned NumElts = ValueVTs.size(); 1106 if (NumElts == 0) 1107 return SDValue(); // empty struct 1108 SmallVector<SDValue, 4> Constants(NumElts); 1109 for (unsigned i = 0; i != NumElts; ++i) { 1110 EVT EltVT = ValueVTs[i]; 1111 if (isa<UndefValue>(C)) 1112 Constants[i] = DAG.getUNDEF(EltVT); 1113 else if (EltVT.isFloatingPoint()) 1114 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1115 else 1116 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1117 } 1118 1119 return DAG.getMergeValues(Constants, getCurSDLoc()); 1120 } 1121 1122 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1123 return DAG.getBlockAddress(BA, VT); 1124 1125 VectorType *VecTy = cast<VectorType>(V->getType()); 1126 unsigned NumElements = VecTy->getNumElements(); 1127 1128 // Now that we know the number and type of the elements, get that number of 1129 // elements into the Ops array based on what kind of constant it is. 1130 SmallVector<SDValue, 16> Ops; 1131 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1132 for (unsigned i = 0; i != NumElements; ++i) 1133 Ops.push_back(getValue(CV->getOperand(i))); 1134 } else { 1135 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1136 EVT EltVT = 1137 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1138 1139 SDValue Op; 1140 if (EltVT.isFloatingPoint()) 1141 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1142 else 1143 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1144 Ops.assign(NumElements, Op); 1145 } 1146 1147 // Create a BUILD_VECTOR node. 1148 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1149 } 1150 1151 // If this is a static alloca, generate it as the frameindex instead of 1152 // computation. 1153 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1154 DenseMap<const AllocaInst*, int>::iterator SI = 1155 FuncInfo.StaticAllocaMap.find(AI); 1156 if (SI != FuncInfo.StaticAllocaMap.end()) 1157 return DAG.getFrameIndex(SI->second, 1158 TLI.getPointerTy(DAG.getDataLayout())); 1159 } 1160 1161 // If this is an instruction which fast-isel has deferred, select it now. 1162 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1163 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1164 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1165 Inst->getType()); 1166 SDValue Chain = DAG.getEntryNode(); 1167 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1168 } 1169 1170 llvm_unreachable("Can't get register for value!"); 1171 } 1172 1173 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1174 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1175 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1176 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1177 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1178 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1179 if (IsMSVCCXX || IsCoreCLR) 1180 CatchPadMBB->setIsEHFuncletEntry(); 1181 1182 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1183 } 1184 1185 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1186 // Update machine-CFG edge. 1187 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1188 FuncInfo.MBB->addSuccessor(TargetMBB); 1189 1190 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1191 bool IsSEH = isAsynchronousEHPersonality(Pers); 1192 if (IsSEH) { 1193 // If this is not a fall-through branch or optimizations are switched off, 1194 // emit the branch. 1195 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1196 TM.getOptLevel() == CodeGenOpt::None) 1197 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1198 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1199 return; 1200 } 1201 1202 // Figure out the funclet membership for the catchret's successor. 1203 // This will be used by the FuncletLayout pass to determine how to order the 1204 // BB's. 1205 // A 'catchret' returns to the outer scope's color. 1206 Value *ParentPad = I.getCatchSwitchParentPad(); 1207 const BasicBlock *SuccessorColor; 1208 if (isa<ConstantTokenNone>(ParentPad)) 1209 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1210 else 1211 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1212 assert(SuccessorColor && "No parent funclet for catchret!"); 1213 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1214 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1215 1216 // Create the terminator node. 1217 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1218 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1219 DAG.getBasicBlock(SuccessorColorMBB)); 1220 DAG.setRoot(Ret); 1221 } 1222 1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1224 // Don't emit any special code for the cleanuppad instruction. It just marks 1225 // the start of a funclet. 1226 FuncInfo.MBB->setIsEHFuncletEntry(); 1227 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1228 } 1229 1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1231 /// many places it could ultimately go. In the IR, we have a single unwind 1232 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1233 /// This function skips over imaginary basic blocks that hold catchswitch 1234 /// instructions, and finds all the "real" machine 1235 /// basic block destinations. As those destinations may not be successors of 1236 /// EHPadBB, here we also calculate the edge probability to those destinations. 1237 /// The passed-in Prob is the edge probability to EHPadBB. 1238 static void findUnwindDestinations( 1239 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1240 BranchProbability Prob, 1241 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1242 &UnwindDests) { 1243 EHPersonality Personality = 1244 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1245 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1246 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1247 1248 while (EHPadBB) { 1249 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1250 BasicBlock *NewEHPadBB = nullptr; 1251 if (isa<LandingPadInst>(Pad)) { 1252 // Stop on landingpads. They are not funclets. 1253 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1254 break; 1255 } else if (isa<CleanupPadInst>(Pad)) { 1256 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1257 // personalities. 1258 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1259 UnwindDests.back().first->setIsEHFuncletEntry(); 1260 break; 1261 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1262 // Add the catchpad handlers to the possible destinations. 1263 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1265 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1266 if (IsMSVCCXX || IsCoreCLR) 1267 UnwindDests.back().first->setIsEHFuncletEntry(); 1268 } 1269 NewEHPadBB = CatchSwitch->getUnwindDest(); 1270 } else { 1271 continue; 1272 } 1273 1274 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1275 if (BPI && NewEHPadBB) 1276 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1277 EHPadBB = NewEHPadBB; 1278 } 1279 } 1280 1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1282 // Update successor info. 1283 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1284 auto UnwindDest = I.getUnwindDest(); 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 BranchProbability UnwindDestProb = 1287 (BPI && UnwindDest) 1288 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1289 : BranchProbability::getZero(); 1290 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1291 for (auto &UnwindDest : UnwindDests) { 1292 UnwindDest.first->setIsEHPad(); 1293 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1294 } 1295 FuncInfo.MBB->normalizeSuccProbs(); 1296 1297 // Create the terminator node. 1298 SDValue Ret = 1299 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1300 DAG.setRoot(Ret); 1301 } 1302 1303 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1304 report_fatal_error("visitCatchSwitch not yet implemented!"); 1305 } 1306 1307 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1309 auto &DL = DAG.getDataLayout(); 1310 SDValue Chain = getControlRoot(); 1311 SmallVector<ISD::OutputArg, 8> Outs; 1312 SmallVector<SDValue, 8> OutVals; 1313 1314 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1315 // lower 1316 // 1317 // %val = call <ty> @llvm.experimental.deoptimize() 1318 // ret <ty> %val 1319 // 1320 // differently. 1321 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1322 LowerDeoptimizingReturn(); 1323 return; 1324 } 1325 1326 if (!FuncInfo.CanLowerReturn) { 1327 unsigned DemoteReg = FuncInfo.DemoteRegister; 1328 const Function *F = I.getParent()->getParent(); 1329 1330 // Emit a store of the return value through the virtual register. 1331 // Leave Outs empty so that LowerReturn won't try to load return 1332 // registers the usual way. 1333 SmallVector<EVT, 1> PtrValueVTs; 1334 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1335 PtrValueVTs); 1336 1337 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1338 DemoteReg, PtrValueVTs[0]); 1339 SDValue RetOp = getValue(I.getOperand(0)); 1340 1341 SmallVector<EVT, 4> ValueVTs; 1342 SmallVector<uint64_t, 4> Offsets; 1343 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1344 unsigned NumValues = ValueVTs.size(); 1345 1346 // An aggregate return value cannot wrap around the address space, so 1347 // offsets to its parts don't wrap either. 1348 SDNodeFlags Flags; 1349 Flags.setNoUnsignedWrap(true); 1350 1351 SmallVector<SDValue, 4> Chains(NumValues); 1352 for (unsigned i = 0; i != NumValues; ++i) { 1353 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1354 RetPtr.getValueType(), RetPtr, 1355 DAG.getIntPtrConstant(Offsets[i], 1356 getCurSDLoc()), 1357 &Flags); 1358 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1359 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1360 // FIXME: better loc info would be nice. 1361 Add, MachinePointerInfo()); 1362 } 1363 1364 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1365 MVT::Other, Chains); 1366 } else if (I.getNumOperands() != 0) { 1367 SmallVector<EVT, 4> ValueVTs; 1368 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1369 unsigned NumValues = ValueVTs.size(); 1370 if (NumValues) { 1371 SDValue RetOp = getValue(I.getOperand(0)); 1372 1373 const Function *F = I.getParent()->getParent(); 1374 1375 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1376 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1377 Attribute::SExt)) 1378 ExtendKind = ISD::SIGN_EXTEND; 1379 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1380 Attribute::ZExt)) 1381 ExtendKind = ISD::ZERO_EXTEND; 1382 1383 LLVMContext &Context = F->getContext(); 1384 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1385 Attribute::InReg); 1386 1387 for (unsigned j = 0; j != NumValues; ++j) { 1388 EVT VT = ValueVTs[j]; 1389 1390 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1391 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1392 1393 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1394 MVT PartVT = TLI.getRegisterType(Context, VT); 1395 SmallVector<SDValue, 4> Parts(NumParts); 1396 getCopyToParts(DAG, getCurSDLoc(), 1397 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1398 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1399 1400 // 'inreg' on function refers to return value 1401 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1402 if (RetInReg) 1403 Flags.setInReg(); 1404 1405 // Propagate extension type if any 1406 if (ExtendKind == ISD::SIGN_EXTEND) 1407 Flags.setSExt(); 1408 else if (ExtendKind == ISD::ZERO_EXTEND) 1409 Flags.setZExt(); 1410 1411 for (unsigned i = 0; i < NumParts; ++i) { 1412 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1413 VT, /*isfixed=*/true, 0, 0)); 1414 OutVals.push_back(Parts[i]); 1415 } 1416 } 1417 } 1418 } 1419 1420 // Push in swifterror virtual register as the last element of Outs. This makes 1421 // sure swifterror virtual register will be returned in the swifterror 1422 // physical register. 1423 const Function *F = I.getParent()->getParent(); 1424 if (TLI.supportSwiftError() && 1425 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1426 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1427 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1428 Flags.setSwiftError(); 1429 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1430 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1431 true /*isfixed*/, 1 /*origidx*/, 1432 0 /*partOffs*/)); 1433 // Create SDNode for the swifterror virtual register. 1434 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1435 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1436 EVT(TLI.getPointerTy(DL)))); 1437 } 1438 1439 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1440 CallingConv::ID CallConv = 1441 DAG.getMachineFunction().getFunction()->getCallingConv(); 1442 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1443 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1444 1445 // Verify that the target's LowerReturn behaved as expected. 1446 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1447 "LowerReturn didn't return a valid chain!"); 1448 1449 // Update the DAG with the new chain value resulting from return lowering. 1450 DAG.setRoot(Chain); 1451 } 1452 1453 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1454 /// created for it, emit nodes to copy the value into the virtual 1455 /// registers. 1456 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1457 // Skip empty types 1458 if (V->getType()->isEmptyTy()) 1459 return; 1460 1461 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1462 if (VMI != FuncInfo.ValueMap.end()) { 1463 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1464 CopyValueToVirtualRegister(V, VMI->second); 1465 } 1466 } 1467 1468 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1469 /// the current basic block, add it to ValueMap now so that we'll get a 1470 /// CopyTo/FromReg. 1471 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1472 // No need to export constants. 1473 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1474 1475 // Already exported? 1476 if (FuncInfo.isExportedInst(V)) return; 1477 1478 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1479 CopyValueToVirtualRegister(V, Reg); 1480 } 1481 1482 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1483 const BasicBlock *FromBB) { 1484 // The operands of the setcc have to be in this block. We don't know 1485 // how to export them from some other block. 1486 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1487 // Can export from current BB. 1488 if (VI->getParent() == FromBB) 1489 return true; 1490 1491 // Is already exported, noop. 1492 return FuncInfo.isExportedInst(V); 1493 } 1494 1495 // If this is an argument, we can export it if the BB is the entry block or 1496 // if it is already exported. 1497 if (isa<Argument>(V)) { 1498 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1499 return true; 1500 1501 // Otherwise, can only export this if it is already exported. 1502 return FuncInfo.isExportedInst(V); 1503 } 1504 1505 // Otherwise, constants can always be exported. 1506 return true; 1507 } 1508 1509 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1510 BranchProbability 1511 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1512 const MachineBasicBlock *Dst) const { 1513 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1514 const BasicBlock *SrcBB = Src->getBasicBlock(); 1515 const BasicBlock *DstBB = Dst->getBasicBlock(); 1516 if (!BPI) { 1517 // If BPI is not available, set the default probability as 1 / N, where N is 1518 // the number of successors. 1519 auto SuccSize = std::max<uint32_t>( 1520 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1521 return BranchProbability(1, SuccSize); 1522 } 1523 return BPI->getEdgeProbability(SrcBB, DstBB); 1524 } 1525 1526 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1527 MachineBasicBlock *Dst, 1528 BranchProbability Prob) { 1529 if (!FuncInfo.BPI) 1530 Src->addSuccessorWithoutProb(Dst); 1531 else { 1532 if (Prob.isUnknown()) 1533 Prob = getEdgeProbability(Src, Dst); 1534 Src->addSuccessor(Dst, Prob); 1535 } 1536 } 1537 1538 static bool InBlock(const Value *V, const BasicBlock *BB) { 1539 if (const Instruction *I = dyn_cast<Instruction>(V)) 1540 return I->getParent() == BB; 1541 return true; 1542 } 1543 1544 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1545 /// This function emits a branch and is used at the leaves of an OR or an 1546 /// AND operator tree. 1547 /// 1548 void 1549 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1550 MachineBasicBlock *TBB, 1551 MachineBasicBlock *FBB, 1552 MachineBasicBlock *CurBB, 1553 MachineBasicBlock *SwitchBB, 1554 BranchProbability TProb, 1555 BranchProbability FProb, 1556 bool InvertCond) { 1557 const BasicBlock *BB = CurBB->getBasicBlock(); 1558 1559 // If the leaf of the tree is a comparison, merge the condition into 1560 // the caseblock. 1561 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1562 // The operands of the cmp have to be in this block. We don't know 1563 // how to export them from some other block. If this is the first block 1564 // of the sequence, no exporting is needed. 1565 if (CurBB == SwitchBB || 1566 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1567 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1568 ISD::CondCode Condition; 1569 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1570 ICmpInst::Predicate Pred = 1571 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1572 Condition = getICmpCondCode(Pred); 1573 } else { 1574 const FCmpInst *FC = cast<FCmpInst>(Cond); 1575 FCmpInst::Predicate Pred = 1576 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1577 Condition = getFCmpCondCode(Pred); 1578 if (TM.Options.NoNaNsFPMath) 1579 Condition = getFCmpCodeWithoutNaN(Condition); 1580 } 1581 1582 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1583 TBB, FBB, CurBB, TProb, FProb); 1584 SwitchCases.push_back(CB); 1585 return; 1586 } 1587 } 1588 1589 // Create a CaseBlock record representing this branch. 1590 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1591 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1592 nullptr, TBB, FBB, CurBB, TProb, FProb); 1593 SwitchCases.push_back(CB); 1594 } 1595 1596 /// FindMergedConditions - If Cond is an expression like 1597 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1598 MachineBasicBlock *TBB, 1599 MachineBasicBlock *FBB, 1600 MachineBasicBlock *CurBB, 1601 MachineBasicBlock *SwitchBB, 1602 Instruction::BinaryOps Opc, 1603 BranchProbability TProb, 1604 BranchProbability FProb, 1605 bool InvertCond) { 1606 // Skip over not part of the tree and remember to invert op and operands at 1607 // next level. 1608 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1609 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1610 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1611 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1612 !InvertCond); 1613 return; 1614 } 1615 } 1616 1617 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1618 // Compute the effective opcode for Cond, taking into account whether it needs 1619 // to be inverted, e.g. 1620 // and (not (or A, B)), C 1621 // gets lowered as 1622 // and (and (not A, not B), C) 1623 unsigned BOpc = 0; 1624 if (BOp) { 1625 BOpc = BOp->getOpcode(); 1626 if (InvertCond) { 1627 if (BOpc == Instruction::And) 1628 BOpc = Instruction::Or; 1629 else if (BOpc == Instruction::Or) 1630 BOpc = Instruction::And; 1631 } 1632 } 1633 1634 // If this node is not part of the or/and tree, emit it as a branch. 1635 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1636 BOpc != Opc || !BOp->hasOneUse() || 1637 BOp->getParent() != CurBB->getBasicBlock() || 1638 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1639 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1640 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1641 TProb, FProb, InvertCond); 1642 return; 1643 } 1644 1645 // Create TmpBB after CurBB. 1646 MachineFunction::iterator BBI(CurBB); 1647 MachineFunction &MF = DAG.getMachineFunction(); 1648 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1649 CurBB->getParent()->insert(++BBI, TmpBB); 1650 1651 if (Opc == Instruction::Or) { 1652 // Codegen X | Y as: 1653 // BB1: 1654 // jmp_if_X TBB 1655 // jmp TmpBB 1656 // TmpBB: 1657 // jmp_if_Y TBB 1658 // jmp FBB 1659 // 1660 1661 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1662 // The requirement is that 1663 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1664 // = TrueProb for original BB. 1665 // Assuming the original probabilities are A and B, one choice is to set 1666 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1667 // A/(1+B) and 2B/(1+B). This choice assumes that 1668 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1669 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1670 // TmpBB, but the math is more complicated. 1671 1672 auto NewTrueProb = TProb / 2; 1673 auto NewFalseProb = TProb / 2 + FProb; 1674 // Emit the LHS condition. 1675 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1676 NewTrueProb, NewFalseProb, InvertCond); 1677 1678 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1679 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1680 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1681 // Emit the RHS condition into TmpBB. 1682 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1683 Probs[0], Probs[1], InvertCond); 1684 } else { 1685 assert(Opc == Instruction::And && "Unknown merge op!"); 1686 // Codegen X & Y as: 1687 // BB1: 1688 // jmp_if_X TmpBB 1689 // jmp FBB 1690 // TmpBB: 1691 // jmp_if_Y TBB 1692 // jmp FBB 1693 // 1694 // This requires creation of TmpBB after CurBB. 1695 1696 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1697 // The requirement is that 1698 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1699 // = FalseProb for original BB. 1700 // Assuming the original probabilities are A and B, one choice is to set 1701 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1702 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1703 // TrueProb for BB1 * FalseProb for TmpBB. 1704 1705 auto NewTrueProb = TProb + FProb / 2; 1706 auto NewFalseProb = FProb / 2; 1707 // Emit the LHS condition. 1708 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1709 NewTrueProb, NewFalseProb, InvertCond); 1710 1711 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1712 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1713 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1714 // Emit the RHS condition into TmpBB. 1715 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1716 Probs[0], Probs[1], InvertCond); 1717 } 1718 } 1719 1720 /// If the set of cases should be emitted as a series of branches, return true. 1721 /// If we should emit this as a bunch of and/or'd together conditions, return 1722 /// false. 1723 bool 1724 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1725 if (Cases.size() != 2) return true; 1726 1727 // If this is two comparisons of the same values or'd or and'd together, they 1728 // will get folded into a single comparison, so don't emit two blocks. 1729 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1730 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1731 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1732 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1733 return false; 1734 } 1735 1736 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1737 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1738 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1739 Cases[0].CC == Cases[1].CC && 1740 isa<Constant>(Cases[0].CmpRHS) && 1741 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1742 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1743 return false; 1744 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1745 return false; 1746 } 1747 1748 return true; 1749 } 1750 1751 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1752 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1753 1754 // Update machine-CFG edges. 1755 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1756 1757 if (I.isUnconditional()) { 1758 // Update machine-CFG edges. 1759 BrMBB->addSuccessor(Succ0MBB); 1760 1761 // If this is not a fall-through branch or optimizations are switched off, 1762 // emit the branch. 1763 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1764 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1765 MVT::Other, getControlRoot(), 1766 DAG.getBasicBlock(Succ0MBB))); 1767 1768 return; 1769 } 1770 1771 // If this condition is one of the special cases we handle, do special stuff 1772 // now. 1773 const Value *CondVal = I.getCondition(); 1774 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1775 1776 // If this is a series of conditions that are or'd or and'd together, emit 1777 // this as a sequence of branches instead of setcc's with and/or operations. 1778 // As long as jumps are not expensive, this should improve performance. 1779 // For example, instead of something like: 1780 // cmp A, B 1781 // C = seteq 1782 // cmp D, E 1783 // F = setle 1784 // or C, F 1785 // jnz foo 1786 // Emit: 1787 // cmp A, B 1788 // je foo 1789 // cmp D, E 1790 // jle foo 1791 // 1792 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1793 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1794 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1795 !I.getMetadata(LLVMContext::MD_unpredictable) && 1796 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1797 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1798 Opcode, 1799 getEdgeProbability(BrMBB, Succ0MBB), 1800 getEdgeProbability(BrMBB, Succ1MBB), 1801 /*InvertCond=*/false); 1802 // If the compares in later blocks need to use values not currently 1803 // exported from this block, export them now. This block should always 1804 // be the first entry. 1805 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1806 1807 // Allow some cases to be rejected. 1808 if (ShouldEmitAsBranches(SwitchCases)) { 1809 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1810 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1811 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1812 } 1813 1814 // Emit the branch for this block. 1815 visitSwitchCase(SwitchCases[0], BrMBB); 1816 SwitchCases.erase(SwitchCases.begin()); 1817 return; 1818 } 1819 1820 // Okay, we decided not to do this, remove any inserted MBB's and clear 1821 // SwitchCases. 1822 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1823 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1824 1825 SwitchCases.clear(); 1826 } 1827 } 1828 1829 // Create a CaseBlock record representing this branch. 1830 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1831 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1832 1833 // Use visitSwitchCase to actually insert the fast branch sequence for this 1834 // cond branch. 1835 visitSwitchCase(CB, BrMBB); 1836 } 1837 1838 /// visitSwitchCase - Emits the necessary code to represent a single node in 1839 /// the binary search tree resulting from lowering a switch instruction. 1840 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1841 MachineBasicBlock *SwitchBB) { 1842 SDValue Cond; 1843 SDValue CondLHS = getValue(CB.CmpLHS); 1844 SDLoc dl = getCurSDLoc(); 1845 1846 // Build the setcc now. 1847 if (!CB.CmpMHS) { 1848 // Fold "(X == true)" to X and "(X == false)" to !X to 1849 // handle common cases produced by branch lowering. 1850 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1851 CB.CC == ISD::SETEQ) 1852 Cond = CondLHS; 1853 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1854 CB.CC == ISD::SETEQ) { 1855 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1856 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1857 } else 1858 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1859 } else { 1860 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1861 1862 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1863 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1864 1865 SDValue CmpOp = getValue(CB.CmpMHS); 1866 EVT VT = CmpOp.getValueType(); 1867 1868 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1869 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1870 ISD::SETLE); 1871 } else { 1872 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1873 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1874 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1875 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1876 } 1877 } 1878 1879 // Update successor info 1880 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1881 // TrueBB and FalseBB are always different unless the incoming IR is 1882 // degenerate. This only happens when running llc on weird IR. 1883 if (CB.TrueBB != CB.FalseBB) 1884 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1885 SwitchBB->normalizeSuccProbs(); 1886 1887 // If the lhs block is the next block, invert the condition so that we can 1888 // fall through to the lhs instead of the rhs block. 1889 if (CB.TrueBB == NextBlock(SwitchBB)) { 1890 std::swap(CB.TrueBB, CB.FalseBB); 1891 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1892 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1893 } 1894 1895 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1896 MVT::Other, getControlRoot(), Cond, 1897 DAG.getBasicBlock(CB.TrueBB)); 1898 1899 // Insert the false branch. Do this even if it's a fall through branch, 1900 // this makes it easier to do DAG optimizations which require inverting 1901 // the branch condition. 1902 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1903 DAG.getBasicBlock(CB.FalseBB)); 1904 1905 DAG.setRoot(BrCond); 1906 } 1907 1908 /// visitJumpTable - Emit JumpTable node in the current MBB 1909 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1910 // Emit the code for the jump table 1911 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1912 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1913 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1914 JT.Reg, PTy); 1915 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1916 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1917 MVT::Other, Index.getValue(1), 1918 Table, Index); 1919 DAG.setRoot(BrJumpTable); 1920 } 1921 1922 /// visitJumpTableHeader - This function emits necessary code to produce index 1923 /// in the JumpTable from switch case. 1924 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1925 JumpTableHeader &JTH, 1926 MachineBasicBlock *SwitchBB) { 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // Subtract the lowest switch case value from the value being switched on and 1930 // conditional branch to default mbb if the result is greater than the 1931 // difference between smallest and largest cases. 1932 SDValue SwitchOp = getValue(JTH.SValue); 1933 EVT VT = SwitchOp.getValueType(); 1934 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1935 DAG.getConstant(JTH.First, dl, VT)); 1936 1937 // The SDNode we just created, which holds the value being switched on minus 1938 // the smallest case value, needs to be copied to a virtual register so it 1939 // can be used as an index into the jump table in a subsequent basic block. 1940 // This value may be smaller or larger than the target's pointer type, and 1941 // therefore require extension or truncating. 1942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1943 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1944 1945 unsigned JumpTableReg = 1946 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1947 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1948 JumpTableReg, SwitchOp); 1949 JT.Reg = JumpTableReg; 1950 1951 // Emit the range check for the jump table, and branch to the default block 1952 // for the switch statement if the value being switched on exceeds the largest 1953 // case in the switch. 1954 SDValue CMP = DAG.getSetCC( 1955 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1956 Sub.getValueType()), 1957 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1958 1959 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1960 MVT::Other, CopyTo, CMP, 1961 DAG.getBasicBlock(JT.Default)); 1962 1963 // Avoid emitting unnecessary branches to the next block. 1964 if (JT.MBB != NextBlock(SwitchBB)) 1965 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1966 DAG.getBasicBlock(JT.MBB)); 1967 1968 DAG.setRoot(BrCond); 1969 } 1970 1971 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 1972 /// variable if there exists one. 1973 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 1974 SDValue &Chain) { 1975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1976 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1977 MachineFunction &MF = DAG.getMachineFunction(); 1978 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 1979 MachineSDNode *Node = 1980 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 1981 if (Global) { 1982 MachinePointerInfo MPInfo(Global); 1983 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 1984 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1985 MachineMemOperand::MODereferenceable; 1986 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 1987 DAG.getEVTAlignment(PtrTy)); 1988 Node->setMemRefs(MemRefs, MemRefs + 1); 1989 } 1990 return SDValue(Node, 0); 1991 } 1992 1993 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1994 /// tail spliced into a stack protector check success bb. 1995 /// 1996 /// For a high level explanation of how this fits into the stack protector 1997 /// generation see the comment on the declaration of class 1998 /// StackProtectorDescriptor. 1999 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2000 MachineBasicBlock *ParentBB) { 2001 2002 // First create the loads to the guard/stack slot for the comparison. 2003 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2004 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2005 2006 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2007 int FI = MFI.getStackProtectorIndex(); 2008 2009 SDValue Guard; 2010 SDLoc dl = getCurSDLoc(); 2011 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2012 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2013 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2014 2015 // Generate code to load the content of the guard slot. 2016 SDValue StackSlot = DAG.getLoad( 2017 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2018 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2019 MachineMemOperand::MOVolatile); 2020 2021 // Retrieve guard check function, nullptr if instrumentation is inlined. 2022 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2023 // The target provides a guard check function to validate the guard value. 2024 // Generate a call to that function with the content of the guard slot as 2025 // argument. 2026 auto *Fn = cast<Function>(GuardCheck); 2027 FunctionType *FnTy = Fn->getFunctionType(); 2028 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2029 2030 TargetLowering::ArgListTy Args; 2031 TargetLowering::ArgListEntry Entry; 2032 Entry.Node = StackSlot; 2033 Entry.Ty = FnTy->getParamType(0); 2034 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2035 Entry.isInReg = true; 2036 Args.push_back(Entry); 2037 2038 TargetLowering::CallLoweringInfo CLI(DAG); 2039 CLI.setDebugLoc(getCurSDLoc()) 2040 .setChain(DAG.getEntryNode()) 2041 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2042 getValue(GuardCheck), std::move(Args)); 2043 2044 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2045 DAG.setRoot(Result.second); 2046 return; 2047 } 2048 2049 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2050 // Otherwise, emit a volatile load to retrieve the stack guard value. 2051 SDValue Chain = DAG.getEntryNode(); 2052 if (TLI.useLoadStackGuardNode()) { 2053 Guard = getLoadStackGuard(DAG, dl, Chain); 2054 } else { 2055 const Value *IRGuard = TLI.getSDagStackGuard(M); 2056 SDValue GuardPtr = getValue(IRGuard); 2057 2058 Guard = 2059 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2060 Align, MachineMemOperand::MOVolatile); 2061 } 2062 2063 // Perform the comparison via a subtract/getsetcc. 2064 EVT VT = Guard.getValueType(); 2065 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2066 2067 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2068 *DAG.getContext(), 2069 Sub.getValueType()), 2070 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2071 2072 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2073 // branch to failure MBB. 2074 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2075 MVT::Other, StackSlot.getOperand(0), 2076 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2077 // Otherwise branch to success MBB. 2078 SDValue Br = DAG.getNode(ISD::BR, dl, 2079 MVT::Other, BrCond, 2080 DAG.getBasicBlock(SPD.getSuccessMBB())); 2081 2082 DAG.setRoot(Br); 2083 } 2084 2085 /// Codegen the failure basic block for a stack protector check. 2086 /// 2087 /// A failure stack protector machine basic block consists simply of a call to 2088 /// __stack_chk_fail(). 2089 /// 2090 /// For a high level explanation of how this fits into the stack protector 2091 /// generation see the comment on the declaration of class 2092 /// StackProtectorDescriptor. 2093 void 2094 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2096 SDValue Chain = 2097 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2098 None, false, getCurSDLoc(), false, false).second; 2099 DAG.setRoot(Chain); 2100 } 2101 2102 /// visitBitTestHeader - This function emits necessary code to produce value 2103 /// suitable for "bit tests" 2104 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2105 MachineBasicBlock *SwitchBB) { 2106 SDLoc dl = getCurSDLoc(); 2107 2108 // Subtract the minimum value 2109 SDValue SwitchOp = getValue(B.SValue); 2110 EVT VT = SwitchOp.getValueType(); 2111 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2112 DAG.getConstant(B.First, dl, VT)); 2113 2114 // Check range 2115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2116 SDValue RangeCmp = DAG.getSetCC( 2117 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2118 Sub.getValueType()), 2119 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2120 2121 // Determine the type of the test operands. 2122 bool UsePtrType = false; 2123 if (!TLI.isTypeLegal(VT)) 2124 UsePtrType = true; 2125 else { 2126 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2127 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2128 // Switch table case range are encoded into series of masks. 2129 // Just use pointer type, it's guaranteed to fit. 2130 UsePtrType = true; 2131 break; 2132 } 2133 } 2134 if (UsePtrType) { 2135 VT = TLI.getPointerTy(DAG.getDataLayout()); 2136 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2137 } 2138 2139 B.RegVT = VT.getSimpleVT(); 2140 B.Reg = FuncInfo.CreateReg(B.RegVT); 2141 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2142 2143 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2144 2145 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2146 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2147 SwitchBB->normalizeSuccProbs(); 2148 2149 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2150 MVT::Other, CopyTo, RangeCmp, 2151 DAG.getBasicBlock(B.Default)); 2152 2153 // Avoid emitting unnecessary branches to the next block. 2154 if (MBB != NextBlock(SwitchBB)) 2155 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2156 DAG.getBasicBlock(MBB)); 2157 2158 DAG.setRoot(BrRange); 2159 } 2160 2161 /// visitBitTestCase - this function produces one "bit test" 2162 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2163 MachineBasicBlock* NextMBB, 2164 BranchProbability BranchProbToNext, 2165 unsigned Reg, 2166 BitTestCase &B, 2167 MachineBasicBlock *SwitchBB) { 2168 SDLoc dl = getCurSDLoc(); 2169 MVT VT = BB.RegVT; 2170 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2171 SDValue Cmp; 2172 unsigned PopCount = countPopulation(B.Mask); 2173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2174 if (PopCount == 1) { 2175 // Testing for a single bit; just compare the shift count with what it 2176 // would need to be to shift a 1 bit in that position. 2177 Cmp = DAG.getSetCC( 2178 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2179 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2180 ISD::SETEQ); 2181 } else if (PopCount == BB.Range) { 2182 // There is only one zero bit in the range, test for it directly. 2183 Cmp = DAG.getSetCC( 2184 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2185 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2186 ISD::SETNE); 2187 } else { 2188 // Make desired shift 2189 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2190 DAG.getConstant(1, dl, VT), ShiftOp); 2191 2192 // Emit bit tests and jumps 2193 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2194 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2195 Cmp = DAG.getSetCC( 2196 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2197 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2198 } 2199 2200 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2201 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2202 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2203 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2204 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2205 // one as they are relative probabilities (and thus work more like weights), 2206 // and hence we need to normalize them to let the sum of them become one. 2207 SwitchBB->normalizeSuccProbs(); 2208 2209 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2210 MVT::Other, getControlRoot(), 2211 Cmp, DAG.getBasicBlock(B.TargetBB)); 2212 2213 // Avoid emitting unnecessary branches to the next block. 2214 if (NextMBB != NextBlock(SwitchBB)) 2215 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2216 DAG.getBasicBlock(NextMBB)); 2217 2218 DAG.setRoot(BrAnd); 2219 } 2220 2221 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2222 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2223 2224 // Retrieve successors. Look through artificial IR level blocks like 2225 // catchswitch for successors. 2226 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2227 const BasicBlock *EHPadBB = I.getSuccessor(1); 2228 2229 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2230 // have to do anything here to lower funclet bundles. 2231 assert(!I.hasOperandBundlesOtherThan( 2232 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2233 "Cannot lower invokes with arbitrary operand bundles yet!"); 2234 2235 const Value *Callee(I.getCalledValue()); 2236 const Function *Fn = dyn_cast<Function>(Callee); 2237 if (isa<InlineAsm>(Callee)) 2238 visitInlineAsm(&I); 2239 else if (Fn && Fn->isIntrinsic()) { 2240 switch (Fn->getIntrinsicID()) { 2241 default: 2242 llvm_unreachable("Cannot invoke this intrinsic"); 2243 case Intrinsic::donothing: 2244 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2245 break; 2246 case Intrinsic::experimental_patchpoint_void: 2247 case Intrinsic::experimental_patchpoint_i64: 2248 visitPatchpoint(&I, EHPadBB); 2249 break; 2250 case Intrinsic::experimental_gc_statepoint: 2251 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2252 break; 2253 } 2254 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2255 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2256 // Eventually we will support lowering the @llvm.experimental.deoptimize 2257 // intrinsic, and right now there are no plans to support other intrinsics 2258 // with deopt state. 2259 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2260 } else { 2261 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2262 } 2263 2264 // If the value of the invoke is used outside of its defining block, make it 2265 // available as a virtual register. 2266 // We already took care of the exported value for the statepoint instruction 2267 // during call to the LowerStatepoint. 2268 if (!isStatepoint(I)) { 2269 CopyToExportRegsIfNeeded(&I); 2270 } 2271 2272 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2273 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2274 BranchProbability EHPadBBProb = 2275 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2276 : BranchProbability::getZero(); 2277 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2278 2279 // Update successor info. 2280 addSuccessorWithProb(InvokeMBB, Return); 2281 for (auto &UnwindDest : UnwindDests) { 2282 UnwindDest.first->setIsEHPad(); 2283 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2284 } 2285 InvokeMBB->normalizeSuccProbs(); 2286 2287 // Drop into normal successor. 2288 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2289 MVT::Other, getControlRoot(), 2290 DAG.getBasicBlock(Return))); 2291 } 2292 2293 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2294 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2295 } 2296 2297 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2298 assert(FuncInfo.MBB->isEHPad() && 2299 "Call to landingpad not in landing pad!"); 2300 2301 MachineBasicBlock *MBB = FuncInfo.MBB; 2302 addLandingPadInfo(LP, *MBB); 2303 2304 // If there aren't registers to copy the values into (e.g., during SjLj 2305 // exceptions), then don't bother to create these DAG nodes. 2306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2307 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2308 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2309 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2310 return; 2311 2312 // If landingpad's return type is token type, we don't create DAG nodes 2313 // for its exception pointer and selector value. The extraction of exception 2314 // pointer or selector value from token type landingpads is not currently 2315 // supported. 2316 if (LP.getType()->isTokenTy()) 2317 return; 2318 2319 SmallVector<EVT, 2> ValueVTs; 2320 SDLoc dl = getCurSDLoc(); 2321 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2322 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2323 2324 // Get the two live-in registers as SDValues. The physregs have already been 2325 // copied into virtual registers. 2326 SDValue Ops[2]; 2327 if (FuncInfo.ExceptionPointerVirtReg) { 2328 Ops[0] = DAG.getZExtOrTrunc( 2329 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2330 FuncInfo.ExceptionPointerVirtReg, 2331 TLI.getPointerTy(DAG.getDataLayout())), 2332 dl, ValueVTs[0]); 2333 } else { 2334 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2335 } 2336 Ops[1] = DAG.getZExtOrTrunc( 2337 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2338 FuncInfo.ExceptionSelectorVirtReg, 2339 TLI.getPointerTy(DAG.getDataLayout())), 2340 dl, ValueVTs[1]); 2341 2342 // Merge into one. 2343 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2344 DAG.getVTList(ValueVTs), Ops); 2345 setValue(&LP, Res); 2346 } 2347 2348 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2349 #ifndef NDEBUG 2350 for (const CaseCluster &CC : Clusters) 2351 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2352 #endif 2353 2354 std::sort(Clusters.begin(), Clusters.end(), 2355 [](const CaseCluster &a, const CaseCluster &b) { 2356 return a.Low->getValue().slt(b.Low->getValue()); 2357 }); 2358 2359 // Merge adjacent clusters with the same destination. 2360 const unsigned N = Clusters.size(); 2361 unsigned DstIndex = 0; 2362 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2363 CaseCluster &CC = Clusters[SrcIndex]; 2364 const ConstantInt *CaseVal = CC.Low; 2365 MachineBasicBlock *Succ = CC.MBB; 2366 2367 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2368 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2369 // If this case has the same successor and is a neighbour, merge it into 2370 // the previous cluster. 2371 Clusters[DstIndex - 1].High = CaseVal; 2372 Clusters[DstIndex - 1].Prob += CC.Prob; 2373 } else { 2374 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2375 sizeof(Clusters[SrcIndex])); 2376 } 2377 } 2378 Clusters.resize(DstIndex); 2379 } 2380 2381 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2382 MachineBasicBlock *Last) { 2383 // Update JTCases. 2384 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2385 if (JTCases[i].first.HeaderBB == First) 2386 JTCases[i].first.HeaderBB = Last; 2387 2388 // Update BitTestCases. 2389 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2390 if (BitTestCases[i].Parent == First) 2391 BitTestCases[i].Parent = Last; 2392 } 2393 2394 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2395 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2396 2397 // Update machine-CFG edges with unique successors. 2398 SmallSet<BasicBlock*, 32> Done; 2399 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2400 BasicBlock *BB = I.getSuccessor(i); 2401 bool Inserted = Done.insert(BB).second; 2402 if (!Inserted) 2403 continue; 2404 2405 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2406 addSuccessorWithProb(IndirectBrMBB, Succ); 2407 } 2408 IndirectBrMBB->normalizeSuccProbs(); 2409 2410 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2411 MVT::Other, getControlRoot(), 2412 getValue(I.getAddress()))); 2413 } 2414 2415 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2416 if (DAG.getTarget().Options.TrapUnreachable) 2417 DAG.setRoot( 2418 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2419 } 2420 2421 void SelectionDAGBuilder::visitFSub(const User &I) { 2422 // -0.0 - X --> fneg 2423 Type *Ty = I.getType(); 2424 if (isa<Constant>(I.getOperand(0)) && 2425 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2426 SDValue Op2 = getValue(I.getOperand(1)); 2427 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2428 Op2.getValueType(), Op2)); 2429 return; 2430 } 2431 2432 visitBinary(I, ISD::FSUB); 2433 } 2434 2435 /// Checks if the given instruction performs a vector reduction, in which case 2436 /// we have the freedom to alter the elements in the result as long as the 2437 /// reduction of them stays unchanged. 2438 static bool isVectorReductionOp(const User *I) { 2439 const Instruction *Inst = dyn_cast<Instruction>(I); 2440 if (!Inst || !Inst->getType()->isVectorTy()) 2441 return false; 2442 2443 auto OpCode = Inst->getOpcode(); 2444 switch (OpCode) { 2445 case Instruction::Add: 2446 case Instruction::Mul: 2447 case Instruction::And: 2448 case Instruction::Or: 2449 case Instruction::Xor: 2450 break; 2451 case Instruction::FAdd: 2452 case Instruction::FMul: 2453 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2454 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2455 break; 2456 LLVM_FALLTHROUGH; 2457 default: 2458 return false; 2459 } 2460 2461 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2462 unsigned ElemNumToReduce = ElemNum; 2463 2464 // Do DFS search on the def-use chain from the given instruction. We only 2465 // allow four kinds of operations during the search until we reach the 2466 // instruction that extracts the first element from the vector: 2467 // 2468 // 1. The reduction operation of the same opcode as the given instruction. 2469 // 2470 // 2. PHI node. 2471 // 2472 // 3. ShuffleVector instruction together with a reduction operation that 2473 // does a partial reduction. 2474 // 2475 // 4. ExtractElement that extracts the first element from the vector, and we 2476 // stop searching the def-use chain here. 2477 // 2478 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2479 // from 1-3 to the stack to continue the DFS. The given instruction is not 2480 // a reduction operation if we meet any other instructions other than those 2481 // listed above. 2482 2483 SmallVector<const User *, 16> UsersToVisit{Inst}; 2484 SmallPtrSet<const User *, 16> Visited; 2485 bool ReduxExtracted = false; 2486 2487 while (!UsersToVisit.empty()) { 2488 auto User = UsersToVisit.back(); 2489 UsersToVisit.pop_back(); 2490 if (!Visited.insert(User).second) 2491 continue; 2492 2493 for (const auto &U : User->users()) { 2494 auto Inst = dyn_cast<Instruction>(U); 2495 if (!Inst) 2496 return false; 2497 2498 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2499 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2500 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2501 return false; 2502 UsersToVisit.push_back(U); 2503 } else if (const ShuffleVectorInst *ShufInst = 2504 dyn_cast<ShuffleVectorInst>(U)) { 2505 // Detect the following pattern: A ShuffleVector instruction together 2506 // with a reduction that do partial reduction on the first and second 2507 // ElemNumToReduce / 2 elements, and store the result in 2508 // ElemNumToReduce / 2 elements in another vector. 2509 2510 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2511 if (ResultElements < ElemNum) 2512 return false; 2513 2514 if (ElemNumToReduce == 1) 2515 return false; 2516 if (!isa<UndefValue>(U->getOperand(1))) 2517 return false; 2518 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2519 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2520 return false; 2521 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2522 if (ShufInst->getMaskValue(i) != -1) 2523 return false; 2524 2525 // There is only one user of this ShuffleVector instruction, which 2526 // must be a reduction operation. 2527 if (!U->hasOneUse()) 2528 return false; 2529 2530 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2531 if (!U2 || U2->getOpcode() != OpCode) 2532 return false; 2533 2534 // Check operands of the reduction operation. 2535 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2536 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2537 UsersToVisit.push_back(U2); 2538 ElemNumToReduce /= 2; 2539 } else 2540 return false; 2541 } else if (isa<ExtractElementInst>(U)) { 2542 // At this moment we should have reduced all elements in the vector. 2543 if (ElemNumToReduce != 1) 2544 return false; 2545 2546 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2547 if (!Val || Val->getZExtValue() != 0) 2548 return false; 2549 2550 ReduxExtracted = true; 2551 } else 2552 return false; 2553 } 2554 } 2555 return ReduxExtracted; 2556 } 2557 2558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2559 SDValue Op1 = getValue(I.getOperand(0)); 2560 SDValue Op2 = getValue(I.getOperand(1)); 2561 2562 bool nuw = false; 2563 bool nsw = false; 2564 bool exact = false; 2565 bool vec_redux = false; 2566 FastMathFlags FMF; 2567 2568 if (const OverflowingBinaryOperator *OFBinOp = 2569 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2570 nuw = OFBinOp->hasNoUnsignedWrap(); 2571 nsw = OFBinOp->hasNoSignedWrap(); 2572 } 2573 if (const PossiblyExactOperator *ExactOp = 2574 dyn_cast<const PossiblyExactOperator>(&I)) 2575 exact = ExactOp->isExact(); 2576 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2577 FMF = FPOp->getFastMathFlags(); 2578 2579 if (isVectorReductionOp(&I)) { 2580 vec_redux = true; 2581 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2582 } 2583 2584 SDNodeFlags Flags; 2585 Flags.setExact(exact); 2586 Flags.setNoSignedWrap(nsw); 2587 Flags.setNoUnsignedWrap(nuw); 2588 Flags.setVectorReduction(vec_redux); 2589 if (EnableFMFInDAG) { 2590 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2591 Flags.setNoInfs(FMF.noInfs()); 2592 Flags.setNoNaNs(FMF.noNaNs()); 2593 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2594 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2595 } 2596 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2597 Op1, Op2, &Flags); 2598 setValue(&I, BinNodeValue); 2599 } 2600 2601 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2602 SDValue Op1 = getValue(I.getOperand(0)); 2603 SDValue Op2 = getValue(I.getOperand(1)); 2604 2605 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2606 Op2.getValueType(), DAG.getDataLayout()); 2607 2608 // Coerce the shift amount to the right type if we can. 2609 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2610 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2611 unsigned Op2Size = Op2.getValueSizeInBits(); 2612 SDLoc DL = getCurSDLoc(); 2613 2614 // If the operand is smaller than the shift count type, promote it. 2615 if (ShiftSize > Op2Size) 2616 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2617 2618 // If the operand is larger than the shift count type but the shift 2619 // count type has enough bits to represent any shift value, truncate 2620 // it now. This is a common case and it exposes the truncate to 2621 // optimization early. 2622 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2623 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2624 // Otherwise we'll need to temporarily settle for some other convenient 2625 // type. Type legalization will make adjustments once the shiftee is split. 2626 else 2627 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2628 } 2629 2630 bool nuw = false; 2631 bool nsw = false; 2632 bool exact = false; 2633 2634 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2635 2636 if (const OverflowingBinaryOperator *OFBinOp = 2637 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2638 nuw = OFBinOp->hasNoUnsignedWrap(); 2639 nsw = OFBinOp->hasNoSignedWrap(); 2640 } 2641 if (const PossiblyExactOperator *ExactOp = 2642 dyn_cast<const PossiblyExactOperator>(&I)) 2643 exact = ExactOp->isExact(); 2644 } 2645 SDNodeFlags Flags; 2646 Flags.setExact(exact); 2647 Flags.setNoSignedWrap(nsw); 2648 Flags.setNoUnsignedWrap(nuw); 2649 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2650 &Flags); 2651 setValue(&I, Res); 2652 } 2653 2654 void SelectionDAGBuilder::visitSDiv(const User &I) { 2655 SDValue Op1 = getValue(I.getOperand(0)); 2656 SDValue Op2 = getValue(I.getOperand(1)); 2657 2658 SDNodeFlags Flags; 2659 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2660 cast<PossiblyExactOperator>(&I)->isExact()); 2661 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2662 Op2, &Flags)); 2663 } 2664 2665 void SelectionDAGBuilder::visitICmp(const User &I) { 2666 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2667 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2668 predicate = IC->getPredicate(); 2669 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2670 predicate = ICmpInst::Predicate(IC->getPredicate()); 2671 SDValue Op1 = getValue(I.getOperand(0)); 2672 SDValue Op2 = getValue(I.getOperand(1)); 2673 ISD::CondCode Opcode = getICmpCondCode(predicate); 2674 2675 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2676 I.getType()); 2677 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2678 } 2679 2680 void SelectionDAGBuilder::visitFCmp(const User &I) { 2681 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2682 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2683 predicate = FC->getPredicate(); 2684 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2685 predicate = FCmpInst::Predicate(FC->getPredicate()); 2686 SDValue Op1 = getValue(I.getOperand(0)); 2687 SDValue Op2 = getValue(I.getOperand(1)); 2688 ISD::CondCode Condition = getFCmpCondCode(predicate); 2689 2690 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2691 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2692 // further optimization, but currently FMF is only applicable to binary nodes. 2693 if (TM.Options.NoNaNsFPMath) 2694 Condition = getFCmpCodeWithoutNaN(Condition); 2695 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2696 I.getType()); 2697 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2698 } 2699 2700 // Check if the condition of the select has one use or two users that are both 2701 // selects with the same condition. 2702 static bool hasOnlySelectUsers(const Value *Cond) { 2703 return all_of(Cond->users(), [](const Value *V) { 2704 return isa<SelectInst>(V); 2705 }); 2706 } 2707 2708 void SelectionDAGBuilder::visitSelect(const User &I) { 2709 SmallVector<EVT, 4> ValueVTs; 2710 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2711 ValueVTs); 2712 unsigned NumValues = ValueVTs.size(); 2713 if (NumValues == 0) return; 2714 2715 SmallVector<SDValue, 4> Values(NumValues); 2716 SDValue Cond = getValue(I.getOperand(0)); 2717 SDValue LHSVal = getValue(I.getOperand(1)); 2718 SDValue RHSVal = getValue(I.getOperand(2)); 2719 auto BaseOps = {Cond}; 2720 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2721 ISD::VSELECT : ISD::SELECT; 2722 2723 // Min/max matching is only viable if all output VTs are the same. 2724 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2725 EVT VT = ValueVTs[0]; 2726 LLVMContext &Ctx = *DAG.getContext(); 2727 auto &TLI = DAG.getTargetLoweringInfo(); 2728 2729 // We care about the legality of the operation after it has been type 2730 // legalized. 2731 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2732 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2733 VT = TLI.getTypeToTransformTo(Ctx, VT); 2734 2735 // If the vselect is legal, assume we want to leave this as a vector setcc + 2736 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2737 // min/max is legal on the scalar type. 2738 bool UseScalarMinMax = VT.isVector() && 2739 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2740 2741 Value *LHS, *RHS; 2742 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2743 ISD::NodeType Opc = ISD::DELETED_NODE; 2744 switch (SPR.Flavor) { 2745 case SPF_UMAX: Opc = ISD::UMAX; break; 2746 case SPF_UMIN: Opc = ISD::UMIN; break; 2747 case SPF_SMAX: Opc = ISD::SMAX; break; 2748 case SPF_SMIN: Opc = ISD::SMIN; break; 2749 case SPF_FMINNUM: 2750 switch (SPR.NaNBehavior) { 2751 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2752 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2753 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2754 case SPNB_RETURNS_ANY: { 2755 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2756 Opc = ISD::FMINNUM; 2757 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2758 Opc = ISD::FMINNAN; 2759 else if (UseScalarMinMax) 2760 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2761 ISD::FMINNUM : ISD::FMINNAN; 2762 break; 2763 } 2764 } 2765 break; 2766 case SPF_FMAXNUM: 2767 switch (SPR.NaNBehavior) { 2768 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2769 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2770 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2771 case SPNB_RETURNS_ANY: 2772 2773 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2774 Opc = ISD::FMAXNUM; 2775 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2776 Opc = ISD::FMAXNAN; 2777 else if (UseScalarMinMax) 2778 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2779 ISD::FMAXNUM : ISD::FMAXNAN; 2780 break; 2781 } 2782 break; 2783 default: break; 2784 } 2785 2786 if (Opc != ISD::DELETED_NODE && 2787 (TLI.isOperationLegalOrCustom(Opc, VT) || 2788 (UseScalarMinMax && 2789 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2790 // If the underlying comparison instruction is used by any other 2791 // instruction, the consumed instructions won't be destroyed, so it is 2792 // not profitable to convert to a min/max. 2793 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2794 OpCode = Opc; 2795 LHSVal = getValue(LHS); 2796 RHSVal = getValue(RHS); 2797 BaseOps = {}; 2798 } 2799 } 2800 2801 for (unsigned i = 0; i != NumValues; ++i) { 2802 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2803 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2804 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2805 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2806 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2807 Ops); 2808 } 2809 2810 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2811 DAG.getVTList(ValueVTs), Values)); 2812 } 2813 2814 void SelectionDAGBuilder::visitTrunc(const User &I) { 2815 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2816 SDValue N = getValue(I.getOperand(0)); 2817 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2818 I.getType()); 2819 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2820 } 2821 2822 void SelectionDAGBuilder::visitZExt(const User &I) { 2823 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2824 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2825 SDValue N = getValue(I.getOperand(0)); 2826 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2827 I.getType()); 2828 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2829 } 2830 2831 void SelectionDAGBuilder::visitSExt(const User &I) { 2832 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2833 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2834 SDValue N = getValue(I.getOperand(0)); 2835 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2836 I.getType()); 2837 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2838 } 2839 2840 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2841 // FPTrunc is never a no-op cast, no need to check 2842 SDValue N = getValue(I.getOperand(0)); 2843 SDLoc dl = getCurSDLoc(); 2844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2845 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2846 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2847 DAG.getTargetConstant( 2848 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2849 } 2850 2851 void SelectionDAGBuilder::visitFPExt(const User &I) { 2852 // FPExt is never a no-op cast, no need to check 2853 SDValue N = getValue(I.getOperand(0)); 2854 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2855 I.getType()); 2856 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2857 } 2858 2859 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2860 // FPToUI is never a no-op cast, no need to check 2861 SDValue N = getValue(I.getOperand(0)); 2862 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2863 I.getType()); 2864 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2865 } 2866 2867 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2868 // FPToSI is never a no-op cast, no need to check 2869 SDValue N = getValue(I.getOperand(0)); 2870 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2871 I.getType()); 2872 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2873 } 2874 2875 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2876 // UIToFP is never a no-op cast, no need to check 2877 SDValue N = getValue(I.getOperand(0)); 2878 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2879 I.getType()); 2880 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2881 } 2882 2883 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2884 // SIToFP is never a no-op cast, no need to check 2885 SDValue N = getValue(I.getOperand(0)); 2886 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2887 I.getType()); 2888 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2889 } 2890 2891 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2892 // What to do depends on the size of the integer and the size of the pointer. 2893 // We can either truncate, zero extend, or no-op, accordingly. 2894 SDValue N = getValue(I.getOperand(0)); 2895 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2896 I.getType()); 2897 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2898 } 2899 2900 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2901 // What to do depends on the size of the integer and the size of the pointer. 2902 // We can either truncate, zero extend, or no-op, accordingly. 2903 SDValue N = getValue(I.getOperand(0)); 2904 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2905 I.getType()); 2906 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2907 } 2908 2909 void SelectionDAGBuilder::visitBitCast(const User &I) { 2910 SDValue N = getValue(I.getOperand(0)); 2911 SDLoc dl = getCurSDLoc(); 2912 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2913 I.getType()); 2914 2915 // BitCast assures us that source and destination are the same size so this is 2916 // either a BITCAST or a no-op. 2917 if (DestVT != N.getValueType()) 2918 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2919 DestVT, N)); // convert types. 2920 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2921 // might fold any kind of constant expression to an integer constant and that 2922 // is not what we are looking for. Only recognize a bitcast of a genuine 2923 // constant integer as an opaque constant. 2924 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2925 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2926 /*isOpaque*/true)); 2927 else 2928 setValue(&I, N); // noop cast. 2929 } 2930 2931 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2933 const Value *SV = I.getOperand(0); 2934 SDValue N = getValue(SV); 2935 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2936 2937 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2938 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2939 2940 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2941 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2942 2943 setValue(&I, N); 2944 } 2945 2946 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2948 SDValue InVec = getValue(I.getOperand(0)); 2949 SDValue InVal = getValue(I.getOperand(1)); 2950 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2951 TLI.getVectorIdxTy(DAG.getDataLayout())); 2952 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2953 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2954 InVec, InVal, InIdx)); 2955 } 2956 2957 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2958 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2959 SDValue InVec = getValue(I.getOperand(0)); 2960 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2961 TLI.getVectorIdxTy(DAG.getDataLayout())); 2962 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2963 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2964 InVec, InIdx)); 2965 } 2966 2967 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2968 SDValue Src1 = getValue(I.getOperand(0)); 2969 SDValue Src2 = getValue(I.getOperand(1)); 2970 SDLoc DL = getCurSDLoc(); 2971 2972 SmallVector<int, 8> Mask; 2973 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2974 unsigned MaskNumElts = Mask.size(); 2975 2976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2977 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2978 EVT SrcVT = Src1.getValueType(); 2979 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2980 2981 if (SrcNumElts == MaskNumElts) { 2982 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 2983 return; 2984 } 2985 2986 // Normalize the shuffle vector since mask and vector length don't match. 2987 if (SrcNumElts < MaskNumElts) { 2988 // Mask is longer than the source vectors. We can use concatenate vector to 2989 // make the mask and vectors lengths match. 2990 2991 if (MaskNumElts % SrcNumElts == 0) { 2992 // Mask length is a multiple of the source vector length. 2993 // Check if the shuffle is some kind of concatenation of the input 2994 // vectors. 2995 unsigned NumConcat = MaskNumElts / SrcNumElts; 2996 bool IsConcat = true; 2997 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 2998 for (unsigned i = 0; i != MaskNumElts; ++i) { 2999 int Idx = Mask[i]; 3000 if (Idx < 0) 3001 continue; 3002 // Ensure the indices in each SrcVT sized piece are sequential and that 3003 // the same source is used for the whole piece. 3004 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3005 (ConcatSrcs[i / SrcNumElts] >= 0 && 3006 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3007 IsConcat = false; 3008 break; 3009 } 3010 // Remember which source this index came from. 3011 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3012 } 3013 3014 // The shuffle is concatenating multiple vectors together. Just emit 3015 // a CONCAT_VECTORS operation. 3016 if (IsConcat) { 3017 SmallVector<SDValue, 8> ConcatOps; 3018 for (auto Src : ConcatSrcs) { 3019 if (Src < 0) 3020 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3021 else if (Src == 0) 3022 ConcatOps.push_back(Src1); 3023 else 3024 ConcatOps.push_back(Src2); 3025 } 3026 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3027 return; 3028 } 3029 } 3030 3031 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3032 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3033 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3034 PaddedMaskNumElts); 3035 3036 // Pad both vectors with undefs to make them the same length as the mask. 3037 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3038 3039 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3040 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3041 MOps1[0] = Src1; 3042 MOps2[0] = Src2; 3043 3044 Src1 = Src1.isUndef() 3045 ? DAG.getUNDEF(PaddedVT) 3046 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3047 Src2 = Src2.isUndef() 3048 ? DAG.getUNDEF(PaddedVT) 3049 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3050 3051 // Readjust mask for new input vector length. 3052 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3053 for (unsigned i = 0; i != MaskNumElts; ++i) { 3054 int Idx = Mask[i]; 3055 if (Idx >= (int)SrcNumElts) 3056 Idx -= SrcNumElts - PaddedMaskNumElts; 3057 MappedOps[i] = Idx; 3058 } 3059 3060 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3061 3062 // If the concatenated vector was padded, extract a subvector with the 3063 // correct number of elements. 3064 if (MaskNumElts != PaddedMaskNumElts) 3065 Result = DAG.getNode( 3066 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3067 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3068 3069 setValue(&I, Result); 3070 return; 3071 } 3072 3073 if (SrcNumElts > MaskNumElts) { 3074 // Analyze the access pattern of the vector to see if we can extract 3075 // two subvectors and do the shuffle. 3076 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3077 bool CanExtract = true; 3078 for (int Idx : Mask) { 3079 unsigned Input = 0; 3080 if (Idx < 0) 3081 continue; 3082 3083 if (Idx >= (int)SrcNumElts) { 3084 Input = 1; 3085 Idx -= SrcNumElts; 3086 } 3087 3088 // If all the indices come from the same MaskNumElts sized portion of 3089 // the sources we can use extract. Also make sure the extract wouldn't 3090 // extract past the end of the source. 3091 int NewStartIdx = alignDown(Idx, MaskNumElts); 3092 if (NewStartIdx + MaskNumElts > SrcNumElts || 3093 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3094 CanExtract = false; 3095 // Make sure we always update StartIdx as we use it to track if all 3096 // elements are undef. 3097 StartIdx[Input] = NewStartIdx; 3098 } 3099 3100 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3101 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3102 return; 3103 } 3104 if (CanExtract) { 3105 // Extract appropriate subvector and generate a vector shuffle 3106 for (unsigned Input = 0; Input < 2; ++Input) { 3107 SDValue &Src = Input == 0 ? Src1 : Src2; 3108 if (StartIdx[Input] < 0) 3109 Src = DAG.getUNDEF(VT); 3110 else { 3111 Src = DAG.getNode( 3112 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3113 DAG.getConstant(StartIdx[Input], DL, 3114 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3115 } 3116 } 3117 3118 // Calculate new mask. 3119 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3120 for (int &Idx : MappedOps) { 3121 if (Idx >= (int)SrcNumElts) 3122 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3123 else if (Idx >= 0) 3124 Idx -= StartIdx[0]; 3125 } 3126 3127 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3128 return; 3129 } 3130 } 3131 3132 // We can't use either concat vectors or extract subvectors so fall back to 3133 // replacing the shuffle with extract and build vector. 3134 // to insert and build vector. 3135 EVT EltVT = VT.getVectorElementType(); 3136 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3137 SmallVector<SDValue,8> Ops; 3138 for (int Idx : Mask) { 3139 SDValue Res; 3140 3141 if (Idx < 0) { 3142 Res = DAG.getUNDEF(EltVT); 3143 } else { 3144 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3145 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3146 3147 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3148 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3149 } 3150 3151 Ops.push_back(Res); 3152 } 3153 3154 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops)); 3155 } 3156 3157 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3158 const Value *Op0 = I.getOperand(0); 3159 const Value *Op1 = I.getOperand(1); 3160 Type *AggTy = I.getType(); 3161 Type *ValTy = Op1->getType(); 3162 bool IntoUndef = isa<UndefValue>(Op0); 3163 bool FromUndef = isa<UndefValue>(Op1); 3164 3165 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3166 3167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3168 SmallVector<EVT, 4> AggValueVTs; 3169 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3170 SmallVector<EVT, 4> ValValueVTs; 3171 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3172 3173 unsigned NumAggValues = AggValueVTs.size(); 3174 unsigned NumValValues = ValValueVTs.size(); 3175 SmallVector<SDValue, 4> Values(NumAggValues); 3176 3177 // Ignore an insertvalue that produces an empty object 3178 if (!NumAggValues) { 3179 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3180 return; 3181 } 3182 3183 SDValue Agg = getValue(Op0); 3184 unsigned i = 0; 3185 // Copy the beginning value(s) from the original aggregate. 3186 for (; i != LinearIndex; ++i) 3187 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3188 SDValue(Agg.getNode(), Agg.getResNo() + i); 3189 // Copy values from the inserted value(s). 3190 if (NumValValues) { 3191 SDValue Val = getValue(Op1); 3192 for (; i != LinearIndex + NumValValues; ++i) 3193 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3194 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3195 } 3196 // Copy remaining value(s) from the original aggregate. 3197 for (; i != NumAggValues; ++i) 3198 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3199 SDValue(Agg.getNode(), Agg.getResNo() + i); 3200 3201 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3202 DAG.getVTList(AggValueVTs), Values)); 3203 } 3204 3205 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3206 const Value *Op0 = I.getOperand(0); 3207 Type *AggTy = Op0->getType(); 3208 Type *ValTy = I.getType(); 3209 bool OutOfUndef = isa<UndefValue>(Op0); 3210 3211 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3212 3213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3214 SmallVector<EVT, 4> ValValueVTs; 3215 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3216 3217 unsigned NumValValues = ValValueVTs.size(); 3218 3219 // Ignore a extractvalue that produces an empty object 3220 if (!NumValValues) { 3221 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3222 return; 3223 } 3224 3225 SmallVector<SDValue, 4> Values(NumValValues); 3226 3227 SDValue Agg = getValue(Op0); 3228 // Copy out the selected value(s). 3229 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3230 Values[i - LinearIndex] = 3231 OutOfUndef ? 3232 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3233 SDValue(Agg.getNode(), Agg.getResNo() + i); 3234 3235 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3236 DAG.getVTList(ValValueVTs), Values)); 3237 } 3238 3239 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3240 Value *Op0 = I.getOperand(0); 3241 // Note that the pointer operand may be a vector of pointers. Take the scalar 3242 // element which holds a pointer. 3243 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3244 SDValue N = getValue(Op0); 3245 SDLoc dl = getCurSDLoc(); 3246 3247 // Normalize Vector GEP - all scalar operands should be converted to the 3248 // splat vector. 3249 unsigned VectorWidth = I.getType()->isVectorTy() ? 3250 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3251 3252 if (VectorWidth && !N.getValueType().isVector()) { 3253 LLVMContext &Context = *DAG.getContext(); 3254 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3255 N = DAG.getSplatBuildVector(VT, dl, N); 3256 } 3257 3258 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3259 GTI != E; ++GTI) { 3260 const Value *Idx = GTI.getOperand(); 3261 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3262 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3263 if (Field) { 3264 // N = N + Offset 3265 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3266 3267 // In an inbouds GEP with an offset that is nonnegative even when 3268 // interpreted as signed, assume there is no unsigned overflow. 3269 SDNodeFlags Flags; 3270 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3271 Flags.setNoUnsignedWrap(true); 3272 3273 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3274 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3275 } 3276 } else { 3277 MVT PtrTy = 3278 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3279 unsigned PtrSize = PtrTy.getSizeInBits(); 3280 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3281 3282 // If this is a scalar constant or a splat vector of constants, 3283 // handle it quickly. 3284 const auto *CI = dyn_cast<ConstantInt>(Idx); 3285 if (!CI && isa<ConstantDataVector>(Idx) && 3286 cast<ConstantDataVector>(Idx)->getSplatValue()) 3287 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3288 3289 if (CI) { 3290 if (CI->isZero()) 3291 continue; 3292 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3293 LLVMContext &Context = *DAG.getContext(); 3294 SDValue OffsVal = VectorWidth ? 3295 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3296 DAG.getConstant(Offs, dl, PtrTy); 3297 3298 // In an inbouds GEP with an offset that is nonnegative even when 3299 // interpreted as signed, assume there is no unsigned overflow. 3300 SDNodeFlags Flags; 3301 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3302 Flags.setNoUnsignedWrap(true); 3303 3304 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3305 continue; 3306 } 3307 3308 // N = N + Idx * ElementSize; 3309 SDValue IdxN = getValue(Idx); 3310 3311 if (!IdxN.getValueType().isVector() && VectorWidth) { 3312 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3313 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3314 } 3315 3316 // If the index is smaller or larger than intptr_t, truncate or extend 3317 // it. 3318 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3319 3320 // If this is a multiply by a power of two, turn it into a shl 3321 // immediately. This is a very common case. 3322 if (ElementSize != 1) { 3323 if (ElementSize.isPowerOf2()) { 3324 unsigned Amt = ElementSize.logBase2(); 3325 IdxN = DAG.getNode(ISD::SHL, dl, 3326 N.getValueType(), IdxN, 3327 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3328 } else { 3329 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3330 IdxN = DAG.getNode(ISD::MUL, dl, 3331 N.getValueType(), IdxN, Scale); 3332 } 3333 } 3334 3335 N = DAG.getNode(ISD::ADD, dl, 3336 N.getValueType(), N, IdxN); 3337 } 3338 } 3339 3340 setValue(&I, N); 3341 } 3342 3343 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3344 // If this is a fixed sized alloca in the entry block of the function, 3345 // allocate it statically on the stack. 3346 if (FuncInfo.StaticAllocaMap.count(&I)) 3347 return; // getValue will auto-populate this. 3348 3349 SDLoc dl = getCurSDLoc(); 3350 Type *Ty = I.getAllocatedType(); 3351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3352 auto &DL = DAG.getDataLayout(); 3353 uint64_t TySize = DL.getTypeAllocSize(Ty); 3354 unsigned Align = 3355 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3356 3357 SDValue AllocSize = getValue(I.getArraySize()); 3358 3359 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3360 if (AllocSize.getValueType() != IntPtr) 3361 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3362 3363 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3364 AllocSize, 3365 DAG.getConstant(TySize, dl, IntPtr)); 3366 3367 // Handle alignment. If the requested alignment is less than or equal to 3368 // the stack alignment, ignore it. If the size is greater than or equal to 3369 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3370 unsigned StackAlign = 3371 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3372 if (Align <= StackAlign) 3373 Align = 0; 3374 3375 // Round the size of the allocation up to the stack alignment size 3376 // by add SA-1 to the size. This doesn't overflow because we're computing 3377 // an address inside an alloca. 3378 SDNodeFlags Flags; 3379 Flags.setNoUnsignedWrap(true); 3380 AllocSize = DAG.getNode(ISD::ADD, dl, 3381 AllocSize.getValueType(), AllocSize, 3382 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3383 3384 // Mask out the low bits for alignment purposes. 3385 AllocSize = DAG.getNode(ISD::AND, dl, 3386 AllocSize.getValueType(), AllocSize, 3387 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3388 dl)); 3389 3390 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3391 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3392 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3393 setValue(&I, DSA); 3394 DAG.setRoot(DSA.getValue(1)); 3395 3396 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3397 } 3398 3399 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3400 if (I.isAtomic()) 3401 return visitAtomicLoad(I); 3402 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 const Value *SV = I.getOperand(0); 3405 if (TLI.supportSwiftError()) { 3406 // Swifterror values can come from either a function parameter with 3407 // swifterror attribute or an alloca with swifterror attribute. 3408 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3409 if (Arg->hasSwiftErrorAttr()) 3410 return visitLoadFromSwiftError(I); 3411 } 3412 3413 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3414 if (Alloca->isSwiftError()) 3415 return visitLoadFromSwiftError(I); 3416 } 3417 } 3418 3419 SDValue Ptr = getValue(SV); 3420 3421 Type *Ty = I.getType(); 3422 3423 bool isVolatile = I.isVolatile(); 3424 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3425 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3426 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3427 unsigned Alignment = I.getAlignment(); 3428 3429 AAMDNodes AAInfo; 3430 I.getAAMetadata(AAInfo); 3431 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3432 3433 SmallVector<EVT, 4> ValueVTs; 3434 SmallVector<uint64_t, 4> Offsets; 3435 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3436 unsigned NumValues = ValueVTs.size(); 3437 if (NumValues == 0) 3438 return; 3439 3440 SDValue Root; 3441 bool ConstantMemory = false; 3442 if (isVolatile || NumValues > MaxParallelChains) 3443 // Serialize volatile loads with other side effects. 3444 Root = getRoot(); 3445 else if (AA->pointsToConstantMemory(MemoryLocation( 3446 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3447 // Do not serialize (non-volatile) loads of constant memory with anything. 3448 Root = DAG.getEntryNode(); 3449 ConstantMemory = true; 3450 } else { 3451 // Do not serialize non-volatile loads against each other. 3452 Root = DAG.getRoot(); 3453 } 3454 3455 SDLoc dl = getCurSDLoc(); 3456 3457 if (isVolatile) 3458 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3459 3460 // An aggregate load cannot wrap around the address space, so offsets to its 3461 // parts don't wrap either. 3462 SDNodeFlags Flags; 3463 Flags.setNoUnsignedWrap(true); 3464 3465 SmallVector<SDValue, 4> Values(NumValues); 3466 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3467 EVT PtrVT = Ptr.getValueType(); 3468 unsigned ChainI = 0; 3469 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3470 // Serializing loads here may result in excessive register pressure, and 3471 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3472 // could recover a bit by hoisting nodes upward in the chain by recognizing 3473 // they are side-effect free or do not alias. The optimizer should really 3474 // avoid this case by converting large object/array copies to llvm.memcpy 3475 // (MaxParallelChains should always remain as failsafe). 3476 if (ChainI == MaxParallelChains) { 3477 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3478 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3479 makeArrayRef(Chains.data(), ChainI)); 3480 Root = Chain; 3481 ChainI = 0; 3482 } 3483 SDValue A = DAG.getNode(ISD::ADD, dl, 3484 PtrVT, Ptr, 3485 DAG.getConstant(Offsets[i], dl, PtrVT), 3486 &Flags); 3487 auto MMOFlags = MachineMemOperand::MONone; 3488 if (isVolatile) 3489 MMOFlags |= MachineMemOperand::MOVolatile; 3490 if (isNonTemporal) 3491 MMOFlags |= MachineMemOperand::MONonTemporal; 3492 if (isInvariant) 3493 MMOFlags |= MachineMemOperand::MOInvariant; 3494 if (isDereferenceable) 3495 MMOFlags |= MachineMemOperand::MODereferenceable; 3496 3497 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3498 MachinePointerInfo(SV, Offsets[i]), Alignment, 3499 MMOFlags, AAInfo, Ranges); 3500 3501 Values[i] = L; 3502 Chains[ChainI] = L.getValue(1); 3503 } 3504 3505 if (!ConstantMemory) { 3506 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3507 makeArrayRef(Chains.data(), ChainI)); 3508 if (isVolatile) 3509 DAG.setRoot(Chain); 3510 else 3511 PendingLoads.push_back(Chain); 3512 } 3513 3514 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3515 DAG.getVTList(ValueVTs), Values)); 3516 } 3517 3518 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3520 assert(TLI.supportSwiftError() && 3521 "call visitStoreToSwiftError when backend supports swifterror"); 3522 3523 SmallVector<EVT, 4> ValueVTs; 3524 SmallVector<uint64_t, 4> Offsets; 3525 const Value *SrcV = I.getOperand(0); 3526 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3527 SrcV->getType(), ValueVTs, &Offsets); 3528 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3529 "expect a single EVT for swifterror"); 3530 3531 SDValue Src = getValue(SrcV); 3532 // Create a virtual register, then update the virtual register. 3533 auto &DL = DAG.getDataLayout(); 3534 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3535 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3536 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3537 // Chain can be getRoot or getControlRoot. 3538 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3539 SDValue(Src.getNode(), Src.getResNo())); 3540 DAG.setRoot(CopyNode); 3541 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3542 } 3543 3544 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3545 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3546 "call visitLoadFromSwiftError when backend supports swifterror"); 3547 3548 assert(!I.isVolatile() && 3549 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3550 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3551 "Support volatile, non temporal, invariant for load_from_swift_error"); 3552 3553 const Value *SV = I.getOperand(0); 3554 Type *Ty = I.getType(); 3555 AAMDNodes AAInfo; 3556 I.getAAMetadata(AAInfo); 3557 assert(!AA->pointsToConstantMemory(MemoryLocation( 3558 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3559 "load_from_swift_error should not be constant memory"); 3560 3561 SmallVector<EVT, 4> ValueVTs; 3562 SmallVector<uint64_t, 4> Offsets; 3563 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3564 ValueVTs, &Offsets); 3565 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3566 "expect a single EVT for swifterror"); 3567 3568 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3569 SDValue L = DAG.getCopyFromReg( 3570 getRoot(), getCurSDLoc(), 3571 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3572 3573 setValue(&I, L); 3574 } 3575 3576 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3577 if (I.isAtomic()) 3578 return visitAtomicStore(I); 3579 3580 const Value *SrcV = I.getOperand(0); 3581 const Value *PtrV = I.getOperand(1); 3582 3583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3584 if (TLI.supportSwiftError()) { 3585 // Swifterror values can come from either a function parameter with 3586 // swifterror attribute or an alloca with swifterror attribute. 3587 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3588 if (Arg->hasSwiftErrorAttr()) 3589 return visitStoreToSwiftError(I); 3590 } 3591 3592 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3593 if (Alloca->isSwiftError()) 3594 return visitStoreToSwiftError(I); 3595 } 3596 } 3597 3598 SmallVector<EVT, 4> ValueVTs; 3599 SmallVector<uint64_t, 4> Offsets; 3600 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3601 SrcV->getType(), ValueVTs, &Offsets); 3602 unsigned NumValues = ValueVTs.size(); 3603 if (NumValues == 0) 3604 return; 3605 3606 // Get the lowered operands. Note that we do this after 3607 // checking if NumResults is zero, because with zero results 3608 // the operands won't have values in the map. 3609 SDValue Src = getValue(SrcV); 3610 SDValue Ptr = getValue(PtrV); 3611 3612 SDValue Root = getRoot(); 3613 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3614 SDLoc dl = getCurSDLoc(); 3615 EVT PtrVT = Ptr.getValueType(); 3616 unsigned Alignment = I.getAlignment(); 3617 AAMDNodes AAInfo; 3618 I.getAAMetadata(AAInfo); 3619 3620 auto MMOFlags = MachineMemOperand::MONone; 3621 if (I.isVolatile()) 3622 MMOFlags |= MachineMemOperand::MOVolatile; 3623 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3624 MMOFlags |= MachineMemOperand::MONonTemporal; 3625 3626 // An aggregate load cannot wrap around the address space, so offsets to its 3627 // parts don't wrap either. 3628 SDNodeFlags Flags; 3629 Flags.setNoUnsignedWrap(true); 3630 3631 unsigned ChainI = 0; 3632 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3633 // See visitLoad comments. 3634 if (ChainI == MaxParallelChains) { 3635 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3636 makeArrayRef(Chains.data(), ChainI)); 3637 Root = Chain; 3638 ChainI = 0; 3639 } 3640 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3641 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3642 SDValue St = DAG.getStore( 3643 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3644 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3645 Chains[ChainI] = St; 3646 } 3647 3648 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3649 makeArrayRef(Chains.data(), ChainI)); 3650 DAG.setRoot(StoreNode); 3651 } 3652 3653 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3654 bool IsCompressing) { 3655 SDLoc sdl = getCurSDLoc(); 3656 3657 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3658 unsigned& Alignment) { 3659 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3660 Src0 = I.getArgOperand(0); 3661 Ptr = I.getArgOperand(1); 3662 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3663 Mask = I.getArgOperand(3); 3664 }; 3665 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3666 unsigned& Alignment) { 3667 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3668 Src0 = I.getArgOperand(0); 3669 Ptr = I.getArgOperand(1); 3670 Mask = I.getArgOperand(2); 3671 Alignment = 0; 3672 }; 3673 3674 Value *PtrOperand, *MaskOperand, *Src0Operand; 3675 unsigned Alignment; 3676 if (IsCompressing) 3677 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3678 else 3679 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3680 3681 SDValue Ptr = getValue(PtrOperand); 3682 SDValue Src0 = getValue(Src0Operand); 3683 SDValue Mask = getValue(MaskOperand); 3684 3685 EVT VT = Src0.getValueType(); 3686 if (!Alignment) 3687 Alignment = DAG.getEVTAlignment(VT); 3688 3689 AAMDNodes AAInfo; 3690 I.getAAMetadata(AAInfo); 3691 3692 MachineMemOperand *MMO = 3693 DAG.getMachineFunction(). 3694 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3695 MachineMemOperand::MOStore, VT.getStoreSize(), 3696 Alignment, AAInfo); 3697 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3698 MMO, false /* Truncating */, 3699 IsCompressing); 3700 DAG.setRoot(StoreNode); 3701 setValue(&I, StoreNode); 3702 } 3703 3704 // Get a uniform base for the Gather/Scatter intrinsic. 3705 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3706 // We try to represent it as a base pointer + vector of indices. 3707 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3708 // The first operand of the GEP may be a single pointer or a vector of pointers 3709 // Example: 3710 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3711 // or 3712 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3713 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3714 // 3715 // When the first GEP operand is a single pointer - it is the uniform base we 3716 // are looking for. If first operand of the GEP is a splat vector - we 3717 // extract the spalt value and use it as a uniform base. 3718 // In all other cases the function returns 'false'. 3719 // 3720 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3721 SelectionDAGBuilder* SDB) { 3722 3723 SelectionDAG& DAG = SDB->DAG; 3724 LLVMContext &Context = *DAG.getContext(); 3725 3726 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3727 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3728 if (!GEP || GEP->getNumOperands() > 2) 3729 return false; 3730 3731 const Value *GEPPtr = GEP->getPointerOperand(); 3732 if (!GEPPtr->getType()->isVectorTy()) 3733 Ptr = GEPPtr; 3734 else if (!(Ptr = getSplatValue(GEPPtr))) 3735 return false; 3736 3737 Value *IndexVal = GEP->getOperand(1); 3738 3739 // The operands of the GEP may be defined in another basic block. 3740 // In this case we'll not find nodes for the operands. 3741 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3742 return false; 3743 3744 Base = SDB->getValue(Ptr); 3745 Index = SDB->getValue(IndexVal); 3746 3747 // Suppress sign extension. 3748 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3749 if (SDB->findValue(Sext->getOperand(0))) { 3750 IndexVal = Sext->getOperand(0); 3751 Index = SDB->getValue(IndexVal); 3752 } 3753 } 3754 if (!Index.getValueType().isVector()) { 3755 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3756 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3757 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3758 } 3759 return true; 3760 } 3761 3762 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3763 SDLoc sdl = getCurSDLoc(); 3764 3765 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3766 const Value *Ptr = I.getArgOperand(1); 3767 SDValue Src0 = getValue(I.getArgOperand(0)); 3768 SDValue Mask = getValue(I.getArgOperand(3)); 3769 EVT VT = Src0.getValueType(); 3770 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3771 if (!Alignment) 3772 Alignment = DAG.getEVTAlignment(VT); 3773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3774 3775 AAMDNodes AAInfo; 3776 I.getAAMetadata(AAInfo); 3777 3778 SDValue Base; 3779 SDValue Index; 3780 const Value *BasePtr = Ptr; 3781 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3782 3783 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3784 MachineMemOperand *MMO = DAG.getMachineFunction(). 3785 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3786 MachineMemOperand::MOStore, VT.getStoreSize(), 3787 Alignment, AAInfo); 3788 if (!UniformBase) { 3789 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3790 Index = getValue(Ptr); 3791 } 3792 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3793 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3794 Ops, MMO); 3795 DAG.setRoot(Scatter); 3796 setValue(&I, Scatter); 3797 } 3798 3799 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3800 SDLoc sdl = getCurSDLoc(); 3801 3802 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3803 unsigned& Alignment) { 3804 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3805 Ptr = I.getArgOperand(0); 3806 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3807 Mask = I.getArgOperand(2); 3808 Src0 = I.getArgOperand(3); 3809 }; 3810 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3811 unsigned& Alignment) { 3812 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3813 Ptr = I.getArgOperand(0); 3814 Alignment = 0; 3815 Mask = I.getArgOperand(1); 3816 Src0 = I.getArgOperand(2); 3817 }; 3818 3819 Value *PtrOperand, *MaskOperand, *Src0Operand; 3820 unsigned Alignment; 3821 if (IsExpanding) 3822 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3823 else 3824 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3825 3826 SDValue Ptr = getValue(PtrOperand); 3827 SDValue Src0 = getValue(Src0Operand); 3828 SDValue Mask = getValue(MaskOperand); 3829 3830 EVT VT = Src0.getValueType(); 3831 if (!Alignment) 3832 Alignment = DAG.getEVTAlignment(VT); 3833 3834 AAMDNodes AAInfo; 3835 I.getAAMetadata(AAInfo); 3836 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3837 3838 // Do not serialize masked loads of constant memory with anything. 3839 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3840 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3841 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3842 3843 MachineMemOperand *MMO = 3844 DAG.getMachineFunction(). 3845 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3846 MachineMemOperand::MOLoad, VT.getStoreSize(), 3847 Alignment, AAInfo, Ranges); 3848 3849 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3850 ISD::NON_EXTLOAD, IsExpanding); 3851 if (AddToChain) { 3852 SDValue OutChain = Load.getValue(1); 3853 DAG.setRoot(OutChain); 3854 } 3855 setValue(&I, Load); 3856 } 3857 3858 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3859 SDLoc sdl = getCurSDLoc(); 3860 3861 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3862 const Value *Ptr = I.getArgOperand(0); 3863 SDValue Src0 = getValue(I.getArgOperand(3)); 3864 SDValue Mask = getValue(I.getArgOperand(2)); 3865 3866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3867 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3868 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3869 if (!Alignment) 3870 Alignment = DAG.getEVTAlignment(VT); 3871 3872 AAMDNodes AAInfo; 3873 I.getAAMetadata(AAInfo); 3874 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3875 3876 SDValue Root = DAG.getRoot(); 3877 SDValue Base; 3878 SDValue Index; 3879 const Value *BasePtr = Ptr; 3880 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3881 bool ConstantMemory = false; 3882 if (UniformBase && 3883 AA->pointsToConstantMemory(MemoryLocation( 3884 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3885 AAInfo))) { 3886 // Do not serialize (non-volatile) loads of constant memory with anything. 3887 Root = DAG.getEntryNode(); 3888 ConstantMemory = true; 3889 } 3890 3891 MachineMemOperand *MMO = 3892 DAG.getMachineFunction(). 3893 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3894 MachineMemOperand::MOLoad, VT.getStoreSize(), 3895 Alignment, AAInfo, Ranges); 3896 3897 if (!UniformBase) { 3898 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3899 Index = getValue(Ptr); 3900 } 3901 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3902 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3903 Ops, MMO); 3904 3905 SDValue OutChain = Gather.getValue(1); 3906 if (!ConstantMemory) 3907 PendingLoads.push_back(OutChain); 3908 setValue(&I, Gather); 3909 } 3910 3911 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3912 SDLoc dl = getCurSDLoc(); 3913 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3914 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3915 SynchronizationScope Scope = I.getSynchScope(); 3916 3917 SDValue InChain = getRoot(); 3918 3919 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3920 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3921 SDValue L = DAG.getAtomicCmpSwap( 3922 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3923 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3924 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3925 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3926 3927 SDValue OutChain = L.getValue(2); 3928 3929 setValue(&I, L); 3930 DAG.setRoot(OutChain); 3931 } 3932 3933 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3934 SDLoc dl = getCurSDLoc(); 3935 ISD::NodeType NT; 3936 switch (I.getOperation()) { 3937 default: llvm_unreachable("Unknown atomicrmw operation"); 3938 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3939 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3940 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3941 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3942 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3943 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3944 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3945 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3946 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3947 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3948 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3949 } 3950 AtomicOrdering Order = I.getOrdering(); 3951 SynchronizationScope Scope = I.getSynchScope(); 3952 3953 SDValue InChain = getRoot(); 3954 3955 SDValue L = 3956 DAG.getAtomic(NT, dl, 3957 getValue(I.getValOperand()).getSimpleValueType(), 3958 InChain, 3959 getValue(I.getPointerOperand()), 3960 getValue(I.getValOperand()), 3961 I.getPointerOperand(), 3962 /* Alignment=*/ 0, Order, Scope); 3963 3964 SDValue OutChain = L.getValue(1); 3965 3966 setValue(&I, L); 3967 DAG.setRoot(OutChain); 3968 } 3969 3970 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3971 SDLoc dl = getCurSDLoc(); 3972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3973 SDValue Ops[3]; 3974 Ops[0] = getRoot(); 3975 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3976 TLI.getPointerTy(DAG.getDataLayout())); 3977 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3978 TLI.getPointerTy(DAG.getDataLayout())); 3979 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3980 } 3981 3982 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3983 SDLoc dl = getCurSDLoc(); 3984 AtomicOrdering Order = I.getOrdering(); 3985 SynchronizationScope Scope = I.getSynchScope(); 3986 3987 SDValue InChain = getRoot(); 3988 3989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3990 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3991 3992 if (I.getAlignment() < VT.getSizeInBits() / 8) 3993 report_fatal_error("Cannot generate unaligned atomic load"); 3994 3995 MachineMemOperand *MMO = 3996 DAG.getMachineFunction(). 3997 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3998 MachineMemOperand::MOVolatile | 3999 MachineMemOperand::MOLoad, 4000 VT.getStoreSize(), 4001 I.getAlignment() ? I.getAlignment() : 4002 DAG.getEVTAlignment(VT), 4003 AAMDNodes(), nullptr, Scope, Order); 4004 4005 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4006 SDValue L = 4007 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4008 getValue(I.getPointerOperand()), MMO); 4009 4010 SDValue OutChain = L.getValue(1); 4011 4012 setValue(&I, L); 4013 DAG.setRoot(OutChain); 4014 } 4015 4016 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4017 SDLoc dl = getCurSDLoc(); 4018 4019 AtomicOrdering Order = I.getOrdering(); 4020 SynchronizationScope Scope = I.getSynchScope(); 4021 4022 SDValue InChain = getRoot(); 4023 4024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4025 EVT VT = 4026 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4027 4028 if (I.getAlignment() < VT.getSizeInBits() / 8) 4029 report_fatal_error("Cannot generate unaligned atomic store"); 4030 4031 SDValue OutChain = 4032 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4033 InChain, 4034 getValue(I.getPointerOperand()), 4035 getValue(I.getValueOperand()), 4036 I.getPointerOperand(), I.getAlignment(), 4037 Order, Scope); 4038 4039 DAG.setRoot(OutChain); 4040 } 4041 4042 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4043 /// node. 4044 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4045 unsigned Intrinsic) { 4046 // Ignore the callsite's attributes. A specific call site may be marked with 4047 // readnone, but the lowering code will expect the chain based on the 4048 // definition. 4049 const Function *F = I.getCalledFunction(); 4050 bool HasChain = !F->doesNotAccessMemory(); 4051 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4052 4053 // Build the operand list. 4054 SmallVector<SDValue, 8> Ops; 4055 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4056 if (OnlyLoad) { 4057 // We don't need to serialize loads against other loads. 4058 Ops.push_back(DAG.getRoot()); 4059 } else { 4060 Ops.push_back(getRoot()); 4061 } 4062 } 4063 4064 // Info is set by getTgtMemInstrinsic 4065 TargetLowering::IntrinsicInfo Info; 4066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4067 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4068 4069 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4070 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4071 Info.opc == ISD::INTRINSIC_W_CHAIN) 4072 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4073 TLI.getPointerTy(DAG.getDataLayout()))); 4074 4075 // Add all operands of the call to the operand list. 4076 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4077 SDValue Op = getValue(I.getArgOperand(i)); 4078 Ops.push_back(Op); 4079 } 4080 4081 SmallVector<EVT, 4> ValueVTs; 4082 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4083 4084 if (HasChain) 4085 ValueVTs.push_back(MVT::Other); 4086 4087 SDVTList VTs = DAG.getVTList(ValueVTs); 4088 4089 // Create the node. 4090 SDValue Result; 4091 if (IsTgtIntrinsic) { 4092 // This is target intrinsic that touches memory 4093 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4094 VTs, Ops, Info.memVT, 4095 MachinePointerInfo(Info.ptrVal, Info.offset), 4096 Info.align, Info.vol, 4097 Info.readMem, Info.writeMem, Info.size); 4098 } else if (!HasChain) { 4099 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4100 } else if (!I.getType()->isVoidTy()) { 4101 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4102 } else { 4103 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4104 } 4105 4106 if (HasChain) { 4107 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4108 if (OnlyLoad) 4109 PendingLoads.push_back(Chain); 4110 else 4111 DAG.setRoot(Chain); 4112 } 4113 4114 if (!I.getType()->isVoidTy()) { 4115 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4116 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4117 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4118 } else 4119 Result = lowerRangeToAssertZExt(DAG, I, Result); 4120 4121 setValue(&I, Result); 4122 } 4123 } 4124 4125 /// GetSignificand - Get the significand and build it into a floating-point 4126 /// number with exponent of 1: 4127 /// 4128 /// Op = (Op & 0x007fffff) | 0x3f800000; 4129 /// 4130 /// where Op is the hexadecimal representation of floating point value. 4131 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4132 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4133 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4134 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4135 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4136 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4137 } 4138 4139 /// GetExponent - Get the exponent: 4140 /// 4141 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4142 /// 4143 /// where Op is the hexadecimal representation of floating point value. 4144 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4145 const TargetLowering &TLI, const SDLoc &dl) { 4146 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4147 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4148 SDValue t1 = DAG.getNode( 4149 ISD::SRL, dl, MVT::i32, t0, 4150 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4151 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4152 DAG.getConstant(127, dl, MVT::i32)); 4153 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4154 } 4155 4156 /// getF32Constant - Get 32-bit floating point constant. 4157 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4158 const SDLoc &dl) { 4159 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4160 MVT::f32); 4161 } 4162 4163 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4164 SelectionDAG &DAG) { 4165 // TODO: What fast-math-flags should be set on the floating-point nodes? 4166 4167 // IntegerPartOfX = ((int32_t)(t0); 4168 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4169 4170 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4171 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4172 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4173 4174 // IntegerPartOfX <<= 23; 4175 IntegerPartOfX = DAG.getNode( 4176 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4177 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4178 DAG.getDataLayout()))); 4179 4180 SDValue TwoToFractionalPartOfX; 4181 if (LimitFloatPrecision <= 6) { 4182 // For floating-point precision of 6: 4183 // 4184 // TwoToFractionalPartOfX = 4185 // 0.997535578f + 4186 // (0.735607626f + 0.252464424f * x) * x; 4187 // 4188 // error 0.0144103317, which is 6 bits 4189 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4190 getF32Constant(DAG, 0x3e814304, dl)); 4191 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4192 getF32Constant(DAG, 0x3f3c50c8, dl)); 4193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4194 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4195 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4196 } else if (LimitFloatPrecision <= 12) { 4197 // For floating-point precision of 12: 4198 // 4199 // TwoToFractionalPartOfX = 4200 // 0.999892986f + 4201 // (0.696457318f + 4202 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4203 // 4204 // error 0.000107046256, which is 13 to 14 bits 4205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4206 getF32Constant(DAG, 0x3da235e3, dl)); 4207 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4208 getF32Constant(DAG, 0x3e65b8f3, dl)); 4209 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4210 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4211 getF32Constant(DAG, 0x3f324b07, dl)); 4212 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4213 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4214 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4215 } else { // LimitFloatPrecision <= 18 4216 // For floating-point precision of 18: 4217 // 4218 // TwoToFractionalPartOfX = 4219 // 0.999999982f + 4220 // (0.693148872f + 4221 // (0.240227044f + 4222 // (0.554906021e-1f + 4223 // (0.961591928e-2f + 4224 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4225 // error 2.47208000*10^(-7), which is better than 18 bits 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4227 getF32Constant(DAG, 0x3924b03e, dl)); 4228 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4229 getF32Constant(DAG, 0x3ab24b87, dl)); 4230 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4231 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4232 getF32Constant(DAG, 0x3c1d8c17, dl)); 4233 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4234 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4235 getF32Constant(DAG, 0x3d634a1d, dl)); 4236 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4237 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4238 getF32Constant(DAG, 0x3e75fe14, dl)); 4239 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4240 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4241 getF32Constant(DAG, 0x3f317234, dl)); 4242 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4243 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4244 getF32Constant(DAG, 0x3f800000, dl)); 4245 } 4246 4247 // Add the exponent into the result in integer domain. 4248 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4249 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4250 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4251 } 4252 4253 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4254 /// limited-precision mode. 4255 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4256 const TargetLowering &TLI) { 4257 if (Op.getValueType() == MVT::f32 && 4258 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4259 4260 // Put the exponent in the right bit position for later addition to the 4261 // final result: 4262 // 4263 // #define LOG2OFe 1.4426950f 4264 // t0 = Op * LOG2OFe 4265 4266 // TODO: What fast-math-flags should be set here? 4267 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4268 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4269 return getLimitedPrecisionExp2(t0, dl, DAG); 4270 } 4271 4272 // No special expansion. 4273 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4274 } 4275 4276 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4277 /// limited-precision mode. 4278 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4279 const TargetLowering &TLI) { 4280 4281 // TODO: What fast-math-flags should be set on the floating-point nodes? 4282 4283 if (Op.getValueType() == MVT::f32 && 4284 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4285 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4286 4287 // Scale the exponent by log(2) [0.69314718f]. 4288 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4289 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4290 getF32Constant(DAG, 0x3f317218, dl)); 4291 4292 // Get the significand and build it into a floating-point number with 4293 // exponent of 1. 4294 SDValue X = GetSignificand(DAG, Op1, dl); 4295 4296 SDValue LogOfMantissa; 4297 if (LimitFloatPrecision <= 6) { 4298 // For floating-point precision of 6: 4299 // 4300 // LogofMantissa = 4301 // -1.1609546f + 4302 // (1.4034025f - 0.23903021f * x) * x; 4303 // 4304 // error 0.0034276066, which is better than 8 bits 4305 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4306 getF32Constant(DAG, 0xbe74c456, dl)); 4307 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4308 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4310 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4311 getF32Constant(DAG, 0x3f949a29, dl)); 4312 } else if (LimitFloatPrecision <= 12) { 4313 // For floating-point precision of 12: 4314 // 4315 // LogOfMantissa = 4316 // -1.7417939f + 4317 // (2.8212026f + 4318 // (-1.4699568f + 4319 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4320 // 4321 // error 0.000061011436, which is 14 bits 4322 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4323 getF32Constant(DAG, 0xbd67b6d6, dl)); 4324 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4325 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4326 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4327 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4328 getF32Constant(DAG, 0x3fbc278b, dl)); 4329 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4330 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4331 getF32Constant(DAG, 0x40348e95, dl)); 4332 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4333 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4334 getF32Constant(DAG, 0x3fdef31a, dl)); 4335 } else { // LimitFloatPrecision <= 18 4336 // For floating-point precision of 18: 4337 // 4338 // LogOfMantissa = 4339 // -2.1072184f + 4340 // (4.2372794f + 4341 // (-3.7029485f + 4342 // (2.2781945f + 4343 // (-0.87823314f + 4344 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4345 // 4346 // error 0.0000023660568, which is better than 18 bits 4347 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4348 getF32Constant(DAG, 0xbc91e5ac, dl)); 4349 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4350 getF32Constant(DAG, 0x3e4350aa, dl)); 4351 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4352 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4353 getF32Constant(DAG, 0x3f60d3e3, dl)); 4354 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4355 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4356 getF32Constant(DAG, 0x4011cdf0, dl)); 4357 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4358 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4359 getF32Constant(DAG, 0x406cfd1c, dl)); 4360 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4361 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4362 getF32Constant(DAG, 0x408797cb, dl)); 4363 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4364 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4365 getF32Constant(DAG, 0x4006dcab, dl)); 4366 } 4367 4368 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4369 } 4370 4371 // No special expansion. 4372 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4373 } 4374 4375 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4376 /// limited-precision mode. 4377 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4378 const TargetLowering &TLI) { 4379 4380 // TODO: What fast-math-flags should be set on the floating-point nodes? 4381 4382 if (Op.getValueType() == MVT::f32 && 4383 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4384 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4385 4386 // Get the exponent. 4387 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4388 4389 // Get the significand and build it into a floating-point number with 4390 // exponent of 1. 4391 SDValue X = GetSignificand(DAG, Op1, dl); 4392 4393 // Different possible minimax approximations of significand in 4394 // floating-point for various degrees of accuracy over [1,2]. 4395 SDValue Log2ofMantissa; 4396 if (LimitFloatPrecision <= 6) { 4397 // For floating-point precision of 6: 4398 // 4399 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4400 // 4401 // error 0.0049451742, which is more than 7 bits 4402 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4403 getF32Constant(DAG, 0xbeb08fe0, dl)); 4404 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4405 getF32Constant(DAG, 0x40019463, dl)); 4406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4407 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4408 getF32Constant(DAG, 0x3fd6633d, dl)); 4409 } else if (LimitFloatPrecision <= 12) { 4410 // For floating-point precision of 12: 4411 // 4412 // Log2ofMantissa = 4413 // -2.51285454f + 4414 // (4.07009056f + 4415 // (-2.12067489f + 4416 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4417 // 4418 // error 0.0000876136000, which is better than 13 bits 4419 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4420 getF32Constant(DAG, 0xbda7262e, dl)); 4421 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4422 getF32Constant(DAG, 0x3f25280b, dl)); 4423 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4424 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4425 getF32Constant(DAG, 0x4007b923, dl)); 4426 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4427 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4428 getF32Constant(DAG, 0x40823e2f, dl)); 4429 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4430 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4431 getF32Constant(DAG, 0x4020d29c, dl)); 4432 } else { // LimitFloatPrecision <= 18 4433 // For floating-point precision of 18: 4434 // 4435 // Log2ofMantissa = 4436 // -3.0400495f + 4437 // (6.1129976f + 4438 // (-5.3420409f + 4439 // (3.2865683f + 4440 // (-1.2669343f + 4441 // (0.27515199f - 4442 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4443 // 4444 // error 0.0000018516, which is better than 18 bits 4445 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4446 getF32Constant(DAG, 0xbcd2769e, dl)); 4447 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4448 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4449 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4450 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4451 getF32Constant(DAG, 0x3fa22ae7, dl)); 4452 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4453 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4454 getF32Constant(DAG, 0x40525723, dl)); 4455 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4456 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4457 getF32Constant(DAG, 0x40aaf200, dl)); 4458 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4459 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4460 getF32Constant(DAG, 0x40c39dad, dl)); 4461 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4462 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4463 getF32Constant(DAG, 0x4042902c, dl)); 4464 } 4465 4466 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4467 } 4468 4469 // No special expansion. 4470 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4471 } 4472 4473 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4474 /// limited-precision mode. 4475 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4476 const TargetLowering &TLI) { 4477 4478 // TODO: What fast-math-flags should be set on the floating-point nodes? 4479 4480 if (Op.getValueType() == MVT::f32 && 4481 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4482 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4483 4484 // Scale the exponent by log10(2) [0.30102999f]. 4485 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4486 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4487 getF32Constant(DAG, 0x3e9a209a, dl)); 4488 4489 // Get the significand and build it into a floating-point number with 4490 // exponent of 1. 4491 SDValue X = GetSignificand(DAG, Op1, dl); 4492 4493 SDValue Log10ofMantissa; 4494 if (LimitFloatPrecision <= 6) { 4495 // For floating-point precision of 6: 4496 // 4497 // Log10ofMantissa = 4498 // -0.50419619f + 4499 // (0.60948995f - 0.10380950f * x) * x; 4500 // 4501 // error 0.0014886165, which is 6 bits 4502 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4503 getF32Constant(DAG, 0xbdd49a13, dl)); 4504 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4505 getF32Constant(DAG, 0x3f1c0789, dl)); 4506 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4507 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4508 getF32Constant(DAG, 0x3f011300, dl)); 4509 } else if (LimitFloatPrecision <= 12) { 4510 // For floating-point precision of 12: 4511 // 4512 // Log10ofMantissa = 4513 // -0.64831180f + 4514 // (0.91751397f + 4515 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4516 // 4517 // error 0.00019228036, which is better than 12 bits 4518 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4519 getF32Constant(DAG, 0x3d431f31, dl)); 4520 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4521 getF32Constant(DAG, 0x3ea21fb2, dl)); 4522 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4523 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4524 getF32Constant(DAG, 0x3f6ae232, dl)); 4525 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4526 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4527 getF32Constant(DAG, 0x3f25f7c3, dl)); 4528 } else { // LimitFloatPrecision <= 18 4529 // For floating-point precision of 18: 4530 // 4531 // Log10ofMantissa = 4532 // -0.84299375f + 4533 // (1.5327582f + 4534 // (-1.0688956f + 4535 // (0.49102474f + 4536 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4537 // 4538 // error 0.0000037995730, which is better than 18 bits 4539 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4540 getF32Constant(DAG, 0x3c5d51ce, dl)); 4541 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4542 getF32Constant(DAG, 0x3e00685a, dl)); 4543 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4544 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4545 getF32Constant(DAG, 0x3efb6798, dl)); 4546 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4547 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4548 getF32Constant(DAG, 0x3f88d192, dl)); 4549 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4550 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4551 getF32Constant(DAG, 0x3fc4316c, dl)); 4552 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4553 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4554 getF32Constant(DAG, 0x3f57ce70, dl)); 4555 } 4556 4557 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4558 } 4559 4560 // No special expansion. 4561 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4562 } 4563 4564 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4565 /// limited-precision mode. 4566 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4567 const TargetLowering &TLI) { 4568 if (Op.getValueType() == MVT::f32 && 4569 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4570 return getLimitedPrecisionExp2(Op, dl, DAG); 4571 4572 // No special expansion. 4573 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4574 } 4575 4576 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4577 /// limited-precision mode with x == 10.0f. 4578 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4579 SelectionDAG &DAG, const TargetLowering &TLI) { 4580 bool IsExp10 = false; 4581 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4582 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4583 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4584 APFloat Ten(10.0f); 4585 IsExp10 = LHSC->isExactlyValue(Ten); 4586 } 4587 } 4588 4589 // TODO: What fast-math-flags should be set on the FMUL node? 4590 if (IsExp10) { 4591 // Put the exponent in the right bit position for later addition to the 4592 // final result: 4593 // 4594 // #define LOG2OF10 3.3219281f 4595 // t0 = Op * LOG2OF10; 4596 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4597 getF32Constant(DAG, 0x40549a78, dl)); 4598 return getLimitedPrecisionExp2(t0, dl, DAG); 4599 } 4600 4601 // No special expansion. 4602 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4603 } 4604 4605 4606 /// ExpandPowI - Expand a llvm.powi intrinsic. 4607 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4608 SelectionDAG &DAG) { 4609 // If RHS is a constant, we can expand this out to a multiplication tree, 4610 // otherwise we end up lowering to a call to __powidf2 (for example). When 4611 // optimizing for size, we only want to do this if the expansion would produce 4612 // a small number of multiplies, otherwise we do the full expansion. 4613 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4614 // Get the exponent as a positive value. 4615 unsigned Val = RHSC->getSExtValue(); 4616 if ((int)Val < 0) Val = -Val; 4617 4618 // powi(x, 0) -> 1.0 4619 if (Val == 0) 4620 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4621 4622 const Function *F = DAG.getMachineFunction().getFunction(); 4623 if (!F->optForSize() || 4624 // If optimizing for size, don't insert too many multiplies. 4625 // This inserts up to 5 multiplies. 4626 countPopulation(Val) + Log2_32(Val) < 7) { 4627 // We use the simple binary decomposition method to generate the multiply 4628 // sequence. There are more optimal ways to do this (for example, 4629 // powi(x,15) generates one more multiply than it should), but this has 4630 // the benefit of being both really simple and much better than a libcall. 4631 SDValue Res; // Logically starts equal to 1.0 4632 SDValue CurSquare = LHS; 4633 // TODO: Intrinsics should have fast-math-flags that propagate to these 4634 // nodes. 4635 while (Val) { 4636 if (Val & 1) { 4637 if (Res.getNode()) 4638 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4639 else 4640 Res = CurSquare; // 1.0*CurSquare. 4641 } 4642 4643 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4644 CurSquare, CurSquare); 4645 Val >>= 1; 4646 } 4647 4648 // If the original was negative, invert the result, producing 1/(x*x*x). 4649 if (RHSC->getSExtValue() < 0) 4650 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4651 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4652 return Res; 4653 } 4654 } 4655 4656 // Otherwise, expand to a libcall. 4657 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4658 } 4659 4660 // getUnderlyingArgReg - Find underlying register used for a truncated or 4661 // bitcasted argument. 4662 static unsigned getUnderlyingArgReg(const SDValue &N) { 4663 switch (N.getOpcode()) { 4664 case ISD::CopyFromReg: 4665 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4666 case ISD::BITCAST: 4667 case ISD::AssertZext: 4668 case ISD::AssertSext: 4669 case ISD::TRUNCATE: 4670 return getUnderlyingArgReg(N.getOperand(0)); 4671 default: 4672 return 0; 4673 } 4674 } 4675 4676 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4677 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4678 /// At the end of instruction selection, they will be inserted to the entry BB. 4679 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4680 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4681 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4682 const Argument *Arg = dyn_cast<Argument>(V); 4683 if (!Arg) 4684 return false; 4685 4686 MachineFunction &MF = DAG.getMachineFunction(); 4687 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4688 4689 // Ignore inlined function arguments here. 4690 // 4691 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4692 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4693 return false; 4694 4695 Optional<MachineOperand> Op; 4696 // Some arguments' frame index is recorded during argument lowering. 4697 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4698 Op = MachineOperand::CreateFI(FI); 4699 4700 if (!Op && N.getNode()) { 4701 unsigned Reg = getUnderlyingArgReg(N); 4702 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4703 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4704 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4705 if (PR) 4706 Reg = PR; 4707 } 4708 if (Reg) 4709 Op = MachineOperand::CreateReg(Reg, false); 4710 } 4711 4712 if (!Op) { 4713 // Check if ValueMap has reg number. 4714 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4715 if (VMI != FuncInfo.ValueMap.end()) 4716 Op = MachineOperand::CreateReg(VMI->second, false); 4717 } 4718 4719 if (!Op && N.getNode()) 4720 // Check if frame index is available. 4721 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4722 if (FrameIndexSDNode *FINode = 4723 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4724 Op = MachineOperand::CreateFI(FINode->getIndex()); 4725 4726 if (!Op) 4727 return false; 4728 4729 assert(Variable->isValidLocationForIntrinsic(DL) && 4730 "Expected inlined-at fields to agree"); 4731 if (Op->isReg()) 4732 FuncInfo.ArgDbgValues.push_back( 4733 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4734 Op->getReg(), Offset, Variable, Expr)); 4735 else 4736 FuncInfo.ArgDbgValues.push_back( 4737 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4738 .add(*Op) 4739 .addImm(Offset) 4740 .addMetadata(Variable) 4741 .addMetadata(Expr)); 4742 4743 return true; 4744 } 4745 4746 /// Return the appropriate SDDbgValue based on N. 4747 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4748 DILocalVariable *Variable, 4749 DIExpression *Expr, int64_t Offset, 4750 const DebugLoc &dl, 4751 unsigned DbgSDNodeOrder) { 4752 SDDbgValue *SDV; 4753 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4754 if (FISDN && Expr->startsWithDeref()) { 4755 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4756 // stack slot locations as such instead of as indirectly addressed 4757 // locations. 4758 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4759 Expr->elements_end()); 4760 DIExpression *DerefedDIExpr = 4761 DIExpression::get(*DAG.getContext(), TrailingElements); 4762 int FI = FISDN->getIndex(); 4763 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4764 DbgSDNodeOrder); 4765 } else { 4766 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4767 Offset, dl, DbgSDNodeOrder); 4768 } 4769 return SDV; 4770 } 4771 4772 // VisualStudio defines setjmp as _setjmp 4773 #if defined(_MSC_VER) && defined(setjmp) && \ 4774 !defined(setjmp_undefined_for_msvc) 4775 # pragma push_macro("setjmp") 4776 # undef setjmp 4777 # define setjmp_undefined_for_msvc 4778 #endif 4779 4780 /// Lower the call to the specified intrinsic function. If we want to emit this 4781 /// as a call to a named external function, return the name. Otherwise, lower it 4782 /// and return null. 4783 const char * 4784 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4786 SDLoc sdl = getCurSDLoc(); 4787 DebugLoc dl = getCurDebugLoc(); 4788 SDValue Res; 4789 4790 switch (Intrinsic) { 4791 default: 4792 // By default, turn this into a target intrinsic node. 4793 visitTargetIntrinsic(I, Intrinsic); 4794 return nullptr; 4795 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4796 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4797 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4798 case Intrinsic::returnaddress: 4799 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4800 TLI.getPointerTy(DAG.getDataLayout()), 4801 getValue(I.getArgOperand(0)))); 4802 return nullptr; 4803 case Intrinsic::addressofreturnaddress: 4804 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4805 TLI.getPointerTy(DAG.getDataLayout()))); 4806 return nullptr; 4807 case Intrinsic::frameaddress: 4808 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4809 TLI.getPointerTy(DAG.getDataLayout()), 4810 getValue(I.getArgOperand(0)))); 4811 return nullptr; 4812 case Intrinsic::read_register: { 4813 Value *Reg = I.getArgOperand(0); 4814 SDValue Chain = getRoot(); 4815 SDValue RegName = 4816 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4817 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4818 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4819 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4820 setValue(&I, Res); 4821 DAG.setRoot(Res.getValue(1)); 4822 return nullptr; 4823 } 4824 case Intrinsic::write_register: { 4825 Value *Reg = I.getArgOperand(0); 4826 Value *RegValue = I.getArgOperand(1); 4827 SDValue Chain = getRoot(); 4828 SDValue RegName = 4829 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4830 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4831 RegName, getValue(RegValue))); 4832 return nullptr; 4833 } 4834 case Intrinsic::setjmp: 4835 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4836 case Intrinsic::longjmp: 4837 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4838 case Intrinsic::memcpy: { 4839 SDValue Op1 = getValue(I.getArgOperand(0)); 4840 SDValue Op2 = getValue(I.getArgOperand(1)); 4841 SDValue Op3 = getValue(I.getArgOperand(2)); 4842 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4843 if (!Align) 4844 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4845 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4846 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4847 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4848 false, isTC, 4849 MachinePointerInfo(I.getArgOperand(0)), 4850 MachinePointerInfo(I.getArgOperand(1))); 4851 updateDAGForMaybeTailCall(MC); 4852 return nullptr; 4853 } 4854 case Intrinsic::memset: { 4855 SDValue Op1 = getValue(I.getArgOperand(0)); 4856 SDValue Op2 = getValue(I.getArgOperand(1)); 4857 SDValue Op3 = getValue(I.getArgOperand(2)); 4858 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4859 if (!Align) 4860 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4861 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4862 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4863 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4864 isTC, MachinePointerInfo(I.getArgOperand(0))); 4865 updateDAGForMaybeTailCall(MS); 4866 return nullptr; 4867 } 4868 case Intrinsic::memmove: { 4869 SDValue Op1 = getValue(I.getArgOperand(0)); 4870 SDValue Op2 = getValue(I.getArgOperand(1)); 4871 SDValue Op3 = getValue(I.getArgOperand(2)); 4872 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4873 if (!Align) 4874 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4875 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4876 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4877 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4878 isTC, MachinePointerInfo(I.getArgOperand(0)), 4879 MachinePointerInfo(I.getArgOperand(1))); 4880 updateDAGForMaybeTailCall(MM); 4881 return nullptr; 4882 } 4883 case Intrinsic::memcpy_element_atomic: { 4884 SDValue Dst = getValue(I.getArgOperand(0)); 4885 SDValue Src = getValue(I.getArgOperand(1)); 4886 SDValue NumElements = getValue(I.getArgOperand(2)); 4887 SDValue ElementSize = getValue(I.getArgOperand(3)); 4888 4889 // Emit a library call. 4890 TargetLowering::ArgListTy Args; 4891 TargetLowering::ArgListEntry Entry; 4892 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4893 Entry.Node = Dst; 4894 Args.push_back(Entry); 4895 4896 Entry.Node = Src; 4897 Args.push_back(Entry); 4898 4899 Entry.Ty = I.getArgOperand(2)->getType(); 4900 Entry.Node = NumElements; 4901 Args.push_back(Entry); 4902 4903 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4904 Entry.Node = ElementSize; 4905 Args.push_back(Entry); 4906 4907 uint64_t ElementSizeConstant = 4908 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4909 RTLIB::Libcall LibraryCall = 4910 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4911 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4912 report_fatal_error("Unsupported element size"); 4913 4914 TargetLowering::CallLoweringInfo CLI(DAG); 4915 CLI.setDebugLoc(sdl) 4916 .setChain(getRoot()) 4917 .setCallee(TLI.getLibcallCallingConv(LibraryCall), 4918 Type::getVoidTy(*DAG.getContext()), 4919 DAG.getExternalSymbol( 4920 TLI.getLibcallName(LibraryCall), 4921 TLI.getPointerTy(DAG.getDataLayout())), 4922 std::move(Args)); 4923 4924 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4925 DAG.setRoot(CallResult.second); 4926 return nullptr; 4927 } 4928 case Intrinsic::dbg_declare: { 4929 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4930 DILocalVariable *Variable = DI.getVariable(); 4931 DIExpression *Expression = DI.getExpression(); 4932 const Value *Address = DI.getAddress(); 4933 assert(Variable && "Missing variable"); 4934 if (!Address) { 4935 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4936 return nullptr; 4937 } 4938 4939 // Check if address has undef value. 4940 if (isa<UndefValue>(Address) || 4941 (Address->use_empty() && !isa<Argument>(Address))) { 4942 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4943 return nullptr; 4944 } 4945 4946 SDValue &N = NodeMap[Address]; 4947 if (!N.getNode() && isa<Argument>(Address)) 4948 // Check unused arguments map. 4949 N = UnusedArgNodeMap[Address]; 4950 SDDbgValue *SDV; 4951 if (N.getNode()) { 4952 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4953 Address = BCI->getOperand(0); 4954 // Parameters are handled specially. 4955 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4956 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4957 if (isParameter && FINode) { 4958 // Byval parameter. We have a frame index at this point. 4959 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4960 FINode->getIndex(), 0, dl, SDNodeOrder); 4961 } else if (isa<Argument>(Address)) { 4962 // Address is an argument, so try to emit its dbg value using 4963 // virtual register info from the FuncInfo.ValueMap. 4964 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4965 N); 4966 return nullptr; 4967 } else { 4968 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4969 true, 0, dl, SDNodeOrder); 4970 } 4971 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4972 } else { 4973 // If Address is an argument then try to emit its dbg value using 4974 // virtual register info from the FuncInfo.ValueMap. 4975 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4976 N)) { 4977 // If variable is pinned by a alloca in dominating bb then 4978 // use StaticAllocaMap. 4979 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4980 if (AI->getParent() != DI.getParent()) { 4981 DenseMap<const AllocaInst*, int>::iterator SI = 4982 FuncInfo.StaticAllocaMap.find(AI); 4983 if (SI != FuncInfo.StaticAllocaMap.end()) { 4984 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4985 0, dl, SDNodeOrder); 4986 DAG.AddDbgValue(SDV, nullptr, false); 4987 return nullptr; 4988 } 4989 } 4990 } 4991 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4992 } 4993 } 4994 return nullptr; 4995 } 4996 case Intrinsic::dbg_value: { 4997 const DbgValueInst &DI = cast<DbgValueInst>(I); 4998 assert(DI.getVariable() && "Missing variable"); 4999 5000 DILocalVariable *Variable = DI.getVariable(); 5001 DIExpression *Expression = DI.getExpression(); 5002 uint64_t Offset = DI.getOffset(); 5003 const Value *V = DI.getValue(); 5004 if (!V) 5005 return nullptr; 5006 5007 SDDbgValue *SDV; 5008 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5009 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 5010 SDNodeOrder); 5011 DAG.AddDbgValue(SDV, nullptr, false); 5012 } else { 5013 // Do not use getValue() in here; we don't want to generate code at 5014 // this point if it hasn't been done yet. 5015 SDValue N = NodeMap[V]; 5016 if (!N.getNode() && isa<Argument>(V)) 5017 // Check unused arguments map. 5018 N = UnusedArgNodeMap[V]; 5019 if (N.getNode()) { 5020 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 5021 false, N)) { 5022 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5023 DAG.AddDbgValue(SDV, N.getNode(), false); 5024 } 5025 } else if (!V->use_empty() ) { 5026 // Do not call getValue(V) yet, as we don't want to generate code. 5027 // Remember it for later. 5028 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5029 DanglingDebugInfoMap[V] = DDI; 5030 } else { 5031 // We may expand this to cover more cases. One case where we have no 5032 // data available is an unreferenced parameter. 5033 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5034 } 5035 } 5036 5037 // Build a debug info table entry. 5038 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 5039 V = BCI->getOperand(0); 5040 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 5041 // Don't handle byval struct arguments or VLAs, for example. 5042 if (!AI) { 5043 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5044 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5045 return nullptr; 5046 } 5047 DenseMap<const AllocaInst*, int>::iterator SI = 5048 FuncInfo.StaticAllocaMap.find(AI); 5049 if (SI == FuncInfo.StaticAllocaMap.end()) 5050 return nullptr; // VLAs. 5051 return nullptr; 5052 } 5053 5054 case Intrinsic::eh_typeid_for: { 5055 // Find the type id for the given typeinfo. 5056 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5057 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5058 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5059 setValue(&I, Res); 5060 return nullptr; 5061 } 5062 5063 case Intrinsic::eh_return_i32: 5064 case Intrinsic::eh_return_i64: 5065 DAG.getMachineFunction().setCallsEHReturn(true); 5066 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5067 MVT::Other, 5068 getControlRoot(), 5069 getValue(I.getArgOperand(0)), 5070 getValue(I.getArgOperand(1)))); 5071 return nullptr; 5072 case Intrinsic::eh_unwind_init: 5073 DAG.getMachineFunction().setCallsUnwindInit(true); 5074 return nullptr; 5075 case Intrinsic::eh_dwarf_cfa: { 5076 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5077 TLI.getPointerTy(DAG.getDataLayout()), 5078 getValue(I.getArgOperand(0)))); 5079 return nullptr; 5080 } 5081 case Intrinsic::eh_sjlj_callsite: { 5082 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5083 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5084 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5085 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5086 5087 MMI.setCurrentCallSite(CI->getZExtValue()); 5088 return nullptr; 5089 } 5090 case Intrinsic::eh_sjlj_functioncontext: { 5091 // Get and store the index of the function context. 5092 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5093 AllocaInst *FnCtx = 5094 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5095 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5096 MFI.setFunctionContextIndex(FI); 5097 return nullptr; 5098 } 5099 case Intrinsic::eh_sjlj_setjmp: { 5100 SDValue Ops[2]; 5101 Ops[0] = getRoot(); 5102 Ops[1] = getValue(I.getArgOperand(0)); 5103 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5104 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5105 setValue(&I, Op.getValue(0)); 5106 DAG.setRoot(Op.getValue(1)); 5107 return nullptr; 5108 } 5109 case Intrinsic::eh_sjlj_longjmp: { 5110 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5111 getRoot(), getValue(I.getArgOperand(0)))); 5112 return nullptr; 5113 } 5114 case Intrinsic::eh_sjlj_setup_dispatch: { 5115 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5116 getRoot())); 5117 return nullptr; 5118 } 5119 5120 case Intrinsic::masked_gather: 5121 visitMaskedGather(I); 5122 return nullptr; 5123 case Intrinsic::masked_load: 5124 visitMaskedLoad(I); 5125 return nullptr; 5126 case Intrinsic::masked_scatter: 5127 visitMaskedScatter(I); 5128 return nullptr; 5129 case Intrinsic::masked_store: 5130 visitMaskedStore(I); 5131 return nullptr; 5132 case Intrinsic::masked_expandload: 5133 visitMaskedLoad(I, true /* IsExpanding */); 5134 return nullptr; 5135 case Intrinsic::masked_compressstore: 5136 visitMaskedStore(I, true /* IsCompressing */); 5137 return nullptr; 5138 case Intrinsic::x86_mmx_pslli_w: 5139 case Intrinsic::x86_mmx_pslli_d: 5140 case Intrinsic::x86_mmx_pslli_q: 5141 case Intrinsic::x86_mmx_psrli_w: 5142 case Intrinsic::x86_mmx_psrli_d: 5143 case Intrinsic::x86_mmx_psrli_q: 5144 case Intrinsic::x86_mmx_psrai_w: 5145 case Intrinsic::x86_mmx_psrai_d: { 5146 SDValue ShAmt = getValue(I.getArgOperand(1)); 5147 if (isa<ConstantSDNode>(ShAmt)) { 5148 visitTargetIntrinsic(I, Intrinsic); 5149 return nullptr; 5150 } 5151 unsigned NewIntrinsic = 0; 5152 EVT ShAmtVT = MVT::v2i32; 5153 switch (Intrinsic) { 5154 case Intrinsic::x86_mmx_pslli_w: 5155 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5156 break; 5157 case Intrinsic::x86_mmx_pslli_d: 5158 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5159 break; 5160 case Intrinsic::x86_mmx_pslli_q: 5161 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5162 break; 5163 case Intrinsic::x86_mmx_psrli_w: 5164 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5165 break; 5166 case Intrinsic::x86_mmx_psrli_d: 5167 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5168 break; 5169 case Intrinsic::x86_mmx_psrli_q: 5170 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5171 break; 5172 case Intrinsic::x86_mmx_psrai_w: 5173 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5174 break; 5175 case Intrinsic::x86_mmx_psrai_d: 5176 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5177 break; 5178 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5179 } 5180 5181 // The vector shift intrinsics with scalars uses 32b shift amounts but 5182 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5183 // to be zero. 5184 // We must do this early because v2i32 is not a legal type. 5185 SDValue ShOps[2]; 5186 ShOps[0] = ShAmt; 5187 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5188 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5189 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5190 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5191 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5192 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5193 getValue(I.getArgOperand(0)), ShAmt); 5194 setValue(&I, Res); 5195 return nullptr; 5196 } 5197 case Intrinsic::powi: 5198 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5199 getValue(I.getArgOperand(1)), DAG)); 5200 return nullptr; 5201 case Intrinsic::log: 5202 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5203 return nullptr; 5204 case Intrinsic::log2: 5205 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5206 return nullptr; 5207 case Intrinsic::log10: 5208 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5209 return nullptr; 5210 case Intrinsic::exp: 5211 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5212 return nullptr; 5213 case Intrinsic::exp2: 5214 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5215 return nullptr; 5216 case Intrinsic::pow: 5217 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5218 getValue(I.getArgOperand(1)), DAG, TLI)); 5219 return nullptr; 5220 case Intrinsic::sqrt: 5221 case Intrinsic::fabs: 5222 case Intrinsic::sin: 5223 case Intrinsic::cos: 5224 case Intrinsic::floor: 5225 case Intrinsic::ceil: 5226 case Intrinsic::trunc: 5227 case Intrinsic::rint: 5228 case Intrinsic::nearbyint: 5229 case Intrinsic::round: 5230 case Intrinsic::canonicalize: { 5231 unsigned Opcode; 5232 switch (Intrinsic) { 5233 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5234 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5235 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5236 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5237 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5238 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5239 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5240 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5241 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5242 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5243 case Intrinsic::round: Opcode = ISD::FROUND; break; 5244 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5245 } 5246 5247 setValue(&I, DAG.getNode(Opcode, sdl, 5248 getValue(I.getArgOperand(0)).getValueType(), 5249 getValue(I.getArgOperand(0)))); 5250 return nullptr; 5251 } 5252 case Intrinsic::minnum: { 5253 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5254 unsigned Opc = 5255 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5256 ? ISD::FMINNAN 5257 : ISD::FMINNUM; 5258 setValue(&I, DAG.getNode(Opc, sdl, VT, 5259 getValue(I.getArgOperand(0)), 5260 getValue(I.getArgOperand(1)))); 5261 return nullptr; 5262 } 5263 case Intrinsic::maxnum: { 5264 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5265 unsigned Opc = 5266 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5267 ? ISD::FMAXNAN 5268 : ISD::FMAXNUM; 5269 setValue(&I, DAG.getNode(Opc, sdl, VT, 5270 getValue(I.getArgOperand(0)), 5271 getValue(I.getArgOperand(1)))); 5272 return nullptr; 5273 } 5274 case Intrinsic::copysign: 5275 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5276 getValue(I.getArgOperand(0)).getValueType(), 5277 getValue(I.getArgOperand(0)), 5278 getValue(I.getArgOperand(1)))); 5279 return nullptr; 5280 case Intrinsic::fma: 5281 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5282 getValue(I.getArgOperand(0)).getValueType(), 5283 getValue(I.getArgOperand(0)), 5284 getValue(I.getArgOperand(1)), 5285 getValue(I.getArgOperand(2)))); 5286 return nullptr; 5287 case Intrinsic::experimental_constrained_fadd: 5288 case Intrinsic::experimental_constrained_fsub: 5289 case Intrinsic::experimental_constrained_fmul: 5290 case Intrinsic::experimental_constrained_fdiv: 5291 case Intrinsic::experimental_constrained_frem: 5292 visitConstrainedFPIntrinsic(I, Intrinsic); 5293 return nullptr; 5294 case Intrinsic::fmuladd: { 5295 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5296 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5297 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5298 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5299 getValue(I.getArgOperand(0)).getValueType(), 5300 getValue(I.getArgOperand(0)), 5301 getValue(I.getArgOperand(1)), 5302 getValue(I.getArgOperand(2)))); 5303 } else { 5304 // TODO: Intrinsic calls should have fast-math-flags. 5305 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5306 getValue(I.getArgOperand(0)).getValueType(), 5307 getValue(I.getArgOperand(0)), 5308 getValue(I.getArgOperand(1))); 5309 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5310 getValue(I.getArgOperand(0)).getValueType(), 5311 Mul, 5312 getValue(I.getArgOperand(2))); 5313 setValue(&I, Add); 5314 } 5315 return nullptr; 5316 } 5317 case Intrinsic::convert_to_fp16: 5318 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5319 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5320 getValue(I.getArgOperand(0)), 5321 DAG.getTargetConstant(0, sdl, 5322 MVT::i32)))); 5323 return nullptr; 5324 case Intrinsic::convert_from_fp16: 5325 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5326 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5327 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5328 getValue(I.getArgOperand(0))))); 5329 return nullptr; 5330 case Intrinsic::pcmarker: { 5331 SDValue Tmp = getValue(I.getArgOperand(0)); 5332 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5333 return nullptr; 5334 } 5335 case Intrinsic::readcyclecounter: { 5336 SDValue Op = getRoot(); 5337 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5338 DAG.getVTList(MVT::i64, MVT::Other), Op); 5339 setValue(&I, Res); 5340 DAG.setRoot(Res.getValue(1)); 5341 return nullptr; 5342 } 5343 case Intrinsic::bitreverse: 5344 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5345 getValue(I.getArgOperand(0)).getValueType(), 5346 getValue(I.getArgOperand(0)))); 5347 return nullptr; 5348 case Intrinsic::bswap: 5349 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5350 getValue(I.getArgOperand(0)).getValueType(), 5351 getValue(I.getArgOperand(0)))); 5352 return nullptr; 5353 case Intrinsic::cttz: { 5354 SDValue Arg = getValue(I.getArgOperand(0)); 5355 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5356 EVT Ty = Arg.getValueType(); 5357 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5358 sdl, Ty, Arg)); 5359 return nullptr; 5360 } 5361 case Intrinsic::ctlz: { 5362 SDValue Arg = getValue(I.getArgOperand(0)); 5363 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5364 EVT Ty = Arg.getValueType(); 5365 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5366 sdl, Ty, Arg)); 5367 return nullptr; 5368 } 5369 case Intrinsic::ctpop: { 5370 SDValue Arg = getValue(I.getArgOperand(0)); 5371 EVT Ty = Arg.getValueType(); 5372 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5373 return nullptr; 5374 } 5375 case Intrinsic::stacksave: { 5376 SDValue Op = getRoot(); 5377 Res = DAG.getNode( 5378 ISD::STACKSAVE, sdl, 5379 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5380 setValue(&I, Res); 5381 DAG.setRoot(Res.getValue(1)); 5382 return nullptr; 5383 } 5384 case Intrinsic::stackrestore: { 5385 Res = getValue(I.getArgOperand(0)); 5386 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5387 return nullptr; 5388 } 5389 case Intrinsic::get_dynamic_area_offset: { 5390 SDValue Op = getRoot(); 5391 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5392 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5393 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5394 // target. 5395 if (PtrTy != ResTy) 5396 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5397 " intrinsic!"); 5398 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5399 Op); 5400 DAG.setRoot(Op); 5401 setValue(&I, Res); 5402 return nullptr; 5403 } 5404 case Intrinsic::stackguard: { 5405 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5406 MachineFunction &MF = DAG.getMachineFunction(); 5407 const Module &M = *MF.getFunction()->getParent(); 5408 SDValue Chain = getRoot(); 5409 if (TLI.useLoadStackGuardNode()) { 5410 Res = getLoadStackGuard(DAG, sdl, Chain); 5411 } else { 5412 const Value *Global = TLI.getSDagStackGuard(M); 5413 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5414 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5415 MachinePointerInfo(Global, 0), Align, 5416 MachineMemOperand::MOVolatile); 5417 } 5418 DAG.setRoot(Chain); 5419 setValue(&I, Res); 5420 return nullptr; 5421 } 5422 case Intrinsic::stackprotector: { 5423 // Emit code into the DAG to store the stack guard onto the stack. 5424 MachineFunction &MF = DAG.getMachineFunction(); 5425 MachineFrameInfo &MFI = MF.getFrameInfo(); 5426 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5427 SDValue Src, Chain = getRoot(); 5428 5429 if (TLI.useLoadStackGuardNode()) 5430 Src = getLoadStackGuard(DAG, sdl, Chain); 5431 else 5432 Src = getValue(I.getArgOperand(0)); // The guard's value. 5433 5434 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5435 5436 int FI = FuncInfo.StaticAllocaMap[Slot]; 5437 MFI.setStackProtectorIndex(FI); 5438 5439 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5440 5441 // Store the stack protector onto the stack. 5442 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5443 DAG.getMachineFunction(), FI), 5444 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5445 setValue(&I, Res); 5446 DAG.setRoot(Res); 5447 return nullptr; 5448 } 5449 case Intrinsic::objectsize: { 5450 // If we don't know by now, we're never going to know. 5451 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5452 5453 assert(CI && "Non-constant type in __builtin_object_size?"); 5454 5455 SDValue Arg = getValue(I.getCalledValue()); 5456 EVT Ty = Arg.getValueType(); 5457 5458 if (CI->isZero()) 5459 Res = DAG.getConstant(-1ULL, sdl, Ty); 5460 else 5461 Res = DAG.getConstant(0, sdl, Ty); 5462 5463 setValue(&I, Res); 5464 return nullptr; 5465 } 5466 case Intrinsic::annotation: 5467 case Intrinsic::ptr_annotation: 5468 case Intrinsic::invariant_group_barrier: 5469 // Drop the intrinsic, but forward the value 5470 setValue(&I, getValue(I.getOperand(0))); 5471 return nullptr; 5472 case Intrinsic::assume: 5473 case Intrinsic::var_annotation: 5474 // Discard annotate attributes and assumptions 5475 return nullptr; 5476 5477 case Intrinsic::init_trampoline: { 5478 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5479 5480 SDValue Ops[6]; 5481 Ops[0] = getRoot(); 5482 Ops[1] = getValue(I.getArgOperand(0)); 5483 Ops[2] = getValue(I.getArgOperand(1)); 5484 Ops[3] = getValue(I.getArgOperand(2)); 5485 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5486 Ops[5] = DAG.getSrcValue(F); 5487 5488 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5489 5490 DAG.setRoot(Res); 5491 return nullptr; 5492 } 5493 case Intrinsic::adjust_trampoline: { 5494 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5495 TLI.getPointerTy(DAG.getDataLayout()), 5496 getValue(I.getArgOperand(0)))); 5497 return nullptr; 5498 } 5499 case Intrinsic::gcroot: { 5500 MachineFunction &MF = DAG.getMachineFunction(); 5501 const Function *F = MF.getFunction(); 5502 (void)F; 5503 assert(F->hasGC() && 5504 "only valid in functions with gc specified, enforced by Verifier"); 5505 assert(GFI && "implied by previous"); 5506 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5507 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5508 5509 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5510 GFI->addStackRoot(FI->getIndex(), TypeMap); 5511 return nullptr; 5512 } 5513 case Intrinsic::gcread: 5514 case Intrinsic::gcwrite: 5515 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5516 case Intrinsic::flt_rounds: 5517 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5518 return nullptr; 5519 5520 case Intrinsic::expect: { 5521 // Just replace __builtin_expect(exp, c) with EXP. 5522 setValue(&I, getValue(I.getArgOperand(0))); 5523 return nullptr; 5524 } 5525 5526 case Intrinsic::debugtrap: 5527 case Intrinsic::trap: { 5528 StringRef TrapFuncName = 5529 I.getAttributes() 5530 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5531 .getValueAsString(); 5532 if (TrapFuncName.empty()) { 5533 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5534 ISD::TRAP : ISD::DEBUGTRAP; 5535 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5536 return nullptr; 5537 } 5538 TargetLowering::ArgListTy Args; 5539 5540 TargetLowering::CallLoweringInfo CLI(DAG); 5541 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5542 CallingConv::C, I.getType(), 5543 DAG.getExternalSymbol(TrapFuncName.data(), 5544 TLI.getPointerTy(DAG.getDataLayout())), 5545 std::move(Args)); 5546 5547 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5548 DAG.setRoot(Result.second); 5549 return nullptr; 5550 } 5551 5552 case Intrinsic::uadd_with_overflow: 5553 case Intrinsic::sadd_with_overflow: 5554 case Intrinsic::usub_with_overflow: 5555 case Intrinsic::ssub_with_overflow: 5556 case Intrinsic::umul_with_overflow: 5557 case Intrinsic::smul_with_overflow: { 5558 ISD::NodeType Op; 5559 switch (Intrinsic) { 5560 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5561 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5562 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5563 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5564 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5565 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5566 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5567 } 5568 SDValue Op1 = getValue(I.getArgOperand(0)); 5569 SDValue Op2 = getValue(I.getArgOperand(1)); 5570 5571 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5572 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5573 return nullptr; 5574 } 5575 case Intrinsic::prefetch: { 5576 SDValue Ops[5]; 5577 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5578 Ops[0] = getRoot(); 5579 Ops[1] = getValue(I.getArgOperand(0)); 5580 Ops[2] = getValue(I.getArgOperand(1)); 5581 Ops[3] = getValue(I.getArgOperand(2)); 5582 Ops[4] = getValue(I.getArgOperand(3)); 5583 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5584 DAG.getVTList(MVT::Other), Ops, 5585 EVT::getIntegerVT(*Context, 8), 5586 MachinePointerInfo(I.getArgOperand(0)), 5587 0, /* align */ 5588 false, /* volatile */ 5589 rw==0, /* read */ 5590 rw==1)); /* write */ 5591 return nullptr; 5592 } 5593 case Intrinsic::lifetime_start: 5594 case Intrinsic::lifetime_end: { 5595 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5596 // Stack coloring is not enabled in O0, discard region information. 5597 if (TM.getOptLevel() == CodeGenOpt::None) 5598 return nullptr; 5599 5600 SmallVector<Value *, 4> Allocas; 5601 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5602 5603 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5604 E = Allocas.end(); Object != E; ++Object) { 5605 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5606 5607 // Could not find an Alloca. 5608 if (!LifetimeObject) 5609 continue; 5610 5611 // First check that the Alloca is static, otherwise it won't have a 5612 // valid frame index. 5613 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5614 if (SI == FuncInfo.StaticAllocaMap.end()) 5615 return nullptr; 5616 5617 int FI = SI->second; 5618 5619 SDValue Ops[2]; 5620 Ops[0] = getRoot(); 5621 Ops[1] = 5622 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5623 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5624 5625 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5626 DAG.setRoot(Res); 5627 } 5628 return nullptr; 5629 } 5630 case Intrinsic::invariant_start: 5631 // Discard region information. 5632 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5633 return nullptr; 5634 case Intrinsic::invariant_end: 5635 // Discard region information. 5636 return nullptr; 5637 case Intrinsic::clear_cache: 5638 return TLI.getClearCacheBuiltinName(); 5639 case Intrinsic::donothing: 5640 // ignore 5641 return nullptr; 5642 case Intrinsic::experimental_stackmap: { 5643 visitStackmap(I); 5644 return nullptr; 5645 } 5646 case Intrinsic::experimental_patchpoint_void: 5647 case Intrinsic::experimental_patchpoint_i64: { 5648 visitPatchpoint(&I); 5649 return nullptr; 5650 } 5651 case Intrinsic::experimental_gc_statepoint: { 5652 LowerStatepoint(ImmutableStatepoint(&I)); 5653 return nullptr; 5654 } 5655 case Intrinsic::experimental_gc_result: { 5656 visitGCResult(cast<GCResultInst>(I)); 5657 return nullptr; 5658 } 5659 case Intrinsic::experimental_gc_relocate: { 5660 visitGCRelocate(cast<GCRelocateInst>(I)); 5661 return nullptr; 5662 } 5663 case Intrinsic::instrprof_increment: 5664 llvm_unreachable("instrprof failed to lower an increment"); 5665 case Intrinsic::instrprof_value_profile: 5666 llvm_unreachable("instrprof failed to lower a value profiling call"); 5667 case Intrinsic::localescape: { 5668 MachineFunction &MF = DAG.getMachineFunction(); 5669 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5670 5671 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5672 // is the same on all targets. 5673 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5674 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5675 if (isa<ConstantPointerNull>(Arg)) 5676 continue; // Skip null pointers. They represent a hole in index space. 5677 AllocaInst *Slot = cast<AllocaInst>(Arg); 5678 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5679 "can only escape static allocas"); 5680 int FI = FuncInfo.StaticAllocaMap[Slot]; 5681 MCSymbol *FrameAllocSym = 5682 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5683 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5685 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5686 .addSym(FrameAllocSym) 5687 .addFrameIndex(FI); 5688 } 5689 5690 return nullptr; 5691 } 5692 5693 case Intrinsic::localrecover: { 5694 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5695 MachineFunction &MF = DAG.getMachineFunction(); 5696 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5697 5698 // Get the symbol that defines the frame offset. 5699 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5700 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5701 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5702 MCSymbol *FrameAllocSym = 5703 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5704 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5705 5706 // Create a MCSymbol for the label to avoid any target lowering 5707 // that would make this PC relative. 5708 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5709 SDValue OffsetVal = 5710 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5711 5712 // Add the offset to the FP. 5713 Value *FP = I.getArgOperand(1); 5714 SDValue FPVal = getValue(FP); 5715 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5716 setValue(&I, Add); 5717 5718 return nullptr; 5719 } 5720 5721 case Intrinsic::eh_exceptionpointer: 5722 case Intrinsic::eh_exceptioncode: { 5723 // Get the exception pointer vreg, copy from it, and resize it to fit. 5724 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5725 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5726 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5727 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5728 SDValue N = 5729 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5730 if (Intrinsic == Intrinsic::eh_exceptioncode) 5731 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5732 setValue(&I, N); 5733 return nullptr; 5734 } 5735 5736 case Intrinsic::experimental_deoptimize: 5737 LowerDeoptimizeCall(&I); 5738 return nullptr; 5739 } 5740 } 5741 5742 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I, 5743 unsigned Intrinsic) { 5744 SDLoc sdl = getCurSDLoc(); 5745 unsigned Opcode; 5746 switch (Intrinsic) { 5747 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5748 case Intrinsic::experimental_constrained_fadd: 5749 Opcode = ISD::STRICT_FADD; 5750 break; 5751 case Intrinsic::experimental_constrained_fsub: 5752 Opcode = ISD::STRICT_FSUB; 5753 break; 5754 case Intrinsic::experimental_constrained_fmul: 5755 Opcode = ISD::STRICT_FMUL; 5756 break; 5757 case Intrinsic::experimental_constrained_fdiv: 5758 Opcode = ISD::STRICT_FDIV; 5759 break; 5760 case Intrinsic::experimental_constrained_frem: 5761 Opcode = ISD::STRICT_FREM; 5762 break; 5763 } 5764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5765 SDValue Chain = getRoot(); 5766 SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)), 5767 getValue(I.getArgOperand(1)) }; 5768 SmallVector<EVT, 4> ValueVTs; 5769 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5770 ValueVTs.push_back(MVT::Other); // Out chain 5771 5772 SDVTList VTs = DAG.getVTList(ValueVTs); 5773 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops); 5774 5775 assert(Result.getNode()->getNumValues() == 2); 5776 SDValue OutChain = Result.getValue(1); 5777 DAG.setRoot(OutChain); 5778 SDValue FPResult = Result.getValue(0); 5779 setValue(&I, FPResult); 5780 } 5781 5782 std::pair<SDValue, SDValue> 5783 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5784 const BasicBlock *EHPadBB) { 5785 MachineFunction &MF = DAG.getMachineFunction(); 5786 MachineModuleInfo &MMI = MF.getMMI(); 5787 MCSymbol *BeginLabel = nullptr; 5788 5789 if (EHPadBB) { 5790 // Insert a label before the invoke call to mark the try range. This can be 5791 // used to detect deletion of the invoke via the MachineModuleInfo. 5792 BeginLabel = MMI.getContext().createTempSymbol(); 5793 5794 // For SjLj, keep track of which landing pads go with which invokes 5795 // so as to maintain the ordering of pads in the LSDA. 5796 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5797 if (CallSiteIndex) { 5798 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5799 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5800 5801 // Now that the call site is handled, stop tracking it. 5802 MMI.setCurrentCallSite(0); 5803 } 5804 5805 // Both PendingLoads and PendingExports must be flushed here; 5806 // this call might not return. 5807 (void)getRoot(); 5808 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5809 5810 CLI.setChain(getRoot()); 5811 } 5812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5813 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5814 5815 assert((CLI.IsTailCall || Result.second.getNode()) && 5816 "Non-null chain expected with non-tail call!"); 5817 assert((Result.second.getNode() || !Result.first.getNode()) && 5818 "Null value expected with tail call!"); 5819 5820 if (!Result.second.getNode()) { 5821 // As a special case, a null chain means that a tail call has been emitted 5822 // and the DAG root is already updated. 5823 HasTailCall = true; 5824 5825 // Since there's no actual continuation from this block, nothing can be 5826 // relying on us setting vregs for them. 5827 PendingExports.clear(); 5828 } else { 5829 DAG.setRoot(Result.second); 5830 } 5831 5832 if (EHPadBB) { 5833 // Insert a label at the end of the invoke call to mark the try range. This 5834 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5835 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5836 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5837 5838 // Inform MachineModuleInfo of range. 5839 if (MF.hasEHFunclets()) { 5840 assert(CLI.CS); 5841 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5842 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5843 BeginLabel, EndLabel); 5844 } else { 5845 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5846 } 5847 } 5848 5849 return Result; 5850 } 5851 5852 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5853 bool isTailCall, 5854 const BasicBlock *EHPadBB) { 5855 auto &DL = DAG.getDataLayout(); 5856 FunctionType *FTy = CS.getFunctionType(); 5857 Type *RetTy = CS.getType(); 5858 5859 TargetLowering::ArgListTy Args; 5860 TargetLowering::ArgListEntry Entry; 5861 Args.reserve(CS.arg_size()); 5862 5863 const Value *SwiftErrorVal = nullptr; 5864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5865 5866 // We can't tail call inside a function with a swifterror argument. Lowering 5867 // does not support this yet. It would have to move into the swifterror 5868 // register before the call. 5869 auto *Caller = CS.getInstruction()->getParent()->getParent(); 5870 if (TLI.supportSwiftError() && 5871 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 5872 isTailCall = false; 5873 5874 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5875 i != e; ++i) { 5876 const Value *V = *i; 5877 5878 // Skip empty types 5879 if (V->getType()->isEmptyTy()) 5880 continue; 5881 5882 SDValue ArgNode = getValue(V); 5883 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5884 5885 // Skip the first return-type Attribute to get to params. 5886 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5887 5888 // Use swifterror virtual register as input to the call. 5889 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5890 SwiftErrorVal = V; 5891 // We find the virtual register for the actual swifterror argument. 5892 // Instead of using the Value, we use the virtual register instead. 5893 Entry.Node = 5894 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5895 EVT(TLI.getPointerTy(DL))); 5896 } 5897 5898 Args.push_back(Entry); 5899 5900 // If we have an explicit sret argument that is an Instruction, (i.e., it 5901 // might point to function-local memory), we can't meaningfully tail-call. 5902 if (Entry.isSRet && isa<Instruction>(V)) 5903 isTailCall = false; 5904 } 5905 5906 // Check if target-independent constraints permit a tail call here. 5907 // Target-dependent constraints are checked within TLI->LowerCallTo. 5908 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5909 isTailCall = false; 5910 5911 // Disable tail calls if there is an swifterror argument. Targets have not 5912 // been updated to support tail calls. 5913 if (TLI.supportSwiftError() && SwiftErrorVal) 5914 isTailCall = false; 5915 5916 TargetLowering::CallLoweringInfo CLI(DAG); 5917 CLI.setDebugLoc(getCurSDLoc()) 5918 .setChain(getRoot()) 5919 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5920 .setTailCall(isTailCall) 5921 .setConvergent(CS.isConvergent()); 5922 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5923 5924 if (Result.first.getNode()) { 5925 const Instruction *Inst = CS.getInstruction(); 5926 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5927 setValue(Inst, Result.first); 5928 } 5929 5930 // The last element of CLI.InVals has the SDValue for swifterror return. 5931 // Here we copy it to a virtual register and update SwiftErrorMap for 5932 // book-keeping. 5933 if (SwiftErrorVal && TLI.supportSwiftError()) { 5934 // Get the last element of InVals. 5935 SDValue Src = CLI.InVals.back(); 5936 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5937 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5938 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5939 // We update the virtual register for the actual swifterror argument. 5940 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5941 DAG.setRoot(CopyNode); 5942 } 5943 } 5944 5945 /// Return true if it only matters that the value is equal or not-equal to zero. 5946 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5947 for (const User *U : V->users()) { 5948 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5949 if (IC->isEquality()) 5950 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5951 if (C->isNullValue()) 5952 continue; 5953 // Unknown instruction. 5954 return false; 5955 } 5956 return true; 5957 } 5958 5959 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5960 Type *LoadTy, 5961 SelectionDAGBuilder &Builder) { 5962 5963 // Check to see if this load can be trivially constant folded, e.g. if the 5964 // input is from a string literal. 5965 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5966 // Cast pointer to the type we really want to load. 5967 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5968 PointerType::getUnqual(LoadTy)); 5969 5970 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5971 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5972 return Builder.getValue(LoadCst); 5973 } 5974 5975 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5976 // still constant memory, the input chain can be the entry node. 5977 SDValue Root; 5978 bool ConstantMemory = false; 5979 5980 // Do not serialize (non-volatile) loads of constant memory with anything. 5981 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5982 Root = Builder.DAG.getEntryNode(); 5983 ConstantMemory = true; 5984 } else { 5985 // Do not serialize non-volatile loads against each other. 5986 Root = Builder.DAG.getRoot(); 5987 } 5988 5989 SDValue Ptr = Builder.getValue(PtrVal); 5990 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5991 Ptr, MachinePointerInfo(PtrVal), 5992 /* Alignment = */ 1); 5993 5994 if (!ConstantMemory) 5995 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5996 return LoadVal; 5997 } 5998 5999 /// Record the value for an instruction that produces an integer result, 6000 /// converting the type where necessary. 6001 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6002 SDValue Value, 6003 bool IsSigned) { 6004 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6005 I.getType(), true); 6006 if (IsSigned) 6007 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6008 else 6009 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6010 setValue(&I, Value); 6011 } 6012 6013 /// See if we can lower a memcmp call into an optimized form. If so, return 6014 /// true and lower it. Otherwise return false, and it will be lowered like a 6015 /// normal call. 6016 /// The caller already checked that \p I calls the appropriate LibFunc with a 6017 /// correct prototype. 6018 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6019 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6020 const Value *Size = I.getArgOperand(2); 6021 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6022 if (CSize && CSize->getZExtValue() == 0) { 6023 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6024 I.getType(), true); 6025 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6026 return true; 6027 } 6028 6029 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6030 std::pair<SDValue, SDValue> Res = 6031 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6032 getValue(LHS), getValue(RHS), getValue(Size), 6033 MachinePointerInfo(LHS), 6034 MachinePointerInfo(RHS)); 6035 if (Res.first.getNode()) { 6036 processIntegerCallValue(I, Res.first, true); 6037 PendingLoads.push_back(Res.second); 6038 return true; 6039 } 6040 6041 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6042 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6043 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 6044 bool ActuallyDoIt = true; 6045 MVT LoadVT; 6046 Type *LoadTy; 6047 switch (CSize->getZExtValue()) { 6048 default: 6049 LoadVT = MVT::Other; 6050 LoadTy = nullptr; 6051 ActuallyDoIt = false; 6052 break; 6053 case 2: 6054 LoadVT = MVT::i16; 6055 LoadTy = Type::getInt16Ty(CSize->getContext()); 6056 break; 6057 case 4: 6058 LoadVT = MVT::i32; 6059 LoadTy = Type::getInt32Ty(CSize->getContext()); 6060 break; 6061 case 8: 6062 LoadVT = MVT::i64; 6063 LoadTy = Type::getInt64Ty(CSize->getContext()); 6064 break; 6065 /* 6066 case 16: 6067 LoadVT = MVT::v4i32; 6068 LoadTy = Type::getInt32Ty(CSize->getContext()); 6069 LoadTy = VectorType::get(LoadTy, 4); 6070 break; 6071 */ 6072 } 6073 6074 // This turns into unaligned loads. We only do this if the target natively 6075 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6076 // we'll only produce a small number of byte loads. 6077 6078 // Require that we can find a legal MVT, and only do this if the target 6079 // supports unaligned loads of that type. Expanding into byte loads would 6080 // bloat the code. 6081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6082 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 6083 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6084 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6085 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6086 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6087 // TODO: Check alignment of src and dest ptrs. 6088 if (!TLI.isTypeLegal(LoadVT) || 6089 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 6090 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 6091 ActuallyDoIt = false; 6092 } 6093 6094 if (ActuallyDoIt) { 6095 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 6096 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 6097 6098 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 6099 ISD::SETNE); 6100 processIntegerCallValue(I, Res, false); 6101 return true; 6102 } 6103 } 6104 6105 6106 return false; 6107 } 6108 6109 /// See if we can lower a memchr call into an optimized form. If so, return 6110 /// true and lower it. Otherwise return false, and it will be lowered like a 6111 /// normal call. 6112 /// The caller already checked that \p I calls the appropriate LibFunc with a 6113 /// correct prototype. 6114 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6115 const Value *Src = I.getArgOperand(0); 6116 const Value *Char = I.getArgOperand(1); 6117 const Value *Length = I.getArgOperand(2); 6118 6119 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6120 std::pair<SDValue, SDValue> Res = 6121 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6122 getValue(Src), getValue(Char), getValue(Length), 6123 MachinePointerInfo(Src)); 6124 if (Res.first.getNode()) { 6125 setValue(&I, Res.first); 6126 PendingLoads.push_back(Res.second); 6127 return true; 6128 } 6129 6130 return false; 6131 } 6132 6133 /// See if we can lower a mempcpy call into an optimized form. If so, return 6134 /// true and lower it. Otherwise return false, and it will be lowered like a 6135 /// normal call. 6136 /// The caller already checked that \p I calls the appropriate LibFunc with a 6137 /// correct prototype. 6138 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6139 SDValue Dst = getValue(I.getArgOperand(0)); 6140 SDValue Src = getValue(I.getArgOperand(1)); 6141 SDValue Size = getValue(I.getArgOperand(2)); 6142 6143 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6144 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6145 unsigned Align = std::min(DstAlign, SrcAlign); 6146 if (Align == 0) // Alignment of one or both could not be inferred. 6147 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6148 6149 bool isVol = false; 6150 SDLoc sdl = getCurSDLoc(); 6151 6152 // In the mempcpy context we need to pass in a false value for isTailCall 6153 // because the return pointer needs to be adjusted by the size of 6154 // the copied memory. 6155 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6156 false, /*isTailCall=*/false, 6157 MachinePointerInfo(I.getArgOperand(0)), 6158 MachinePointerInfo(I.getArgOperand(1))); 6159 assert(MC.getNode() != nullptr && 6160 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6161 DAG.setRoot(MC); 6162 6163 // Check if Size needs to be truncated or extended. 6164 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6165 6166 // Adjust return pointer to point just past the last dst byte. 6167 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6168 Dst, Size); 6169 setValue(&I, DstPlusSize); 6170 return true; 6171 } 6172 6173 /// See if we can lower a strcpy call into an optimized form. If so, return 6174 /// true and lower it, otherwise return false and it will be lowered like a 6175 /// normal call. 6176 /// The caller already checked that \p I calls the appropriate LibFunc with a 6177 /// correct prototype. 6178 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6179 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6180 6181 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6182 std::pair<SDValue, SDValue> Res = 6183 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6184 getValue(Arg0), getValue(Arg1), 6185 MachinePointerInfo(Arg0), 6186 MachinePointerInfo(Arg1), isStpcpy); 6187 if (Res.first.getNode()) { 6188 setValue(&I, Res.first); 6189 DAG.setRoot(Res.second); 6190 return true; 6191 } 6192 6193 return false; 6194 } 6195 6196 /// See if we can lower a strcmp call into an optimized form. If so, return 6197 /// true and lower it, otherwise return false and it will be lowered like a 6198 /// normal call. 6199 /// The caller already checked that \p I calls the appropriate LibFunc with a 6200 /// correct prototype. 6201 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6202 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6203 6204 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6205 std::pair<SDValue, SDValue> Res = 6206 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6207 getValue(Arg0), getValue(Arg1), 6208 MachinePointerInfo(Arg0), 6209 MachinePointerInfo(Arg1)); 6210 if (Res.first.getNode()) { 6211 processIntegerCallValue(I, Res.first, true); 6212 PendingLoads.push_back(Res.second); 6213 return true; 6214 } 6215 6216 return false; 6217 } 6218 6219 /// See if we can lower a strlen call into an optimized form. If so, return 6220 /// true and lower it, otherwise return false and it will be lowered like a 6221 /// normal call. 6222 /// The caller already checked that \p I calls the appropriate LibFunc with a 6223 /// correct prototype. 6224 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6225 const Value *Arg0 = I.getArgOperand(0); 6226 6227 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6228 std::pair<SDValue, SDValue> Res = 6229 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6230 getValue(Arg0), MachinePointerInfo(Arg0)); 6231 if (Res.first.getNode()) { 6232 processIntegerCallValue(I, Res.first, false); 6233 PendingLoads.push_back(Res.second); 6234 return true; 6235 } 6236 6237 return false; 6238 } 6239 6240 /// See if we can lower a strnlen call into an optimized form. If so, return 6241 /// true and lower it, otherwise return false and it will be lowered like a 6242 /// normal call. 6243 /// The caller already checked that \p I calls the appropriate LibFunc with a 6244 /// correct prototype. 6245 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6246 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6247 6248 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6249 std::pair<SDValue, SDValue> Res = 6250 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6251 getValue(Arg0), getValue(Arg1), 6252 MachinePointerInfo(Arg0)); 6253 if (Res.first.getNode()) { 6254 processIntegerCallValue(I, Res.first, false); 6255 PendingLoads.push_back(Res.second); 6256 return true; 6257 } 6258 6259 return false; 6260 } 6261 6262 /// See if we can lower a unary floating-point operation into an SDNode with 6263 /// the specified Opcode. If so, return true and lower it, otherwise return 6264 /// false and it will be lowered like a normal call. 6265 /// The caller already checked that \p I calls the appropriate LibFunc with a 6266 /// correct prototype. 6267 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6268 unsigned Opcode) { 6269 // We already checked this call's prototype; verify it doesn't modify errno. 6270 if (!I.onlyReadsMemory()) 6271 return false; 6272 6273 SDValue Tmp = getValue(I.getArgOperand(0)); 6274 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6275 return true; 6276 } 6277 6278 /// See if we can lower a binary floating-point operation into an SDNode with 6279 /// the specified Opcode. If so, return true and lower it. Otherwise return 6280 /// false, and it will be lowered like a normal call. 6281 /// The caller already checked that \p I calls the appropriate LibFunc with a 6282 /// correct prototype. 6283 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6284 unsigned Opcode) { 6285 // We already checked this call's prototype; verify it doesn't modify errno. 6286 if (!I.onlyReadsMemory()) 6287 return false; 6288 6289 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6290 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6291 EVT VT = Tmp0.getValueType(); 6292 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6293 return true; 6294 } 6295 6296 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6297 // Handle inline assembly differently. 6298 if (isa<InlineAsm>(I.getCalledValue())) { 6299 visitInlineAsm(&I); 6300 return; 6301 } 6302 6303 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6304 computeUsesVAFloatArgument(I, MMI); 6305 6306 const char *RenameFn = nullptr; 6307 if (Function *F = I.getCalledFunction()) { 6308 if (F->isDeclaration()) { 6309 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6310 if (unsigned IID = II->getIntrinsicID(F)) { 6311 RenameFn = visitIntrinsicCall(I, IID); 6312 if (!RenameFn) 6313 return; 6314 } 6315 } 6316 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6317 RenameFn = visitIntrinsicCall(I, IID); 6318 if (!RenameFn) 6319 return; 6320 } 6321 } 6322 6323 // Check for well-known libc/libm calls. If the function is internal, it 6324 // can't be a library call. Don't do the check if marked as nobuiltin for 6325 // some reason. 6326 LibFunc Func; 6327 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6328 LibInfo->getLibFunc(*F, Func) && 6329 LibInfo->hasOptimizedCodeGen(Func)) { 6330 switch (Func) { 6331 default: break; 6332 case LibFunc_copysign: 6333 case LibFunc_copysignf: 6334 case LibFunc_copysignl: 6335 // We already checked this call's prototype; verify it doesn't modify 6336 // errno. 6337 if (I.onlyReadsMemory()) { 6338 SDValue LHS = getValue(I.getArgOperand(0)); 6339 SDValue RHS = getValue(I.getArgOperand(1)); 6340 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6341 LHS.getValueType(), LHS, RHS)); 6342 return; 6343 } 6344 break; 6345 case LibFunc_fabs: 6346 case LibFunc_fabsf: 6347 case LibFunc_fabsl: 6348 if (visitUnaryFloatCall(I, ISD::FABS)) 6349 return; 6350 break; 6351 case LibFunc_fmin: 6352 case LibFunc_fminf: 6353 case LibFunc_fminl: 6354 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6355 return; 6356 break; 6357 case LibFunc_fmax: 6358 case LibFunc_fmaxf: 6359 case LibFunc_fmaxl: 6360 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6361 return; 6362 break; 6363 case LibFunc_sin: 6364 case LibFunc_sinf: 6365 case LibFunc_sinl: 6366 if (visitUnaryFloatCall(I, ISD::FSIN)) 6367 return; 6368 break; 6369 case LibFunc_cos: 6370 case LibFunc_cosf: 6371 case LibFunc_cosl: 6372 if (visitUnaryFloatCall(I, ISD::FCOS)) 6373 return; 6374 break; 6375 case LibFunc_sqrt: 6376 case LibFunc_sqrtf: 6377 case LibFunc_sqrtl: 6378 case LibFunc_sqrt_finite: 6379 case LibFunc_sqrtf_finite: 6380 case LibFunc_sqrtl_finite: 6381 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6382 return; 6383 break; 6384 case LibFunc_floor: 6385 case LibFunc_floorf: 6386 case LibFunc_floorl: 6387 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6388 return; 6389 break; 6390 case LibFunc_nearbyint: 6391 case LibFunc_nearbyintf: 6392 case LibFunc_nearbyintl: 6393 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6394 return; 6395 break; 6396 case LibFunc_ceil: 6397 case LibFunc_ceilf: 6398 case LibFunc_ceill: 6399 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6400 return; 6401 break; 6402 case LibFunc_rint: 6403 case LibFunc_rintf: 6404 case LibFunc_rintl: 6405 if (visitUnaryFloatCall(I, ISD::FRINT)) 6406 return; 6407 break; 6408 case LibFunc_round: 6409 case LibFunc_roundf: 6410 case LibFunc_roundl: 6411 if (visitUnaryFloatCall(I, ISD::FROUND)) 6412 return; 6413 break; 6414 case LibFunc_trunc: 6415 case LibFunc_truncf: 6416 case LibFunc_truncl: 6417 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6418 return; 6419 break; 6420 case LibFunc_log2: 6421 case LibFunc_log2f: 6422 case LibFunc_log2l: 6423 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6424 return; 6425 break; 6426 case LibFunc_exp2: 6427 case LibFunc_exp2f: 6428 case LibFunc_exp2l: 6429 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6430 return; 6431 break; 6432 case LibFunc_memcmp: 6433 if (visitMemCmpCall(I)) 6434 return; 6435 break; 6436 case LibFunc_mempcpy: 6437 if (visitMemPCpyCall(I)) 6438 return; 6439 break; 6440 case LibFunc_memchr: 6441 if (visitMemChrCall(I)) 6442 return; 6443 break; 6444 case LibFunc_strcpy: 6445 if (visitStrCpyCall(I, false)) 6446 return; 6447 break; 6448 case LibFunc_stpcpy: 6449 if (visitStrCpyCall(I, true)) 6450 return; 6451 break; 6452 case LibFunc_strcmp: 6453 if (visitStrCmpCall(I)) 6454 return; 6455 break; 6456 case LibFunc_strlen: 6457 if (visitStrLenCall(I)) 6458 return; 6459 break; 6460 case LibFunc_strnlen: 6461 if (visitStrNLenCall(I)) 6462 return; 6463 break; 6464 } 6465 } 6466 } 6467 6468 SDValue Callee; 6469 if (!RenameFn) 6470 Callee = getValue(I.getCalledValue()); 6471 else 6472 Callee = DAG.getExternalSymbol( 6473 RenameFn, 6474 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6475 6476 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6477 // have to do anything here to lower funclet bundles. 6478 assert(!I.hasOperandBundlesOtherThan( 6479 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6480 "Cannot lower calls with arbitrary operand bundles!"); 6481 6482 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6483 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6484 else 6485 // Check if we can potentially perform a tail call. More detailed checking 6486 // is be done within LowerCallTo, after more information about the call is 6487 // known. 6488 LowerCallTo(&I, Callee, I.isTailCall()); 6489 } 6490 6491 namespace { 6492 6493 /// AsmOperandInfo - This contains information for each constraint that we are 6494 /// lowering. 6495 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6496 public: 6497 /// CallOperand - If this is the result output operand or a clobber 6498 /// this is null, otherwise it is the incoming operand to the CallInst. 6499 /// This gets modified as the asm is processed. 6500 SDValue CallOperand; 6501 6502 /// AssignedRegs - If this is a register or register class operand, this 6503 /// contains the set of register corresponding to the operand. 6504 RegsForValue AssignedRegs; 6505 6506 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6507 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6508 } 6509 6510 /// Whether or not this operand accesses memory 6511 bool hasMemory(const TargetLowering &TLI) const { 6512 // Indirect operand accesses access memory. 6513 if (isIndirect) 6514 return true; 6515 6516 for (const auto &Code : Codes) 6517 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6518 return true; 6519 6520 return false; 6521 } 6522 6523 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6524 /// corresponds to. If there is no Value* for this operand, it returns 6525 /// MVT::Other. 6526 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6527 const DataLayout &DL) const { 6528 if (!CallOperandVal) return MVT::Other; 6529 6530 if (isa<BasicBlock>(CallOperandVal)) 6531 return TLI.getPointerTy(DL); 6532 6533 llvm::Type *OpTy = CallOperandVal->getType(); 6534 6535 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6536 // If this is an indirect operand, the operand is a pointer to the 6537 // accessed type. 6538 if (isIndirect) { 6539 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6540 if (!PtrTy) 6541 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6542 OpTy = PtrTy->getElementType(); 6543 } 6544 6545 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6546 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6547 if (STy->getNumElements() == 1) 6548 OpTy = STy->getElementType(0); 6549 6550 // If OpTy is not a single value, it may be a struct/union that we 6551 // can tile with integers. 6552 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6553 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6554 switch (BitSize) { 6555 default: break; 6556 case 1: 6557 case 8: 6558 case 16: 6559 case 32: 6560 case 64: 6561 case 128: 6562 OpTy = IntegerType::get(Context, BitSize); 6563 break; 6564 } 6565 } 6566 6567 return TLI.getValueType(DL, OpTy, true); 6568 } 6569 }; 6570 6571 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6572 6573 } // end anonymous namespace 6574 6575 /// Make sure that the output operand \p OpInfo and its corresponding input 6576 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6577 /// out). 6578 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6579 SDISelAsmOperandInfo &MatchingOpInfo, 6580 SelectionDAG &DAG) { 6581 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6582 return; 6583 6584 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6585 const auto &TLI = DAG.getTargetLoweringInfo(); 6586 6587 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6588 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6589 OpInfo.ConstraintVT); 6590 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6591 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6592 MatchingOpInfo.ConstraintVT); 6593 if ((OpInfo.ConstraintVT.isInteger() != 6594 MatchingOpInfo.ConstraintVT.isInteger()) || 6595 (MatchRC.second != InputRC.second)) { 6596 // FIXME: error out in a more elegant fashion 6597 report_fatal_error("Unsupported asm: input constraint" 6598 " with a matching output constraint of" 6599 " incompatible type!"); 6600 } 6601 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6602 } 6603 6604 /// Get a direct memory input to behave well as an indirect operand. 6605 /// This may introduce stores, hence the need for a \p Chain. 6606 /// \return The (possibly updated) chain. 6607 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6608 SDISelAsmOperandInfo &OpInfo, 6609 SelectionDAG &DAG) { 6610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6611 6612 // If we don't have an indirect input, put it in the constpool if we can, 6613 // otherwise spill it to a stack slot. 6614 // TODO: This isn't quite right. We need to handle these according to 6615 // the addressing mode that the constraint wants. Also, this may take 6616 // an additional register for the computation and we don't want that 6617 // either. 6618 6619 // If the operand is a float, integer, or vector constant, spill to a 6620 // constant pool entry to get its address. 6621 const Value *OpVal = OpInfo.CallOperandVal; 6622 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6623 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6624 OpInfo.CallOperand = DAG.getConstantPool( 6625 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6626 return Chain; 6627 } 6628 6629 // Otherwise, create a stack slot and emit a store to it before the asm. 6630 Type *Ty = OpVal->getType(); 6631 auto &DL = DAG.getDataLayout(); 6632 uint64_t TySize = DL.getTypeAllocSize(Ty); 6633 unsigned Align = DL.getPrefTypeAlignment(Ty); 6634 MachineFunction &MF = DAG.getMachineFunction(); 6635 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6636 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL)); 6637 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6638 MachinePointerInfo::getFixedStack(MF, SSFI)); 6639 OpInfo.CallOperand = StackSlot; 6640 6641 return Chain; 6642 } 6643 6644 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6645 /// specified operand. We prefer to assign virtual registers, to allow the 6646 /// register allocator to handle the assignment process. However, if the asm 6647 /// uses features that we can't model on machineinstrs, we have SDISel do the 6648 /// allocation. This produces generally horrible, but correct, code. 6649 /// 6650 /// OpInfo describes the operand. 6651 /// 6652 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6653 const SDLoc &DL, 6654 SDISelAsmOperandInfo &OpInfo) { 6655 LLVMContext &Context = *DAG.getContext(); 6656 6657 MachineFunction &MF = DAG.getMachineFunction(); 6658 SmallVector<unsigned, 4> Regs; 6659 6660 // If this is a constraint for a single physreg, or a constraint for a 6661 // register class, find it. 6662 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6663 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6664 OpInfo.ConstraintCode, 6665 OpInfo.ConstraintVT); 6666 6667 unsigned NumRegs = 1; 6668 if (OpInfo.ConstraintVT != MVT::Other) { 6669 // If this is a FP input in an integer register (or visa versa) insert a bit 6670 // cast of the input value. More generally, handle any case where the input 6671 // value disagrees with the register class we plan to stick this in. 6672 if (OpInfo.Type == InlineAsm::isInput && 6673 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6674 // Try to convert to the first EVT that the reg class contains. If the 6675 // types are identical size, use a bitcast to convert (e.g. two differing 6676 // vector types). 6677 MVT RegVT = *PhysReg.second->vt_begin(); 6678 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6679 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6680 RegVT, OpInfo.CallOperand); 6681 OpInfo.ConstraintVT = RegVT; 6682 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6683 // If the input is a FP value and we want it in FP registers, do a 6684 // bitcast to the corresponding integer type. This turns an f64 value 6685 // into i64, which can be passed with two i32 values on a 32-bit 6686 // machine. 6687 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6688 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6689 RegVT, OpInfo.CallOperand); 6690 OpInfo.ConstraintVT = RegVT; 6691 } 6692 } 6693 6694 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6695 } 6696 6697 MVT RegVT; 6698 EVT ValueVT = OpInfo.ConstraintVT; 6699 6700 // If this is a constraint for a specific physical register, like {r17}, 6701 // assign it now. 6702 if (unsigned AssignedReg = PhysReg.first) { 6703 const TargetRegisterClass *RC = PhysReg.second; 6704 if (OpInfo.ConstraintVT == MVT::Other) 6705 ValueVT = *RC->vt_begin(); 6706 6707 // Get the actual register value type. This is important, because the user 6708 // may have asked for (e.g.) the AX register in i32 type. We need to 6709 // remember that AX is actually i16 to get the right extension. 6710 RegVT = *RC->vt_begin(); 6711 6712 // This is a explicit reference to a physical register. 6713 Regs.push_back(AssignedReg); 6714 6715 // If this is an expanded reference, add the rest of the regs to Regs. 6716 if (NumRegs != 1) { 6717 TargetRegisterClass::iterator I = RC->begin(); 6718 for (; *I != AssignedReg; ++I) 6719 assert(I != RC->end() && "Didn't find reg!"); 6720 6721 // Already added the first reg. 6722 --NumRegs; ++I; 6723 for (; NumRegs; --NumRegs, ++I) { 6724 assert(I != RC->end() && "Ran out of registers to allocate!"); 6725 Regs.push_back(*I); 6726 } 6727 } 6728 6729 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6730 return; 6731 } 6732 6733 // Otherwise, if this was a reference to an LLVM register class, create vregs 6734 // for this reference. 6735 if (const TargetRegisterClass *RC = PhysReg.second) { 6736 RegVT = *RC->vt_begin(); 6737 if (OpInfo.ConstraintVT == MVT::Other) 6738 ValueVT = RegVT; 6739 6740 // Create the appropriate number of virtual registers. 6741 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6742 for (; NumRegs; --NumRegs) 6743 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6744 6745 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6746 return; 6747 } 6748 6749 // Otherwise, we couldn't allocate enough registers for this. 6750 } 6751 6752 static unsigned 6753 findMatchingInlineAsmOperand(unsigned OperandNo, 6754 const std::vector<SDValue> &AsmNodeOperands) { 6755 // Scan until we find the definition we already emitted of this operand. 6756 unsigned CurOp = InlineAsm::Op_FirstOperand; 6757 for (; OperandNo; --OperandNo) { 6758 // Advance to the next operand. 6759 unsigned OpFlag = 6760 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6761 assert((InlineAsm::isRegDefKind(OpFlag) || 6762 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6763 InlineAsm::isMemKind(OpFlag)) && 6764 "Skipped past definitions?"); 6765 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6766 } 6767 return CurOp; 6768 } 6769 6770 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6771 /// \return true if it has succeeded, false otherwise 6772 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6773 MVT RegVT, SelectionDAG &DAG) { 6774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6775 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6776 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6777 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6778 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6779 else 6780 return false; 6781 } 6782 return true; 6783 } 6784 6785 class ExtraFlags { 6786 unsigned Flags = 0; 6787 6788 public: 6789 explicit ExtraFlags(ImmutableCallSite CS) { 6790 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6791 if (IA->hasSideEffects()) 6792 Flags |= InlineAsm::Extra_HasSideEffects; 6793 if (IA->isAlignStack()) 6794 Flags |= InlineAsm::Extra_IsAlignStack; 6795 if (CS.isConvergent()) 6796 Flags |= InlineAsm::Extra_IsConvergent; 6797 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6798 } 6799 6800 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6801 // Ideally, we would only check against memory constraints. However, the 6802 // meaning of an Other constraint can be target-specific and we can't easily 6803 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6804 // for Other constraints as well. 6805 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6806 OpInfo.ConstraintType == TargetLowering::C_Other) { 6807 if (OpInfo.Type == InlineAsm::isInput) 6808 Flags |= InlineAsm::Extra_MayLoad; 6809 else if (OpInfo.Type == InlineAsm::isOutput) 6810 Flags |= InlineAsm::Extra_MayStore; 6811 else if (OpInfo.Type == InlineAsm::isClobber) 6812 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6813 } 6814 } 6815 6816 unsigned get() const { return Flags; } 6817 }; 6818 6819 /// visitInlineAsm - Handle a call to an InlineAsm object. 6820 /// 6821 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6822 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6823 6824 /// ConstraintOperands - Information about all of the constraints. 6825 SDISelAsmOperandInfoVector ConstraintOperands; 6826 6827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6828 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6829 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6830 6831 bool hasMemory = false; 6832 6833 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6834 ExtraFlags ExtraInfo(CS); 6835 6836 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6837 unsigned ResNo = 0; // ResNo - The result number of the next output. 6838 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6839 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6840 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6841 6842 MVT OpVT = MVT::Other; 6843 6844 // Compute the value type for each operand. 6845 if (OpInfo.Type == InlineAsm::isInput || 6846 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6847 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6848 6849 // Process the call argument. BasicBlocks are labels, currently appearing 6850 // only in asm's. 6851 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6852 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6853 } else { 6854 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6855 } 6856 6857 OpVT = 6858 OpInfo 6859 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6860 .getSimpleVT(); 6861 } 6862 6863 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6864 // The return value of the call is this value. As such, there is no 6865 // corresponding argument. 6866 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6867 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6868 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6869 STy->getElementType(ResNo)); 6870 } else { 6871 assert(ResNo == 0 && "Asm only has one result!"); 6872 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6873 } 6874 ++ResNo; 6875 } 6876 6877 OpInfo.ConstraintVT = OpVT; 6878 6879 if (!hasMemory) 6880 hasMemory = OpInfo.hasMemory(TLI); 6881 6882 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6883 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6884 auto TargetConstraint = TargetConstraints[i]; 6885 6886 // Compute the constraint code and ConstraintType to use. 6887 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6888 6889 ExtraInfo.update(TargetConstraint); 6890 } 6891 6892 SDValue Chain, Flag; 6893 6894 // We won't need to flush pending loads if this asm doesn't touch 6895 // memory and is nonvolatile. 6896 if (hasMemory || IA->hasSideEffects()) 6897 Chain = getRoot(); 6898 else 6899 Chain = DAG.getRoot(); 6900 6901 // Second pass over the constraints: compute which constraint option to use 6902 // and assign registers to constraints that want a specific physreg. 6903 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6904 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6905 6906 // If this is an output operand with a matching input operand, look up the 6907 // matching input. If their types mismatch, e.g. one is an integer, the 6908 // other is floating point, or their sizes are different, flag it as an 6909 // error. 6910 if (OpInfo.hasMatchingInput()) { 6911 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6912 patchMatchingInput(OpInfo, Input, DAG); 6913 } 6914 6915 // Compute the constraint code and ConstraintType to use. 6916 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6917 6918 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6919 OpInfo.Type == InlineAsm::isClobber) 6920 continue; 6921 6922 // If this is a memory input, and if the operand is not indirect, do what we 6923 // need to to provide an address for the memory input. 6924 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6925 !OpInfo.isIndirect) { 6926 assert((OpInfo.isMultipleAlternative || 6927 (OpInfo.Type == InlineAsm::isInput)) && 6928 "Can only indirectify direct input operands!"); 6929 6930 // Memory operands really want the address of the value. 6931 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 6932 6933 // There is no longer a Value* corresponding to this operand. 6934 OpInfo.CallOperandVal = nullptr; 6935 6936 // It is now an indirect operand. 6937 OpInfo.isIndirect = true; 6938 } 6939 6940 // If this constraint is for a specific register, allocate it before 6941 // anything else. 6942 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6943 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6944 } 6945 6946 // Third pass - Loop over all of the operands, assigning virtual or physregs 6947 // to register class operands. 6948 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6949 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6950 6951 // C_Register operands have already been allocated, Other/Memory don't need 6952 // to be. 6953 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6954 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6955 } 6956 6957 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6958 std::vector<SDValue> AsmNodeOperands; 6959 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6960 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6961 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6962 6963 // If we have a !srcloc metadata node associated with it, we want to attach 6964 // this to the ultimately generated inline asm machineinstr. To do this, we 6965 // pass in the third operand as this (potentially null) inline asm MDNode. 6966 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6967 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6968 6969 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6970 // bits as operand 3. 6971 AsmNodeOperands.push_back(DAG.getTargetConstant( 6972 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6973 6974 // Loop over all of the inputs, copying the operand values into the 6975 // appropriate registers and processing the output regs. 6976 RegsForValue RetValRegs; 6977 6978 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6979 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6980 6981 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6982 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6983 6984 switch (OpInfo.Type) { 6985 case InlineAsm::isOutput: { 6986 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6987 OpInfo.ConstraintType != TargetLowering::C_Register) { 6988 // Memory output, or 'other' output (e.g. 'X' constraint). 6989 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6990 6991 unsigned ConstraintID = 6992 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6993 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6994 "Failed to convert memory constraint code to constraint id."); 6995 6996 // Add information to the INLINEASM node to know about this output. 6997 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6998 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6999 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7000 MVT::i32)); 7001 AsmNodeOperands.push_back(OpInfo.CallOperand); 7002 break; 7003 } 7004 7005 // Otherwise, this is a register or register class output. 7006 7007 // Copy the output from the appropriate register. Find a register that 7008 // we can use. 7009 if (OpInfo.AssignedRegs.Regs.empty()) { 7010 emitInlineAsmError( 7011 CS, "couldn't allocate output register for constraint '" + 7012 Twine(OpInfo.ConstraintCode) + "'"); 7013 return; 7014 } 7015 7016 // If this is an indirect operand, store through the pointer after the 7017 // asm. 7018 if (OpInfo.isIndirect) { 7019 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7020 OpInfo.CallOperandVal)); 7021 } else { 7022 // This is the result value of the call. 7023 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7024 // Concatenate this output onto the outputs list. 7025 RetValRegs.append(OpInfo.AssignedRegs); 7026 } 7027 7028 // Add information to the INLINEASM node to know that this register is 7029 // set. 7030 OpInfo.AssignedRegs 7031 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7032 ? InlineAsm::Kind_RegDefEarlyClobber 7033 : InlineAsm::Kind_RegDef, 7034 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7035 break; 7036 } 7037 case InlineAsm::isInput: { 7038 SDValue InOperandVal = OpInfo.CallOperand; 7039 7040 if (OpInfo.isMatchingInputConstraint()) { 7041 // If this is required to match an output register we have already set, 7042 // just use its register. 7043 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7044 AsmNodeOperands); 7045 unsigned OpFlag = 7046 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7047 if (InlineAsm::isRegDefKind(OpFlag) || 7048 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7049 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7050 if (OpInfo.isIndirect) { 7051 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7052 emitInlineAsmError(CS, "inline asm not supported yet:" 7053 " don't know how to handle tied " 7054 "indirect register inputs"); 7055 return; 7056 } 7057 7058 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7059 SmallVector<unsigned, 4> Regs; 7060 7061 if (!createVirtualRegs(Regs, 7062 InlineAsm::getNumOperandRegisters(OpFlag), 7063 RegVT, DAG)) { 7064 emitInlineAsmError(CS, "inline asm error: This value type register " 7065 "class is not natively supported!"); 7066 return; 7067 } 7068 7069 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7070 7071 SDLoc dl = getCurSDLoc(); 7072 // Use the produced MatchedRegs object to 7073 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7074 Chain, &Flag, CS.getInstruction()); 7075 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7076 true, OpInfo.getMatchedOperand(), dl, 7077 DAG, AsmNodeOperands); 7078 break; 7079 } 7080 7081 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7082 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7083 "Unexpected number of operands"); 7084 // Add information to the INLINEASM node to know about this input. 7085 // See InlineAsm.h isUseOperandTiedToDef. 7086 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7087 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7088 OpInfo.getMatchedOperand()); 7089 AsmNodeOperands.push_back(DAG.getTargetConstant( 7090 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7091 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7092 break; 7093 } 7094 7095 // Treat indirect 'X' constraint as memory. 7096 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7097 OpInfo.isIndirect) 7098 OpInfo.ConstraintType = TargetLowering::C_Memory; 7099 7100 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7101 std::vector<SDValue> Ops; 7102 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7103 Ops, DAG); 7104 if (Ops.empty()) { 7105 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7106 Twine(OpInfo.ConstraintCode) + "'"); 7107 return; 7108 } 7109 7110 // Add information to the INLINEASM node to know about this input. 7111 unsigned ResOpType = 7112 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7113 AsmNodeOperands.push_back(DAG.getTargetConstant( 7114 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7115 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7116 break; 7117 } 7118 7119 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7120 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7121 assert(InOperandVal.getValueType() == 7122 TLI.getPointerTy(DAG.getDataLayout()) && 7123 "Memory operands expect pointer values"); 7124 7125 unsigned ConstraintID = 7126 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7127 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7128 "Failed to convert memory constraint code to constraint id."); 7129 7130 // Add information to the INLINEASM node to know about this input. 7131 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7132 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7133 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7134 getCurSDLoc(), 7135 MVT::i32)); 7136 AsmNodeOperands.push_back(InOperandVal); 7137 break; 7138 } 7139 7140 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7141 OpInfo.ConstraintType == TargetLowering::C_Register) && 7142 "Unknown constraint type!"); 7143 7144 // TODO: Support this. 7145 if (OpInfo.isIndirect) { 7146 emitInlineAsmError( 7147 CS, "Don't know how to handle indirect register inputs yet " 7148 "for constraint '" + 7149 Twine(OpInfo.ConstraintCode) + "'"); 7150 return; 7151 } 7152 7153 // Copy the input into the appropriate registers. 7154 if (OpInfo.AssignedRegs.Regs.empty()) { 7155 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7156 Twine(OpInfo.ConstraintCode) + "'"); 7157 return; 7158 } 7159 7160 SDLoc dl = getCurSDLoc(); 7161 7162 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7163 Chain, &Flag, CS.getInstruction()); 7164 7165 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7166 dl, DAG, AsmNodeOperands); 7167 break; 7168 } 7169 case InlineAsm::isClobber: { 7170 // Add the clobbered value to the operand list, so that the register 7171 // allocator is aware that the physreg got clobbered. 7172 if (!OpInfo.AssignedRegs.Regs.empty()) 7173 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7174 false, 0, getCurSDLoc(), DAG, 7175 AsmNodeOperands); 7176 break; 7177 } 7178 } 7179 } 7180 7181 // Finish up input operands. Set the input chain and add the flag last. 7182 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7183 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7184 7185 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7186 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7187 Flag = Chain.getValue(1); 7188 7189 // If this asm returns a register value, copy the result from that register 7190 // and set it as the value of the call. 7191 if (!RetValRegs.Regs.empty()) { 7192 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7193 Chain, &Flag, CS.getInstruction()); 7194 7195 // FIXME: Why don't we do this for inline asms with MRVs? 7196 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7197 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7198 7199 // If any of the results of the inline asm is a vector, it may have the 7200 // wrong width/num elts. This can happen for register classes that can 7201 // contain multiple different value types. The preg or vreg allocated may 7202 // not have the same VT as was expected. Convert it to the right type 7203 // with bit_convert. 7204 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7205 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7206 ResultType, Val); 7207 7208 } else if (ResultType != Val.getValueType() && 7209 ResultType.isInteger() && Val.getValueType().isInteger()) { 7210 // If a result value was tied to an input value, the computed result may 7211 // have a wider width than the expected result. Extract the relevant 7212 // portion. 7213 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7214 } 7215 7216 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7217 } 7218 7219 setValue(CS.getInstruction(), Val); 7220 // Don't need to use this as a chain in this case. 7221 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7222 return; 7223 } 7224 7225 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7226 7227 // Process indirect outputs, first output all of the flagged copies out of 7228 // physregs. 7229 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7230 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7231 const Value *Ptr = IndirectStoresToEmit[i].second; 7232 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7233 Chain, &Flag, IA); 7234 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7235 } 7236 7237 // Emit the non-flagged stores from the physregs. 7238 SmallVector<SDValue, 8> OutChains; 7239 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7240 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7241 getValue(StoresToEmit[i].second), 7242 MachinePointerInfo(StoresToEmit[i].second)); 7243 OutChains.push_back(Val); 7244 } 7245 7246 if (!OutChains.empty()) 7247 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7248 7249 DAG.setRoot(Chain); 7250 } 7251 7252 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7253 const Twine &Message) { 7254 LLVMContext &Ctx = *DAG.getContext(); 7255 Ctx.emitError(CS.getInstruction(), Message); 7256 7257 // Make sure we leave the DAG in a valid state 7258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7259 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7260 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7261 } 7262 7263 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7264 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7265 MVT::Other, getRoot(), 7266 getValue(I.getArgOperand(0)), 7267 DAG.getSrcValue(I.getArgOperand(0)))); 7268 } 7269 7270 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7272 const DataLayout &DL = DAG.getDataLayout(); 7273 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7274 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7275 DAG.getSrcValue(I.getOperand(0)), 7276 DL.getABITypeAlignment(I.getType())); 7277 setValue(&I, V); 7278 DAG.setRoot(V.getValue(1)); 7279 } 7280 7281 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7282 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7283 MVT::Other, getRoot(), 7284 getValue(I.getArgOperand(0)), 7285 DAG.getSrcValue(I.getArgOperand(0)))); 7286 } 7287 7288 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7289 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7290 MVT::Other, getRoot(), 7291 getValue(I.getArgOperand(0)), 7292 getValue(I.getArgOperand(1)), 7293 DAG.getSrcValue(I.getArgOperand(0)), 7294 DAG.getSrcValue(I.getArgOperand(1)))); 7295 } 7296 7297 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7298 const Instruction &I, 7299 SDValue Op) { 7300 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7301 if (!Range) 7302 return Op; 7303 7304 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7305 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7306 return Op; 7307 7308 APInt Lo = CR.getUnsignedMin(); 7309 if (!Lo.isMinValue()) 7310 return Op; 7311 7312 APInt Hi = CR.getUnsignedMax(); 7313 unsigned Bits = Hi.getActiveBits(); 7314 7315 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7316 7317 SDLoc SL = getCurSDLoc(); 7318 7319 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7320 DAG.getValueType(SmallVT)); 7321 unsigned NumVals = Op.getNode()->getNumValues(); 7322 if (NumVals == 1) 7323 return ZExt; 7324 7325 SmallVector<SDValue, 4> Ops; 7326 7327 Ops.push_back(ZExt); 7328 for (unsigned I = 1; I != NumVals; ++I) 7329 Ops.push_back(Op.getValue(I)); 7330 7331 return DAG.getMergeValues(Ops, SL); 7332 } 7333 7334 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7335 /// the call being lowered. 7336 /// 7337 /// This is a helper for lowering intrinsics that follow a target calling 7338 /// convention or require stack pointer adjustment. Only a subset of the 7339 /// intrinsic's operands need to participate in the calling convention. 7340 void SelectionDAGBuilder::populateCallLoweringInfo( 7341 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7342 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7343 bool IsPatchPoint) { 7344 TargetLowering::ArgListTy Args; 7345 Args.reserve(NumArgs); 7346 7347 // Populate the argument list. 7348 // Attributes for args start at offset 1, after the return attribute. 7349 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7350 ArgI != ArgE; ++ArgI) { 7351 const Value *V = CS->getOperand(ArgI); 7352 7353 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7354 7355 TargetLowering::ArgListEntry Entry; 7356 Entry.Node = getValue(V); 7357 Entry.Ty = V->getType(); 7358 Entry.setAttributes(&CS, AttrI); 7359 Args.push_back(Entry); 7360 } 7361 7362 CLI.setDebugLoc(getCurSDLoc()) 7363 .setChain(getRoot()) 7364 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7365 .setDiscardResult(CS->use_empty()) 7366 .setIsPatchPoint(IsPatchPoint); 7367 } 7368 7369 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7370 /// or patchpoint target node's operand list. 7371 /// 7372 /// Constants are converted to TargetConstants purely as an optimization to 7373 /// avoid constant materialization and register allocation. 7374 /// 7375 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7376 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7377 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7378 /// address materialization and register allocation, but may also be required 7379 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7380 /// alloca in the entry block, then the runtime may assume that the alloca's 7381 /// StackMap location can be read immediately after compilation and that the 7382 /// location is valid at any point during execution (this is similar to the 7383 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7384 /// only available in a register, then the runtime would need to trap when 7385 /// execution reaches the StackMap in order to read the alloca's location. 7386 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7387 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7388 SelectionDAGBuilder &Builder) { 7389 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7390 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7391 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7392 Ops.push_back( 7393 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7394 Ops.push_back( 7395 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7396 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7397 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7398 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7399 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7400 } else 7401 Ops.push_back(OpVal); 7402 } 7403 } 7404 7405 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7406 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7407 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7408 // [live variables...]) 7409 7410 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7411 7412 SDValue Chain, InFlag, Callee, NullPtr; 7413 SmallVector<SDValue, 32> Ops; 7414 7415 SDLoc DL = getCurSDLoc(); 7416 Callee = getValue(CI.getCalledValue()); 7417 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7418 7419 // The stackmap intrinsic only records the live variables (the arguemnts 7420 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7421 // intrinsic, this won't be lowered to a function call. This means we don't 7422 // have to worry about calling conventions and target specific lowering code. 7423 // Instead we perform the call lowering right here. 7424 // 7425 // chain, flag = CALLSEQ_START(chain, 0) 7426 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7427 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7428 // 7429 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7430 InFlag = Chain.getValue(1); 7431 7432 // Add the <id> and <numBytes> constants. 7433 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7434 Ops.push_back(DAG.getTargetConstant( 7435 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7436 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7437 Ops.push_back(DAG.getTargetConstant( 7438 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7439 MVT::i32)); 7440 7441 // Push live variables for the stack map. 7442 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7443 7444 // We are not pushing any register mask info here on the operands list, 7445 // because the stackmap doesn't clobber anything. 7446 7447 // Push the chain and the glue flag. 7448 Ops.push_back(Chain); 7449 Ops.push_back(InFlag); 7450 7451 // Create the STACKMAP node. 7452 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7453 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7454 Chain = SDValue(SM, 0); 7455 InFlag = Chain.getValue(1); 7456 7457 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7458 7459 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7460 7461 // Set the root to the target-lowered call chain. 7462 DAG.setRoot(Chain); 7463 7464 // Inform the Frame Information that we have a stackmap in this function. 7465 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7466 } 7467 7468 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7469 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7470 const BasicBlock *EHPadBB) { 7471 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7472 // i32 <numBytes>, 7473 // i8* <target>, 7474 // i32 <numArgs>, 7475 // [Args...], 7476 // [live variables...]) 7477 7478 CallingConv::ID CC = CS.getCallingConv(); 7479 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7480 bool HasDef = !CS->getType()->isVoidTy(); 7481 SDLoc dl = getCurSDLoc(); 7482 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7483 7484 // Handle immediate and symbolic callees. 7485 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7486 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7487 /*isTarget=*/true); 7488 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7489 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7490 SDLoc(SymbolicCallee), 7491 SymbolicCallee->getValueType(0)); 7492 7493 // Get the real number of arguments participating in the call <numArgs> 7494 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7495 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7496 7497 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7498 // Intrinsics include all meta-operands up to but not including CC. 7499 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7500 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7501 "Not enough arguments provided to the patchpoint intrinsic"); 7502 7503 // For AnyRegCC the arguments are lowered later on manually. 7504 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7505 Type *ReturnTy = 7506 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7507 7508 TargetLowering::CallLoweringInfo CLI(DAG); 7509 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7510 true); 7511 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7512 7513 SDNode *CallEnd = Result.second.getNode(); 7514 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7515 CallEnd = CallEnd->getOperand(0).getNode(); 7516 7517 /// Get a call instruction from the call sequence chain. 7518 /// Tail calls are not allowed. 7519 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7520 "Expected a callseq node."); 7521 SDNode *Call = CallEnd->getOperand(0).getNode(); 7522 bool HasGlue = Call->getGluedNode(); 7523 7524 // Replace the target specific call node with the patchable intrinsic. 7525 SmallVector<SDValue, 8> Ops; 7526 7527 // Add the <id> and <numBytes> constants. 7528 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7529 Ops.push_back(DAG.getTargetConstant( 7530 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7531 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7532 Ops.push_back(DAG.getTargetConstant( 7533 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7534 MVT::i32)); 7535 7536 // Add the callee. 7537 Ops.push_back(Callee); 7538 7539 // Adjust <numArgs> to account for any arguments that have been passed on the 7540 // stack instead. 7541 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7542 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7543 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7544 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7545 7546 // Add the calling convention 7547 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7548 7549 // Add the arguments we omitted previously. The register allocator should 7550 // place these in any free register. 7551 if (IsAnyRegCC) 7552 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7553 Ops.push_back(getValue(CS.getArgument(i))); 7554 7555 // Push the arguments from the call instruction up to the register mask. 7556 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7557 Ops.append(Call->op_begin() + 2, e); 7558 7559 // Push live variables for the stack map. 7560 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7561 7562 // Push the register mask info. 7563 if (HasGlue) 7564 Ops.push_back(*(Call->op_end()-2)); 7565 else 7566 Ops.push_back(*(Call->op_end()-1)); 7567 7568 // Push the chain (this is originally the first operand of the call, but 7569 // becomes now the last or second to last operand). 7570 Ops.push_back(*(Call->op_begin())); 7571 7572 // Push the glue flag (last operand). 7573 if (HasGlue) 7574 Ops.push_back(*(Call->op_end()-1)); 7575 7576 SDVTList NodeTys; 7577 if (IsAnyRegCC && HasDef) { 7578 // Create the return types based on the intrinsic definition 7579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7580 SmallVector<EVT, 3> ValueVTs; 7581 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7582 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7583 7584 // There is always a chain and a glue type at the end 7585 ValueVTs.push_back(MVT::Other); 7586 ValueVTs.push_back(MVT::Glue); 7587 NodeTys = DAG.getVTList(ValueVTs); 7588 } else 7589 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7590 7591 // Replace the target specific call node with a PATCHPOINT node. 7592 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7593 dl, NodeTys, Ops); 7594 7595 // Update the NodeMap. 7596 if (HasDef) { 7597 if (IsAnyRegCC) 7598 setValue(CS.getInstruction(), SDValue(MN, 0)); 7599 else 7600 setValue(CS.getInstruction(), Result.first); 7601 } 7602 7603 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7604 // call sequence. Furthermore the location of the chain and glue can change 7605 // when the AnyReg calling convention is used and the intrinsic returns a 7606 // value. 7607 if (IsAnyRegCC && HasDef) { 7608 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7609 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7610 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7611 } else 7612 DAG.ReplaceAllUsesWith(Call, MN); 7613 DAG.DeleteNode(Call); 7614 7615 // Inform the Frame Information that we have a patchpoint in this function. 7616 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7617 } 7618 7619 /// Returns an AttributeSet representing the attributes applied to the return 7620 /// value of the given call. 7621 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7622 SmallVector<Attribute::AttrKind, 2> Attrs; 7623 if (CLI.RetSExt) 7624 Attrs.push_back(Attribute::SExt); 7625 if (CLI.RetZExt) 7626 Attrs.push_back(Attribute::ZExt); 7627 if (CLI.IsInReg) 7628 Attrs.push_back(Attribute::InReg); 7629 7630 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7631 Attrs); 7632 } 7633 7634 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7635 /// implementation, which just calls LowerCall. 7636 /// FIXME: When all targets are 7637 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7638 std::pair<SDValue, SDValue> 7639 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7640 // Handle the incoming return values from the call. 7641 CLI.Ins.clear(); 7642 Type *OrigRetTy = CLI.RetTy; 7643 SmallVector<EVT, 4> RetTys; 7644 SmallVector<uint64_t, 4> Offsets; 7645 auto &DL = CLI.DAG.getDataLayout(); 7646 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7647 7648 SmallVector<ISD::OutputArg, 4> Outs; 7649 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7650 7651 bool CanLowerReturn = 7652 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7653 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7654 7655 SDValue DemoteStackSlot; 7656 int DemoteStackIdx = -100; 7657 if (!CanLowerReturn) { 7658 // FIXME: equivalent assert? 7659 // assert(!CS.hasInAllocaArgument() && 7660 // "sret demotion is incompatible with inalloca"); 7661 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7662 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7663 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7664 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7665 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7666 7667 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7668 ArgListEntry Entry; 7669 Entry.Node = DemoteStackSlot; 7670 Entry.Ty = StackSlotPtrType; 7671 Entry.isSExt = false; 7672 Entry.isZExt = false; 7673 Entry.isInReg = false; 7674 Entry.isSRet = true; 7675 Entry.isNest = false; 7676 Entry.isByVal = false; 7677 Entry.isReturned = false; 7678 Entry.isSwiftSelf = false; 7679 Entry.isSwiftError = false; 7680 Entry.Alignment = Align; 7681 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7682 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7683 7684 // sret demotion isn't compatible with tail-calls, since the sret argument 7685 // points into the callers stack frame. 7686 CLI.IsTailCall = false; 7687 } else { 7688 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7689 EVT VT = RetTys[I]; 7690 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7691 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7692 for (unsigned i = 0; i != NumRegs; ++i) { 7693 ISD::InputArg MyFlags; 7694 MyFlags.VT = RegisterVT; 7695 MyFlags.ArgVT = VT; 7696 MyFlags.Used = CLI.IsReturnValueUsed; 7697 if (CLI.RetSExt) 7698 MyFlags.Flags.setSExt(); 7699 if (CLI.RetZExt) 7700 MyFlags.Flags.setZExt(); 7701 if (CLI.IsInReg) 7702 MyFlags.Flags.setInReg(); 7703 CLI.Ins.push_back(MyFlags); 7704 } 7705 } 7706 } 7707 7708 // We push in swifterror return as the last element of CLI.Ins. 7709 ArgListTy &Args = CLI.getArgs(); 7710 if (supportSwiftError()) { 7711 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7712 if (Args[i].isSwiftError) { 7713 ISD::InputArg MyFlags; 7714 MyFlags.VT = getPointerTy(DL); 7715 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7716 MyFlags.Flags.setSwiftError(); 7717 CLI.Ins.push_back(MyFlags); 7718 } 7719 } 7720 } 7721 7722 // Handle all of the outgoing arguments. 7723 CLI.Outs.clear(); 7724 CLI.OutVals.clear(); 7725 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7726 SmallVector<EVT, 4> ValueVTs; 7727 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7728 Type *FinalType = Args[i].Ty; 7729 if (Args[i].isByVal) 7730 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7731 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7732 FinalType, CLI.CallConv, CLI.IsVarArg); 7733 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7734 ++Value) { 7735 EVT VT = ValueVTs[Value]; 7736 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7737 SDValue Op = SDValue(Args[i].Node.getNode(), 7738 Args[i].Node.getResNo() + Value); 7739 ISD::ArgFlagsTy Flags; 7740 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7741 7742 if (Args[i].isZExt) 7743 Flags.setZExt(); 7744 if (Args[i].isSExt) 7745 Flags.setSExt(); 7746 if (Args[i].isInReg) { 7747 // If we are using vectorcall calling convention, a structure that is 7748 // passed InReg - is surely an HVA 7749 if (CLI.CallConv == CallingConv::X86_VectorCall && 7750 isa<StructType>(FinalType)) { 7751 // The first value of a structure is marked 7752 if (0 == Value) 7753 Flags.setHvaStart(); 7754 Flags.setHva(); 7755 } 7756 // Set InReg Flag 7757 Flags.setInReg(); 7758 } 7759 if (Args[i].isSRet) 7760 Flags.setSRet(); 7761 if (Args[i].isSwiftSelf) 7762 Flags.setSwiftSelf(); 7763 if (Args[i].isSwiftError) 7764 Flags.setSwiftError(); 7765 if (Args[i].isByVal) 7766 Flags.setByVal(); 7767 if (Args[i].isInAlloca) { 7768 Flags.setInAlloca(); 7769 // Set the byval flag for CCAssignFn callbacks that don't know about 7770 // inalloca. This way we can know how many bytes we should've allocated 7771 // and how many bytes a callee cleanup function will pop. If we port 7772 // inalloca to more targets, we'll have to add custom inalloca handling 7773 // in the various CC lowering callbacks. 7774 Flags.setByVal(); 7775 } 7776 if (Args[i].isByVal || Args[i].isInAlloca) { 7777 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7778 Type *ElementTy = Ty->getElementType(); 7779 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7780 // For ByVal, alignment should come from FE. BE will guess if this 7781 // info is not there but there are cases it cannot get right. 7782 unsigned FrameAlign; 7783 if (Args[i].Alignment) 7784 FrameAlign = Args[i].Alignment; 7785 else 7786 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7787 Flags.setByValAlign(FrameAlign); 7788 } 7789 if (Args[i].isNest) 7790 Flags.setNest(); 7791 if (NeedsRegBlock) 7792 Flags.setInConsecutiveRegs(); 7793 Flags.setOrigAlign(OriginalAlignment); 7794 7795 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7796 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7797 SmallVector<SDValue, 4> Parts(NumParts); 7798 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7799 7800 if (Args[i].isSExt) 7801 ExtendKind = ISD::SIGN_EXTEND; 7802 else if (Args[i].isZExt) 7803 ExtendKind = ISD::ZERO_EXTEND; 7804 7805 // Conservatively only handle 'returned' on non-vectors for now 7806 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7807 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7808 "unexpected use of 'returned'"); 7809 // Before passing 'returned' to the target lowering code, ensure that 7810 // either the register MVT and the actual EVT are the same size or that 7811 // the return value and argument are extended in the same way; in these 7812 // cases it's safe to pass the argument register value unchanged as the 7813 // return register value (although it's at the target's option whether 7814 // to do so) 7815 // TODO: allow code generation to take advantage of partially preserved 7816 // registers rather than clobbering the entire register when the 7817 // parameter extension method is not compatible with the return 7818 // extension method 7819 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7820 (ExtendKind != ISD::ANY_EXTEND && 7821 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7822 Flags.setReturned(); 7823 } 7824 7825 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7826 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7827 7828 for (unsigned j = 0; j != NumParts; ++j) { 7829 // if it isn't first piece, alignment must be 1 7830 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7831 i < CLI.NumFixedArgs, 7832 i, j*Parts[j].getValueType().getStoreSize()); 7833 if (NumParts > 1 && j == 0) 7834 MyFlags.Flags.setSplit(); 7835 else if (j != 0) { 7836 MyFlags.Flags.setOrigAlign(1); 7837 if (j == NumParts - 1) 7838 MyFlags.Flags.setSplitEnd(); 7839 } 7840 7841 CLI.Outs.push_back(MyFlags); 7842 CLI.OutVals.push_back(Parts[j]); 7843 } 7844 7845 if (NeedsRegBlock && Value == NumValues - 1) 7846 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7847 } 7848 } 7849 7850 SmallVector<SDValue, 4> InVals; 7851 CLI.Chain = LowerCall(CLI, InVals); 7852 7853 // Update CLI.InVals to use outside of this function. 7854 CLI.InVals = InVals; 7855 7856 // Verify that the target's LowerCall behaved as expected. 7857 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7858 "LowerCall didn't return a valid chain!"); 7859 assert((!CLI.IsTailCall || InVals.empty()) && 7860 "LowerCall emitted a return value for a tail call!"); 7861 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7862 "LowerCall didn't emit the correct number of values!"); 7863 7864 // For a tail call, the return value is merely live-out and there aren't 7865 // any nodes in the DAG representing it. Return a special value to 7866 // indicate that a tail call has been emitted and no more Instructions 7867 // should be processed in the current block. 7868 if (CLI.IsTailCall) { 7869 CLI.DAG.setRoot(CLI.Chain); 7870 return std::make_pair(SDValue(), SDValue()); 7871 } 7872 7873 #ifndef NDEBUG 7874 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7875 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7876 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7877 "LowerCall emitted a value with the wrong type!"); 7878 } 7879 #endif 7880 7881 SmallVector<SDValue, 4> ReturnValues; 7882 if (!CanLowerReturn) { 7883 // The instruction result is the result of loading from the 7884 // hidden sret parameter. 7885 SmallVector<EVT, 1> PVTs; 7886 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7887 7888 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7889 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7890 EVT PtrVT = PVTs[0]; 7891 7892 unsigned NumValues = RetTys.size(); 7893 ReturnValues.resize(NumValues); 7894 SmallVector<SDValue, 4> Chains(NumValues); 7895 7896 // An aggregate return value cannot wrap around the address space, so 7897 // offsets to its parts don't wrap either. 7898 SDNodeFlags Flags; 7899 Flags.setNoUnsignedWrap(true); 7900 7901 for (unsigned i = 0; i < NumValues; ++i) { 7902 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7903 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7904 PtrVT), &Flags); 7905 SDValue L = CLI.DAG.getLoad( 7906 RetTys[i], CLI.DL, CLI.Chain, Add, 7907 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7908 DemoteStackIdx, Offsets[i]), 7909 /* Alignment = */ 1); 7910 ReturnValues[i] = L; 7911 Chains[i] = L.getValue(1); 7912 } 7913 7914 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7915 } else { 7916 // Collect the legal value parts into potentially illegal values 7917 // that correspond to the original function's return values. 7918 Optional<ISD::NodeType> AssertOp; 7919 if (CLI.RetSExt) 7920 AssertOp = ISD::AssertSext; 7921 else if (CLI.RetZExt) 7922 AssertOp = ISD::AssertZext; 7923 unsigned CurReg = 0; 7924 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7925 EVT VT = RetTys[I]; 7926 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7927 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7928 7929 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7930 NumRegs, RegisterVT, VT, nullptr, 7931 AssertOp)); 7932 CurReg += NumRegs; 7933 } 7934 7935 // For a function returning void, there is no return value. We can't create 7936 // such a node, so we just return a null return value in that case. In 7937 // that case, nothing will actually look at the value. 7938 if (ReturnValues.empty()) 7939 return std::make_pair(SDValue(), CLI.Chain); 7940 } 7941 7942 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7943 CLI.DAG.getVTList(RetTys), ReturnValues); 7944 return std::make_pair(Res, CLI.Chain); 7945 } 7946 7947 void TargetLowering::LowerOperationWrapper(SDNode *N, 7948 SmallVectorImpl<SDValue> &Results, 7949 SelectionDAG &DAG) const { 7950 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7951 Results.push_back(Res); 7952 } 7953 7954 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7955 llvm_unreachable("LowerOperation not implemented for this target!"); 7956 } 7957 7958 void 7959 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7960 SDValue Op = getNonRegisterValue(V); 7961 assert((Op.getOpcode() != ISD::CopyFromReg || 7962 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7963 "Copy from a reg to the same reg!"); 7964 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7965 7966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7967 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7968 V->getType()); 7969 SDValue Chain = DAG.getEntryNode(); 7970 7971 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7972 FuncInfo.PreferredExtendType.end()) 7973 ? ISD::ANY_EXTEND 7974 : FuncInfo.PreferredExtendType[V]; 7975 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7976 PendingExports.push_back(Chain); 7977 } 7978 7979 #include "llvm/CodeGen/SelectionDAGISel.h" 7980 7981 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7982 /// entry block, return true. This includes arguments used by switches, since 7983 /// the switch may expand into multiple basic blocks. 7984 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7985 // With FastISel active, we may be splitting blocks, so force creation 7986 // of virtual registers for all non-dead arguments. 7987 if (FastISel) 7988 return A->use_empty(); 7989 7990 const BasicBlock &Entry = A->getParent()->front(); 7991 for (const User *U : A->users()) 7992 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7993 return false; // Use not in entry block. 7994 7995 return true; 7996 } 7997 7998 typedef DenseMap<const Argument *, 7999 std::pair<const AllocaInst *, const StoreInst *>> 8000 ArgCopyElisionMapTy; 8001 8002 /// Scan the entry block of the function in FuncInfo for arguments that look 8003 /// like copies into a local alloca. Record any copied arguments in 8004 /// ArgCopyElisionCandidates. 8005 static void 8006 findArgumentCopyElisionCandidates(const DataLayout &DL, 8007 FunctionLoweringInfo *FuncInfo, 8008 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8009 // Record the state of every static alloca used in the entry block. Argument 8010 // allocas are all used in the entry block, so we need approximately as many 8011 // entries as we have arguments. 8012 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8013 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8014 unsigned NumArgs = FuncInfo->Fn->getArgumentList().size(); 8015 StaticAllocas.reserve(NumArgs * 2); 8016 8017 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8018 if (!V) 8019 return nullptr; 8020 V = V->stripPointerCasts(); 8021 const auto *AI = dyn_cast<AllocaInst>(V); 8022 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8023 return nullptr; 8024 auto Iter = StaticAllocas.insert({AI, Unknown}); 8025 return &Iter.first->second; 8026 }; 8027 8028 // Look for stores of arguments to static allocas. Look through bitcasts and 8029 // GEPs to handle type coercions, as long as the alloca is fully initialized 8030 // by the store. Any non-store use of an alloca escapes it and any subsequent 8031 // unanalyzed store might write it. 8032 // FIXME: Handle structs initialized with multiple stores. 8033 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8034 // Look for stores, and handle non-store uses conservatively. 8035 const auto *SI = dyn_cast<StoreInst>(&I); 8036 if (!SI) { 8037 // We will look through cast uses, so ignore them completely. 8038 if (I.isCast()) 8039 continue; 8040 // Ignore debug info intrinsics, they don't escape or store to allocas. 8041 if (isa<DbgInfoIntrinsic>(I)) 8042 continue; 8043 // This is an unknown instruction. Assume it escapes or writes to all 8044 // static alloca operands. 8045 for (const Use &U : I.operands()) { 8046 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8047 *Info = StaticAllocaInfo::Clobbered; 8048 } 8049 continue; 8050 } 8051 8052 // If the stored value is a static alloca, mark it as escaped. 8053 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8054 *Info = StaticAllocaInfo::Clobbered; 8055 8056 // Check if the destination is a static alloca. 8057 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8058 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8059 if (!Info) 8060 continue; 8061 const AllocaInst *AI = cast<AllocaInst>(Dst); 8062 8063 // Skip allocas that have been initialized or clobbered. 8064 if (*Info != StaticAllocaInfo::Unknown) 8065 continue; 8066 8067 // Check if the stored value is an argument, and that this store fully 8068 // initializes the alloca. Don't elide copies from the same argument twice. 8069 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8070 const auto *Arg = dyn_cast<Argument>(Val); 8071 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8072 Arg->getType()->isEmptyTy() || 8073 DL.getTypeStoreSize(Arg->getType()) != 8074 DL.getTypeAllocSize(AI->getAllocatedType()) || 8075 ArgCopyElisionCandidates.count(Arg)) { 8076 *Info = StaticAllocaInfo::Clobbered; 8077 continue; 8078 } 8079 8080 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8081 8082 // Mark this alloca and store for argument copy elision. 8083 *Info = StaticAllocaInfo::Elidable; 8084 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8085 8086 // Stop scanning if we've seen all arguments. This will happen early in -O0 8087 // builds, which is useful, because -O0 builds have large entry blocks and 8088 // many allocas. 8089 if (ArgCopyElisionCandidates.size() == NumArgs) 8090 break; 8091 } 8092 } 8093 8094 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8095 /// ArgVal is a load from a suitable fixed stack object. 8096 static void tryToElideArgumentCopy( 8097 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8098 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8099 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8100 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8101 SDValue ArgVal, bool &ArgHasUses) { 8102 // Check if this is a load from a fixed stack object. 8103 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8104 if (!LNode) 8105 return; 8106 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8107 if (!FINode) 8108 return; 8109 8110 // Check that the fixed stack object is the right size and alignment. 8111 // Look at the alignment that the user wrote on the alloca instead of looking 8112 // at the stack object. 8113 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8114 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8115 const AllocaInst *AI = ArgCopyIter->second.first; 8116 int FixedIndex = FINode->getIndex(); 8117 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8118 int OldIndex = AllocaIndex; 8119 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8120 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8121 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8122 "object size\n"); 8123 return; 8124 } 8125 unsigned RequiredAlignment = AI->getAlignment(); 8126 if (!RequiredAlignment) { 8127 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8128 AI->getAllocatedType()); 8129 } 8130 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8131 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8132 "greater than stack argument alignment (" 8133 << RequiredAlignment << " vs " 8134 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8135 return; 8136 } 8137 8138 // Perform the elision. Delete the old stack object and replace its only use 8139 // in the variable info map. Mark the stack object as mutable. 8140 DEBUG({ 8141 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8142 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8143 << '\n'; 8144 }); 8145 MFI.RemoveStackObject(OldIndex); 8146 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8147 AllocaIndex = FixedIndex; 8148 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8149 Chains.push_back(ArgVal.getValue(1)); 8150 8151 // Avoid emitting code for the store implementing the copy. 8152 const StoreInst *SI = ArgCopyIter->second.second; 8153 ElidedArgCopyInstrs.insert(SI); 8154 8155 // Check for uses of the argument again so that we can avoid exporting ArgVal 8156 // if it is't used by anything other than the store. 8157 for (const Value *U : Arg.users()) { 8158 if (U != SI) { 8159 ArgHasUses = true; 8160 break; 8161 } 8162 } 8163 } 8164 8165 void SelectionDAGISel::LowerArguments(const Function &F) { 8166 SelectionDAG &DAG = SDB->DAG; 8167 SDLoc dl = SDB->getCurSDLoc(); 8168 const DataLayout &DL = DAG.getDataLayout(); 8169 SmallVector<ISD::InputArg, 16> Ins; 8170 8171 if (!FuncInfo->CanLowerReturn) { 8172 // Put in an sret pointer parameter before all the other parameters. 8173 SmallVector<EVT, 1> ValueVTs; 8174 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8175 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8176 8177 // NOTE: Assuming that a pointer will never break down to more than one VT 8178 // or one register. 8179 ISD::ArgFlagsTy Flags; 8180 Flags.setSRet(); 8181 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8182 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8183 ISD::InputArg::NoArgIndex, 0); 8184 Ins.push_back(RetArg); 8185 } 8186 8187 // Look for stores of arguments to static allocas. Mark such arguments with a 8188 // flag to ask the target to give us the memory location of that argument if 8189 // available. 8190 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8191 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8192 8193 // Set up the incoming argument description vector. 8194 unsigned Idx = 0; 8195 for (const Argument &Arg : F.args()) { 8196 ++Idx; 8197 SmallVector<EVT, 4> ValueVTs; 8198 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8199 bool isArgValueUsed = !Arg.use_empty(); 8200 unsigned PartBase = 0; 8201 Type *FinalType = Arg.getType(); 8202 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8203 FinalType = cast<PointerType>(FinalType)->getElementType(); 8204 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8205 FinalType, F.getCallingConv(), F.isVarArg()); 8206 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8207 Value != NumValues; ++Value) { 8208 EVT VT = ValueVTs[Value]; 8209 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8210 ISD::ArgFlagsTy Flags; 8211 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 8212 8213 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8214 Flags.setZExt(); 8215 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8216 Flags.setSExt(); 8217 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) { 8218 // If we are using vectorcall calling convention, a structure that is 8219 // passed InReg - is surely an HVA 8220 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8221 isa<StructType>(Arg.getType())) { 8222 // The first value of a structure is marked 8223 if (0 == Value) 8224 Flags.setHvaStart(); 8225 Flags.setHva(); 8226 } 8227 // Set InReg Flag 8228 Flags.setInReg(); 8229 } 8230 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 8231 Flags.setSRet(); 8232 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 8233 Flags.setSwiftSelf(); 8234 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 8235 Flags.setSwiftError(); 8236 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8237 Flags.setByVal(); 8238 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 8239 Flags.setInAlloca(); 8240 // Set the byval flag for CCAssignFn callbacks that don't know about 8241 // inalloca. This way we can know how many bytes we should've allocated 8242 // and how many bytes a callee cleanup function will pop. If we port 8243 // inalloca to more targets, we'll have to add custom inalloca handling 8244 // in the various CC lowering callbacks. 8245 Flags.setByVal(); 8246 } 8247 if (F.getCallingConv() == CallingConv::X86_INTR) { 8248 // IA Interrupt passes frame (1st parameter) by value in the stack. 8249 if (Idx == 1) 8250 Flags.setByVal(); 8251 } 8252 if (Flags.isByVal() || Flags.isInAlloca()) { 8253 PointerType *Ty = cast<PointerType>(Arg.getType()); 8254 Type *ElementTy = Ty->getElementType(); 8255 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8256 // For ByVal, alignment should be passed from FE. BE will guess if 8257 // this info is not there but there are cases it cannot get right. 8258 unsigned FrameAlign; 8259 if (F.getParamAlignment(Idx)) 8260 FrameAlign = F.getParamAlignment(Idx); 8261 else 8262 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8263 Flags.setByValAlign(FrameAlign); 8264 } 8265 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 8266 Flags.setNest(); 8267 if (NeedsRegBlock) 8268 Flags.setInConsecutiveRegs(); 8269 Flags.setOrigAlign(OriginalAlignment); 8270 if (ArgCopyElisionCandidates.count(&Arg)) 8271 Flags.setCopyElisionCandidate(); 8272 8273 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8274 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8275 for (unsigned i = 0; i != NumRegs; ++i) { 8276 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8277 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 8278 if (NumRegs > 1 && i == 0) 8279 MyFlags.Flags.setSplit(); 8280 // if it isn't first piece, alignment must be 1 8281 else if (i > 0) { 8282 MyFlags.Flags.setOrigAlign(1); 8283 if (i == NumRegs - 1) 8284 MyFlags.Flags.setSplitEnd(); 8285 } 8286 Ins.push_back(MyFlags); 8287 } 8288 if (NeedsRegBlock && Value == NumValues - 1) 8289 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8290 PartBase += VT.getStoreSize(); 8291 } 8292 } 8293 8294 // Call the target to set up the argument values. 8295 SmallVector<SDValue, 8> InVals; 8296 SDValue NewRoot = TLI->LowerFormalArguments( 8297 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8298 8299 // Verify that the target's LowerFormalArguments behaved as expected. 8300 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8301 "LowerFormalArguments didn't return a valid chain!"); 8302 assert(InVals.size() == Ins.size() && 8303 "LowerFormalArguments didn't emit the correct number of values!"); 8304 DEBUG({ 8305 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8306 assert(InVals[i].getNode() && 8307 "LowerFormalArguments emitted a null value!"); 8308 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8309 "LowerFormalArguments emitted a value with the wrong type!"); 8310 } 8311 }); 8312 8313 // Update the DAG with the new chain value resulting from argument lowering. 8314 DAG.setRoot(NewRoot); 8315 8316 // Set up the argument values. 8317 unsigned i = 0; 8318 Idx = 0; 8319 if (!FuncInfo->CanLowerReturn) { 8320 // Create a virtual register for the sret pointer, and put in a copy 8321 // from the sret argument into it. 8322 SmallVector<EVT, 1> ValueVTs; 8323 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8324 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8325 MVT VT = ValueVTs[0].getSimpleVT(); 8326 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8327 Optional<ISD::NodeType> AssertOp = None; 8328 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8329 RegVT, VT, nullptr, AssertOp); 8330 8331 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8332 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8333 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8334 FuncInfo->DemoteRegister = SRetReg; 8335 NewRoot = 8336 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8337 DAG.setRoot(NewRoot); 8338 8339 // i indexes lowered arguments. Bump it past the hidden sret argument. 8340 // Idx indexes LLVM arguments. Don't touch it. 8341 ++i; 8342 } 8343 8344 SmallVector<SDValue, 4> Chains; 8345 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8346 for (const Argument &Arg : F.args()) { 8347 ++Idx; 8348 SmallVector<SDValue, 4> ArgValues; 8349 SmallVector<EVT, 4> ValueVTs; 8350 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8351 unsigned NumValues = ValueVTs.size(); 8352 if (NumValues == 0) 8353 continue; 8354 8355 bool ArgHasUses = !Arg.use_empty(); 8356 8357 // Elide the copying store if the target loaded this argument from a 8358 // suitable fixed stack object. 8359 if (Ins[i].Flags.isCopyElisionCandidate()) { 8360 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8361 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8362 InVals[i], ArgHasUses); 8363 } 8364 8365 // If this argument is unused then remember its value. It is used to generate 8366 // debugging information. 8367 bool isSwiftErrorArg = 8368 TLI->supportSwiftError() && 8369 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError); 8370 if (!ArgHasUses && !isSwiftErrorArg) { 8371 SDB->setUnusedArgValue(&Arg, InVals[i]); 8372 8373 // Also remember any frame index for use in FastISel. 8374 if (FrameIndexSDNode *FI = 8375 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8376 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8377 } 8378 8379 for (unsigned Val = 0; Val != NumValues; ++Val) { 8380 EVT VT = ValueVTs[Val]; 8381 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8382 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8383 8384 // Even an apparant 'unused' swifterror argument needs to be returned. So 8385 // we do generate a copy for it that can be used on return from the 8386 // function. 8387 if (ArgHasUses || isSwiftErrorArg) { 8388 Optional<ISD::NodeType> AssertOp; 8389 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8390 AssertOp = ISD::AssertSext; 8391 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8392 AssertOp = ISD::AssertZext; 8393 8394 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8395 PartVT, VT, nullptr, AssertOp)); 8396 } 8397 8398 i += NumParts; 8399 } 8400 8401 // We don't need to do anything else for unused arguments. 8402 if (ArgValues.empty()) 8403 continue; 8404 8405 // Note down frame index. 8406 if (FrameIndexSDNode *FI = 8407 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8408 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8409 8410 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8411 SDB->getCurSDLoc()); 8412 8413 SDB->setValue(&Arg, Res); 8414 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8415 if (LoadSDNode *LNode = 8416 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8417 if (FrameIndexSDNode *FI = 8418 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8419 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8420 } 8421 8422 // Update the SwiftErrorVRegDefMap. 8423 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8424 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8425 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8426 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8427 FuncInfo->SwiftErrorArg, Reg); 8428 } 8429 8430 // If this argument is live outside of the entry block, insert a copy from 8431 // wherever we got it to the vreg that other BB's will reference it as. 8432 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8433 // If we can, though, try to skip creating an unnecessary vreg. 8434 // FIXME: This isn't very clean... it would be nice to make this more 8435 // general. It's also subtly incompatible with the hacks FastISel 8436 // uses with vregs. 8437 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8438 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8439 FuncInfo->ValueMap[&Arg] = Reg; 8440 continue; 8441 } 8442 } 8443 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8444 FuncInfo->InitializeRegForValue(&Arg); 8445 SDB->CopyToExportRegsIfNeeded(&Arg); 8446 } 8447 } 8448 8449 if (!Chains.empty()) { 8450 Chains.push_back(NewRoot); 8451 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8452 } 8453 8454 DAG.setRoot(NewRoot); 8455 8456 assert(i == InVals.size() && "Argument register count mismatch!"); 8457 8458 // If any argument copy elisions occurred and we have debug info, update the 8459 // stale frame indices used in the dbg.declare variable info table. 8460 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8461 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8462 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8463 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8464 if (I != ArgCopyElisionFrameIndexMap.end()) 8465 VI.Slot = I->second; 8466 } 8467 } 8468 8469 // Finally, if the target has anything special to do, allow it to do so. 8470 EmitFunctionEntryCode(); 8471 } 8472 8473 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8474 /// ensure constants are generated when needed. Remember the virtual registers 8475 /// that need to be added to the Machine PHI nodes as input. We cannot just 8476 /// directly add them, because expansion might result in multiple MBB's for one 8477 /// BB. As such, the start of the BB might correspond to a different MBB than 8478 /// the end. 8479 /// 8480 void 8481 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8482 const TerminatorInst *TI = LLVMBB->getTerminator(); 8483 8484 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8485 8486 // Check PHI nodes in successors that expect a value to be available from this 8487 // block. 8488 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8489 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8490 if (!isa<PHINode>(SuccBB->begin())) continue; 8491 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8492 8493 // If this terminator has multiple identical successors (common for 8494 // switches), only handle each succ once. 8495 if (!SuccsHandled.insert(SuccMBB).second) 8496 continue; 8497 8498 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8499 8500 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8501 // nodes and Machine PHI nodes, but the incoming operands have not been 8502 // emitted yet. 8503 for (BasicBlock::const_iterator I = SuccBB->begin(); 8504 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8505 // Ignore dead phi's. 8506 if (PN->use_empty()) continue; 8507 8508 // Skip empty types 8509 if (PN->getType()->isEmptyTy()) 8510 continue; 8511 8512 unsigned Reg; 8513 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8514 8515 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8516 unsigned &RegOut = ConstantsOut[C]; 8517 if (RegOut == 0) { 8518 RegOut = FuncInfo.CreateRegs(C->getType()); 8519 CopyValueToVirtualRegister(C, RegOut); 8520 } 8521 Reg = RegOut; 8522 } else { 8523 DenseMap<const Value *, unsigned>::iterator I = 8524 FuncInfo.ValueMap.find(PHIOp); 8525 if (I != FuncInfo.ValueMap.end()) 8526 Reg = I->second; 8527 else { 8528 assert(isa<AllocaInst>(PHIOp) && 8529 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8530 "Didn't codegen value into a register!??"); 8531 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8532 CopyValueToVirtualRegister(PHIOp, Reg); 8533 } 8534 } 8535 8536 // Remember that this register needs to added to the machine PHI node as 8537 // the input for this MBB. 8538 SmallVector<EVT, 4> ValueVTs; 8539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8540 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8541 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8542 EVT VT = ValueVTs[vti]; 8543 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8544 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8545 FuncInfo.PHINodesToUpdate.push_back( 8546 std::make_pair(&*MBBI++, Reg + i)); 8547 Reg += NumRegisters; 8548 } 8549 } 8550 } 8551 8552 ConstantsOut.clear(); 8553 } 8554 8555 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8556 /// is 0. 8557 MachineBasicBlock * 8558 SelectionDAGBuilder::StackProtectorDescriptor:: 8559 AddSuccessorMBB(const BasicBlock *BB, 8560 MachineBasicBlock *ParentMBB, 8561 bool IsLikely, 8562 MachineBasicBlock *SuccMBB) { 8563 // If SuccBB has not been created yet, create it. 8564 if (!SuccMBB) { 8565 MachineFunction *MF = ParentMBB->getParent(); 8566 MachineFunction::iterator BBI(ParentMBB); 8567 SuccMBB = MF->CreateMachineBasicBlock(BB); 8568 MF->insert(++BBI, SuccMBB); 8569 } 8570 // Add it as a successor of ParentMBB. 8571 ParentMBB->addSuccessor( 8572 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8573 return SuccMBB; 8574 } 8575 8576 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8577 MachineFunction::iterator I(MBB); 8578 if (++I == FuncInfo.MF->end()) 8579 return nullptr; 8580 return &*I; 8581 } 8582 8583 /// During lowering new call nodes can be created (such as memset, etc.). 8584 /// Those will become new roots of the current DAG, but complications arise 8585 /// when they are tail calls. In such cases, the call lowering will update 8586 /// the root, but the builder still needs to know that a tail call has been 8587 /// lowered in order to avoid generating an additional return. 8588 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8589 // If the node is null, we do have a tail call. 8590 if (MaybeTC.getNode() != nullptr) 8591 DAG.setRoot(MaybeTC); 8592 else 8593 HasTailCall = true; 8594 } 8595 8596 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8597 const SmallVectorImpl<unsigned> &TotalCases, 8598 unsigned First, unsigned Last, 8599 unsigned Density) const { 8600 assert(Last >= First); 8601 assert(TotalCases[Last] >= TotalCases[First]); 8602 8603 const APInt &LowCase = Clusters[First].Low->getValue(); 8604 const APInt &HighCase = Clusters[Last].High->getValue(); 8605 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8606 8607 // FIXME: A range of consecutive cases has 100% density, but only requires one 8608 // comparison to lower. We should discriminate against such consecutive ranges 8609 // in jump tables. 8610 8611 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8612 uint64_t Range = Diff + 1; 8613 8614 uint64_t NumCases = 8615 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8616 8617 assert(NumCases < UINT64_MAX / 100); 8618 assert(Range >= NumCases); 8619 8620 return NumCases * 100 >= Range * Density; 8621 } 8622 8623 static inline bool areJTsAllowed(const TargetLowering &TLI, 8624 const SwitchInst *SI) { 8625 const Function *Fn = SI->getParent()->getParent(); 8626 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8627 return false; 8628 8629 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8630 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8631 } 8632 8633 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8634 unsigned First, unsigned Last, 8635 const SwitchInst *SI, 8636 MachineBasicBlock *DefaultMBB, 8637 CaseCluster &JTCluster) { 8638 assert(First <= Last); 8639 8640 auto Prob = BranchProbability::getZero(); 8641 unsigned NumCmps = 0; 8642 std::vector<MachineBasicBlock*> Table; 8643 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8644 8645 // Initialize probabilities in JTProbs. 8646 for (unsigned I = First; I <= Last; ++I) 8647 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8648 8649 for (unsigned I = First; I <= Last; ++I) { 8650 assert(Clusters[I].Kind == CC_Range); 8651 Prob += Clusters[I].Prob; 8652 const APInt &Low = Clusters[I].Low->getValue(); 8653 const APInt &High = Clusters[I].High->getValue(); 8654 NumCmps += (Low == High) ? 1 : 2; 8655 if (I != First) { 8656 // Fill the gap between this and the previous cluster. 8657 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8658 assert(PreviousHigh.slt(Low)); 8659 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8660 for (uint64_t J = 0; J < Gap; J++) 8661 Table.push_back(DefaultMBB); 8662 } 8663 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8664 for (uint64_t J = 0; J < ClusterSize; ++J) 8665 Table.push_back(Clusters[I].MBB); 8666 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8667 } 8668 8669 unsigned NumDests = JTProbs.size(); 8670 if (isSuitableForBitTests(NumDests, NumCmps, 8671 Clusters[First].Low->getValue(), 8672 Clusters[Last].High->getValue())) { 8673 // Clusters[First..Last] should be lowered as bit tests instead. 8674 return false; 8675 } 8676 8677 // Create the MBB that will load from and jump through the table. 8678 // Note: We create it here, but it's not inserted into the function yet. 8679 MachineFunction *CurMF = FuncInfo.MF; 8680 MachineBasicBlock *JumpTableMBB = 8681 CurMF->CreateMachineBasicBlock(SI->getParent()); 8682 8683 // Add successors. Note: use table order for determinism. 8684 SmallPtrSet<MachineBasicBlock *, 8> Done; 8685 for (MachineBasicBlock *Succ : Table) { 8686 if (Done.count(Succ)) 8687 continue; 8688 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8689 Done.insert(Succ); 8690 } 8691 JumpTableMBB->normalizeSuccProbs(); 8692 8693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8694 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8695 ->createJumpTableIndex(Table); 8696 8697 // Set up the jump table info. 8698 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8699 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8700 Clusters[Last].High->getValue(), SI->getCondition(), 8701 nullptr, false); 8702 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8703 8704 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8705 JTCases.size() - 1, Prob); 8706 return true; 8707 } 8708 8709 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8710 const SwitchInst *SI, 8711 MachineBasicBlock *DefaultMBB) { 8712 #ifndef NDEBUG 8713 // Clusters must be non-empty, sorted, and only contain Range clusters. 8714 assert(!Clusters.empty()); 8715 for (CaseCluster &C : Clusters) 8716 assert(C.Kind == CC_Range); 8717 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8718 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8719 #endif 8720 8721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8722 if (!areJTsAllowed(TLI, SI)) 8723 return; 8724 8725 const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize(); 8726 8727 const int64_t N = Clusters.size(); 8728 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8729 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8730 const unsigned MaxJumpTableSize = 8731 OptForSize || TLI.getMaximumJumpTableSize() == 0 8732 ? UINT_MAX : TLI.getMaximumJumpTableSize(); 8733 8734 if (N < 2 || N < MinJumpTableEntries) 8735 return; 8736 8737 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8738 SmallVector<unsigned, 8> TotalCases(N); 8739 for (unsigned i = 0; i < N; ++i) { 8740 const APInt &Hi = Clusters[i].High->getValue(); 8741 const APInt &Lo = Clusters[i].Low->getValue(); 8742 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8743 if (i != 0) 8744 TotalCases[i] += TotalCases[i - 1]; 8745 } 8746 8747 const unsigned MinDensity = 8748 OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 8749 8750 // Cheap case: the whole range may be suitable for jump table. 8751 unsigned JumpTableSize = (Clusters[N - 1].High->getValue() - 8752 Clusters[0].Low->getValue()) 8753 .getLimitedValue(UINT_MAX - 1) + 1; 8754 if (JumpTableSize <= MaxJumpTableSize && 8755 isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) { 8756 CaseCluster JTCluster; 8757 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8758 Clusters[0] = JTCluster; 8759 Clusters.resize(1); 8760 return; 8761 } 8762 } 8763 8764 // The algorithm below is not suitable for -O0. 8765 if (TM.getOptLevel() == CodeGenOpt::None) 8766 return; 8767 8768 // Split Clusters into minimum number of dense partitions. The algorithm uses 8769 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8770 // for the Case Statement'" (1994), but builds the MinPartitions array in 8771 // reverse order to make it easier to reconstruct the partitions in ascending 8772 // order. In the choice between two optimal partitionings, it picks the one 8773 // which yields more jump tables. 8774 8775 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8776 SmallVector<unsigned, 8> MinPartitions(N); 8777 // LastElement[i] is the last element of the partition starting at i. 8778 SmallVector<unsigned, 8> LastElement(N); 8779 // PartitionsScore[i] is used to break ties when choosing between two 8780 // partitionings resulting in the same number of partitions. 8781 SmallVector<unsigned, 8> PartitionsScore(N); 8782 // For PartitionsScore, a small number of comparisons is considered as good as 8783 // a jump table and a single comparison is considered better than a jump 8784 // table. 8785 enum PartitionScores : unsigned { 8786 NoTable = 0, 8787 Table = 1, 8788 FewCases = 1, 8789 SingleCase = 2 8790 }; 8791 8792 // Base case: There is only one way to partition Clusters[N-1]. 8793 MinPartitions[N - 1] = 1; 8794 LastElement[N - 1] = N - 1; 8795 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8796 8797 // Note: loop indexes are signed to avoid underflow. 8798 for (int64_t i = N - 2; i >= 0; i--) { 8799 // Find optimal partitioning of Clusters[i..N-1]. 8800 // Baseline: Put Clusters[i] into a partition on its own. 8801 MinPartitions[i] = MinPartitions[i + 1] + 1; 8802 LastElement[i] = i; 8803 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8804 8805 // Search for a solution that results in fewer partitions. 8806 for (int64_t j = N - 1; j > i; j--) { 8807 // Try building a partition from Clusters[i..j]. 8808 JumpTableSize = (Clusters[j].High->getValue() - 8809 Clusters[i].Low->getValue()) 8810 .getLimitedValue(UINT_MAX - 1) + 1; 8811 if (JumpTableSize <= MaxJumpTableSize && 8812 isDense(Clusters, TotalCases, i, j, MinDensity)) { 8813 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8814 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8815 int64_t NumEntries = j - i + 1; 8816 8817 if (NumEntries == 1) 8818 Score += PartitionScores::SingleCase; 8819 else if (NumEntries <= SmallNumberOfEntries) 8820 Score += PartitionScores::FewCases; 8821 else if (NumEntries >= MinJumpTableEntries) 8822 Score += PartitionScores::Table; 8823 8824 // If this leads to fewer partitions, or to the same number of 8825 // partitions with better score, it is a better partitioning. 8826 if (NumPartitions < MinPartitions[i] || 8827 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8828 MinPartitions[i] = NumPartitions; 8829 LastElement[i] = j; 8830 PartitionsScore[i] = Score; 8831 } 8832 } 8833 } 8834 } 8835 8836 // Iterate over the partitions, replacing some with jump tables in-place. 8837 unsigned DstIndex = 0; 8838 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8839 Last = LastElement[First]; 8840 assert(Last >= First); 8841 assert(DstIndex <= First); 8842 unsigned NumClusters = Last - First + 1; 8843 8844 CaseCluster JTCluster; 8845 if (NumClusters >= MinJumpTableEntries && 8846 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8847 Clusters[DstIndex++] = JTCluster; 8848 } else { 8849 for (unsigned I = First; I <= Last; ++I) 8850 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8851 } 8852 } 8853 Clusters.resize(DstIndex); 8854 } 8855 8856 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8857 // FIXME: Using the pointer type doesn't seem ideal. 8858 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8859 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8860 return Range <= BW; 8861 } 8862 8863 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8864 unsigned NumCmps, 8865 const APInt &Low, 8866 const APInt &High) { 8867 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8868 // range of cases both require only one branch to lower. Just looking at the 8869 // number of clusters and destinations should be enough to decide whether to 8870 // build bit tests. 8871 8872 // To lower a range with bit tests, the range must fit the bitwidth of a 8873 // machine word. 8874 if (!rangeFitsInWord(Low, High)) 8875 return false; 8876 8877 // Decide whether it's profitable to lower this range with bit tests. Each 8878 // destination requires a bit test and branch, and there is an overall range 8879 // check branch. For a small number of clusters, separate comparisons might be 8880 // cheaper, and for many destinations, splitting the range might be better. 8881 return (NumDests == 1 && NumCmps >= 3) || 8882 (NumDests == 2 && NumCmps >= 5) || 8883 (NumDests == 3 && NumCmps >= 6); 8884 } 8885 8886 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8887 unsigned First, unsigned Last, 8888 const SwitchInst *SI, 8889 CaseCluster &BTCluster) { 8890 assert(First <= Last); 8891 if (First == Last) 8892 return false; 8893 8894 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8895 unsigned NumCmps = 0; 8896 for (int64_t I = First; I <= Last; ++I) { 8897 assert(Clusters[I].Kind == CC_Range); 8898 Dests.set(Clusters[I].MBB->getNumber()); 8899 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8900 } 8901 unsigned NumDests = Dests.count(); 8902 8903 APInt Low = Clusters[First].Low->getValue(); 8904 APInt High = Clusters[Last].High->getValue(); 8905 assert(Low.slt(High)); 8906 8907 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8908 return false; 8909 8910 APInt LowBound; 8911 APInt CmpRange; 8912 8913 const int BitWidth = DAG.getTargetLoweringInfo() 8914 .getPointerTy(DAG.getDataLayout()) 8915 .getSizeInBits(); 8916 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8917 8918 // Check if the clusters cover a contiguous range such that no value in the 8919 // range will jump to the default statement. 8920 bool ContiguousRange = true; 8921 for (int64_t I = First + 1; I <= Last; ++I) { 8922 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8923 ContiguousRange = false; 8924 break; 8925 } 8926 } 8927 8928 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8929 // Optimize the case where all the case values fit in a word without having 8930 // to subtract minValue. In this case, we can optimize away the subtraction. 8931 LowBound = APInt::getNullValue(Low.getBitWidth()); 8932 CmpRange = High; 8933 ContiguousRange = false; 8934 } else { 8935 LowBound = Low; 8936 CmpRange = High - Low; 8937 } 8938 8939 CaseBitsVector CBV; 8940 auto TotalProb = BranchProbability::getZero(); 8941 for (unsigned i = First; i <= Last; ++i) { 8942 // Find the CaseBits for this destination. 8943 unsigned j; 8944 for (j = 0; j < CBV.size(); ++j) 8945 if (CBV[j].BB == Clusters[i].MBB) 8946 break; 8947 if (j == CBV.size()) 8948 CBV.push_back( 8949 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8950 CaseBits *CB = &CBV[j]; 8951 8952 // Update Mask, Bits and ExtraProb. 8953 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8954 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8955 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8956 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8957 CB->Bits += Hi - Lo + 1; 8958 CB->ExtraProb += Clusters[i].Prob; 8959 TotalProb += Clusters[i].Prob; 8960 } 8961 8962 BitTestInfo BTI; 8963 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8964 // Sort by probability first, number of bits second. 8965 if (a.ExtraProb != b.ExtraProb) 8966 return a.ExtraProb > b.ExtraProb; 8967 return a.Bits > b.Bits; 8968 }); 8969 8970 for (auto &CB : CBV) { 8971 MachineBasicBlock *BitTestBB = 8972 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8973 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8974 } 8975 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8976 SI->getCondition(), -1U, MVT::Other, false, 8977 ContiguousRange, nullptr, nullptr, std::move(BTI), 8978 TotalProb); 8979 8980 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8981 BitTestCases.size() - 1, TotalProb); 8982 return true; 8983 } 8984 8985 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8986 const SwitchInst *SI) { 8987 // Partition Clusters into as few subsets as possible, where each subset has a 8988 // range that fits in a machine word and has <= 3 unique destinations. 8989 8990 #ifndef NDEBUG 8991 // Clusters must be sorted and contain Range or JumpTable clusters. 8992 assert(!Clusters.empty()); 8993 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8994 for (const CaseCluster &C : Clusters) 8995 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8996 for (unsigned i = 1; i < Clusters.size(); ++i) 8997 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8998 #endif 8999 9000 // The algorithm below is not suitable for -O0. 9001 if (TM.getOptLevel() == CodeGenOpt::None) 9002 return; 9003 9004 // If target does not have legal shift left, do not emit bit tests at all. 9005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9006 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 9007 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9008 return; 9009 9010 int BitWidth = PTy.getSizeInBits(); 9011 const int64_t N = Clusters.size(); 9012 9013 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9014 SmallVector<unsigned, 8> MinPartitions(N); 9015 // LastElement[i] is the last element of the partition starting at i. 9016 SmallVector<unsigned, 8> LastElement(N); 9017 9018 // FIXME: This might not be the best algorithm for finding bit test clusters. 9019 9020 // Base case: There is only one way to partition Clusters[N-1]. 9021 MinPartitions[N - 1] = 1; 9022 LastElement[N - 1] = N - 1; 9023 9024 // Note: loop indexes are signed to avoid underflow. 9025 for (int64_t i = N - 2; i >= 0; --i) { 9026 // Find optimal partitioning of Clusters[i..N-1]. 9027 // Baseline: Put Clusters[i] into a partition on its own. 9028 MinPartitions[i] = MinPartitions[i + 1] + 1; 9029 LastElement[i] = i; 9030 9031 // Search for a solution that results in fewer partitions. 9032 // Note: the search is limited by BitWidth, reducing time complexity. 9033 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9034 // Try building a partition from Clusters[i..j]. 9035 9036 // Check the range. 9037 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 9038 Clusters[j].High->getValue())) 9039 continue; 9040 9041 // Check nbr of destinations and cluster types. 9042 // FIXME: This works, but doesn't seem very efficient. 9043 bool RangesOnly = true; 9044 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9045 for (int64_t k = i; k <= j; k++) { 9046 if (Clusters[k].Kind != CC_Range) { 9047 RangesOnly = false; 9048 break; 9049 } 9050 Dests.set(Clusters[k].MBB->getNumber()); 9051 } 9052 if (!RangesOnly || Dests.count() > 3) 9053 break; 9054 9055 // Check if it's a better partition. 9056 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9057 if (NumPartitions < MinPartitions[i]) { 9058 // Found a better partition. 9059 MinPartitions[i] = NumPartitions; 9060 LastElement[i] = j; 9061 } 9062 } 9063 } 9064 9065 // Iterate over the partitions, replacing with bit-test clusters in-place. 9066 unsigned DstIndex = 0; 9067 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9068 Last = LastElement[First]; 9069 assert(First <= Last); 9070 assert(DstIndex <= First); 9071 9072 CaseCluster BitTestCluster; 9073 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9074 Clusters[DstIndex++] = BitTestCluster; 9075 } else { 9076 size_t NumClusters = Last - First + 1; 9077 std::memmove(&Clusters[DstIndex], &Clusters[First], 9078 sizeof(Clusters[0]) * NumClusters); 9079 DstIndex += NumClusters; 9080 } 9081 } 9082 Clusters.resize(DstIndex); 9083 } 9084 9085 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9086 MachineBasicBlock *SwitchMBB, 9087 MachineBasicBlock *DefaultMBB) { 9088 MachineFunction *CurMF = FuncInfo.MF; 9089 MachineBasicBlock *NextMBB = nullptr; 9090 MachineFunction::iterator BBI(W.MBB); 9091 if (++BBI != FuncInfo.MF->end()) 9092 NextMBB = &*BBI; 9093 9094 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9095 9096 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9097 9098 if (Size == 2 && W.MBB == SwitchMBB) { 9099 // If any two of the cases has the same destination, and if one value 9100 // is the same as the other, but has one bit unset that the other has set, 9101 // use bit manipulation to do two compares at once. For example: 9102 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9103 // TODO: This could be extended to merge any 2 cases in switches with 3 9104 // cases. 9105 // TODO: Handle cases where W.CaseBB != SwitchBB. 9106 CaseCluster &Small = *W.FirstCluster; 9107 CaseCluster &Big = *W.LastCluster; 9108 9109 if (Small.Low == Small.High && Big.Low == Big.High && 9110 Small.MBB == Big.MBB) { 9111 const APInt &SmallValue = Small.Low->getValue(); 9112 const APInt &BigValue = Big.Low->getValue(); 9113 9114 // Check that there is only one bit different. 9115 APInt CommonBit = BigValue ^ SmallValue; 9116 if (CommonBit.isPowerOf2()) { 9117 SDValue CondLHS = getValue(Cond); 9118 EVT VT = CondLHS.getValueType(); 9119 SDLoc DL = getCurSDLoc(); 9120 9121 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9122 DAG.getConstant(CommonBit, DL, VT)); 9123 SDValue Cond = DAG.getSetCC( 9124 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9125 ISD::SETEQ); 9126 9127 // Update successor info. 9128 // Both Small and Big will jump to Small.BB, so we sum up the 9129 // probabilities. 9130 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9131 if (BPI) 9132 addSuccessorWithProb( 9133 SwitchMBB, DefaultMBB, 9134 // The default destination is the first successor in IR. 9135 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9136 else 9137 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9138 9139 // Insert the true branch. 9140 SDValue BrCond = 9141 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9142 DAG.getBasicBlock(Small.MBB)); 9143 // Insert the false branch. 9144 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9145 DAG.getBasicBlock(DefaultMBB)); 9146 9147 DAG.setRoot(BrCond); 9148 return; 9149 } 9150 } 9151 } 9152 9153 if (TM.getOptLevel() != CodeGenOpt::None) { 9154 // Order cases by probability so the most likely case will be checked first. 9155 std::sort(W.FirstCluster, W.LastCluster + 1, 9156 [](const CaseCluster &a, const CaseCluster &b) { 9157 return a.Prob > b.Prob; 9158 }); 9159 9160 // Rearrange the case blocks so that the last one falls through if possible 9161 // without without changing the order of probabilities. 9162 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9163 --I; 9164 if (I->Prob > W.LastCluster->Prob) 9165 break; 9166 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9167 std::swap(*I, *W.LastCluster); 9168 break; 9169 } 9170 } 9171 } 9172 9173 // Compute total probability. 9174 BranchProbability DefaultProb = W.DefaultProb; 9175 BranchProbability UnhandledProbs = DefaultProb; 9176 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9177 UnhandledProbs += I->Prob; 9178 9179 MachineBasicBlock *CurMBB = W.MBB; 9180 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9181 MachineBasicBlock *Fallthrough; 9182 if (I == W.LastCluster) { 9183 // For the last cluster, fall through to the default destination. 9184 Fallthrough = DefaultMBB; 9185 } else { 9186 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9187 CurMF->insert(BBI, Fallthrough); 9188 // Put Cond in a virtual register to make it available from the new blocks. 9189 ExportFromCurrentBlock(Cond); 9190 } 9191 UnhandledProbs -= I->Prob; 9192 9193 switch (I->Kind) { 9194 case CC_JumpTable: { 9195 // FIXME: Optimize away range check based on pivot comparisons. 9196 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9197 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9198 9199 // The jump block hasn't been inserted yet; insert it here. 9200 MachineBasicBlock *JumpMBB = JT->MBB; 9201 CurMF->insert(BBI, JumpMBB); 9202 9203 auto JumpProb = I->Prob; 9204 auto FallthroughProb = UnhandledProbs; 9205 9206 // If the default statement is a target of the jump table, we evenly 9207 // distribute the default probability to successors of CurMBB. Also 9208 // update the probability on the edge from JumpMBB to Fallthrough. 9209 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9210 SE = JumpMBB->succ_end(); 9211 SI != SE; ++SI) { 9212 if (*SI == DefaultMBB) { 9213 JumpProb += DefaultProb / 2; 9214 FallthroughProb -= DefaultProb / 2; 9215 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9216 JumpMBB->normalizeSuccProbs(); 9217 break; 9218 } 9219 } 9220 9221 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9222 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9223 CurMBB->normalizeSuccProbs(); 9224 9225 // The jump table header will be inserted in our current block, do the 9226 // range check, and fall through to our fallthrough block. 9227 JTH->HeaderBB = CurMBB; 9228 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9229 9230 // If we're in the right place, emit the jump table header right now. 9231 if (CurMBB == SwitchMBB) { 9232 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9233 JTH->Emitted = true; 9234 } 9235 break; 9236 } 9237 case CC_BitTests: { 9238 // FIXME: Optimize away range check based on pivot comparisons. 9239 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9240 9241 // The bit test blocks haven't been inserted yet; insert them here. 9242 for (BitTestCase &BTC : BTB->Cases) 9243 CurMF->insert(BBI, BTC.ThisBB); 9244 9245 // Fill in fields of the BitTestBlock. 9246 BTB->Parent = CurMBB; 9247 BTB->Default = Fallthrough; 9248 9249 BTB->DefaultProb = UnhandledProbs; 9250 // If the cases in bit test don't form a contiguous range, we evenly 9251 // distribute the probability on the edge to Fallthrough to two 9252 // successors of CurMBB. 9253 if (!BTB->ContiguousRange) { 9254 BTB->Prob += DefaultProb / 2; 9255 BTB->DefaultProb -= DefaultProb / 2; 9256 } 9257 9258 // If we're in the right place, emit the bit test header right now. 9259 if (CurMBB == SwitchMBB) { 9260 visitBitTestHeader(*BTB, SwitchMBB); 9261 BTB->Emitted = true; 9262 } 9263 break; 9264 } 9265 case CC_Range: { 9266 const Value *RHS, *LHS, *MHS; 9267 ISD::CondCode CC; 9268 if (I->Low == I->High) { 9269 // Check Cond == I->Low. 9270 CC = ISD::SETEQ; 9271 LHS = Cond; 9272 RHS=I->Low; 9273 MHS = nullptr; 9274 } else { 9275 // Check I->Low <= Cond <= I->High. 9276 CC = ISD::SETLE; 9277 LHS = I->Low; 9278 MHS = Cond; 9279 RHS = I->High; 9280 } 9281 9282 // The false probability is the sum of all unhandled cases. 9283 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9284 UnhandledProbs); 9285 9286 if (CurMBB == SwitchMBB) 9287 visitSwitchCase(CB, SwitchMBB); 9288 else 9289 SwitchCases.push_back(CB); 9290 9291 break; 9292 } 9293 } 9294 CurMBB = Fallthrough; 9295 } 9296 } 9297 9298 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9299 CaseClusterIt First, 9300 CaseClusterIt Last) { 9301 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9302 if (X.Prob != CC.Prob) 9303 return X.Prob > CC.Prob; 9304 9305 // Ties are broken by comparing the case value. 9306 return X.Low->getValue().slt(CC.Low->getValue()); 9307 }); 9308 } 9309 9310 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9311 const SwitchWorkListItem &W, 9312 Value *Cond, 9313 MachineBasicBlock *SwitchMBB) { 9314 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9315 "Clusters not sorted?"); 9316 9317 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9318 9319 // Balance the tree based on branch probabilities to create a near-optimal (in 9320 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9321 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9322 CaseClusterIt LastLeft = W.FirstCluster; 9323 CaseClusterIt FirstRight = W.LastCluster; 9324 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9325 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9326 9327 // Move LastLeft and FirstRight towards each other from opposite directions to 9328 // find a partitioning of the clusters which balances the probability on both 9329 // sides. If LeftProb and RightProb are equal, alternate which side is 9330 // taken to ensure 0-probability nodes are distributed evenly. 9331 unsigned I = 0; 9332 while (LastLeft + 1 < FirstRight) { 9333 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9334 LeftProb += (++LastLeft)->Prob; 9335 else 9336 RightProb += (--FirstRight)->Prob; 9337 I++; 9338 } 9339 9340 for (;;) { 9341 // Our binary search tree differs from a typical BST in that ours can have up 9342 // to three values in each leaf. The pivot selection above doesn't take that 9343 // into account, which means the tree might require more nodes and be less 9344 // efficient. We compensate for this here. 9345 9346 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9347 unsigned NumRight = W.LastCluster - FirstRight + 1; 9348 9349 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9350 // If one side has less than 3 clusters, and the other has more than 3, 9351 // consider taking a cluster from the other side. 9352 9353 if (NumLeft < NumRight) { 9354 // Consider moving the first cluster on the right to the left side. 9355 CaseCluster &CC = *FirstRight; 9356 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9357 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9358 if (LeftSideRank <= RightSideRank) { 9359 // Moving the cluster to the left does not demote it. 9360 ++LastLeft; 9361 ++FirstRight; 9362 continue; 9363 } 9364 } else { 9365 assert(NumRight < NumLeft); 9366 // Consider moving the last element on the left to the right side. 9367 CaseCluster &CC = *LastLeft; 9368 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9369 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9370 if (RightSideRank <= LeftSideRank) { 9371 // Moving the cluster to the right does not demot it. 9372 --LastLeft; 9373 --FirstRight; 9374 continue; 9375 } 9376 } 9377 } 9378 break; 9379 } 9380 9381 assert(LastLeft + 1 == FirstRight); 9382 assert(LastLeft >= W.FirstCluster); 9383 assert(FirstRight <= W.LastCluster); 9384 9385 // Use the first element on the right as pivot since we will make less-than 9386 // comparisons against it. 9387 CaseClusterIt PivotCluster = FirstRight; 9388 assert(PivotCluster > W.FirstCluster); 9389 assert(PivotCluster <= W.LastCluster); 9390 9391 CaseClusterIt FirstLeft = W.FirstCluster; 9392 CaseClusterIt LastRight = W.LastCluster; 9393 9394 const ConstantInt *Pivot = PivotCluster->Low; 9395 9396 // New blocks will be inserted immediately after the current one. 9397 MachineFunction::iterator BBI(W.MBB); 9398 ++BBI; 9399 9400 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9401 // we can branch to its destination directly if it's squeezed exactly in 9402 // between the known lower bound and Pivot - 1. 9403 MachineBasicBlock *LeftMBB; 9404 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9405 FirstLeft->Low == W.GE && 9406 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9407 LeftMBB = FirstLeft->MBB; 9408 } else { 9409 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9410 FuncInfo.MF->insert(BBI, LeftMBB); 9411 WorkList.push_back( 9412 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9413 // Put Cond in a virtual register to make it available from the new blocks. 9414 ExportFromCurrentBlock(Cond); 9415 } 9416 9417 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9418 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9419 // directly if RHS.High equals the current upper bound. 9420 MachineBasicBlock *RightMBB; 9421 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9422 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9423 RightMBB = FirstRight->MBB; 9424 } else { 9425 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9426 FuncInfo.MF->insert(BBI, RightMBB); 9427 WorkList.push_back( 9428 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9429 // Put Cond in a virtual register to make it available from the new blocks. 9430 ExportFromCurrentBlock(Cond); 9431 } 9432 9433 // Create the CaseBlock record that will be used to lower the branch. 9434 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9435 LeftProb, RightProb); 9436 9437 if (W.MBB == SwitchMBB) 9438 visitSwitchCase(CB, SwitchMBB); 9439 else 9440 SwitchCases.push_back(CB); 9441 } 9442 9443 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9444 // Extract cases from the switch. 9445 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9446 CaseClusterVector Clusters; 9447 Clusters.reserve(SI.getNumCases()); 9448 for (auto I : SI.cases()) { 9449 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9450 const ConstantInt *CaseVal = I.getCaseValue(); 9451 BranchProbability Prob = 9452 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9453 : BranchProbability(1, SI.getNumCases() + 1); 9454 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9455 } 9456 9457 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9458 9459 // Cluster adjacent cases with the same destination. We do this at all 9460 // optimization levels because it's cheap to do and will make codegen faster 9461 // if there are many clusters. 9462 sortAndRangeify(Clusters); 9463 9464 if (TM.getOptLevel() != CodeGenOpt::None) { 9465 // Replace an unreachable default with the most popular destination. 9466 // FIXME: Exploit unreachable default more aggressively. 9467 bool UnreachableDefault = 9468 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9469 if (UnreachableDefault && !Clusters.empty()) { 9470 DenseMap<const BasicBlock *, unsigned> Popularity; 9471 unsigned MaxPop = 0; 9472 const BasicBlock *MaxBB = nullptr; 9473 for (auto I : SI.cases()) { 9474 const BasicBlock *BB = I.getCaseSuccessor(); 9475 if (++Popularity[BB] > MaxPop) { 9476 MaxPop = Popularity[BB]; 9477 MaxBB = BB; 9478 } 9479 } 9480 // Set new default. 9481 assert(MaxPop > 0 && MaxBB); 9482 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9483 9484 // Remove cases that were pointing to the destination that is now the 9485 // default. 9486 CaseClusterVector New; 9487 New.reserve(Clusters.size()); 9488 for (CaseCluster &CC : Clusters) { 9489 if (CC.MBB != DefaultMBB) 9490 New.push_back(CC); 9491 } 9492 Clusters = std::move(New); 9493 } 9494 } 9495 9496 // If there is only the default destination, jump there directly. 9497 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9498 if (Clusters.empty()) { 9499 SwitchMBB->addSuccessor(DefaultMBB); 9500 if (DefaultMBB != NextBlock(SwitchMBB)) { 9501 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9502 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9503 } 9504 return; 9505 } 9506 9507 findJumpTables(Clusters, &SI, DefaultMBB); 9508 findBitTestClusters(Clusters, &SI); 9509 9510 DEBUG({ 9511 dbgs() << "Case clusters: "; 9512 for (const CaseCluster &C : Clusters) { 9513 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9514 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9515 9516 C.Low->getValue().print(dbgs(), true); 9517 if (C.Low != C.High) { 9518 dbgs() << '-'; 9519 C.High->getValue().print(dbgs(), true); 9520 } 9521 dbgs() << ' '; 9522 } 9523 dbgs() << '\n'; 9524 }); 9525 9526 assert(!Clusters.empty()); 9527 SwitchWorkList WorkList; 9528 CaseClusterIt First = Clusters.begin(); 9529 CaseClusterIt Last = Clusters.end() - 1; 9530 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9531 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9532 9533 while (!WorkList.empty()) { 9534 SwitchWorkListItem W = WorkList.back(); 9535 WorkList.pop_back(); 9536 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9537 9538 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9539 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9540 // For optimized builds, lower large range as a balanced binary tree. 9541 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9542 continue; 9543 } 9544 9545 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9546 } 9547 } 9548