1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 87 static cl::opt<bool> 88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 89 cl::desc("Enable fast-math-flags for DAG nodes")); 90 91 /// Minimum jump table density for normal functions. 92 static cl::opt<unsigned> 93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 94 cl::desc("Minimum density for building a jump table in " 95 "a normal function")); 96 97 /// Minimum jump table density for -Os or -Oz functions. 98 static cl::opt<unsigned> 99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 100 cl::desc("Minimum density for building a jump table in " 101 "an optsize function")); 102 103 104 // Limit the width of DAG chains. This is important in general to prevent 105 // DAG-based analysis from blowing up. For example, alias analysis and 106 // load clustering may not complete in reasonable time. It is difficult to 107 // recognize and avoid this situation within each individual analysis, and 108 // future analyses are likely to have the same behavior. Limiting DAG width is 109 // the safe approach and will be especially important with global DAGs. 110 // 111 // MaxParallelChains default is arbitrarily high to avoid affecting 112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 113 // sequence over this should have been converted to llvm.memcpy by the 114 // frontend. It is easy to induce this behavior with .ll code such as: 115 // %buffer = alloca [4096 x i8] 116 // %data = load [4096 x i8]* %argPtr 117 // store [4096 x i8] %data, [4096 x i8]* %buffer 118 static const unsigned MaxParallelChains = 64; 119 120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 121 const SDValue *Parts, unsigned NumParts, 122 MVT PartVT, EVT ValueVT, const Value *V); 123 124 /// getCopyFromParts - Create a value that contains the specified legal parts 125 /// combined into the value they represent. If the parts combine to a type 126 /// larger than ValueVT then AssertOp can be used to specify whether the extra 127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 128 /// (ISD::AssertSext). 129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 130 const SDValue *Parts, unsigned NumParts, 131 MVT PartVT, EVT ValueVT, const Value *V, 132 Optional<ISD::NodeType> AssertOp = None) { 133 if (ValueVT.isVector()) 134 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 135 PartVT, ValueVT, V); 136 137 assert(NumParts > 0 && "No parts to assemble!"); 138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 139 SDValue Val = Parts[0]; 140 141 if (NumParts > 1) { 142 // Assemble the value from multiple parts. 143 if (ValueVT.isInteger()) { 144 unsigned PartBits = PartVT.getSizeInBits(); 145 unsigned ValueBits = ValueVT.getSizeInBits(); 146 147 // Assemble the power of 2 part. 148 unsigned RoundParts = NumParts & (NumParts - 1) ? 149 1 << Log2_32(NumParts) : NumParts; 150 unsigned RoundBits = PartBits * RoundParts; 151 EVT RoundVT = RoundBits == ValueBits ? 152 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 153 SDValue Lo, Hi; 154 155 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 156 157 if (RoundParts > 2) { 158 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 159 PartVT, HalfVT, V); 160 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 161 RoundParts / 2, PartVT, HalfVT, V); 162 } else { 163 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 165 } 166 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 170 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 171 172 if (RoundParts < NumParts) { 173 // Assemble the trailing non-power-of-2 part. 174 unsigned OddParts = NumParts - RoundParts; 175 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 176 Hi = getCopyFromParts(DAG, DL, 177 Parts + RoundParts, OddParts, PartVT, OddVT, V); 178 179 // Combine the round and odd parts. 180 Lo = Val; 181 if (DAG.getDataLayout().isBigEndian()) 182 std::swap(Lo, Hi); 183 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 184 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 185 Hi = 186 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 187 DAG.getConstant(Lo.getValueSizeInBits(), DL, 188 TLI.getPointerTy(DAG.getDataLayout()))); 189 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 190 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 191 } 192 } else if (PartVT.isFloatingPoint()) { 193 // FP split into multiple FP parts (for ppcf128) 194 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 195 "Unexpected split"); 196 SDValue Lo, Hi; 197 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 199 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 200 std::swap(Lo, Hi); 201 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 202 } else { 203 // FP split into integer parts (soft fp) 204 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 205 !PartVT.isVector() && "Unexpected split"); 206 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 208 } 209 } 210 211 // There is now one part, held in Val. Correct it to match ValueVT. 212 // PartEVT is the type of the register class that holds the value. 213 // ValueVT is the type of the inline asm operation. 214 EVT PartEVT = Val.getValueType(); 215 216 if (PartEVT == ValueVT) 217 return Val; 218 219 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 220 ValueVT.bitsLT(PartEVT)) { 221 // For an FP value in an integer part, we need to truncate to the right 222 // width first. 223 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 224 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 225 } 226 227 // Handle types that have the same size. 228 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 229 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 230 231 // Handle types with different sizes. 232 if (PartEVT.isInteger() && ValueVT.isInteger()) { 233 if (ValueVT.bitsLT(PartEVT)) { 234 // For a truncate, see if we have any information to 235 // indicate whether the truncated bits will always be 236 // zero or sign-extension. 237 if (AssertOp.hasValue()) 238 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 239 DAG.getValueType(ValueVT)); 240 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 241 } 242 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 243 } 244 245 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 246 // FP_ROUND's are always exact here. 247 if (ValueVT.bitsLT(Val.getValueType())) 248 return DAG.getNode( 249 ISD::FP_ROUND, DL, ValueVT, Val, 250 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 251 252 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 253 } 254 255 llvm_unreachable("Unknown mismatch!"); 256 } 257 258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 259 const Twine &ErrMsg) { 260 const Instruction *I = dyn_cast_or_null<Instruction>(V); 261 if (!V) 262 return Ctx.emitError(ErrMsg); 263 264 const char *AsmError = ", possible invalid constraint for vector type"; 265 if (const CallInst *CI = dyn_cast<CallInst>(I)) 266 if (isa<InlineAsm>(CI->getCalledValue())) 267 return Ctx.emitError(I, ErrMsg + AsmError); 268 269 return Ctx.emitError(I, ErrMsg); 270 } 271 272 /// getCopyFromPartsVector - Create a value that contains the specified legal 273 /// parts combined into the value they represent. If the parts combine to a 274 /// type larger than ValueVT then AssertOp can be used to specify whether the 275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 276 /// ValueVT (ISD::AssertSext). 277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 278 const SDValue *Parts, unsigned NumParts, 279 MVT PartVT, EVT ValueVT, const Value *V) { 280 assert(ValueVT.isVector() && "Not a vector value"); 281 assert(NumParts > 0 && "No parts to assemble!"); 282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 283 SDValue Val = Parts[0]; 284 285 // Handle a multi-element vector. 286 if (NumParts > 1) { 287 EVT IntermediateVT; 288 MVT RegisterVT; 289 unsigned NumIntermediates; 290 unsigned NumRegs = 291 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 292 NumIntermediates, RegisterVT); 293 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 294 NumParts = NumRegs; // Silence a compiler warning. 295 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 296 assert(RegisterVT.getSizeInBits() == 297 Parts[0].getSimpleValueType().getSizeInBits() && 298 "Part type sizes don't match!"); 299 300 // Assemble the parts into intermediate operands. 301 SmallVector<SDValue, 8> Ops(NumIntermediates); 302 if (NumIntermediates == NumParts) { 303 // If the register was not expanded, truncate or copy the value, 304 // as appropriate. 305 for (unsigned i = 0; i != NumParts; ++i) 306 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 307 PartVT, IntermediateVT, V); 308 } else if (NumParts > 0) { 309 // If the intermediate type was expanded, build the intermediate 310 // operands from the parts. 311 assert(NumParts % NumIntermediates == 0 && 312 "Must expand into a divisible number of parts!"); 313 unsigned Factor = NumParts / NumIntermediates; 314 for (unsigned i = 0; i != NumIntermediates; ++i) 315 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 316 PartVT, IntermediateVT, V); 317 } 318 319 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 320 // intermediate operands. 321 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 322 : ISD::BUILD_VECTOR, 323 DL, ValueVT, Ops); 324 } 325 326 // There is now one part, held in Val. Correct it to match ValueVT. 327 EVT PartEVT = Val.getValueType(); 328 329 if (PartEVT == ValueVT) 330 return Val; 331 332 if (PartEVT.isVector()) { 333 // If the element type of the source/dest vectors are the same, but the 334 // parts vector has more elements than the value vector, then we have a 335 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 336 // elements we want. 337 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 338 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 339 "Cannot narrow, it would be a lossy transformation"); 340 return DAG.getNode( 341 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 342 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 343 } 344 345 // Vector/Vector bitcast. 346 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 347 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 348 349 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 350 "Cannot handle this kind of promotion"); 351 // Promoted vector extract 352 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 353 354 } 355 356 // Trivial bitcast if the types are the same size and the destination 357 // vector type is legal. 358 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 359 TLI.isTypeLegal(ValueVT)) 360 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 361 362 // Handle cases such as i8 -> <1 x i1> 363 if (ValueVT.getVectorNumElements() != 1) { 364 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 365 "non-trivial scalar-to-vector conversion"); 366 return DAG.getUNDEF(ValueVT); 367 } 368 369 if (ValueVT.getVectorNumElements() == 1 && 370 ValueVT.getVectorElementType() != PartEVT) 371 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 372 373 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 374 } 375 376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 377 SDValue Val, SDValue *Parts, unsigned NumParts, 378 MVT PartVT, const Value *V); 379 380 /// getCopyToParts - Create a series of nodes that contain the specified value 381 /// split into legal parts. If the parts contain more bits than Val, then, for 382 /// integers, ExtendKind can be used to specify how to generate the extra bits. 383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 384 SDValue *Parts, unsigned NumParts, MVT PartVT, 385 const Value *V, 386 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 387 EVT ValueVT = Val.getValueType(); 388 389 // Handle the vector case separately. 390 if (ValueVT.isVector()) 391 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 392 393 unsigned PartBits = PartVT.getSizeInBits(); 394 unsigned OrigNumParts = NumParts; 395 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 396 "Copying to an illegal type!"); 397 398 if (NumParts == 0) 399 return; 400 401 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 402 EVT PartEVT = PartVT; 403 if (PartEVT == ValueVT) { 404 assert(NumParts == 1 && "No-op copy with multiple parts!"); 405 Parts[0] = Val; 406 return; 407 } 408 409 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 410 // If the parts cover more bits than the value has, promote the value. 411 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 412 assert(NumParts == 1 && "Do not know what to promote to!"); 413 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 414 } else { 415 if (ValueVT.isFloatingPoint()) { 416 // FP values need to be bitcast, then extended if they are being put 417 // into a larger container. 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 419 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 } 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 } else if (PartBits == ValueVT.getSizeInBits()) { 430 // Different types of the same size. 431 assert(NumParts == 1 && PartEVT != ValueVT); 432 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 433 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 434 // If the parts cover less bits than value has, truncate the value. 435 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 436 ValueVT.isInteger() && 437 "Unknown mismatch!"); 438 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 439 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 440 if (PartVT == MVT::x86mmx) 441 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 442 } 443 444 // The value may have changed - recompute ValueVT. 445 ValueVT = Val.getValueType(); 446 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 447 "Failed to tile the value with PartVT!"); 448 449 if (NumParts == 1) { 450 if (PartEVT != ValueVT) { 451 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 452 "scalar-to-vector conversion failed"); 453 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 454 } 455 456 Parts[0] = Val; 457 return; 458 } 459 460 // Expand the value into multiple parts. 461 if (NumParts & (NumParts - 1)) { 462 // The number of parts is not a power of 2. Split off and copy the tail. 463 assert(PartVT.isInteger() && ValueVT.isInteger() && 464 "Do not know what to expand to!"); 465 unsigned RoundParts = 1 << Log2_32(NumParts); 466 unsigned RoundBits = RoundParts * PartBits; 467 unsigned OddParts = NumParts - RoundParts; 468 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 469 DAG.getIntPtrConstant(RoundBits, DL)); 470 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 471 472 if (DAG.getDataLayout().isBigEndian()) 473 // The odd parts were reversed by getCopyToParts - unreverse them. 474 std::reverse(Parts + RoundParts, Parts + NumParts); 475 476 NumParts = RoundParts; 477 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 478 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 479 } 480 481 // The number of parts is a power of 2. Repeatedly bisect the value using 482 // EXTRACT_ELEMENT. 483 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 484 EVT::getIntegerVT(*DAG.getContext(), 485 ValueVT.getSizeInBits()), 486 Val); 487 488 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 489 for (unsigned i = 0; i < NumParts; i += StepSize) { 490 unsigned ThisBits = StepSize * PartBits / 2; 491 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 492 SDValue &Part0 = Parts[i]; 493 SDValue &Part1 = Parts[i+StepSize/2]; 494 495 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 496 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 497 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 498 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 499 500 if (ThisBits == PartBits && ThisVT != PartVT) { 501 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 502 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 503 } 504 } 505 } 506 507 if (DAG.getDataLayout().isBigEndian()) 508 std::reverse(Parts, Parts + OrigNumParts); 509 } 510 511 512 /// getCopyToPartsVector - Create a series of nodes that contain the specified 513 /// value split into legal parts. 514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 515 SDValue Val, SDValue *Parts, unsigned NumParts, 516 MVT PartVT, const Value *V) { 517 EVT ValueVT = Val.getValueType(); 518 assert(ValueVT.isVector() && "Not a vector"); 519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 520 521 if (NumParts == 1) { 522 EVT PartEVT = PartVT; 523 if (PartEVT == ValueVT) { 524 // Nothing to do. 525 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 526 // Bitconvert vector->vector case. 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 530 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 531 EVT ElementVT = PartVT.getVectorElementType(); 532 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 533 // undef elements. 534 SmallVector<SDValue, 16> Ops; 535 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 536 Ops.push_back(DAG.getNode( 537 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 538 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 539 540 for (unsigned i = ValueVT.getVectorNumElements(), 541 e = PartVT.getVectorNumElements(); i != e; ++i) 542 Ops.push_back(DAG.getUNDEF(ElementVT)); 543 544 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 545 546 // FIXME: Use CONCAT for 2x -> 4x. 547 548 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 549 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 550 } else if (PartVT.isVector() && 551 PartEVT.getVectorElementType().bitsGE( 552 ValueVT.getVectorElementType()) && 553 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 554 555 // Promoted vector extract 556 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 557 } else{ 558 // Vector -> scalar conversion. 559 assert(ValueVT.getVectorNumElements() == 1 && 560 "Only trivial vector-to-scalar conversions should get here!"); 561 Val = DAG.getNode( 562 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 563 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 565 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Handle a multi-element vector. 573 EVT IntermediateVT; 574 MVT RegisterVT; 575 unsigned NumIntermediates; 576 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 577 IntermediateVT, 578 NumIntermediates, RegisterVT); 579 unsigned NumElements = ValueVT.getVectorNumElements(); 580 581 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 582 NumParts = NumRegs; // Silence a compiler warning. 583 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 584 585 // Split the vector into intermediate operands. 586 SmallVector<SDValue, 8> Ops(NumIntermediates); 587 for (unsigned i = 0; i != NumIntermediates; ++i) { 588 if (IntermediateVT.isVector()) 589 Ops[i] = 590 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 591 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 592 TLI.getVectorIdxTy(DAG.getDataLayout()))); 593 else 594 Ops[i] = DAG.getNode( 595 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 596 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 597 } 598 599 // Split the intermediate operands into legal parts. 600 if (NumParts == NumIntermediates) { 601 // If the register was not expanded, promote or copy the value, 602 // as appropriate. 603 for (unsigned i = 0; i != NumParts; ++i) 604 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 605 } else if (NumParts > 0) { 606 // If the intermediate type was expanded, split each the value into 607 // legal parts. 608 assert(NumIntermediates != 0 && "division by zero"); 609 assert(NumParts % NumIntermediates == 0 && 610 "Must expand into a divisible number of parts!"); 611 unsigned Factor = NumParts / NumIntermediates; 612 for (unsigned i = 0; i != NumIntermediates; ++i) 613 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 614 } 615 } 616 617 RegsForValue::RegsForValue() {} 618 619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 620 EVT valuevt) 621 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 622 623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 624 const DataLayout &DL, unsigned Reg, Type *Ty) { 625 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 626 627 for (EVT ValueVT : ValueVTs) { 628 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 629 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 630 for (unsigned i = 0; i != NumRegs; ++i) 631 Regs.push_back(Reg + i); 632 RegVTs.push_back(RegisterVT); 633 Reg += NumRegs; 634 } 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 const SDLoc &dl, SDValue &Chain, 644 SDValue *Flag, const Value *V) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 MVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (!Flag) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 if (NumZeroBits == RegSize) { 689 // The current value is a zero. 690 // Explicitly express that as it would be easier for 691 // optimizations to kick in. 692 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 693 continue; 694 } 695 696 // FIXME: We capture more information than the dag can represent. For 697 // now, just use the tightest assertzext/assertsext possible. 698 bool isSExt = true; 699 EVT FromVT(MVT::Other); 700 if (NumSignBits == RegSize) { 701 isSExt = true; // ASSERT SEXT 1 702 FromVT = MVT::i1; 703 } else if (NumZeroBits >= RegSize - 1) { 704 isSExt = false; // ASSERT ZEXT 1 705 FromVT = MVT::i1; 706 } else if (NumSignBits > RegSize - 8) { 707 isSExt = true; // ASSERT SEXT 8 708 FromVT = MVT::i8; 709 } else if (NumZeroBits >= RegSize - 8) { 710 isSExt = false; // ASSERT ZEXT 8 711 FromVT = MVT::i8; 712 } else if (NumSignBits > RegSize - 16) { 713 isSExt = true; // ASSERT SEXT 16 714 FromVT = MVT::i16; 715 } else if (NumZeroBits >= RegSize - 16) { 716 isSExt = false; // ASSERT ZEXT 16 717 FromVT = MVT::i16; 718 } else if (NumSignBits > RegSize - 32) { 719 isSExt = true; // ASSERT SEXT 32 720 FromVT = MVT::i32; 721 } else if (NumZeroBits >= RegSize - 32) { 722 isSExt = false; // ASSERT ZEXT 32 723 FromVT = MVT::i32; 724 } else { 725 continue; 726 } 727 // Add an assertion node. 728 assert(FromVT != MVT::Other); 729 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 730 RegisterVT, P, DAG.getValueType(FromVT)); 731 } 732 733 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 734 NumRegs, RegisterVT, ValueVT, V); 735 Part += NumRegs; 736 Parts.clear(); 737 } 738 739 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 740 } 741 742 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 743 /// specified value into the registers specified by this object. This uses 744 /// Chain/Flag as the input and updates them for the output Chain/Flag. 745 /// If the Flag pointer is NULL, no flag is used. 746 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 747 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 748 const Value *V, 749 ISD::NodeType PreferredExtendType) const { 750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 751 ISD::NodeType ExtendKind = PreferredExtendType; 752 753 // Get the list of the values's legal parts. 754 unsigned NumRegs = Regs.size(); 755 SmallVector<SDValue, 8> Parts(NumRegs); 756 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 757 EVT ValueVT = ValueVTs[Value]; 758 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 759 MVT RegisterVT = RegVTs[Value]; 760 761 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 762 ExtendKind = ISD::ZERO_EXTEND; 763 764 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 765 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 766 Part += NumParts; 767 } 768 769 // Copy the parts into the registers. 770 SmallVector<SDValue, 8> Chains(NumRegs); 771 for (unsigned i = 0; i != NumRegs; ++i) { 772 SDValue Part; 773 if (!Flag) { 774 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 775 } else { 776 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 777 *Flag = Part.getValue(1); 778 } 779 780 Chains[i] = Part.getValue(0); 781 } 782 783 if (NumRegs == 1 || Flag) 784 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 785 // flagged to it. That is the CopyToReg nodes and the user are considered 786 // a single scheduling unit. If we create a TokenFactor and return it as 787 // chain, then the TokenFactor is both a predecessor (operand) of the 788 // user as well as a successor (the TF operands are flagged to the user). 789 // c1, f1 = CopyToReg 790 // c2, f2 = CopyToReg 791 // c3 = TokenFactor c1, c2 792 // ... 793 // = op c3, ..., f2 794 Chain = Chains[NumRegs-1]; 795 else 796 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 797 } 798 799 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 800 /// operand list. This adds the code marker and includes the number of 801 /// values added into it. 802 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 803 unsigned MatchingIdx, const SDLoc &dl, 804 SelectionDAG &DAG, 805 std::vector<SDValue> &Ops) const { 806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 807 808 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 809 if (HasMatching) 810 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 811 else if (!Regs.empty() && 812 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 813 // Put the register class of the virtual registers in the flag word. That 814 // way, later passes can recompute register class constraints for inline 815 // assembly as well as normal instructions. 816 // Don't do this for tied operands that can use the regclass information 817 // from the def. 818 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 819 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 820 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 821 } 822 823 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 824 Ops.push_back(Res); 825 826 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 827 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 828 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 829 MVT RegisterVT = RegVTs[Value]; 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 832 unsigned TheReg = Regs[Reg++]; 833 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 834 835 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 836 // If we clobbered the stack pointer, MFI should know about it. 837 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 838 } 839 } 840 } 841 } 842 843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 844 const TargetLibraryInfo *li) { 845 AA = &aa; 846 GFI = gfi; 847 LibInfo = li; 848 DL = &DAG.getDataLayout(); 849 Context = DAG.getContext(); 850 LPadToCallSiteMap.clear(); 851 } 852 853 /// clear - Clear out the current SelectionDAG and the associated 854 /// state and prepare this SelectionDAGBuilder object to be used 855 /// for a new block. This doesn't clear out information about 856 /// additional blocks that are needed to complete switch lowering 857 /// or PHI node updating; that information is cleared out as it is 858 /// consumed. 859 void SelectionDAGBuilder::clear() { 860 NodeMap.clear(); 861 UnusedArgNodeMap.clear(); 862 PendingLoads.clear(); 863 PendingExports.clear(); 864 CurInst = nullptr; 865 HasTailCall = false; 866 SDNodeOrder = LowestSDNodeOrder; 867 StatepointLowering.clear(); 868 } 869 870 /// clearDanglingDebugInfo - Clear the dangling debug information 871 /// map. This function is separated from the clear so that debug 872 /// information that is dangling in a basic block can be properly 873 /// resolved in a different basic block. This allows the 874 /// SelectionDAG to resolve dangling debug information attached 875 /// to PHI nodes. 876 void SelectionDAGBuilder::clearDanglingDebugInfo() { 877 DanglingDebugInfoMap.clear(); 878 } 879 880 /// getRoot - Return the current virtual root of the Selection DAG, 881 /// flushing any PendingLoad items. This must be done before emitting 882 /// a store or any other node that may need to be ordered after any 883 /// prior load instructions. 884 /// 885 SDValue SelectionDAGBuilder::getRoot() { 886 if (PendingLoads.empty()) 887 return DAG.getRoot(); 888 889 if (PendingLoads.size() == 1) { 890 SDValue Root = PendingLoads[0]; 891 DAG.setRoot(Root); 892 PendingLoads.clear(); 893 return Root; 894 } 895 896 // Otherwise, we have to make a token factor node. 897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 898 PendingLoads); 899 PendingLoads.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 /// getControlRoot - Similar to getRoot, but instead of flushing all the 905 /// PendingLoad items, flush all the PendingExports items. It is necessary 906 /// to do this before emitting a terminator instruction. 907 /// 908 SDValue SelectionDAGBuilder::getControlRoot() { 909 SDValue Root = DAG.getRoot(); 910 911 if (PendingExports.empty()) 912 return Root; 913 914 // Turn all of the CopyToReg chains into one factored node. 915 if (Root.getOpcode() != ISD::EntryToken) { 916 unsigned i = 0, e = PendingExports.size(); 917 for (; i != e; ++i) { 918 assert(PendingExports[i].getNode()->getNumOperands() > 1); 919 if (PendingExports[i].getNode()->getOperand(0) == Root) 920 break; // Don't add the root if we already indirectly depend on it. 921 } 922 923 if (i == e) 924 PendingExports.push_back(Root); 925 } 926 927 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 928 PendingExports); 929 PendingExports.clear(); 930 DAG.setRoot(Root); 931 return Root; 932 } 933 934 void SelectionDAGBuilder::visit(const Instruction &I) { 935 // Set up outgoing PHI node register values before emitting the terminator. 936 if (isa<TerminatorInst>(&I)) { 937 HandlePHINodesInSuccessorBlocks(I.getParent()); 938 } 939 940 // Increase the SDNodeOrder if dealing with a non-debug instruction. 941 if (!isa<DbgInfoIntrinsic>(I)) 942 ++SDNodeOrder; 943 944 CurInst = &I; 945 946 visit(I.getOpcode(), I); 947 948 if (!isa<TerminatorInst>(&I) && !HasTailCall && 949 !isStatepoint(&I)) // statepoints handle their exports internally 950 CopyToExportRegsIfNeeded(&I); 951 952 CurInst = nullptr; 953 } 954 955 void SelectionDAGBuilder::visitPHI(const PHINode &) { 956 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 957 } 958 959 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 960 // Note: this doesn't use InstVisitor, because it has to work with 961 // ConstantExpr's in addition to instructions. 962 switch (Opcode) { 963 default: llvm_unreachable("Unknown instruction type encountered!"); 964 // Build the switch statement using the Instruction.def file. 965 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 966 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 967 #include "llvm/IR/Instruction.def" 968 } 969 } 970 971 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 972 // generate the debug data structures now that we've seen its definition. 973 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 974 SDValue Val) { 975 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 976 if (DDI.getDI()) { 977 const DbgValueInst *DI = DDI.getDI(); 978 DebugLoc dl = DDI.getdl(); 979 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 980 DILocalVariable *Variable = DI->getVariable(); 981 DIExpression *Expr = DI->getExpression(); 982 assert(Variable->isValidLocationForIntrinsic(dl) && 983 "Expected inlined-at fields to agree"); 984 uint64_t Offset = DI->getOffset(); 985 SDDbgValue *SDV; 986 if (Val.getNode()) { 987 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 988 Val)) { 989 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 990 DAG.AddDbgValue(SDV, Val.getNode(), false); 991 } 992 } else 993 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 994 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 995 } 996 } 997 998 /// getCopyFromRegs - If there was virtual register allocated for the value V 999 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1000 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1001 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1002 SDValue Result; 1003 1004 if (It != FuncInfo.ValueMap.end()) { 1005 unsigned InReg = It->second; 1006 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1007 DAG.getDataLayout(), InReg, Ty); 1008 SDValue Chain = DAG.getEntryNode(); 1009 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1010 resolveDanglingDebugInfo(V, Result); 1011 } 1012 1013 return Result; 1014 } 1015 1016 /// getValue - Return an SDValue for the given Value. 1017 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. It's important 1019 // to do this first, so that we don't create a CopyFromReg if we already 1020 // have a regular SDValue. 1021 SDValue &N = NodeMap[V]; 1022 if (N.getNode()) return N; 1023 1024 // If there's a virtual register allocated and initialized for this 1025 // value, use it. 1026 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1027 return copyFromReg; 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 // Return true if SDValue exists for the given Value 1037 bool SelectionDAGBuilder::findValue(const Value *V) const { 1038 return (NodeMap.find(V) != NodeMap.end()) || 1039 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) { 1048 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1049 // Remove the debug location from the node as the node is about to be used 1050 // in a location which may differ from the original debug location. This 1051 // is relevant to Constant and ConstantFP nodes because they can appear 1052 // as constant expressions inside PHI nodes. 1053 N->setDebugLoc(DebugLoc()); 1054 } 1055 return N; 1056 } 1057 1058 // Otherwise create a new SDValue and remember it. 1059 SDValue Val = getValueImpl(V); 1060 NodeMap[V] = Val; 1061 resolveDanglingDebugInfo(V, Val); 1062 return Val; 1063 } 1064 1065 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1066 /// Create an SDValue for the given value. 1067 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1069 1070 if (const Constant *C = dyn_cast<Constant>(V)) { 1071 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1072 1073 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1074 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1075 1076 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1077 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1078 1079 if (isa<ConstantPointerNull>(C)) { 1080 unsigned AS = V->getType()->getPointerAddressSpace(); 1081 return DAG.getConstant(0, getCurSDLoc(), 1082 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1083 } 1084 1085 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1086 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1087 1088 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1089 return DAG.getUNDEF(VT); 1090 1091 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1092 visit(CE->getOpcode(), *CE); 1093 SDValue N1 = NodeMap[V]; 1094 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1095 return N1; 1096 } 1097 1098 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1099 SmallVector<SDValue, 4> Constants; 1100 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1101 OI != OE; ++OI) { 1102 SDNode *Val = getValue(*OI).getNode(); 1103 // If the operand is an empty aggregate, there are no values. 1104 if (!Val) continue; 1105 // Add each leaf value from the operand to the Constants list 1106 // to form a flattened list of all the values. 1107 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1108 Constants.push_back(SDValue(Val, i)); 1109 } 1110 1111 return DAG.getMergeValues(Constants, getCurSDLoc()); 1112 } 1113 1114 if (const ConstantDataSequential *CDS = 1115 dyn_cast<ConstantDataSequential>(C)) { 1116 SmallVector<SDValue, 4> Ops; 1117 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1118 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1119 // Add each leaf value from the operand to the Constants list 1120 // to form a flattened list of all the values. 1121 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1122 Ops.push_back(SDValue(Val, i)); 1123 } 1124 1125 if (isa<ArrayType>(CDS->getType())) 1126 return DAG.getMergeValues(Ops, getCurSDLoc()); 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1128 VT, Ops); 1129 } 1130 1131 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1132 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1133 "Unknown struct or array constant!"); 1134 1135 SmallVector<EVT, 4> ValueVTs; 1136 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1137 unsigned NumElts = ValueVTs.size(); 1138 if (NumElts == 0) 1139 return SDValue(); // empty struct 1140 SmallVector<SDValue, 4> Constants(NumElts); 1141 for (unsigned i = 0; i != NumElts; ++i) { 1142 EVT EltVT = ValueVTs[i]; 1143 if (isa<UndefValue>(C)) 1144 Constants[i] = DAG.getUNDEF(EltVT); 1145 else if (EltVT.isFloatingPoint()) 1146 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 } 1150 1151 return DAG.getMergeValues(Constants, getCurSDLoc()); 1152 } 1153 1154 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1155 return DAG.getBlockAddress(BA, VT); 1156 1157 VectorType *VecTy = cast<VectorType>(V->getType()); 1158 unsigned NumElements = VecTy->getNumElements(); 1159 1160 // Now that we know the number and type of the elements, get that number of 1161 // elements into the Ops array based on what kind of constant it is. 1162 SmallVector<SDValue, 16> Ops; 1163 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1164 for (unsigned i = 0; i != NumElements; ++i) 1165 Ops.push_back(getValue(CV->getOperand(i))); 1166 } else { 1167 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1168 EVT EltVT = 1169 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1170 1171 SDValue Op; 1172 if (EltVT.isFloatingPoint()) 1173 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1174 else 1175 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1176 Ops.assign(NumElements, Op); 1177 } 1178 1179 // Create a BUILD_VECTOR node. 1180 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1181 } 1182 1183 // If this is a static alloca, generate it as the frameindex instead of 1184 // computation. 1185 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1186 DenseMap<const AllocaInst*, int>::iterator SI = 1187 FuncInfo.StaticAllocaMap.find(AI); 1188 if (SI != FuncInfo.StaticAllocaMap.end()) 1189 return DAG.getFrameIndex(SI->second, 1190 TLI.getPointerTy(DAG.getDataLayout())); 1191 } 1192 1193 // If this is an instruction which fast-isel has deferred, select it now. 1194 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1195 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1196 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1197 Inst->getType()); 1198 SDValue Chain = DAG.getEntryNode(); 1199 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1200 } 1201 1202 llvm_unreachable("Can't get register for value!"); 1203 } 1204 1205 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1206 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1207 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1208 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1209 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1210 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1211 if (IsMSVCCXX || IsCoreCLR) 1212 CatchPadMBB->setIsEHFuncletEntry(); 1213 1214 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1215 } 1216 1217 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1218 // Update machine-CFG edge. 1219 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1220 FuncInfo.MBB->addSuccessor(TargetMBB); 1221 1222 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1223 bool IsSEH = isAsynchronousEHPersonality(Pers); 1224 if (IsSEH) { 1225 // If this is not a fall-through branch or optimizations are switched off, 1226 // emit the branch. 1227 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1228 TM.getOptLevel() == CodeGenOpt::None) 1229 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1230 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1231 return; 1232 } 1233 1234 // Figure out the funclet membership for the catchret's successor. 1235 // This will be used by the FuncletLayout pass to determine how to order the 1236 // BB's. 1237 // A 'catchret' returns to the outer scope's color. 1238 Value *ParentPad = I.getCatchSwitchParentPad(); 1239 const BasicBlock *SuccessorColor; 1240 if (isa<ConstantTokenNone>(ParentPad)) 1241 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1242 else 1243 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1244 assert(SuccessorColor && "No parent funclet for catchret!"); 1245 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1246 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1247 1248 // Create the terminator node. 1249 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1250 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1251 DAG.getBasicBlock(SuccessorColorMBB)); 1252 DAG.setRoot(Ret); 1253 } 1254 1255 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1256 // Don't emit any special code for the cleanuppad instruction. It just marks 1257 // the start of a funclet. 1258 FuncInfo.MBB->setIsEHFuncletEntry(); 1259 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1260 } 1261 1262 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1263 /// many places it could ultimately go. In the IR, we have a single unwind 1264 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1265 /// This function skips over imaginary basic blocks that hold catchswitch 1266 /// instructions, and finds all the "real" machine 1267 /// basic block destinations. As those destinations may not be successors of 1268 /// EHPadBB, here we also calculate the edge probability to those destinations. 1269 /// The passed-in Prob is the edge probability to EHPadBB. 1270 static void findUnwindDestinations( 1271 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1272 BranchProbability Prob, 1273 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1274 &UnwindDests) { 1275 EHPersonality Personality = 1276 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1277 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1278 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1279 1280 while (EHPadBB) { 1281 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1282 BasicBlock *NewEHPadBB = nullptr; 1283 if (isa<LandingPadInst>(Pad)) { 1284 // Stop on landingpads. They are not funclets. 1285 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1286 break; 1287 } else if (isa<CleanupPadInst>(Pad)) { 1288 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1289 // personalities. 1290 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1291 UnwindDests.back().first->setIsEHFuncletEntry(); 1292 break; 1293 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1294 // Add the catchpad handlers to the possible destinations. 1295 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1296 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1297 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1298 if (IsMSVCCXX || IsCoreCLR) 1299 UnwindDests.back().first->setIsEHFuncletEntry(); 1300 } 1301 NewEHPadBB = CatchSwitch->getUnwindDest(); 1302 } else { 1303 continue; 1304 } 1305 1306 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1307 if (BPI && NewEHPadBB) 1308 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1309 EHPadBB = NewEHPadBB; 1310 } 1311 } 1312 1313 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1314 // Update successor info. 1315 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1316 auto UnwindDest = I.getUnwindDest(); 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 BranchProbability UnwindDestProb = 1319 (BPI && UnwindDest) 1320 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1321 : BranchProbability::getZero(); 1322 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1323 for (auto &UnwindDest : UnwindDests) { 1324 UnwindDest.first->setIsEHPad(); 1325 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1326 } 1327 FuncInfo.MBB->normalizeSuccProbs(); 1328 1329 // Create the terminator node. 1330 SDValue Ret = 1331 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1332 DAG.setRoot(Ret); 1333 } 1334 1335 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1336 report_fatal_error("visitCatchSwitch not yet implemented!"); 1337 } 1338 1339 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1341 auto &DL = DAG.getDataLayout(); 1342 SDValue Chain = getControlRoot(); 1343 SmallVector<ISD::OutputArg, 8> Outs; 1344 SmallVector<SDValue, 8> OutVals; 1345 1346 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1347 // lower 1348 // 1349 // %val = call <ty> @llvm.experimental.deoptimize() 1350 // ret <ty> %val 1351 // 1352 // differently. 1353 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1354 LowerDeoptimizingReturn(); 1355 return; 1356 } 1357 1358 if (!FuncInfo.CanLowerReturn) { 1359 unsigned DemoteReg = FuncInfo.DemoteRegister; 1360 const Function *F = I.getParent()->getParent(); 1361 1362 // Emit a store of the return value through the virtual register. 1363 // Leave Outs empty so that LowerReturn won't try to load return 1364 // registers the usual way. 1365 SmallVector<EVT, 1> PtrValueVTs; 1366 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1367 PtrValueVTs); 1368 1369 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1370 DemoteReg, PtrValueVTs[0]); 1371 SDValue RetOp = getValue(I.getOperand(0)); 1372 1373 SmallVector<EVT, 4> ValueVTs; 1374 SmallVector<uint64_t, 4> Offsets; 1375 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1376 unsigned NumValues = ValueVTs.size(); 1377 1378 // An aggregate return value cannot wrap around the address space, so 1379 // offsets to its parts don't wrap either. 1380 SDNodeFlags Flags; 1381 Flags.setNoUnsignedWrap(true); 1382 1383 SmallVector<SDValue, 4> Chains(NumValues); 1384 for (unsigned i = 0; i != NumValues; ++i) { 1385 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1386 RetPtr.getValueType(), RetPtr, 1387 DAG.getIntPtrConstant(Offsets[i], 1388 getCurSDLoc()), 1389 &Flags); 1390 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1391 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1392 // FIXME: better loc info would be nice. 1393 Add, MachinePointerInfo()); 1394 } 1395 1396 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1397 MVT::Other, Chains); 1398 } else if (I.getNumOperands() != 0) { 1399 SmallVector<EVT, 4> ValueVTs; 1400 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1401 unsigned NumValues = ValueVTs.size(); 1402 if (NumValues) { 1403 SDValue RetOp = getValue(I.getOperand(0)); 1404 1405 const Function *F = I.getParent()->getParent(); 1406 1407 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1408 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1409 Attribute::SExt)) 1410 ExtendKind = ISD::SIGN_EXTEND; 1411 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1412 Attribute::ZExt)) 1413 ExtendKind = ISD::ZERO_EXTEND; 1414 1415 LLVMContext &Context = F->getContext(); 1416 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1417 Attribute::InReg); 1418 1419 for (unsigned j = 0; j != NumValues; ++j) { 1420 EVT VT = ValueVTs[j]; 1421 1422 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1423 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1424 1425 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1426 MVT PartVT = TLI.getRegisterType(Context, VT); 1427 SmallVector<SDValue, 4> Parts(NumParts); 1428 getCopyToParts(DAG, getCurSDLoc(), 1429 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1430 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1431 1432 // 'inreg' on function refers to return value 1433 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1434 if (RetInReg) 1435 Flags.setInReg(); 1436 1437 // Propagate extension type if any 1438 if (ExtendKind == ISD::SIGN_EXTEND) 1439 Flags.setSExt(); 1440 else if (ExtendKind == ISD::ZERO_EXTEND) 1441 Flags.setZExt(); 1442 1443 for (unsigned i = 0; i < NumParts; ++i) { 1444 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1445 VT, /*isfixed=*/true, 0, 0)); 1446 OutVals.push_back(Parts[i]); 1447 } 1448 } 1449 } 1450 } 1451 1452 // Push in swifterror virtual register as the last element of Outs. This makes 1453 // sure swifterror virtual register will be returned in the swifterror 1454 // physical register. 1455 const Function *F = I.getParent()->getParent(); 1456 if (TLI.supportSwiftError() && 1457 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1458 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1459 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1460 Flags.setSwiftError(); 1461 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1462 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1463 true /*isfixed*/, 1 /*origidx*/, 1464 0 /*partOffs*/)); 1465 // Create SDNode for the swifterror virtual register. 1466 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1467 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1468 EVT(TLI.getPointerTy(DL)))); 1469 } 1470 1471 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1472 CallingConv::ID CallConv = 1473 DAG.getMachineFunction().getFunction()->getCallingConv(); 1474 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1475 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1476 1477 // Verify that the target's LowerReturn behaved as expected. 1478 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1479 "LowerReturn didn't return a valid chain!"); 1480 1481 // Update the DAG with the new chain value resulting from return lowering. 1482 DAG.setRoot(Chain); 1483 } 1484 1485 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1486 /// created for it, emit nodes to copy the value into the virtual 1487 /// registers. 1488 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1489 // Skip empty types 1490 if (V->getType()->isEmptyTy()) 1491 return; 1492 1493 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1494 if (VMI != FuncInfo.ValueMap.end()) { 1495 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1496 CopyValueToVirtualRegister(V, VMI->second); 1497 } 1498 } 1499 1500 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1501 /// the current basic block, add it to ValueMap now so that we'll get a 1502 /// CopyTo/FromReg. 1503 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1504 // No need to export constants. 1505 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1506 1507 // Already exported? 1508 if (FuncInfo.isExportedInst(V)) return; 1509 1510 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1511 CopyValueToVirtualRegister(V, Reg); 1512 } 1513 1514 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1515 const BasicBlock *FromBB) { 1516 // The operands of the setcc have to be in this block. We don't know 1517 // how to export them from some other block. 1518 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1519 // Can export from current BB. 1520 if (VI->getParent() == FromBB) 1521 return true; 1522 1523 // Is already exported, noop. 1524 return FuncInfo.isExportedInst(V); 1525 } 1526 1527 // If this is an argument, we can export it if the BB is the entry block or 1528 // if it is already exported. 1529 if (isa<Argument>(V)) { 1530 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1531 return true; 1532 1533 // Otherwise, can only export this if it is already exported. 1534 return FuncInfo.isExportedInst(V); 1535 } 1536 1537 // Otherwise, constants can always be exported. 1538 return true; 1539 } 1540 1541 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1542 BranchProbability 1543 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1544 const MachineBasicBlock *Dst) const { 1545 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1546 const BasicBlock *SrcBB = Src->getBasicBlock(); 1547 const BasicBlock *DstBB = Dst->getBasicBlock(); 1548 if (!BPI) { 1549 // If BPI is not available, set the default probability as 1 / N, where N is 1550 // the number of successors. 1551 auto SuccSize = std::max<uint32_t>( 1552 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1553 return BranchProbability(1, SuccSize); 1554 } 1555 return BPI->getEdgeProbability(SrcBB, DstBB); 1556 } 1557 1558 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1559 MachineBasicBlock *Dst, 1560 BranchProbability Prob) { 1561 if (!FuncInfo.BPI) 1562 Src->addSuccessorWithoutProb(Dst); 1563 else { 1564 if (Prob.isUnknown()) 1565 Prob = getEdgeProbability(Src, Dst); 1566 Src->addSuccessor(Dst, Prob); 1567 } 1568 } 1569 1570 static bool InBlock(const Value *V, const BasicBlock *BB) { 1571 if (const Instruction *I = dyn_cast<Instruction>(V)) 1572 return I->getParent() == BB; 1573 return true; 1574 } 1575 1576 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1577 /// This function emits a branch and is used at the leaves of an OR or an 1578 /// AND operator tree. 1579 /// 1580 void 1581 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1582 MachineBasicBlock *TBB, 1583 MachineBasicBlock *FBB, 1584 MachineBasicBlock *CurBB, 1585 MachineBasicBlock *SwitchBB, 1586 BranchProbability TProb, 1587 BranchProbability FProb) { 1588 const BasicBlock *BB = CurBB->getBasicBlock(); 1589 1590 // If the leaf of the tree is a comparison, merge the condition into 1591 // the caseblock. 1592 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1593 // The operands of the cmp have to be in this block. We don't know 1594 // how to export them from some other block. If this is the first block 1595 // of the sequence, no exporting is needed. 1596 if (CurBB == SwitchBB || 1597 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1598 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1599 ISD::CondCode Condition; 1600 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1601 Condition = getICmpCondCode(IC->getPredicate()); 1602 } else { 1603 const FCmpInst *FC = cast<FCmpInst>(Cond); 1604 Condition = getFCmpCondCode(FC->getPredicate()); 1605 if (TM.Options.NoNaNsFPMath) 1606 Condition = getFCmpCodeWithoutNaN(Condition); 1607 } 1608 1609 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1610 TBB, FBB, CurBB, TProb, FProb); 1611 SwitchCases.push_back(CB); 1612 return; 1613 } 1614 } 1615 1616 // Create a CaseBlock record representing this branch. 1617 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1618 nullptr, TBB, FBB, CurBB, TProb, FProb); 1619 SwitchCases.push_back(CB); 1620 } 1621 1622 /// FindMergedConditions - If Cond is an expression like 1623 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1624 MachineBasicBlock *TBB, 1625 MachineBasicBlock *FBB, 1626 MachineBasicBlock *CurBB, 1627 MachineBasicBlock *SwitchBB, 1628 Instruction::BinaryOps Opc, 1629 BranchProbability TProb, 1630 BranchProbability FProb) { 1631 // If this node is not part of the or/and tree, emit it as a branch. 1632 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1633 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1634 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1635 BOp->getParent() != CurBB->getBasicBlock() || 1636 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1637 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1638 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1639 TProb, FProb); 1640 return; 1641 } 1642 1643 // Create TmpBB after CurBB. 1644 MachineFunction::iterator BBI(CurBB); 1645 MachineFunction &MF = DAG.getMachineFunction(); 1646 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1647 CurBB->getParent()->insert(++BBI, TmpBB); 1648 1649 if (Opc == Instruction::Or) { 1650 // Codegen X | Y as: 1651 // BB1: 1652 // jmp_if_X TBB 1653 // jmp TmpBB 1654 // TmpBB: 1655 // jmp_if_Y TBB 1656 // jmp FBB 1657 // 1658 1659 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1660 // The requirement is that 1661 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1662 // = TrueProb for original BB. 1663 // Assuming the original probabilities are A and B, one choice is to set 1664 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1665 // A/(1+B) and 2B/(1+B). This choice assumes that 1666 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1667 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1668 // TmpBB, but the math is more complicated. 1669 1670 auto NewTrueProb = TProb / 2; 1671 auto NewFalseProb = TProb / 2 + FProb; 1672 // Emit the LHS condition. 1673 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1674 NewTrueProb, NewFalseProb); 1675 1676 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1677 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1678 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1679 // Emit the RHS condition into TmpBB. 1680 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1681 Probs[0], Probs[1]); 1682 } else { 1683 assert(Opc == Instruction::And && "Unknown merge op!"); 1684 // Codegen X & Y as: 1685 // BB1: 1686 // jmp_if_X TmpBB 1687 // jmp FBB 1688 // TmpBB: 1689 // jmp_if_Y TBB 1690 // jmp FBB 1691 // 1692 // This requires creation of TmpBB after CurBB. 1693 1694 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1695 // The requirement is that 1696 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1697 // = FalseProb for original BB. 1698 // Assuming the original probabilities are A and B, one choice is to set 1699 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1700 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1701 // TrueProb for BB1 * FalseProb for TmpBB. 1702 1703 auto NewTrueProb = TProb + FProb / 2; 1704 auto NewFalseProb = FProb / 2; 1705 // Emit the LHS condition. 1706 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1707 NewTrueProb, NewFalseProb); 1708 1709 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1710 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1711 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1712 // Emit the RHS condition into TmpBB. 1713 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1714 Probs[0], Probs[1]); 1715 } 1716 } 1717 1718 /// If the set of cases should be emitted as a series of branches, return true. 1719 /// If we should emit this as a bunch of and/or'd together conditions, return 1720 /// false. 1721 bool 1722 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1723 if (Cases.size() != 2) return true; 1724 1725 // If this is two comparisons of the same values or'd or and'd together, they 1726 // will get folded into a single comparison, so don't emit two blocks. 1727 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1728 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1729 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1730 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1731 return false; 1732 } 1733 1734 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1735 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1736 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1737 Cases[0].CC == Cases[1].CC && 1738 isa<Constant>(Cases[0].CmpRHS) && 1739 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1740 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1741 return false; 1742 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1743 return false; 1744 } 1745 1746 return true; 1747 } 1748 1749 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1750 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1751 1752 // Update machine-CFG edges. 1753 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1754 1755 if (I.isUnconditional()) { 1756 // Update machine-CFG edges. 1757 BrMBB->addSuccessor(Succ0MBB); 1758 1759 // If this is not a fall-through branch or optimizations are switched off, 1760 // emit the branch. 1761 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1762 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1763 MVT::Other, getControlRoot(), 1764 DAG.getBasicBlock(Succ0MBB))); 1765 1766 return; 1767 } 1768 1769 // If this condition is one of the special cases we handle, do special stuff 1770 // now. 1771 const Value *CondVal = I.getCondition(); 1772 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1773 1774 // If this is a series of conditions that are or'd or and'd together, emit 1775 // this as a sequence of branches instead of setcc's with and/or operations. 1776 // As long as jumps are not expensive, this should improve performance. 1777 // For example, instead of something like: 1778 // cmp A, B 1779 // C = seteq 1780 // cmp D, E 1781 // F = setle 1782 // or C, F 1783 // jnz foo 1784 // Emit: 1785 // cmp A, B 1786 // je foo 1787 // cmp D, E 1788 // jle foo 1789 // 1790 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1791 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1792 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1793 !I.getMetadata(LLVMContext::MD_unpredictable) && 1794 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1795 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1796 Opcode, 1797 getEdgeProbability(BrMBB, Succ0MBB), 1798 getEdgeProbability(BrMBB, Succ1MBB)); 1799 // If the compares in later blocks need to use values not currently 1800 // exported from this block, export them now. This block should always 1801 // be the first entry. 1802 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1803 1804 // Allow some cases to be rejected. 1805 if (ShouldEmitAsBranches(SwitchCases)) { 1806 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1807 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1808 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1809 } 1810 1811 // Emit the branch for this block. 1812 visitSwitchCase(SwitchCases[0], BrMBB); 1813 SwitchCases.erase(SwitchCases.begin()); 1814 return; 1815 } 1816 1817 // Okay, we decided not to do this, remove any inserted MBB's and clear 1818 // SwitchCases. 1819 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1820 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1821 1822 SwitchCases.clear(); 1823 } 1824 } 1825 1826 // Create a CaseBlock record representing this branch. 1827 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1828 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1829 1830 // Use visitSwitchCase to actually insert the fast branch sequence for this 1831 // cond branch. 1832 visitSwitchCase(CB, BrMBB); 1833 } 1834 1835 /// visitSwitchCase - Emits the necessary code to represent a single node in 1836 /// the binary search tree resulting from lowering a switch instruction. 1837 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1838 MachineBasicBlock *SwitchBB) { 1839 SDValue Cond; 1840 SDValue CondLHS = getValue(CB.CmpLHS); 1841 SDLoc dl = getCurSDLoc(); 1842 1843 // Build the setcc now. 1844 if (!CB.CmpMHS) { 1845 // Fold "(X == true)" to X and "(X == false)" to !X to 1846 // handle common cases produced by branch lowering. 1847 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1848 CB.CC == ISD::SETEQ) 1849 Cond = CondLHS; 1850 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1851 CB.CC == ISD::SETEQ) { 1852 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1853 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1854 } else 1855 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1856 } else { 1857 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1858 1859 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1860 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1861 1862 SDValue CmpOp = getValue(CB.CmpMHS); 1863 EVT VT = CmpOp.getValueType(); 1864 1865 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1866 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1867 ISD::SETLE); 1868 } else { 1869 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1870 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1871 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1872 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1873 } 1874 } 1875 1876 // Update successor info 1877 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1878 // TrueBB and FalseBB are always different unless the incoming IR is 1879 // degenerate. This only happens when running llc on weird IR. 1880 if (CB.TrueBB != CB.FalseBB) 1881 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1882 SwitchBB->normalizeSuccProbs(); 1883 1884 // If the lhs block is the next block, invert the condition so that we can 1885 // fall through to the lhs instead of the rhs block. 1886 if (CB.TrueBB == NextBlock(SwitchBB)) { 1887 std::swap(CB.TrueBB, CB.FalseBB); 1888 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1889 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1890 } 1891 1892 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1893 MVT::Other, getControlRoot(), Cond, 1894 DAG.getBasicBlock(CB.TrueBB)); 1895 1896 // Insert the false branch. Do this even if it's a fall through branch, 1897 // this makes it easier to do DAG optimizations which require inverting 1898 // the branch condition. 1899 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1900 DAG.getBasicBlock(CB.FalseBB)); 1901 1902 DAG.setRoot(BrCond); 1903 } 1904 1905 /// visitJumpTable - Emit JumpTable node in the current MBB 1906 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1907 // Emit the code for the jump table 1908 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1909 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1910 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1911 JT.Reg, PTy); 1912 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1913 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1914 MVT::Other, Index.getValue(1), 1915 Table, Index); 1916 DAG.setRoot(BrJumpTable); 1917 } 1918 1919 /// visitJumpTableHeader - This function emits necessary code to produce index 1920 /// in the JumpTable from switch case. 1921 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1922 JumpTableHeader &JTH, 1923 MachineBasicBlock *SwitchBB) { 1924 SDLoc dl = getCurSDLoc(); 1925 1926 // Subtract the lowest switch case value from the value being switched on and 1927 // conditional branch to default mbb if the result is greater than the 1928 // difference between smallest and largest cases. 1929 SDValue SwitchOp = getValue(JTH.SValue); 1930 EVT VT = SwitchOp.getValueType(); 1931 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1932 DAG.getConstant(JTH.First, dl, VT)); 1933 1934 // The SDNode we just created, which holds the value being switched on minus 1935 // the smallest case value, needs to be copied to a virtual register so it 1936 // can be used as an index into the jump table in a subsequent basic block. 1937 // This value may be smaller or larger than the target's pointer type, and 1938 // therefore require extension or truncating. 1939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1940 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1941 1942 unsigned JumpTableReg = 1943 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1944 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1945 JumpTableReg, SwitchOp); 1946 JT.Reg = JumpTableReg; 1947 1948 // Emit the range check for the jump table, and branch to the default block 1949 // for the switch statement if the value being switched on exceeds the largest 1950 // case in the switch. 1951 SDValue CMP = DAG.getSetCC( 1952 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1953 Sub.getValueType()), 1954 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1955 1956 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1957 MVT::Other, CopyTo, CMP, 1958 DAG.getBasicBlock(JT.Default)); 1959 1960 // Avoid emitting unnecessary branches to the next block. 1961 if (JT.MBB != NextBlock(SwitchBB)) 1962 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1963 DAG.getBasicBlock(JT.MBB)); 1964 1965 DAG.setRoot(BrCond); 1966 } 1967 1968 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 1969 /// variable if there exists one. 1970 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 1971 SDValue &Chain) { 1972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1973 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1974 MachineFunction &MF = DAG.getMachineFunction(); 1975 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 1976 MachineSDNode *Node = 1977 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 1978 if (Global) { 1979 MachinePointerInfo MPInfo(Global); 1980 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 1981 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1982 MachineMemOperand::MODereferenceable; 1983 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 1984 DAG.getEVTAlignment(PtrTy)); 1985 Node->setMemRefs(MemRefs, MemRefs + 1); 1986 } 1987 return SDValue(Node, 0); 1988 } 1989 1990 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1991 /// tail spliced into a stack protector check success bb. 1992 /// 1993 /// For a high level explanation of how this fits into the stack protector 1994 /// generation see the comment on the declaration of class 1995 /// StackProtectorDescriptor. 1996 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1997 MachineBasicBlock *ParentBB) { 1998 1999 // First create the loads to the guard/stack slot for the comparison. 2000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2001 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2002 2003 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2004 int FI = MFI.getStackProtectorIndex(); 2005 2006 SDValue Guard; 2007 SDLoc dl = getCurSDLoc(); 2008 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2009 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2010 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2011 2012 // Generate code to load the content of the guard slot. 2013 SDValue StackSlot = DAG.getLoad( 2014 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2015 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2016 MachineMemOperand::MOVolatile); 2017 2018 // Retrieve guard check function, nullptr if instrumentation is inlined. 2019 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2020 // The target provides a guard check function to validate the guard value. 2021 // Generate a call to that function with the content of the guard slot as 2022 // argument. 2023 auto *Fn = cast<Function>(GuardCheck); 2024 FunctionType *FnTy = Fn->getFunctionType(); 2025 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2026 2027 TargetLowering::ArgListTy Args; 2028 TargetLowering::ArgListEntry Entry; 2029 Entry.Node = StackSlot; 2030 Entry.Ty = FnTy->getParamType(0); 2031 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2032 Entry.isInReg = true; 2033 Args.push_back(Entry); 2034 2035 TargetLowering::CallLoweringInfo CLI(DAG); 2036 CLI.setDebugLoc(getCurSDLoc()) 2037 .setChain(DAG.getEntryNode()) 2038 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2039 getValue(GuardCheck), std::move(Args)); 2040 2041 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2042 DAG.setRoot(Result.second); 2043 return; 2044 } 2045 2046 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2047 // Otherwise, emit a volatile load to retrieve the stack guard value. 2048 SDValue Chain = DAG.getEntryNode(); 2049 if (TLI.useLoadStackGuardNode()) { 2050 Guard = getLoadStackGuard(DAG, dl, Chain); 2051 } else { 2052 const Value *IRGuard = TLI.getSDagStackGuard(M); 2053 SDValue GuardPtr = getValue(IRGuard); 2054 2055 Guard = 2056 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2057 Align, MachineMemOperand::MOVolatile); 2058 } 2059 2060 // Perform the comparison via a subtract/getsetcc. 2061 EVT VT = Guard.getValueType(); 2062 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2063 2064 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2065 *DAG.getContext(), 2066 Sub.getValueType()), 2067 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2068 2069 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2070 // branch to failure MBB. 2071 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2072 MVT::Other, StackSlot.getOperand(0), 2073 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2074 // Otherwise branch to success MBB. 2075 SDValue Br = DAG.getNode(ISD::BR, dl, 2076 MVT::Other, BrCond, 2077 DAG.getBasicBlock(SPD.getSuccessMBB())); 2078 2079 DAG.setRoot(Br); 2080 } 2081 2082 /// Codegen the failure basic block for a stack protector check. 2083 /// 2084 /// A failure stack protector machine basic block consists simply of a call to 2085 /// __stack_chk_fail(). 2086 /// 2087 /// For a high level explanation of how this fits into the stack protector 2088 /// generation see the comment on the declaration of class 2089 /// StackProtectorDescriptor. 2090 void 2091 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2093 SDValue Chain = 2094 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2095 None, false, getCurSDLoc(), false, false).second; 2096 DAG.setRoot(Chain); 2097 } 2098 2099 /// visitBitTestHeader - This function emits necessary code to produce value 2100 /// suitable for "bit tests" 2101 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2102 MachineBasicBlock *SwitchBB) { 2103 SDLoc dl = getCurSDLoc(); 2104 2105 // Subtract the minimum value 2106 SDValue SwitchOp = getValue(B.SValue); 2107 EVT VT = SwitchOp.getValueType(); 2108 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2109 DAG.getConstant(B.First, dl, VT)); 2110 2111 // Check range 2112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2113 SDValue RangeCmp = DAG.getSetCC( 2114 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2115 Sub.getValueType()), 2116 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2117 2118 // Determine the type of the test operands. 2119 bool UsePtrType = false; 2120 if (!TLI.isTypeLegal(VT)) 2121 UsePtrType = true; 2122 else { 2123 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2124 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2125 // Switch table case range are encoded into series of masks. 2126 // Just use pointer type, it's guaranteed to fit. 2127 UsePtrType = true; 2128 break; 2129 } 2130 } 2131 if (UsePtrType) { 2132 VT = TLI.getPointerTy(DAG.getDataLayout()); 2133 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2134 } 2135 2136 B.RegVT = VT.getSimpleVT(); 2137 B.Reg = FuncInfo.CreateReg(B.RegVT); 2138 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2139 2140 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2141 2142 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2143 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2144 SwitchBB->normalizeSuccProbs(); 2145 2146 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2147 MVT::Other, CopyTo, RangeCmp, 2148 DAG.getBasicBlock(B.Default)); 2149 2150 // Avoid emitting unnecessary branches to the next block. 2151 if (MBB != NextBlock(SwitchBB)) 2152 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2153 DAG.getBasicBlock(MBB)); 2154 2155 DAG.setRoot(BrRange); 2156 } 2157 2158 /// visitBitTestCase - this function produces one "bit test" 2159 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2160 MachineBasicBlock* NextMBB, 2161 BranchProbability BranchProbToNext, 2162 unsigned Reg, 2163 BitTestCase &B, 2164 MachineBasicBlock *SwitchBB) { 2165 SDLoc dl = getCurSDLoc(); 2166 MVT VT = BB.RegVT; 2167 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2168 SDValue Cmp; 2169 unsigned PopCount = countPopulation(B.Mask); 2170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2171 if (PopCount == 1) { 2172 // Testing for a single bit; just compare the shift count with what it 2173 // would need to be to shift a 1 bit in that position. 2174 Cmp = DAG.getSetCC( 2175 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2176 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2177 ISD::SETEQ); 2178 } else if (PopCount == BB.Range) { 2179 // There is only one zero bit in the range, test for it directly. 2180 Cmp = DAG.getSetCC( 2181 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2182 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2183 ISD::SETNE); 2184 } else { 2185 // Make desired shift 2186 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2187 DAG.getConstant(1, dl, VT), ShiftOp); 2188 2189 // Emit bit tests and jumps 2190 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2191 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2192 Cmp = DAG.getSetCC( 2193 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2194 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2195 } 2196 2197 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2198 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2199 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2200 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2201 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2202 // one as they are relative probabilities (and thus work more like weights), 2203 // and hence we need to normalize them to let the sum of them become one. 2204 SwitchBB->normalizeSuccProbs(); 2205 2206 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2207 MVT::Other, getControlRoot(), 2208 Cmp, DAG.getBasicBlock(B.TargetBB)); 2209 2210 // Avoid emitting unnecessary branches to the next block. 2211 if (NextMBB != NextBlock(SwitchBB)) 2212 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2213 DAG.getBasicBlock(NextMBB)); 2214 2215 DAG.setRoot(BrAnd); 2216 } 2217 2218 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2219 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2220 2221 // Retrieve successors. Look through artificial IR level blocks like 2222 // catchswitch for successors. 2223 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2224 const BasicBlock *EHPadBB = I.getSuccessor(1); 2225 2226 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2227 // have to do anything here to lower funclet bundles. 2228 assert(!I.hasOperandBundlesOtherThan( 2229 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2230 "Cannot lower invokes with arbitrary operand bundles yet!"); 2231 2232 const Value *Callee(I.getCalledValue()); 2233 const Function *Fn = dyn_cast<Function>(Callee); 2234 if (isa<InlineAsm>(Callee)) 2235 visitInlineAsm(&I); 2236 else if (Fn && Fn->isIntrinsic()) { 2237 switch (Fn->getIntrinsicID()) { 2238 default: 2239 llvm_unreachable("Cannot invoke this intrinsic"); 2240 case Intrinsic::donothing: 2241 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2242 break; 2243 case Intrinsic::experimental_patchpoint_void: 2244 case Intrinsic::experimental_patchpoint_i64: 2245 visitPatchpoint(&I, EHPadBB); 2246 break; 2247 case Intrinsic::experimental_gc_statepoint: 2248 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2249 break; 2250 } 2251 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2252 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2253 // Eventually we will support lowering the @llvm.experimental.deoptimize 2254 // intrinsic, and right now there are no plans to support other intrinsics 2255 // with deopt state. 2256 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2257 } else { 2258 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2259 } 2260 2261 // If the value of the invoke is used outside of its defining block, make it 2262 // available as a virtual register. 2263 // We already took care of the exported value for the statepoint instruction 2264 // during call to the LowerStatepoint. 2265 if (!isStatepoint(I)) { 2266 CopyToExportRegsIfNeeded(&I); 2267 } 2268 2269 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2270 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2271 BranchProbability EHPadBBProb = 2272 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2273 : BranchProbability::getZero(); 2274 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2275 2276 // Update successor info. 2277 addSuccessorWithProb(InvokeMBB, Return); 2278 for (auto &UnwindDest : UnwindDests) { 2279 UnwindDest.first->setIsEHPad(); 2280 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2281 } 2282 InvokeMBB->normalizeSuccProbs(); 2283 2284 // Drop into normal successor. 2285 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2286 MVT::Other, getControlRoot(), 2287 DAG.getBasicBlock(Return))); 2288 } 2289 2290 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2291 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2292 } 2293 2294 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2295 assert(FuncInfo.MBB->isEHPad() && 2296 "Call to landingpad not in landing pad!"); 2297 2298 MachineBasicBlock *MBB = FuncInfo.MBB; 2299 addLandingPadInfo(LP, *MBB); 2300 2301 // If there aren't registers to copy the values into (e.g., during SjLj 2302 // exceptions), then don't bother to create these DAG nodes. 2303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2304 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2305 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2306 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2307 return; 2308 2309 // If landingpad's return type is token type, we don't create DAG nodes 2310 // for its exception pointer and selector value. The extraction of exception 2311 // pointer or selector value from token type landingpads is not currently 2312 // supported. 2313 if (LP.getType()->isTokenTy()) 2314 return; 2315 2316 SmallVector<EVT, 2> ValueVTs; 2317 SDLoc dl = getCurSDLoc(); 2318 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2319 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2320 2321 // Get the two live-in registers as SDValues. The physregs have already been 2322 // copied into virtual registers. 2323 SDValue Ops[2]; 2324 if (FuncInfo.ExceptionPointerVirtReg) { 2325 Ops[0] = DAG.getZExtOrTrunc( 2326 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2327 FuncInfo.ExceptionPointerVirtReg, 2328 TLI.getPointerTy(DAG.getDataLayout())), 2329 dl, ValueVTs[0]); 2330 } else { 2331 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2332 } 2333 Ops[1] = DAG.getZExtOrTrunc( 2334 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2335 FuncInfo.ExceptionSelectorVirtReg, 2336 TLI.getPointerTy(DAG.getDataLayout())), 2337 dl, ValueVTs[1]); 2338 2339 // Merge into one. 2340 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2341 DAG.getVTList(ValueVTs), Ops); 2342 setValue(&LP, Res); 2343 } 2344 2345 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2346 #ifndef NDEBUG 2347 for (const CaseCluster &CC : Clusters) 2348 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2349 #endif 2350 2351 std::sort(Clusters.begin(), Clusters.end(), 2352 [](const CaseCluster &a, const CaseCluster &b) { 2353 return a.Low->getValue().slt(b.Low->getValue()); 2354 }); 2355 2356 // Merge adjacent clusters with the same destination. 2357 const unsigned N = Clusters.size(); 2358 unsigned DstIndex = 0; 2359 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2360 CaseCluster &CC = Clusters[SrcIndex]; 2361 const ConstantInt *CaseVal = CC.Low; 2362 MachineBasicBlock *Succ = CC.MBB; 2363 2364 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2365 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2366 // If this case has the same successor and is a neighbour, merge it into 2367 // the previous cluster. 2368 Clusters[DstIndex - 1].High = CaseVal; 2369 Clusters[DstIndex - 1].Prob += CC.Prob; 2370 } else { 2371 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2372 sizeof(Clusters[SrcIndex])); 2373 } 2374 } 2375 Clusters.resize(DstIndex); 2376 } 2377 2378 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2379 MachineBasicBlock *Last) { 2380 // Update JTCases. 2381 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2382 if (JTCases[i].first.HeaderBB == First) 2383 JTCases[i].first.HeaderBB = Last; 2384 2385 // Update BitTestCases. 2386 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2387 if (BitTestCases[i].Parent == First) 2388 BitTestCases[i].Parent = Last; 2389 } 2390 2391 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2392 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2393 2394 // Update machine-CFG edges with unique successors. 2395 SmallSet<BasicBlock*, 32> Done; 2396 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2397 BasicBlock *BB = I.getSuccessor(i); 2398 bool Inserted = Done.insert(BB).second; 2399 if (!Inserted) 2400 continue; 2401 2402 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2403 addSuccessorWithProb(IndirectBrMBB, Succ); 2404 } 2405 IndirectBrMBB->normalizeSuccProbs(); 2406 2407 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2408 MVT::Other, getControlRoot(), 2409 getValue(I.getAddress()))); 2410 } 2411 2412 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2413 if (DAG.getTarget().Options.TrapUnreachable) 2414 DAG.setRoot( 2415 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2416 } 2417 2418 void SelectionDAGBuilder::visitFSub(const User &I) { 2419 // -0.0 - X --> fneg 2420 Type *Ty = I.getType(); 2421 if (isa<Constant>(I.getOperand(0)) && 2422 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2423 SDValue Op2 = getValue(I.getOperand(1)); 2424 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2425 Op2.getValueType(), Op2)); 2426 return; 2427 } 2428 2429 visitBinary(I, ISD::FSUB); 2430 } 2431 2432 /// Checks if the given instruction performs a vector reduction, in which case 2433 /// we have the freedom to alter the elements in the result as long as the 2434 /// reduction of them stays unchanged. 2435 static bool isVectorReductionOp(const User *I) { 2436 const Instruction *Inst = dyn_cast<Instruction>(I); 2437 if (!Inst || !Inst->getType()->isVectorTy()) 2438 return false; 2439 2440 auto OpCode = Inst->getOpcode(); 2441 switch (OpCode) { 2442 case Instruction::Add: 2443 case Instruction::Mul: 2444 case Instruction::And: 2445 case Instruction::Or: 2446 case Instruction::Xor: 2447 break; 2448 case Instruction::FAdd: 2449 case Instruction::FMul: 2450 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2451 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2452 break; 2453 LLVM_FALLTHROUGH; 2454 default: 2455 return false; 2456 } 2457 2458 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2459 unsigned ElemNumToReduce = ElemNum; 2460 2461 // Do DFS search on the def-use chain from the given instruction. We only 2462 // allow four kinds of operations during the search until we reach the 2463 // instruction that extracts the first element from the vector: 2464 // 2465 // 1. The reduction operation of the same opcode as the given instruction. 2466 // 2467 // 2. PHI node. 2468 // 2469 // 3. ShuffleVector instruction together with a reduction operation that 2470 // does a partial reduction. 2471 // 2472 // 4. ExtractElement that extracts the first element from the vector, and we 2473 // stop searching the def-use chain here. 2474 // 2475 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2476 // from 1-3 to the stack to continue the DFS. The given instruction is not 2477 // a reduction operation if we meet any other instructions other than those 2478 // listed above. 2479 2480 SmallVector<const User *, 16> UsersToVisit{Inst}; 2481 SmallPtrSet<const User *, 16> Visited; 2482 bool ReduxExtracted = false; 2483 2484 while (!UsersToVisit.empty()) { 2485 auto User = UsersToVisit.back(); 2486 UsersToVisit.pop_back(); 2487 if (!Visited.insert(User).second) 2488 continue; 2489 2490 for (const auto &U : User->users()) { 2491 auto Inst = dyn_cast<Instruction>(U); 2492 if (!Inst) 2493 return false; 2494 2495 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2496 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2497 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2498 return false; 2499 UsersToVisit.push_back(U); 2500 } else if (const ShuffleVectorInst *ShufInst = 2501 dyn_cast<ShuffleVectorInst>(U)) { 2502 // Detect the following pattern: A ShuffleVector instruction together 2503 // with a reduction that do partial reduction on the first and second 2504 // ElemNumToReduce / 2 elements, and store the result in 2505 // ElemNumToReduce / 2 elements in another vector. 2506 2507 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2508 if (ResultElements < ElemNum) 2509 return false; 2510 2511 if (ElemNumToReduce == 1) 2512 return false; 2513 if (!isa<UndefValue>(U->getOperand(1))) 2514 return false; 2515 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2516 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2517 return false; 2518 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2519 if (ShufInst->getMaskValue(i) != -1) 2520 return false; 2521 2522 // There is only one user of this ShuffleVector instruction, which 2523 // must be a reduction operation. 2524 if (!U->hasOneUse()) 2525 return false; 2526 2527 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2528 if (!U2 || U2->getOpcode() != OpCode) 2529 return false; 2530 2531 // Check operands of the reduction operation. 2532 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2533 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2534 UsersToVisit.push_back(U2); 2535 ElemNumToReduce /= 2; 2536 } else 2537 return false; 2538 } else if (isa<ExtractElementInst>(U)) { 2539 // At this moment we should have reduced all elements in the vector. 2540 if (ElemNumToReduce != 1) 2541 return false; 2542 2543 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2544 if (!Val || Val->getZExtValue() != 0) 2545 return false; 2546 2547 ReduxExtracted = true; 2548 } else 2549 return false; 2550 } 2551 } 2552 return ReduxExtracted; 2553 } 2554 2555 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2556 SDValue Op1 = getValue(I.getOperand(0)); 2557 SDValue Op2 = getValue(I.getOperand(1)); 2558 2559 bool nuw = false; 2560 bool nsw = false; 2561 bool exact = false; 2562 bool vec_redux = false; 2563 FastMathFlags FMF; 2564 2565 if (const OverflowingBinaryOperator *OFBinOp = 2566 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2567 nuw = OFBinOp->hasNoUnsignedWrap(); 2568 nsw = OFBinOp->hasNoSignedWrap(); 2569 } 2570 if (const PossiblyExactOperator *ExactOp = 2571 dyn_cast<const PossiblyExactOperator>(&I)) 2572 exact = ExactOp->isExact(); 2573 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2574 FMF = FPOp->getFastMathFlags(); 2575 2576 if (isVectorReductionOp(&I)) { 2577 vec_redux = true; 2578 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2579 } 2580 2581 SDNodeFlags Flags; 2582 Flags.setExact(exact); 2583 Flags.setNoSignedWrap(nsw); 2584 Flags.setNoUnsignedWrap(nuw); 2585 Flags.setVectorReduction(vec_redux); 2586 if (EnableFMFInDAG) { 2587 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2588 Flags.setNoInfs(FMF.noInfs()); 2589 Flags.setNoNaNs(FMF.noNaNs()); 2590 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2591 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2592 } 2593 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2594 Op1, Op2, &Flags); 2595 setValue(&I, BinNodeValue); 2596 } 2597 2598 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2599 SDValue Op1 = getValue(I.getOperand(0)); 2600 SDValue Op2 = getValue(I.getOperand(1)); 2601 2602 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2603 Op2.getValueType(), DAG.getDataLayout()); 2604 2605 // Coerce the shift amount to the right type if we can. 2606 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2607 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2608 unsigned Op2Size = Op2.getValueSizeInBits(); 2609 SDLoc DL = getCurSDLoc(); 2610 2611 // If the operand is smaller than the shift count type, promote it. 2612 if (ShiftSize > Op2Size) 2613 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2614 2615 // If the operand is larger than the shift count type but the shift 2616 // count type has enough bits to represent any shift value, truncate 2617 // it now. This is a common case and it exposes the truncate to 2618 // optimization early. 2619 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2620 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2621 // Otherwise we'll need to temporarily settle for some other convenient 2622 // type. Type legalization will make adjustments once the shiftee is split. 2623 else 2624 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2625 } 2626 2627 bool nuw = false; 2628 bool nsw = false; 2629 bool exact = false; 2630 2631 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2632 2633 if (const OverflowingBinaryOperator *OFBinOp = 2634 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2635 nuw = OFBinOp->hasNoUnsignedWrap(); 2636 nsw = OFBinOp->hasNoSignedWrap(); 2637 } 2638 if (const PossiblyExactOperator *ExactOp = 2639 dyn_cast<const PossiblyExactOperator>(&I)) 2640 exact = ExactOp->isExact(); 2641 } 2642 SDNodeFlags Flags; 2643 Flags.setExact(exact); 2644 Flags.setNoSignedWrap(nsw); 2645 Flags.setNoUnsignedWrap(nuw); 2646 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2647 &Flags); 2648 setValue(&I, Res); 2649 } 2650 2651 void SelectionDAGBuilder::visitSDiv(const User &I) { 2652 SDValue Op1 = getValue(I.getOperand(0)); 2653 SDValue Op2 = getValue(I.getOperand(1)); 2654 2655 SDNodeFlags Flags; 2656 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2657 cast<PossiblyExactOperator>(&I)->isExact()); 2658 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2659 Op2, &Flags)); 2660 } 2661 2662 void SelectionDAGBuilder::visitICmp(const User &I) { 2663 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2664 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2665 predicate = IC->getPredicate(); 2666 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2667 predicate = ICmpInst::Predicate(IC->getPredicate()); 2668 SDValue Op1 = getValue(I.getOperand(0)); 2669 SDValue Op2 = getValue(I.getOperand(1)); 2670 ISD::CondCode Opcode = getICmpCondCode(predicate); 2671 2672 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2673 I.getType()); 2674 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2675 } 2676 2677 void SelectionDAGBuilder::visitFCmp(const User &I) { 2678 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2679 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2680 predicate = FC->getPredicate(); 2681 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2682 predicate = FCmpInst::Predicate(FC->getPredicate()); 2683 SDValue Op1 = getValue(I.getOperand(0)); 2684 SDValue Op2 = getValue(I.getOperand(1)); 2685 ISD::CondCode Condition = getFCmpCondCode(predicate); 2686 2687 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2688 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2689 // further optimization, but currently FMF is only applicable to binary nodes. 2690 if (TM.Options.NoNaNsFPMath) 2691 Condition = getFCmpCodeWithoutNaN(Condition); 2692 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2693 I.getType()); 2694 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2695 } 2696 2697 // Check if the condition of the select has one use or two users that are both 2698 // selects with the same condition. 2699 static bool hasOnlySelectUsers(const Value *Cond) { 2700 return all_of(Cond->users(), [](const Value *V) { 2701 return isa<SelectInst>(V); 2702 }); 2703 } 2704 2705 void SelectionDAGBuilder::visitSelect(const User &I) { 2706 SmallVector<EVT, 4> ValueVTs; 2707 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2708 ValueVTs); 2709 unsigned NumValues = ValueVTs.size(); 2710 if (NumValues == 0) return; 2711 2712 SmallVector<SDValue, 4> Values(NumValues); 2713 SDValue Cond = getValue(I.getOperand(0)); 2714 SDValue LHSVal = getValue(I.getOperand(1)); 2715 SDValue RHSVal = getValue(I.getOperand(2)); 2716 auto BaseOps = {Cond}; 2717 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2718 ISD::VSELECT : ISD::SELECT; 2719 2720 // Min/max matching is only viable if all output VTs are the same. 2721 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2722 EVT VT = ValueVTs[0]; 2723 LLVMContext &Ctx = *DAG.getContext(); 2724 auto &TLI = DAG.getTargetLoweringInfo(); 2725 2726 // We care about the legality of the operation after it has been type 2727 // legalized. 2728 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2729 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2730 VT = TLI.getTypeToTransformTo(Ctx, VT); 2731 2732 // If the vselect is legal, assume we want to leave this as a vector setcc + 2733 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2734 // min/max is legal on the scalar type. 2735 bool UseScalarMinMax = VT.isVector() && 2736 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2737 2738 Value *LHS, *RHS; 2739 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2740 ISD::NodeType Opc = ISD::DELETED_NODE; 2741 switch (SPR.Flavor) { 2742 case SPF_UMAX: Opc = ISD::UMAX; break; 2743 case SPF_UMIN: Opc = ISD::UMIN; break; 2744 case SPF_SMAX: Opc = ISD::SMAX; break; 2745 case SPF_SMIN: Opc = ISD::SMIN; break; 2746 case SPF_FMINNUM: 2747 switch (SPR.NaNBehavior) { 2748 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2749 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2750 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2751 case SPNB_RETURNS_ANY: { 2752 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2753 Opc = ISD::FMINNUM; 2754 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2755 Opc = ISD::FMINNAN; 2756 else if (UseScalarMinMax) 2757 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2758 ISD::FMINNUM : ISD::FMINNAN; 2759 break; 2760 } 2761 } 2762 break; 2763 case SPF_FMAXNUM: 2764 switch (SPR.NaNBehavior) { 2765 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2766 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2767 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2768 case SPNB_RETURNS_ANY: 2769 2770 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2771 Opc = ISD::FMAXNUM; 2772 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2773 Opc = ISD::FMAXNAN; 2774 else if (UseScalarMinMax) 2775 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2776 ISD::FMAXNUM : ISD::FMAXNAN; 2777 break; 2778 } 2779 break; 2780 default: break; 2781 } 2782 2783 if (Opc != ISD::DELETED_NODE && 2784 (TLI.isOperationLegalOrCustom(Opc, VT) || 2785 (UseScalarMinMax && 2786 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2787 // If the underlying comparison instruction is used by any other 2788 // instruction, the consumed instructions won't be destroyed, so it is 2789 // not profitable to convert to a min/max. 2790 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2791 OpCode = Opc; 2792 LHSVal = getValue(LHS); 2793 RHSVal = getValue(RHS); 2794 BaseOps = {}; 2795 } 2796 } 2797 2798 for (unsigned i = 0; i != NumValues; ++i) { 2799 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2800 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2801 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2802 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2803 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2804 Ops); 2805 } 2806 2807 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2808 DAG.getVTList(ValueVTs), Values)); 2809 } 2810 2811 void SelectionDAGBuilder::visitTrunc(const User &I) { 2812 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2813 SDValue N = getValue(I.getOperand(0)); 2814 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2815 I.getType()); 2816 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2817 } 2818 2819 void SelectionDAGBuilder::visitZExt(const User &I) { 2820 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2821 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2822 SDValue N = getValue(I.getOperand(0)); 2823 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2824 I.getType()); 2825 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2826 } 2827 2828 void SelectionDAGBuilder::visitSExt(const User &I) { 2829 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2830 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2831 SDValue N = getValue(I.getOperand(0)); 2832 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2833 I.getType()); 2834 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2835 } 2836 2837 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2838 // FPTrunc is never a no-op cast, no need to check 2839 SDValue N = getValue(I.getOperand(0)); 2840 SDLoc dl = getCurSDLoc(); 2841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2842 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2843 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2844 DAG.getTargetConstant( 2845 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2846 } 2847 2848 void SelectionDAGBuilder::visitFPExt(const User &I) { 2849 // FPExt is never a no-op cast, no need to check 2850 SDValue N = getValue(I.getOperand(0)); 2851 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2852 I.getType()); 2853 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2854 } 2855 2856 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2857 // FPToUI is never a no-op cast, no need to check 2858 SDValue N = getValue(I.getOperand(0)); 2859 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2860 I.getType()); 2861 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2862 } 2863 2864 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2865 // FPToSI is never a no-op cast, no need to check 2866 SDValue N = getValue(I.getOperand(0)); 2867 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2868 I.getType()); 2869 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2870 } 2871 2872 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2873 // UIToFP is never a no-op cast, no need to check 2874 SDValue N = getValue(I.getOperand(0)); 2875 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2876 I.getType()); 2877 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2878 } 2879 2880 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2881 // SIToFP is never a no-op cast, no need to check 2882 SDValue N = getValue(I.getOperand(0)); 2883 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2884 I.getType()); 2885 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2886 } 2887 2888 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2889 // What to do depends on the size of the integer and the size of the pointer. 2890 // We can either truncate, zero extend, or no-op, accordingly. 2891 SDValue N = getValue(I.getOperand(0)); 2892 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2893 I.getType()); 2894 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2895 } 2896 2897 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2898 // What to do depends on the size of the integer and the size of the pointer. 2899 // We can either truncate, zero extend, or no-op, accordingly. 2900 SDValue N = getValue(I.getOperand(0)); 2901 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2902 I.getType()); 2903 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2904 } 2905 2906 void SelectionDAGBuilder::visitBitCast(const User &I) { 2907 SDValue N = getValue(I.getOperand(0)); 2908 SDLoc dl = getCurSDLoc(); 2909 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2910 I.getType()); 2911 2912 // BitCast assures us that source and destination are the same size so this is 2913 // either a BITCAST or a no-op. 2914 if (DestVT != N.getValueType()) 2915 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2916 DestVT, N)); // convert types. 2917 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2918 // might fold any kind of constant expression to an integer constant and that 2919 // is not what we are looking for. Only regcognize a bitcast of a genuine 2920 // constant integer as an opaque constant. 2921 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2922 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2923 /*isOpaque*/true)); 2924 else 2925 setValue(&I, N); // noop cast. 2926 } 2927 2928 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2930 const Value *SV = I.getOperand(0); 2931 SDValue N = getValue(SV); 2932 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2933 2934 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2935 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2936 2937 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2938 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2939 2940 setValue(&I, N); 2941 } 2942 2943 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2945 SDValue InVec = getValue(I.getOperand(0)); 2946 SDValue InVal = getValue(I.getOperand(1)); 2947 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2948 TLI.getVectorIdxTy(DAG.getDataLayout())); 2949 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2950 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2951 InVec, InVal, InIdx)); 2952 } 2953 2954 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2956 SDValue InVec = getValue(I.getOperand(0)); 2957 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2958 TLI.getVectorIdxTy(DAG.getDataLayout())); 2959 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2960 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2961 InVec, InIdx)); 2962 } 2963 2964 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2965 SDValue Src1 = getValue(I.getOperand(0)); 2966 SDValue Src2 = getValue(I.getOperand(1)); 2967 SDLoc DL = getCurSDLoc(); 2968 2969 SmallVector<int, 8> Mask; 2970 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2971 unsigned MaskNumElts = Mask.size(); 2972 2973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2974 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2975 EVT SrcVT = Src1.getValueType(); 2976 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2977 2978 if (SrcNumElts == MaskNumElts) { 2979 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 2980 return; 2981 } 2982 2983 // Normalize the shuffle vector since mask and vector length don't match. 2984 if (SrcNumElts < MaskNumElts) { 2985 // Mask is longer than the source vectors. We can use concatenate vector to 2986 // make the mask and vectors lengths match. 2987 2988 if (MaskNumElts % SrcNumElts == 0) { 2989 // Mask length is a multiple of the source vector length. 2990 // Check if the shuffle is some kind of concatenation of the input 2991 // vectors. 2992 unsigned NumConcat = MaskNumElts / SrcNumElts; 2993 bool IsConcat = true; 2994 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 2995 for (unsigned i = 0; i != MaskNumElts; ++i) { 2996 int Idx = Mask[i]; 2997 if (Idx < 0) 2998 continue; 2999 // Ensure the indices in each SrcVT sized piece are sequential and that 3000 // the same source is used for the whole piece. 3001 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3002 (ConcatSrcs[i / SrcNumElts] >= 0 && 3003 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3004 IsConcat = false; 3005 break; 3006 } 3007 // Remember which source this index came from. 3008 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3009 } 3010 3011 // The shuffle is concatenating multiple vectors together. Just emit 3012 // a CONCAT_VECTORS operation. 3013 if (IsConcat) { 3014 SmallVector<SDValue, 8> ConcatOps; 3015 for (auto Src : ConcatSrcs) { 3016 if (Src < 0) 3017 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3018 else if (Src == 0) 3019 ConcatOps.push_back(Src1); 3020 else 3021 ConcatOps.push_back(Src2); 3022 } 3023 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3024 return; 3025 } 3026 } 3027 3028 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3029 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3030 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3031 PaddedMaskNumElts); 3032 3033 // Pad both vectors with undefs to make them the same length as the mask. 3034 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3035 3036 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3037 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3038 MOps1[0] = Src1; 3039 MOps2[0] = Src2; 3040 3041 Src1 = Src1.isUndef() 3042 ? DAG.getUNDEF(PaddedVT) 3043 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3044 Src2 = Src2.isUndef() 3045 ? DAG.getUNDEF(PaddedVT) 3046 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3047 3048 // Readjust mask for new input vector length. 3049 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3050 for (unsigned i = 0; i != MaskNumElts; ++i) { 3051 int Idx = Mask[i]; 3052 if (Idx >= (int)SrcNumElts) 3053 Idx -= SrcNumElts - PaddedMaskNumElts; 3054 MappedOps[i] = Idx; 3055 } 3056 3057 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3058 3059 // If the concatenated vector was padded, extract a subvector with the 3060 // correct number of elements. 3061 if (MaskNumElts != PaddedMaskNumElts) 3062 Result = DAG.getNode( 3063 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3064 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3065 3066 setValue(&I, Result); 3067 return; 3068 } 3069 3070 if (SrcNumElts > MaskNumElts) { 3071 // Analyze the access pattern of the vector to see if we can extract 3072 // two subvectors and do the shuffle. The analysis is done by calculating 3073 // the range of elements the mask access on both vectors. 3074 int MinRange[2] = { static_cast<int>(SrcNumElts), 3075 static_cast<int>(SrcNumElts)}; 3076 int MaxRange[2] = {-1, -1}; 3077 3078 for (unsigned i = 0; i != MaskNumElts; ++i) { 3079 int Idx = Mask[i]; 3080 unsigned Input = 0; 3081 if (Idx < 0) 3082 continue; 3083 3084 if (Idx >= (int)SrcNumElts) { 3085 Input = 1; 3086 Idx -= SrcNumElts; 3087 } 3088 if (Idx > MaxRange[Input]) 3089 MaxRange[Input] = Idx; 3090 if (Idx < MinRange[Input]) 3091 MinRange[Input] = Idx; 3092 } 3093 3094 // Check if the access is smaller than the vector size and can we find 3095 // a reasonable extract index. 3096 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3097 // Extract. 3098 int StartIdx[2]; // StartIdx to extract from 3099 for (unsigned Input = 0; Input < 2; ++Input) { 3100 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3101 RangeUse[Input] = 0; // Unused 3102 StartIdx[Input] = 0; 3103 continue; 3104 } 3105 3106 // Find a good start index that is a multiple of the mask length. Then 3107 // see if the rest of the elements are in range. 3108 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3109 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3110 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3111 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3112 } 3113 3114 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3115 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3116 return; 3117 } 3118 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3119 // Extract appropriate subvector and generate a vector shuffle 3120 for (unsigned Input = 0; Input < 2; ++Input) { 3121 SDValue &Src = Input == 0 ? Src1 : Src2; 3122 if (RangeUse[Input] == 0) 3123 Src = DAG.getUNDEF(VT); 3124 else { 3125 Src = DAG.getNode( 3126 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3127 DAG.getConstant(StartIdx[Input], DL, 3128 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3129 } 3130 } 3131 3132 // Calculate new mask. 3133 SmallVector<int, 8> MappedOps; 3134 for (unsigned i = 0; i != MaskNumElts; ++i) { 3135 int Idx = Mask[i]; 3136 if (Idx >= 0) { 3137 if (Idx < (int)SrcNumElts) 3138 Idx -= StartIdx[0]; 3139 else 3140 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3141 } 3142 MappedOps.push_back(Idx); 3143 } 3144 3145 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3146 return; 3147 } 3148 } 3149 3150 // We can't use either concat vectors or extract subvectors so fall back to 3151 // replacing the shuffle with extract and build vector. 3152 // to insert and build vector. 3153 EVT EltVT = VT.getVectorElementType(); 3154 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3155 SmallVector<SDValue,8> Ops; 3156 for (unsigned i = 0; i != MaskNumElts; ++i) { 3157 int Idx = Mask[i]; 3158 SDValue Res; 3159 3160 if (Idx < 0) { 3161 Res = DAG.getUNDEF(EltVT); 3162 } else { 3163 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3164 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3165 3166 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3167 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3168 } 3169 3170 Ops.push_back(Res); 3171 } 3172 3173 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops)); 3174 } 3175 3176 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3177 const Value *Op0 = I.getOperand(0); 3178 const Value *Op1 = I.getOperand(1); 3179 Type *AggTy = I.getType(); 3180 Type *ValTy = Op1->getType(); 3181 bool IntoUndef = isa<UndefValue>(Op0); 3182 bool FromUndef = isa<UndefValue>(Op1); 3183 3184 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3185 3186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3187 SmallVector<EVT, 4> AggValueVTs; 3188 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3189 SmallVector<EVT, 4> ValValueVTs; 3190 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3191 3192 unsigned NumAggValues = AggValueVTs.size(); 3193 unsigned NumValValues = ValValueVTs.size(); 3194 SmallVector<SDValue, 4> Values(NumAggValues); 3195 3196 // Ignore an insertvalue that produces an empty object 3197 if (!NumAggValues) { 3198 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3199 return; 3200 } 3201 3202 SDValue Agg = getValue(Op0); 3203 unsigned i = 0; 3204 // Copy the beginning value(s) from the original aggregate. 3205 for (; i != LinearIndex; ++i) 3206 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3207 SDValue(Agg.getNode(), Agg.getResNo() + i); 3208 // Copy values from the inserted value(s). 3209 if (NumValValues) { 3210 SDValue Val = getValue(Op1); 3211 for (; i != LinearIndex + NumValValues; ++i) 3212 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3213 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3214 } 3215 // Copy remaining value(s) from the original aggregate. 3216 for (; i != NumAggValues; ++i) 3217 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3218 SDValue(Agg.getNode(), Agg.getResNo() + i); 3219 3220 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3221 DAG.getVTList(AggValueVTs), Values)); 3222 } 3223 3224 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3225 const Value *Op0 = I.getOperand(0); 3226 Type *AggTy = Op0->getType(); 3227 Type *ValTy = I.getType(); 3228 bool OutOfUndef = isa<UndefValue>(Op0); 3229 3230 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3231 3232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3233 SmallVector<EVT, 4> ValValueVTs; 3234 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3235 3236 unsigned NumValValues = ValValueVTs.size(); 3237 3238 // Ignore a extractvalue that produces an empty object 3239 if (!NumValValues) { 3240 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3241 return; 3242 } 3243 3244 SmallVector<SDValue, 4> Values(NumValValues); 3245 3246 SDValue Agg = getValue(Op0); 3247 // Copy out the selected value(s). 3248 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3249 Values[i - LinearIndex] = 3250 OutOfUndef ? 3251 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3252 SDValue(Agg.getNode(), Agg.getResNo() + i); 3253 3254 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3255 DAG.getVTList(ValValueVTs), Values)); 3256 } 3257 3258 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3259 Value *Op0 = I.getOperand(0); 3260 // Note that the pointer operand may be a vector of pointers. Take the scalar 3261 // element which holds a pointer. 3262 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3263 SDValue N = getValue(Op0); 3264 SDLoc dl = getCurSDLoc(); 3265 3266 // Normalize Vector GEP - all scalar operands should be converted to the 3267 // splat vector. 3268 unsigned VectorWidth = I.getType()->isVectorTy() ? 3269 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3270 3271 if (VectorWidth && !N.getValueType().isVector()) { 3272 LLVMContext &Context = *DAG.getContext(); 3273 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3274 N = DAG.getSplatBuildVector(VT, dl, N); 3275 } 3276 3277 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3278 GTI != E; ++GTI) { 3279 const Value *Idx = GTI.getOperand(); 3280 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3281 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3282 if (Field) { 3283 // N = N + Offset 3284 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3285 3286 // In an inbouds GEP with an offset that is nonnegative even when 3287 // interpreted as signed, assume there is no unsigned overflow. 3288 SDNodeFlags Flags; 3289 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3290 Flags.setNoUnsignedWrap(true); 3291 3292 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3293 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3294 } 3295 } else { 3296 MVT PtrTy = 3297 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3298 unsigned PtrSize = PtrTy.getSizeInBits(); 3299 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3300 3301 // If this is a scalar constant or a splat vector of constants, 3302 // handle it quickly. 3303 const auto *CI = dyn_cast<ConstantInt>(Idx); 3304 if (!CI && isa<ConstantDataVector>(Idx) && 3305 cast<ConstantDataVector>(Idx)->getSplatValue()) 3306 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3307 3308 if (CI) { 3309 if (CI->isZero()) 3310 continue; 3311 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3312 LLVMContext &Context = *DAG.getContext(); 3313 SDValue OffsVal = VectorWidth ? 3314 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3315 DAG.getConstant(Offs, dl, PtrTy); 3316 3317 // In an inbouds GEP with an offset that is nonnegative even when 3318 // interpreted as signed, assume there is no unsigned overflow. 3319 SDNodeFlags Flags; 3320 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3321 Flags.setNoUnsignedWrap(true); 3322 3323 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3324 continue; 3325 } 3326 3327 // N = N + Idx * ElementSize; 3328 SDValue IdxN = getValue(Idx); 3329 3330 if (!IdxN.getValueType().isVector() && VectorWidth) { 3331 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3332 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3333 } 3334 3335 // If the index is smaller or larger than intptr_t, truncate or extend 3336 // it. 3337 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3338 3339 // If this is a multiply by a power of two, turn it into a shl 3340 // immediately. This is a very common case. 3341 if (ElementSize != 1) { 3342 if (ElementSize.isPowerOf2()) { 3343 unsigned Amt = ElementSize.logBase2(); 3344 IdxN = DAG.getNode(ISD::SHL, dl, 3345 N.getValueType(), IdxN, 3346 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3347 } else { 3348 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3349 IdxN = DAG.getNode(ISD::MUL, dl, 3350 N.getValueType(), IdxN, Scale); 3351 } 3352 } 3353 3354 N = DAG.getNode(ISD::ADD, dl, 3355 N.getValueType(), N, IdxN); 3356 } 3357 } 3358 3359 setValue(&I, N); 3360 } 3361 3362 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3363 // If this is a fixed sized alloca in the entry block of the function, 3364 // allocate it statically on the stack. 3365 if (FuncInfo.StaticAllocaMap.count(&I)) 3366 return; // getValue will auto-populate this. 3367 3368 SDLoc dl = getCurSDLoc(); 3369 Type *Ty = I.getAllocatedType(); 3370 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3371 auto &DL = DAG.getDataLayout(); 3372 uint64_t TySize = DL.getTypeAllocSize(Ty); 3373 unsigned Align = 3374 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3375 3376 SDValue AllocSize = getValue(I.getArraySize()); 3377 3378 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3379 if (AllocSize.getValueType() != IntPtr) 3380 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3381 3382 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3383 AllocSize, 3384 DAG.getConstant(TySize, dl, IntPtr)); 3385 3386 // Handle alignment. If the requested alignment is less than or equal to 3387 // the stack alignment, ignore it. If the size is greater than or equal to 3388 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3389 unsigned StackAlign = 3390 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3391 if (Align <= StackAlign) 3392 Align = 0; 3393 3394 // Round the size of the allocation up to the stack alignment size 3395 // by add SA-1 to the size. This doesn't overflow because we're computing 3396 // an address inside an alloca. 3397 SDNodeFlags Flags; 3398 Flags.setNoUnsignedWrap(true); 3399 AllocSize = DAG.getNode(ISD::ADD, dl, 3400 AllocSize.getValueType(), AllocSize, 3401 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3402 3403 // Mask out the low bits for alignment purposes. 3404 AllocSize = DAG.getNode(ISD::AND, dl, 3405 AllocSize.getValueType(), AllocSize, 3406 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3407 dl)); 3408 3409 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3410 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3411 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3412 setValue(&I, DSA); 3413 DAG.setRoot(DSA.getValue(1)); 3414 3415 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3416 } 3417 3418 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3419 if (I.isAtomic()) 3420 return visitAtomicLoad(I); 3421 3422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3423 const Value *SV = I.getOperand(0); 3424 if (TLI.supportSwiftError()) { 3425 // Swifterror values can come from either a function parameter with 3426 // swifterror attribute or an alloca with swifterror attribute. 3427 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3428 if (Arg->hasSwiftErrorAttr()) 3429 return visitLoadFromSwiftError(I); 3430 } 3431 3432 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3433 if (Alloca->isSwiftError()) 3434 return visitLoadFromSwiftError(I); 3435 } 3436 } 3437 3438 SDValue Ptr = getValue(SV); 3439 3440 Type *Ty = I.getType(); 3441 3442 bool isVolatile = I.isVolatile(); 3443 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3444 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3445 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3446 unsigned Alignment = I.getAlignment(); 3447 3448 AAMDNodes AAInfo; 3449 I.getAAMetadata(AAInfo); 3450 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3451 3452 SmallVector<EVT, 4> ValueVTs; 3453 SmallVector<uint64_t, 4> Offsets; 3454 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3455 unsigned NumValues = ValueVTs.size(); 3456 if (NumValues == 0) 3457 return; 3458 3459 SDValue Root; 3460 bool ConstantMemory = false; 3461 if (isVolatile || NumValues > MaxParallelChains) 3462 // Serialize volatile loads with other side effects. 3463 Root = getRoot(); 3464 else if (AA->pointsToConstantMemory(MemoryLocation( 3465 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3466 // Do not serialize (non-volatile) loads of constant memory with anything. 3467 Root = DAG.getEntryNode(); 3468 ConstantMemory = true; 3469 } else { 3470 // Do not serialize non-volatile loads against each other. 3471 Root = DAG.getRoot(); 3472 } 3473 3474 SDLoc dl = getCurSDLoc(); 3475 3476 if (isVolatile) 3477 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3478 3479 // An aggregate load cannot wrap around the address space, so offsets to its 3480 // parts don't wrap either. 3481 SDNodeFlags Flags; 3482 Flags.setNoUnsignedWrap(true); 3483 3484 SmallVector<SDValue, 4> Values(NumValues); 3485 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3486 EVT PtrVT = Ptr.getValueType(); 3487 unsigned ChainI = 0; 3488 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3489 // Serializing loads here may result in excessive register pressure, and 3490 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3491 // could recover a bit by hoisting nodes upward in the chain by recognizing 3492 // they are side-effect free or do not alias. The optimizer should really 3493 // avoid this case by converting large object/array copies to llvm.memcpy 3494 // (MaxParallelChains should always remain as failsafe). 3495 if (ChainI == MaxParallelChains) { 3496 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3497 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3498 makeArrayRef(Chains.data(), ChainI)); 3499 Root = Chain; 3500 ChainI = 0; 3501 } 3502 SDValue A = DAG.getNode(ISD::ADD, dl, 3503 PtrVT, Ptr, 3504 DAG.getConstant(Offsets[i], dl, PtrVT), 3505 &Flags); 3506 auto MMOFlags = MachineMemOperand::MONone; 3507 if (isVolatile) 3508 MMOFlags |= MachineMemOperand::MOVolatile; 3509 if (isNonTemporal) 3510 MMOFlags |= MachineMemOperand::MONonTemporal; 3511 if (isInvariant) 3512 MMOFlags |= MachineMemOperand::MOInvariant; 3513 if (isDereferenceable) 3514 MMOFlags |= MachineMemOperand::MODereferenceable; 3515 3516 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3517 MachinePointerInfo(SV, Offsets[i]), Alignment, 3518 MMOFlags, AAInfo, Ranges); 3519 3520 Values[i] = L; 3521 Chains[ChainI] = L.getValue(1); 3522 } 3523 3524 if (!ConstantMemory) { 3525 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3526 makeArrayRef(Chains.data(), ChainI)); 3527 if (isVolatile) 3528 DAG.setRoot(Chain); 3529 else 3530 PendingLoads.push_back(Chain); 3531 } 3532 3533 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3534 DAG.getVTList(ValueVTs), Values)); 3535 } 3536 3537 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3539 assert(TLI.supportSwiftError() && 3540 "call visitStoreToSwiftError when backend supports swifterror"); 3541 3542 SmallVector<EVT, 4> ValueVTs; 3543 SmallVector<uint64_t, 4> Offsets; 3544 const Value *SrcV = I.getOperand(0); 3545 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3546 SrcV->getType(), ValueVTs, &Offsets); 3547 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3548 "expect a single EVT for swifterror"); 3549 3550 SDValue Src = getValue(SrcV); 3551 // Create a virtual register, then update the virtual register. 3552 auto &DL = DAG.getDataLayout(); 3553 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3554 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3555 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3556 // Chain can be getRoot or getControlRoot. 3557 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3558 SDValue(Src.getNode(), Src.getResNo())); 3559 DAG.setRoot(CopyNode); 3560 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3561 } 3562 3563 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3564 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3565 "call visitLoadFromSwiftError when backend supports swifterror"); 3566 3567 assert(!I.isVolatile() && 3568 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3569 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3570 "Support volatile, non temporal, invariant for load_from_swift_error"); 3571 3572 const Value *SV = I.getOperand(0); 3573 Type *Ty = I.getType(); 3574 AAMDNodes AAInfo; 3575 I.getAAMetadata(AAInfo); 3576 assert(!AA->pointsToConstantMemory(MemoryLocation( 3577 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3578 "load_from_swift_error should not be constant memory"); 3579 3580 SmallVector<EVT, 4> ValueVTs; 3581 SmallVector<uint64_t, 4> Offsets; 3582 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3583 ValueVTs, &Offsets); 3584 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3585 "expect a single EVT for swifterror"); 3586 3587 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3588 SDValue L = DAG.getCopyFromReg( 3589 getRoot(), getCurSDLoc(), 3590 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3591 3592 setValue(&I, L); 3593 } 3594 3595 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3596 if (I.isAtomic()) 3597 return visitAtomicStore(I); 3598 3599 const Value *SrcV = I.getOperand(0); 3600 const Value *PtrV = I.getOperand(1); 3601 3602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3603 if (TLI.supportSwiftError()) { 3604 // Swifterror values can come from either a function parameter with 3605 // swifterror attribute or an alloca with swifterror attribute. 3606 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3607 if (Arg->hasSwiftErrorAttr()) 3608 return visitStoreToSwiftError(I); 3609 } 3610 3611 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3612 if (Alloca->isSwiftError()) 3613 return visitStoreToSwiftError(I); 3614 } 3615 } 3616 3617 SmallVector<EVT, 4> ValueVTs; 3618 SmallVector<uint64_t, 4> Offsets; 3619 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3620 SrcV->getType(), ValueVTs, &Offsets); 3621 unsigned NumValues = ValueVTs.size(); 3622 if (NumValues == 0) 3623 return; 3624 3625 // Get the lowered operands. Note that we do this after 3626 // checking if NumResults is zero, because with zero results 3627 // the operands won't have values in the map. 3628 SDValue Src = getValue(SrcV); 3629 SDValue Ptr = getValue(PtrV); 3630 3631 SDValue Root = getRoot(); 3632 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3633 SDLoc dl = getCurSDLoc(); 3634 EVT PtrVT = Ptr.getValueType(); 3635 unsigned Alignment = I.getAlignment(); 3636 AAMDNodes AAInfo; 3637 I.getAAMetadata(AAInfo); 3638 3639 auto MMOFlags = MachineMemOperand::MONone; 3640 if (I.isVolatile()) 3641 MMOFlags |= MachineMemOperand::MOVolatile; 3642 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3643 MMOFlags |= MachineMemOperand::MONonTemporal; 3644 3645 // An aggregate load cannot wrap around the address space, so offsets to its 3646 // parts don't wrap either. 3647 SDNodeFlags Flags; 3648 Flags.setNoUnsignedWrap(true); 3649 3650 unsigned ChainI = 0; 3651 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3652 // See visitLoad comments. 3653 if (ChainI == MaxParallelChains) { 3654 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3655 makeArrayRef(Chains.data(), ChainI)); 3656 Root = Chain; 3657 ChainI = 0; 3658 } 3659 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3660 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3661 SDValue St = DAG.getStore( 3662 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3663 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3664 Chains[ChainI] = St; 3665 } 3666 3667 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3668 makeArrayRef(Chains.data(), ChainI)); 3669 DAG.setRoot(StoreNode); 3670 } 3671 3672 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3673 bool IsCompressing) { 3674 SDLoc sdl = getCurSDLoc(); 3675 3676 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3677 unsigned& Alignment) { 3678 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3679 Src0 = I.getArgOperand(0); 3680 Ptr = I.getArgOperand(1); 3681 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3682 Mask = I.getArgOperand(3); 3683 }; 3684 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3685 unsigned& Alignment) { 3686 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3687 Src0 = I.getArgOperand(0); 3688 Ptr = I.getArgOperand(1); 3689 Mask = I.getArgOperand(2); 3690 Alignment = 0; 3691 }; 3692 3693 Value *PtrOperand, *MaskOperand, *Src0Operand; 3694 unsigned Alignment; 3695 if (IsCompressing) 3696 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3697 else 3698 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3699 3700 SDValue Ptr = getValue(PtrOperand); 3701 SDValue Src0 = getValue(Src0Operand); 3702 SDValue Mask = getValue(MaskOperand); 3703 3704 EVT VT = Src0.getValueType(); 3705 if (!Alignment) 3706 Alignment = DAG.getEVTAlignment(VT); 3707 3708 AAMDNodes AAInfo; 3709 I.getAAMetadata(AAInfo); 3710 3711 MachineMemOperand *MMO = 3712 DAG.getMachineFunction(). 3713 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3714 MachineMemOperand::MOStore, VT.getStoreSize(), 3715 Alignment, AAInfo); 3716 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3717 MMO, false /* Truncating */, 3718 IsCompressing); 3719 DAG.setRoot(StoreNode); 3720 setValue(&I, StoreNode); 3721 } 3722 3723 // Get a uniform base for the Gather/Scatter intrinsic. 3724 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3725 // We try to represent it as a base pointer + vector of indices. 3726 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3727 // The first operand of the GEP may be a single pointer or a vector of pointers 3728 // Example: 3729 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3730 // or 3731 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3732 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3733 // 3734 // When the first GEP operand is a single pointer - it is the uniform base we 3735 // are looking for. If first operand of the GEP is a splat vector - we 3736 // extract the spalt value and use it as a uniform base. 3737 // In all other cases the function returns 'false'. 3738 // 3739 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3740 SelectionDAGBuilder* SDB) { 3741 3742 SelectionDAG& DAG = SDB->DAG; 3743 LLVMContext &Context = *DAG.getContext(); 3744 3745 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3746 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3747 if (!GEP || GEP->getNumOperands() > 2) 3748 return false; 3749 3750 const Value *GEPPtr = GEP->getPointerOperand(); 3751 if (!GEPPtr->getType()->isVectorTy()) 3752 Ptr = GEPPtr; 3753 else if (!(Ptr = getSplatValue(GEPPtr))) 3754 return false; 3755 3756 Value *IndexVal = GEP->getOperand(1); 3757 3758 // The operands of the GEP may be defined in another basic block. 3759 // In this case we'll not find nodes for the operands. 3760 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3761 return false; 3762 3763 Base = SDB->getValue(Ptr); 3764 Index = SDB->getValue(IndexVal); 3765 3766 // Suppress sign extension. 3767 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3768 if (SDB->findValue(Sext->getOperand(0))) { 3769 IndexVal = Sext->getOperand(0); 3770 Index = SDB->getValue(IndexVal); 3771 } 3772 } 3773 if (!Index.getValueType().isVector()) { 3774 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3775 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3776 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3777 } 3778 return true; 3779 } 3780 3781 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3782 SDLoc sdl = getCurSDLoc(); 3783 3784 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3785 const Value *Ptr = I.getArgOperand(1); 3786 SDValue Src0 = getValue(I.getArgOperand(0)); 3787 SDValue Mask = getValue(I.getArgOperand(3)); 3788 EVT VT = Src0.getValueType(); 3789 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3790 if (!Alignment) 3791 Alignment = DAG.getEVTAlignment(VT); 3792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3793 3794 AAMDNodes AAInfo; 3795 I.getAAMetadata(AAInfo); 3796 3797 SDValue Base; 3798 SDValue Index; 3799 const Value *BasePtr = Ptr; 3800 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3801 3802 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3803 MachineMemOperand *MMO = DAG.getMachineFunction(). 3804 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3805 MachineMemOperand::MOStore, VT.getStoreSize(), 3806 Alignment, AAInfo); 3807 if (!UniformBase) { 3808 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3809 Index = getValue(Ptr); 3810 } 3811 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3812 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3813 Ops, MMO); 3814 DAG.setRoot(Scatter); 3815 setValue(&I, Scatter); 3816 } 3817 3818 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3819 SDLoc sdl = getCurSDLoc(); 3820 3821 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3822 unsigned& Alignment) { 3823 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3824 Ptr = I.getArgOperand(0); 3825 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3826 Mask = I.getArgOperand(2); 3827 Src0 = I.getArgOperand(3); 3828 }; 3829 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3830 unsigned& Alignment) { 3831 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3832 Ptr = I.getArgOperand(0); 3833 Alignment = 0; 3834 Mask = I.getArgOperand(1); 3835 Src0 = I.getArgOperand(2); 3836 }; 3837 3838 Value *PtrOperand, *MaskOperand, *Src0Operand; 3839 unsigned Alignment; 3840 if (IsExpanding) 3841 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3842 else 3843 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3844 3845 SDValue Ptr = getValue(PtrOperand); 3846 SDValue Src0 = getValue(Src0Operand); 3847 SDValue Mask = getValue(MaskOperand); 3848 3849 EVT VT = Src0.getValueType(); 3850 if (!Alignment) 3851 Alignment = DAG.getEVTAlignment(VT); 3852 3853 AAMDNodes AAInfo; 3854 I.getAAMetadata(AAInfo); 3855 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3856 3857 // Do not serialize masked loads of constant memory with anything. 3858 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3859 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3860 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3861 3862 MachineMemOperand *MMO = 3863 DAG.getMachineFunction(). 3864 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3865 MachineMemOperand::MOLoad, VT.getStoreSize(), 3866 Alignment, AAInfo, Ranges); 3867 3868 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3869 ISD::NON_EXTLOAD, IsExpanding); 3870 if (AddToChain) { 3871 SDValue OutChain = Load.getValue(1); 3872 DAG.setRoot(OutChain); 3873 } 3874 setValue(&I, Load); 3875 } 3876 3877 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3878 SDLoc sdl = getCurSDLoc(); 3879 3880 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3881 const Value *Ptr = I.getArgOperand(0); 3882 SDValue Src0 = getValue(I.getArgOperand(3)); 3883 SDValue Mask = getValue(I.getArgOperand(2)); 3884 3885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3886 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3887 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3888 if (!Alignment) 3889 Alignment = DAG.getEVTAlignment(VT); 3890 3891 AAMDNodes AAInfo; 3892 I.getAAMetadata(AAInfo); 3893 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3894 3895 SDValue Root = DAG.getRoot(); 3896 SDValue Base; 3897 SDValue Index; 3898 const Value *BasePtr = Ptr; 3899 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3900 bool ConstantMemory = false; 3901 if (UniformBase && 3902 AA->pointsToConstantMemory(MemoryLocation( 3903 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3904 AAInfo))) { 3905 // Do not serialize (non-volatile) loads of constant memory with anything. 3906 Root = DAG.getEntryNode(); 3907 ConstantMemory = true; 3908 } 3909 3910 MachineMemOperand *MMO = 3911 DAG.getMachineFunction(). 3912 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3913 MachineMemOperand::MOLoad, VT.getStoreSize(), 3914 Alignment, AAInfo, Ranges); 3915 3916 if (!UniformBase) { 3917 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3918 Index = getValue(Ptr); 3919 } 3920 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3921 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3922 Ops, MMO); 3923 3924 SDValue OutChain = Gather.getValue(1); 3925 if (!ConstantMemory) 3926 PendingLoads.push_back(OutChain); 3927 setValue(&I, Gather); 3928 } 3929 3930 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3931 SDLoc dl = getCurSDLoc(); 3932 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3933 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3934 SynchronizationScope Scope = I.getSynchScope(); 3935 3936 SDValue InChain = getRoot(); 3937 3938 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3939 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3940 SDValue L = DAG.getAtomicCmpSwap( 3941 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3942 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3943 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3944 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3945 3946 SDValue OutChain = L.getValue(2); 3947 3948 setValue(&I, L); 3949 DAG.setRoot(OutChain); 3950 } 3951 3952 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3953 SDLoc dl = getCurSDLoc(); 3954 ISD::NodeType NT; 3955 switch (I.getOperation()) { 3956 default: llvm_unreachable("Unknown atomicrmw operation"); 3957 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3958 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3959 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3960 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3961 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3962 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3963 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3964 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3965 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3966 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3967 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3968 } 3969 AtomicOrdering Order = I.getOrdering(); 3970 SynchronizationScope Scope = I.getSynchScope(); 3971 3972 SDValue InChain = getRoot(); 3973 3974 SDValue L = 3975 DAG.getAtomic(NT, dl, 3976 getValue(I.getValOperand()).getSimpleValueType(), 3977 InChain, 3978 getValue(I.getPointerOperand()), 3979 getValue(I.getValOperand()), 3980 I.getPointerOperand(), 3981 /* Alignment=*/ 0, Order, Scope); 3982 3983 SDValue OutChain = L.getValue(1); 3984 3985 setValue(&I, L); 3986 DAG.setRoot(OutChain); 3987 } 3988 3989 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3990 SDLoc dl = getCurSDLoc(); 3991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3992 SDValue Ops[3]; 3993 Ops[0] = getRoot(); 3994 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3995 TLI.getPointerTy(DAG.getDataLayout())); 3996 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3997 TLI.getPointerTy(DAG.getDataLayout())); 3998 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3999 } 4000 4001 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4002 SDLoc dl = getCurSDLoc(); 4003 AtomicOrdering Order = I.getOrdering(); 4004 SynchronizationScope Scope = I.getSynchScope(); 4005 4006 SDValue InChain = getRoot(); 4007 4008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4009 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4010 4011 if (I.getAlignment() < VT.getSizeInBits() / 8) 4012 report_fatal_error("Cannot generate unaligned atomic load"); 4013 4014 MachineMemOperand *MMO = 4015 DAG.getMachineFunction(). 4016 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4017 MachineMemOperand::MOVolatile | 4018 MachineMemOperand::MOLoad, 4019 VT.getStoreSize(), 4020 I.getAlignment() ? I.getAlignment() : 4021 DAG.getEVTAlignment(VT), 4022 AAMDNodes(), nullptr, Scope, Order); 4023 4024 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4025 SDValue L = 4026 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4027 getValue(I.getPointerOperand()), MMO); 4028 4029 SDValue OutChain = L.getValue(1); 4030 4031 setValue(&I, L); 4032 DAG.setRoot(OutChain); 4033 } 4034 4035 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4036 SDLoc dl = getCurSDLoc(); 4037 4038 AtomicOrdering Order = I.getOrdering(); 4039 SynchronizationScope Scope = I.getSynchScope(); 4040 4041 SDValue InChain = getRoot(); 4042 4043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4044 EVT VT = 4045 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4046 4047 if (I.getAlignment() < VT.getSizeInBits() / 8) 4048 report_fatal_error("Cannot generate unaligned atomic store"); 4049 4050 SDValue OutChain = 4051 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4052 InChain, 4053 getValue(I.getPointerOperand()), 4054 getValue(I.getValueOperand()), 4055 I.getPointerOperand(), I.getAlignment(), 4056 Order, Scope); 4057 4058 DAG.setRoot(OutChain); 4059 } 4060 4061 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4062 /// node. 4063 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4064 unsigned Intrinsic) { 4065 // Ignore the callsite's attributes. A specific call site may be marked with 4066 // readnone, but the lowering code will expect the chain based on the 4067 // definition. 4068 const Function *F = I.getCalledFunction(); 4069 bool HasChain = !F->doesNotAccessMemory(); 4070 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4071 4072 // Build the operand list. 4073 SmallVector<SDValue, 8> Ops; 4074 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4075 if (OnlyLoad) { 4076 // We don't need to serialize loads against other loads. 4077 Ops.push_back(DAG.getRoot()); 4078 } else { 4079 Ops.push_back(getRoot()); 4080 } 4081 } 4082 4083 // Info is set by getTgtMemInstrinsic 4084 TargetLowering::IntrinsicInfo Info; 4085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4086 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4087 4088 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4089 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4090 Info.opc == ISD::INTRINSIC_W_CHAIN) 4091 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4092 TLI.getPointerTy(DAG.getDataLayout()))); 4093 4094 // Add all operands of the call to the operand list. 4095 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4096 SDValue Op = getValue(I.getArgOperand(i)); 4097 Ops.push_back(Op); 4098 } 4099 4100 SmallVector<EVT, 4> ValueVTs; 4101 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4102 4103 if (HasChain) 4104 ValueVTs.push_back(MVT::Other); 4105 4106 SDVTList VTs = DAG.getVTList(ValueVTs); 4107 4108 // Create the node. 4109 SDValue Result; 4110 if (IsTgtIntrinsic) { 4111 // This is target intrinsic that touches memory 4112 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4113 VTs, Ops, Info.memVT, 4114 MachinePointerInfo(Info.ptrVal, Info.offset), 4115 Info.align, Info.vol, 4116 Info.readMem, Info.writeMem, Info.size); 4117 } else if (!HasChain) { 4118 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4119 } else if (!I.getType()->isVoidTy()) { 4120 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4121 } else { 4122 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4123 } 4124 4125 if (HasChain) { 4126 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4127 if (OnlyLoad) 4128 PendingLoads.push_back(Chain); 4129 else 4130 DAG.setRoot(Chain); 4131 } 4132 4133 if (!I.getType()->isVoidTy()) { 4134 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4135 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4136 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4137 } else 4138 Result = lowerRangeToAssertZExt(DAG, I, Result); 4139 4140 setValue(&I, Result); 4141 } 4142 } 4143 4144 /// GetSignificand - Get the significand and build it into a floating-point 4145 /// number with exponent of 1: 4146 /// 4147 /// Op = (Op & 0x007fffff) | 0x3f800000; 4148 /// 4149 /// where Op is the hexadecimal representation of floating point value. 4150 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4151 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4152 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4153 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4154 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4155 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4156 } 4157 4158 /// GetExponent - Get the exponent: 4159 /// 4160 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4161 /// 4162 /// where Op is the hexadecimal representation of floating point value. 4163 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4164 const TargetLowering &TLI, const SDLoc &dl) { 4165 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4166 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4167 SDValue t1 = DAG.getNode( 4168 ISD::SRL, dl, MVT::i32, t0, 4169 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4170 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4171 DAG.getConstant(127, dl, MVT::i32)); 4172 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4173 } 4174 4175 /// getF32Constant - Get 32-bit floating point constant. 4176 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4177 const SDLoc &dl) { 4178 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4179 MVT::f32); 4180 } 4181 4182 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4183 SelectionDAG &DAG) { 4184 // TODO: What fast-math-flags should be set on the floating-point nodes? 4185 4186 // IntegerPartOfX = ((int32_t)(t0); 4187 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4188 4189 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4190 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4191 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4192 4193 // IntegerPartOfX <<= 23; 4194 IntegerPartOfX = DAG.getNode( 4195 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4196 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4197 DAG.getDataLayout()))); 4198 4199 SDValue TwoToFractionalPartOfX; 4200 if (LimitFloatPrecision <= 6) { 4201 // For floating-point precision of 6: 4202 // 4203 // TwoToFractionalPartOfX = 4204 // 0.997535578f + 4205 // (0.735607626f + 0.252464424f * x) * x; 4206 // 4207 // error 0.0144103317, which is 6 bits 4208 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4209 getF32Constant(DAG, 0x3e814304, dl)); 4210 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4211 getF32Constant(DAG, 0x3f3c50c8, dl)); 4212 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4213 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4214 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4215 } else if (LimitFloatPrecision <= 12) { 4216 // For floating-point precision of 12: 4217 // 4218 // TwoToFractionalPartOfX = 4219 // 0.999892986f + 4220 // (0.696457318f + 4221 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4222 // 4223 // error 0.000107046256, which is 13 to 14 bits 4224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4225 getF32Constant(DAG, 0x3da235e3, dl)); 4226 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4227 getF32Constant(DAG, 0x3e65b8f3, dl)); 4228 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4229 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4230 getF32Constant(DAG, 0x3f324b07, dl)); 4231 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4232 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4233 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4234 } else { // LimitFloatPrecision <= 18 4235 // For floating-point precision of 18: 4236 // 4237 // TwoToFractionalPartOfX = 4238 // 0.999999982f + 4239 // (0.693148872f + 4240 // (0.240227044f + 4241 // (0.554906021e-1f + 4242 // (0.961591928e-2f + 4243 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4244 // error 2.47208000*10^(-7), which is better than 18 bits 4245 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4246 getF32Constant(DAG, 0x3924b03e, dl)); 4247 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4248 getF32Constant(DAG, 0x3ab24b87, dl)); 4249 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4250 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4251 getF32Constant(DAG, 0x3c1d8c17, dl)); 4252 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4253 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4254 getF32Constant(DAG, 0x3d634a1d, dl)); 4255 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4256 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4257 getF32Constant(DAG, 0x3e75fe14, dl)); 4258 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4259 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4260 getF32Constant(DAG, 0x3f317234, dl)); 4261 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4262 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4263 getF32Constant(DAG, 0x3f800000, dl)); 4264 } 4265 4266 // Add the exponent into the result in integer domain. 4267 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4268 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4269 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4270 } 4271 4272 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4273 /// limited-precision mode. 4274 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4275 const TargetLowering &TLI) { 4276 if (Op.getValueType() == MVT::f32 && 4277 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4278 4279 // Put the exponent in the right bit position for later addition to the 4280 // final result: 4281 // 4282 // #define LOG2OFe 1.4426950f 4283 // t0 = Op * LOG2OFe 4284 4285 // TODO: What fast-math-flags should be set here? 4286 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4287 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4288 return getLimitedPrecisionExp2(t0, dl, DAG); 4289 } 4290 4291 // No special expansion. 4292 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4293 } 4294 4295 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4296 /// limited-precision mode. 4297 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4298 const TargetLowering &TLI) { 4299 4300 // TODO: What fast-math-flags should be set on the floating-point nodes? 4301 4302 if (Op.getValueType() == MVT::f32 && 4303 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4304 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4305 4306 // Scale the exponent by log(2) [0.69314718f]. 4307 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4308 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4309 getF32Constant(DAG, 0x3f317218, dl)); 4310 4311 // Get the significand and build it into a floating-point number with 4312 // exponent of 1. 4313 SDValue X = GetSignificand(DAG, Op1, dl); 4314 4315 SDValue LogOfMantissa; 4316 if (LimitFloatPrecision <= 6) { 4317 // For floating-point precision of 6: 4318 // 4319 // LogofMantissa = 4320 // -1.1609546f + 4321 // (1.4034025f - 0.23903021f * x) * x; 4322 // 4323 // error 0.0034276066, which is better than 8 bits 4324 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4325 getF32Constant(DAG, 0xbe74c456, dl)); 4326 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4327 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4328 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4329 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4330 getF32Constant(DAG, 0x3f949a29, dl)); 4331 } else if (LimitFloatPrecision <= 12) { 4332 // For floating-point precision of 12: 4333 // 4334 // LogOfMantissa = 4335 // -1.7417939f + 4336 // (2.8212026f + 4337 // (-1.4699568f + 4338 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4339 // 4340 // error 0.000061011436, which is 14 bits 4341 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4342 getF32Constant(DAG, 0xbd67b6d6, dl)); 4343 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4344 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4345 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4346 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4347 getF32Constant(DAG, 0x3fbc278b, dl)); 4348 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4349 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4350 getF32Constant(DAG, 0x40348e95, dl)); 4351 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4352 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4353 getF32Constant(DAG, 0x3fdef31a, dl)); 4354 } else { // LimitFloatPrecision <= 18 4355 // For floating-point precision of 18: 4356 // 4357 // LogOfMantissa = 4358 // -2.1072184f + 4359 // (4.2372794f + 4360 // (-3.7029485f + 4361 // (2.2781945f + 4362 // (-0.87823314f + 4363 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4364 // 4365 // error 0.0000023660568, which is better than 18 bits 4366 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4367 getF32Constant(DAG, 0xbc91e5ac, dl)); 4368 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4369 getF32Constant(DAG, 0x3e4350aa, dl)); 4370 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4371 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4372 getF32Constant(DAG, 0x3f60d3e3, dl)); 4373 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4374 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4375 getF32Constant(DAG, 0x4011cdf0, dl)); 4376 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4377 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4378 getF32Constant(DAG, 0x406cfd1c, dl)); 4379 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4380 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4381 getF32Constant(DAG, 0x408797cb, dl)); 4382 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4383 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4384 getF32Constant(DAG, 0x4006dcab, dl)); 4385 } 4386 4387 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4388 } 4389 4390 // No special expansion. 4391 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4392 } 4393 4394 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4395 /// limited-precision mode. 4396 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4397 const TargetLowering &TLI) { 4398 4399 // TODO: What fast-math-flags should be set on the floating-point nodes? 4400 4401 if (Op.getValueType() == MVT::f32 && 4402 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4403 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4404 4405 // Get the exponent. 4406 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4407 4408 // Get the significand and build it into a floating-point number with 4409 // exponent of 1. 4410 SDValue X = GetSignificand(DAG, Op1, dl); 4411 4412 // Different possible minimax approximations of significand in 4413 // floating-point for various degrees of accuracy over [1,2]. 4414 SDValue Log2ofMantissa; 4415 if (LimitFloatPrecision <= 6) { 4416 // For floating-point precision of 6: 4417 // 4418 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4419 // 4420 // error 0.0049451742, which is more than 7 bits 4421 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4422 getF32Constant(DAG, 0xbeb08fe0, dl)); 4423 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4424 getF32Constant(DAG, 0x40019463, dl)); 4425 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4426 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4427 getF32Constant(DAG, 0x3fd6633d, dl)); 4428 } else if (LimitFloatPrecision <= 12) { 4429 // For floating-point precision of 12: 4430 // 4431 // Log2ofMantissa = 4432 // -2.51285454f + 4433 // (4.07009056f + 4434 // (-2.12067489f + 4435 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4436 // 4437 // error 0.0000876136000, which is better than 13 bits 4438 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4439 getF32Constant(DAG, 0xbda7262e, dl)); 4440 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4441 getF32Constant(DAG, 0x3f25280b, dl)); 4442 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4443 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4444 getF32Constant(DAG, 0x4007b923, dl)); 4445 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4446 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4447 getF32Constant(DAG, 0x40823e2f, dl)); 4448 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4449 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4450 getF32Constant(DAG, 0x4020d29c, dl)); 4451 } else { // LimitFloatPrecision <= 18 4452 // For floating-point precision of 18: 4453 // 4454 // Log2ofMantissa = 4455 // -3.0400495f + 4456 // (6.1129976f + 4457 // (-5.3420409f + 4458 // (3.2865683f + 4459 // (-1.2669343f + 4460 // (0.27515199f - 4461 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4462 // 4463 // error 0.0000018516, which is better than 18 bits 4464 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4465 getF32Constant(DAG, 0xbcd2769e, dl)); 4466 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4467 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4468 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4469 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4470 getF32Constant(DAG, 0x3fa22ae7, dl)); 4471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4473 getF32Constant(DAG, 0x40525723, dl)); 4474 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4475 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4476 getF32Constant(DAG, 0x40aaf200, dl)); 4477 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4478 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4479 getF32Constant(DAG, 0x40c39dad, dl)); 4480 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4481 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4482 getF32Constant(DAG, 0x4042902c, dl)); 4483 } 4484 4485 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4486 } 4487 4488 // No special expansion. 4489 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4490 } 4491 4492 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4493 /// limited-precision mode. 4494 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4495 const TargetLowering &TLI) { 4496 4497 // TODO: What fast-math-flags should be set on the floating-point nodes? 4498 4499 if (Op.getValueType() == MVT::f32 && 4500 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4501 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4502 4503 // Scale the exponent by log10(2) [0.30102999f]. 4504 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4505 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4506 getF32Constant(DAG, 0x3e9a209a, dl)); 4507 4508 // Get the significand and build it into a floating-point number with 4509 // exponent of 1. 4510 SDValue X = GetSignificand(DAG, Op1, dl); 4511 4512 SDValue Log10ofMantissa; 4513 if (LimitFloatPrecision <= 6) { 4514 // For floating-point precision of 6: 4515 // 4516 // Log10ofMantissa = 4517 // -0.50419619f + 4518 // (0.60948995f - 0.10380950f * x) * x; 4519 // 4520 // error 0.0014886165, which is 6 bits 4521 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4522 getF32Constant(DAG, 0xbdd49a13, dl)); 4523 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4524 getF32Constant(DAG, 0x3f1c0789, dl)); 4525 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4526 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4527 getF32Constant(DAG, 0x3f011300, dl)); 4528 } else if (LimitFloatPrecision <= 12) { 4529 // For floating-point precision of 12: 4530 // 4531 // Log10ofMantissa = 4532 // -0.64831180f + 4533 // (0.91751397f + 4534 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4535 // 4536 // error 0.00019228036, which is better than 12 bits 4537 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4538 getF32Constant(DAG, 0x3d431f31, dl)); 4539 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4540 getF32Constant(DAG, 0x3ea21fb2, dl)); 4541 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4542 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4543 getF32Constant(DAG, 0x3f6ae232, dl)); 4544 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4545 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4546 getF32Constant(DAG, 0x3f25f7c3, dl)); 4547 } else { // LimitFloatPrecision <= 18 4548 // For floating-point precision of 18: 4549 // 4550 // Log10ofMantissa = 4551 // -0.84299375f + 4552 // (1.5327582f + 4553 // (-1.0688956f + 4554 // (0.49102474f + 4555 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4556 // 4557 // error 0.0000037995730, which is better than 18 bits 4558 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4559 getF32Constant(DAG, 0x3c5d51ce, dl)); 4560 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4561 getF32Constant(DAG, 0x3e00685a, dl)); 4562 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4563 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4564 getF32Constant(DAG, 0x3efb6798, dl)); 4565 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4566 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4567 getF32Constant(DAG, 0x3f88d192, dl)); 4568 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4569 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4570 getF32Constant(DAG, 0x3fc4316c, dl)); 4571 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4572 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4573 getF32Constant(DAG, 0x3f57ce70, dl)); 4574 } 4575 4576 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4577 } 4578 4579 // No special expansion. 4580 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4581 } 4582 4583 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4584 /// limited-precision mode. 4585 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4586 const TargetLowering &TLI) { 4587 if (Op.getValueType() == MVT::f32 && 4588 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4589 return getLimitedPrecisionExp2(Op, dl, DAG); 4590 4591 // No special expansion. 4592 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4593 } 4594 4595 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4596 /// limited-precision mode with x == 10.0f. 4597 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4598 SelectionDAG &DAG, const TargetLowering &TLI) { 4599 bool IsExp10 = false; 4600 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4601 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4602 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4603 APFloat Ten(10.0f); 4604 IsExp10 = LHSC->isExactlyValue(Ten); 4605 } 4606 } 4607 4608 // TODO: What fast-math-flags should be set on the FMUL node? 4609 if (IsExp10) { 4610 // Put the exponent in the right bit position for later addition to the 4611 // final result: 4612 // 4613 // #define LOG2OF10 3.3219281f 4614 // t0 = Op * LOG2OF10; 4615 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4616 getF32Constant(DAG, 0x40549a78, dl)); 4617 return getLimitedPrecisionExp2(t0, dl, DAG); 4618 } 4619 4620 // No special expansion. 4621 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4622 } 4623 4624 4625 /// ExpandPowI - Expand a llvm.powi intrinsic. 4626 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4627 SelectionDAG &DAG) { 4628 // If RHS is a constant, we can expand this out to a multiplication tree, 4629 // otherwise we end up lowering to a call to __powidf2 (for example). When 4630 // optimizing for size, we only want to do this if the expansion would produce 4631 // a small number of multiplies, otherwise we do the full expansion. 4632 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4633 // Get the exponent as a positive value. 4634 unsigned Val = RHSC->getSExtValue(); 4635 if ((int)Val < 0) Val = -Val; 4636 4637 // powi(x, 0) -> 1.0 4638 if (Val == 0) 4639 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4640 4641 const Function *F = DAG.getMachineFunction().getFunction(); 4642 if (!F->optForSize() || 4643 // If optimizing for size, don't insert too many multiplies. 4644 // This inserts up to 5 multiplies. 4645 countPopulation(Val) + Log2_32(Val) < 7) { 4646 // We use the simple binary decomposition method to generate the multiply 4647 // sequence. There are more optimal ways to do this (for example, 4648 // powi(x,15) generates one more multiply than it should), but this has 4649 // the benefit of being both really simple and much better than a libcall. 4650 SDValue Res; // Logically starts equal to 1.0 4651 SDValue CurSquare = LHS; 4652 // TODO: Intrinsics should have fast-math-flags that propagate to these 4653 // nodes. 4654 while (Val) { 4655 if (Val & 1) { 4656 if (Res.getNode()) 4657 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4658 else 4659 Res = CurSquare; // 1.0*CurSquare. 4660 } 4661 4662 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4663 CurSquare, CurSquare); 4664 Val >>= 1; 4665 } 4666 4667 // If the original was negative, invert the result, producing 1/(x*x*x). 4668 if (RHSC->getSExtValue() < 0) 4669 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4670 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4671 return Res; 4672 } 4673 } 4674 4675 // Otherwise, expand to a libcall. 4676 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4677 } 4678 4679 // getUnderlyingArgReg - Find underlying register used for a truncated or 4680 // bitcasted argument. 4681 static unsigned getUnderlyingArgReg(const SDValue &N) { 4682 switch (N.getOpcode()) { 4683 case ISD::CopyFromReg: 4684 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4685 case ISD::BITCAST: 4686 case ISD::AssertZext: 4687 case ISD::AssertSext: 4688 case ISD::TRUNCATE: 4689 return getUnderlyingArgReg(N.getOperand(0)); 4690 default: 4691 return 0; 4692 } 4693 } 4694 4695 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4696 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4697 /// At the end of instruction selection, they will be inserted to the entry BB. 4698 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4699 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4700 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4701 const Argument *Arg = dyn_cast<Argument>(V); 4702 if (!Arg) 4703 return false; 4704 4705 MachineFunction &MF = DAG.getMachineFunction(); 4706 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4707 4708 // Ignore inlined function arguments here. 4709 // 4710 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4711 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4712 return false; 4713 4714 Optional<MachineOperand> Op; 4715 // Some arguments' frame index is recorded during argument lowering. 4716 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4717 Op = MachineOperand::CreateFI(FI); 4718 4719 if (!Op && N.getNode()) { 4720 unsigned Reg = getUnderlyingArgReg(N); 4721 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4722 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4723 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4724 if (PR) 4725 Reg = PR; 4726 } 4727 if (Reg) 4728 Op = MachineOperand::CreateReg(Reg, false); 4729 } 4730 4731 if (!Op) { 4732 // Check if ValueMap has reg number. 4733 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4734 if (VMI != FuncInfo.ValueMap.end()) 4735 Op = MachineOperand::CreateReg(VMI->second, false); 4736 } 4737 4738 if (!Op && N.getNode()) 4739 // Check if frame index is available. 4740 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4741 if (FrameIndexSDNode *FINode = 4742 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4743 Op = MachineOperand::CreateFI(FINode->getIndex()); 4744 4745 if (!Op) 4746 return false; 4747 4748 assert(Variable->isValidLocationForIntrinsic(DL) && 4749 "Expected inlined-at fields to agree"); 4750 if (Op->isReg()) 4751 FuncInfo.ArgDbgValues.push_back( 4752 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4753 Op->getReg(), Offset, Variable, Expr)); 4754 else 4755 FuncInfo.ArgDbgValues.push_back( 4756 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4757 .add(*Op) 4758 .addImm(Offset) 4759 .addMetadata(Variable) 4760 .addMetadata(Expr)); 4761 4762 return true; 4763 } 4764 4765 /// Return the appropriate SDDbgValue based on N. 4766 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4767 DILocalVariable *Variable, 4768 DIExpression *Expr, int64_t Offset, 4769 const DebugLoc &dl, 4770 unsigned DbgSDNodeOrder) { 4771 SDDbgValue *SDV; 4772 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4773 if (FISDN && Expr->startsWithDeref()) { 4774 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4775 // stack slot locations as such instead of as indirectly addressed 4776 // locations. 4777 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4778 Expr->elements_end()); 4779 DIExpression *DerefedDIExpr = 4780 DIExpression::get(*DAG.getContext(), TrailingElements); 4781 int FI = FISDN->getIndex(); 4782 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4783 DbgSDNodeOrder); 4784 } else { 4785 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4786 Offset, dl, DbgSDNodeOrder); 4787 } 4788 return SDV; 4789 } 4790 4791 // VisualStudio defines setjmp as _setjmp 4792 #if defined(_MSC_VER) && defined(setjmp) && \ 4793 !defined(setjmp_undefined_for_msvc) 4794 # pragma push_macro("setjmp") 4795 # undef setjmp 4796 # define setjmp_undefined_for_msvc 4797 #endif 4798 4799 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4800 /// we want to emit this as a call to a named external function, return the name 4801 /// otherwise lower it and return null. 4802 const char * 4803 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4805 SDLoc sdl = getCurSDLoc(); 4806 DebugLoc dl = getCurDebugLoc(); 4807 SDValue Res; 4808 4809 switch (Intrinsic) { 4810 default: 4811 // By default, turn this into a target intrinsic node. 4812 visitTargetIntrinsic(I, Intrinsic); 4813 return nullptr; 4814 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4815 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4816 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4817 case Intrinsic::returnaddress: 4818 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4819 TLI.getPointerTy(DAG.getDataLayout()), 4820 getValue(I.getArgOperand(0)))); 4821 return nullptr; 4822 case Intrinsic::addressofreturnaddress: 4823 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4824 TLI.getPointerTy(DAG.getDataLayout()))); 4825 return nullptr; 4826 case Intrinsic::frameaddress: 4827 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4828 TLI.getPointerTy(DAG.getDataLayout()), 4829 getValue(I.getArgOperand(0)))); 4830 return nullptr; 4831 case Intrinsic::read_register: { 4832 Value *Reg = I.getArgOperand(0); 4833 SDValue Chain = getRoot(); 4834 SDValue RegName = 4835 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4836 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4837 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4838 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4839 setValue(&I, Res); 4840 DAG.setRoot(Res.getValue(1)); 4841 return nullptr; 4842 } 4843 case Intrinsic::write_register: { 4844 Value *Reg = I.getArgOperand(0); 4845 Value *RegValue = I.getArgOperand(1); 4846 SDValue Chain = getRoot(); 4847 SDValue RegName = 4848 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4849 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4850 RegName, getValue(RegValue))); 4851 return nullptr; 4852 } 4853 case Intrinsic::setjmp: 4854 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4855 case Intrinsic::longjmp: 4856 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4857 case Intrinsic::memcpy: { 4858 SDValue Op1 = getValue(I.getArgOperand(0)); 4859 SDValue Op2 = getValue(I.getArgOperand(1)); 4860 SDValue Op3 = getValue(I.getArgOperand(2)); 4861 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4862 if (!Align) 4863 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4864 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4865 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4866 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4867 false, isTC, 4868 MachinePointerInfo(I.getArgOperand(0)), 4869 MachinePointerInfo(I.getArgOperand(1))); 4870 updateDAGForMaybeTailCall(MC); 4871 return nullptr; 4872 } 4873 case Intrinsic::memset: { 4874 SDValue Op1 = getValue(I.getArgOperand(0)); 4875 SDValue Op2 = getValue(I.getArgOperand(1)); 4876 SDValue Op3 = getValue(I.getArgOperand(2)); 4877 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4878 if (!Align) 4879 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4880 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4881 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4882 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4883 isTC, MachinePointerInfo(I.getArgOperand(0))); 4884 updateDAGForMaybeTailCall(MS); 4885 return nullptr; 4886 } 4887 case Intrinsic::memmove: { 4888 SDValue Op1 = getValue(I.getArgOperand(0)); 4889 SDValue Op2 = getValue(I.getArgOperand(1)); 4890 SDValue Op3 = getValue(I.getArgOperand(2)); 4891 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4892 if (!Align) 4893 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4894 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4895 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4896 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4897 isTC, MachinePointerInfo(I.getArgOperand(0)), 4898 MachinePointerInfo(I.getArgOperand(1))); 4899 updateDAGForMaybeTailCall(MM); 4900 return nullptr; 4901 } 4902 case Intrinsic::memcpy_element_atomic: { 4903 SDValue Dst = getValue(I.getArgOperand(0)); 4904 SDValue Src = getValue(I.getArgOperand(1)); 4905 SDValue NumElements = getValue(I.getArgOperand(2)); 4906 SDValue ElementSize = getValue(I.getArgOperand(3)); 4907 4908 // Emit a library call. 4909 TargetLowering::ArgListTy Args; 4910 TargetLowering::ArgListEntry Entry; 4911 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4912 Entry.Node = Dst; 4913 Args.push_back(Entry); 4914 4915 Entry.Node = Src; 4916 Args.push_back(Entry); 4917 4918 Entry.Ty = I.getArgOperand(2)->getType(); 4919 Entry.Node = NumElements; 4920 Args.push_back(Entry); 4921 4922 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4923 Entry.Node = ElementSize; 4924 Args.push_back(Entry); 4925 4926 uint64_t ElementSizeConstant = 4927 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4928 RTLIB::Libcall LibraryCall = 4929 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4930 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4931 report_fatal_error("Unsupported element size"); 4932 4933 TargetLowering::CallLoweringInfo CLI(DAG); 4934 CLI.setDebugLoc(sdl) 4935 .setChain(getRoot()) 4936 .setCallee(TLI.getLibcallCallingConv(LibraryCall), 4937 Type::getVoidTy(*DAG.getContext()), 4938 DAG.getExternalSymbol( 4939 TLI.getLibcallName(LibraryCall), 4940 TLI.getPointerTy(DAG.getDataLayout())), 4941 std::move(Args)); 4942 4943 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4944 DAG.setRoot(CallResult.second); 4945 return nullptr; 4946 } 4947 case Intrinsic::dbg_declare: { 4948 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4949 DILocalVariable *Variable = DI.getVariable(); 4950 DIExpression *Expression = DI.getExpression(); 4951 const Value *Address = DI.getAddress(); 4952 assert(Variable && "Missing variable"); 4953 if (!Address) { 4954 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4955 return nullptr; 4956 } 4957 4958 // Check if address has undef value. 4959 if (isa<UndefValue>(Address) || 4960 (Address->use_empty() && !isa<Argument>(Address))) { 4961 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4962 return nullptr; 4963 } 4964 4965 SDValue &N = NodeMap[Address]; 4966 if (!N.getNode() && isa<Argument>(Address)) 4967 // Check unused arguments map. 4968 N = UnusedArgNodeMap[Address]; 4969 SDDbgValue *SDV; 4970 if (N.getNode()) { 4971 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4972 Address = BCI->getOperand(0); 4973 // Parameters are handled specially. 4974 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4975 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4976 if (isParameter && FINode) { 4977 // Byval parameter. We have a frame index at this point. 4978 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4979 FINode->getIndex(), 0, dl, SDNodeOrder); 4980 } else if (isa<Argument>(Address)) { 4981 // Address is an argument, so try to emit its dbg value using 4982 // virtual register info from the FuncInfo.ValueMap. 4983 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4984 N); 4985 return nullptr; 4986 } else { 4987 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4988 true, 0, dl, SDNodeOrder); 4989 } 4990 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4991 } else { 4992 // If Address is an argument then try to emit its dbg value using 4993 // virtual register info from the FuncInfo.ValueMap. 4994 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4995 N)) { 4996 // If variable is pinned by a alloca in dominating bb then 4997 // use StaticAllocaMap. 4998 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4999 if (AI->getParent() != DI.getParent()) { 5000 DenseMap<const AllocaInst*, int>::iterator SI = 5001 FuncInfo.StaticAllocaMap.find(AI); 5002 if (SI != FuncInfo.StaticAllocaMap.end()) { 5003 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 5004 0, dl, SDNodeOrder); 5005 DAG.AddDbgValue(SDV, nullptr, false); 5006 return nullptr; 5007 } 5008 } 5009 } 5010 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5011 } 5012 } 5013 return nullptr; 5014 } 5015 case Intrinsic::dbg_value: { 5016 const DbgValueInst &DI = cast<DbgValueInst>(I); 5017 assert(DI.getVariable() && "Missing variable"); 5018 5019 DILocalVariable *Variable = DI.getVariable(); 5020 DIExpression *Expression = DI.getExpression(); 5021 uint64_t Offset = DI.getOffset(); 5022 const Value *V = DI.getValue(); 5023 if (!V) 5024 return nullptr; 5025 5026 SDDbgValue *SDV; 5027 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5028 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 5029 SDNodeOrder); 5030 DAG.AddDbgValue(SDV, nullptr, false); 5031 } else { 5032 // Do not use getValue() in here; we don't want to generate code at 5033 // this point if it hasn't been done yet. 5034 SDValue N = NodeMap[V]; 5035 if (!N.getNode() && isa<Argument>(V)) 5036 // Check unused arguments map. 5037 N = UnusedArgNodeMap[V]; 5038 if (N.getNode()) { 5039 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 5040 false, N)) { 5041 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5042 DAG.AddDbgValue(SDV, N.getNode(), false); 5043 } 5044 } else if (!V->use_empty() ) { 5045 // Do not call getValue(V) yet, as we don't want to generate code. 5046 // Remember it for later. 5047 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5048 DanglingDebugInfoMap[V] = DDI; 5049 } else { 5050 // We may expand this to cover more cases. One case where we have no 5051 // data available is an unreferenced parameter. 5052 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5053 } 5054 } 5055 5056 // Build a debug info table entry. 5057 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 5058 V = BCI->getOperand(0); 5059 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 5060 // Don't handle byval struct arguments or VLAs, for example. 5061 if (!AI) { 5062 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5063 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5064 return nullptr; 5065 } 5066 DenseMap<const AllocaInst*, int>::iterator SI = 5067 FuncInfo.StaticAllocaMap.find(AI); 5068 if (SI == FuncInfo.StaticAllocaMap.end()) 5069 return nullptr; // VLAs. 5070 return nullptr; 5071 } 5072 5073 case Intrinsic::eh_typeid_for: { 5074 // Find the type id for the given typeinfo. 5075 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5076 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5077 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5078 setValue(&I, Res); 5079 return nullptr; 5080 } 5081 5082 case Intrinsic::eh_return_i32: 5083 case Intrinsic::eh_return_i64: 5084 DAG.getMachineFunction().setCallsEHReturn(true); 5085 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5086 MVT::Other, 5087 getControlRoot(), 5088 getValue(I.getArgOperand(0)), 5089 getValue(I.getArgOperand(1)))); 5090 return nullptr; 5091 case Intrinsic::eh_unwind_init: 5092 DAG.getMachineFunction().setCallsUnwindInit(true); 5093 return nullptr; 5094 case Intrinsic::eh_dwarf_cfa: { 5095 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5096 TLI.getPointerTy(DAG.getDataLayout()), 5097 getValue(I.getArgOperand(0)))); 5098 return nullptr; 5099 } 5100 case Intrinsic::eh_sjlj_callsite: { 5101 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5102 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5103 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5104 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5105 5106 MMI.setCurrentCallSite(CI->getZExtValue()); 5107 return nullptr; 5108 } 5109 case Intrinsic::eh_sjlj_functioncontext: { 5110 // Get and store the index of the function context. 5111 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5112 AllocaInst *FnCtx = 5113 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5114 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5115 MFI.setFunctionContextIndex(FI); 5116 return nullptr; 5117 } 5118 case Intrinsic::eh_sjlj_setjmp: { 5119 SDValue Ops[2]; 5120 Ops[0] = getRoot(); 5121 Ops[1] = getValue(I.getArgOperand(0)); 5122 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5123 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5124 setValue(&I, Op.getValue(0)); 5125 DAG.setRoot(Op.getValue(1)); 5126 return nullptr; 5127 } 5128 case Intrinsic::eh_sjlj_longjmp: { 5129 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5130 getRoot(), getValue(I.getArgOperand(0)))); 5131 return nullptr; 5132 } 5133 case Intrinsic::eh_sjlj_setup_dispatch: { 5134 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5135 getRoot())); 5136 return nullptr; 5137 } 5138 5139 case Intrinsic::masked_gather: 5140 visitMaskedGather(I); 5141 return nullptr; 5142 case Intrinsic::masked_load: 5143 visitMaskedLoad(I); 5144 return nullptr; 5145 case Intrinsic::masked_scatter: 5146 visitMaskedScatter(I); 5147 return nullptr; 5148 case Intrinsic::masked_store: 5149 visitMaskedStore(I); 5150 return nullptr; 5151 case Intrinsic::masked_expandload: 5152 visitMaskedLoad(I, true /* IsExpanding */); 5153 return nullptr; 5154 case Intrinsic::masked_compressstore: 5155 visitMaskedStore(I, true /* IsCompressing */); 5156 return nullptr; 5157 case Intrinsic::x86_mmx_pslli_w: 5158 case Intrinsic::x86_mmx_pslli_d: 5159 case Intrinsic::x86_mmx_pslli_q: 5160 case Intrinsic::x86_mmx_psrli_w: 5161 case Intrinsic::x86_mmx_psrli_d: 5162 case Intrinsic::x86_mmx_psrli_q: 5163 case Intrinsic::x86_mmx_psrai_w: 5164 case Intrinsic::x86_mmx_psrai_d: { 5165 SDValue ShAmt = getValue(I.getArgOperand(1)); 5166 if (isa<ConstantSDNode>(ShAmt)) { 5167 visitTargetIntrinsic(I, Intrinsic); 5168 return nullptr; 5169 } 5170 unsigned NewIntrinsic = 0; 5171 EVT ShAmtVT = MVT::v2i32; 5172 switch (Intrinsic) { 5173 case Intrinsic::x86_mmx_pslli_w: 5174 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5175 break; 5176 case Intrinsic::x86_mmx_pslli_d: 5177 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5178 break; 5179 case Intrinsic::x86_mmx_pslli_q: 5180 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5181 break; 5182 case Intrinsic::x86_mmx_psrli_w: 5183 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5184 break; 5185 case Intrinsic::x86_mmx_psrli_d: 5186 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5187 break; 5188 case Intrinsic::x86_mmx_psrli_q: 5189 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5190 break; 5191 case Intrinsic::x86_mmx_psrai_w: 5192 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5193 break; 5194 case Intrinsic::x86_mmx_psrai_d: 5195 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5196 break; 5197 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5198 } 5199 5200 // The vector shift intrinsics with scalars uses 32b shift amounts but 5201 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5202 // to be zero. 5203 // We must do this early because v2i32 is not a legal type. 5204 SDValue ShOps[2]; 5205 ShOps[0] = ShAmt; 5206 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5207 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5208 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5209 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5210 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5211 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5212 getValue(I.getArgOperand(0)), ShAmt); 5213 setValue(&I, Res); 5214 return nullptr; 5215 } 5216 case Intrinsic::powi: 5217 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5218 getValue(I.getArgOperand(1)), DAG)); 5219 return nullptr; 5220 case Intrinsic::log: 5221 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5222 return nullptr; 5223 case Intrinsic::log2: 5224 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5225 return nullptr; 5226 case Intrinsic::log10: 5227 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5228 return nullptr; 5229 case Intrinsic::exp: 5230 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5231 return nullptr; 5232 case Intrinsic::exp2: 5233 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5234 return nullptr; 5235 case Intrinsic::pow: 5236 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5237 getValue(I.getArgOperand(1)), DAG, TLI)); 5238 return nullptr; 5239 case Intrinsic::sqrt: 5240 case Intrinsic::fabs: 5241 case Intrinsic::sin: 5242 case Intrinsic::cos: 5243 case Intrinsic::floor: 5244 case Intrinsic::ceil: 5245 case Intrinsic::trunc: 5246 case Intrinsic::rint: 5247 case Intrinsic::nearbyint: 5248 case Intrinsic::round: 5249 case Intrinsic::canonicalize: { 5250 unsigned Opcode; 5251 switch (Intrinsic) { 5252 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5253 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5254 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5255 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5256 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5257 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5258 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5259 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5260 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5261 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5262 case Intrinsic::round: Opcode = ISD::FROUND; break; 5263 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5264 } 5265 5266 setValue(&I, DAG.getNode(Opcode, sdl, 5267 getValue(I.getArgOperand(0)).getValueType(), 5268 getValue(I.getArgOperand(0)))); 5269 return nullptr; 5270 } 5271 case Intrinsic::minnum: { 5272 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5273 unsigned Opc = 5274 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5275 ? ISD::FMINNAN 5276 : ISD::FMINNUM; 5277 setValue(&I, DAG.getNode(Opc, sdl, VT, 5278 getValue(I.getArgOperand(0)), 5279 getValue(I.getArgOperand(1)))); 5280 return nullptr; 5281 } 5282 case Intrinsic::maxnum: { 5283 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5284 unsigned Opc = 5285 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5286 ? ISD::FMAXNAN 5287 : ISD::FMAXNUM; 5288 setValue(&I, DAG.getNode(Opc, sdl, VT, 5289 getValue(I.getArgOperand(0)), 5290 getValue(I.getArgOperand(1)))); 5291 return nullptr; 5292 } 5293 case Intrinsic::copysign: 5294 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5295 getValue(I.getArgOperand(0)).getValueType(), 5296 getValue(I.getArgOperand(0)), 5297 getValue(I.getArgOperand(1)))); 5298 return nullptr; 5299 case Intrinsic::fma: 5300 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5301 getValue(I.getArgOperand(0)).getValueType(), 5302 getValue(I.getArgOperand(0)), 5303 getValue(I.getArgOperand(1)), 5304 getValue(I.getArgOperand(2)))); 5305 return nullptr; 5306 case Intrinsic::fmuladd: { 5307 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5308 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5309 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5310 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5311 getValue(I.getArgOperand(0)).getValueType(), 5312 getValue(I.getArgOperand(0)), 5313 getValue(I.getArgOperand(1)), 5314 getValue(I.getArgOperand(2)))); 5315 } else { 5316 // TODO: Intrinsic calls should have fast-math-flags. 5317 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5318 getValue(I.getArgOperand(0)).getValueType(), 5319 getValue(I.getArgOperand(0)), 5320 getValue(I.getArgOperand(1))); 5321 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5322 getValue(I.getArgOperand(0)).getValueType(), 5323 Mul, 5324 getValue(I.getArgOperand(2))); 5325 setValue(&I, Add); 5326 } 5327 return nullptr; 5328 } 5329 case Intrinsic::convert_to_fp16: 5330 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5331 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5332 getValue(I.getArgOperand(0)), 5333 DAG.getTargetConstant(0, sdl, 5334 MVT::i32)))); 5335 return nullptr; 5336 case Intrinsic::convert_from_fp16: 5337 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5338 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5339 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5340 getValue(I.getArgOperand(0))))); 5341 return nullptr; 5342 case Intrinsic::pcmarker: { 5343 SDValue Tmp = getValue(I.getArgOperand(0)); 5344 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5345 return nullptr; 5346 } 5347 case Intrinsic::readcyclecounter: { 5348 SDValue Op = getRoot(); 5349 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5350 DAG.getVTList(MVT::i64, MVT::Other), Op); 5351 setValue(&I, Res); 5352 DAG.setRoot(Res.getValue(1)); 5353 return nullptr; 5354 } 5355 case Intrinsic::bitreverse: 5356 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5357 getValue(I.getArgOperand(0)).getValueType(), 5358 getValue(I.getArgOperand(0)))); 5359 return nullptr; 5360 case Intrinsic::bswap: 5361 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5362 getValue(I.getArgOperand(0)).getValueType(), 5363 getValue(I.getArgOperand(0)))); 5364 return nullptr; 5365 case Intrinsic::cttz: { 5366 SDValue Arg = getValue(I.getArgOperand(0)); 5367 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5368 EVT Ty = Arg.getValueType(); 5369 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5370 sdl, Ty, Arg)); 5371 return nullptr; 5372 } 5373 case Intrinsic::ctlz: { 5374 SDValue Arg = getValue(I.getArgOperand(0)); 5375 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5376 EVT Ty = Arg.getValueType(); 5377 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5378 sdl, Ty, Arg)); 5379 return nullptr; 5380 } 5381 case Intrinsic::ctpop: { 5382 SDValue Arg = getValue(I.getArgOperand(0)); 5383 EVT Ty = Arg.getValueType(); 5384 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5385 return nullptr; 5386 } 5387 case Intrinsic::stacksave: { 5388 SDValue Op = getRoot(); 5389 Res = DAG.getNode( 5390 ISD::STACKSAVE, sdl, 5391 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5392 setValue(&I, Res); 5393 DAG.setRoot(Res.getValue(1)); 5394 return nullptr; 5395 } 5396 case Intrinsic::stackrestore: { 5397 Res = getValue(I.getArgOperand(0)); 5398 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5399 return nullptr; 5400 } 5401 case Intrinsic::get_dynamic_area_offset: { 5402 SDValue Op = getRoot(); 5403 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5404 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5405 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5406 // target. 5407 if (PtrTy != ResTy) 5408 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5409 " intrinsic!"); 5410 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5411 Op); 5412 DAG.setRoot(Op); 5413 setValue(&I, Res); 5414 return nullptr; 5415 } 5416 case Intrinsic::stackguard: { 5417 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5418 MachineFunction &MF = DAG.getMachineFunction(); 5419 const Module &M = *MF.getFunction()->getParent(); 5420 SDValue Chain = getRoot(); 5421 if (TLI.useLoadStackGuardNode()) { 5422 Res = getLoadStackGuard(DAG, sdl, Chain); 5423 } else { 5424 const Value *Global = TLI.getSDagStackGuard(M); 5425 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5426 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5427 MachinePointerInfo(Global, 0), Align, 5428 MachineMemOperand::MOVolatile); 5429 } 5430 DAG.setRoot(Chain); 5431 setValue(&I, Res); 5432 return nullptr; 5433 } 5434 case Intrinsic::stackprotector: { 5435 // Emit code into the DAG to store the stack guard onto the stack. 5436 MachineFunction &MF = DAG.getMachineFunction(); 5437 MachineFrameInfo &MFI = MF.getFrameInfo(); 5438 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5439 SDValue Src, Chain = getRoot(); 5440 5441 if (TLI.useLoadStackGuardNode()) 5442 Src = getLoadStackGuard(DAG, sdl, Chain); 5443 else 5444 Src = getValue(I.getArgOperand(0)); // The guard's value. 5445 5446 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5447 5448 int FI = FuncInfo.StaticAllocaMap[Slot]; 5449 MFI.setStackProtectorIndex(FI); 5450 5451 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5452 5453 // Store the stack protector onto the stack. 5454 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5455 DAG.getMachineFunction(), FI), 5456 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5457 setValue(&I, Res); 5458 DAG.setRoot(Res); 5459 return nullptr; 5460 } 5461 case Intrinsic::objectsize: { 5462 // If we don't know by now, we're never going to know. 5463 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5464 5465 assert(CI && "Non-constant type in __builtin_object_size?"); 5466 5467 SDValue Arg = getValue(I.getCalledValue()); 5468 EVT Ty = Arg.getValueType(); 5469 5470 if (CI->isZero()) 5471 Res = DAG.getConstant(-1ULL, sdl, Ty); 5472 else 5473 Res = DAG.getConstant(0, sdl, Ty); 5474 5475 setValue(&I, Res); 5476 return nullptr; 5477 } 5478 case Intrinsic::annotation: 5479 case Intrinsic::ptr_annotation: 5480 case Intrinsic::invariant_group_barrier: 5481 // Drop the intrinsic, but forward the value 5482 setValue(&I, getValue(I.getOperand(0))); 5483 return nullptr; 5484 case Intrinsic::assume: 5485 case Intrinsic::var_annotation: 5486 // Discard annotate attributes and assumptions 5487 return nullptr; 5488 5489 case Intrinsic::init_trampoline: { 5490 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5491 5492 SDValue Ops[6]; 5493 Ops[0] = getRoot(); 5494 Ops[1] = getValue(I.getArgOperand(0)); 5495 Ops[2] = getValue(I.getArgOperand(1)); 5496 Ops[3] = getValue(I.getArgOperand(2)); 5497 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5498 Ops[5] = DAG.getSrcValue(F); 5499 5500 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5501 5502 DAG.setRoot(Res); 5503 return nullptr; 5504 } 5505 case Intrinsic::adjust_trampoline: { 5506 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5507 TLI.getPointerTy(DAG.getDataLayout()), 5508 getValue(I.getArgOperand(0)))); 5509 return nullptr; 5510 } 5511 case Intrinsic::gcroot: { 5512 MachineFunction &MF = DAG.getMachineFunction(); 5513 const Function *F = MF.getFunction(); 5514 (void)F; 5515 assert(F->hasGC() && 5516 "only valid in functions with gc specified, enforced by Verifier"); 5517 assert(GFI && "implied by previous"); 5518 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5519 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5520 5521 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5522 GFI->addStackRoot(FI->getIndex(), TypeMap); 5523 return nullptr; 5524 } 5525 case Intrinsic::gcread: 5526 case Intrinsic::gcwrite: 5527 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5528 case Intrinsic::flt_rounds: 5529 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5530 return nullptr; 5531 5532 case Intrinsic::expect: { 5533 // Just replace __builtin_expect(exp, c) with EXP. 5534 setValue(&I, getValue(I.getArgOperand(0))); 5535 return nullptr; 5536 } 5537 5538 case Intrinsic::debugtrap: 5539 case Intrinsic::trap: { 5540 StringRef TrapFuncName = 5541 I.getAttributes() 5542 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5543 .getValueAsString(); 5544 if (TrapFuncName.empty()) { 5545 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5546 ISD::TRAP : ISD::DEBUGTRAP; 5547 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5548 return nullptr; 5549 } 5550 TargetLowering::ArgListTy Args; 5551 5552 TargetLowering::CallLoweringInfo CLI(DAG); 5553 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5554 CallingConv::C, I.getType(), 5555 DAG.getExternalSymbol(TrapFuncName.data(), 5556 TLI.getPointerTy(DAG.getDataLayout())), 5557 std::move(Args)); 5558 5559 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5560 DAG.setRoot(Result.second); 5561 return nullptr; 5562 } 5563 5564 case Intrinsic::uadd_with_overflow: 5565 case Intrinsic::sadd_with_overflow: 5566 case Intrinsic::usub_with_overflow: 5567 case Intrinsic::ssub_with_overflow: 5568 case Intrinsic::umul_with_overflow: 5569 case Intrinsic::smul_with_overflow: { 5570 ISD::NodeType Op; 5571 switch (Intrinsic) { 5572 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5573 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5574 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5575 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5576 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5577 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5578 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5579 } 5580 SDValue Op1 = getValue(I.getArgOperand(0)); 5581 SDValue Op2 = getValue(I.getArgOperand(1)); 5582 5583 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5584 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5585 return nullptr; 5586 } 5587 case Intrinsic::prefetch: { 5588 SDValue Ops[5]; 5589 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5590 Ops[0] = getRoot(); 5591 Ops[1] = getValue(I.getArgOperand(0)); 5592 Ops[2] = getValue(I.getArgOperand(1)); 5593 Ops[3] = getValue(I.getArgOperand(2)); 5594 Ops[4] = getValue(I.getArgOperand(3)); 5595 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5596 DAG.getVTList(MVT::Other), Ops, 5597 EVT::getIntegerVT(*Context, 8), 5598 MachinePointerInfo(I.getArgOperand(0)), 5599 0, /* align */ 5600 false, /* volatile */ 5601 rw==0, /* read */ 5602 rw==1)); /* write */ 5603 return nullptr; 5604 } 5605 case Intrinsic::lifetime_start: 5606 case Intrinsic::lifetime_end: { 5607 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5608 // Stack coloring is not enabled in O0, discard region information. 5609 if (TM.getOptLevel() == CodeGenOpt::None) 5610 return nullptr; 5611 5612 SmallVector<Value *, 4> Allocas; 5613 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5614 5615 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5616 E = Allocas.end(); Object != E; ++Object) { 5617 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5618 5619 // Could not find an Alloca. 5620 if (!LifetimeObject) 5621 continue; 5622 5623 // First check that the Alloca is static, otherwise it won't have a 5624 // valid frame index. 5625 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5626 if (SI == FuncInfo.StaticAllocaMap.end()) 5627 return nullptr; 5628 5629 int FI = SI->second; 5630 5631 SDValue Ops[2]; 5632 Ops[0] = getRoot(); 5633 Ops[1] = 5634 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5635 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5636 5637 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5638 DAG.setRoot(Res); 5639 } 5640 return nullptr; 5641 } 5642 case Intrinsic::invariant_start: 5643 // Discard region information. 5644 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5645 return nullptr; 5646 case Intrinsic::invariant_end: 5647 // Discard region information. 5648 return nullptr; 5649 case Intrinsic::clear_cache: 5650 return TLI.getClearCacheBuiltinName(); 5651 case Intrinsic::donothing: 5652 // ignore 5653 return nullptr; 5654 case Intrinsic::experimental_stackmap: { 5655 visitStackmap(I); 5656 return nullptr; 5657 } 5658 case Intrinsic::experimental_patchpoint_void: 5659 case Intrinsic::experimental_patchpoint_i64: { 5660 visitPatchpoint(&I); 5661 return nullptr; 5662 } 5663 case Intrinsic::experimental_gc_statepoint: { 5664 LowerStatepoint(ImmutableStatepoint(&I)); 5665 return nullptr; 5666 } 5667 case Intrinsic::experimental_gc_result: { 5668 visitGCResult(cast<GCResultInst>(I)); 5669 return nullptr; 5670 } 5671 case Intrinsic::experimental_gc_relocate: { 5672 visitGCRelocate(cast<GCRelocateInst>(I)); 5673 return nullptr; 5674 } 5675 case Intrinsic::instrprof_increment: 5676 llvm_unreachable("instrprof failed to lower an increment"); 5677 case Intrinsic::instrprof_value_profile: 5678 llvm_unreachable("instrprof failed to lower a value profiling call"); 5679 case Intrinsic::localescape: { 5680 MachineFunction &MF = DAG.getMachineFunction(); 5681 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5682 5683 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5684 // is the same on all targets. 5685 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5686 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5687 if (isa<ConstantPointerNull>(Arg)) 5688 continue; // Skip null pointers. They represent a hole in index space. 5689 AllocaInst *Slot = cast<AllocaInst>(Arg); 5690 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5691 "can only escape static allocas"); 5692 int FI = FuncInfo.StaticAllocaMap[Slot]; 5693 MCSymbol *FrameAllocSym = 5694 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5695 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5696 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5697 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5698 .addSym(FrameAllocSym) 5699 .addFrameIndex(FI); 5700 } 5701 5702 return nullptr; 5703 } 5704 5705 case Intrinsic::localrecover: { 5706 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5707 MachineFunction &MF = DAG.getMachineFunction(); 5708 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5709 5710 // Get the symbol that defines the frame offset. 5711 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5712 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5713 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5714 MCSymbol *FrameAllocSym = 5715 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5716 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5717 5718 // Create a MCSymbol for the label to avoid any target lowering 5719 // that would make this PC relative. 5720 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5721 SDValue OffsetVal = 5722 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5723 5724 // Add the offset to the FP. 5725 Value *FP = I.getArgOperand(1); 5726 SDValue FPVal = getValue(FP); 5727 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5728 setValue(&I, Add); 5729 5730 return nullptr; 5731 } 5732 5733 case Intrinsic::eh_exceptionpointer: 5734 case Intrinsic::eh_exceptioncode: { 5735 // Get the exception pointer vreg, copy from it, and resize it to fit. 5736 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5737 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5738 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5739 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5740 SDValue N = 5741 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5742 if (Intrinsic == Intrinsic::eh_exceptioncode) 5743 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5744 setValue(&I, N); 5745 return nullptr; 5746 } 5747 5748 case Intrinsic::experimental_deoptimize: 5749 LowerDeoptimizeCall(&I); 5750 return nullptr; 5751 } 5752 } 5753 5754 std::pair<SDValue, SDValue> 5755 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5756 const BasicBlock *EHPadBB) { 5757 MachineFunction &MF = DAG.getMachineFunction(); 5758 MachineModuleInfo &MMI = MF.getMMI(); 5759 MCSymbol *BeginLabel = nullptr; 5760 5761 if (EHPadBB) { 5762 // Insert a label before the invoke call to mark the try range. This can be 5763 // used to detect deletion of the invoke via the MachineModuleInfo. 5764 BeginLabel = MMI.getContext().createTempSymbol(); 5765 5766 // For SjLj, keep track of which landing pads go with which invokes 5767 // so as to maintain the ordering of pads in the LSDA. 5768 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5769 if (CallSiteIndex) { 5770 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5771 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5772 5773 // Now that the call site is handled, stop tracking it. 5774 MMI.setCurrentCallSite(0); 5775 } 5776 5777 // Both PendingLoads and PendingExports must be flushed here; 5778 // this call might not return. 5779 (void)getRoot(); 5780 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5781 5782 CLI.setChain(getRoot()); 5783 } 5784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5785 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5786 5787 assert((CLI.IsTailCall || Result.second.getNode()) && 5788 "Non-null chain expected with non-tail call!"); 5789 assert((Result.second.getNode() || !Result.first.getNode()) && 5790 "Null value expected with tail call!"); 5791 5792 if (!Result.second.getNode()) { 5793 // As a special case, a null chain means that a tail call has been emitted 5794 // and the DAG root is already updated. 5795 HasTailCall = true; 5796 5797 // Since there's no actual continuation from this block, nothing can be 5798 // relying on us setting vregs for them. 5799 PendingExports.clear(); 5800 } else { 5801 DAG.setRoot(Result.second); 5802 } 5803 5804 if (EHPadBB) { 5805 // Insert a label at the end of the invoke call to mark the try range. This 5806 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5807 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5808 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5809 5810 // Inform MachineModuleInfo of range. 5811 if (MF.hasEHFunclets()) { 5812 assert(CLI.CS); 5813 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5814 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5815 BeginLabel, EndLabel); 5816 } else { 5817 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5818 } 5819 } 5820 5821 return Result; 5822 } 5823 5824 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5825 bool isTailCall, 5826 const BasicBlock *EHPadBB) { 5827 auto &DL = DAG.getDataLayout(); 5828 FunctionType *FTy = CS.getFunctionType(); 5829 Type *RetTy = CS.getType(); 5830 5831 TargetLowering::ArgListTy Args; 5832 TargetLowering::ArgListEntry Entry; 5833 Args.reserve(CS.arg_size()); 5834 5835 const Value *SwiftErrorVal = nullptr; 5836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5837 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5838 i != e; ++i) { 5839 const Value *V = *i; 5840 5841 // Skip empty types 5842 if (V->getType()->isEmptyTy()) 5843 continue; 5844 5845 SDValue ArgNode = getValue(V); 5846 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5847 5848 // Skip the first return-type Attribute to get to params. 5849 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5850 5851 // Use swifterror virtual register as input to the call. 5852 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5853 SwiftErrorVal = V; 5854 // We find the virtual register for the actual swifterror argument. 5855 // Instead of using the Value, we use the virtual register instead. 5856 Entry.Node = 5857 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5858 EVT(TLI.getPointerTy(DL))); 5859 } 5860 5861 Args.push_back(Entry); 5862 5863 // If we have an explicit sret argument that is an Instruction, (i.e., it 5864 // might point to function-local memory), we can't meaningfully tail-call. 5865 if (Entry.isSRet && isa<Instruction>(V)) 5866 isTailCall = false; 5867 } 5868 5869 // Check if target-independent constraints permit a tail call here. 5870 // Target-dependent constraints are checked within TLI->LowerCallTo. 5871 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5872 isTailCall = false; 5873 5874 // Disable tail calls if there is an swifterror argument. Targets have not 5875 // been updated to support tail calls. 5876 if (TLI.supportSwiftError() && SwiftErrorVal) 5877 isTailCall = false; 5878 5879 TargetLowering::CallLoweringInfo CLI(DAG); 5880 CLI.setDebugLoc(getCurSDLoc()) 5881 .setChain(getRoot()) 5882 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5883 .setTailCall(isTailCall) 5884 .setConvergent(CS.isConvergent()); 5885 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5886 5887 if (Result.first.getNode()) { 5888 const Instruction *Inst = CS.getInstruction(); 5889 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5890 setValue(Inst, Result.first); 5891 } 5892 5893 // The last element of CLI.InVals has the SDValue for swifterror return. 5894 // Here we copy it to a virtual register and update SwiftErrorMap for 5895 // book-keeping. 5896 if (SwiftErrorVal && TLI.supportSwiftError()) { 5897 // Get the last element of InVals. 5898 SDValue Src = CLI.InVals.back(); 5899 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5900 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5901 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5902 // We update the virtual register for the actual swifterror argument. 5903 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5904 DAG.setRoot(CopyNode); 5905 } 5906 } 5907 5908 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5909 /// value is equal or not-equal to zero. 5910 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5911 for (const User *U : V->users()) { 5912 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5913 if (IC->isEquality()) 5914 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5915 if (C->isNullValue()) 5916 continue; 5917 // Unknown instruction. 5918 return false; 5919 } 5920 return true; 5921 } 5922 5923 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5924 Type *LoadTy, 5925 SelectionDAGBuilder &Builder) { 5926 5927 // Check to see if this load can be trivially constant folded, e.g. if the 5928 // input is from a string literal. 5929 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5930 // Cast pointer to the type we really want to load. 5931 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5932 PointerType::getUnqual(LoadTy)); 5933 5934 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5935 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5936 return Builder.getValue(LoadCst); 5937 } 5938 5939 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5940 // still constant memory, the input chain can be the entry node. 5941 SDValue Root; 5942 bool ConstantMemory = false; 5943 5944 // Do not serialize (non-volatile) loads of constant memory with anything. 5945 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5946 Root = Builder.DAG.getEntryNode(); 5947 ConstantMemory = true; 5948 } else { 5949 // Do not serialize non-volatile loads against each other. 5950 Root = Builder.DAG.getRoot(); 5951 } 5952 5953 SDValue Ptr = Builder.getValue(PtrVal); 5954 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5955 Ptr, MachinePointerInfo(PtrVal), 5956 /* Alignment = */ 1); 5957 5958 if (!ConstantMemory) 5959 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5960 return LoadVal; 5961 } 5962 5963 /// processIntegerCallValue - Record the value for an instruction that 5964 /// produces an integer result, converting the type where necessary. 5965 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5966 SDValue Value, 5967 bool IsSigned) { 5968 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5969 I.getType(), true); 5970 if (IsSigned) 5971 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5972 else 5973 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5974 setValue(&I, Value); 5975 } 5976 5977 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5978 /// If so, return true and lower it, otherwise return false and it will be 5979 /// lowered like a normal call. 5980 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5981 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5982 if (I.getNumArgOperands() != 3) 5983 return false; 5984 5985 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5986 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5987 !I.getArgOperand(2)->getType()->isIntegerTy() || 5988 !I.getType()->isIntegerTy()) 5989 return false; 5990 5991 const Value *Size = I.getArgOperand(2); 5992 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5993 if (CSize && CSize->getZExtValue() == 0) { 5994 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5995 I.getType(), true); 5996 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5997 return true; 5998 } 5999 6000 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6001 std::pair<SDValue, SDValue> Res = 6002 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6003 getValue(LHS), getValue(RHS), getValue(Size), 6004 MachinePointerInfo(LHS), 6005 MachinePointerInfo(RHS)); 6006 if (Res.first.getNode()) { 6007 processIntegerCallValue(I, Res.first, true); 6008 PendingLoads.push_back(Res.second); 6009 return true; 6010 } 6011 6012 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6013 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6014 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 6015 bool ActuallyDoIt = true; 6016 MVT LoadVT; 6017 Type *LoadTy; 6018 switch (CSize->getZExtValue()) { 6019 default: 6020 LoadVT = MVT::Other; 6021 LoadTy = nullptr; 6022 ActuallyDoIt = false; 6023 break; 6024 case 2: 6025 LoadVT = MVT::i16; 6026 LoadTy = Type::getInt16Ty(CSize->getContext()); 6027 break; 6028 case 4: 6029 LoadVT = MVT::i32; 6030 LoadTy = Type::getInt32Ty(CSize->getContext()); 6031 break; 6032 case 8: 6033 LoadVT = MVT::i64; 6034 LoadTy = Type::getInt64Ty(CSize->getContext()); 6035 break; 6036 /* 6037 case 16: 6038 LoadVT = MVT::v4i32; 6039 LoadTy = Type::getInt32Ty(CSize->getContext()); 6040 LoadTy = VectorType::get(LoadTy, 4); 6041 break; 6042 */ 6043 } 6044 6045 // This turns into unaligned loads. We only do this if the target natively 6046 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6047 // we'll only produce a small number of byte loads. 6048 6049 // Require that we can find a legal MVT, and only do this if the target 6050 // supports unaligned loads of that type. Expanding into byte loads would 6051 // bloat the code. 6052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6053 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 6054 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6055 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6056 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6057 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6058 // TODO: Check alignment of src and dest ptrs. 6059 if (!TLI.isTypeLegal(LoadVT) || 6060 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 6061 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 6062 ActuallyDoIt = false; 6063 } 6064 6065 if (ActuallyDoIt) { 6066 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 6067 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 6068 6069 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 6070 ISD::SETNE); 6071 processIntegerCallValue(I, Res, false); 6072 return true; 6073 } 6074 } 6075 6076 6077 return false; 6078 } 6079 6080 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 6081 /// form. If so, return true and lower it, otherwise return false and it 6082 /// will be lowered like a normal call. 6083 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6084 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 6085 if (I.getNumArgOperands() != 3) 6086 return false; 6087 6088 const Value *Src = I.getArgOperand(0); 6089 const Value *Char = I.getArgOperand(1); 6090 const Value *Length = I.getArgOperand(2); 6091 if (!Src->getType()->isPointerTy() || 6092 !Char->getType()->isIntegerTy() || 6093 !Length->getType()->isIntegerTy() || 6094 !I.getType()->isPointerTy()) 6095 return false; 6096 6097 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6098 std::pair<SDValue, SDValue> Res = 6099 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6100 getValue(Src), getValue(Char), getValue(Length), 6101 MachinePointerInfo(Src)); 6102 if (Res.first.getNode()) { 6103 setValue(&I, Res.first); 6104 PendingLoads.push_back(Res.second); 6105 return true; 6106 } 6107 6108 return false; 6109 } 6110 6111 /// 6112 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to 6113 /// to adjust the dst pointer by the size of the copied memory. 6114 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6115 6116 // Verify argument count: void *mempcpy(void *, const void *, size_t) 6117 if (I.getNumArgOperands() != 3) 6118 return false; 6119 6120 SDValue Dst = getValue(I.getArgOperand(0)); 6121 SDValue Src = getValue(I.getArgOperand(1)); 6122 SDValue Size = getValue(I.getArgOperand(2)); 6123 6124 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6125 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6126 unsigned Align = std::min(DstAlign, SrcAlign); 6127 if (Align == 0) // Alignment of one or both could not be inferred. 6128 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6129 6130 bool isVol = false; 6131 SDLoc sdl = getCurSDLoc(); 6132 6133 // In the mempcpy context we need to pass in a false value for isTailCall 6134 // because the return pointer needs to be adjusted by the size of 6135 // the copied memory. 6136 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6137 false, /*isTailCall=*/false, 6138 MachinePointerInfo(I.getArgOperand(0)), 6139 MachinePointerInfo(I.getArgOperand(1))); 6140 assert(MC.getNode() != nullptr && 6141 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6142 DAG.setRoot(MC); 6143 6144 // Check if Size needs to be truncated or extended. 6145 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6146 6147 // Adjust return pointer to point just past the last dst byte. 6148 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6149 Dst, Size); 6150 setValue(&I, DstPlusSize); 6151 return true; 6152 } 6153 6154 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 6155 /// optimized form. If so, return true and lower it, otherwise return false 6156 /// and it will be lowered like a normal call. 6157 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6158 // Verify that the prototype makes sense. char *strcpy(char *, char *) 6159 if (I.getNumArgOperands() != 2) 6160 return false; 6161 6162 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6163 if (!Arg0->getType()->isPointerTy() || 6164 !Arg1->getType()->isPointerTy() || 6165 !I.getType()->isPointerTy()) 6166 return false; 6167 6168 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6169 std::pair<SDValue, SDValue> Res = 6170 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6171 getValue(Arg0), getValue(Arg1), 6172 MachinePointerInfo(Arg0), 6173 MachinePointerInfo(Arg1), isStpcpy); 6174 if (Res.first.getNode()) { 6175 setValue(&I, Res.first); 6176 DAG.setRoot(Res.second); 6177 return true; 6178 } 6179 6180 return false; 6181 } 6182 6183 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6184 /// If so, return true and lower it, otherwise return false and it will be 6185 /// lowered like a normal call. 6186 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6187 // Verify that the prototype makes sense. int strcmp(void*,void*) 6188 if (I.getNumArgOperands() != 2) 6189 return false; 6190 6191 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6192 if (!Arg0->getType()->isPointerTy() || 6193 !Arg1->getType()->isPointerTy() || 6194 !I.getType()->isIntegerTy()) 6195 return false; 6196 6197 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6198 std::pair<SDValue, SDValue> Res = 6199 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6200 getValue(Arg0), getValue(Arg1), 6201 MachinePointerInfo(Arg0), 6202 MachinePointerInfo(Arg1)); 6203 if (Res.first.getNode()) { 6204 processIntegerCallValue(I, Res.first, true); 6205 PendingLoads.push_back(Res.second); 6206 return true; 6207 } 6208 6209 return false; 6210 } 6211 6212 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6213 /// form. If so, return true and lower it, otherwise return false and it 6214 /// will be lowered like a normal call. 6215 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6216 // Verify that the prototype makes sense. size_t strlen(char *) 6217 if (I.getNumArgOperands() != 1) 6218 return false; 6219 6220 const Value *Arg0 = I.getArgOperand(0); 6221 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6222 return false; 6223 6224 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6225 std::pair<SDValue, SDValue> Res = 6226 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6227 getValue(Arg0), MachinePointerInfo(Arg0)); 6228 if (Res.first.getNode()) { 6229 processIntegerCallValue(I, Res.first, false); 6230 PendingLoads.push_back(Res.second); 6231 return true; 6232 } 6233 6234 return false; 6235 } 6236 6237 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6238 /// form. If so, return true and lower it, otherwise return false and it 6239 /// will be lowered like a normal call. 6240 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6241 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6242 if (I.getNumArgOperands() != 2) 6243 return false; 6244 6245 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6246 if (!Arg0->getType()->isPointerTy() || 6247 !Arg1->getType()->isIntegerTy() || 6248 !I.getType()->isIntegerTy()) 6249 return false; 6250 6251 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6252 std::pair<SDValue, SDValue> Res = 6253 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6254 getValue(Arg0), getValue(Arg1), 6255 MachinePointerInfo(Arg0)); 6256 if (Res.first.getNode()) { 6257 processIntegerCallValue(I, Res.first, false); 6258 PendingLoads.push_back(Res.second); 6259 return true; 6260 } 6261 6262 return false; 6263 } 6264 6265 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6266 /// operation (as expected), translate it to an SDNode with the specified opcode 6267 /// and return true. 6268 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6269 unsigned Opcode) { 6270 // Sanity check that it really is a unary floating-point call. 6271 if (I.getNumArgOperands() != 1 || 6272 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6273 I.getType() != I.getArgOperand(0)->getType() || 6274 !I.onlyReadsMemory()) 6275 return false; 6276 6277 SDValue Tmp = getValue(I.getArgOperand(0)); 6278 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6279 return true; 6280 } 6281 6282 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6283 /// operation (as expected), translate it to an SDNode with the specified opcode 6284 /// and return true. 6285 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6286 unsigned Opcode) { 6287 // Sanity check that it really is a binary floating-point call. 6288 if (I.getNumArgOperands() != 2 || 6289 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6290 I.getType() != I.getArgOperand(0)->getType() || 6291 I.getType() != I.getArgOperand(1)->getType() || 6292 !I.onlyReadsMemory()) 6293 return false; 6294 6295 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6296 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6297 EVT VT = Tmp0.getValueType(); 6298 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6299 return true; 6300 } 6301 6302 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6303 // Handle inline assembly differently. 6304 if (isa<InlineAsm>(I.getCalledValue())) { 6305 visitInlineAsm(&I); 6306 return; 6307 } 6308 6309 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6310 computeUsesVAFloatArgument(I, MMI); 6311 6312 const char *RenameFn = nullptr; 6313 if (Function *F = I.getCalledFunction()) { 6314 if (F->isDeclaration()) { 6315 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6316 if (unsigned IID = II->getIntrinsicID(F)) { 6317 RenameFn = visitIntrinsicCall(I, IID); 6318 if (!RenameFn) 6319 return; 6320 } 6321 } 6322 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6323 RenameFn = visitIntrinsicCall(I, IID); 6324 if (!RenameFn) 6325 return; 6326 } 6327 } 6328 6329 // Check for well-known libc/libm calls. If the function is internal, it 6330 // can't be a library call. Don't do the check if marked as nobuiltin for 6331 // some reason. 6332 LibFunc::Func Func; 6333 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6334 LibInfo->getLibFunc(F->getName(), Func) && 6335 LibInfo->hasOptimizedCodeGen(Func)) { 6336 switch (Func) { 6337 default: break; 6338 case LibFunc::copysign: 6339 case LibFunc::copysignf: 6340 case LibFunc::copysignl: 6341 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6342 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6343 I.getType() == I.getArgOperand(0)->getType() && 6344 I.getType() == I.getArgOperand(1)->getType() && 6345 I.onlyReadsMemory()) { 6346 SDValue LHS = getValue(I.getArgOperand(0)); 6347 SDValue RHS = getValue(I.getArgOperand(1)); 6348 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6349 LHS.getValueType(), LHS, RHS)); 6350 return; 6351 } 6352 break; 6353 case LibFunc::fabs: 6354 case LibFunc::fabsf: 6355 case LibFunc::fabsl: 6356 if (visitUnaryFloatCall(I, ISD::FABS)) 6357 return; 6358 break; 6359 case LibFunc::fmin: 6360 case LibFunc::fminf: 6361 case LibFunc::fminl: 6362 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6363 return; 6364 break; 6365 case LibFunc::fmax: 6366 case LibFunc::fmaxf: 6367 case LibFunc::fmaxl: 6368 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6369 return; 6370 break; 6371 case LibFunc::sin: 6372 case LibFunc::sinf: 6373 case LibFunc::sinl: 6374 if (visitUnaryFloatCall(I, ISD::FSIN)) 6375 return; 6376 break; 6377 case LibFunc::cos: 6378 case LibFunc::cosf: 6379 case LibFunc::cosl: 6380 if (visitUnaryFloatCall(I, ISD::FCOS)) 6381 return; 6382 break; 6383 case LibFunc::sqrt: 6384 case LibFunc::sqrtf: 6385 case LibFunc::sqrtl: 6386 case LibFunc::sqrt_finite: 6387 case LibFunc::sqrtf_finite: 6388 case LibFunc::sqrtl_finite: 6389 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6390 return; 6391 break; 6392 case LibFunc::floor: 6393 case LibFunc::floorf: 6394 case LibFunc::floorl: 6395 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6396 return; 6397 break; 6398 case LibFunc::nearbyint: 6399 case LibFunc::nearbyintf: 6400 case LibFunc::nearbyintl: 6401 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6402 return; 6403 break; 6404 case LibFunc::ceil: 6405 case LibFunc::ceilf: 6406 case LibFunc::ceill: 6407 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6408 return; 6409 break; 6410 case LibFunc::rint: 6411 case LibFunc::rintf: 6412 case LibFunc::rintl: 6413 if (visitUnaryFloatCall(I, ISD::FRINT)) 6414 return; 6415 break; 6416 case LibFunc::round: 6417 case LibFunc::roundf: 6418 case LibFunc::roundl: 6419 if (visitUnaryFloatCall(I, ISD::FROUND)) 6420 return; 6421 break; 6422 case LibFunc::trunc: 6423 case LibFunc::truncf: 6424 case LibFunc::truncl: 6425 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6426 return; 6427 break; 6428 case LibFunc::log2: 6429 case LibFunc::log2f: 6430 case LibFunc::log2l: 6431 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6432 return; 6433 break; 6434 case LibFunc::exp2: 6435 case LibFunc::exp2f: 6436 case LibFunc::exp2l: 6437 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6438 return; 6439 break; 6440 case LibFunc::memcmp: 6441 if (visitMemCmpCall(I)) 6442 return; 6443 break; 6444 case LibFunc::mempcpy: 6445 if (visitMemPCpyCall(I)) 6446 return; 6447 break; 6448 case LibFunc::memchr: 6449 if (visitMemChrCall(I)) 6450 return; 6451 break; 6452 case LibFunc::strcpy: 6453 if (visitStrCpyCall(I, false)) 6454 return; 6455 break; 6456 case LibFunc::stpcpy: 6457 if (visitStrCpyCall(I, true)) 6458 return; 6459 break; 6460 case LibFunc::strcmp: 6461 if (visitStrCmpCall(I)) 6462 return; 6463 break; 6464 case LibFunc::strlen: 6465 if (visitStrLenCall(I)) 6466 return; 6467 break; 6468 case LibFunc::strnlen: 6469 if (visitStrNLenCall(I)) 6470 return; 6471 break; 6472 } 6473 } 6474 } 6475 6476 SDValue Callee; 6477 if (!RenameFn) 6478 Callee = getValue(I.getCalledValue()); 6479 else 6480 Callee = DAG.getExternalSymbol( 6481 RenameFn, 6482 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6483 6484 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6485 // have to do anything here to lower funclet bundles. 6486 assert(!I.hasOperandBundlesOtherThan( 6487 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6488 "Cannot lower calls with arbitrary operand bundles!"); 6489 6490 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6491 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6492 else 6493 // Check if we can potentially perform a tail call. More detailed checking 6494 // is be done within LowerCallTo, after more information about the call is 6495 // known. 6496 LowerCallTo(&I, Callee, I.isTailCall()); 6497 } 6498 6499 namespace { 6500 6501 /// AsmOperandInfo - This contains information for each constraint that we are 6502 /// lowering. 6503 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6504 public: 6505 /// CallOperand - If this is the result output operand or a clobber 6506 /// this is null, otherwise it is the incoming operand to the CallInst. 6507 /// This gets modified as the asm is processed. 6508 SDValue CallOperand; 6509 6510 /// AssignedRegs - If this is a register or register class operand, this 6511 /// contains the set of register corresponding to the operand. 6512 RegsForValue AssignedRegs; 6513 6514 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6515 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6516 } 6517 6518 /// Whether or not this operand accesses memory 6519 bool hasMemory(const TargetLowering &TLI) const { 6520 // Indirect operand accesses access memory. 6521 if (isIndirect) 6522 return true; 6523 6524 for (const auto &Code : Codes) 6525 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6526 return true; 6527 6528 return false; 6529 } 6530 6531 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6532 /// corresponds to. If there is no Value* for this operand, it returns 6533 /// MVT::Other. 6534 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6535 const DataLayout &DL) const { 6536 if (!CallOperandVal) return MVT::Other; 6537 6538 if (isa<BasicBlock>(CallOperandVal)) 6539 return TLI.getPointerTy(DL); 6540 6541 llvm::Type *OpTy = CallOperandVal->getType(); 6542 6543 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6544 // If this is an indirect operand, the operand is a pointer to the 6545 // accessed type. 6546 if (isIndirect) { 6547 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6548 if (!PtrTy) 6549 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6550 OpTy = PtrTy->getElementType(); 6551 } 6552 6553 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6554 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6555 if (STy->getNumElements() == 1) 6556 OpTy = STy->getElementType(0); 6557 6558 // If OpTy is not a single value, it may be a struct/union that we 6559 // can tile with integers. 6560 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6561 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6562 switch (BitSize) { 6563 default: break; 6564 case 1: 6565 case 8: 6566 case 16: 6567 case 32: 6568 case 64: 6569 case 128: 6570 OpTy = IntegerType::get(Context, BitSize); 6571 break; 6572 } 6573 } 6574 6575 return TLI.getValueType(DL, OpTy, true); 6576 } 6577 }; 6578 6579 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6580 6581 } // end anonymous namespace 6582 6583 /// Make sure that the output operand \p OpInfo and its corresponding input 6584 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6585 /// out). 6586 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6587 SDISelAsmOperandInfo &MatchingOpInfo, 6588 SelectionDAG &DAG) { 6589 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6590 return; 6591 6592 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6593 const auto &TLI = DAG.getTargetLoweringInfo(); 6594 6595 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6596 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6597 OpInfo.ConstraintVT); 6598 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6599 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6600 MatchingOpInfo.ConstraintVT); 6601 if ((OpInfo.ConstraintVT.isInteger() != 6602 MatchingOpInfo.ConstraintVT.isInteger()) || 6603 (MatchRC.second != InputRC.second)) { 6604 // FIXME: error out in a more elegant fashion 6605 report_fatal_error("Unsupported asm: input constraint" 6606 " with a matching output constraint of" 6607 " incompatible type!"); 6608 } 6609 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6610 } 6611 6612 /// Get a direct memory input to behave well as an indirect operand. 6613 /// This may introduce stores, hence the need for a \p Chain. 6614 /// \return The (possibly updated) chain. 6615 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6616 SDISelAsmOperandInfo &OpInfo, 6617 SelectionDAG &DAG) { 6618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6619 6620 // If we don't have an indirect input, put it in the constpool if we can, 6621 // otherwise spill it to a stack slot. 6622 // TODO: This isn't quite right. We need to handle these according to 6623 // the addressing mode that the constraint wants. Also, this may take 6624 // an additional register for the computation and we don't want that 6625 // either. 6626 6627 // If the operand is a float, integer, or vector constant, spill to a 6628 // constant pool entry to get its address. 6629 const Value *OpVal = OpInfo.CallOperandVal; 6630 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6631 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6632 OpInfo.CallOperand = DAG.getConstantPool( 6633 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6634 return Chain; 6635 } 6636 6637 // Otherwise, create a stack slot and emit a store to it before the asm. 6638 Type *Ty = OpVal->getType(); 6639 auto &DL = DAG.getDataLayout(); 6640 uint64_t TySize = DL.getTypeAllocSize(Ty); 6641 unsigned Align = DL.getPrefTypeAlignment(Ty); 6642 MachineFunction &MF = DAG.getMachineFunction(); 6643 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6644 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL)); 6645 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6646 MachinePointerInfo::getFixedStack(MF, SSFI)); 6647 OpInfo.CallOperand = StackSlot; 6648 6649 return Chain; 6650 } 6651 6652 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6653 /// specified operand. We prefer to assign virtual registers, to allow the 6654 /// register allocator to handle the assignment process. However, if the asm 6655 /// uses features that we can't model on machineinstrs, we have SDISel do the 6656 /// allocation. This produces generally horrible, but correct, code. 6657 /// 6658 /// OpInfo describes the operand. 6659 /// 6660 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6661 const SDLoc &DL, 6662 SDISelAsmOperandInfo &OpInfo) { 6663 LLVMContext &Context = *DAG.getContext(); 6664 6665 MachineFunction &MF = DAG.getMachineFunction(); 6666 SmallVector<unsigned, 4> Regs; 6667 6668 // If this is a constraint for a single physreg, or a constraint for a 6669 // register class, find it. 6670 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6671 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6672 OpInfo.ConstraintCode, 6673 OpInfo.ConstraintVT); 6674 6675 unsigned NumRegs = 1; 6676 if (OpInfo.ConstraintVT != MVT::Other) { 6677 // If this is a FP input in an integer register (or visa versa) insert a bit 6678 // cast of the input value. More generally, handle any case where the input 6679 // value disagrees with the register class we plan to stick this in. 6680 if (OpInfo.Type == InlineAsm::isInput && 6681 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6682 // Try to convert to the first EVT that the reg class contains. If the 6683 // types are identical size, use a bitcast to convert (e.g. two differing 6684 // vector types). 6685 MVT RegVT = *PhysReg.second->vt_begin(); 6686 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6687 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6688 RegVT, OpInfo.CallOperand); 6689 OpInfo.ConstraintVT = RegVT; 6690 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6691 // If the input is a FP value and we want it in FP registers, do a 6692 // bitcast to the corresponding integer type. This turns an f64 value 6693 // into i64, which can be passed with two i32 values on a 32-bit 6694 // machine. 6695 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6696 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6697 RegVT, OpInfo.CallOperand); 6698 OpInfo.ConstraintVT = RegVT; 6699 } 6700 } 6701 6702 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6703 } 6704 6705 MVT RegVT; 6706 EVT ValueVT = OpInfo.ConstraintVT; 6707 6708 // If this is a constraint for a specific physical register, like {r17}, 6709 // assign it now. 6710 if (unsigned AssignedReg = PhysReg.first) { 6711 const TargetRegisterClass *RC = PhysReg.second; 6712 if (OpInfo.ConstraintVT == MVT::Other) 6713 ValueVT = *RC->vt_begin(); 6714 6715 // Get the actual register value type. This is important, because the user 6716 // may have asked for (e.g.) the AX register in i32 type. We need to 6717 // remember that AX is actually i16 to get the right extension. 6718 RegVT = *RC->vt_begin(); 6719 6720 // This is a explicit reference to a physical register. 6721 Regs.push_back(AssignedReg); 6722 6723 // If this is an expanded reference, add the rest of the regs to Regs. 6724 if (NumRegs != 1) { 6725 TargetRegisterClass::iterator I = RC->begin(); 6726 for (; *I != AssignedReg; ++I) 6727 assert(I != RC->end() && "Didn't find reg!"); 6728 6729 // Already added the first reg. 6730 --NumRegs; ++I; 6731 for (; NumRegs; --NumRegs, ++I) { 6732 assert(I != RC->end() && "Ran out of registers to allocate!"); 6733 Regs.push_back(*I); 6734 } 6735 } 6736 6737 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6738 return; 6739 } 6740 6741 // Otherwise, if this was a reference to an LLVM register class, create vregs 6742 // for this reference. 6743 if (const TargetRegisterClass *RC = PhysReg.second) { 6744 RegVT = *RC->vt_begin(); 6745 if (OpInfo.ConstraintVT == MVT::Other) 6746 ValueVT = RegVT; 6747 6748 // Create the appropriate number of virtual registers. 6749 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6750 for (; NumRegs; --NumRegs) 6751 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6752 6753 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6754 return; 6755 } 6756 6757 // Otherwise, we couldn't allocate enough registers for this. 6758 } 6759 6760 static unsigned 6761 findMatchingInlineAsmOperand(unsigned OperandNo, 6762 const std::vector<SDValue> &AsmNodeOperands) { 6763 // Scan until we find the definition we already emitted of this operand. 6764 unsigned CurOp = InlineAsm::Op_FirstOperand; 6765 for (; OperandNo; --OperandNo) { 6766 // Advance to the next operand. 6767 unsigned OpFlag = 6768 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6769 assert((InlineAsm::isRegDefKind(OpFlag) || 6770 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6771 InlineAsm::isMemKind(OpFlag)) && 6772 "Skipped past definitions?"); 6773 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6774 } 6775 return CurOp; 6776 } 6777 6778 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6779 /// \return true if it has succeeded, false otherwise 6780 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6781 MVT RegVT, SelectionDAG &DAG) { 6782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6783 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6784 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6785 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6786 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6787 else 6788 return false; 6789 } 6790 return true; 6791 } 6792 6793 class ExtraFlags { 6794 unsigned Flags = 0; 6795 6796 public: 6797 explicit ExtraFlags(ImmutableCallSite CS) { 6798 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6799 if (IA->hasSideEffects()) 6800 Flags |= InlineAsm::Extra_HasSideEffects; 6801 if (IA->isAlignStack()) 6802 Flags |= InlineAsm::Extra_IsAlignStack; 6803 if (CS.isConvergent()) 6804 Flags |= InlineAsm::Extra_IsConvergent; 6805 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6806 } 6807 6808 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6809 // Ideally, we would only check against memory constraints. However, the 6810 // meaning of an Other constraint can be target-specific and we can't easily 6811 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6812 // for Other constraints as well. 6813 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6814 OpInfo.ConstraintType == TargetLowering::C_Other) { 6815 if (OpInfo.Type == InlineAsm::isInput) 6816 Flags |= InlineAsm::Extra_MayLoad; 6817 else if (OpInfo.Type == InlineAsm::isOutput) 6818 Flags |= InlineAsm::Extra_MayStore; 6819 else if (OpInfo.Type == InlineAsm::isClobber) 6820 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6821 } 6822 } 6823 6824 unsigned get() const { return Flags; } 6825 }; 6826 6827 /// visitInlineAsm - Handle a call to an InlineAsm object. 6828 /// 6829 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6830 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6831 6832 /// ConstraintOperands - Information about all of the constraints. 6833 SDISelAsmOperandInfoVector ConstraintOperands; 6834 6835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6836 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6837 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6838 6839 bool hasMemory = false; 6840 6841 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6842 ExtraFlags ExtraInfo(CS); 6843 6844 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6845 unsigned ResNo = 0; // ResNo - The result number of the next output. 6846 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6847 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6848 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6849 6850 MVT OpVT = MVT::Other; 6851 6852 // Compute the value type for each operand. 6853 if (OpInfo.Type == InlineAsm::isInput || 6854 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6855 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6856 6857 // Process the call argument. BasicBlocks are labels, currently appearing 6858 // only in asm's. 6859 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6860 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6861 } else { 6862 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6863 } 6864 6865 OpVT = 6866 OpInfo 6867 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6868 .getSimpleVT(); 6869 } 6870 6871 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6872 // The return value of the call is this value. As such, there is no 6873 // corresponding argument. 6874 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6875 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6876 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6877 STy->getElementType(ResNo)); 6878 } else { 6879 assert(ResNo == 0 && "Asm only has one result!"); 6880 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6881 } 6882 ++ResNo; 6883 } 6884 6885 OpInfo.ConstraintVT = OpVT; 6886 6887 if (!hasMemory) 6888 hasMemory = OpInfo.hasMemory(TLI); 6889 6890 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6891 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6892 auto TargetConstraint = TargetConstraints[i]; 6893 6894 // Compute the constraint code and ConstraintType to use. 6895 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6896 6897 ExtraInfo.update(TargetConstraint); 6898 } 6899 6900 SDValue Chain, Flag; 6901 6902 // We won't need to flush pending loads if this asm doesn't touch 6903 // memory and is nonvolatile. 6904 if (hasMemory || IA->hasSideEffects()) 6905 Chain = getRoot(); 6906 else 6907 Chain = DAG.getRoot(); 6908 6909 // Second pass over the constraints: compute which constraint option to use 6910 // and assign registers to constraints that want a specific physreg. 6911 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6912 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6913 6914 // If this is an output operand with a matching input operand, look up the 6915 // matching input. If their types mismatch, e.g. one is an integer, the 6916 // other is floating point, or their sizes are different, flag it as an 6917 // error. 6918 if (OpInfo.hasMatchingInput()) { 6919 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6920 patchMatchingInput(OpInfo, Input, DAG); 6921 } 6922 6923 // Compute the constraint code and ConstraintType to use. 6924 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6925 6926 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6927 OpInfo.Type == InlineAsm::isClobber) 6928 continue; 6929 6930 // If this is a memory input, and if the operand is not indirect, do what we 6931 // need to to provide an address for the memory input. 6932 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6933 !OpInfo.isIndirect) { 6934 assert((OpInfo.isMultipleAlternative || 6935 (OpInfo.Type == InlineAsm::isInput)) && 6936 "Can only indirectify direct input operands!"); 6937 6938 // Memory operands really want the address of the value. 6939 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 6940 6941 // There is no longer a Value* corresponding to this operand. 6942 OpInfo.CallOperandVal = nullptr; 6943 6944 // It is now an indirect operand. 6945 OpInfo.isIndirect = true; 6946 } 6947 6948 // If this constraint is for a specific register, allocate it before 6949 // anything else. 6950 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6951 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6952 } 6953 6954 // Third pass - Loop over all of the operands, assigning virtual or physregs 6955 // to register class operands. 6956 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6957 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6958 6959 // C_Register operands have already been allocated, Other/Memory don't need 6960 // to be. 6961 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6962 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6963 } 6964 6965 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6966 std::vector<SDValue> AsmNodeOperands; 6967 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6968 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6969 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6970 6971 // If we have a !srcloc metadata node associated with it, we want to attach 6972 // this to the ultimately generated inline asm machineinstr. To do this, we 6973 // pass in the third operand as this (potentially null) inline asm MDNode. 6974 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6975 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6976 6977 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6978 // bits as operand 3. 6979 AsmNodeOperands.push_back(DAG.getTargetConstant( 6980 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6981 6982 // Loop over all of the inputs, copying the operand values into the 6983 // appropriate registers and processing the output regs. 6984 RegsForValue RetValRegs; 6985 6986 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6987 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6988 6989 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6990 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6991 6992 switch (OpInfo.Type) { 6993 case InlineAsm::isOutput: { 6994 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6995 OpInfo.ConstraintType != TargetLowering::C_Register) { 6996 // Memory output, or 'other' output (e.g. 'X' constraint). 6997 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6998 6999 unsigned ConstraintID = 7000 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7001 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7002 "Failed to convert memory constraint code to constraint id."); 7003 7004 // Add information to the INLINEASM node to know about this output. 7005 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7006 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7007 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7008 MVT::i32)); 7009 AsmNodeOperands.push_back(OpInfo.CallOperand); 7010 break; 7011 } 7012 7013 // Otherwise, this is a register or register class output. 7014 7015 // Copy the output from the appropriate register. Find a register that 7016 // we can use. 7017 if (OpInfo.AssignedRegs.Regs.empty()) { 7018 emitInlineAsmError( 7019 CS, "couldn't allocate output register for constraint '" + 7020 Twine(OpInfo.ConstraintCode) + "'"); 7021 return; 7022 } 7023 7024 // If this is an indirect operand, store through the pointer after the 7025 // asm. 7026 if (OpInfo.isIndirect) { 7027 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7028 OpInfo.CallOperandVal)); 7029 } else { 7030 // This is the result value of the call. 7031 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7032 // Concatenate this output onto the outputs list. 7033 RetValRegs.append(OpInfo.AssignedRegs); 7034 } 7035 7036 // Add information to the INLINEASM node to know that this register is 7037 // set. 7038 OpInfo.AssignedRegs 7039 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7040 ? InlineAsm::Kind_RegDefEarlyClobber 7041 : InlineAsm::Kind_RegDef, 7042 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7043 break; 7044 } 7045 case InlineAsm::isInput: { 7046 SDValue InOperandVal = OpInfo.CallOperand; 7047 7048 if (OpInfo.isMatchingInputConstraint()) { 7049 // If this is required to match an output register we have already set, 7050 // just use its register. 7051 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7052 AsmNodeOperands); 7053 unsigned OpFlag = 7054 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7055 if (InlineAsm::isRegDefKind(OpFlag) || 7056 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7057 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7058 if (OpInfo.isIndirect) { 7059 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7060 emitInlineAsmError(CS, "inline asm not supported yet:" 7061 " don't know how to handle tied " 7062 "indirect register inputs"); 7063 return; 7064 } 7065 7066 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7067 SmallVector<unsigned, 4> Regs; 7068 7069 if (!createVirtualRegs(Regs, 7070 InlineAsm::getNumOperandRegisters(OpFlag), 7071 RegVT, DAG)) { 7072 emitInlineAsmError(CS, "inline asm error: This value type register " 7073 "class is not natively supported!"); 7074 return; 7075 } 7076 7077 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7078 7079 SDLoc dl = getCurSDLoc(); 7080 // Use the produced MatchedRegs object to 7081 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7082 Chain, &Flag, CS.getInstruction()); 7083 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7084 true, OpInfo.getMatchedOperand(), dl, 7085 DAG, AsmNodeOperands); 7086 break; 7087 } 7088 7089 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7090 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7091 "Unexpected number of operands"); 7092 // Add information to the INLINEASM node to know about this input. 7093 // See InlineAsm.h isUseOperandTiedToDef. 7094 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7095 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7096 OpInfo.getMatchedOperand()); 7097 AsmNodeOperands.push_back(DAG.getTargetConstant( 7098 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7099 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7100 break; 7101 } 7102 7103 // Treat indirect 'X' constraint as memory. 7104 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7105 OpInfo.isIndirect) 7106 OpInfo.ConstraintType = TargetLowering::C_Memory; 7107 7108 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7109 std::vector<SDValue> Ops; 7110 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7111 Ops, DAG); 7112 if (Ops.empty()) { 7113 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7114 Twine(OpInfo.ConstraintCode) + "'"); 7115 return; 7116 } 7117 7118 // Add information to the INLINEASM node to know about this input. 7119 unsigned ResOpType = 7120 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7121 AsmNodeOperands.push_back(DAG.getTargetConstant( 7122 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7123 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7124 break; 7125 } 7126 7127 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7128 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7129 assert(InOperandVal.getValueType() == 7130 TLI.getPointerTy(DAG.getDataLayout()) && 7131 "Memory operands expect pointer values"); 7132 7133 unsigned ConstraintID = 7134 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7135 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7136 "Failed to convert memory constraint code to constraint id."); 7137 7138 // Add information to the INLINEASM node to know about this input. 7139 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7140 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7141 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7142 getCurSDLoc(), 7143 MVT::i32)); 7144 AsmNodeOperands.push_back(InOperandVal); 7145 break; 7146 } 7147 7148 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7149 OpInfo.ConstraintType == TargetLowering::C_Register) && 7150 "Unknown constraint type!"); 7151 7152 // TODO: Support this. 7153 if (OpInfo.isIndirect) { 7154 emitInlineAsmError( 7155 CS, "Don't know how to handle indirect register inputs yet " 7156 "for constraint '" + 7157 Twine(OpInfo.ConstraintCode) + "'"); 7158 return; 7159 } 7160 7161 // Copy the input into the appropriate registers. 7162 if (OpInfo.AssignedRegs.Regs.empty()) { 7163 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7164 Twine(OpInfo.ConstraintCode) + "'"); 7165 return; 7166 } 7167 7168 SDLoc dl = getCurSDLoc(); 7169 7170 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7171 Chain, &Flag, CS.getInstruction()); 7172 7173 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7174 dl, DAG, AsmNodeOperands); 7175 break; 7176 } 7177 case InlineAsm::isClobber: { 7178 // Add the clobbered value to the operand list, so that the register 7179 // allocator is aware that the physreg got clobbered. 7180 if (!OpInfo.AssignedRegs.Regs.empty()) 7181 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7182 false, 0, getCurSDLoc(), DAG, 7183 AsmNodeOperands); 7184 break; 7185 } 7186 } 7187 } 7188 7189 // Finish up input operands. Set the input chain and add the flag last. 7190 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7191 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7192 7193 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7194 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7195 Flag = Chain.getValue(1); 7196 7197 // If this asm returns a register value, copy the result from that register 7198 // and set it as the value of the call. 7199 if (!RetValRegs.Regs.empty()) { 7200 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7201 Chain, &Flag, CS.getInstruction()); 7202 7203 // FIXME: Why don't we do this for inline asms with MRVs? 7204 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7205 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7206 7207 // If any of the results of the inline asm is a vector, it may have the 7208 // wrong width/num elts. This can happen for register classes that can 7209 // contain multiple different value types. The preg or vreg allocated may 7210 // not have the same VT as was expected. Convert it to the right type 7211 // with bit_convert. 7212 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7213 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7214 ResultType, Val); 7215 7216 } else if (ResultType != Val.getValueType() && 7217 ResultType.isInteger() && Val.getValueType().isInteger()) { 7218 // If a result value was tied to an input value, the computed result may 7219 // have a wider width than the expected result. Extract the relevant 7220 // portion. 7221 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7222 } 7223 7224 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7225 } 7226 7227 setValue(CS.getInstruction(), Val); 7228 // Don't need to use this as a chain in this case. 7229 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7230 return; 7231 } 7232 7233 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7234 7235 // Process indirect outputs, first output all of the flagged copies out of 7236 // physregs. 7237 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7238 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7239 const Value *Ptr = IndirectStoresToEmit[i].second; 7240 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7241 Chain, &Flag, IA); 7242 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7243 } 7244 7245 // Emit the non-flagged stores from the physregs. 7246 SmallVector<SDValue, 8> OutChains; 7247 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7248 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7249 getValue(StoresToEmit[i].second), 7250 MachinePointerInfo(StoresToEmit[i].second)); 7251 OutChains.push_back(Val); 7252 } 7253 7254 if (!OutChains.empty()) 7255 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7256 7257 DAG.setRoot(Chain); 7258 } 7259 7260 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7261 const Twine &Message) { 7262 LLVMContext &Ctx = *DAG.getContext(); 7263 Ctx.emitError(CS.getInstruction(), Message); 7264 7265 // Make sure we leave the DAG in a valid state 7266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7267 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7268 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7269 } 7270 7271 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7272 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7273 MVT::Other, getRoot(), 7274 getValue(I.getArgOperand(0)), 7275 DAG.getSrcValue(I.getArgOperand(0)))); 7276 } 7277 7278 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7280 const DataLayout &DL = DAG.getDataLayout(); 7281 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7282 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7283 DAG.getSrcValue(I.getOperand(0)), 7284 DL.getABITypeAlignment(I.getType())); 7285 setValue(&I, V); 7286 DAG.setRoot(V.getValue(1)); 7287 } 7288 7289 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7290 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7291 MVT::Other, getRoot(), 7292 getValue(I.getArgOperand(0)), 7293 DAG.getSrcValue(I.getArgOperand(0)))); 7294 } 7295 7296 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7297 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7298 MVT::Other, getRoot(), 7299 getValue(I.getArgOperand(0)), 7300 getValue(I.getArgOperand(1)), 7301 DAG.getSrcValue(I.getArgOperand(0)), 7302 DAG.getSrcValue(I.getArgOperand(1)))); 7303 } 7304 7305 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7306 const Instruction &I, 7307 SDValue Op) { 7308 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7309 if (!Range) 7310 return Op; 7311 7312 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7313 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7314 return Op; 7315 7316 APInt Lo = CR.getUnsignedMin(); 7317 if (!Lo.isMinValue()) 7318 return Op; 7319 7320 APInt Hi = CR.getUnsignedMax(); 7321 unsigned Bits = Hi.getActiveBits(); 7322 7323 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7324 7325 SDLoc SL = getCurSDLoc(); 7326 7327 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7328 DAG.getValueType(SmallVT)); 7329 unsigned NumVals = Op.getNode()->getNumValues(); 7330 if (NumVals == 1) 7331 return ZExt; 7332 7333 SmallVector<SDValue, 4> Ops; 7334 7335 Ops.push_back(ZExt); 7336 for (unsigned I = 1; I != NumVals; ++I) 7337 Ops.push_back(Op.getValue(I)); 7338 7339 return DAG.getMergeValues(Ops, SL); 7340 } 7341 7342 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7343 /// the call being lowered. 7344 /// 7345 /// This is a helper for lowering intrinsics that follow a target calling 7346 /// convention or require stack pointer adjustment. Only a subset of the 7347 /// intrinsic's operands need to participate in the calling convention. 7348 void SelectionDAGBuilder::populateCallLoweringInfo( 7349 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7350 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7351 bool IsPatchPoint) { 7352 TargetLowering::ArgListTy Args; 7353 Args.reserve(NumArgs); 7354 7355 // Populate the argument list. 7356 // Attributes for args start at offset 1, after the return attribute. 7357 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7358 ArgI != ArgE; ++ArgI) { 7359 const Value *V = CS->getOperand(ArgI); 7360 7361 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7362 7363 TargetLowering::ArgListEntry Entry; 7364 Entry.Node = getValue(V); 7365 Entry.Ty = V->getType(); 7366 Entry.setAttributes(&CS, AttrI); 7367 Args.push_back(Entry); 7368 } 7369 7370 CLI.setDebugLoc(getCurSDLoc()) 7371 .setChain(getRoot()) 7372 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7373 .setDiscardResult(CS->use_empty()) 7374 .setIsPatchPoint(IsPatchPoint); 7375 } 7376 7377 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7378 /// or patchpoint target node's operand list. 7379 /// 7380 /// Constants are converted to TargetConstants purely as an optimization to 7381 /// avoid constant materialization and register allocation. 7382 /// 7383 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7384 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7385 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7386 /// address materialization and register allocation, but may also be required 7387 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7388 /// alloca in the entry block, then the runtime may assume that the alloca's 7389 /// StackMap location can be read immediately after compilation and that the 7390 /// location is valid at any point during execution (this is similar to the 7391 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7392 /// only available in a register, then the runtime would need to trap when 7393 /// execution reaches the StackMap in order to read the alloca's location. 7394 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7395 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7396 SelectionDAGBuilder &Builder) { 7397 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7398 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7399 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7400 Ops.push_back( 7401 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7402 Ops.push_back( 7403 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7404 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7405 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7406 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7407 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7408 } else 7409 Ops.push_back(OpVal); 7410 } 7411 } 7412 7413 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7414 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7415 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7416 // [live variables...]) 7417 7418 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7419 7420 SDValue Chain, InFlag, Callee, NullPtr; 7421 SmallVector<SDValue, 32> Ops; 7422 7423 SDLoc DL = getCurSDLoc(); 7424 Callee = getValue(CI.getCalledValue()); 7425 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7426 7427 // The stackmap intrinsic only records the live variables (the arguemnts 7428 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7429 // intrinsic, this won't be lowered to a function call. This means we don't 7430 // have to worry about calling conventions and target specific lowering code. 7431 // Instead we perform the call lowering right here. 7432 // 7433 // chain, flag = CALLSEQ_START(chain, 0) 7434 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7435 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7436 // 7437 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7438 InFlag = Chain.getValue(1); 7439 7440 // Add the <id> and <numBytes> constants. 7441 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7442 Ops.push_back(DAG.getTargetConstant( 7443 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7444 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7445 Ops.push_back(DAG.getTargetConstant( 7446 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7447 MVT::i32)); 7448 7449 // Push live variables for the stack map. 7450 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7451 7452 // We are not pushing any register mask info here on the operands list, 7453 // because the stackmap doesn't clobber anything. 7454 7455 // Push the chain and the glue flag. 7456 Ops.push_back(Chain); 7457 Ops.push_back(InFlag); 7458 7459 // Create the STACKMAP node. 7460 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7461 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7462 Chain = SDValue(SM, 0); 7463 InFlag = Chain.getValue(1); 7464 7465 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7466 7467 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7468 7469 // Set the root to the target-lowered call chain. 7470 DAG.setRoot(Chain); 7471 7472 // Inform the Frame Information that we have a stackmap in this function. 7473 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7474 } 7475 7476 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7477 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7478 const BasicBlock *EHPadBB) { 7479 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7480 // i32 <numBytes>, 7481 // i8* <target>, 7482 // i32 <numArgs>, 7483 // [Args...], 7484 // [live variables...]) 7485 7486 CallingConv::ID CC = CS.getCallingConv(); 7487 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7488 bool HasDef = !CS->getType()->isVoidTy(); 7489 SDLoc dl = getCurSDLoc(); 7490 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7491 7492 // Handle immediate and symbolic callees. 7493 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7494 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7495 /*isTarget=*/true); 7496 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7497 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7498 SDLoc(SymbolicCallee), 7499 SymbolicCallee->getValueType(0)); 7500 7501 // Get the real number of arguments participating in the call <numArgs> 7502 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7503 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7504 7505 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7506 // Intrinsics include all meta-operands up to but not including CC. 7507 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7508 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7509 "Not enough arguments provided to the patchpoint intrinsic"); 7510 7511 // For AnyRegCC the arguments are lowered later on manually. 7512 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7513 Type *ReturnTy = 7514 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7515 7516 TargetLowering::CallLoweringInfo CLI(DAG); 7517 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7518 true); 7519 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7520 7521 SDNode *CallEnd = Result.second.getNode(); 7522 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7523 CallEnd = CallEnd->getOperand(0).getNode(); 7524 7525 /// Get a call instruction from the call sequence chain. 7526 /// Tail calls are not allowed. 7527 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7528 "Expected a callseq node."); 7529 SDNode *Call = CallEnd->getOperand(0).getNode(); 7530 bool HasGlue = Call->getGluedNode(); 7531 7532 // Replace the target specific call node with the patchable intrinsic. 7533 SmallVector<SDValue, 8> Ops; 7534 7535 // Add the <id> and <numBytes> constants. 7536 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7537 Ops.push_back(DAG.getTargetConstant( 7538 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7539 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7540 Ops.push_back(DAG.getTargetConstant( 7541 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7542 MVT::i32)); 7543 7544 // Add the callee. 7545 Ops.push_back(Callee); 7546 7547 // Adjust <numArgs> to account for any arguments that have been passed on the 7548 // stack instead. 7549 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7550 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7551 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7552 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7553 7554 // Add the calling convention 7555 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7556 7557 // Add the arguments we omitted previously. The register allocator should 7558 // place these in any free register. 7559 if (IsAnyRegCC) 7560 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7561 Ops.push_back(getValue(CS.getArgument(i))); 7562 7563 // Push the arguments from the call instruction up to the register mask. 7564 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7565 Ops.append(Call->op_begin() + 2, e); 7566 7567 // Push live variables for the stack map. 7568 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7569 7570 // Push the register mask info. 7571 if (HasGlue) 7572 Ops.push_back(*(Call->op_end()-2)); 7573 else 7574 Ops.push_back(*(Call->op_end()-1)); 7575 7576 // Push the chain (this is originally the first operand of the call, but 7577 // becomes now the last or second to last operand). 7578 Ops.push_back(*(Call->op_begin())); 7579 7580 // Push the glue flag (last operand). 7581 if (HasGlue) 7582 Ops.push_back(*(Call->op_end()-1)); 7583 7584 SDVTList NodeTys; 7585 if (IsAnyRegCC && HasDef) { 7586 // Create the return types based on the intrinsic definition 7587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7588 SmallVector<EVT, 3> ValueVTs; 7589 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7590 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7591 7592 // There is always a chain and a glue type at the end 7593 ValueVTs.push_back(MVT::Other); 7594 ValueVTs.push_back(MVT::Glue); 7595 NodeTys = DAG.getVTList(ValueVTs); 7596 } else 7597 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7598 7599 // Replace the target specific call node with a PATCHPOINT node. 7600 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7601 dl, NodeTys, Ops); 7602 7603 // Update the NodeMap. 7604 if (HasDef) { 7605 if (IsAnyRegCC) 7606 setValue(CS.getInstruction(), SDValue(MN, 0)); 7607 else 7608 setValue(CS.getInstruction(), Result.first); 7609 } 7610 7611 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7612 // call sequence. Furthermore the location of the chain and glue can change 7613 // when the AnyReg calling convention is used and the intrinsic returns a 7614 // value. 7615 if (IsAnyRegCC && HasDef) { 7616 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7617 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7618 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7619 } else 7620 DAG.ReplaceAllUsesWith(Call, MN); 7621 DAG.DeleteNode(Call); 7622 7623 // Inform the Frame Information that we have a patchpoint in this function. 7624 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7625 } 7626 7627 /// Returns an AttributeSet representing the attributes applied to the return 7628 /// value of the given call. 7629 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7630 SmallVector<Attribute::AttrKind, 2> Attrs; 7631 if (CLI.RetSExt) 7632 Attrs.push_back(Attribute::SExt); 7633 if (CLI.RetZExt) 7634 Attrs.push_back(Attribute::ZExt); 7635 if (CLI.IsInReg) 7636 Attrs.push_back(Attribute::InReg); 7637 7638 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7639 Attrs); 7640 } 7641 7642 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7643 /// implementation, which just calls LowerCall. 7644 /// FIXME: When all targets are 7645 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7646 std::pair<SDValue, SDValue> 7647 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7648 // Handle the incoming return values from the call. 7649 CLI.Ins.clear(); 7650 Type *OrigRetTy = CLI.RetTy; 7651 SmallVector<EVT, 4> RetTys; 7652 SmallVector<uint64_t, 4> Offsets; 7653 auto &DL = CLI.DAG.getDataLayout(); 7654 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7655 7656 SmallVector<ISD::OutputArg, 4> Outs; 7657 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7658 7659 bool CanLowerReturn = 7660 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7661 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7662 7663 SDValue DemoteStackSlot; 7664 int DemoteStackIdx = -100; 7665 if (!CanLowerReturn) { 7666 // FIXME: equivalent assert? 7667 // assert(!CS.hasInAllocaArgument() && 7668 // "sret demotion is incompatible with inalloca"); 7669 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7670 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7671 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7672 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7673 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7674 7675 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7676 ArgListEntry Entry; 7677 Entry.Node = DemoteStackSlot; 7678 Entry.Ty = StackSlotPtrType; 7679 Entry.isSExt = false; 7680 Entry.isZExt = false; 7681 Entry.isInReg = false; 7682 Entry.isSRet = true; 7683 Entry.isNest = false; 7684 Entry.isByVal = false; 7685 Entry.isReturned = false; 7686 Entry.isSwiftSelf = false; 7687 Entry.isSwiftError = false; 7688 Entry.Alignment = Align; 7689 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7690 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7691 7692 // sret demotion isn't compatible with tail-calls, since the sret argument 7693 // points into the callers stack frame. 7694 CLI.IsTailCall = false; 7695 } else { 7696 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7697 EVT VT = RetTys[I]; 7698 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7699 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7700 for (unsigned i = 0; i != NumRegs; ++i) { 7701 ISD::InputArg MyFlags; 7702 MyFlags.VT = RegisterVT; 7703 MyFlags.ArgVT = VT; 7704 MyFlags.Used = CLI.IsReturnValueUsed; 7705 if (CLI.RetSExt) 7706 MyFlags.Flags.setSExt(); 7707 if (CLI.RetZExt) 7708 MyFlags.Flags.setZExt(); 7709 if (CLI.IsInReg) 7710 MyFlags.Flags.setInReg(); 7711 CLI.Ins.push_back(MyFlags); 7712 } 7713 } 7714 } 7715 7716 // We push in swifterror return as the last element of CLI.Ins. 7717 ArgListTy &Args = CLI.getArgs(); 7718 if (supportSwiftError()) { 7719 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7720 if (Args[i].isSwiftError) { 7721 ISD::InputArg MyFlags; 7722 MyFlags.VT = getPointerTy(DL); 7723 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7724 MyFlags.Flags.setSwiftError(); 7725 CLI.Ins.push_back(MyFlags); 7726 } 7727 } 7728 } 7729 7730 // Handle all of the outgoing arguments. 7731 CLI.Outs.clear(); 7732 CLI.OutVals.clear(); 7733 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7734 SmallVector<EVT, 4> ValueVTs; 7735 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7736 Type *FinalType = Args[i].Ty; 7737 if (Args[i].isByVal) 7738 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7739 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7740 FinalType, CLI.CallConv, CLI.IsVarArg); 7741 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7742 ++Value) { 7743 EVT VT = ValueVTs[Value]; 7744 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7745 SDValue Op = SDValue(Args[i].Node.getNode(), 7746 Args[i].Node.getResNo() + Value); 7747 ISD::ArgFlagsTy Flags; 7748 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7749 7750 if (Args[i].isZExt) 7751 Flags.setZExt(); 7752 if (Args[i].isSExt) 7753 Flags.setSExt(); 7754 if (Args[i].isInReg) { 7755 // If we are using vectorcall calling convention, a structure that is 7756 // passed InReg - is surely an HVA 7757 if (CLI.CallConv == CallingConv::X86_VectorCall && 7758 isa<StructType>(FinalType)) { 7759 // The first value of a structure is marked 7760 if (0 == Value) 7761 Flags.setHvaStart(); 7762 Flags.setHva(); 7763 } 7764 // Set InReg Flag 7765 Flags.setInReg(); 7766 } 7767 if (Args[i].isSRet) 7768 Flags.setSRet(); 7769 if (Args[i].isSwiftSelf) 7770 Flags.setSwiftSelf(); 7771 if (Args[i].isSwiftError) 7772 Flags.setSwiftError(); 7773 if (Args[i].isByVal) 7774 Flags.setByVal(); 7775 if (Args[i].isInAlloca) { 7776 Flags.setInAlloca(); 7777 // Set the byval flag for CCAssignFn callbacks that don't know about 7778 // inalloca. This way we can know how many bytes we should've allocated 7779 // and how many bytes a callee cleanup function will pop. If we port 7780 // inalloca to more targets, we'll have to add custom inalloca handling 7781 // in the various CC lowering callbacks. 7782 Flags.setByVal(); 7783 } 7784 if (Args[i].isByVal || Args[i].isInAlloca) { 7785 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7786 Type *ElementTy = Ty->getElementType(); 7787 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7788 // For ByVal, alignment should come from FE. BE will guess if this 7789 // info is not there but there are cases it cannot get right. 7790 unsigned FrameAlign; 7791 if (Args[i].Alignment) 7792 FrameAlign = Args[i].Alignment; 7793 else 7794 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7795 Flags.setByValAlign(FrameAlign); 7796 } 7797 if (Args[i].isNest) 7798 Flags.setNest(); 7799 if (NeedsRegBlock) 7800 Flags.setInConsecutiveRegs(); 7801 Flags.setOrigAlign(OriginalAlignment); 7802 7803 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7804 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7805 SmallVector<SDValue, 4> Parts(NumParts); 7806 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7807 7808 if (Args[i].isSExt) 7809 ExtendKind = ISD::SIGN_EXTEND; 7810 else if (Args[i].isZExt) 7811 ExtendKind = ISD::ZERO_EXTEND; 7812 7813 // Conservatively only handle 'returned' on non-vectors for now 7814 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7815 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7816 "unexpected use of 'returned'"); 7817 // Before passing 'returned' to the target lowering code, ensure that 7818 // either the register MVT and the actual EVT are the same size or that 7819 // the return value and argument are extended in the same way; in these 7820 // cases it's safe to pass the argument register value unchanged as the 7821 // return register value (although it's at the target's option whether 7822 // to do so) 7823 // TODO: allow code generation to take advantage of partially preserved 7824 // registers rather than clobbering the entire register when the 7825 // parameter extension method is not compatible with the return 7826 // extension method 7827 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7828 (ExtendKind != ISD::ANY_EXTEND && 7829 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7830 Flags.setReturned(); 7831 } 7832 7833 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7834 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7835 7836 for (unsigned j = 0; j != NumParts; ++j) { 7837 // if it isn't first piece, alignment must be 1 7838 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7839 i < CLI.NumFixedArgs, 7840 i, j*Parts[j].getValueType().getStoreSize()); 7841 if (NumParts > 1 && j == 0) 7842 MyFlags.Flags.setSplit(); 7843 else if (j != 0) { 7844 MyFlags.Flags.setOrigAlign(1); 7845 if (j == NumParts - 1) 7846 MyFlags.Flags.setSplitEnd(); 7847 } 7848 7849 CLI.Outs.push_back(MyFlags); 7850 CLI.OutVals.push_back(Parts[j]); 7851 } 7852 7853 if (NeedsRegBlock && Value == NumValues - 1) 7854 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7855 } 7856 } 7857 7858 SmallVector<SDValue, 4> InVals; 7859 CLI.Chain = LowerCall(CLI, InVals); 7860 7861 // Update CLI.InVals to use outside of this function. 7862 CLI.InVals = InVals; 7863 7864 // Verify that the target's LowerCall behaved as expected. 7865 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7866 "LowerCall didn't return a valid chain!"); 7867 assert((!CLI.IsTailCall || InVals.empty()) && 7868 "LowerCall emitted a return value for a tail call!"); 7869 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7870 "LowerCall didn't emit the correct number of values!"); 7871 7872 // For a tail call, the return value is merely live-out and there aren't 7873 // any nodes in the DAG representing it. Return a special value to 7874 // indicate that a tail call has been emitted and no more Instructions 7875 // should be processed in the current block. 7876 if (CLI.IsTailCall) { 7877 CLI.DAG.setRoot(CLI.Chain); 7878 return std::make_pair(SDValue(), SDValue()); 7879 } 7880 7881 #ifndef NDEBUG 7882 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7883 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7884 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7885 "LowerCall emitted a value with the wrong type!"); 7886 } 7887 #endif 7888 7889 SmallVector<SDValue, 4> ReturnValues; 7890 if (!CanLowerReturn) { 7891 // The instruction result is the result of loading from the 7892 // hidden sret parameter. 7893 SmallVector<EVT, 1> PVTs; 7894 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7895 7896 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7897 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7898 EVT PtrVT = PVTs[0]; 7899 7900 unsigned NumValues = RetTys.size(); 7901 ReturnValues.resize(NumValues); 7902 SmallVector<SDValue, 4> Chains(NumValues); 7903 7904 // An aggregate return value cannot wrap around the address space, so 7905 // offsets to its parts don't wrap either. 7906 SDNodeFlags Flags; 7907 Flags.setNoUnsignedWrap(true); 7908 7909 for (unsigned i = 0; i < NumValues; ++i) { 7910 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7911 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7912 PtrVT), &Flags); 7913 SDValue L = CLI.DAG.getLoad( 7914 RetTys[i], CLI.DL, CLI.Chain, Add, 7915 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7916 DemoteStackIdx, Offsets[i]), 7917 /* Alignment = */ 1); 7918 ReturnValues[i] = L; 7919 Chains[i] = L.getValue(1); 7920 } 7921 7922 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7923 } else { 7924 // Collect the legal value parts into potentially illegal values 7925 // that correspond to the original function's return values. 7926 Optional<ISD::NodeType> AssertOp; 7927 if (CLI.RetSExt) 7928 AssertOp = ISD::AssertSext; 7929 else if (CLI.RetZExt) 7930 AssertOp = ISD::AssertZext; 7931 unsigned CurReg = 0; 7932 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7933 EVT VT = RetTys[I]; 7934 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7935 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7936 7937 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7938 NumRegs, RegisterVT, VT, nullptr, 7939 AssertOp)); 7940 CurReg += NumRegs; 7941 } 7942 7943 // For a function returning void, there is no return value. We can't create 7944 // such a node, so we just return a null return value in that case. In 7945 // that case, nothing will actually look at the value. 7946 if (ReturnValues.empty()) 7947 return std::make_pair(SDValue(), CLI.Chain); 7948 } 7949 7950 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7951 CLI.DAG.getVTList(RetTys), ReturnValues); 7952 return std::make_pair(Res, CLI.Chain); 7953 } 7954 7955 void TargetLowering::LowerOperationWrapper(SDNode *N, 7956 SmallVectorImpl<SDValue> &Results, 7957 SelectionDAG &DAG) const { 7958 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7959 Results.push_back(Res); 7960 } 7961 7962 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7963 llvm_unreachable("LowerOperation not implemented for this target!"); 7964 } 7965 7966 void 7967 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7968 SDValue Op = getNonRegisterValue(V); 7969 assert((Op.getOpcode() != ISD::CopyFromReg || 7970 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7971 "Copy from a reg to the same reg!"); 7972 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7973 7974 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7975 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7976 V->getType()); 7977 SDValue Chain = DAG.getEntryNode(); 7978 7979 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7980 FuncInfo.PreferredExtendType.end()) 7981 ? ISD::ANY_EXTEND 7982 : FuncInfo.PreferredExtendType[V]; 7983 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7984 PendingExports.push_back(Chain); 7985 } 7986 7987 #include "llvm/CodeGen/SelectionDAGISel.h" 7988 7989 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7990 /// entry block, return true. This includes arguments used by switches, since 7991 /// the switch may expand into multiple basic blocks. 7992 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7993 // With FastISel active, we may be splitting blocks, so force creation 7994 // of virtual registers for all non-dead arguments. 7995 if (FastISel) 7996 return A->use_empty(); 7997 7998 const BasicBlock &Entry = A->getParent()->front(); 7999 for (const User *U : A->users()) 8000 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8001 return false; // Use not in entry block. 8002 8003 return true; 8004 } 8005 8006 void SelectionDAGISel::LowerArguments(const Function &F) { 8007 SelectionDAG &DAG = SDB->DAG; 8008 SDLoc dl = SDB->getCurSDLoc(); 8009 const DataLayout &DL = DAG.getDataLayout(); 8010 SmallVector<ISD::InputArg, 16> Ins; 8011 8012 if (!FuncInfo->CanLowerReturn) { 8013 // Put in an sret pointer parameter before all the other parameters. 8014 SmallVector<EVT, 1> ValueVTs; 8015 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8016 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8017 8018 // NOTE: Assuming that a pointer will never break down to more than one VT 8019 // or one register. 8020 ISD::ArgFlagsTy Flags; 8021 Flags.setSRet(); 8022 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8023 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8024 ISD::InputArg::NoArgIndex, 0); 8025 Ins.push_back(RetArg); 8026 } 8027 8028 // Set up the incoming argument description vector. 8029 unsigned Idx = 1; 8030 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 8031 I != E; ++I, ++Idx) { 8032 SmallVector<EVT, 4> ValueVTs; 8033 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 8034 bool isArgValueUsed = !I->use_empty(); 8035 unsigned PartBase = 0; 8036 Type *FinalType = I->getType(); 8037 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8038 FinalType = cast<PointerType>(FinalType)->getElementType(); 8039 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8040 FinalType, F.getCallingConv(), F.isVarArg()); 8041 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8042 Value != NumValues; ++Value) { 8043 EVT VT = ValueVTs[Value]; 8044 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8045 ISD::ArgFlagsTy Flags; 8046 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 8047 8048 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8049 Flags.setZExt(); 8050 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8051 Flags.setSExt(); 8052 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) { 8053 // If we are using vectorcall calling convention, a structure that is 8054 // passed InReg - is surely an HVA 8055 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8056 isa<StructType>(I->getType())) { 8057 // The first value of a structure is marked 8058 if (0 == Value) 8059 Flags.setHvaStart(); 8060 Flags.setHva(); 8061 } 8062 // Set InReg Flag 8063 Flags.setInReg(); 8064 } 8065 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 8066 Flags.setSRet(); 8067 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 8068 Flags.setSwiftSelf(); 8069 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 8070 Flags.setSwiftError(); 8071 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8072 Flags.setByVal(); 8073 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 8074 Flags.setInAlloca(); 8075 // Set the byval flag for CCAssignFn callbacks that don't know about 8076 // inalloca. This way we can know how many bytes we should've allocated 8077 // and how many bytes a callee cleanup function will pop. If we port 8078 // inalloca to more targets, we'll have to add custom inalloca handling 8079 // in the various CC lowering callbacks. 8080 Flags.setByVal(); 8081 } 8082 if (F.getCallingConv() == CallingConv::X86_INTR) { 8083 // IA Interrupt passes frame (1st parameter) by value in the stack. 8084 if (Idx == 1) 8085 Flags.setByVal(); 8086 } 8087 if (Flags.isByVal() || Flags.isInAlloca()) { 8088 PointerType *Ty = cast<PointerType>(I->getType()); 8089 Type *ElementTy = Ty->getElementType(); 8090 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8091 // For ByVal, alignment should be passed from FE. BE will guess if 8092 // this info is not there but there are cases it cannot get right. 8093 unsigned FrameAlign; 8094 if (F.getParamAlignment(Idx)) 8095 FrameAlign = F.getParamAlignment(Idx); 8096 else 8097 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8098 Flags.setByValAlign(FrameAlign); 8099 } 8100 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 8101 Flags.setNest(); 8102 if (NeedsRegBlock) 8103 Flags.setInConsecutiveRegs(); 8104 Flags.setOrigAlign(OriginalAlignment); 8105 8106 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8107 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8108 for (unsigned i = 0; i != NumRegs; ++i) { 8109 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8110 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 8111 if (NumRegs > 1 && i == 0) 8112 MyFlags.Flags.setSplit(); 8113 // if it isn't first piece, alignment must be 1 8114 else if (i > 0) { 8115 MyFlags.Flags.setOrigAlign(1); 8116 if (i == NumRegs - 1) 8117 MyFlags.Flags.setSplitEnd(); 8118 } 8119 Ins.push_back(MyFlags); 8120 } 8121 if (NeedsRegBlock && Value == NumValues - 1) 8122 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8123 PartBase += VT.getStoreSize(); 8124 } 8125 } 8126 8127 // Call the target to set up the argument values. 8128 SmallVector<SDValue, 8> InVals; 8129 SDValue NewRoot = TLI->LowerFormalArguments( 8130 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8131 8132 // Verify that the target's LowerFormalArguments behaved as expected. 8133 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8134 "LowerFormalArguments didn't return a valid chain!"); 8135 assert(InVals.size() == Ins.size() && 8136 "LowerFormalArguments didn't emit the correct number of values!"); 8137 DEBUG({ 8138 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8139 assert(InVals[i].getNode() && 8140 "LowerFormalArguments emitted a null value!"); 8141 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8142 "LowerFormalArguments emitted a value with the wrong type!"); 8143 } 8144 }); 8145 8146 // Update the DAG with the new chain value resulting from argument lowering. 8147 DAG.setRoot(NewRoot); 8148 8149 // Set up the argument values. 8150 unsigned i = 0; 8151 Idx = 1; 8152 if (!FuncInfo->CanLowerReturn) { 8153 // Create a virtual register for the sret pointer, and put in a copy 8154 // from the sret argument into it. 8155 SmallVector<EVT, 1> ValueVTs; 8156 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8157 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8158 MVT VT = ValueVTs[0].getSimpleVT(); 8159 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8160 Optional<ISD::NodeType> AssertOp = None; 8161 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8162 RegVT, VT, nullptr, AssertOp); 8163 8164 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8165 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8166 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8167 FuncInfo->DemoteRegister = SRetReg; 8168 NewRoot = 8169 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8170 DAG.setRoot(NewRoot); 8171 8172 // i indexes lowered arguments. Bump it past the hidden sret argument. 8173 // Idx indexes LLVM arguments. Don't touch it. 8174 ++i; 8175 } 8176 8177 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 8178 ++I, ++Idx) { 8179 SmallVector<SDValue, 4> ArgValues; 8180 SmallVector<EVT, 4> ValueVTs; 8181 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 8182 unsigned NumValues = ValueVTs.size(); 8183 8184 // If this argument is unused then remember its value. It is used to generate 8185 // debugging information. 8186 bool isSwiftErrorArg = 8187 TLI->supportSwiftError() && 8188 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError); 8189 if (I->use_empty() && NumValues && !isSwiftErrorArg) { 8190 SDB->setUnusedArgValue(&*I, InVals[i]); 8191 8192 // Also remember any frame index for use in FastISel. 8193 if (FrameIndexSDNode *FI = 8194 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8195 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8196 } 8197 8198 for (unsigned Val = 0; Val != NumValues; ++Val) { 8199 EVT VT = ValueVTs[Val]; 8200 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8201 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8202 8203 // Even an apparant 'unused' swifterror argument needs to be returned. So 8204 // we do generate a copy for it that can be used on return from the 8205 // function. 8206 if (!I->use_empty() || isSwiftErrorArg) { 8207 Optional<ISD::NodeType> AssertOp; 8208 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8209 AssertOp = ISD::AssertSext; 8210 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8211 AssertOp = ISD::AssertZext; 8212 8213 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 8214 NumParts, PartVT, VT, 8215 nullptr, AssertOp)); 8216 } 8217 8218 i += NumParts; 8219 } 8220 8221 // We don't need to do anything else for unused arguments. 8222 if (ArgValues.empty()) 8223 continue; 8224 8225 // Note down frame index. 8226 if (FrameIndexSDNode *FI = 8227 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8228 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8229 8230 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8231 SDB->getCurSDLoc()); 8232 8233 SDB->setValue(&*I, Res); 8234 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8235 if (LoadSDNode *LNode = 8236 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8237 if (FrameIndexSDNode *FI = 8238 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8239 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8240 } 8241 8242 // Update the SwiftErrorVRegDefMap. 8243 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8244 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8245 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8246 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8247 FuncInfo->SwiftErrorArg, Reg); 8248 } 8249 8250 // If this argument is live outside of the entry block, insert a copy from 8251 // wherever we got it to the vreg that other BB's will reference it as. 8252 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8253 // If we can, though, try to skip creating an unnecessary vreg. 8254 // FIXME: This isn't very clean... it would be nice to make this more 8255 // general. It's also subtly incompatible with the hacks FastISel 8256 // uses with vregs. 8257 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8258 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8259 FuncInfo->ValueMap[&*I] = Reg; 8260 continue; 8261 } 8262 } 8263 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8264 FuncInfo->InitializeRegForValue(&*I); 8265 SDB->CopyToExportRegsIfNeeded(&*I); 8266 } 8267 } 8268 8269 assert(i == InVals.size() && "Argument register count mismatch!"); 8270 8271 // Finally, if the target has anything special to do, allow it to do so. 8272 EmitFunctionEntryCode(); 8273 } 8274 8275 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8276 /// ensure constants are generated when needed. Remember the virtual registers 8277 /// that need to be added to the Machine PHI nodes as input. We cannot just 8278 /// directly add them, because expansion might result in multiple MBB's for one 8279 /// BB. As such, the start of the BB might correspond to a different MBB than 8280 /// the end. 8281 /// 8282 void 8283 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8284 const TerminatorInst *TI = LLVMBB->getTerminator(); 8285 8286 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8287 8288 // Check PHI nodes in successors that expect a value to be available from this 8289 // block. 8290 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8291 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8292 if (!isa<PHINode>(SuccBB->begin())) continue; 8293 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8294 8295 // If this terminator has multiple identical successors (common for 8296 // switches), only handle each succ once. 8297 if (!SuccsHandled.insert(SuccMBB).second) 8298 continue; 8299 8300 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8301 8302 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8303 // nodes and Machine PHI nodes, but the incoming operands have not been 8304 // emitted yet. 8305 for (BasicBlock::const_iterator I = SuccBB->begin(); 8306 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8307 // Ignore dead phi's. 8308 if (PN->use_empty()) continue; 8309 8310 // Skip empty types 8311 if (PN->getType()->isEmptyTy()) 8312 continue; 8313 8314 unsigned Reg; 8315 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8316 8317 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8318 unsigned &RegOut = ConstantsOut[C]; 8319 if (RegOut == 0) { 8320 RegOut = FuncInfo.CreateRegs(C->getType()); 8321 CopyValueToVirtualRegister(C, RegOut); 8322 } 8323 Reg = RegOut; 8324 } else { 8325 DenseMap<const Value *, unsigned>::iterator I = 8326 FuncInfo.ValueMap.find(PHIOp); 8327 if (I != FuncInfo.ValueMap.end()) 8328 Reg = I->second; 8329 else { 8330 assert(isa<AllocaInst>(PHIOp) && 8331 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8332 "Didn't codegen value into a register!??"); 8333 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8334 CopyValueToVirtualRegister(PHIOp, Reg); 8335 } 8336 } 8337 8338 // Remember that this register needs to added to the machine PHI node as 8339 // the input for this MBB. 8340 SmallVector<EVT, 4> ValueVTs; 8341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8342 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8343 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8344 EVT VT = ValueVTs[vti]; 8345 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8346 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8347 FuncInfo.PHINodesToUpdate.push_back( 8348 std::make_pair(&*MBBI++, Reg + i)); 8349 Reg += NumRegisters; 8350 } 8351 } 8352 } 8353 8354 ConstantsOut.clear(); 8355 } 8356 8357 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8358 /// is 0. 8359 MachineBasicBlock * 8360 SelectionDAGBuilder::StackProtectorDescriptor:: 8361 AddSuccessorMBB(const BasicBlock *BB, 8362 MachineBasicBlock *ParentMBB, 8363 bool IsLikely, 8364 MachineBasicBlock *SuccMBB) { 8365 // If SuccBB has not been created yet, create it. 8366 if (!SuccMBB) { 8367 MachineFunction *MF = ParentMBB->getParent(); 8368 MachineFunction::iterator BBI(ParentMBB); 8369 SuccMBB = MF->CreateMachineBasicBlock(BB); 8370 MF->insert(++BBI, SuccMBB); 8371 } 8372 // Add it as a successor of ParentMBB. 8373 ParentMBB->addSuccessor( 8374 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8375 return SuccMBB; 8376 } 8377 8378 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8379 MachineFunction::iterator I(MBB); 8380 if (++I == FuncInfo.MF->end()) 8381 return nullptr; 8382 return &*I; 8383 } 8384 8385 /// During lowering new call nodes can be created (such as memset, etc.). 8386 /// Those will become new roots of the current DAG, but complications arise 8387 /// when they are tail calls. In such cases, the call lowering will update 8388 /// the root, but the builder still needs to know that a tail call has been 8389 /// lowered in order to avoid generating an additional return. 8390 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8391 // If the node is null, we do have a tail call. 8392 if (MaybeTC.getNode() != nullptr) 8393 DAG.setRoot(MaybeTC); 8394 else 8395 HasTailCall = true; 8396 } 8397 8398 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8399 const SmallVectorImpl<unsigned> &TotalCases, 8400 unsigned First, unsigned Last, 8401 unsigned Density) const { 8402 assert(Last >= First); 8403 assert(TotalCases[Last] >= TotalCases[First]); 8404 8405 const APInt &LowCase = Clusters[First].Low->getValue(); 8406 const APInt &HighCase = Clusters[Last].High->getValue(); 8407 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8408 8409 // FIXME: A range of consecutive cases has 100% density, but only requires one 8410 // comparison to lower. We should discriminate against such consecutive ranges 8411 // in jump tables. 8412 8413 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8414 uint64_t Range = Diff + 1; 8415 8416 uint64_t NumCases = 8417 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8418 8419 assert(NumCases < UINT64_MAX / 100); 8420 assert(Range >= NumCases); 8421 8422 return NumCases * 100 >= Range * Density; 8423 } 8424 8425 static inline bool areJTsAllowed(const TargetLowering &TLI, 8426 const SwitchInst *SI) { 8427 const Function *Fn = SI->getParent()->getParent(); 8428 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8429 return false; 8430 8431 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8432 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8433 } 8434 8435 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8436 unsigned First, unsigned Last, 8437 const SwitchInst *SI, 8438 MachineBasicBlock *DefaultMBB, 8439 CaseCluster &JTCluster) { 8440 assert(First <= Last); 8441 8442 auto Prob = BranchProbability::getZero(); 8443 unsigned NumCmps = 0; 8444 std::vector<MachineBasicBlock*> Table; 8445 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8446 8447 // Initialize probabilities in JTProbs. 8448 for (unsigned I = First; I <= Last; ++I) 8449 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8450 8451 for (unsigned I = First; I <= Last; ++I) { 8452 assert(Clusters[I].Kind == CC_Range); 8453 Prob += Clusters[I].Prob; 8454 const APInt &Low = Clusters[I].Low->getValue(); 8455 const APInt &High = Clusters[I].High->getValue(); 8456 NumCmps += (Low == High) ? 1 : 2; 8457 if (I != First) { 8458 // Fill the gap between this and the previous cluster. 8459 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8460 assert(PreviousHigh.slt(Low)); 8461 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8462 for (uint64_t J = 0; J < Gap; J++) 8463 Table.push_back(DefaultMBB); 8464 } 8465 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8466 for (uint64_t J = 0; J < ClusterSize; ++J) 8467 Table.push_back(Clusters[I].MBB); 8468 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8469 } 8470 8471 unsigned NumDests = JTProbs.size(); 8472 if (isSuitableForBitTests(NumDests, NumCmps, 8473 Clusters[First].Low->getValue(), 8474 Clusters[Last].High->getValue())) { 8475 // Clusters[First..Last] should be lowered as bit tests instead. 8476 return false; 8477 } 8478 8479 // Create the MBB that will load from and jump through the table. 8480 // Note: We create it here, but it's not inserted into the function yet. 8481 MachineFunction *CurMF = FuncInfo.MF; 8482 MachineBasicBlock *JumpTableMBB = 8483 CurMF->CreateMachineBasicBlock(SI->getParent()); 8484 8485 // Add successors. Note: use table order for determinism. 8486 SmallPtrSet<MachineBasicBlock *, 8> Done; 8487 for (MachineBasicBlock *Succ : Table) { 8488 if (Done.count(Succ)) 8489 continue; 8490 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8491 Done.insert(Succ); 8492 } 8493 JumpTableMBB->normalizeSuccProbs(); 8494 8495 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8496 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8497 ->createJumpTableIndex(Table); 8498 8499 // Set up the jump table info. 8500 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8501 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8502 Clusters[Last].High->getValue(), SI->getCondition(), 8503 nullptr, false); 8504 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8505 8506 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8507 JTCases.size() - 1, Prob); 8508 return true; 8509 } 8510 8511 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8512 const SwitchInst *SI, 8513 MachineBasicBlock *DefaultMBB) { 8514 #ifndef NDEBUG 8515 // Clusters must be non-empty, sorted, and only contain Range clusters. 8516 assert(!Clusters.empty()); 8517 for (CaseCluster &C : Clusters) 8518 assert(C.Kind == CC_Range); 8519 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8520 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8521 #endif 8522 8523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8524 if (!areJTsAllowed(TLI, SI)) 8525 return; 8526 8527 const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize(); 8528 8529 const int64_t N = Clusters.size(); 8530 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8531 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8532 const unsigned MaxJumpTableSize = 8533 OptForSize || TLI.getMaximumJumpTableSize() == 0 8534 ? UINT_MAX : TLI.getMaximumJumpTableSize(); 8535 8536 if (N < 2 || N < MinJumpTableEntries) 8537 return; 8538 8539 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8540 SmallVector<unsigned, 8> TotalCases(N); 8541 for (unsigned i = 0; i < N; ++i) { 8542 const APInt &Hi = Clusters[i].High->getValue(); 8543 const APInt &Lo = Clusters[i].Low->getValue(); 8544 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8545 if (i != 0) 8546 TotalCases[i] += TotalCases[i - 1]; 8547 } 8548 8549 const unsigned MinDensity = 8550 OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 8551 8552 // Cheap case: the whole range may be suitable for jump table. 8553 unsigned JumpTableSize = (Clusters[N - 1].High->getValue() - 8554 Clusters[0].Low->getValue()) 8555 .getLimitedValue(UINT_MAX - 1) + 1; 8556 if (JumpTableSize <= MaxJumpTableSize && 8557 isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) { 8558 CaseCluster JTCluster; 8559 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8560 Clusters[0] = JTCluster; 8561 Clusters.resize(1); 8562 return; 8563 } 8564 } 8565 8566 // The algorithm below is not suitable for -O0. 8567 if (TM.getOptLevel() == CodeGenOpt::None) 8568 return; 8569 8570 // Split Clusters into minimum number of dense partitions. The algorithm uses 8571 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8572 // for the Case Statement'" (1994), but builds the MinPartitions array in 8573 // reverse order to make it easier to reconstruct the partitions in ascending 8574 // order. In the choice between two optimal partitionings, it picks the one 8575 // which yields more jump tables. 8576 8577 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8578 SmallVector<unsigned, 8> MinPartitions(N); 8579 // LastElement[i] is the last element of the partition starting at i. 8580 SmallVector<unsigned, 8> LastElement(N); 8581 // PartitionsScore[i] is used to break ties when choosing between two 8582 // partitionings resulting in the same number of partitions. 8583 SmallVector<unsigned, 8> PartitionsScore(N); 8584 // For PartitionsScore, a small number of comparisons is considered as good as 8585 // a jump table and a single comparison is considered better than a jump 8586 // table. 8587 enum PartitionScores : unsigned { 8588 NoTable = 0, 8589 Table = 1, 8590 FewCases = 1, 8591 SingleCase = 2 8592 }; 8593 8594 // Base case: There is only one way to partition Clusters[N-1]. 8595 MinPartitions[N - 1] = 1; 8596 LastElement[N - 1] = N - 1; 8597 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8598 8599 // Note: loop indexes are signed to avoid underflow. 8600 for (int64_t i = N - 2; i >= 0; i--) { 8601 // Find optimal partitioning of Clusters[i..N-1]. 8602 // Baseline: Put Clusters[i] into a partition on its own. 8603 MinPartitions[i] = MinPartitions[i + 1] + 1; 8604 LastElement[i] = i; 8605 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8606 8607 // Search for a solution that results in fewer partitions. 8608 for (int64_t j = N - 1; j > i; j--) { 8609 // Try building a partition from Clusters[i..j]. 8610 JumpTableSize = (Clusters[j].High->getValue() - 8611 Clusters[i].Low->getValue()) 8612 .getLimitedValue(UINT_MAX - 1) + 1; 8613 if (JumpTableSize <= MaxJumpTableSize && 8614 isDense(Clusters, TotalCases, i, j, MinDensity)) { 8615 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8616 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8617 int64_t NumEntries = j - i + 1; 8618 8619 if (NumEntries == 1) 8620 Score += PartitionScores::SingleCase; 8621 else if (NumEntries <= SmallNumberOfEntries) 8622 Score += PartitionScores::FewCases; 8623 else if (NumEntries >= MinJumpTableEntries) 8624 Score += PartitionScores::Table; 8625 8626 // If this leads to fewer partitions, or to the same number of 8627 // partitions with better score, it is a better partitioning. 8628 if (NumPartitions < MinPartitions[i] || 8629 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8630 MinPartitions[i] = NumPartitions; 8631 LastElement[i] = j; 8632 PartitionsScore[i] = Score; 8633 } 8634 } 8635 } 8636 } 8637 8638 // Iterate over the partitions, replacing some with jump tables in-place. 8639 unsigned DstIndex = 0; 8640 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8641 Last = LastElement[First]; 8642 assert(Last >= First); 8643 assert(DstIndex <= First); 8644 unsigned NumClusters = Last - First + 1; 8645 8646 CaseCluster JTCluster; 8647 if (NumClusters >= MinJumpTableEntries && 8648 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8649 Clusters[DstIndex++] = JTCluster; 8650 } else { 8651 for (unsigned I = First; I <= Last; ++I) 8652 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8653 } 8654 } 8655 Clusters.resize(DstIndex); 8656 } 8657 8658 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8659 // FIXME: Using the pointer type doesn't seem ideal. 8660 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8661 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8662 return Range <= BW; 8663 } 8664 8665 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8666 unsigned NumCmps, 8667 const APInt &Low, 8668 const APInt &High) { 8669 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8670 // range of cases both require only one branch to lower. Just looking at the 8671 // number of clusters and destinations should be enough to decide whether to 8672 // build bit tests. 8673 8674 // To lower a range with bit tests, the range must fit the bitwidth of a 8675 // machine word. 8676 if (!rangeFitsInWord(Low, High)) 8677 return false; 8678 8679 // Decide whether it's profitable to lower this range with bit tests. Each 8680 // destination requires a bit test and branch, and there is an overall range 8681 // check branch. For a small number of clusters, separate comparisons might be 8682 // cheaper, and for many destinations, splitting the range might be better. 8683 return (NumDests == 1 && NumCmps >= 3) || 8684 (NumDests == 2 && NumCmps >= 5) || 8685 (NumDests == 3 && NumCmps >= 6); 8686 } 8687 8688 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8689 unsigned First, unsigned Last, 8690 const SwitchInst *SI, 8691 CaseCluster &BTCluster) { 8692 assert(First <= Last); 8693 if (First == Last) 8694 return false; 8695 8696 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8697 unsigned NumCmps = 0; 8698 for (int64_t I = First; I <= Last; ++I) { 8699 assert(Clusters[I].Kind == CC_Range); 8700 Dests.set(Clusters[I].MBB->getNumber()); 8701 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8702 } 8703 unsigned NumDests = Dests.count(); 8704 8705 APInt Low = Clusters[First].Low->getValue(); 8706 APInt High = Clusters[Last].High->getValue(); 8707 assert(Low.slt(High)); 8708 8709 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8710 return false; 8711 8712 APInt LowBound; 8713 APInt CmpRange; 8714 8715 const int BitWidth = DAG.getTargetLoweringInfo() 8716 .getPointerTy(DAG.getDataLayout()) 8717 .getSizeInBits(); 8718 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8719 8720 // Check if the clusters cover a contiguous range such that no value in the 8721 // range will jump to the default statement. 8722 bool ContiguousRange = true; 8723 for (int64_t I = First + 1; I <= Last; ++I) { 8724 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8725 ContiguousRange = false; 8726 break; 8727 } 8728 } 8729 8730 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8731 // Optimize the case where all the case values fit in a word without having 8732 // to subtract minValue. In this case, we can optimize away the subtraction. 8733 LowBound = APInt::getNullValue(Low.getBitWidth()); 8734 CmpRange = High; 8735 ContiguousRange = false; 8736 } else { 8737 LowBound = Low; 8738 CmpRange = High - Low; 8739 } 8740 8741 CaseBitsVector CBV; 8742 auto TotalProb = BranchProbability::getZero(); 8743 for (unsigned i = First; i <= Last; ++i) { 8744 // Find the CaseBits for this destination. 8745 unsigned j; 8746 for (j = 0; j < CBV.size(); ++j) 8747 if (CBV[j].BB == Clusters[i].MBB) 8748 break; 8749 if (j == CBV.size()) 8750 CBV.push_back( 8751 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8752 CaseBits *CB = &CBV[j]; 8753 8754 // Update Mask, Bits and ExtraProb. 8755 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8756 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8757 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8758 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8759 CB->Bits += Hi - Lo + 1; 8760 CB->ExtraProb += Clusters[i].Prob; 8761 TotalProb += Clusters[i].Prob; 8762 } 8763 8764 BitTestInfo BTI; 8765 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8766 // Sort by probability first, number of bits second. 8767 if (a.ExtraProb != b.ExtraProb) 8768 return a.ExtraProb > b.ExtraProb; 8769 return a.Bits > b.Bits; 8770 }); 8771 8772 for (auto &CB : CBV) { 8773 MachineBasicBlock *BitTestBB = 8774 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8775 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8776 } 8777 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8778 SI->getCondition(), -1U, MVT::Other, false, 8779 ContiguousRange, nullptr, nullptr, std::move(BTI), 8780 TotalProb); 8781 8782 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8783 BitTestCases.size() - 1, TotalProb); 8784 return true; 8785 } 8786 8787 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8788 const SwitchInst *SI) { 8789 // Partition Clusters into as few subsets as possible, where each subset has a 8790 // range that fits in a machine word and has <= 3 unique destinations. 8791 8792 #ifndef NDEBUG 8793 // Clusters must be sorted and contain Range or JumpTable clusters. 8794 assert(!Clusters.empty()); 8795 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8796 for (const CaseCluster &C : Clusters) 8797 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8798 for (unsigned i = 1; i < Clusters.size(); ++i) 8799 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8800 #endif 8801 8802 // The algorithm below is not suitable for -O0. 8803 if (TM.getOptLevel() == CodeGenOpt::None) 8804 return; 8805 8806 // If target does not have legal shift left, do not emit bit tests at all. 8807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8808 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8809 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8810 return; 8811 8812 int BitWidth = PTy.getSizeInBits(); 8813 const int64_t N = Clusters.size(); 8814 8815 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8816 SmallVector<unsigned, 8> MinPartitions(N); 8817 // LastElement[i] is the last element of the partition starting at i. 8818 SmallVector<unsigned, 8> LastElement(N); 8819 8820 // FIXME: This might not be the best algorithm for finding bit test clusters. 8821 8822 // Base case: There is only one way to partition Clusters[N-1]. 8823 MinPartitions[N - 1] = 1; 8824 LastElement[N - 1] = N - 1; 8825 8826 // Note: loop indexes are signed to avoid underflow. 8827 for (int64_t i = N - 2; i >= 0; --i) { 8828 // Find optimal partitioning of Clusters[i..N-1]. 8829 // Baseline: Put Clusters[i] into a partition on its own. 8830 MinPartitions[i] = MinPartitions[i + 1] + 1; 8831 LastElement[i] = i; 8832 8833 // Search for a solution that results in fewer partitions. 8834 // Note: the search is limited by BitWidth, reducing time complexity. 8835 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8836 // Try building a partition from Clusters[i..j]. 8837 8838 // Check the range. 8839 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8840 Clusters[j].High->getValue())) 8841 continue; 8842 8843 // Check nbr of destinations and cluster types. 8844 // FIXME: This works, but doesn't seem very efficient. 8845 bool RangesOnly = true; 8846 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8847 for (int64_t k = i; k <= j; k++) { 8848 if (Clusters[k].Kind != CC_Range) { 8849 RangesOnly = false; 8850 break; 8851 } 8852 Dests.set(Clusters[k].MBB->getNumber()); 8853 } 8854 if (!RangesOnly || Dests.count() > 3) 8855 break; 8856 8857 // Check if it's a better partition. 8858 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8859 if (NumPartitions < MinPartitions[i]) { 8860 // Found a better partition. 8861 MinPartitions[i] = NumPartitions; 8862 LastElement[i] = j; 8863 } 8864 } 8865 } 8866 8867 // Iterate over the partitions, replacing with bit-test clusters in-place. 8868 unsigned DstIndex = 0; 8869 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8870 Last = LastElement[First]; 8871 assert(First <= Last); 8872 assert(DstIndex <= First); 8873 8874 CaseCluster BitTestCluster; 8875 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8876 Clusters[DstIndex++] = BitTestCluster; 8877 } else { 8878 size_t NumClusters = Last - First + 1; 8879 std::memmove(&Clusters[DstIndex], &Clusters[First], 8880 sizeof(Clusters[0]) * NumClusters); 8881 DstIndex += NumClusters; 8882 } 8883 } 8884 Clusters.resize(DstIndex); 8885 } 8886 8887 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8888 MachineBasicBlock *SwitchMBB, 8889 MachineBasicBlock *DefaultMBB) { 8890 MachineFunction *CurMF = FuncInfo.MF; 8891 MachineBasicBlock *NextMBB = nullptr; 8892 MachineFunction::iterator BBI(W.MBB); 8893 if (++BBI != FuncInfo.MF->end()) 8894 NextMBB = &*BBI; 8895 8896 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8897 8898 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8899 8900 if (Size == 2 && W.MBB == SwitchMBB) { 8901 // If any two of the cases has the same destination, and if one value 8902 // is the same as the other, but has one bit unset that the other has set, 8903 // use bit manipulation to do two compares at once. For example: 8904 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8905 // TODO: This could be extended to merge any 2 cases in switches with 3 8906 // cases. 8907 // TODO: Handle cases where W.CaseBB != SwitchBB. 8908 CaseCluster &Small = *W.FirstCluster; 8909 CaseCluster &Big = *W.LastCluster; 8910 8911 if (Small.Low == Small.High && Big.Low == Big.High && 8912 Small.MBB == Big.MBB) { 8913 const APInt &SmallValue = Small.Low->getValue(); 8914 const APInt &BigValue = Big.Low->getValue(); 8915 8916 // Check that there is only one bit different. 8917 APInt CommonBit = BigValue ^ SmallValue; 8918 if (CommonBit.isPowerOf2()) { 8919 SDValue CondLHS = getValue(Cond); 8920 EVT VT = CondLHS.getValueType(); 8921 SDLoc DL = getCurSDLoc(); 8922 8923 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8924 DAG.getConstant(CommonBit, DL, VT)); 8925 SDValue Cond = DAG.getSetCC( 8926 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8927 ISD::SETEQ); 8928 8929 // Update successor info. 8930 // Both Small and Big will jump to Small.BB, so we sum up the 8931 // probabilities. 8932 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8933 if (BPI) 8934 addSuccessorWithProb( 8935 SwitchMBB, DefaultMBB, 8936 // The default destination is the first successor in IR. 8937 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8938 else 8939 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8940 8941 // Insert the true branch. 8942 SDValue BrCond = 8943 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8944 DAG.getBasicBlock(Small.MBB)); 8945 // Insert the false branch. 8946 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8947 DAG.getBasicBlock(DefaultMBB)); 8948 8949 DAG.setRoot(BrCond); 8950 return; 8951 } 8952 } 8953 } 8954 8955 if (TM.getOptLevel() != CodeGenOpt::None) { 8956 // Order cases by probability so the most likely case will be checked first. 8957 std::sort(W.FirstCluster, W.LastCluster + 1, 8958 [](const CaseCluster &a, const CaseCluster &b) { 8959 return a.Prob > b.Prob; 8960 }); 8961 8962 // Rearrange the case blocks so that the last one falls through if possible 8963 // without without changing the order of probabilities. 8964 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8965 --I; 8966 if (I->Prob > W.LastCluster->Prob) 8967 break; 8968 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8969 std::swap(*I, *W.LastCluster); 8970 break; 8971 } 8972 } 8973 } 8974 8975 // Compute total probability. 8976 BranchProbability DefaultProb = W.DefaultProb; 8977 BranchProbability UnhandledProbs = DefaultProb; 8978 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8979 UnhandledProbs += I->Prob; 8980 8981 MachineBasicBlock *CurMBB = W.MBB; 8982 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8983 MachineBasicBlock *Fallthrough; 8984 if (I == W.LastCluster) { 8985 // For the last cluster, fall through to the default destination. 8986 Fallthrough = DefaultMBB; 8987 } else { 8988 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8989 CurMF->insert(BBI, Fallthrough); 8990 // Put Cond in a virtual register to make it available from the new blocks. 8991 ExportFromCurrentBlock(Cond); 8992 } 8993 UnhandledProbs -= I->Prob; 8994 8995 switch (I->Kind) { 8996 case CC_JumpTable: { 8997 // FIXME: Optimize away range check based on pivot comparisons. 8998 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8999 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9000 9001 // The jump block hasn't been inserted yet; insert it here. 9002 MachineBasicBlock *JumpMBB = JT->MBB; 9003 CurMF->insert(BBI, JumpMBB); 9004 9005 auto JumpProb = I->Prob; 9006 auto FallthroughProb = UnhandledProbs; 9007 9008 // If the default statement is a target of the jump table, we evenly 9009 // distribute the default probability to successors of CurMBB. Also 9010 // update the probability on the edge from JumpMBB to Fallthrough. 9011 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9012 SE = JumpMBB->succ_end(); 9013 SI != SE; ++SI) { 9014 if (*SI == DefaultMBB) { 9015 JumpProb += DefaultProb / 2; 9016 FallthroughProb -= DefaultProb / 2; 9017 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9018 JumpMBB->normalizeSuccProbs(); 9019 break; 9020 } 9021 } 9022 9023 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9024 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9025 CurMBB->normalizeSuccProbs(); 9026 9027 // The jump table header will be inserted in our current block, do the 9028 // range check, and fall through to our fallthrough block. 9029 JTH->HeaderBB = CurMBB; 9030 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9031 9032 // If we're in the right place, emit the jump table header right now. 9033 if (CurMBB == SwitchMBB) { 9034 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9035 JTH->Emitted = true; 9036 } 9037 break; 9038 } 9039 case CC_BitTests: { 9040 // FIXME: Optimize away range check based on pivot comparisons. 9041 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9042 9043 // The bit test blocks haven't been inserted yet; insert them here. 9044 for (BitTestCase &BTC : BTB->Cases) 9045 CurMF->insert(BBI, BTC.ThisBB); 9046 9047 // Fill in fields of the BitTestBlock. 9048 BTB->Parent = CurMBB; 9049 BTB->Default = Fallthrough; 9050 9051 BTB->DefaultProb = UnhandledProbs; 9052 // If the cases in bit test don't form a contiguous range, we evenly 9053 // distribute the probability on the edge to Fallthrough to two 9054 // successors of CurMBB. 9055 if (!BTB->ContiguousRange) { 9056 BTB->Prob += DefaultProb / 2; 9057 BTB->DefaultProb -= DefaultProb / 2; 9058 } 9059 9060 // If we're in the right place, emit the bit test header right now. 9061 if (CurMBB == SwitchMBB) { 9062 visitBitTestHeader(*BTB, SwitchMBB); 9063 BTB->Emitted = true; 9064 } 9065 break; 9066 } 9067 case CC_Range: { 9068 const Value *RHS, *LHS, *MHS; 9069 ISD::CondCode CC; 9070 if (I->Low == I->High) { 9071 // Check Cond == I->Low. 9072 CC = ISD::SETEQ; 9073 LHS = Cond; 9074 RHS=I->Low; 9075 MHS = nullptr; 9076 } else { 9077 // Check I->Low <= Cond <= I->High. 9078 CC = ISD::SETLE; 9079 LHS = I->Low; 9080 MHS = Cond; 9081 RHS = I->High; 9082 } 9083 9084 // The false probability is the sum of all unhandled cases. 9085 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9086 UnhandledProbs); 9087 9088 if (CurMBB == SwitchMBB) 9089 visitSwitchCase(CB, SwitchMBB); 9090 else 9091 SwitchCases.push_back(CB); 9092 9093 break; 9094 } 9095 } 9096 CurMBB = Fallthrough; 9097 } 9098 } 9099 9100 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9101 CaseClusterIt First, 9102 CaseClusterIt Last) { 9103 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9104 if (X.Prob != CC.Prob) 9105 return X.Prob > CC.Prob; 9106 9107 // Ties are broken by comparing the case value. 9108 return X.Low->getValue().slt(CC.Low->getValue()); 9109 }); 9110 } 9111 9112 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9113 const SwitchWorkListItem &W, 9114 Value *Cond, 9115 MachineBasicBlock *SwitchMBB) { 9116 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9117 "Clusters not sorted?"); 9118 9119 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9120 9121 // Balance the tree based on branch probabilities to create a near-optimal (in 9122 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9123 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9124 CaseClusterIt LastLeft = W.FirstCluster; 9125 CaseClusterIt FirstRight = W.LastCluster; 9126 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9127 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9128 9129 // Move LastLeft and FirstRight towards each other from opposite directions to 9130 // find a partitioning of the clusters which balances the probability on both 9131 // sides. If LeftProb and RightProb are equal, alternate which side is 9132 // taken to ensure 0-probability nodes are distributed evenly. 9133 unsigned I = 0; 9134 while (LastLeft + 1 < FirstRight) { 9135 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9136 LeftProb += (++LastLeft)->Prob; 9137 else 9138 RightProb += (--FirstRight)->Prob; 9139 I++; 9140 } 9141 9142 for (;;) { 9143 // Our binary search tree differs from a typical BST in that ours can have up 9144 // to three values in each leaf. The pivot selection above doesn't take that 9145 // into account, which means the tree might require more nodes and be less 9146 // efficient. We compensate for this here. 9147 9148 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9149 unsigned NumRight = W.LastCluster - FirstRight + 1; 9150 9151 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9152 // If one side has less than 3 clusters, and the other has more than 3, 9153 // consider taking a cluster from the other side. 9154 9155 if (NumLeft < NumRight) { 9156 // Consider moving the first cluster on the right to the left side. 9157 CaseCluster &CC = *FirstRight; 9158 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9159 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9160 if (LeftSideRank <= RightSideRank) { 9161 // Moving the cluster to the left does not demote it. 9162 ++LastLeft; 9163 ++FirstRight; 9164 continue; 9165 } 9166 } else { 9167 assert(NumRight < NumLeft); 9168 // Consider moving the last element on the left to the right side. 9169 CaseCluster &CC = *LastLeft; 9170 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9171 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9172 if (RightSideRank <= LeftSideRank) { 9173 // Moving the cluster to the right does not demot it. 9174 --LastLeft; 9175 --FirstRight; 9176 continue; 9177 } 9178 } 9179 } 9180 break; 9181 } 9182 9183 assert(LastLeft + 1 == FirstRight); 9184 assert(LastLeft >= W.FirstCluster); 9185 assert(FirstRight <= W.LastCluster); 9186 9187 // Use the first element on the right as pivot since we will make less-than 9188 // comparisons against it. 9189 CaseClusterIt PivotCluster = FirstRight; 9190 assert(PivotCluster > W.FirstCluster); 9191 assert(PivotCluster <= W.LastCluster); 9192 9193 CaseClusterIt FirstLeft = W.FirstCluster; 9194 CaseClusterIt LastRight = W.LastCluster; 9195 9196 const ConstantInt *Pivot = PivotCluster->Low; 9197 9198 // New blocks will be inserted immediately after the current one. 9199 MachineFunction::iterator BBI(W.MBB); 9200 ++BBI; 9201 9202 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9203 // we can branch to its destination directly if it's squeezed exactly in 9204 // between the known lower bound and Pivot - 1. 9205 MachineBasicBlock *LeftMBB; 9206 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9207 FirstLeft->Low == W.GE && 9208 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9209 LeftMBB = FirstLeft->MBB; 9210 } else { 9211 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9212 FuncInfo.MF->insert(BBI, LeftMBB); 9213 WorkList.push_back( 9214 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9215 // Put Cond in a virtual register to make it available from the new blocks. 9216 ExportFromCurrentBlock(Cond); 9217 } 9218 9219 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9220 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9221 // directly if RHS.High equals the current upper bound. 9222 MachineBasicBlock *RightMBB; 9223 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9224 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9225 RightMBB = FirstRight->MBB; 9226 } else { 9227 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9228 FuncInfo.MF->insert(BBI, RightMBB); 9229 WorkList.push_back( 9230 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9231 // Put Cond in a virtual register to make it available from the new blocks. 9232 ExportFromCurrentBlock(Cond); 9233 } 9234 9235 // Create the CaseBlock record that will be used to lower the branch. 9236 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9237 LeftProb, RightProb); 9238 9239 if (W.MBB == SwitchMBB) 9240 visitSwitchCase(CB, SwitchMBB); 9241 else 9242 SwitchCases.push_back(CB); 9243 } 9244 9245 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9246 // Extract cases from the switch. 9247 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9248 CaseClusterVector Clusters; 9249 Clusters.reserve(SI.getNumCases()); 9250 for (auto I : SI.cases()) { 9251 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9252 const ConstantInt *CaseVal = I.getCaseValue(); 9253 BranchProbability Prob = 9254 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9255 : BranchProbability(1, SI.getNumCases() + 1); 9256 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9257 } 9258 9259 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9260 9261 // Cluster adjacent cases with the same destination. We do this at all 9262 // optimization levels because it's cheap to do and will make codegen faster 9263 // if there are many clusters. 9264 sortAndRangeify(Clusters); 9265 9266 if (TM.getOptLevel() != CodeGenOpt::None) { 9267 // Replace an unreachable default with the most popular destination. 9268 // FIXME: Exploit unreachable default more aggressively. 9269 bool UnreachableDefault = 9270 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9271 if (UnreachableDefault && !Clusters.empty()) { 9272 DenseMap<const BasicBlock *, unsigned> Popularity; 9273 unsigned MaxPop = 0; 9274 const BasicBlock *MaxBB = nullptr; 9275 for (auto I : SI.cases()) { 9276 const BasicBlock *BB = I.getCaseSuccessor(); 9277 if (++Popularity[BB] > MaxPop) { 9278 MaxPop = Popularity[BB]; 9279 MaxBB = BB; 9280 } 9281 } 9282 // Set new default. 9283 assert(MaxPop > 0 && MaxBB); 9284 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9285 9286 // Remove cases that were pointing to the destination that is now the 9287 // default. 9288 CaseClusterVector New; 9289 New.reserve(Clusters.size()); 9290 for (CaseCluster &CC : Clusters) { 9291 if (CC.MBB != DefaultMBB) 9292 New.push_back(CC); 9293 } 9294 Clusters = std::move(New); 9295 } 9296 } 9297 9298 // If there is only the default destination, jump there directly. 9299 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9300 if (Clusters.empty()) { 9301 SwitchMBB->addSuccessor(DefaultMBB); 9302 if (DefaultMBB != NextBlock(SwitchMBB)) { 9303 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9304 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9305 } 9306 return; 9307 } 9308 9309 findJumpTables(Clusters, &SI, DefaultMBB); 9310 findBitTestClusters(Clusters, &SI); 9311 9312 DEBUG({ 9313 dbgs() << "Case clusters: "; 9314 for (const CaseCluster &C : Clusters) { 9315 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9316 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9317 9318 C.Low->getValue().print(dbgs(), true); 9319 if (C.Low != C.High) { 9320 dbgs() << '-'; 9321 C.High->getValue().print(dbgs(), true); 9322 } 9323 dbgs() << ' '; 9324 } 9325 dbgs() << '\n'; 9326 }); 9327 9328 assert(!Clusters.empty()); 9329 SwitchWorkList WorkList; 9330 CaseClusterIt First = Clusters.begin(); 9331 CaseClusterIt Last = Clusters.end() - 1; 9332 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9333 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9334 9335 while (!WorkList.empty()) { 9336 SwitchWorkListItem W = WorkList.back(); 9337 WorkList.pop_back(); 9338 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9339 9340 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9341 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9342 // For optimized builds, lower large range as a balanced binary tree. 9343 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9344 continue; 9345 } 9346 9347 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9348 } 9349 } 9350