1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 /// LimitFloatPrecision - Generate low-precision inline sequences for 67 /// some float libcalls (6, 8 or 12 bits). 68 static unsigned LimitFloatPrecision; 69 70 static cl::opt<unsigned, true> 71 LimitFPPrecision("limit-float-precision", 72 cl::desc("Generate low-precision inline sequences " 73 "for some float libcalls"), 74 cl::location(LimitFloatPrecision), 75 cl::init(0)); 76 77 // Limit the width of DAG chains. This is important in general to prevent 78 // prevent DAG-based analysis from blowing up. For example, alias analysis and 79 // load clustering may not complete in reasonable time. It is difficult to 80 // recognize and avoid this situation within each individual analysis, and 81 // future analyses are likely to have the same behavior. Limiting DAG width is 82 // the safe approach, and will be especially important with global DAGs. 83 // 84 // MaxParallelChains default is arbitrarily high to avoid affecting 85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 86 // sequence over this should have been converted to llvm.memcpy by the 87 // frontend. It easy to induce this behavior with .ll code such as: 88 // %buffer = alloca [4096 x i8] 89 // %data = load [4096 x i8]* %argPtr 90 // store [4096 x i8] %data, [4096 x i8]* %buffer 91 static const unsigned MaxParallelChains = 64; 92 93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 94 const SDValue *Parts, unsigned NumParts, 95 MVT PartVT, EVT ValueVT, const Value *V); 96 97 /// getCopyFromParts - Create a value that contains the specified legal parts 98 /// combined into the value they represent. If the parts combine to a type 99 /// larger then ValueVT then AssertOp can be used to specify whether the extra 100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 101 /// (ISD::AssertSext). 102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, 104 unsigned NumParts, MVT PartVT, EVT ValueVT, 105 const Value *V, 106 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 107 if (ValueVT.isVector()) 108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 109 PartVT, ValueVT, V); 110 111 assert(NumParts > 0 && "No parts to assemble!"); 112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 113 SDValue Val = Parts[0]; 114 115 if (NumParts > 1) { 116 // Assemble the value from multiple parts. 117 if (ValueVT.isInteger()) { 118 unsigned PartBits = PartVT.getSizeInBits(); 119 unsigned ValueBits = ValueVT.getSizeInBits(); 120 121 // Assemble the power of 2 part. 122 unsigned RoundParts = NumParts & (NumParts - 1) ? 123 1 << Log2_32(NumParts) : NumParts; 124 unsigned RoundBits = PartBits * RoundParts; 125 EVT RoundVT = RoundBits == ValueBits ? 126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 127 SDValue Lo, Hi; 128 129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 130 131 if (RoundParts > 2) { 132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 133 PartVT, HalfVT, V); 134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 135 RoundParts / 2, PartVT, HalfVT, V); 136 } else { 137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 139 } 140 141 if (TLI.isBigEndian()) 142 std::swap(Lo, Hi); 143 144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 145 146 if (RoundParts < NumParts) { 147 // Assemble the trailing non-power-of-2 part. 148 unsigned OddParts = NumParts - RoundParts; 149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 150 Hi = getCopyFromParts(DAG, DL, 151 Parts + RoundParts, OddParts, PartVT, OddVT, V); 152 153 // Combine the round and odd parts. 154 Lo = Val; 155 if (TLI.isBigEndian()) 156 std::swap(Lo, Hi); 157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 160 DAG.getConstant(Lo.getValueType().getSizeInBits(), 161 TLI.getPointerTy())); 162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 164 } 165 } else if (PartVT.isFloatingPoint()) { 166 // FP split into multiple FP parts (for ppcf128) 167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 168 "Unexpected split"); 169 SDValue Lo, Hi; 170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 172 if (TLI.isBigEndian()) 173 std::swap(Lo, Hi); 174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 175 } else { 176 // FP split into integer parts (soft fp) 177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 178 !PartVT.isVector() && "Unexpected split"); 179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 181 } 182 } 183 184 // There is now one part, held in Val. Correct it to match ValueVT. 185 EVT PartEVT = Val.getValueType(); 186 187 if (PartEVT == ValueVT) 188 return Val; 189 190 if (PartEVT.isInteger() && ValueVT.isInteger()) { 191 if (ValueVT.bitsLT(PartEVT)) { 192 // For a truncate, see if we have any information to 193 // indicate whether the truncated bits will always be 194 // zero or sign-extension. 195 if (AssertOp != ISD::DELETED_NODE) 196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 197 DAG.getValueType(ValueVT)); 198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 199 } 200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 201 } 202 203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 204 // FP_ROUND's are always exact here. 205 if (ValueVT.bitsLT(Val.getValueType())) 206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 207 DAG.getTargetConstant(1, TLI.getPointerTy())); 208 209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 llvm_unreachable("Unknown mismatch!"); 216 } 217 218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 219 const Twine &ErrMsg) { 220 const Instruction *I = dyn_cast_or_null<Instruction>(V); 221 if (!V) 222 return Ctx.emitError(ErrMsg); 223 224 const char *AsmError = ", possible invalid constraint for vector type"; 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) 226 if (isa<InlineAsm>(CI->getCalledValue())) 227 return Ctx.emitError(I, ErrMsg + AsmError); 228 229 return Ctx.emitError(I, ErrMsg); 230 } 231 232 /// getCopyFromPartsVector - Create a value that contains the specified legal 233 /// parts combined into the value they represent. If the parts combine to a 234 /// type larger then ValueVT then AssertOp can be used to specify whether the 235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 236 /// ValueVT (ISD::AssertSext). 237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 238 const SDValue *Parts, unsigned NumParts, 239 MVT PartVT, EVT ValueVT, const Value *V) { 240 assert(ValueVT.isVector() && "Not a vector value"); 241 assert(NumParts > 0 && "No parts to assemble!"); 242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 243 SDValue Val = Parts[0]; 244 245 // Handle a multi-element vector. 246 if (NumParts > 1) { 247 EVT IntermediateVT; 248 MVT RegisterVT; 249 unsigned NumIntermediates; 250 unsigned NumRegs = 251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 252 NumIntermediates, RegisterVT); 253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 254 NumParts = NumRegs; // Silence a compiler warning. 255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 256 assert(RegisterVT == Parts[0].getSimpleValueType() && 257 "Part type doesn't match part!"); 258 259 // Assemble the parts into intermediate operands. 260 SmallVector<SDValue, 8> Ops(NumIntermediates); 261 if (NumIntermediates == NumParts) { 262 // If the register was not expanded, truncate or copy the value, 263 // as appropriate. 264 for (unsigned i = 0; i != NumParts; ++i) 265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 266 PartVT, IntermediateVT, V); 267 } else if (NumParts > 0) { 268 // If the intermediate type was expanded, build the intermediate 269 // operands from the parts. 270 assert(NumParts % NumIntermediates == 0 && 271 "Must expand into a divisible number of parts!"); 272 unsigned Factor = NumParts / NumIntermediates; 273 for (unsigned i = 0; i != NumIntermediates; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 275 PartVT, IntermediateVT, V); 276 } 277 278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 279 // intermediate operands. 280 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 281 : ISD::BUILD_VECTOR, 282 DL, ValueVT, Ops); 283 } 284 285 // There is now one part, held in Val. Correct it to match ValueVT. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isVector()) { 292 // If the element type of the source/dest vectors are the same, but the 293 // parts vector has more elements than the value vector, then we have a 294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 295 // elements we want. 296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 298 "Cannot narrow, it would be a lossy transformation"); 299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 300 DAG.getConstant(0, TLI.getVectorIdxTy())); 301 } 302 303 // Vector/Vector bitcast. 304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 308 "Cannot handle this kind of promotion"); 309 // Promoted vector extract 310 bool Smaller = ValueVT.bitsLE(PartEVT); 311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 312 DL, ValueVT, Val); 313 314 } 315 316 // Trivial bitcast if the types are the same size and the destination 317 // vector type is legal. 318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 319 TLI.isTypeLegal(ValueVT)) 320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 321 322 // Handle cases such as i8 -> <1 x i1> 323 if (ValueVT.getVectorNumElements() != 1) { 324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 325 "non-trivial scalar-to-vector conversion"); 326 return DAG.getUNDEF(ValueVT); 327 } 328 329 if (ValueVT.getVectorNumElements() == 1 && 330 ValueVT.getVectorElementType() != PartEVT) { 331 bool Smaller = ValueVT.bitsLE(PartEVT); 332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 333 DL, ValueVT.getScalarType(), Val); 334 } 335 336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 337 } 338 339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V); 342 343 /// getCopyToParts - Create a series of nodes that contain the specified value 344 /// split into legal parts. If the parts contain more bits than Val, then, for 345 /// integers, ExtendKind can be used to specify how to generate the extra bits. 346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V, 349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 350 EVT ValueVT = Val.getValueType(); 351 352 // Handle the vector case separately. 353 if (ValueVT.isVector()) 354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 355 356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 357 unsigned PartBits = PartVT.getSizeInBits(); 358 unsigned OrigNumParts = NumParts; 359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 360 361 if (NumParts == 0) 362 return; 363 364 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 365 EVT PartEVT = PartVT; 366 if (PartEVT == ValueVT) { 367 assert(NumParts == 1 && "No-op copy with multiple parts!"); 368 Parts[0] = Val; 369 return; 370 } 371 372 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 373 // If the parts cover more bits than the value has, promote the value. 374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 375 assert(NumParts == 1 && "Do not know what to promote to!"); 376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 377 } else { 378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 379 ValueVT.isInteger() && 380 "Unknown mismatch!"); 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 383 if (PartVT == MVT::x86mmx) 384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartEVT != ValueVT); 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 393 ValueVT.isInteger() && 394 "Unknown mismatch!"); 395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 397 if (PartVT == MVT::x86mmx) 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } 400 401 // The value may have changed - recompute ValueVT. 402 ValueVT = Val.getValueType(); 403 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 404 "Failed to tile the value with PartVT!"); 405 406 if (NumParts == 1) { 407 if (PartEVT != ValueVT) 408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 409 "scalar-to-vector conversion failed"); 410 411 Parts[0] = Val; 412 return; 413 } 414 415 // Expand the value into multiple parts. 416 if (NumParts & (NumParts - 1)) { 417 // The number of parts is not a power of 2. Split off and copy the tail. 418 assert(PartVT.isInteger() && ValueVT.isInteger() && 419 "Do not know what to expand to!"); 420 unsigned RoundParts = 1 << Log2_32(NumParts); 421 unsigned RoundBits = RoundParts * PartBits; 422 unsigned OddParts = NumParts - RoundParts; 423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 424 DAG.getIntPtrConstant(RoundBits)); 425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 426 427 if (TLI.isBigEndian()) 428 // The odd parts were reversed by getCopyToParts - unreverse them. 429 std::reverse(Parts + RoundParts, Parts + NumParts); 430 431 NumParts = RoundParts; 432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 434 } 435 436 // The number of parts is a power of 2. Repeatedly bisect the value using 437 // EXTRACT_ELEMENT. 438 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 439 EVT::getIntegerVT(*DAG.getContext(), 440 ValueVT.getSizeInBits()), 441 Val); 442 443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 444 for (unsigned i = 0; i < NumParts; i += StepSize) { 445 unsigned ThisBits = StepSize * PartBits / 2; 446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 447 SDValue &Part0 = Parts[i]; 448 SDValue &Part1 = Parts[i+StepSize/2]; 449 450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(1)); 452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(0)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 458 } 459 } 460 } 461 462 if (TLI.isBigEndian()) 463 std::reverse(Parts, Parts + OrigNumParts); 464 } 465 466 467 /// getCopyToPartsVector - Create a series of nodes that contain the specified 468 /// value split into legal parts. 469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 470 SDValue Val, SDValue *Parts, unsigned NumParts, 471 MVT PartVT, const Value *V) { 472 EVT ValueVT = Val.getValueType(); 473 assert(ValueVT.isVector() && "Not a vector"); 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 476 if (NumParts == 1) { 477 EVT PartEVT = PartVT; 478 if (PartEVT == ValueVT) { 479 // Nothing to do. 480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 481 // Bitconvert vector->vector case. 482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 483 } else if (PartVT.isVector() && 484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 486 EVT ElementVT = PartVT.getVectorElementType(); 487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 488 // undef elements. 489 SmallVector<SDValue, 16> Ops; 490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 ElementVT, Val, DAG.getConstant(i, 493 TLI.getVectorIdxTy()))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getConstant(i * (NumElements / NumIntermediates), 550 TLI.getVectorIdxTy())); 551 else 552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i, TLI.getVectorIdxTy())); 555 } 556 557 // Split the intermediate operands into legal parts. 558 if (NumParts == NumIntermediates) { 559 // If the register was not expanded, promote or copy the value, 560 // as appropriate. 561 for (unsigned i = 0; i != NumParts; ++i) 562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 563 } else if (NumParts > 0) { 564 // If the intermediate type was expanded, split each the value into 565 // legal parts. 566 assert(NumParts % NumIntermediates == 0 && 567 "Must expand into a divisible number of parts!"); 568 unsigned Factor = NumParts / NumIntermediates; 569 for (unsigned i = 0; i != NumIntermediates; ++i) 570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 571 } 572 } 573 574 namespace { 575 /// RegsForValue - This struct represents the registers (physical or virtual) 576 /// that a particular set of values is assigned, and the type information 577 /// about the value. The most common situation is to represent one value at a 578 /// time, but struct or array values are handled element-wise as multiple 579 /// values. The splitting of aggregates is performed recursively, so that we 580 /// never have aggregate-typed registers. The values at this point do not 581 /// necessarily have legal types, so each value may require one or more 582 /// registers of some legal type. 583 /// 584 struct RegsForValue { 585 /// ValueVTs - The value types of the values, which may not be legal, and 586 /// may need be promoted or synthesized from one or more registers. 587 /// 588 SmallVector<EVT, 4> ValueVTs; 589 590 /// RegVTs - The value types of the registers. This is the same size as 591 /// ValueVTs and it records, for each value, what the type of the assigned 592 /// register or registers are. (Individual values are never synthesized 593 /// from more than one type of register.) 594 /// 595 /// With virtual registers, the contents of RegVTs is redundant with TLI's 596 /// getRegisterType member function, however when with physical registers 597 /// it is necessary to have a separate record of the types. 598 /// 599 SmallVector<MVT, 4> RegVTs; 600 601 /// Regs - This list holds the registers assigned to the values. 602 /// Each legal or promoted value requires one register, and each 603 /// expanded value requires multiple registers. 604 /// 605 SmallVector<unsigned, 4> Regs; 606 607 RegsForValue() {} 608 609 RegsForValue(const SmallVector<unsigned, 4> ®s, 610 MVT regvt, EVT valuevt) 611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 612 613 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 614 unsigned Reg, Type *Ty) { 615 ComputeValueVTs(tli, Ty, ValueVTs); 616 617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 EVT ValueVT = ValueVTs[Value]; 619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 621 for (unsigned i = 0; i != NumRegs; ++i) 622 Regs.push_back(Reg + i); 623 RegVTs.push_back(RegisterVT); 624 Reg += NumRegs; 625 } 626 } 627 628 /// append - Add the specified values to this one. 629 void append(const RegsForValue &RHS) { 630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 632 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 633 } 634 635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 636 /// this value and returns the result as a ValueVTs value. This uses 637 /// Chain/Flag as the input and updates them for the output Chain/Flag. 638 /// If the Flag pointer is NULL, no flag is used. 639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V = nullptr) const; 643 644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 645 /// specified value into the registers specified by this object. This uses 646 /// Chain/Flag as the input and updates them for the output Chain/Flag. 647 /// If the Flag pointer is NULL, no flag is used. 648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 649 SDValue &Chain, SDValue *Flag, const Value *V) const; 650 651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 652 /// operand list. This adds the code marker, matching input operand index 653 /// (if applicable), and includes the number of values added into it. 654 void AddInlineAsmOperands(unsigned Kind, 655 bool HasMatching, unsigned MatchingIdx, 656 SelectionDAG &DAG, 657 std::vector<SDValue> &Ops) const; 658 }; 659 } 660 661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 662 /// this value and returns the result as a ValueVT value. This uses 663 /// Chain/Flag as the input and updates them for the output Chain/Flag. 664 /// If the Flag pointer is NULL, no flag is used. 665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 666 FunctionLoweringInfo &FuncInfo, 667 SDLoc dl, 668 SDValue &Chain, SDValue *Flag, 669 const Value *V) const { 670 // A Value with type {} or [0 x %t] needs no registers. 671 if (ValueVTs.empty()) 672 return SDValue(); 673 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 676 // Assemble the legal parts into the final values. 677 SmallVector<SDValue, 4> Values(ValueVTs.size()); 678 SmallVector<SDValue, 8> Parts; 679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 680 // Copy the legal parts from the registers. 681 EVT ValueVT = ValueVTs[Value]; 682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 683 MVT RegisterVT = RegVTs[Value]; 684 685 Parts.resize(NumRegs); 686 for (unsigned i = 0; i != NumRegs; ++i) { 687 SDValue P; 688 if (!Flag) { 689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 690 } else { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 692 *Flag = P.getValue(2); 693 } 694 695 Chain = P.getValue(1); 696 Parts[i] = P; 697 698 // If the source register was virtual and if we know something about it, 699 // add an assert node. 700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 701 !RegisterVT.isInteger() || RegisterVT.isVector()) 702 continue; 703 704 const FunctionLoweringInfo::LiveOutInfo *LOI = 705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 706 if (!LOI) 707 continue; 708 709 unsigned RegSize = RegisterVT.getSizeInBits(); 710 unsigned NumSignBits = LOI->NumSignBits; 711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 712 713 if (NumZeroBits == RegSize) { 714 // The current value is a zero. 715 // Explicitly express that as it would be easier for 716 // optimizations to kick in. 717 Parts[i] = DAG.getConstant(0, RegisterVT); 718 continue; 719 } 720 721 // FIXME: We capture more information than the dag can represent. For 722 // now, just use the tightest assertzext/assertsext possible. 723 bool isSExt = true; 724 EVT FromVT(MVT::Other); 725 if (NumSignBits == RegSize) 726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 727 else if (NumZeroBits >= RegSize-1) 728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 729 else if (NumSignBits > RegSize-8) 730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 731 else if (NumZeroBits >= RegSize-8) 732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 733 else if (NumSignBits > RegSize-16) 734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 735 else if (NumZeroBits >= RegSize-16) 736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 737 else if (NumSignBits > RegSize-32) 738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 739 else if (NumZeroBits >= RegSize-32) 740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 741 else 742 continue; 743 744 // Add an assertion node. 745 assert(FromVT != MVT::Other); 746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 747 RegisterVT, P, DAG.getValueType(FromVT)); 748 } 749 750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 751 NumRegs, RegisterVT, ValueVT, V); 752 Part += NumRegs; 753 Parts.clear(); 754 } 755 756 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 757 } 758 759 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 760 /// specified value into the registers specified by this object. This uses 761 /// Chain/Flag as the input and updates them for the output Chain/Flag. 762 /// If the Flag pointer is NULL, no flag is used. 763 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 764 SDValue &Chain, SDValue *Flag, 765 const Value *V) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 // Get the list of the values's legal parts. 769 unsigned NumRegs = Regs.size(); 770 SmallVector<SDValue, 8> Parts(NumRegs); 771 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 772 EVT ValueVT = ValueVTs[Value]; 773 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 774 MVT RegisterVT = RegVTs[Value]; 775 ISD::NodeType ExtendKind = 776 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 777 778 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 779 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 780 Part += NumParts; 781 } 782 783 // Copy the parts into the registers. 784 SmallVector<SDValue, 8> Chains(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue Part; 787 if (!Flag) { 788 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 789 } else { 790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 791 *Flag = Part.getValue(1); 792 } 793 794 Chains[i] = Part.getValue(0); 795 } 796 797 if (NumRegs == 1 || Flag) 798 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 799 // flagged to it. That is the CopyToReg nodes and the user are considered 800 // a single scheduling unit. If we create a TokenFactor and return it as 801 // chain, then the TokenFactor is both a predecessor (operand) of the 802 // user as well as a successor (the TF operands are flagged to the user). 803 // c1, f1 = CopyToReg 804 // c2, f2 = CopyToReg 805 // c3 = TokenFactor c1, c2 806 // ... 807 // = op c3, ..., f2 808 Chain = Chains[NumRegs-1]; 809 else 810 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 811 } 812 813 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 814 /// operand list. This adds the code marker and includes the number of 815 /// values added into it. 816 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 817 unsigned MatchingIdx, 818 SelectionDAG &DAG, 819 std::vector<SDValue> &Ops) const { 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 823 if (HasMatching) 824 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 825 else if (!Regs.empty() && 826 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 827 // Put the register class of the virtual registers in the flag word. That 828 // way, later passes can recompute register class constraints for inline 829 // assembly as well as normal instructions. 830 // Don't do this for tied operands that can use the regclass information 831 // from the def. 832 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 833 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 834 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 835 } 836 837 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 838 Ops.push_back(Res); 839 840 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 841 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 842 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 843 MVT RegisterVT = RegVTs[Value]; 844 for (unsigned i = 0; i != NumRegs; ++i) { 845 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 846 unsigned TheReg = Regs[Reg++]; 847 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 848 849 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 850 // If we clobbered the stack pointer, MFI should know about it. 851 assert(DAG.getMachineFunction().getFrameInfo()-> 852 hasInlineAsmWithSPAdjust()); 853 } 854 } 855 } 856 } 857 858 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 859 const TargetLibraryInfo *li) { 860 AA = &aa; 861 GFI = gfi; 862 LibInfo = li; 863 DL = DAG.getTarget().getDataLayout(); 864 Context = DAG.getContext(); 865 LPadToCallSiteMap.clear(); 866 } 867 868 /// clear - Clear out the current SelectionDAG and the associated 869 /// state and prepare this SelectionDAGBuilder object to be used 870 /// for a new block. This doesn't clear out information about 871 /// additional blocks that are needed to complete switch lowering 872 /// or PHI node updating; that information is cleared out as it is 873 /// consumed. 874 void SelectionDAGBuilder::clear() { 875 NodeMap.clear(); 876 UnusedArgNodeMap.clear(); 877 PendingLoads.clear(); 878 PendingExports.clear(); 879 CurInst = nullptr; 880 HasTailCall = false; 881 SDNodeOrder = LowestSDNodeOrder; 882 } 883 884 /// clearDanglingDebugInfo - Clear the dangling debug information 885 /// map. This function is separated from the clear so that debug 886 /// information that is dangling in a basic block can be properly 887 /// resolved in a different basic block. This allows the 888 /// SelectionDAG to resolve dangling debug information attached 889 /// to PHI nodes. 890 void SelectionDAGBuilder::clearDanglingDebugInfo() { 891 DanglingDebugInfoMap.clear(); 892 } 893 894 /// getRoot - Return the current virtual root of the Selection DAG, 895 /// flushing any PendingLoad items. This must be done before emitting 896 /// a store or any other node that may need to be ordered after any 897 /// prior load instructions. 898 /// 899 SDValue SelectionDAGBuilder::getRoot() { 900 if (PendingLoads.empty()) 901 return DAG.getRoot(); 902 903 if (PendingLoads.size() == 1) { 904 SDValue Root = PendingLoads[0]; 905 DAG.setRoot(Root); 906 PendingLoads.clear(); 907 return Root; 908 } 909 910 // Otherwise, we have to make a token factor node. 911 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 912 PendingLoads); 913 PendingLoads.clear(); 914 DAG.setRoot(Root); 915 return Root; 916 } 917 918 /// getControlRoot - Similar to getRoot, but instead of flushing all the 919 /// PendingLoad items, flush all the PendingExports items. It is necessary 920 /// to do this before emitting a terminator instruction. 921 /// 922 SDValue SelectionDAGBuilder::getControlRoot() { 923 SDValue Root = DAG.getRoot(); 924 925 if (PendingExports.empty()) 926 return Root; 927 928 // Turn all of the CopyToReg chains into one factored node. 929 if (Root.getOpcode() != ISD::EntryToken) { 930 unsigned i = 0, e = PendingExports.size(); 931 for (; i != e; ++i) { 932 assert(PendingExports[i].getNode()->getNumOperands() > 1); 933 if (PendingExports[i].getNode()->getOperand(0) == Root) 934 break; // Don't add the root if we already indirectly depend on it. 935 } 936 937 if (i == e) 938 PendingExports.push_back(Root); 939 } 940 941 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 942 PendingExports); 943 PendingExports.clear(); 944 DAG.setRoot(Root); 945 return Root; 946 } 947 948 void SelectionDAGBuilder::visit(const Instruction &I) { 949 // Set up outgoing PHI node register values before emitting the terminator. 950 if (isa<TerminatorInst>(&I)) 951 HandlePHINodesInSuccessorBlocks(I.getParent()); 952 953 ++SDNodeOrder; 954 955 CurInst = &I; 956 957 visit(I.getOpcode(), I); 958 959 if (!isa<TerminatorInst>(&I) && !HasTailCall) 960 CopyToExportRegsIfNeeded(&I); 961 962 CurInst = nullptr; 963 } 964 965 void SelectionDAGBuilder::visitPHI(const PHINode &) { 966 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 967 } 968 969 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 970 // Note: this doesn't use InstVisitor, because it has to work with 971 // ConstantExpr's in addition to instructions. 972 switch (Opcode) { 973 default: llvm_unreachable("Unknown instruction type encountered!"); 974 // Build the switch statement using the Instruction.def file. 975 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 976 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 977 #include "llvm/IR/Instruction.def" 978 } 979 } 980 981 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 982 // generate the debug data structures now that we've seen its definition. 983 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 984 SDValue Val) { 985 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 986 if (DDI.getDI()) { 987 const DbgValueInst *DI = DDI.getDI(); 988 DebugLoc dl = DDI.getdl(); 989 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 990 MDNode *Variable = DI->getVariable(); 991 uint64_t Offset = DI->getOffset(); 992 // A dbg.value for an alloca is always indirect. 993 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), IsIndirect, 999 Offset, dl, DbgSDNodeOrder); 1000 DAG.AddDbgValue(SDV, Val.getNode(), false); 1001 } 1002 } else 1003 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1004 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1005 } 1006 } 1007 1008 /// getValue - Return an SDValue for the given Value. 1009 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. It's important 1011 // to do this first, so that we don't create a CopyFromReg if we already 1012 // have a regular SDValue. 1013 SDValue &N = NodeMap[V]; 1014 if (N.getNode()) return N; 1015 1016 // If there's a virtual register allocated and initialized for this 1017 // value, use it. 1018 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1019 if (It != FuncInfo.ValueMap.end()) { 1020 unsigned InReg = It->second; 1021 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1022 InReg, V->getType()); 1023 SDValue Chain = DAG.getEntryNode(); 1024 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1025 resolveDanglingDebugInfo(V, N); 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getNonRegisterValue - Return an SDValue for the given Value, but 1037 /// don't look in FuncInfo.ValueMap for a virtual register. 1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. 1040 SDValue &N = NodeMap[V]; 1041 if (N.getNode()) return N; 1042 1043 // Otherwise create a new SDValue and remember it. 1044 SDValue Val = getValueImpl(V); 1045 NodeMap[V] = Val; 1046 resolveDanglingDebugInfo(V, Val); 1047 return Val; 1048 } 1049 1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1051 /// Create an SDValue for the given value. 1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1053 const TargetLowering *TLI = TM.getTargetLowering(); 1054 1055 if (const Constant *C = dyn_cast<Constant>(V)) { 1056 EVT VT = TLI->getValueType(V->getType(), true); 1057 1058 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1059 return DAG.getConstant(*CI, VT); 1060 1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1062 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1063 1064 if (isa<ConstantPointerNull>(C)) { 1065 unsigned AS = V->getType()->getPointerAddressSpace(); 1066 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1067 } 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(&Constants[0], Constants.size(), 1096 getCurSDLoc()); 1097 } 1098 1099 if (const ConstantDataSequential *CDS = 1100 dyn_cast<ConstantDataSequential>(C)) { 1101 SmallVector<SDValue, 4> Ops; 1102 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1103 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1104 // Add each leaf value from the operand to the Constants list 1105 // to form a flattened list of all the values. 1106 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1107 Ops.push_back(SDValue(Val, i)); 1108 } 1109 1110 if (isa<ArrayType>(CDS->getType())) 1111 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1112 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1113 VT, Ops); 1114 } 1115 1116 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1117 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1118 "Unknown struct or array constant!"); 1119 1120 SmallVector<EVT, 4> ValueVTs; 1121 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1122 unsigned NumElts = ValueVTs.size(); 1123 if (NumElts == 0) 1124 return SDValue(); // empty struct 1125 SmallVector<SDValue, 4> Constants(NumElts); 1126 for (unsigned i = 0; i != NumElts; ++i) { 1127 EVT EltVT = ValueVTs[i]; 1128 if (isa<UndefValue>(C)) 1129 Constants[i] = DAG.getUNDEF(EltVT); 1130 else if (EltVT.isFloatingPoint()) 1131 Constants[i] = DAG.getConstantFP(0, EltVT); 1132 else 1133 Constants[i] = DAG.getConstant(0, EltVT); 1134 } 1135 1136 return DAG.getMergeValues(&Constants[0], NumElts, 1137 getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1166 } 1167 1168 // If this is a static alloca, generate it as the frameindex instead of 1169 // computation. 1170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1171 DenseMap<const AllocaInst*, int>::iterator SI = 1172 FuncInfo.StaticAllocaMap.find(AI); 1173 if (SI != FuncInfo.StaticAllocaMap.end()) 1174 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1175 } 1176 1177 // If this is an instruction which fast-isel has deferred, select it now. 1178 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1179 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1180 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1189 const TargetLowering *TLI = TM.getTargetLowering(); 1190 SDValue Chain = getControlRoot(); 1191 SmallVector<ISD::OutputArg, 8> Outs; 1192 SmallVector<SDValue, 8> OutVals; 1193 1194 if (!FuncInfo.CanLowerReturn) { 1195 unsigned DemoteReg = FuncInfo.DemoteRegister; 1196 const Function *F = I.getParent()->getParent(); 1197 1198 // Emit a store of the return value through the virtual register. 1199 // Leave Outs empty so that LowerReturn won't try to load return 1200 // registers the usual way. 1201 SmallVector<EVT, 1> PtrValueVTs; 1202 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1203 PtrValueVTs); 1204 1205 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1206 SDValue RetOp = getValue(I.getOperand(0)); 1207 1208 SmallVector<EVT, 4> ValueVTs; 1209 SmallVector<uint64_t, 4> Offsets; 1210 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1211 unsigned NumValues = ValueVTs.size(); 1212 1213 SmallVector<SDValue, 4> Chains(NumValues); 1214 for (unsigned i = 0; i != NumValues; ++i) { 1215 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1216 RetPtr.getValueType(), RetPtr, 1217 DAG.getIntPtrConstant(Offsets[i])); 1218 Chains[i] = 1219 DAG.getStore(Chain, getCurSDLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1221 // FIXME: better loc info would be nice. 1222 Add, MachinePointerInfo(), false, false, 0); 1223 } 1224 1225 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1226 MVT::Other, Chains); 1227 } else if (I.getNumOperands() != 0) { 1228 SmallVector<EVT, 4> ValueVTs; 1229 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1230 unsigned NumValues = ValueVTs.size(); 1231 if (NumValues) { 1232 SDValue RetOp = getValue(I.getOperand(0)); 1233 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1237 1238 const Function *F = I.getParent()->getParent(); 1239 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::SExt)) 1241 ExtendKind = ISD::SIGN_EXTEND; 1242 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::ZExt)) 1244 ExtendKind = ISD::ZERO_EXTEND; 1245 1246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1247 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1248 1249 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1250 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1251 SmallVector<SDValue, 4> Parts(NumParts); 1252 getCopyToParts(DAG, getCurSDLoc(), 1253 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1254 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1255 1256 // 'inreg' on function refers to return value 1257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::InReg)) 1260 Flags.setInReg(); 1261 1262 // Propagate extension type if any 1263 if (ExtendKind == ISD::SIGN_EXTEND) 1264 Flags.setSExt(); 1265 else if (ExtendKind == ISD::ZERO_EXTEND) 1266 Flags.setZExt(); 1267 1268 for (unsigned i = 0; i < NumParts; ++i) { 1269 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1270 VT, /*isfixed=*/true, 0, 0)); 1271 OutVals.push_back(Parts[i]); 1272 } 1273 } 1274 } 1275 } 1276 1277 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1278 CallingConv::ID CallConv = 1279 DAG.getMachineFunction().getFunction()->getCallingConv(); 1280 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1281 Outs, OutVals, getCurSDLoc(), 1282 DAG); 1283 1284 // Verify that the target's LowerReturn behaved as expected. 1285 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1286 "LowerReturn didn't return a valid chain!"); 1287 1288 // Update the DAG with the new chain value resulting from return lowering. 1289 DAG.setRoot(Chain); 1290 } 1291 1292 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1293 /// created for it, emit nodes to copy the value into the virtual 1294 /// registers. 1295 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1296 // Skip empty types 1297 if (V->getType()->isEmptyTy()) 1298 return; 1299 1300 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1301 if (VMI != FuncInfo.ValueMap.end()) { 1302 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1303 CopyValueToVirtualRegister(V, VMI->second); 1304 } 1305 } 1306 1307 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1308 /// the current basic block, add it to ValueMap now so that we'll get a 1309 /// CopyTo/FromReg. 1310 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1311 // No need to export constants. 1312 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1313 1314 // Already exported? 1315 if (FuncInfo.isExportedInst(V)) return; 1316 1317 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1318 CopyValueToVirtualRegister(V, Reg); 1319 } 1320 1321 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1322 const BasicBlock *FromBB) { 1323 // The operands of the setcc have to be in this block. We don't know 1324 // how to export them from some other block. 1325 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1326 // Can export from current BB. 1327 if (VI->getParent() == FromBB) 1328 return true; 1329 1330 // Is already exported, noop. 1331 return FuncInfo.isExportedInst(V); 1332 } 1333 1334 // If this is an argument, we can export it if the BB is the entry block or 1335 // if it is already exported. 1336 if (isa<Argument>(V)) { 1337 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1338 return true; 1339 1340 // Otherwise, can only export this if it is already exported. 1341 return FuncInfo.isExportedInst(V); 1342 } 1343 1344 // Otherwise, constants can always be exported. 1345 return true; 1346 } 1347 1348 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1349 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1350 const MachineBasicBlock *Dst) const { 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 if (!BPI) 1353 return 0; 1354 const BasicBlock *SrcBB = Src->getBasicBlock(); 1355 const BasicBlock *DstBB = Dst->getBasicBlock(); 1356 return BPI->getEdgeWeight(SrcBB, DstBB); 1357 } 1358 1359 void SelectionDAGBuilder:: 1360 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1361 uint32_t Weight /* = 0 */) { 1362 if (!Weight) 1363 Weight = getEdgeWeight(Src, Dst); 1364 Src->addSuccessor(Dst, Weight); 1365 } 1366 1367 1368 static bool InBlock(const Value *V, const BasicBlock *BB) { 1369 if (const Instruction *I = dyn_cast<Instruction>(V)) 1370 return I->getParent() == BB; 1371 return true; 1372 } 1373 1374 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1375 /// This function emits a branch and is used at the leaves of an OR or an 1376 /// AND operator tree. 1377 /// 1378 void 1379 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1380 MachineBasicBlock *TBB, 1381 MachineBasicBlock *FBB, 1382 MachineBasicBlock *CurBB, 1383 MachineBasicBlock *SwitchBB, 1384 uint32_t TWeight, 1385 uint32_t FWeight) { 1386 const BasicBlock *BB = CurBB->getBasicBlock(); 1387 1388 // If the leaf of the tree is a comparison, merge the condition into 1389 // the caseblock. 1390 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1391 // The operands of the cmp have to be in this block. We don't know 1392 // how to export them from some other block. If this is the first block 1393 // of the sequence, no exporting is needed. 1394 if (CurBB == SwitchBB || 1395 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1396 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1397 ISD::CondCode Condition; 1398 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1399 Condition = getICmpCondCode(IC->getPredicate()); 1400 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1401 Condition = getFCmpCondCode(FC->getPredicate()); 1402 if (TM.Options.NoNaNsFPMath) 1403 Condition = getFCmpCodeWithoutNaN(Condition); 1404 } else { 1405 Condition = ISD::SETEQ; // silence warning. 1406 llvm_unreachable("Unknown compare instruction"); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1410 TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 unsigned Opc, uint32_t TWeight, 1437 uint32_t FWeight) { 1438 // If this node is not part of the or/and tree, emit it as a branch. 1439 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1440 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1441 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1442 BOp->getParent() != CurBB->getBasicBlock() || 1443 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1444 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1445 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1446 TWeight, FWeight); 1447 return; 1448 } 1449 1450 // Create TmpBB after CurBB. 1451 MachineFunction::iterator BBI = CurBB; 1452 MachineFunction &MF = DAG.getMachineFunction(); 1453 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1454 CurBB->getParent()->insert(++BBI, TmpBB); 1455 1456 if (Opc == Instruction::Or) { 1457 // Codegen X | Y as: 1458 // BB1: 1459 // jmp_if_X TBB 1460 // jmp TmpBB 1461 // TmpBB: 1462 // jmp_if_Y TBB 1463 // jmp FBB 1464 // 1465 1466 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1467 // The requirement is that 1468 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1469 // = TrueProb for orignal BB. 1470 // Assuming the orignal weights are A and B, one choice is to set BB1's 1471 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1472 // assumes that 1473 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1474 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1475 // TmpBB, but the math is more complicated. 1476 1477 uint64_t NewTrueWeight = TWeight; 1478 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = TWeight; 1485 NewFalseWeight = 2 * (uint64_t)FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } else { 1491 assert(Opc == Instruction::And && "Unknown merge op!"); 1492 // Codegen X & Y as: 1493 // BB1: 1494 // jmp_if_X TmpBB 1495 // jmp FBB 1496 // TmpBB: 1497 // jmp_if_Y TBB 1498 // jmp FBB 1499 // 1500 // This requires creation of TmpBB after CurBB. 1501 1502 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1503 // The requirement is that 1504 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1505 // = FalseProb for orignal BB. 1506 // Assuming the orignal weights are A and B, one choice is to set BB1's 1507 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1508 // assumes that 1509 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1510 1511 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1512 uint64_t NewFalseWeight = FWeight; 1513 ScaleWeights(NewTrueWeight, NewFalseWeight); 1514 // Emit the LHS condition. 1515 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1516 NewTrueWeight, NewFalseWeight); 1517 1518 NewTrueWeight = 2 * (uint64_t)TWeight; 1519 NewFalseWeight = FWeight; 1520 ScaleWeights(NewTrueWeight, NewFalseWeight); 1521 // Emit the RHS condition into TmpBB. 1522 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1523 NewTrueWeight, NewFalseWeight); 1524 } 1525 } 1526 1527 /// If the set of cases should be emitted as a series of branches, return true. 1528 /// If we should emit this as a bunch of and/or'd together conditions, return 1529 /// false. 1530 bool 1531 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1532 if (Cases.size() != 2) return true; 1533 1534 // If this is two comparisons of the same values or'd or and'd together, they 1535 // will get folded into a single comparison, so don't emit two blocks. 1536 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1537 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1538 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1539 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1540 return false; 1541 } 1542 1543 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1544 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1545 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1546 Cases[0].CC == Cases[1].CC && 1547 isa<Constant>(Cases[0].CmpRHS) && 1548 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1549 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1550 return false; 1551 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1552 return false; 1553 } 1554 1555 return true; 1556 } 1557 1558 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1559 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1560 1561 // Update machine-CFG edges. 1562 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1563 1564 // Figure out which block is immediately after the current one. 1565 MachineBasicBlock *NextBlock = nullptr; 1566 MachineFunction::iterator BBI = BrMBB; 1567 if (++BBI != FuncInfo.MF->end()) 1568 NextBlock = BBI; 1569 1570 if (I.isUnconditional()) { 1571 // Update machine-CFG edges. 1572 BrMBB->addSuccessor(Succ0MBB); 1573 1574 // If this is not a fall-through branch or optimizations are switched off, 1575 // emit the branch. 1576 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1577 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1578 MVT::Other, getControlRoot(), 1579 DAG.getBasicBlock(Succ0MBB))); 1580 1581 return; 1582 } 1583 1584 // If this condition is one of the special cases we handle, do special stuff 1585 // now. 1586 const Value *CondVal = I.getCondition(); 1587 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1588 1589 // If this is a series of conditions that are or'd or and'd together, emit 1590 // this as a sequence of branches instead of setcc's with and/or operations. 1591 // As long as jumps are not expensive, this should improve performance. 1592 // For example, instead of something like: 1593 // cmp A, B 1594 // C = seteq 1595 // cmp D, E 1596 // F = setle 1597 // or C, F 1598 // jnz foo 1599 // Emit: 1600 // cmp A, B 1601 // je foo 1602 // cmp D, E 1603 // jle foo 1604 // 1605 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1606 if (!TM.getTargetLowering()->isJumpExpensive() && 1607 BOp->hasOneUse() && 1608 (BOp->getOpcode() == Instruction::And || 1609 BOp->getOpcode() == Instruction::Or)) { 1610 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1611 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1612 getEdgeWeight(BrMBB, Succ1MBB)); 1613 // If the compares in later blocks need to use values not currently 1614 // exported from this block, export them now. This block should always 1615 // be the first entry. 1616 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1617 1618 // Allow some cases to be rejected. 1619 if (ShouldEmitAsBranches(SwitchCases)) { 1620 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1621 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1622 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1623 } 1624 1625 // Emit the branch for this block. 1626 visitSwitchCase(SwitchCases[0], BrMBB); 1627 SwitchCases.erase(SwitchCases.begin()); 1628 return; 1629 } 1630 1631 // Okay, we decided not to do this, remove any inserted MBB's and clear 1632 // SwitchCases. 1633 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1634 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1635 1636 SwitchCases.clear(); 1637 } 1638 } 1639 1640 // Create a CaseBlock record representing this branch. 1641 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1642 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1643 1644 // Use visitSwitchCase to actually insert the fast branch sequence for this 1645 // cond branch. 1646 visitSwitchCase(CB, BrMBB); 1647 } 1648 1649 /// visitSwitchCase - Emits the necessary code to represent a single node in 1650 /// the binary search tree resulting from lowering a switch instruction. 1651 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1652 MachineBasicBlock *SwitchBB) { 1653 SDValue Cond; 1654 SDValue CondLHS = getValue(CB.CmpLHS); 1655 SDLoc dl = getCurSDLoc(); 1656 1657 // Build the setcc now. 1658 if (!CB.CmpMHS) { 1659 // Fold "(X == true)" to X and "(X == false)" to !X to 1660 // handle common cases produced by branch lowering. 1661 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1662 CB.CC == ISD::SETEQ) 1663 Cond = CondLHS; 1664 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1665 CB.CC == ISD::SETEQ) { 1666 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1667 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1668 } else 1669 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1670 } else { 1671 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1672 1673 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1674 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1675 1676 SDValue CmpOp = getValue(CB.CmpMHS); 1677 EVT VT = CmpOp.getValueType(); 1678 1679 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1680 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1681 ISD::SETLE); 1682 } else { 1683 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1684 VT, CmpOp, DAG.getConstant(Low, VT)); 1685 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1686 DAG.getConstant(High-Low, VT), ISD::SETULE); 1687 } 1688 } 1689 1690 // Update successor info 1691 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1692 // TrueBB and FalseBB are always different unless the incoming IR is 1693 // degenerate. This only happens when running llc on weird IR. 1694 if (CB.TrueBB != CB.FalseBB) 1695 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1696 1697 // Set NextBlock to be the MBB immediately after the current one, if any. 1698 // This is used to avoid emitting unnecessary branches to the next block. 1699 MachineBasicBlock *NextBlock = nullptr; 1700 MachineFunction::iterator BBI = SwitchBB; 1701 if (++BBI != FuncInfo.MF->end()) 1702 NextBlock = BBI; 1703 1704 // If the lhs block is the next block, invert the condition so that we can 1705 // fall through to the lhs instead of the rhs block. 1706 if (CB.TrueBB == NextBlock) { 1707 std::swap(CB.TrueBB, CB.FalseBB); 1708 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1709 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1710 } 1711 1712 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1713 MVT::Other, getControlRoot(), Cond, 1714 DAG.getBasicBlock(CB.TrueBB)); 1715 1716 // Insert the false branch. Do this even if it's a fall through branch, 1717 // this makes it easier to do DAG optimizations which require inverting 1718 // the branch condition. 1719 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1720 DAG.getBasicBlock(CB.FalseBB)); 1721 1722 DAG.setRoot(BrCond); 1723 } 1724 1725 /// visitJumpTable - Emit JumpTable node in the current MBB 1726 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1727 // Emit the code for the jump table 1728 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1729 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1730 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1731 JT.Reg, PTy); 1732 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1733 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1734 MVT::Other, Index.getValue(1), 1735 Table, Index); 1736 DAG.setRoot(BrJumpTable); 1737 } 1738 1739 /// visitJumpTableHeader - This function emits necessary code to produce index 1740 /// in the JumpTable from switch case. 1741 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1742 JumpTableHeader &JTH, 1743 MachineBasicBlock *SwitchBB) { 1744 // Subtract the lowest switch case value from the value being switched on and 1745 // conditional branch to default mbb if the result is greater than the 1746 // difference between smallest and largest cases. 1747 SDValue SwitchOp = getValue(JTH.SValue); 1748 EVT VT = SwitchOp.getValueType(); 1749 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1750 DAG.getConstant(JTH.First, VT)); 1751 1752 // The SDNode we just created, which holds the value being switched on minus 1753 // the smallest case value, needs to be copied to a virtual register so it 1754 // can be used as an index into the jump table in a subsequent basic block. 1755 // This value may be smaller or larger than the target's pointer type, and 1756 // therefore require extension or truncating. 1757 const TargetLowering *TLI = TM.getTargetLowering(); 1758 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1759 1760 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1761 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1762 JumpTableReg, SwitchOp); 1763 JT.Reg = JumpTableReg; 1764 1765 // Emit the range check for the jump table, and branch to the default block 1766 // for the switch statement if the value being switched on exceeds the largest 1767 // case in the switch. 1768 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1769 TLI->getSetCCResultType(*DAG.getContext(), 1770 Sub.getValueType()), 1771 Sub, 1772 DAG.getConstant(JTH.Last - JTH.First,VT), 1773 ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering *TLI = TM.getTargetLowering(); 1805 EVT PtrTy = TLI->getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1817 GuardPtr, MachinePointerInfo(IRGuard, 0), 1818 true, false, false, Align); 1819 1820 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1821 StackSlotPtr, 1822 MachinePointerInfo::getFixedStack(FI), 1823 true, false, false, Align); 1824 1825 // Perform the comparison via a subtract/getsetcc. 1826 EVT VT = Guard.getValueType(); 1827 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1828 1829 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1830 TLI->getSetCCResultType(*DAG.getContext(), 1831 Sub.getValueType()), 1832 Sub, DAG.getConstant(0, VT), 1833 ISD::SETNE); 1834 1835 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1836 // branch to failure MBB. 1837 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1838 MVT::Other, StackSlot.getOperand(0), 1839 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1840 // Otherwise branch to success MBB. 1841 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1842 MVT::Other, BrCond, 1843 DAG.getBasicBlock(SPD.getSuccessMBB())); 1844 1845 DAG.setRoot(Br); 1846 } 1847 1848 /// Codegen the failure basic block for a stack protector check. 1849 /// 1850 /// A failure stack protector machine basic block consists simply of a call to 1851 /// __stack_chk_fail(). 1852 /// 1853 /// For a high level explanation of how this fits into the stack protector 1854 /// generation see the comment on the declaration of class 1855 /// StackProtectorDescriptor. 1856 void 1857 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1858 const TargetLowering *TLI = TM.getTargetLowering(); 1859 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1860 MVT::isVoid, nullptr, 0, false, 1861 getCurSDLoc(), false, false).second; 1862 DAG.setRoot(Chain); 1863 } 1864 1865 /// visitBitTestHeader - This function emits necessary code to produce value 1866 /// suitable for "bit tests" 1867 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1868 MachineBasicBlock *SwitchBB) { 1869 // Subtract the minimum value 1870 SDValue SwitchOp = getValue(B.SValue); 1871 EVT VT = SwitchOp.getValueType(); 1872 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1873 DAG.getConstant(B.First, VT)); 1874 1875 // Check range 1876 const TargetLowering *TLI = TM.getTargetLowering(); 1877 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1878 TLI->getSetCCResultType(*DAG.getContext(), 1879 Sub.getValueType()), 1880 Sub, DAG.getConstant(B.Range, VT), 1881 ISD::SETUGT); 1882 1883 // Determine the type of the test operands. 1884 bool UsePtrType = false; 1885 if (!TLI->isTypeLegal(VT)) 1886 UsePtrType = true; 1887 else { 1888 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1889 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1890 // Switch table case range are encoded into series of masks. 1891 // Just use pointer type, it's guaranteed to fit. 1892 UsePtrType = true; 1893 break; 1894 } 1895 } 1896 if (UsePtrType) { 1897 VT = TLI->getPointerTy(); 1898 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1899 } 1900 1901 B.RegVT = VT.getSimpleVT(); 1902 B.Reg = FuncInfo.CreateReg(B.RegVT); 1903 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1904 B.Reg, Sub); 1905 1906 // Set NextBlock to be the MBB immediately after the current one, if any. 1907 // This is used to avoid emitting unnecessary branches to the next block. 1908 MachineBasicBlock *NextBlock = nullptr; 1909 MachineFunction::iterator BBI = SwitchBB; 1910 if (++BBI != FuncInfo.MF->end()) 1911 NextBlock = BBI; 1912 1913 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1914 1915 addSuccessorWithWeight(SwitchBB, B.Default); 1916 addSuccessorWithWeight(SwitchBB, MBB); 1917 1918 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1919 MVT::Other, CopyTo, RangeCmp, 1920 DAG.getBasicBlock(B.Default)); 1921 1922 if (MBB != NextBlock) 1923 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1924 DAG.getBasicBlock(MBB)); 1925 1926 DAG.setRoot(BrRange); 1927 } 1928 1929 /// visitBitTestCase - this function produces one "bit test" 1930 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1931 MachineBasicBlock* NextMBB, 1932 uint32_t BranchWeightToNext, 1933 unsigned Reg, 1934 BitTestCase &B, 1935 MachineBasicBlock *SwitchBB) { 1936 MVT VT = BB.RegVT; 1937 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1938 Reg, VT); 1939 SDValue Cmp; 1940 unsigned PopCount = CountPopulation_64(B.Mask); 1941 const TargetLowering *TLI = TM.getTargetLowering(); 1942 if (PopCount == 1) { 1943 // Testing for a single bit; just compare the shift count with what it 1944 // would need to be to shift a 1 bit in that position. 1945 Cmp = DAG.getSetCC(getCurSDLoc(), 1946 TLI->getSetCCResultType(*DAG.getContext(), VT), 1947 ShiftOp, 1948 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1949 ISD::SETEQ); 1950 } else if (PopCount == BB.Range) { 1951 // There is only one zero bit in the range, test for it directly. 1952 Cmp = DAG.getSetCC(getCurSDLoc(), 1953 TLI->getSetCCResultType(*DAG.getContext(), VT), 1954 ShiftOp, 1955 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1956 ISD::SETNE); 1957 } else { 1958 // Make desired shift 1959 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1960 DAG.getConstant(1, VT), ShiftOp); 1961 1962 // Emit bit tests and jumps 1963 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1964 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1965 Cmp = DAG.getSetCC(getCurSDLoc(), 1966 TLI->getSetCCResultType(*DAG.getContext(), VT), 1967 AndOp, DAG.getConstant(0, VT), 1968 ISD::SETNE); 1969 } 1970 1971 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1972 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1973 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1974 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1975 1976 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 Cmp, DAG.getBasicBlock(B.TargetBB)); 1979 1980 // Set NextBlock to be the MBB immediately after the current one, if any. 1981 // This is used to avoid emitting unnecessary branches to the next block. 1982 MachineBasicBlock *NextBlock = nullptr; 1983 MachineFunction::iterator BBI = SwitchBB; 1984 if (++BBI != FuncInfo.MF->end()) 1985 NextBlock = BBI; 1986 1987 if (NextMBB != NextBlock) 1988 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1989 DAG.getBasicBlock(NextMBB)); 1990 1991 DAG.setRoot(BrAnd); 1992 } 1993 1994 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1995 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1996 1997 // Retrieve successors. 1998 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1999 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2000 2001 const Value *Callee(I.getCalledValue()); 2002 const Function *Fn = dyn_cast<Function>(Callee); 2003 if (isa<InlineAsm>(Callee)) 2004 visitInlineAsm(&I); 2005 else if (Fn && Fn->isIntrinsic()) { 2006 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2007 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2008 } else 2009 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2010 2011 // If the value of the invoke is used outside of its defining block, make it 2012 // available as a virtual register. 2013 CopyToExportRegsIfNeeded(&I); 2014 2015 // Update successor info 2016 addSuccessorWithWeight(InvokeMBB, Return); 2017 addSuccessorWithWeight(InvokeMBB, LandingPad); 2018 2019 // Drop into normal successor. 2020 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2021 MVT::Other, getControlRoot(), 2022 DAG.getBasicBlock(Return))); 2023 } 2024 2025 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2026 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2027 } 2028 2029 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2030 assert(FuncInfo.MBB->isLandingPad() && 2031 "Call to landingpad not in landing pad!"); 2032 2033 MachineBasicBlock *MBB = FuncInfo.MBB; 2034 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2035 AddLandingPadInfo(LP, MMI, MBB); 2036 2037 // If there aren't registers to copy the values into (e.g., during SjLj 2038 // exceptions), then don't bother to create these DAG nodes. 2039 const TargetLowering *TLI = TM.getTargetLowering(); 2040 if (TLI->getExceptionPointerRegister() == 0 && 2041 TLI->getExceptionSelectorRegister() == 0) 2042 return; 2043 2044 SmallVector<EVT, 2> ValueVTs; 2045 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2046 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2047 2048 // Get the two live-in registers as SDValues. The physregs have already been 2049 // copied into virtual registers. 2050 SDValue Ops[2]; 2051 Ops[0] = DAG.getZExtOrTrunc( 2052 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2053 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2054 getCurSDLoc(), ValueVTs[0]); 2055 Ops[1] = DAG.getZExtOrTrunc( 2056 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2057 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2058 getCurSDLoc(), ValueVTs[1]); 2059 2060 // Merge into one. 2061 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2062 DAG.getVTList(ValueVTs), Ops); 2063 setValue(&LP, Res); 2064 } 2065 2066 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2067 /// small case ranges). 2068 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2069 CaseRecVector& WorkList, 2070 const Value* SV, 2071 MachineBasicBlock *Default, 2072 MachineBasicBlock *SwitchBB) { 2073 // Size is the number of Cases represented by this range. 2074 size_t Size = CR.Range.second - CR.Range.first; 2075 if (Size > 3) 2076 return false; 2077 2078 // Get the MachineFunction which holds the current MBB. This is used when 2079 // inserting any additional MBBs necessary to represent the switch. 2080 MachineFunction *CurMF = FuncInfo.MF; 2081 2082 // Figure out which block is immediately after the current one. 2083 MachineBasicBlock *NextBlock = nullptr; 2084 MachineFunction::iterator BBI = CR.CaseBB; 2085 2086 if (++BBI != FuncInfo.MF->end()) 2087 NextBlock = BBI; 2088 2089 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2090 // If any two of the cases has the same destination, and if one value 2091 // is the same as the other, but has one bit unset that the other has set, 2092 // use bit manipulation to do two compares at once. For example: 2093 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2094 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2095 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2096 if (Size == 2 && CR.CaseBB == SwitchBB) { 2097 Case &Small = *CR.Range.first; 2098 Case &Big = *(CR.Range.second-1); 2099 2100 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2101 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2102 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2103 2104 // Check that there is only one bit different. 2105 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2106 (SmallValue | BigValue) == BigValue) { 2107 // Isolate the common bit. 2108 APInt CommonBit = BigValue & ~SmallValue; 2109 assert((SmallValue | CommonBit) == BigValue && 2110 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2111 2112 SDValue CondLHS = getValue(SV); 2113 EVT VT = CondLHS.getValueType(); 2114 SDLoc DL = getCurSDLoc(); 2115 2116 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2117 DAG.getConstant(CommonBit, VT)); 2118 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2119 Or, DAG.getConstant(BigValue, VT), 2120 ISD::SETEQ); 2121 2122 // Update successor info. 2123 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2124 addSuccessorWithWeight(SwitchBB, Small.BB, 2125 Small.ExtraWeight + Big.ExtraWeight); 2126 addSuccessorWithWeight(SwitchBB, Default, 2127 // The default destination is the first successor in IR. 2128 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2129 2130 // Insert the true branch. 2131 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2132 getControlRoot(), Cond, 2133 DAG.getBasicBlock(Small.BB)); 2134 2135 // Insert the false branch. 2136 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2137 DAG.getBasicBlock(Default)); 2138 2139 DAG.setRoot(BrCond); 2140 return true; 2141 } 2142 } 2143 } 2144 2145 // Order cases by weight so the most likely case will be checked first. 2146 uint32_t UnhandledWeights = 0; 2147 if (BPI) { 2148 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2149 uint32_t IWeight = I->ExtraWeight; 2150 UnhandledWeights += IWeight; 2151 for (CaseItr J = CR.Range.first; J < I; ++J) { 2152 uint32_t JWeight = J->ExtraWeight; 2153 if (IWeight > JWeight) 2154 std::swap(*I, *J); 2155 } 2156 } 2157 } 2158 // Rearrange the case blocks so that the last one falls through if possible. 2159 Case &BackCase = *(CR.Range.second-1); 2160 if (Size > 1 && 2161 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2162 // The last case block won't fall through into 'NextBlock' if we emit the 2163 // branches in this order. See if rearranging a case value would help. 2164 // We start at the bottom as it's the case with the least weight. 2165 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2166 if (I->BB == NextBlock) { 2167 std::swap(*I, BackCase); 2168 break; 2169 } 2170 } 2171 2172 // Create a CaseBlock record representing a conditional branch to 2173 // the Case's target mbb if the value being switched on SV is equal 2174 // to C. 2175 MachineBasicBlock *CurBlock = CR.CaseBB; 2176 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2177 MachineBasicBlock *FallThrough; 2178 if (I != E-1) { 2179 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2180 CurMF->insert(BBI, FallThrough); 2181 2182 // Put SV in a virtual register to make it available from the new blocks. 2183 ExportFromCurrentBlock(SV); 2184 } else { 2185 // If the last case doesn't match, go to the default block. 2186 FallThrough = Default; 2187 } 2188 2189 const Value *RHS, *LHS, *MHS; 2190 ISD::CondCode CC; 2191 if (I->High == I->Low) { 2192 // This is just small small case range :) containing exactly 1 case 2193 CC = ISD::SETEQ; 2194 LHS = SV; RHS = I->High; MHS = nullptr; 2195 } else { 2196 CC = ISD::SETLE; 2197 LHS = I->Low; MHS = SV; RHS = I->High; 2198 } 2199 2200 // The false weight should be sum of all un-handled cases. 2201 UnhandledWeights -= I->ExtraWeight; 2202 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2203 /* me */ CurBlock, 2204 /* trueweight */ I->ExtraWeight, 2205 /* falseweight */ UnhandledWeights); 2206 2207 // If emitting the first comparison, just call visitSwitchCase to emit the 2208 // code into the current block. Otherwise, push the CaseBlock onto the 2209 // vector to be later processed by SDISel, and insert the node's MBB 2210 // before the next MBB. 2211 if (CurBlock == SwitchBB) 2212 visitSwitchCase(CB, SwitchBB); 2213 else 2214 SwitchCases.push_back(CB); 2215 2216 CurBlock = FallThrough; 2217 } 2218 2219 return true; 2220 } 2221 2222 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2223 return TLI.supportJumpTables() && 2224 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2225 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2226 } 2227 2228 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2229 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2230 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2231 return (LastExt - FirstExt + 1ULL); 2232 } 2233 2234 /// handleJTSwitchCase - Emit jumptable for current switch case range 2235 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2236 CaseRecVector &WorkList, 2237 const Value *SV, 2238 MachineBasicBlock *Default, 2239 MachineBasicBlock *SwitchBB) { 2240 Case& FrontCase = *CR.Range.first; 2241 Case& BackCase = *(CR.Range.second-1); 2242 2243 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2244 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2245 2246 APInt TSize(First.getBitWidth(), 0); 2247 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2248 TSize += I->size(); 2249 2250 const TargetLowering *TLI = TM.getTargetLowering(); 2251 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2252 return false; 2253 2254 APInt Range = ComputeRange(First, Last); 2255 // The density is TSize / Range. Require at least 40%. 2256 // It should not be possible for IntTSize to saturate for sane code, but make 2257 // sure we handle Range saturation correctly. 2258 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2259 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2260 if (IntTSize * 10 < IntRange * 4) 2261 return false; 2262 2263 DEBUG(dbgs() << "Lowering jump table\n" 2264 << "First entry: " << First << ". Last entry: " << Last << '\n' 2265 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2266 2267 // Get the MachineFunction which holds the current MBB. This is used when 2268 // inserting any additional MBBs necessary to represent the switch. 2269 MachineFunction *CurMF = FuncInfo.MF; 2270 2271 // Figure out which block is immediately after the current one. 2272 MachineFunction::iterator BBI = CR.CaseBB; 2273 ++BBI; 2274 2275 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2276 2277 // Create a new basic block to hold the code for loading the address 2278 // of the jump table, and jumping to it. Update successor information; 2279 // we will either branch to the default case for the switch, or the jump 2280 // table. 2281 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2282 CurMF->insert(BBI, JumpTableBB); 2283 2284 addSuccessorWithWeight(CR.CaseBB, Default); 2285 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2286 2287 // Build a vector of destination BBs, corresponding to each target 2288 // of the jump table. If the value of the jump table slot corresponds to 2289 // a case statement, push the case's BB onto the vector, otherwise, push 2290 // the default BB. 2291 std::vector<MachineBasicBlock*> DestBBs; 2292 APInt TEI = First; 2293 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2294 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2295 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2296 2297 if (Low.sle(TEI) && TEI.sle(High)) { 2298 DestBBs.push_back(I->BB); 2299 if (TEI==High) 2300 ++I; 2301 } else { 2302 DestBBs.push_back(Default); 2303 } 2304 } 2305 2306 // Calculate weight for each unique destination in CR. 2307 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2308 if (FuncInfo.BPI) 2309 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2310 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2311 DestWeights.find(I->BB); 2312 if (Itr != DestWeights.end()) 2313 Itr->second += I->ExtraWeight; 2314 else 2315 DestWeights[I->BB] = I->ExtraWeight; 2316 } 2317 2318 // Update successor info. Add one edge to each unique successor. 2319 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2320 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2321 E = DestBBs.end(); I != E; ++I) { 2322 if (!SuccsHandled[(*I)->getNumber()]) { 2323 SuccsHandled[(*I)->getNumber()] = true; 2324 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2325 DestWeights.find(*I); 2326 addSuccessorWithWeight(JumpTableBB, *I, 2327 Itr != DestWeights.end() ? Itr->second : 0); 2328 } 2329 } 2330 2331 // Create a jump table index for this jump table. 2332 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2333 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2334 ->createJumpTableIndex(DestBBs); 2335 2336 // Set the jump table information so that we can codegen it as a second 2337 // MachineBasicBlock 2338 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2339 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2340 if (CR.CaseBB == SwitchBB) 2341 visitJumpTableHeader(JT, JTH, SwitchBB); 2342 2343 JTCases.push_back(JumpTableBlock(JTH, JT)); 2344 return true; 2345 } 2346 2347 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2348 /// 2 subtrees. 2349 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2350 CaseRecVector& WorkList, 2351 const Value* SV, 2352 MachineBasicBlock* Default, 2353 MachineBasicBlock* SwitchBB) { 2354 // Get the MachineFunction which holds the current MBB. This is used when 2355 // inserting any additional MBBs necessary to represent the switch. 2356 MachineFunction *CurMF = FuncInfo.MF; 2357 2358 // Figure out which block is immediately after the current one. 2359 MachineFunction::iterator BBI = CR.CaseBB; 2360 ++BBI; 2361 2362 Case& FrontCase = *CR.Range.first; 2363 Case& BackCase = *(CR.Range.second-1); 2364 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2365 2366 // Size is the number of Cases represented by this range. 2367 unsigned Size = CR.Range.second - CR.Range.first; 2368 2369 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2370 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2371 double FMetric = 0; 2372 CaseItr Pivot = CR.Range.first + Size/2; 2373 2374 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2375 // (heuristically) allow us to emit JumpTable's later. 2376 APInt TSize(First.getBitWidth(), 0); 2377 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2378 I!=E; ++I) 2379 TSize += I->size(); 2380 2381 APInt LSize = FrontCase.size(); 2382 APInt RSize = TSize-LSize; 2383 DEBUG(dbgs() << "Selecting best pivot: \n" 2384 << "First: " << First << ", Last: " << Last <<'\n' 2385 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2386 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2387 J!=E; ++I, ++J) { 2388 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2389 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2390 APInt Range = ComputeRange(LEnd, RBegin); 2391 assert((Range - 2ULL).isNonNegative() && 2392 "Invalid case distance"); 2393 // Use volatile double here to avoid excess precision issues on some hosts, 2394 // e.g. that use 80-bit X87 registers. 2395 volatile double LDensity = 2396 (double)LSize.roundToDouble() / 2397 (LEnd - First + 1ULL).roundToDouble(); 2398 volatile double RDensity = 2399 (double)RSize.roundToDouble() / 2400 (Last - RBegin + 1ULL).roundToDouble(); 2401 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2402 // Should always split in some non-trivial place 2403 DEBUG(dbgs() <<"=>Step\n" 2404 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2405 << "LDensity: " << LDensity 2406 << ", RDensity: " << RDensity << '\n' 2407 << "Metric: " << Metric << '\n'); 2408 if (FMetric < Metric) { 2409 Pivot = J; 2410 FMetric = Metric; 2411 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2412 } 2413 2414 LSize += J->size(); 2415 RSize -= J->size(); 2416 } 2417 2418 const TargetLowering *TLI = TM.getTargetLowering(); 2419 if (areJTsAllowed(*TLI)) { 2420 // If our case is dense we *really* should handle it earlier! 2421 assert((FMetric > 0) && "Should handle dense range earlier!"); 2422 } else { 2423 Pivot = CR.Range.first + Size/2; 2424 } 2425 2426 CaseRange LHSR(CR.Range.first, Pivot); 2427 CaseRange RHSR(Pivot, CR.Range.second); 2428 const Constant *C = Pivot->Low; 2429 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2430 2431 // We know that we branch to the LHS if the Value being switched on is 2432 // less than the Pivot value, C. We use this to optimize our binary 2433 // tree a bit, by recognizing that if SV is greater than or equal to the 2434 // LHS's Case Value, and that Case Value is exactly one less than the 2435 // Pivot's Value, then we can branch directly to the LHS's Target, 2436 // rather than creating a leaf node for it. 2437 if ((LHSR.second - LHSR.first) == 1 && 2438 LHSR.first->High == CR.GE && 2439 cast<ConstantInt>(C)->getValue() == 2440 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2441 TrueBB = LHSR.first->BB; 2442 } else { 2443 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2444 CurMF->insert(BBI, TrueBB); 2445 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2446 2447 // Put SV in a virtual register to make it available from the new blocks. 2448 ExportFromCurrentBlock(SV); 2449 } 2450 2451 // Similar to the optimization above, if the Value being switched on is 2452 // known to be less than the Constant CR.LT, and the current Case Value 2453 // is CR.LT - 1, then we can branch directly to the target block for 2454 // the current Case Value, rather than emitting a RHS leaf node for it. 2455 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2456 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2457 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2458 FalseBB = RHSR.first->BB; 2459 } else { 2460 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2461 CurMF->insert(BBI, FalseBB); 2462 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2463 2464 // Put SV in a virtual register to make it available from the new blocks. 2465 ExportFromCurrentBlock(SV); 2466 } 2467 2468 // Create a CaseBlock record representing a conditional branch to 2469 // the LHS node if the value being switched on SV is less than C. 2470 // Otherwise, branch to LHS. 2471 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2472 2473 if (CR.CaseBB == SwitchBB) 2474 visitSwitchCase(CB, SwitchBB); 2475 else 2476 SwitchCases.push_back(CB); 2477 2478 return true; 2479 } 2480 2481 /// handleBitTestsSwitchCase - if current case range has few destination and 2482 /// range span less, than machine word bitwidth, encode case range into series 2483 /// of masks and emit bit tests with these masks. 2484 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2485 CaseRecVector& WorkList, 2486 const Value* SV, 2487 MachineBasicBlock* Default, 2488 MachineBasicBlock* SwitchBB) { 2489 const TargetLowering *TLI = TM.getTargetLowering(); 2490 EVT PTy = TLI->getPointerTy(); 2491 unsigned IntPtrBits = PTy.getSizeInBits(); 2492 2493 Case& FrontCase = *CR.Range.first; 2494 Case& BackCase = *(CR.Range.second-1); 2495 2496 // Get the MachineFunction which holds the current MBB. This is used when 2497 // inserting any additional MBBs necessary to represent the switch. 2498 MachineFunction *CurMF = FuncInfo.MF; 2499 2500 // If target does not have legal shift left, do not emit bit tests at all. 2501 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2502 return false; 2503 2504 size_t numCmps = 0; 2505 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2506 I!=E; ++I) { 2507 // Single case counts one, case range - two. 2508 numCmps += (I->Low == I->High ? 1 : 2); 2509 } 2510 2511 // Count unique destinations 2512 SmallSet<MachineBasicBlock*, 4> Dests; 2513 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2514 Dests.insert(I->BB); 2515 if (Dests.size() > 3) 2516 // Don't bother the code below, if there are too much unique destinations 2517 return false; 2518 } 2519 DEBUG(dbgs() << "Total number of unique destinations: " 2520 << Dests.size() << '\n' 2521 << "Total number of comparisons: " << numCmps << '\n'); 2522 2523 // Compute span of values. 2524 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2525 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2526 APInt cmpRange = maxValue - minValue; 2527 2528 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2529 << "Low bound: " << minValue << '\n' 2530 << "High bound: " << maxValue << '\n'); 2531 2532 if (cmpRange.uge(IntPtrBits) || 2533 (!(Dests.size() == 1 && numCmps >= 3) && 2534 !(Dests.size() == 2 && numCmps >= 5) && 2535 !(Dests.size() >= 3 && numCmps >= 6))) 2536 return false; 2537 2538 DEBUG(dbgs() << "Emitting bit tests\n"); 2539 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2540 2541 // Optimize the case where all the case values fit in a 2542 // word without having to subtract minValue. In this case, 2543 // we can optimize away the subtraction. 2544 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2545 cmpRange = maxValue; 2546 } else { 2547 lowBound = minValue; 2548 } 2549 2550 CaseBitsVector CasesBits; 2551 unsigned i, count = 0; 2552 2553 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2554 MachineBasicBlock* Dest = I->BB; 2555 for (i = 0; i < count; ++i) 2556 if (Dest == CasesBits[i].BB) 2557 break; 2558 2559 if (i == count) { 2560 assert((count < 3) && "Too much destinations to test!"); 2561 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2562 count++; 2563 } 2564 2565 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2566 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2567 2568 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2569 uint64_t hi = (highValue - lowBound).getZExtValue(); 2570 CasesBits[i].ExtraWeight += I->ExtraWeight; 2571 2572 for (uint64_t j = lo; j <= hi; j++) { 2573 CasesBits[i].Mask |= 1ULL << j; 2574 CasesBits[i].Bits++; 2575 } 2576 2577 } 2578 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2579 2580 BitTestInfo BTC; 2581 2582 // Figure out which block is immediately after the current one. 2583 MachineFunction::iterator BBI = CR.CaseBB; 2584 ++BBI; 2585 2586 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2587 2588 DEBUG(dbgs() << "Cases:\n"); 2589 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2590 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2591 << ", Bits: " << CasesBits[i].Bits 2592 << ", BB: " << CasesBits[i].BB << '\n'); 2593 2594 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2595 CurMF->insert(BBI, CaseBB); 2596 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2597 CaseBB, 2598 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2599 2600 // Put SV in a virtual register to make it available from the new blocks. 2601 ExportFromCurrentBlock(SV); 2602 } 2603 2604 BitTestBlock BTB(lowBound, cmpRange, SV, 2605 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2606 CR.CaseBB, Default, BTC); 2607 2608 if (CR.CaseBB == SwitchBB) 2609 visitBitTestHeader(BTB, SwitchBB); 2610 2611 BitTestCases.push_back(BTB); 2612 2613 return true; 2614 } 2615 2616 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2617 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2618 const SwitchInst& SI) { 2619 size_t numCmps = 0; 2620 2621 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2622 // Start with "simple" cases 2623 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2624 i != e; ++i) { 2625 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2626 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2627 2628 uint32_t ExtraWeight = 2629 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2630 2631 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2632 SMBB, ExtraWeight)); 2633 } 2634 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2635 2636 // Merge case into clusters 2637 if (Cases.size() >= 2) 2638 // Must recompute end() each iteration because it may be 2639 // invalidated by erase if we hold on to it 2640 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2641 J != Cases.end(); ) { 2642 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2643 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2644 MachineBasicBlock* nextBB = J->BB; 2645 MachineBasicBlock* currentBB = I->BB; 2646 2647 // If the two neighboring cases go to the same destination, merge them 2648 // into a single case. 2649 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2650 I->High = J->High; 2651 I->ExtraWeight += J->ExtraWeight; 2652 J = Cases.erase(J); 2653 } else { 2654 I = J++; 2655 } 2656 } 2657 2658 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2659 if (I->Low != I->High) 2660 // A range counts double, since it requires two compares. 2661 ++numCmps; 2662 } 2663 2664 return numCmps; 2665 } 2666 2667 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2668 MachineBasicBlock *Last) { 2669 // Update JTCases. 2670 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2671 if (JTCases[i].first.HeaderBB == First) 2672 JTCases[i].first.HeaderBB = Last; 2673 2674 // Update BitTestCases. 2675 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2676 if (BitTestCases[i].Parent == First) 2677 BitTestCases[i].Parent = Last; 2678 } 2679 2680 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2681 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2682 2683 // Figure out which block is immediately after the current one. 2684 MachineBasicBlock *NextBlock = nullptr; 2685 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2686 2687 // If there is only the default destination, branch to it if it is not the 2688 // next basic block. Otherwise, just fall through. 2689 if (!SI.getNumCases()) { 2690 // Update machine-CFG edges. 2691 2692 // If this is not a fall-through branch, emit the branch. 2693 SwitchMBB->addSuccessor(Default); 2694 if (Default != NextBlock) 2695 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2696 MVT::Other, getControlRoot(), 2697 DAG.getBasicBlock(Default))); 2698 2699 return; 2700 } 2701 2702 // If there are any non-default case statements, create a vector of Cases 2703 // representing each one, and sort the vector so that we can efficiently 2704 // create a binary search tree from them. 2705 CaseVector Cases; 2706 size_t numCmps = Clusterify(Cases, SI); 2707 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2708 << ". Total compares: " << numCmps << '\n'); 2709 (void)numCmps; 2710 2711 // Get the Value to be switched on and default basic blocks, which will be 2712 // inserted into CaseBlock records, representing basic blocks in the binary 2713 // search tree. 2714 const Value *SV = SI.getCondition(); 2715 2716 // Push the initial CaseRec onto the worklist 2717 CaseRecVector WorkList; 2718 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2719 CaseRange(Cases.begin(),Cases.end()))); 2720 2721 while (!WorkList.empty()) { 2722 // Grab a record representing a case range to process off the worklist 2723 CaseRec CR = WorkList.back(); 2724 WorkList.pop_back(); 2725 2726 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2727 continue; 2728 2729 // If the range has few cases (two or less) emit a series of specific 2730 // tests. 2731 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2732 continue; 2733 2734 // If the switch has more than N blocks, and is at least 40% dense, and the 2735 // target supports indirect branches, then emit a jump table rather than 2736 // lowering the switch to a binary tree of conditional branches. 2737 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2738 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2739 continue; 2740 2741 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2742 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2743 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2744 } 2745 } 2746 2747 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2748 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2749 2750 // Update machine-CFG edges with unique successors. 2751 SmallSet<BasicBlock*, 32> Done; 2752 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2753 BasicBlock *BB = I.getSuccessor(i); 2754 bool Inserted = Done.insert(BB); 2755 if (!Inserted) 2756 continue; 2757 2758 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2759 addSuccessorWithWeight(IndirectBrMBB, Succ); 2760 } 2761 2762 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2763 MVT::Other, getControlRoot(), 2764 getValue(I.getAddress()))); 2765 } 2766 2767 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2768 if (DAG.getTarget().Options.TrapUnreachable) 2769 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2770 } 2771 2772 void SelectionDAGBuilder::visitFSub(const User &I) { 2773 // -0.0 - X --> fneg 2774 Type *Ty = I.getType(); 2775 if (isa<Constant>(I.getOperand(0)) && 2776 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2777 SDValue Op2 = getValue(I.getOperand(1)); 2778 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2779 Op2.getValueType(), Op2)); 2780 return; 2781 } 2782 2783 visitBinary(I, ISD::FSUB); 2784 } 2785 2786 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2787 SDValue Op1 = getValue(I.getOperand(0)); 2788 SDValue Op2 = getValue(I.getOperand(1)); 2789 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2790 Op1.getValueType(), Op1, Op2)); 2791 } 2792 2793 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2794 SDValue Op1 = getValue(I.getOperand(0)); 2795 SDValue Op2 = getValue(I.getOperand(1)); 2796 2797 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2798 2799 // Coerce the shift amount to the right type if we can. 2800 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2801 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2802 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2803 SDLoc DL = getCurSDLoc(); 2804 2805 // If the operand is smaller than the shift count type, promote it. 2806 if (ShiftSize > Op2Size) 2807 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2808 2809 // If the operand is larger than the shift count type but the shift 2810 // count type has enough bits to represent any shift value, truncate 2811 // it now. This is a common case and it exposes the truncate to 2812 // optimization early. 2813 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2814 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2815 // Otherwise we'll need to temporarily settle for some other convenient 2816 // type. Type legalization will make adjustments once the shiftee is split. 2817 else 2818 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2819 } 2820 2821 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2822 Op1.getValueType(), Op1, Op2)); 2823 } 2824 2825 void SelectionDAGBuilder::visitSDiv(const User &I) { 2826 SDValue Op1 = getValue(I.getOperand(0)); 2827 SDValue Op2 = getValue(I.getOperand(1)); 2828 2829 // Turn exact SDivs into multiplications. 2830 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2831 // exact bit. 2832 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2833 !isa<ConstantSDNode>(Op1) && 2834 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2835 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2836 getCurSDLoc(), DAG)); 2837 else 2838 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2839 Op1, Op2)); 2840 } 2841 2842 void SelectionDAGBuilder::visitICmp(const User &I) { 2843 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2844 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2845 predicate = IC->getPredicate(); 2846 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2847 predicate = ICmpInst::Predicate(IC->getPredicate()); 2848 SDValue Op1 = getValue(I.getOperand(0)); 2849 SDValue Op2 = getValue(I.getOperand(1)); 2850 ISD::CondCode Opcode = getICmpCondCode(predicate); 2851 2852 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2853 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2854 } 2855 2856 void SelectionDAGBuilder::visitFCmp(const User &I) { 2857 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2858 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2859 predicate = FC->getPredicate(); 2860 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2861 predicate = FCmpInst::Predicate(FC->getPredicate()); 2862 SDValue Op1 = getValue(I.getOperand(0)); 2863 SDValue Op2 = getValue(I.getOperand(1)); 2864 ISD::CondCode Condition = getFCmpCondCode(predicate); 2865 if (TM.Options.NoNaNsFPMath) 2866 Condition = getFCmpCodeWithoutNaN(Condition); 2867 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2868 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2869 } 2870 2871 void SelectionDAGBuilder::visitSelect(const User &I) { 2872 SmallVector<EVT, 4> ValueVTs; 2873 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2874 unsigned NumValues = ValueVTs.size(); 2875 if (NumValues == 0) return; 2876 2877 SmallVector<SDValue, 4> Values(NumValues); 2878 SDValue Cond = getValue(I.getOperand(0)); 2879 SDValue TrueVal = getValue(I.getOperand(1)); 2880 SDValue FalseVal = getValue(I.getOperand(2)); 2881 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2882 ISD::VSELECT : ISD::SELECT; 2883 2884 for (unsigned i = 0; i != NumValues; ++i) 2885 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2886 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2887 Cond, 2888 SDValue(TrueVal.getNode(), 2889 TrueVal.getResNo() + i), 2890 SDValue(FalseVal.getNode(), 2891 FalseVal.getResNo() + i)); 2892 2893 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2894 DAG.getVTList(ValueVTs), Values)); 2895 } 2896 2897 void SelectionDAGBuilder::visitTrunc(const User &I) { 2898 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2899 SDValue N = getValue(I.getOperand(0)); 2900 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2901 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2902 } 2903 2904 void SelectionDAGBuilder::visitZExt(const User &I) { 2905 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2906 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2907 SDValue N = getValue(I.getOperand(0)); 2908 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2909 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2910 } 2911 2912 void SelectionDAGBuilder::visitSExt(const User &I) { 2913 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2914 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2915 SDValue N = getValue(I.getOperand(0)); 2916 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2917 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2918 } 2919 2920 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2921 // FPTrunc is never a no-op cast, no need to check 2922 SDValue N = getValue(I.getOperand(0)); 2923 const TargetLowering *TLI = TM.getTargetLowering(); 2924 EVT DestVT = TLI->getValueType(I.getType()); 2925 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2926 DestVT, N, 2927 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2928 } 2929 2930 void SelectionDAGBuilder::visitFPExt(const User &I) { 2931 // FPExt is never a no-op cast, no need to check 2932 SDValue N = getValue(I.getOperand(0)); 2933 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2934 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2935 } 2936 2937 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2938 // FPToUI is never a no-op cast, no need to check 2939 SDValue N = getValue(I.getOperand(0)); 2940 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2941 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2942 } 2943 2944 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2945 // FPToSI is never a no-op cast, no need to check 2946 SDValue N = getValue(I.getOperand(0)); 2947 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2948 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2949 } 2950 2951 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2952 // UIToFP is never a no-op cast, no need to check 2953 SDValue N = getValue(I.getOperand(0)); 2954 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2955 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2956 } 2957 2958 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2959 // SIToFP is never a no-op cast, no need to check 2960 SDValue N = getValue(I.getOperand(0)); 2961 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2962 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2963 } 2964 2965 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2966 // What to do depends on the size of the integer and the size of the pointer. 2967 // We can either truncate, zero extend, or no-op, accordingly. 2968 SDValue N = getValue(I.getOperand(0)); 2969 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2970 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2971 } 2972 2973 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2974 // What to do depends on the size of the integer and the size of the pointer. 2975 // We can either truncate, zero extend, or no-op, accordingly. 2976 SDValue N = getValue(I.getOperand(0)); 2977 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2978 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2979 } 2980 2981 void SelectionDAGBuilder::visitBitCast(const User &I) { 2982 SDValue N = getValue(I.getOperand(0)); 2983 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2984 2985 // BitCast assures us that source and destination are the same size so this is 2986 // either a BITCAST or a no-op. 2987 if (DestVT != N.getValueType()) 2988 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2989 DestVT, N)); // convert types. 2990 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2991 // might fold any kind of constant expression to an integer constant and that 2992 // is not what we are looking for. Only regcognize a bitcast of a genuine 2993 // constant integer as an opaque constant. 2994 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2995 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2996 /*isOpaque*/true)); 2997 else 2998 setValue(&I, N); // noop cast. 2999 } 3000 3001 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3003 const Value *SV = I.getOperand(0); 3004 SDValue N = getValue(SV); 3005 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3006 3007 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3008 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3009 3010 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3011 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3012 3013 setValue(&I, N); 3014 } 3015 3016 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3018 SDValue InVec = getValue(I.getOperand(0)); 3019 SDValue InVal = getValue(I.getOperand(1)); 3020 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3021 getCurSDLoc(), TLI.getVectorIdxTy()); 3022 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3023 TM.getTargetLowering()->getValueType(I.getType()), 3024 InVec, InVal, InIdx)); 3025 } 3026 3027 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3029 SDValue InVec = getValue(I.getOperand(0)); 3030 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3031 getCurSDLoc(), TLI.getVectorIdxTy()); 3032 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3033 TM.getTargetLowering()->getValueType(I.getType()), 3034 InVec, InIdx)); 3035 } 3036 3037 // Utility for visitShuffleVector - Return true if every element in Mask, 3038 // beginning from position Pos and ending in Pos+Size, falls within the 3039 // specified sequential range [L, L+Pos). or is undef. 3040 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3041 unsigned Pos, unsigned Size, int Low) { 3042 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3043 if (Mask[i] >= 0 && Mask[i] != Low) 3044 return false; 3045 return true; 3046 } 3047 3048 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3049 SDValue Src1 = getValue(I.getOperand(0)); 3050 SDValue Src2 = getValue(I.getOperand(1)); 3051 3052 SmallVector<int, 8> Mask; 3053 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3054 unsigned MaskNumElts = Mask.size(); 3055 3056 const TargetLowering *TLI = TM.getTargetLowering(); 3057 EVT VT = TLI->getValueType(I.getType()); 3058 EVT SrcVT = Src1.getValueType(); 3059 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3060 3061 if (SrcNumElts == MaskNumElts) { 3062 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3063 &Mask[0])); 3064 return; 3065 } 3066 3067 // Normalize the shuffle vector since mask and vector length don't match. 3068 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3069 // Mask is longer than the source vectors and is a multiple of the source 3070 // vectors. We can use concatenate vector to make the mask and vectors 3071 // lengths match. 3072 if (SrcNumElts*2 == MaskNumElts) { 3073 // First check for Src1 in low and Src2 in high 3074 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3075 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3076 // The shuffle is concatenating two vectors together. 3077 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3078 VT, Src1, Src2)); 3079 return; 3080 } 3081 // Then check for Src2 in low and Src1 in high 3082 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3083 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3084 // The shuffle is concatenating two vectors together. 3085 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3086 VT, Src2, Src1)); 3087 return; 3088 } 3089 } 3090 3091 // Pad both vectors with undefs to make them the same length as the mask. 3092 unsigned NumConcat = MaskNumElts / SrcNumElts; 3093 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3094 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3095 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3096 3097 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3098 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3099 MOps1[0] = Src1; 3100 MOps2[0] = Src2; 3101 3102 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3103 getCurSDLoc(), VT, MOps1); 3104 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3105 getCurSDLoc(), VT, MOps2); 3106 3107 // Readjust mask for new input vector length. 3108 SmallVector<int, 8> MappedOps; 3109 for (unsigned i = 0; i != MaskNumElts; ++i) { 3110 int Idx = Mask[i]; 3111 if (Idx >= (int)SrcNumElts) 3112 Idx -= SrcNumElts - MaskNumElts; 3113 MappedOps.push_back(Idx); 3114 } 3115 3116 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3117 &MappedOps[0])); 3118 return; 3119 } 3120 3121 if (SrcNumElts > MaskNumElts) { 3122 // Analyze the access pattern of the vector to see if we can extract 3123 // two subvectors and do the shuffle. The analysis is done by calculating 3124 // the range of elements the mask access on both vectors. 3125 int MinRange[2] = { static_cast<int>(SrcNumElts), 3126 static_cast<int>(SrcNumElts)}; 3127 int MaxRange[2] = {-1, -1}; 3128 3129 for (unsigned i = 0; i != MaskNumElts; ++i) { 3130 int Idx = Mask[i]; 3131 unsigned Input = 0; 3132 if (Idx < 0) 3133 continue; 3134 3135 if (Idx >= (int)SrcNumElts) { 3136 Input = 1; 3137 Idx -= SrcNumElts; 3138 } 3139 if (Idx > MaxRange[Input]) 3140 MaxRange[Input] = Idx; 3141 if (Idx < MinRange[Input]) 3142 MinRange[Input] = Idx; 3143 } 3144 3145 // Check if the access is smaller than the vector size and can we find 3146 // a reasonable extract index. 3147 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3148 // Extract. 3149 int StartIdx[2]; // StartIdx to extract from 3150 for (unsigned Input = 0; Input < 2; ++Input) { 3151 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3152 RangeUse[Input] = 0; // Unused 3153 StartIdx[Input] = 0; 3154 continue; 3155 } 3156 3157 // Find a good start index that is a multiple of the mask length. Then 3158 // see if the rest of the elements are in range. 3159 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3160 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3161 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3162 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3163 } 3164 3165 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3166 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3167 return; 3168 } 3169 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3170 // Extract appropriate subvector and generate a vector shuffle 3171 for (unsigned Input = 0; Input < 2; ++Input) { 3172 SDValue &Src = Input == 0 ? Src1 : Src2; 3173 if (RangeUse[Input] == 0) 3174 Src = DAG.getUNDEF(VT); 3175 else 3176 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3177 Src, DAG.getConstant(StartIdx[Input], 3178 TLI->getVectorIdxTy())); 3179 } 3180 3181 // Calculate new mask. 3182 SmallVector<int, 8> MappedOps; 3183 for (unsigned i = 0; i != MaskNumElts; ++i) { 3184 int Idx = Mask[i]; 3185 if (Idx >= 0) { 3186 if (Idx < (int)SrcNumElts) 3187 Idx -= StartIdx[0]; 3188 else 3189 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3190 } 3191 MappedOps.push_back(Idx); 3192 } 3193 3194 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3195 &MappedOps[0])); 3196 return; 3197 } 3198 } 3199 3200 // We can't use either concat vectors or extract subvectors so fall back to 3201 // replacing the shuffle with extract and build vector. 3202 // to insert and build vector. 3203 EVT EltVT = VT.getVectorElementType(); 3204 EVT IdxVT = TLI->getVectorIdxTy(); 3205 SmallVector<SDValue,8> Ops; 3206 for (unsigned i = 0; i != MaskNumElts; ++i) { 3207 int Idx = Mask[i]; 3208 SDValue Res; 3209 3210 if (Idx < 0) { 3211 Res = DAG.getUNDEF(EltVT); 3212 } else { 3213 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3214 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3215 3216 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3217 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3218 } 3219 3220 Ops.push_back(Res); 3221 } 3222 3223 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3224 } 3225 3226 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3227 const Value *Op0 = I.getOperand(0); 3228 const Value *Op1 = I.getOperand(1); 3229 Type *AggTy = I.getType(); 3230 Type *ValTy = Op1->getType(); 3231 bool IntoUndef = isa<UndefValue>(Op0); 3232 bool FromUndef = isa<UndefValue>(Op1); 3233 3234 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3235 3236 const TargetLowering *TLI = TM.getTargetLowering(); 3237 SmallVector<EVT, 4> AggValueVTs; 3238 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3239 SmallVector<EVT, 4> ValValueVTs; 3240 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3241 3242 unsigned NumAggValues = AggValueVTs.size(); 3243 unsigned NumValValues = ValValueVTs.size(); 3244 SmallVector<SDValue, 4> Values(NumAggValues); 3245 3246 SDValue Agg = getValue(Op0); 3247 unsigned i = 0; 3248 // Copy the beginning value(s) from the original aggregate. 3249 for (; i != LinearIndex; ++i) 3250 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3251 SDValue(Agg.getNode(), Agg.getResNo() + i); 3252 // Copy values from the inserted value(s). 3253 if (NumValValues) { 3254 SDValue Val = getValue(Op1); 3255 for (; i != LinearIndex + NumValValues; ++i) 3256 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3257 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3258 } 3259 // Copy remaining value(s) from the original aggregate. 3260 for (; i != NumAggValues; ++i) 3261 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3262 SDValue(Agg.getNode(), Agg.getResNo() + i); 3263 3264 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3265 DAG.getVTList(AggValueVTs), Values)); 3266 } 3267 3268 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3269 const Value *Op0 = I.getOperand(0); 3270 Type *AggTy = Op0->getType(); 3271 Type *ValTy = I.getType(); 3272 bool OutOfUndef = isa<UndefValue>(Op0); 3273 3274 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3275 3276 const TargetLowering *TLI = TM.getTargetLowering(); 3277 SmallVector<EVT, 4> ValValueVTs; 3278 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3279 3280 unsigned NumValValues = ValValueVTs.size(); 3281 3282 // Ignore a extractvalue that produces an empty object 3283 if (!NumValValues) { 3284 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3285 return; 3286 } 3287 3288 SmallVector<SDValue, 4> Values(NumValValues); 3289 3290 SDValue Agg = getValue(Op0); 3291 // Copy out the selected value(s). 3292 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3293 Values[i - LinearIndex] = 3294 OutOfUndef ? 3295 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3296 SDValue(Agg.getNode(), Agg.getResNo() + i); 3297 3298 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3299 DAG.getVTList(ValValueVTs), Values)); 3300 } 3301 3302 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3303 Value *Op0 = I.getOperand(0); 3304 // Note that the pointer operand may be a vector of pointers. Take the scalar 3305 // element which holds a pointer. 3306 Type *Ty = Op0->getType()->getScalarType(); 3307 unsigned AS = Ty->getPointerAddressSpace(); 3308 SDValue N = getValue(Op0); 3309 3310 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3311 OI != E; ++OI) { 3312 const Value *Idx = *OI; 3313 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3314 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3315 if (Field) { 3316 // N = N + Offset 3317 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3318 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3319 DAG.getConstant(Offset, N.getValueType())); 3320 } 3321 3322 Ty = StTy->getElementType(Field); 3323 } else { 3324 Ty = cast<SequentialType>(Ty)->getElementType(); 3325 3326 // If this is a constant subscript, handle it quickly. 3327 const TargetLowering *TLI = TM.getTargetLowering(); 3328 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3329 if (CI->isZero()) continue; 3330 uint64_t Offs = 3331 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3332 SDValue OffsVal; 3333 EVT PTy = TLI->getPointerTy(AS); 3334 unsigned PtrBits = PTy.getSizeInBits(); 3335 if (PtrBits < 64) 3336 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3337 DAG.getConstant(Offs, MVT::i64)); 3338 else 3339 OffsVal = DAG.getConstant(Offs, PTy); 3340 3341 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3342 OffsVal); 3343 continue; 3344 } 3345 3346 // N = N + Idx * ElementSize; 3347 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3348 DL->getTypeAllocSize(Ty)); 3349 SDValue IdxN = getValue(Idx); 3350 3351 // If the index is smaller or larger than intptr_t, truncate or extend 3352 // it. 3353 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3354 3355 // If this is a multiply by a power of two, turn it into a shl 3356 // immediately. This is a very common case. 3357 if (ElementSize != 1) { 3358 if (ElementSize.isPowerOf2()) { 3359 unsigned Amt = ElementSize.logBase2(); 3360 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3361 N.getValueType(), IdxN, 3362 DAG.getConstant(Amt, IdxN.getValueType())); 3363 } else { 3364 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3365 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3366 N.getValueType(), IdxN, Scale); 3367 } 3368 } 3369 3370 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3371 N.getValueType(), N, IdxN); 3372 } 3373 } 3374 3375 setValue(&I, N); 3376 } 3377 3378 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3379 // If this is a fixed sized alloca in the entry block of the function, 3380 // allocate it statically on the stack. 3381 if (FuncInfo.StaticAllocaMap.count(&I)) 3382 return; // getValue will auto-populate this. 3383 3384 Type *Ty = I.getAllocatedType(); 3385 const TargetLowering *TLI = TM.getTargetLowering(); 3386 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3387 unsigned Align = 3388 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3389 I.getAlignment()); 3390 3391 SDValue AllocSize = getValue(I.getArraySize()); 3392 3393 EVT IntPtr = TLI->getPointerTy(); 3394 if (AllocSize.getValueType() != IntPtr) 3395 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3396 3397 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3398 AllocSize, 3399 DAG.getConstant(TySize, IntPtr)); 3400 3401 // Handle alignment. If the requested alignment is less than or equal to 3402 // the stack alignment, ignore it. If the size is greater than or equal to 3403 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3404 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3405 if (Align <= StackAlign) 3406 Align = 0; 3407 3408 // Round the size of the allocation up to the stack alignment size 3409 // by add SA-1 to the size. 3410 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3411 AllocSize.getValueType(), AllocSize, 3412 DAG.getIntPtrConstant(StackAlign-1)); 3413 3414 // Mask out the low bits for alignment purposes. 3415 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3416 AllocSize.getValueType(), AllocSize, 3417 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3418 3419 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3420 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3421 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3422 setValue(&I, DSA); 3423 DAG.setRoot(DSA.getValue(1)); 3424 3425 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3426 } 3427 3428 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3429 if (I.isAtomic()) 3430 return visitAtomicLoad(I); 3431 3432 const Value *SV = I.getOperand(0); 3433 SDValue Ptr = getValue(SV); 3434 3435 Type *Ty = I.getType(); 3436 3437 bool isVolatile = I.isVolatile(); 3438 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3439 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3440 unsigned Alignment = I.getAlignment(); 3441 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3442 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3443 3444 SmallVector<EVT, 4> ValueVTs; 3445 SmallVector<uint64_t, 4> Offsets; 3446 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3447 unsigned NumValues = ValueVTs.size(); 3448 if (NumValues == 0) 3449 return; 3450 3451 SDValue Root; 3452 bool ConstantMemory = false; 3453 if (isVolatile || NumValues > MaxParallelChains) 3454 // Serialize volatile loads with other side effects. 3455 Root = getRoot(); 3456 else if (AA->pointsToConstantMemory( 3457 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3458 // Do not serialize (non-volatile) loads of constant memory with anything. 3459 Root = DAG.getEntryNode(); 3460 ConstantMemory = true; 3461 } else { 3462 // Do not serialize non-volatile loads against each other. 3463 Root = DAG.getRoot(); 3464 } 3465 3466 const TargetLowering *TLI = TM.getTargetLowering(); 3467 if (isVolatile) 3468 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3469 3470 SmallVector<SDValue, 4> Values(NumValues); 3471 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3472 NumValues)); 3473 EVT PtrVT = Ptr.getValueType(); 3474 unsigned ChainI = 0; 3475 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3476 // Serializing loads here may result in excessive register pressure, and 3477 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3478 // could recover a bit by hoisting nodes upward in the chain by recognizing 3479 // they are side-effect free or do not alias. The optimizer should really 3480 // avoid this case by converting large object/array copies to llvm.memcpy 3481 // (MaxParallelChains should always remain as failsafe). 3482 if (ChainI == MaxParallelChains) { 3483 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3484 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3485 ArrayRef<SDValue>(Chains.data(), ChainI)); 3486 Root = Chain; 3487 ChainI = 0; 3488 } 3489 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3490 PtrVT, Ptr, 3491 DAG.getConstant(Offsets[i], PtrVT)); 3492 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3493 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3494 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3495 Ranges); 3496 3497 Values[i] = L; 3498 Chains[ChainI] = L.getValue(1); 3499 } 3500 3501 if (!ConstantMemory) { 3502 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3503 ArrayRef<SDValue>(Chains.data(), ChainI)); 3504 if (isVolatile) 3505 DAG.setRoot(Chain); 3506 else 3507 PendingLoads.push_back(Chain); 3508 } 3509 3510 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3511 DAG.getVTList(ValueVTs), Values)); 3512 } 3513 3514 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3515 if (I.isAtomic()) 3516 return visitAtomicStore(I); 3517 3518 const Value *SrcV = I.getOperand(0); 3519 const Value *PtrV = I.getOperand(1); 3520 3521 SmallVector<EVT, 4> ValueVTs; 3522 SmallVector<uint64_t, 4> Offsets; 3523 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3524 unsigned NumValues = ValueVTs.size(); 3525 if (NumValues == 0) 3526 return; 3527 3528 // Get the lowered operands. Note that we do this after 3529 // checking if NumResults is zero, because with zero results 3530 // the operands won't have values in the map. 3531 SDValue Src = getValue(SrcV); 3532 SDValue Ptr = getValue(PtrV); 3533 3534 SDValue Root = getRoot(); 3535 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3536 NumValues)); 3537 EVT PtrVT = Ptr.getValueType(); 3538 bool isVolatile = I.isVolatile(); 3539 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3540 unsigned Alignment = I.getAlignment(); 3541 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3542 3543 unsigned ChainI = 0; 3544 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3545 // See visitLoad comments. 3546 if (ChainI == MaxParallelChains) { 3547 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3548 ArrayRef<SDValue>(Chains.data(), ChainI)); 3549 Root = Chain; 3550 ChainI = 0; 3551 } 3552 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3553 DAG.getConstant(Offsets[i], PtrVT)); 3554 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3555 SDValue(Src.getNode(), Src.getResNo() + i), 3556 Add, MachinePointerInfo(PtrV, Offsets[i]), 3557 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3558 Chains[ChainI] = St; 3559 } 3560 3561 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3562 ArrayRef<SDValue>(Chains.data(), ChainI)); 3563 DAG.setRoot(StoreNode); 3564 } 3565 3566 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3567 SynchronizationScope Scope, 3568 bool Before, SDLoc dl, 3569 SelectionDAG &DAG, 3570 const TargetLowering &TLI) { 3571 // Fence, if necessary 3572 if (Before) { 3573 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3574 Order = Release; 3575 else if (Order == Acquire || Order == Monotonic) 3576 return Chain; 3577 } else { 3578 if (Order == AcquireRelease) 3579 Order = Acquire; 3580 else if (Order == Release || Order == Monotonic) 3581 return Chain; 3582 } 3583 SDValue Ops[3]; 3584 Ops[0] = Chain; 3585 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3586 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3587 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3588 } 3589 3590 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3591 SDLoc dl = getCurSDLoc(); 3592 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3593 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3594 SynchronizationScope Scope = I.getSynchScope(); 3595 3596 SDValue InChain = getRoot(); 3597 3598 const TargetLowering *TLI = TM.getTargetLowering(); 3599 if (TLI->getInsertFencesForAtomic()) 3600 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3601 DAG, *TLI); 3602 3603 SDValue L = 3604 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3605 getValue(I.getCompareOperand()).getSimpleValueType(), 3606 InChain, 3607 getValue(I.getPointerOperand()), 3608 getValue(I.getCompareOperand()), 3609 getValue(I.getNewValOperand()), 3610 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3611 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3612 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, 3613 Scope); 3614 3615 SDValue OutChain = L.getValue(1); 3616 3617 if (TLI->getInsertFencesForAtomic()) 3618 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3619 DAG, *TLI); 3620 3621 setValue(&I, L); 3622 DAG.setRoot(OutChain); 3623 } 3624 3625 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3626 SDLoc dl = getCurSDLoc(); 3627 ISD::NodeType NT; 3628 switch (I.getOperation()) { 3629 default: llvm_unreachable("Unknown atomicrmw operation"); 3630 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3631 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3632 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3633 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3634 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3635 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3636 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3637 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3638 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3639 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3640 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3641 } 3642 AtomicOrdering Order = I.getOrdering(); 3643 SynchronizationScope Scope = I.getSynchScope(); 3644 3645 SDValue InChain = getRoot(); 3646 3647 const TargetLowering *TLI = TM.getTargetLowering(); 3648 if (TLI->getInsertFencesForAtomic()) 3649 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3650 DAG, *TLI); 3651 3652 SDValue L = 3653 DAG.getAtomic(NT, dl, 3654 getValue(I.getValOperand()).getSimpleValueType(), 3655 InChain, 3656 getValue(I.getPointerOperand()), 3657 getValue(I.getValOperand()), 3658 I.getPointerOperand(), 0 /* Alignment */, 3659 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3660 Scope); 3661 3662 SDValue OutChain = L.getValue(1); 3663 3664 if (TLI->getInsertFencesForAtomic()) 3665 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3666 DAG, *TLI); 3667 3668 setValue(&I, L); 3669 DAG.setRoot(OutChain); 3670 } 3671 3672 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3673 SDLoc dl = getCurSDLoc(); 3674 const TargetLowering *TLI = TM.getTargetLowering(); 3675 SDValue Ops[3]; 3676 Ops[0] = getRoot(); 3677 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3678 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3679 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3680 } 3681 3682 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3683 SDLoc dl = getCurSDLoc(); 3684 AtomicOrdering Order = I.getOrdering(); 3685 SynchronizationScope Scope = I.getSynchScope(); 3686 3687 SDValue InChain = getRoot(); 3688 3689 const TargetLowering *TLI = TM.getTargetLowering(); 3690 EVT VT = TLI->getValueType(I.getType()); 3691 3692 if (I.getAlignment() < VT.getSizeInBits() / 8) 3693 report_fatal_error("Cannot generate unaligned atomic load"); 3694 3695 MachineMemOperand *MMO = 3696 DAG.getMachineFunction(). 3697 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3698 MachineMemOperand::MOVolatile | 3699 MachineMemOperand::MOLoad, 3700 VT.getStoreSize(), 3701 I.getAlignment() ? I.getAlignment() : 3702 DAG.getEVTAlignment(VT)); 3703 3704 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3705 SDValue L = 3706 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3707 getValue(I.getPointerOperand()), MMO, 3708 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3709 Scope); 3710 3711 SDValue OutChain = L.getValue(1); 3712 3713 if (TLI->getInsertFencesForAtomic()) 3714 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3715 DAG, *TLI); 3716 3717 setValue(&I, L); 3718 DAG.setRoot(OutChain); 3719 } 3720 3721 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3722 SDLoc dl = getCurSDLoc(); 3723 3724 AtomicOrdering Order = I.getOrdering(); 3725 SynchronizationScope Scope = I.getSynchScope(); 3726 3727 SDValue InChain = getRoot(); 3728 3729 const TargetLowering *TLI = TM.getTargetLowering(); 3730 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3731 3732 if (I.getAlignment() < VT.getSizeInBits() / 8) 3733 report_fatal_error("Cannot generate unaligned atomic store"); 3734 3735 if (TLI->getInsertFencesForAtomic()) 3736 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3737 DAG, *TLI); 3738 3739 SDValue OutChain = 3740 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3741 InChain, 3742 getValue(I.getPointerOperand()), 3743 getValue(I.getValueOperand()), 3744 I.getPointerOperand(), I.getAlignment(), 3745 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3746 Scope); 3747 3748 if (TLI->getInsertFencesForAtomic()) 3749 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3750 DAG, *TLI); 3751 3752 DAG.setRoot(OutChain); 3753 } 3754 3755 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3756 /// node. 3757 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3758 unsigned Intrinsic) { 3759 bool HasChain = !I.doesNotAccessMemory(); 3760 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3761 3762 // Build the operand list. 3763 SmallVector<SDValue, 8> Ops; 3764 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3765 if (OnlyLoad) { 3766 // We don't need to serialize loads against other loads. 3767 Ops.push_back(DAG.getRoot()); 3768 } else { 3769 Ops.push_back(getRoot()); 3770 } 3771 } 3772 3773 // Info is set by getTgtMemInstrinsic 3774 TargetLowering::IntrinsicInfo Info; 3775 const TargetLowering *TLI = TM.getTargetLowering(); 3776 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3777 3778 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3779 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3780 Info.opc == ISD::INTRINSIC_W_CHAIN) 3781 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3782 3783 // Add all operands of the call to the operand list. 3784 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3785 SDValue Op = getValue(I.getArgOperand(i)); 3786 Ops.push_back(Op); 3787 } 3788 3789 SmallVector<EVT, 4> ValueVTs; 3790 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3791 3792 if (HasChain) 3793 ValueVTs.push_back(MVT::Other); 3794 3795 SDVTList VTs = DAG.getVTList(ValueVTs); 3796 3797 // Create the node. 3798 SDValue Result; 3799 if (IsTgtIntrinsic) { 3800 // This is target intrinsic that touches memory 3801 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3802 VTs, Ops, Info.memVT, 3803 MachinePointerInfo(Info.ptrVal, Info.offset), 3804 Info.align, Info.vol, 3805 Info.readMem, Info.writeMem); 3806 } else if (!HasChain) { 3807 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3808 } else if (!I.getType()->isVoidTy()) { 3809 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3810 } else { 3811 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3812 } 3813 3814 if (HasChain) { 3815 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3816 if (OnlyLoad) 3817 PendingLoads.push_back(Chain); 3818 else 3819 DAG.setRoot(Chain); 3820 } 3821 3822 if (!I.getType()->isVoidTy()) { 3823 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3824 EVT VT = TLI->getValueType(PTy); 3825 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3826 } 3827 3828 setValue(&I, Result); 3829 } 3830 } 3831 3832 /// GetSignificand - Get the significand and build it into a floating-point 3833 /// number with exponent of 1: 3834 /// 3835 /// Op = (Op & 0x007fffff) | 0x3f800000; 3836 /// 3837 /// where Op is the hexadecimal representation of floating point value. 3838 static SDValue 3839 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3840 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3841 DAG.getConstant(0x007fffff, MVT::i32)); 3842 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3843 DAG.getConstant(0x3f800000, MVT::i32)); 3844 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3845 } 3846 3847 /// GetExponent - Get the exponent: 3848 /// 3849 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3850 /// 3851 /// where Op is the hexadecimal representation of floating point value. 3852 static SDValue 3853 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3854 SDLoc dl) { 3855 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3856 DAG.getConstant(0x7f800000, MVT::i32)); 3857 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3858 DAG.getConstant(23, TLI.getPointerTy())); 3859 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3860 DAG.getConstant(127, MVT::i32)); 3861 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3862 } 3863 3864 /// getF32Constant - Get 32-bit floating point constant. 3865 static SDValue 3866 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3867 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3868 MVT::f32); 3869 } 3870 3871 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3872 /// limited-precision mode. 3873 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3874 const TargetLowering &TLI) { 3875 if (Op.getValueType() == MVT::f32 && 3876 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3877 3878 // Put the exponent in the right bit position for later addition to the 3879 // final result: 3880 // 3881 // #define LOG2OFe 1.4426950f 3882 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3883 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3884 getF32Constant(DAG, 0x3fb8aa3b)); 3885 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3886 3887 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3888 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3889 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3890 3891 // IntegerPartOfX <<= 23; 3892 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3893 DAG.getConstant(23, TLI.getPointerTy())); 3894 3895 SDValue TwoToFracPartOfX; 3896 if (LimitFloatPrecision <= 6) { 3897 // For floating-point precision of 6: 3898 // 3899 // TwoToFractionalPartOfX = 3900 // 0.997535578f + 3901 // (0.735607626f + 0.252464424f * x) * x; 3902 // 3903 // error 0.0144103317, which is 6 bits 3904 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3905 getF32Constant(DAG, 0x3e814304)); 3906 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3907 getF32Constant(DAG, 0x3f3c50c8)); 3908 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3909 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3910 getF32Constant(DAG, 0x3f7f5e7e)); 3911 } else if (LimitFloatPrecision <= 12) { 3912 // For floating-point precision of 12: 3913 // 3914 // TwoToFractionalPartOfX = 3915 // 0.999892986f + 3916 // (0.696457318f + 3917 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3918 // 3919 // 0.000107046256 error, which is 13 to 14 bits 3920 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3921 getF32Constant(DAG, 0x3da235e3)); 3922 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3923 getF32Constant(DAG, 0x3e65b8f3)); 3924 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3925 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3926 getF32Constant(DAG, 0x3f324b07)); 3927 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3928 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3929 getF32Constant(DAG, 0x3f7ff8fd)); 3930 } else { // LimitFloatPrecision <= 18 3931 // For floating-point precision of 18: 3932 // 3933 // TwoToFractionalPartOfX = 3934 // 0.999999982f + 3935 // (0.693148872f + 3936 // (0.240227044f + 3937 // (0.554906021e-1f + 3938 // (0.961591928e-2f + 3939 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3940 // 3941 // error 2.47208000*10^(-7), which is better than 18 bits 3942 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3943 getF32Constant(DAG, 0x3924b03e)); 3944 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3945 getF32Constant(DAG, 0x3ab24b87)); 3946 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3947 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3948 getF32Constant(DAG, 0x3c1d8c17)); 3949 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3950 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3951 getF32Constant(DAG, 0x3d634a1d)); 3952 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3953 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3954 getF32Constant(DAG, 0x3e75fe14)); 3955 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3956 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3957 getF32Constant(DAG, 0x3f317234)); 3958 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3959 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3960 getF32Constant(DAG, 0x3f800000)); 3961 } 3962 3963 // Add the exponent into the result in integer domain. 3964 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3965 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3966 DAG.getNode(ISD::ADD, dl, MVT::i32, 3967 t13, IntegerPartOfX)); 3968 } 3969 3970 // No special expansion. 3971 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3972 } 3973 3974 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3975 /// limited-precision mode. 3976 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3977 const TargetLowering &TLI) { 3978 if (Op.getValueType() == MVT::f32 && 3979 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3980 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3981 3982 // Scale the exponent by log(2) [0.69314718f]. 3983 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3984 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3985 getF32Constant(DAG, 0x3f317218)); 3986 3987 // Get the significand and build it into a floating-point number with 3988 // exponent of 1. 3989 SDValue X = GetSignificand(DAG, Op1, dl); 3990 3991 SDValue LogOfMantissa; 3992 if (LimitFloatPrecision <= 6) { 3993 // For floating-point precision of 6: 3994 // 3995 // LogofMantissa = 3996 // -1.1609546f + 3997 // (1.4034025f - 0.23903021f * x) * x; 3998 // 3999 // error 0.0034276066, which is better than 8 bits 4000 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4001 getF32Constant(DAG, 0xbe74c456)); 4002 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4003 getF32Constant(DAG, 0x3fb3a2b1)); 4004 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4005 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4006 getF32Constant(DAG, 0x3f949a29)); 4007 } else if (LimitFloatPrecision <= 12) { 4008 // For floating-point precision of 12: 4009 // 4010 // LogOfMantissa = 4011 // -1.7417939f + 4012 // (2.8212026f + 4013 // (-1.4699568f + 4014 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4015 // 4016 // error 0.000061011436, which is 14 bits 4017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4018 getF32Constant(DAG, 0xbd67b6d6)); 4019 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4020 getF32Constant(DAG, 0x3ee4f4b8)); 4021 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4022 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4023 getF32Constant(DAG, 0x3fbc278b)); 4024 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4025 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4026 getF32Constant(DAG, 0x40348e95)); 4027 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4028 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4029 getF32Constant(DAG, 0x3fdef31a)); 4030 } else { // LimitFloatPrecision <= 18 4031 // For floating-point precision of 18: 4032 // 4033 // LogOfMantissa = 4034 // -2.1072184f + 4035 // (4.2372794f + 4036 // (-3.7029485f + 4037 // (2.2781945f + 4038 // (-0.87823314f + 4039 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4040 // 4041 // error 0.0000023660568, which is better than 18 bits 4042 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4043 getF32Constant(DAG, 0xbc91e5ac)); 4044 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4045 getF32Constant(DAG, 0x3e4350aa)); 4046 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4047 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4048 getF32Constant(DAG, 0x3f60d3e3)); 4049 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4050 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4051 getF32Constant(DAG, 0x4011cdf0)); 4052 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4053 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4054 getF32Constant(DAG, 0x406cfd1c)); 4055 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4056 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4057 getF32Constant(DAG, 0x408797cb)); 4058 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4059 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4060 getF32Constant(DAG, 0x4006dcab)); 4061 } 4062 4063 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4064 } 4065 4066 // No special expansion. 4067 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4068 } 4069 4070 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4071 /// limited-precision mode. 4072 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4073 const TargetLowering &TLI) { 4074 if (Op.getValueType() == MVT::f32 && 4075 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4076 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4077 4078 // Get the exponent. 4079 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4080 4081 // Get the significand and build it into a floating-point number with 4082 // exponent of 1. 4083 SDValue X = GetSignificand(DAG, Op1, dl); 4084 4085 // Different possible minimax approximations of significand in 4086 // floating-point for various degrees of accuracy over [1,2]. 4087 SDValue Log2ofMantissa; 4088 if (LimitFloatPrecision <= 6) { 4089 // For floating-point precision of 6: 4090 // 4091 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4092 // 4093 // error 0.0049451742, which is more than 7 bits 4094 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4095 getF32Constant(DAG, 0xbeb08fe0)); 4096 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4097 getF32Constant(DAG, 0x40019463)); 4098 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4099 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4100 getF32Constant(DAG, 0x3fd6633d)); 4101 } else if (LimitFloatPrecision <= 12) { 4102 // For floating-point precision of 12: 4103 // 4104 // Log2ofMantissa = 4105 // -2.51285454f + 4106 // (4.07009056f + 4107 // (-2.12067489f + 4108 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4109 // 4110 // error 0.0000876136000, which is better than 13 bits 4111 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4112 getF32Constant(DAG, 0xbda7262e)); 4113 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4114 getF32Constant(DAG, 0x3f25280b)); 4115 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4116 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4117 getF32Constant(DAG, 0x4007b923)); 4118 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4119 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4120 getF32Constant(DAG, 0x40823e2f)); 4121 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4122 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4123 getF32Constant(DAG, 0x4020d29c)); 4124 } else { // LimitFloatPrecision <= 18 4125 // For floating-point precision of 18: 4126 // 4127 // Log2ofMantissa = 4128 // -3.0400495f + 4129 // (6.1129976f + 4130 // (-5.3420409f + 4131 // (3.2865683f + 4132 // (-1.2669343f + 4133 // (0.27515199f - 4134 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4135 // 4136 // error 0.0000018516, which is better than 18 bits 4137 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4138 getF32Constant(DAG, 0xbcd2769e)); 4139 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4140 getF32Constant(DAG, 0x3e8ce0b9)); 4141 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4142 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4143 getF32Constant(DAG, 0x3fa22ae7)); 4144 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4145 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4146 getF32Constant(DAG, 0x40525723)); 4147 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4148 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4149 getF32Constant(DAG, 0x40aaf200)); 4150 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4151 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4152 getF32Constant(DAG, 0x40c39dad)); 4153 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4154 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4155 getF32Constant(DAG, 0x4042902c)); 4156 } 4157 4158 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4159 } 4160 4161 // No special expansion. 4162 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4163 } 4164 4165 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4166 /// limited-precision mode. 4167 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4168 const TargetLowering &TLI) { 4169 if (Op.getValueType() == MVT::f32 && 4170 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4171 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4172 4173 // Scale the exponent by log10(2) [0.30102999f]. 4174 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4175 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4176 getF32Constant(DAG, 0x3e9a209a)); 4177 4178 // Get the significand and build it into a floating-point number with 4179 // exponent of 1. 4180 SDValue X = GetSignificand(DAG, Op1, dl); 4181 4182 SDValue Log10ofMantissa; 4183 if (LimitFloatPrecision <= 6) { 4184 // For floating-point precision of 6: 4185 // 4186 // Log10ofMantissa = 4187 // -0.50419619f + 4188 // (0.60948995f - 0.10380950f * x) * x; 4189 // 4190 // error 0.0014886165, which is 6 bits 4191 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4192 getF32Constant(DAG, 0xbdd49a13)); 4193 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4194 getF32Constant(DAG, 0x3f1c0789)); 4195 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4196 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4197 getF32Constant(DAG, 0x3f011300)); 4198 } else if (LimitFloatPrecision <= 12) { 4199 // For floating-point precision of 12: 4200 // 4201 // Log10ofMantissa = 4202 // -0.64831180f + 4203 // (0.91751397f + 4204 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4205 // 4206 // error 0.00019228036, which is better than 12 bits 4207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4208 getF32Constant(DAG, 0x3d431f31)); 4209 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4210 getF32Constant(DAG, 0x3ea21fb2)); 4211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4212 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4213 getF32Constant(DAG, 0x3f6ae232)); 4214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4215 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4216 getF32Constant(DAG, 0x3f25f7c3)); 4217 } else { // LimitFloatPrecision <= 18 4218 // For floating-point precision of 18: 4219 // 4220 // Log10ofMantissa = 4221 // -0.84299375f + 4222 // (1.5327582f + 4223 // (-1.0688956f + 4224 // (0.49102474f + 4225 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4226 // 4227 // error 0.0000037995730, which is better than 18 bits 4228 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4229 getF32Constant(DAG, 0x3c5d51ce)); 4230 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4231 getF32Constant(DAG, 0x3e00685a)); 4232 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4233 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4234 getF32Constant(DAG, 0x3efb6798)); 4235 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4236 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4237 getF32Constant(DAG, 0x3f88d192)); 4238 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4239 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4240 getF32Constant(DAG, 0x3fc4316c)); 4241 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4242 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4243 getF32Constant(DAG, 0x3f57ce70)); 4244 } 4245 4246 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4247 } 4248 4249 // No special expansion. 4250 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4251 } 4252 4253 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4254 /// limited-precision mode. 4255 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4256 const TargetLowering &TLI) { 4257 if (Op.getValueType() == MVT::f32 && 4258 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4259 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4260 4261 // FractionalPartOfX = x - (float)IntegerPartOfX; 4262 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4263 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4264 4265 // IntegerPartOfX <<= 23; 4266 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4267 DAG.getConstant(23, TLI.getPointerTy())); 4268 4269 SDValue TwoToFractionalPartOfX; 4270 if (LimitFloatPrecision <= 6) { 4271 // For floating-point precision of 6: 4272 // 4273 // TwoToFractionalPartOfX = 4274 // 0.997535578f + 4275 // (0.735607626f + 0.252464424f * x) * x; 4276 // 4277 // error 0.0144103317, which is 6 bits 4278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4279 getF32Constant(DAG, 0x3e814304)); 4280 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4281 getF32Constant(DAG, 0x3f3c50c8)); 4282 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4283 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4284 getF32Constant(DAG, 0x3f7f5e7e)); 4285 } else if (LimitFloatPrecision <= 12) { 4286 // For floating-point precision of 12: 4287 // 4288 // TwoToFractionalPartOfX = 4289 // 0.999892986f + 4290 // (0.696457318f + 4291 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4292 // 4293 // error 0.000107046256, which is 13 to 14 bits 4294 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4295 getF32Constant(DAG, 0x3da235e3)); 4296 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4297 getF32Constant(DAG, 0x3e65b8f3)); 4298 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4299 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4300 getF32Constant(DAG, 0x3f324b07)); 4301 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4302 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4303 getF32Constant(DAG, 0x3f7ff8fd)); 4304 } else { // LimitFloatPrecision <= 18 4305 // For floating-point precision of 18: 4306 // 4307 // TwoToFractionalPartOfX = 4308 // 0.999999982f + 4309 // (0.693148872f + 4310 // (0.240227044f + 4311 // (0.554906021e-1f + 4312 // (0.961591928e-2f + 4313 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4314 // error 2.47208000*10^(-7), which is better than 18 bits 4315 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4316 getF32Constant(DAG, 0x3924b03e)); 4317 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4318 getF32Constant(DAG, 0x3ab24b87)); 4319 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4320 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4321 getF32Constant(DAG, 0x3c1d8c17)); 4322 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4323 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4324 getF32Constant(DAG, 0x3d634a1d)); 4325 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4326 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4327 getF32Constant(DAG, 0x3e75fe14)); 4328 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4329 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4330 getF32Constant(DAG, 0x3f317234)); 4331 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4332 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4333 getF32Constant(DAG, 0x3f800000)); 4334 } 4335 4336 // Add the exponent into the result in integer domain. 4337 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4338 TwoToFractionalPartOfX); 4339 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4340 DAG.getNode(ISD::ADD, dl, MVT::i32, 4341 t13, IntegerPartOfX)); 4342 } 4343 4344 // No special expansion. 4345 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4346 } 4347 4348 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4349 /// limited-precision mode with x == 10.0f. 4350 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4351 SelectionDAG &DAG, const TargetLowering &TLI) { 4352 bool IsExp10 = false; 4353 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4354 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4355 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4356 APFloat Ten(10.0f); 4357 IsExp10 = LHSC->isExactlyValue(Ten); 4358 } 4359 } 4360 4361 if (IsExp10) { 4362 // Put the exponent in the right bit position for later addition to the 4363 // final result: 4364 // 4365 // #define LOG2OF10 3.3219281f 4366 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4367 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4368 getF32Constant(DAG, 0x40549a78)); 4369 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4370 4371 // FractionalPartOfX = x - (float)IntegerPartOfX; 4372 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4373 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4374 4375 // IntegerPartOfX <<= 23; 4376 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4377 DAG.getConstant(23, TLI.getPointerTy())); 4378 4379 SDValue TwoToFractionalPartOfX; 4380 if (LimitFloatPrecision <= 6) { 4381 // For floating-point precision of 6: 4382 // 4383 // twoToFractionalPartOfX = 4384 // 0.997535578f + 4385 // (0.735607626f + 0.252464424f * x) * x; 4386 // 4387 // error 0.0144103317, which is 6 bits 4388 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4389 getF32Constant(DAG, 0x3e814304)); 4390 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4391 getF32Constant(DAG, 0x3f3c50c8)); 4392 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4393 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4394 getF32Constant(DAG, 0x3f7f5e7e)); 4395 } else if (LimitFloatPrecision <= 12) { 4396 // For floating-point precision of 12: 4397 // 4398 // TwoToFractionalPartOfX = 4399 // 0.999892986f + 4400 // (0.696457318f + 4401 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4402 // 4403 // error 0.000107046256, which is 13 to 14 bits 4404 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4405 getF32Constant(DAG, 0x3da235e3)); 4406 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4407 getF32Constant(DAG, 0x3e65b8f3)); 4408 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4409 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4410 getF32Constant(DAG, 0x3f324b07)); 4411 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4412 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4413 getF32Constant(DAG, 0x3f7ff8fd)); 4414 } else { // LimitFloatPrecision <= 18 4415 // For floating-point precision of 18: 4416 // 4417 // TwoToFractionalPartOfX = 4418 // 0.999999982f + 4419 // (0.693148872f + 4420 // (0.240227044f + 4421 // (0.554906021e-1f + 4422 // (0.961591928e-2f + 4423 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4424 // error 2.47208000*10^(-7), which is better than 18 bits 4425 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4426 getF32Constant(DAG, 0x3924b03e)); 4427 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4428 getF32Constant(DAG, 0x3ab24b87)); 4429 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4430 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4431 getF32Constant(DAG, 0x3c1d8c17)); 4432 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4433 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4434 getF32Constant(DAG, 0x3d634a1d)); 4435 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4436 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4437 getF32Constant(DAG, 0x3e75fe14)); 4438 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4439 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4440 getF32Constant(DAG, 0x3f317234)); 4441 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4442 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4443 getF32Constant(DAG, 0x3f800000)); 4444 } 4445 4446 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4447 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4448 DAG.getNode(ISD::ADD, dl, MVT::i32, 4449 t13, IntegerPartOfX)); 4450 } 4451 4452 // No special expansion. 4453 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4454 } 4455 4456 4457 /// ExpandPowI - Expand a llvm.powi intrinsic. 4458 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4459 SelectionDAG &DAG) { 4460 // If RHS is a constant, we can expand this out to a multiplication tree, 4461 // otherwise we end up lowering to a call to __powidf2 (for example). When 4462 // optimizing for size, we only want to do this if the expansion would produce 4463 // a small number of multiplies, otherwise we do the full expansion. 4464 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4465 // Get the exponent as a positive value. 4466 unsigned Val = RHSC->getSExtValue(); 4467 if ((int)Val < 0) Val = -Val; 4468 4469 // powi(x, 0) -> 1.0 4470 if (Val == 0) 4471 return DAG.getConstantFP(1.0, LHS.getValueType()); 4472 4473 const Function *F = DAG.getMachineFunction().getFunction(); 4474 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4475 Attribute::OptimizeForSize) || 4476 // If optimizing for size, don't insert too many multiplies. This 4477 // inserts up to 5 multiplies. 4478 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4479 // We use the simple binary decomposition method to generate the multiply 4480 // sequence. There are more optimal ways to do this (for example, 4481 // powi(x,15) generates one more multiply than it should), but this has 4482 // the benefit of being both really simple and much better than a libcall. 4483 SDValue Res; // Logically starts equal to 1.0 4484 SDValue CurSquare = LHS; 4485 while (Val) { 4486 if (Val & 1) { 4487 if (Res.getNode()) 4488 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4489 else 4490 Res = CurSquare; // 1.0*CurSquare. 4491 } 4492 4493 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4494 CurSquare, CurSquare); 4495 Val >>= 1; 4496 } 4497 4498 // If the original was negative, invert the result, producing 1/(x*x*x). 4499 if (RHSC->getSExtValue() < 0) 4500 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4501 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4502 return Res; 4503 } 4504 } 4505 4506 // Otherwise, expand to a libcall. 4507 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4508 } 4509 4510 // getTruncatedArgReg - Find underlying register used for an truncated 4511 // argument. 4512 static unsigned getTruncatedArgReg(const SDValue &N) { 4513 if (N.getOpcode() != ISD::TRUNCATE) 4514 return 0; 4515 4516 const SDValue &Ext = N.getOperand(0); 4517 if (Ext.getOpcode() == ISD::AssertZext || 4518 Ext.getOpcode() == ISD::AssertSext) { 4519 const SDValue &CFR = Ext.getOperand(0); 4520 if (CFR.getOpcode() == ISD::CopyFromReg) 4521 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4522 if (CFR.getOpcode() == ISD::TRUNCATE) 4523 return getTruncatedArgReg(CFR); 4524 } 4525 return 0; 4526 } 4527 4528 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4529 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4530 /// At the end of instruction selection, they will be inserted to the entry BB. 4531 bool 4532 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4533 int64_t Offset, bool IsIndirect, 4534 const SDValue &N) { 4535 const Argument *Arg = dyn_cast<Argument>(V); 4536 if (!Arg) 4537 return false; 4538 4539 MachineFunction &MF = DAG.getMachineFunction(); 4540 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4541 4542 // Ignore inlined function arguments here. 4543 DIVariable DV(Variable); 4544 if (DV.isInlinedFnArgument(MF.getFunction())) 4545 return false; 4546 4547 Optional<MachineOperand> Op; 4548 // Some arguments' frame index is recorded during argument lowering. 4549 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4550 Op = MachineOperand::CreateFI(FI); 4551 4552 if (!Op && N.getNode()) { 4553 unsigned Reg; 4554 if (N.getOpcode() == ISD::CopyFromReg) 4555 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4556 else 4557 Reg = getTruncatedArgReg(N); 4558 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4559 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4560 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4561 if (PR) 4562 Reg = PR; 4563 } 4564 if (Reg) 4565 Op = MachineOperand::CreateReg(Reg, false); 4566 } 4567 4568 if (!Op) { 4569 // Check if ValueMap has reg number. 4570 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4571 if (VMI != FuncInfo.ValueMap.end()) 4572 Op = MachineOperand::CreateReg(VMI->second, false); 4573 } 4574 4575 if (!Op && N.getNode()) 4576 // Check if frame index is available. 4577 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4578 if (FrameIndexSDNode *FINode = 4579 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4580 Op = MachineOperand::CreateFI(FINode->getIndex()); 4581 4582 if (!Op) 4583 return false; 4584 4585 if (Op->isReg()) 4586 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4587 TII->get(TargetOpcode::DBG_VALUE), 4588 IsIndirect, 4589 Op->getReg(), Offset, Variable)); 4590 else 4591 FuncInfo.ArgDbgValues.push_back( 4592 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4593 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4594 4595 return true; 4596 } 4597 4598 // VisualStudio defines setjmp as _setjmp 4599 #if defined(_MSC_VER) && defined(setjmp) && \ 4600 !defined(setjmp_undefined_for_msvc) 4601 # pragma push_macro("setjmp") 4602 # undef setjmp 4603 # define setjmp_undefined_for_msvc 4604 #endif 4605 4606 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4607 /// we want to emit this as a call to a named external function, return the name 4608 /// otherwise lower it and return null. 4609 const char * 4610 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4611 const TargetLowering *TLI = TM.getTargetLowering(); 4612 SDLoc sdl = getCurSDLoc(); 4613 DebugLoc dl = getCurDebugLoc(); 4614 SDValue Res; 4615 4616 switch (Intrinsic) { 4617 default: 4618 // By default, turn this into a target intrinsic node. 4619 visitTargetIntrinsic(I, Intrinsic); 4620 return nullptr; 4621 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4622 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4623 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4624 case Intrinsic::returnaddress: 4625 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4626 getValue(I.getArgOperand(0)))); 4627 return nullptr; 4628 case Intrinsic::frameaddress: 4629 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4630 getValue(I.getArgOperand(0)))); 4631 return nullptr; 4632 case Intrinsic::setjmp: 4633 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4634 case Intrinsic::longjmp: 4635 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4636 case Intrinsic::memcpy: { 4637 // Assert for address < 256 since we support only user defined address 4638 // spaces. 4639 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4640 < 256 && 4641 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4642 < 256 && 4643 "Unknown address space"); 4644 SDValue Op1 = getValue(I.getArgOperand(0)); 4645 SDValue Op2 = getValue(I.getArgOperand(1)); 4646 SDValue Op3 = getValue(I.getArgOperand(2)); 4647 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4648 if (!Align) 4649 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4650 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4651 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4652 MachinePointerInfo(I.getArgOperand(0)), 4653 MachinePointerInfo(I.getArgOperand(1)))); 4654 return nullptr; 4655 } 4656 case Intrinsic::memset: { 4657 // Assert for address < 256 since we support only user defined address 4658 // spaces. 4659 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4660 < 256 && 4661 "Unknown address space"); 4662 SDValue Op1 = getValue(I.getArgOperand(0)); 4663 SDValue Op2 = getValue(I.getArgOperand(1)); 4664 SDValue Op3 = getValue(I.getArgOperand(2)); 4665 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4666 if (!Align) 4667 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4668 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4669 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4670 MachinePointerInfo(I.getArgOperand(0)))); 4671 return nullptr; 4672 } 4673 case Intrinsic::memmove: { 4674 // Assert for address < 256 since we support only user defined address 4675 // spaces. 4676 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4677 < 256 && 4678 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4679 < 256 && 4680 "Unknown address space"); 4681 SDValue Op1 = getValue(I.getArgOperand(0)); 4682 SDValue Op2 = getValue(I.getArgOperand(1)); 4683 SDValue Op3 = getValue(I.getArgOperand(2)); 4684 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4685 if (!Align) 4686 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4687 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4688 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4689 MachinePointerInfo(I.getArgOperand(0)), 4690 MachinePointerInfo(I.getArgOperand(1)))); 4691 return nullptr; 4692 } 4693 case Intrinsic::dbg_declare: { 4694 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4695 MDNode *Variable = DI.getVariable(); 4696 const Value *Address = DI.getAddress(); 4697 DIVariable DIVar(Variable); 4698 assert((!DIVar || DIVar.isVariable()) && 4699 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4700 if (!Address || !DIVar) { 4701 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4702 return nullptr; 4703 } 4704 4705 // Check if address has undef value. 4706 if (isa<UndefValue>(Address) || 4707 (Address->use_empty() && !isa<Argument>(Address))) { 4708 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4709 return nullptr; 4710 } 4711 4712 SDValue &N = NodeMap[Address]; 4713 if (!N.getNode() && isa<Argument>(Address)) 4714 // Check unused arguments map. 4715 N = UnusedArgNodeMap[Address]; 4716 SDDbgValue *SDV; 4717 if (N.getNode()) { 4718 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4719 Address = BCI->getOperand(0); 4720 // Parameters are handled specially. 4721 bool isParameter = 4722 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4723 isa<Argument>(Address)); 4724 4725 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4726 4727 if (isParameter && !AI) { 4728 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4729 if (FINode) 4730 // Byval parameter. We have a frame index at this point. 4731 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4732 0, dl, SDNodeOrder); 4733 else { 4734 // Address is an argument, so try to emit its dbg value using 4735 // virtual register info from the FuncInfo.ValueMap. 4736 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4737 return nullptr; 4738 } 4739 } else if (AI) 4740 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4741 true, 0, dl, SDNodeOrder); 4742 else { 4743 // Can't do anything with other non-AI cases yet. 4744 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4745 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4746 DEBUG(Address->dump()); 4747 return nullptr; 4748 } 4749 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4750 } else { 4751 // If Address is an argument then try to emit its dbg value using 4752 // virtual register info from the FuncInfo.ValueMap. 4753 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4754 // If variable is pinned by a alloca in dominating bb then 4755 // use StaticAllocaMap. 4756 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4757 if (AI->getParent() != DI.getParent()) { 4758 DenseMap<const AllocaInst*, int>::iterator SI = 4759 FuncInfo.StaticAllocaMap.find(AI); 4760 if (SI != FuncInfo.StaticAllocaMap.end()) { 4761 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4762 0, dl, SDNodeOrder); 4763 DAG.AddDbgValue(SDV, nullptr, false); 4764 return nullptr; 4765 } 4766 } 4767 } 4768 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4769 } 4770 } 4771 return nullptr; 4772 } 4773 case Intrinsic::dbg_value: { 4774 const DbgValueInst &DI = cast<DbgValueInst>(I); 4775 DIVariable DIVar(DI.getVariable()); 4776 assert((!DIVar || DIVar.isVariable()) && 4777 "Variable in DbgValueInst should be either null or a DIVariable."); 4778 if (!DIVar) 4779 return nullptr; 4780 4781 MDNode *Variable = DI.getVariable(); 4782 uint64_t Offset = DI.getOffset(); 4783 const Value *V = DI.getValue(); 4784 if (!V) 4785 return nullptr; 4786 4787 SDDbgValue *SDV; 4788 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4789 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4790 DAG.AddDbgValue(SDV, nullptr, false); 4791 } else { 4792 // Do not use getValue() in here; we don't want to generate code at 4793 // this point if it hasn't been done yet. 4794 SDValue N = NodeMap[V]; 4795 if (!N.getNode() && isa<Argument>(V)) 4796 // Check unused arguments map. 4797 N = UnusedArgNodeMap[V]; 4798 if (N.getNode()) { 4799 // A dbg.value for an alloca is always indirect. 4800 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4801 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4802 SDV = DAG.getDbgValue(Variable, N.getNode(), 4803 N.getResNo(), IsIndirect, 4804 Offset, dl, SDNodeOrder); 4805 DAG.AddDbgValue(SDV, N.getNode(), false); 4806 } 4807 } else if (!V->use_empty() ) { 4808 // Do not call getValue(V) yet, as we don't want to generate code. 4809 // Remember it for later. 4810 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4811 DanglingDebugInfoMap[V] = DDI; 4812 } else { 4813 // We may expand this to cover more cases. One case where we have no 4814 // data available is an unreferenced parameter. 4815 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4816 } 4817 } 4818 4819 // Build a debug info table entry. 4820 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4821 V = BCI->getOperand(0); 4822 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4823 // Don't handle byval struct arguments or VLAs, for example. 4824 if (!AI) { 4825 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4826 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4827 return nullptr; 4828 } 4829 DenseMap<const AllocaInst*, int>::iterator SI = 4830 FuncInfo.StaticAllocaMap.find(AI); 4831 if (SI == FuncInfo.StaticAllocaMap.end()) 4832 return nullptr; // VLAs. 4833 return nullptr; 4834 } 4835 4836 case Intrinsic::eh_typeid_for: { 4837 // Find the type id for the given typeinfo. 4838 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4839 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4840 Res = DAG.getConstant(TypeID, MVT::i32); 4841 setValue(&I, Res); 4842 return nullptr; 4843 } 4844 4845 case Intrinsic::eh_return_i32: 4846 case Intrinsic::eh_return_i64: 4847 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4848 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4849 MVT::Other, 4850 getControlRoot(), 4851 getValue(I.getArgOperand(0)), 4852 getValue(I.getArgOperand(1)))); 4853 return nullptr; 4854 case Intrinsic::eh_unwind_init: 4855 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4856 return nullptr; 4857 case Intrinsic::eh_dwarf_cfa: { 4858 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4859 TLI->getPointerTy()); 4860 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4861 CfaArg.getValueType(), 4862 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4863 CfaArg.getValueType()), 4864 CfaArg); 4865 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4866 TLI->getPointerTy(), 4867 DAG.getConstant(0, TLI->getPointerTy())); 4868 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4869 FA, Offset)); 4870 return nullptr; 4871 } 4872 case Intrinsic::eh_sjlj_callsite: { 4873 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4874 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4875 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4876 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4877 4878 MMI.setCurrentCallSite(CI->getZExtValue()); 4879 return nullptr; 4880 } 4881 case Intrinsic::eh_sjlj_functioncontext: { 4882 // Get and store the index of the function context. 4883 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4884 AllocaInst *FnCtx = 4885 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4886 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4887 MFI->setFunctionContextIndex(FI); 4888 return nullptr; 4889 } 4890 case Intrinsic::eh_sjlj_setjmp: { 4891 SDValue Ops[2]; 4892 Ops[0] = getRoot(); 4893 Ops[1] = getValue(I.getArgOperand(0)); 4894 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4895 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4896 setValue(&I, Op.getValue(0)); 4897 DAG.setRoot(Op.getValue(1)); 4898 return nullptr; 4899 } 4900 case Intrinsic::eh_sjlj_longjmp: { 4901 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4902 getRoot(), getValue(I.getArgOperand(0)))); 4903 return nullptr; 4904 } 4905 4906 case Intrinsic::x86_mmx_pslli_w: 4907 case Intrinsic::x86_mmx_pslli_d: 4908 case Intrinsic::x86_mmx_pslli_q: 4909 case Intrinsic::x86_mmx_psrli_w: 4910 case Intrinsic::x86_mmx_psrli_d: 4911 case Intrinsic::x86_mmx_psrli_q: 4912 case Intrinsic::x86_mmx_psrai_w: 4913 case Intrinsic::x86_mmx_psrai_d: { 4914 SDValue ShAmt = getValue(I.getArgOperand(1)); 4915 if (isa<ConstantSDNode>(ShAmt)) { 4916 visitTargetIntrinsic(I, Intrinsic); 4917 return nullptr; 4918 } 4919 unsigned NewIntrinsic = 0; 4920 EVT ShAmtVT = MVT::v2i32; 4921 switch (Intrinsic) { 4922 case Intrinsic::x86_mmx_pslli_w: 4923 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4924 break; 4925 case Intrinsic::x86_mmx_pslli_d: 4926 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4927 break; 4928 case Intrinsic::x86_mmx_pslli_q: 4929 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4930 break; 4931 case Intrinsic::x86_mmx_psrli_w: 4932 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4933 break; 4934 case Intrinsic::x86_mmx_psrli_d: 4935 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4936 break; 4937 case Intrinsic::x86_mmx_psrli_q: 4938 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4939 break; 4940 case Intrinsic::x86_mmx_psrai_w: 4941 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4942 break; 4943 case Intrinsic::x86_mmx_psrai_d: 4944 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4945 break; 4946 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4947 } 4948 4949 // The vector shift intrinsics with scalars uses 32b shift amounts but 4950 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4951 // to be zero. 4952 // We must do this early because v2i32 is not a legal type. 4953 SDValue ShOps[2]; 4954 ShOps[0] = ShAmt; 4955 ShOps[1] = DAG.getConstant(0, MVT::i32); 4956 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4957 EVT DestVT = TLI->getValueType(I.getType()); 4958 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4959 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4960 DAG.getConstant(NewIntrinsic, MVT::i32), 4961 getValue(I.getArgOperand(0)), ShAmt); 4962 setValue(&I, Res); 4963 return nullptr; 4964 } 4965 case Intrinsic::x86_avx_vinsertf128_pd_256: 4966 case Intrinsic::x86_avx_vinsertf128_ps_256: 4967 case Intrinsic::x86_avx_vinsertf128_si_256: 4968 case Intrinsic::x86_avx2_vinserti128: { 4969 EVT DestVT = TLI->getValueType(I.getType()); 4970 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4971 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4972 ElVT.getVectorNumElements(); 4973 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4974 getValue(I.getArgOperand(0)), 4975 getValue(I.getArgOperand(1)), 4976 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4977 setValue(&I, Res); 4978 return nullptr; 4979 } 4980 case Intrinsic::x86_avx_vextractf128_pd_256: 4981 case Intrinsic::x86_avx_vextractf128_ps_256: 4982 case Intrinsic::x86_avx_vextractf128_si_256: 4983 case Intrinsic::x86_avx2_vextracti128: { 4984 EVT DestVT = TLI->getValueType(I.getType()); 4985 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4986 DestVT.getVectorNumElements(); 4987 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4988 getValue(I.getArgOperand(0)), 4989 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4990 setValue(&I, Res); 4991 return nullptr; 4992 } 4993 case Intrinsic::convertff: 4994 case Intrinsic::convertfsi: 4995 case Intrinsic::convertfui: 4996 case Intrinsic::convertsif: 4997 case Intrinsic::convertuif: 4998 case Intrinsic::convertss: 4999 case Intrinsic::convertsu: 5000 case Intrinsic::convertus: 5001 case Intrinsic::convertuu: { 5002 ISD::CvtCode Code = ISD::CVT_INVALID; 5003 switch (Intrinsic) { 5004 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5005 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5006 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5007 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5008 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5009 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5010 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5011 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5012 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5013 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5014 } 5015 EVT DestVT = TLI->getValueType(I.getType()); 5016 const Value *Op1 = I.getArgOperand(0); 5017 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5018 DAG.getValueType(DestVT), 5019 DAG.getValueType(getValue(Op1).getValueType()), 5020 getValue(I.getArgOperand(1)), 5021 getValue(I.getArgOperand(2)), 5022 Code); 5023 setValue(&I, Res); 5024 return nullptr; 5025 } 5026 case Intrinsic::powi: 5027 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5028 getValue(I.getArgOperand(1)), DAG)); 5029 return nullptr; 5030 case Intrinsic::log: 5031 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5032 return nullptr; 5033 case Intrinsic::log2: 5034 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5035 return nullptr; 5036 case Intrinsic::log10: 5037 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5038 return nullptr; 5039 case Intrinsic::exp: 5040 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5041 return nullptr; 5042 case Intrinsic::exp2: 5043 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5044 return nullptr; 5045 case Intrinsic::pow: 5046 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5047 getValue(I.getArgOperand(1)), DAG, *TLI)); 5048 return nullptr; 5049 case Intrinsic::sqrt: 5050 case Intrinsic::fabs: 5051 case Intrinsic::sin: 5052 case Intrinsic::cos: 5053 case Intrinsic::floor: 5054 case Intrinsic::ceil: 5055 case Intrinsic::trunc: 5056 case Intrinsic::rint: 5057 case Intrinsic::nearbyint: 5058 case Intrinsic::round: { 5059 unsigned Opcode; 5060 switch (Intrinsic) { 5061 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5062 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5063 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5064 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5065 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5066 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5067 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5068 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5069 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5070 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5071 case Intrinsic::round: Opcode = ISD::FROUND; break; 5072 } 5073 5074 setValue(&I, DAG.getNode(Opcode, sdl, 5075 getValue(I.getArgOperand(0)).getValueType(), 5076 getValue(I.getArgOperand(0)))); 5077 return nullptr; 5078 } 5079 case Intrinsic::copysign: 5080 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5081 getValue(I.getArgOperand(0)).getValueType(), 5082 getValue(I.getArgOperand(0)), 5083 getValue(I.getArgOperand(1)))); 5084 return nullptr; 5085 case Intrinsic::fma: 5086 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5087 getValue(I.getArgOperand(0)).getValueType(), 5088 getValue(I.getArgOperand(0)), 5089 getValue(I.getArgOperand(1)), 5090 getValue(I.getArgOperand(2)))); 5091 return nullptr; 5092 case Intrinsic::fmuladd: { 5093 EVT VT = TLI->getValueType(I.getType()); 5094 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5095 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5096 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5097 getValue(I.getArgOperand(0)).getValueType(), 5098 getValue(I.getArgOperand(0)), 5099 getValue(I.getArgOperand(1)), 5100 getValue(I.getArgOperand(2)))); 5101 } else { 5102 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5103 getValue(I.getArgOperand(0)).getValueType(), 5104 getValue(I.getArgOperand(0)), 5105 getValue(I.getArgOperand(1))); 5106 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5107 getValue(I.getArgOperand(0)).getValueType(), 5108 Mul, 5109 getValue(I.getArgOperand(2))); 5110 setValue(&I, Add); 5111 } 5112 return nullptr; 5113 } 5114 case Intrinsic::convert_to_fp16: 5115 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5116 MVT::i16, getValue(I.getArgOperand(0)))); 5117 return nullptr; 5118 case Intrinsic::convert_from_fp16: 5119 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5120 MVT::f32, getValue(I.getArgOperand(0)))); 5121 return nullptr; 5122 case Intrinsic::pcmarker: { 5123 SDValue Tmp = getValue(I.getArgOperand(0)); 5124 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5125 return nullptr; 5126 } 5127 case Intrinsic::readcyclecounter: { 5128 SDValue Op = getRoot(); 5129 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5130 DAG.getVTList(MVT::i64, MVT::Other), Op); 5131 setValue(&I, Res); 5132 DAG.setRoot(Res.getValue(1)); 5133 return nullptr; 5134 } 5135 case Intrinsic::bswap: 5136 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5137 getValue(I.getArgOperand(0)).getValueType(), 5138 getValue(I.getArgOperand(0)))); 5139 return nullptr; 5140 case Intrinsic::cttz: { 5141 SDValue Arg = getValue(I.getArgOperand(0)); 5142 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5143 EVT Ty = Arg.getValueType(); 5144 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5145 sdl, Ty, Arg)); 5146 return nullptr; 5147 } 5148 case Intrinsic::ctlz: { 5149 SDValue Arg = getValue(I.getArgOperand(0)); 5150 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5151 EVT Ty = Arg.getValueType(); 5152 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5153 sdl, Ty, Arg)); 5154 return nullptr; 5155 } 5156 case Intrinsic::ctpop: { 5157 SDValue Arg = getValue(I.getArgOperand(0)); 5158 EVT Ty = Arg.getValueType(); 5159 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5160 return nullptr; 5161 } 5162 case Intrinsic::stacksave: { 5163 SDValue Op = getRoot(); 5164 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5165 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5166 setValue(&I, Res); 5167 DAG.setRoot(Res.getValue(1)); 5168 return nullptr; 5169 } 5170 case Intrinsic::stackrestore: { 5171 Res = getValue(I.getArgOperand(0)); 5172 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5173 return nullptr; 5174 } 5175 case Intrinsic::stackprotector: { 5176 // Emit code into the DAG to store the stack guard onto the stack. 5177 MachineFunction &MF = DAG.getMachineFunction(); 5178 MachineFrameInfo *MFI = MF.getFrameInfo(); 5179 EVT PtrTy = TLI->getPointerTy(); 5180 5181 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5182 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5183 5184 int FI = FuncInfo.StaticAllocaMap[Slot]; 5185 MFI->setStackProtectorIndex(FI); 5186 5187 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5188 5189 // Store the stack protector onto the stack. 5190 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5191 MachinePointerInfo::getFixedStack(FI), 5192 true, false, 0); 5193 setValue(&I, Res); 5194 DAG.setRoot(Res); 5195 return nullptr; 5196 } 5197 case Intrinsic::objectsize: { 5198 // If we don't know by now, we're never going to know. 5199 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5200 5201 assert(CI && "Non-constant type in __builtin_object_size?"); 5202 5203 SDValue Arg = getValue(I.getCalledValue()); 5204 EVT Ty = Arg.getValueType(); 5205 5206 if (CI->isZero()) 5207 Res = DAG.getConstant(-1ULL, Ty); 5208 else 5209 Res = DAG.getConstant(0, Ty); 5210 5211 setValue(&I, Res); 5212 return nullptr; 5213 } 5214 case Intrinsic::annotation: 5215 case Intrinsic::ptr_annotation: 5216 // Drop the intrinsic, but forward the value 5217 setValue(&I, getValue(I.getOperand(0))); 5218 return nullptr; 5219 case Intrinsic::var_annotation: 5220 // Discard annotate attributes 5221 return nullptr; 5222 5223 case Intrinsic::init_trampoline: { 5224 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5225 5226 SDValue Ops[6]; 5227 Ops[0] = getRoot(); 5228 Ops[1] = getValue(I.getArgOperand(0)); 5229 Ops[2] = getValue(I.getArgOperand(1)); 5230 Ops[3] = getValue(I.getArgOperand(2)); 5231 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5232 Ops[5] = DAG.getSrcValue(F); 5233 5234 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5235 5236 DAG.setRoot(Res); 5237 return nullptr; 5238 } 5239 case Intrinsic::adjust_trampoline: { 5240 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5241 TLI->getPointerTy(), 5242 getValue(I.getArgOperand(0)))); 5243 return nullptr; 5244 } 5245 case Intrinsic::gcroot: 5246 if (GFI) { 5247 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5248 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5249 5250 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5251 GFI->addStackRoot(FI->getIndex(), TypeMap); 5252 } 5253 return nullptr; 5254 case Intrinsic::gcread: 5255 case Intrinsic::gcwrite: 5256 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5257 case Intrinsic::flt_rounds: 5258 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5259 return nullptr; 5260 5261 case Intrinsic::expect: { 5262 // Just replace __builtin_expect(exp, c) with EXP. 5263 setValue(&I, getValue(I.getArgOperand(0))); 5264 return nullptr; 5265 } 5266 5267 case Intrinsic::debugtrap: 5268 case Intrinsic::trap: { 5269 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5270 if (TrapFuncName.empty()) { 5271 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5272 ISD::TRAP : ISD::DEBUGTRAP; 5273 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5274 return nullptr; 5275 } 5276 TargetLowering::ArgListTy Args; 5277 TargetLowering:: 5278 CallLoweringInfo CLI(getRoot(), I.getType(), 5279 false, false, false, false, 0, CallingConv::C, 5280 /*isTailCall=*/false, 5281 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5282 DAG.getExternalSymbol(TrapFuncName.data(), 5283 TLI->getPointerTy()), 5284 Args, DAG, sdl); 5285 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5286 DAG.setRoot(Result.second); 5287 return nullptr; 5288 } 5289 5290 case Intrinsic::uadd_with_overflow: 5291 case Intrinsic::sadd_with_overflow: 5292 case Intrinsic::usub_with_overflow: 5293 case Intrinsic::ssub_with_overflow: 5294 case Intrinsic::umul_with_overflow: 5295 case Intrinsic::smul_with_overflow: { 5296 ISD::NodeType Op; 5297 switch (Intrinsic) { 5298 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5299 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5300 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5301 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5302 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5303 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5304 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5305 } 5306 SDValue Op1 = getValue(I.getArgOperand(0)); 5307 SDValue Op2 = getValue(I.getArgOperand(1)); 5308 5309 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5310 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5311 return nullptr; 5312 } 5313 case Intrinsic::prefetch: { 5314 SDValue Ops[5]; 5315 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5316 Ops[0] = getRoot(); 5317 Ops[1] = getValue(I.getArgOperand(0)); 5318 Ops[2] = getValue(I.getArgOperand(1)); 5319 Ops[3] = getValue(I.getArgOperand(2)); 5320 Ops[4] = getValue(I.getArgOperand(3)); 5321 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5322 DAG.getVTList(MVT::Other), Ops, 5323 EVT::getIntegerVT(*Context, 8), 5324 MachinePointerInfo(I.getArgOperand(0)), 5325 0, /* align */ 5326 false, /* volatile */ 5327 rw==0, /* read */ 5328 rw==1)); /* write */ 5329 return nullptr; 5330 } 5331 case Intrinsic::lifetime_start: 5332 case Intrinsic::lifetime_end: { 5333 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5334 // Stack coloring is not enabled in O0, discard region information. 5335 if (TM.getOptLevel() == CodeGenOpt::None) 5336 return nullptr; 5337 5338 SmallVector<Value *, 4> Allocas; 5339 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5340 5341 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5342 E = Allocas.end(); Object != E; ++Object) { 5343 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5344 5345 // Could not find an Alloca. 5346 if (!LifetimeObject) 5347 continue; 5348 5349 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5350 5351 SDValue Ops[2]; 5352 Ops[0] = getRoot(); 5353 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5354 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5355 5356 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5357 DAG.setRoot(Res); 5358 } 5359 return nullptr; 5360 } 5361 case Intrinsic::invariant_start: 5362 // Discard region information. 5363 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5364 return nullptr; 5365 case Intrinsic::invariant_end: 5366 // Discard region information. 5367 return nullptr; 5368 case Intrinsic::stackprotectorcheck: { 5369 // Do not actually emit anything for this basic block. Instead we initialize 5370 // the stack protector descriptor and export the guard variable so we can 5371 // access it in FinishBasicBlock. 5372 const BasicBlock *BB = I.getParent(); 5373 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5374 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5375 5376 // Flush our exports since we are going to process a terminator. 5377 (void)getControlRoot(); 5378 return nullptr; 5379 } 5380 case Intrinsic::clear_cache: 5381 return TLI->getClearCacheBuiltinName(); 5382 case Intrinsic::donothing: 5383 // ignore 5384 return nullptr; 5385 case Intrinsic::experimental_stackmap: { 5386 visitStackmap(I); 5387 return nullptr; 5388 } 5389 case Intrinsic::experimental_patchpoint_void: 5390 case Intrinsic::experimental_patchpoint_i64: { 5391 visitPatchpoint(I); 5392 return nullptr; 5393 } 5394 } 5395 } 5396 5397 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5398 bool isTailCall, 5399 MachineBasicBlock *LandingPad) { 5400 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5401 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5402 Type *RetTy = FTy->getReturnType(); 5403 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5404 MCSymbol *BeginLabel = nullptr; 5405 5406 TargetLowering::ArgListTy Args; 5407 TargetLowering::ArgListEntry Entry; 5408 Args.reserve(CS.arg_size()); 5409 5410 // Check whether the function can return without sret-demotion. 5411 SmallVector<ISD::OutputArg, 4> Outs; 5412 const TargetLowering *TLI = TM.getTargetLowering(); 5413 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5414 5415 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5416 DAG.getMachineFunction(), 5417 FTy->isVarArg(), Outs, 5418 FTy->getContext()); 5419 5420 SDValue DemoteStackSlot; 5421 int DemoteStackIdx = -100; 5422 5423 if (!CanLowerReturn) { 5424 assert(!CS.hasInAllocaArgument() && 5425 "sret demotion is incompatible with inalloca"); 5426 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5427 FTy->getReturnType()); 5428 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5429 FTy->getReturnType()); 5430 MachineFunction &MF = DAG.getMachineFunction(); 5431 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5432 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5433 5434 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5435 Entry.Node = DemoteStackSlot; 5436 Entry.Ty = StackSlotPtrType; 5437 Entry.isSExt = false; 5438 Entry.isZExt = false; 5439 Entry.isInReg = false; 5440 Entry.isSRet = true; 5441 Entry.isNest = false; 5442 Entry.isByVal = false; 5443 Entry.isReturned = false; 5444 Entry.Alignment = Align; 5445 Args.push_back(Entry); 5446 RetTy = Type::getVoidTy(FTy->getContext()); 5447 } 5448 5449 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5450 i != e; ++i) { 5451 const Value *V = *i; 5452 5453 // Skip empty types 5454 if (V->getType()->isEmptyTy()) 5455 continue; 5456 5457 SDValue ArgNode = getValue(V); 5458 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5459 5460 // Skip the first return-type Attribute to get to params. 5461 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5462 Args.push_back(Entry); 5463 } 5464 5465 if (LandingPad) { 5466 // Insert a label before the invoke call to mark the try range. This can be 5467 // used to detect deletion of the invoke via the MachineModuleInfo. 5468 BeginLabel = MMI.getContext().CreateTempSymbol(); 5469 5470 // For SjLj, keep track of which landing pads go with which invokes 5471 // so as to maintain the ordering of pads in the LSDA. 5472 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5473 if (CallSiteIndex) { 5474 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5475 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5476 5477 // Now that the call site is handled, stop tracking it. 5478 MMI.setCurrentCallSite(0); 5479 } 5480 5481 // Both PendingLoads and PendingExports must be flushed here; 5482 // this call might not return. 5483 (void)getRoot(); 5484 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5485 } 5486 5487 // Check if target-independent constraints permit a tail call here. 5488 // Target-dependent constraints are checked within TLI->LowerCallTo. 5489 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5490 isTailCall = false; 5491 5492 TargetLowering:: 5493 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5494 getCurSDLoc(), CS); 5495 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5496 assert((isTailCall || Result.second.getNode()) && 5497 "Non-null chain expected with non-tail call!"); 5498 assert((Result.second.getNode() || !Result.first.getNode()) && 5499 "Null value expected with tail call!"); 5500 if (Result.first.getNode()) { 5501 setValue(CS.getInstruction(), Result.first); 5502 } else if (!CanLowerReturn && Result.second.getNode()) { 5503 // The instruction result is the result of loading from the 5504 // hidden sret parameter. 5505 SmallVector<EVT, 1> PVTs; 5506 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5507 5508 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5509 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5510 EVT PtrVT = PVTs[0]; 5511 5512 SmallVector<EVT, 4> RetTys; 5513 SmallVector<uint64_t, 4> Offsets; 5514 RetTy = FTy->getReturnType(); 5515 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5516 5517 unsigned NumValues = RetTys.size(); 5518 SmallVector<SDValue, 4> Values(NumValues); 5519 SmallVector<SDValue, 4> Chains(NumValues); 5520 5521 for (unsigned i = 0; i < NumValues; ++i) { 5522 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5523 DemoteStackSlot, 5524 DAG.getConstant(Offsets[i], PtrVT)); 5525 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5526 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5527 false, false, false, 1); 5528 Values[i] = L; 5529 Chains[i] = L.getValue(1); 5530 } 5531 5532 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5533 MVT::Other, Chains); 5534 PendingLoads.push_back(Chain); 5535 5536 setValue(CS.getInstruction(), 5537 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5538 DAG.getVTList(RetTys), Values)); 5539 } 5540 5541 if (!Result.second.getNode()) { 5542 // As a special case, a null chain means that a tail call has been emitted 5543 // and the DAG root is already updated. 5544 HasTailCall = true; 5545 5546 // Since there's no actual continuation from this block, nothing can be 5547 // relying on us setting vregs for them. 5548 PendingExports.clear(); 5549 } else { 5550 DAG.setRoot(Result.second); 5551 } 5552 5553 if (LandingPad) { 5554 // Insert a label at the end of the invoke call to mark the try range. This 5555 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5556 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5557 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5558 5559 // Inform MachineModuleInfo of range. 5560 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5561 } 5562 } 5563 5564 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5565 /// value is equal or not-equal to zero. 5566 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5567 for (const User *U : V->users()) { 5568 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5569 if (IC->isEquality()) 5570 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5571 if (C->isNullValue()) 5572 continue; 5573 // Unknown instruction. 5574 return false; 5575 } 5576 return true; 5577 } 5578 5579 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5580 Type *LoadTy, 5581 SelectionDAGBuilder &Builder) { 5582 5583 // Check to see if this load can be trivially constant folded, e.g. if the 5584 // input is from a string literal. 5585 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5586 // Cast pointer to the type we really want to load. 5587 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5588 PointerType::getUnqual(LoadTy)); 5589 5590 if (const Constant *LoadCst = 5591 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5592 Builder.DL)) 5593 return Builder.getValue(LoadCst); 5594 } 5595 5596 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5597 // still constant memory, the input chain can be the entry node. 5598 SDValue Root; 5599 bool ConstantMemory = false; 5600 5601 // Do not serialize (non-volatile) loads of constant memory with anything. 5602 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5603 Root = Builder.DAG.getEntryNode(); 5604 ConstantMemory = true; 5605 } else { 5606 // Do not serialize non-volatile loads against each other. 5607 Root = Builder.DAG.getRoot(); 5608 } 5609 5610 SDValue Ptr = Builder.getValue(PtrVal); 5611 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5612 Ptr, MachinePointerInfo(PtrVal), 5613 false /*volatile*/, 5614 false /*nontemporal*/, 5615 false /*isinvariant*/, 1 /* align=1 */); 5616 5617 if (!ConstantMemory) 5618 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5619 return LoadVal; 5620 } 5621 5622 /// processIntegerCallValue - Record the value for an instruction that 5623 /// produces an integer result, converting the type where necessary. 5624 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5625 SDValue Value, 5626 bool IsSigned) { 5627 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5628 if (IsSigned) 5629 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5630 else 5631 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5632 setValue(&I, Value); 5633 } 5634 5635 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5636 /// If so, return true and lower it, otherwise return false and it will be 5637 /// lowered like a normal call. 5638 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5639 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5640 if (I.getNumArgOperands() != 3) 5641 return false; 5642 5643 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5644 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5645 !I.getArgOperand(2)->getType()->isIntegerTy() || 5646 !I.getType()->isIntegerTy()) 5647 return false; 5648 5649 const Value *Size = I.getArgOperand(2); 5650 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5651 if (CSize && CSize->getZExtValue() == 0) { 5652 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5653 setValue(&I, DAG.getConstant(0, CallVT)); 5654 return true; 5655 } 5656 5657 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5658 std::pair<SDValue, SDValue> Res = 5659 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5660 getValue(LHS), getValue(RHS), getValue(Size), 5661 MachinePointerInfo(LHS), 5662 MachinePointerInfo(RHS)); 5663 if (Res.first.getNode()) { 5664 processIntegerCallValue(I, Res.first, true); 5665 PendingLoads.push_back(Res.second); 5666 return true; 5667 } 5668 5669 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5670 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5671 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5672 bool ActuallyDoIt = true; 5673 MVT LoadVT; 5674 Type *LoadTy; 5675 switch (CSize->getZExtValue()) { 5676 default: 5677 LoadVT = MVT::Other; 5678 LoadTy = nullptr; 5679 ActuallyDoIt = false; 5680 break; 5681 case 2: 5682 LoadVT = MVT::i16; 5683 LoadTy = Type::getInt16Ty(CSize->getContext()); 5684 break; 5685 case 4: 5686 LoadVT = MVT::i32; 5687 LoadTy = Type::getInt32Ty(CSize->getContext()); 5688 break; 5689 case 8: 5690 LoadVT = MVT::i64; 5691 LoadTy = Type::getInt64Ty(CSize->getContext()); 5692 break; 5693 /* 5694 case 16: 5695 LoadVT = MVT::v4i32; 5696 LoadTy = Type::getInt32Ty(CSize->getContext()); 5697 LoadTy = VectorType::get(LoadTy, 4); 5698 break; 5699 */ 5700 } 5701 5702 // This turns into unaligned loads. We only do this if the target natively 5703 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5704 // we'll only produce a small number of byte loads. 5705 5706 // Require that we can find a legal MVT, and only do this if the target 5707 // supports unaligned loads of that type. Expanding into byte loads would 5708 // bloat the code. 5709 const TargetLowering *TLI = TM.getTargetLowering(); 5710 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5711 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5712 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5713 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5714 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5715 if (!TLI->isTypeLegal(LoadVT) || 5716 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5717 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5718 ActuallyDoIt = false; 5719 } 5720 5721 if (ActuallyDoIt) { 5722 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5723 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5724 5725 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5726 ISD::SETNE); 5727 processIntegerCallValue(I, Res, false); 5728 return true; 5729 } 5730 } 5731 5732 5733 return false; 5734 } 5735 5736 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5737 /// form. If so, return true and lower it, otherwise return false and it 5738 /// will be lowered like a normal call. 5739 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5740 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5741 if (I.getNumArgOperands() != 3) 5742 return false; 5743 5744 const Value *Src = I.getArgOperand(0); 5745 const Value *Char = I.getArgOperand(1); 5746 const Value *Length = I.getArgOperand(2); 5747 if (!Src->getType()->isPointerTy() || 5748 !Char->getType()->isIntegerTy() || 5749 !Length->getType()->isIntegerTy() || 5750 !I.getType()->isPointerTy()) 5751 return false; 5752 5753 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5754 std::pair<SDValue, SDValue> Res = 5755 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5756 getValue(Src), getValue(Char), getValue(Length), 5757 MachinePointerInfo(Src)); 5758 if (Res.first.getNode()) { 5759 setValue(&I, Res.first); 5760 PendingLoads.push_back(Res.second); 5761 return true; 5762 } 5763 5764 return false; 5765 } 5766 5767 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5768 /// optimized form. If so, return true and lower it, otherwise return false 5769 /// and it will be lowered like a normal call. 5770 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5771 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5772 if (I.getNumArgOperands() != 2) 5773 return false; 5774 5775 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5776 if (!Arg0->getType()->isPointerTy() || 5777 !Arg1->getType()->isPointerTy() || 5778 !I.getType()->isPointerTy()) 5779 return false; 5780 5781 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5782 std::pair<SDValue, SDValue> Res = 5783 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5784 getValue(Arg0), getValue(Arg1), 5785 MachinePointerInfo(Arg0), 5786 MachinePointerInfo(Arg1), isStpcpy); 5787 if (Res.first.getNode()) { 5788 setValue(&I, Res.first); 5789 DAG.setRoot(Res.second); 5790 return true; 5791 } 5792 5793 return false; 5794 } 5795 5796 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5797 /// If so, return true and lower it, otherwise return false and it will be 5798 /// lowered like a normal call. 5799 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5800 // Verify that the prototype makes sense. int strcmp(void*,void*) 5801 if (I.getNumArgOperands() != 2) 5802 return false; 5803 5804 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5805 if (!Arg0->getType()->isPointerTy() || 5806 !Arg1->getType()->isPointerTy() || 5807 !I.getType()->isIntegerTy()) 5808 return false; 5809 5810 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5811 std::pair<SDValue, SDValue> Res = 5812 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5813 getValue(Arg0), getValue(Arg1), 5814 MachinePointerInfo(Arg0), 5815 MachinePointerInfo(Arg1)); 5816 if (Res.first.getNode()) { 5817 processIntegerCallValue(I, Res.first, true); 5818 PendingLoads.push_back(Res.second); 5819 return true; 5820 } 5821 5822 return false; 5823 } 5824 5825 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5826 /// form. If so, return true and lower it, otherwise return false and it 5827 /// will be lowered like a normal call. 5828 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5829 // Verify that the prototype makes sense. size_t strlen(char *) 5830 if (I.getNumArgOperands() != 1) 5831 return false; 5832 5833 const Value *Arg0 = I.getArgOperand(0); 5834 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5835 return false; 5836 5837 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5838 std::pair<SDValue, SDValue> Res = 5839 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5840 getValue(Arg0), MachinePointerInfo(Arg0)); 5841 if (Res.first.getNode()) { 5842 processIntegerCallValue(I, Res.first, false); 5843 PendingLoads.push_back(Res.second); 5844 return true; 5845 } 5846 5847 return false; 5848 } 5849 5850 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5851 /// form. If so, return true and lower it, otherwise return false and it 5852 /// will be lowered like a normal call. 5853 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5854 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5855 if (I.getNumArgOperands() != 2) 5856 return false; 5857 5858 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5859 if (!Arg0->getType()->isPointerTy() || 5860 !Arg1->getType()->isIntegerTy() || 5861 !I.getType()->isIntegerTy()) 5862 return false; 5863 5864 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5865 std::pair<SDValue, SDValue> Res = 5866 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5867 getValue(Arg0), getValue(Arg1), 5868 MachinePointerInfo(Arg0)); 5869 if (Res.first.getNode()) { 5870 processIntegerCallValue(I, Res.first, false); 5871 PendingLoads.push_back(Res.second); 5872 return true; 5873 } 5874 5875 return false; 5876 } 5877 5878 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5879 /// operation (as expected), translate it to an SDNode with the specified opcode 5880 /// and return true. 5881 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5882 unsigned Opcode) { 5883 // Sanity check that it really is a unary floating-point call. 5884 if (I.getNumArgOperands() != 1 || 5885 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5886 I.getType() != I.getArgOperand(0)->getType() || 5887 !I.onlyReadsMemory()) 5888 return false; 5889 5890 SDValue Tmp = getValue(I.getArgOperand(0)); 5891 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5892 return true; 5893 } 5894 5895 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5896 // Handle inline assembly differently. 5897 if (isa<InlineAsm>(I.getCalledValue())) { 5898 visitInlineAsm(&I); 5899 return; 5900 } 5901 5902 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5903 ComputeUsesVAFloatArgument(I, &MMI); 5904 5905 const char *RenameFn = nullptr; 5906 if (Function *F = I.getCalledFunction()) { 5907 if (F->isDeclaration()) { 5908 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5909 if (unsigned IID = II->getIntrinsicID(F)) { 5910 RenameFn = visitIntrinsicCall(I, IID); 5911 if (!RenameFn) 5912 return; 5913 } 5914 } 5915 if (unsigned IID = F->getIntrinsicID()) { 5916 RenameFn = visitIntrinsicCall(I, IID); 5917 if (!RenameFn) 5918 return; 5919 } 5920 } 5921 5922 // Check for well-known libc/libm calls. If the function is internal, it 5923 // can't be a library call. 5924 LibFunc::Func Func; 5925 if (!F->hasLocalLinkage() && F->hasName() && 5926 LibInfo->getLibFunc(F->getName(), Func) && 5927 LibInfo->hasOptimizedCodeGen(Func)) { 5928 switch (Func) { 5929 default: break; 5930 case LibFunc::copysign: 5931 case LibFunc::copysignf: 5932 case LibFunc::copysignl: 5933 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5934 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5935 I.getType() == I.getArgOperand(0)->getType() && 5936 I.getType() == I.getArgOperand(1)->getType() && 5937 I.onlyReadsMemory()) { 5938 SDValue LHS = getValue(I.getArgOperand(0)); 5939 SDValue RHS = getValue(I.getArgOperand(1)); 5940 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5941 LHS.getValueType(), LHS, RHS)); 5942 return; 5943 } 5944 break; 5945 case LibFunc::fabs: 5946 case LibFunc::fabsf: 5947 case LibFunc::fabsl: 5948 if (visitUnaryFloatCall(I, ISD::FABS)) 5949 return; 5950 break; 5951 case LibFunc::sin: 5952 case LibFunc::sinf: 5953 case LibFunc::sinl: 5954 if (visitUnaryFloatCall(I, ISD::FSIN)) 5955 return; 5956 break; 5957 case LibFunc::cos: 5958 case LibFunc::cosf: 5959 case LibFunc::cosl: 5960 if (visitUnaryFloatCall(I, ISD::FCOS)) 5961 return; 5962 break; 5963 case LibFunc::sqrt: 5964 case LibFunc::sqrtf: 5965 case LibFunc::sqrtl: 5966 case LibFunc::sqrt_finite: 5967 case LibFunc::sqrtf_finite: 5968 case LibFunc::sqrtl_finite: 5969 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5970 return; 5971 break; 5972 case LibFunc::floor: 5973 case LibFunc::floorf: 5974 case LibFunc::floorl: 5975 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5976 return; 5977 break; 5978 case LibFunc::nearbyint: 5979 case LibFunc::nearbyintf: 5980 case LibFunc::nearbyintl: 5981 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5982 return; 5983 break; 5984 case LibFunc::ceil: 5985 case LibFunc::ceilf: 5986 case LibFunc::ceill: 5987 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5988 return; 5989 break; 5990 case LibFunc::rint: 5991 case LibFunc::rintf: 5992 case LibFunc::rintl: 5993 if (visitUnaryFloatCall(I, ISD::FRINT)) 5994 return; 5995 break; 5996 case LibFunc::round: 5997 case LibFunc::roundf: 5998 case LibFunc::roundl: 5999 if (visitUnaryFloatCall(I, ISD::FROUND)) 6000 return; 6001 break; 6002 case LibFunc::trunc: 6003 case LibFunc::truncf: 6004 case LibFunc::truncl: 6005 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6006 return; 6007 break; 6008 case LibFunc::log2: 6009 case LibFunc::log2f: 6010 case LibFunc::log2l: 6011 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6012 return; 6013 break; 6014 case LibFunc::exp2: 6015 case LibFunc::exp2f: 6016 case LibFunc::exp2l: 6017 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6018 return; 6019 break; 6020 case LibFunc::memcmp: 6021 if (visitMemCmpCall(I)) 6022 return; 6023 break; 6024 case LibFunc::memchr: 6025 if (visitMemChrCall(I)) 6026 return; 6027 break; 6028 case LibFunc::strcpy: 6029 if (visitStrCpyCall(I, false)) 6030 return; 6031 break; 6032 case LibFunc::stpcpy: 6033 if (visitStrCpyCall(I, true)) 6034 return; 6035 break; 6036 case LibFunc::strcmp: 6037 if (visitStrCmpCall(I)) 6038 return; 6039 break; 6040 case LibFunc::strlen: 6041 if (visitStrLenCall(I)) 6042 return; 6043 break; 6044 case LibFunc::strnlen: 6045 if (visitStrNLenCall(I)) 6046 return; 6047 break; 6048 } 6049 } 6050 } 6051 6052 SDValue Callee; 6053 if (!RenameFn) 6054 Callee = getValue(I.getCalledValue()); 6055 else 6056 Callee = DAG.getExternalSymbol(RenameFn, 6057 TM.getTargetLowering()->getPointerTy()); 6058 6059 // Check if we can potentially perform a tail call. More detailed checking is 6060 // be done within LowerCallTo, after more information about the call is known. 6061 LowerCallTo(&I, Callee, I.isTailCall()); 6062 } 6063 6064 namespace { 6065 6066 /// AsmOperandInfo - This contains information for each constraint that we are 6067 /// lowering. 6068 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6069 public: 6070 /// CallOperand - If this is the result output operand or a clobber 6071 /// this is null, otherwise it is the incoming operand to the CallInst. 6072 /// This gets modified as the asm is processed. 6073 SDValue CallOperand; 6074 6075 /// AssignedRegs - If this is a register or register class operand, this 6076 /// contains the set of register corresponding to the operand. 6077 RegsForValue AssignedRegs; 6078 6079 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6080 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6081 } 6082 6083 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6084 /// corresponds to. If there is no Value* for this operand, it returns 6085 /// MVT::Other. 6086 EVT getCallOperandValEVT(LLVMContext &Context, 6087 const TargetLowering &TLI, 6088 const DataLayout *DL) const { 6089 if (!CallOperandVal) return MVT::Other; 6090 6091 if (isa<BasicBlock>(CallOperandVal)) 6092 return TLI.getPointerTy(); 6093 6094 llvm::Type *OpTy = CallOperandVal->getType(); 6095 6096 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6097 // If this is an indirect operand, the operand is a pointer to the 6098 // accessed type. 6099 if (isIndirect) { 6100 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6101 if (!PtrTy) 6102 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6103 OpTy = PtrTy->getElementType(); 6104 } 6105 6106 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6107 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6108 if (STy->getNumElements() == 1) 6109 OpTy = STy->getElementType(0); 6110 6111 // If OpTy is not a single value, it may be a struct/union that we 6112 // can tile with integers. 6113 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6114 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6115 switch (BitSize) { 6116 default: break; 6117 case 1: 6118 case 8: 6119 case 16: 6120 case 32: 6121 case 64: 6122 case 128: 6123 OpTy = IntegerType::get(Context, BitSize); 6124 break; 6125 } 6126 } 6127 6128 return TLI.getValueType(OpTy, true); 6129 } 6130 }; 6131 6132 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6133 6134 } // end anonymous namespace 6135 6136 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6137 /// specified operand. We prefer to assign virtual registers, to allow the 6138 /// register allocator to handle the assignment process. However, if the asm 6139 /// uses features that we can't model on machineinstrs, we have SDISel do the 6140 /// allocation. This produces generally horrible, but correct, code. 6141 /// 6142 /// OpInfo describes the operand. 6143 /// 6144 static void GetRegistersForValue(SelectionDAG &DAG, 6145 const TargetLowering &TLI, 6146 SDLoc DL, 6147 SDISelAsmOperandInfo &OpInfo) { 6148 LLVMContext &Context = *DAG.getContext(); 6149 6150 MachineFunction &MF = DAG.getMachineFunction(); 6151 SmallVector<unsigned, 4> Regs; 6152 6153 // If this is a constraint for a single physreg, or a constraint for a 6154 // register class, find it. 6155 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6156 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6157 OpInfo.ConstraintVT); 6158 6159 unsigned NumRegs = 1; 6160 if (OpInfo.ConstraintVT != MVT::Other) { 6161 // If this is a FP input in an integer register (or visa versa) insert a bit 6162 // cast of the input value. More generally, handle any case where the input 6163 // value disagrees with the register class we plan to stick this in. 6164 if (OpInfo.Type == InlineAsm::isInput && 6165 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6166 // Try to convert to the first EVT that the reg class contains. If the 6167 // types are identical size, use a bitcast to convert (e.g. two differing 6168 // vector types). 6169 MVT RegVT = *PhysReg.second->vt_begin(); 6170 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6171 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6172 RegVT, OpInfo.CallOperand); 6173 OpInfo.ConstraintVT = RegVT; 6174 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6175 // If the input is a FP value and we want it in FP registers, do a 6176 // bitcast to the corresponding integer type. This turns an f64 value 6177 // into i64, which can be passed with two i32 values on a 32-bit 6178 // machine. 6179 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6180 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6181 RegVT, OpInfo.CallOperand); 6182 OpInfo.ConstraintVT = RegVT; 6183 } 6184 } 6185 6186 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6187 } 6188 6189 MVT RegVT; 6190 EVT ValueVT = OpInfo.ConstraintVT; 6191 6192 // If this is a constraint for a specific physical register, like {r17}, 6193 // assign it now. 6194 if (unsigned AssignedReg = PhysReg.first) { 6195 const TargetRegisterClass *RC = PhysReg.second; 6196 if (OpInfo.ConstraintVT == MVT::Other) 6197 ValueVT = *RC->vt_begin(); 6198 6199 // Get the actual register value type. This is important, because the user 6200 // may have asked for (e.g.) the AX register in i32 type. We need to 6201 // remember that AX is actually i16 to get the right extension. 6202 RegVT = *RC->vt_begin(); 6203 6204 // This is a explicit reference to a physical register. 6205 Regs.push_back(AssignedReg); 6206 6207 // If this is an expanded reference, add the rest of the regs to Regs. 6208 if (NumRegs != 1) { 6209 TargetRegisterClass::iterator I = RC->begin(); 6210 for (; *I != AssignedReg; ++I) 6211 assert(I != RC->end() && "Didn't find reg!"); 6212 6213 // Already added the first reg. 6214 --NumRegs; ++I; 6215 for (; NumRegs; --NumRegs, ++I) { 6216 assert(I != RC->end() && "Ran out of registers to allocate!"); 6217 Regs.push_back(*I); 6218 } 6219 } 6220 6221 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6222 return; 6223 } 6224 6225 // Otherwise, if this was a reference to an LLVM register class, create vregs 6226 // for this reference. 6227 if (const TargetRegisterClass *RC = PhysReg.second) { 6228 RegVT = *RC->vt_begin(); 6229 if (OpInfo.ConstraintVT == MVT::Other) 6230 ValueVT = RegVT; 6231 6232 // Create the appropriate number of virtual registers. 6233 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6234 for (; NumRegs; --NumRegs) 6235 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6236 6237 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6238 return; 6239 } 6240 6241 // Otherwise, we couldn't allocate enough registers for this. 6242 } 6243 6244 /// visitInlineAsm - Handle a call to an InlineAsm object. 6245 /// 6246 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6247 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6248 6249 /// ConstraintOperands - Information about all of the constraints. 6250 SDISelAsmOperandInfoVector ConstraintOperands; 6251 6252 const TargetLowering *TLI = TM.getTargetLowering(); 6253 TargetLowering::AsmOperandInfoVector 6254 TargetConstraints = TLI->ParseConstraints(CS); 6255 6256 bool hasMemory = false; 6257 6258 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6259 unsigned ResNo = 0; // ResNo - The result number of the next output. 6260 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6261 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6262 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6263 6264 MVT OpVT = MVT::Other; 6265 6266 // Compute the value type for each operand. 6267 switch (OpInfo.Type) { 6268 case InlineAsm::isOutput: 6269 // Indirect outputs just consume an argument. 6270 if (OpInfo.isIndirect) { 6271 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6272 break; 6273 } 6274 6275 // The return value of the call is this value. As such, there is no 6276 // corresponding argument. 6277 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6278 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6279 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6280 } else { 6281 assert(ResNo == 0 && "Asm only has one result!"); 6282 OpVT = TLI->getSimpleValueType(CS.getType()); 6283 } 6284 ++ResNo; 6285 break; 6286 case InlineAsm::isInput: 6287 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6288 break; 6289 case InlineAsm::isClobber: 6290 // Nothing to do. 6291 break; 6292 } 6293 6294 // If this is an input or an indirect output, process the call argument. 6295 // BasicBlocks are labels, currently appearing only in asm's. 6296 if (OpInfo.CallOperandVal) { 6297 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6298 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6299 } else { 6300 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6301 } 6302 6303 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6304 getSimpleVT(); 6305 } 6306 6307 OpInfo.ConstraintVT = OpVT; 6308 6309 // Indirect operand accesses access memory. 6310 if (OpInfo.isIndirect) 6311 hasMemory = true; 6312 else { 6313 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6314 TargetLowering::ConstraintType 6315 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6316 if (CType == TargetLowering::C_Memory) { 6317 hasMemory = true; 6318 break; 6319 } 6320 } 6321 } 6322 } 6323 6324 SDValue Chain, Flag; 6325 6326 // We won't need to flush pending loads if this asm doesn't touch 6327 // memory and is nonvolatile. 6328 if (hasMemory || IA->hasSideEffects()) 6329 Chain = getRoot(); 6330 else 6331 Chain = DAG.getRoot(); 6332 6333 // Second pass over the constraints: compute which constraint option to use 6334 // and assign registers to constraints that want a specific physreg. 6335 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6336 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6337 6338 // If this is an output operand with a matching input operand, look up the 6339 // matching input. If their types mismatch, e.g. one is an integer, the 6340 // other is floating point, or their sizes are different, flag it as an 6341 // error. 6342 if (OpInfo.hasMatchingInput()) { 6343 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6344 6345 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6346 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6347 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6348 OpInfo.ConstraintVT); 6349 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6350 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6351 Input.ConstraintVT); 6352 if ((OpInfo.ConstraintVT.isInteger() != 6353 Input.ConstraintVT.isInteger()) || 6354 (MatchRC.second != InputRC.second)) { 6355 report_fatal_error("Unsupported asm: input constraint" 6356 " with a matching output constraint of" 6357 " incompatible type!"); 6358 } 6359 Input.ConstraintVT = OpInfo.ConstraintVT; 6360 } 6361 } 6362 6363 // Compute the constraint code and ConstraintType to use. 6364 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6365 6366 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6367 OpInfo.Type == InlineAsm::isClobber) 6368 continue; 6369 6370 // If this is a memory input, and if the operand is not indirect, do what we 6371 // need to to provide an address for the memory input. 6372 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6373 !OpInfo.isIndirect) { 6374 assert((OpInfo.isMultipleAlternative || 6375 (OpInfo.Type == InlineAsm::isInput)) && 6376 "Can only indirectify direct input operands!"); 6377 6378 // Memory operands really want the address of the value. If we don't have 6379 // an indirect input, put it in the constpool if we can, otherwise spill 6380 // it to a stack slot. 6381 // TODO: This isn't quite right. We need to handle these according to 6382 // the addressing mode that the constraint wants. Also, this may take 6383 // an additional register for the computation and we don't want that 6384 // either. 6385 6386 // If the operand is a float, integer, or vector constant, spill to a 6387 // constant pool entry to get its address. 6388 const Value *OpVal = OpInfo.CallOperandVal; 6389 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6390 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6391 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6392 TLI->getPointerTy()); 6393 } else { 6394 // Otherwise, create a stack slot and emit a store to it before the 6395 // asm. 6396 Type *Ty = OpVal->getType(); 6397 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6398 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6399 MachineFunction &MF = DAG.getMachineFunction(); 6400 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6401 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6402 Chain = DAG.getStore(Chain, getCurSDLoc(), 6403 OpInfo.CallOperand, StackSlot, 6404 MachinePointerInfo::getFixedStack(SSFI), 6405 false, false, 0); 6406 OpInfo.CallOperand = StackSlot; 6407 } 6408 6409 // There is no longer a Value* corresponding to this operand. 6410 OpInfo.CallOperandVal = nullptr; 6411 6412 // It is now an indirect operand. 6413 OpInfo.isIndirect = true; 6414 } 6415 6416 // If this constraint is for a specific register, allocate it before 6417 // anything else. 6418 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6419 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6420 } 6421 6422 // Second pass - Loop over all of the operands, assigning virtual or physregs 6423 // to register class operands. 6424 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6425 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6426 6427 // C_Register operands have already been allocated, Other/Memory don't need 6428 // to be. 6429 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6430 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6431 } 6432 6433 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6434 std::vector<SDValue> AsmNodeOperands; 6435 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6436 AsmNodeOperands.push_back( 6437 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6438 TLI->getPointerTy())); 6439 6440 // If we have a !srcloc metadata node associated with it, we want to attach 6441 // this to the ultimately generated inline asm machineinstr. To do this, we 6442 // pass in the third operand as this (potentially null) inline asm MDNode. 6443 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6444 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6445 6446 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6447 // bits as operand 3. 6448 unsigned ExtraInfo = 0; 6449 if (IA->hasSideEffects()) 6450 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6451 if (IA->isAlignStack()) 6452 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6453 // Set the asm dialect. 6454 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6455 6456 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6457 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6458 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6459 6460 // Compute the constraint code and ConstraintType to use. 6461 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6462 6463 // Ideally, we would only check against memory constraints. However, the 6464 // meaning of an other constraint can be target-specific and we can't easily 6465 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6466 // for other constriants as well. 6467 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6468 OpInfo.ConstraintType == TargetLowering::C_Other) { 6469 if (OpInfo.Type == InlineAsm::isInput) 6470 ExtraInfo |= InlineAsm::Extra_MayLoad; 6471 else if (OpInfo.Type == InlineAsm::isOutput) 6472 ExtraInfo |= InlineAsm::Extra_MayStore; 6473 else if (OpInfo.Type == InlineAsm::isClobber) 6474 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6475 } 6476 } 6477 6478 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6479 TLI->getPointerTy())); 6480 6481 // Loop over all of the inputs, copying the operand values into the 6482 // appropriate registers and processing the output regs. 6483 RegsForValue RetValRegs; 6484 6485 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6486 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6487 6488 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6489 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6490 6491 switch (OpInfo.Type) { 6492 case InlineAsm::isOutput: { 6493 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6494 OpInfo.ConstraintType != TargetLowering::C_Register) { 6495 // Memory output, or 'other' output (e.g. 'X' constraint). 6496 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6497 6498 // Add information to the INLINEASM node to know about this output. 6499 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6500 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6501 TLI->getPointerTy())); 6502 AsmNodeOperands.push_back(OpInfo.CallOperand); 6503 break; 6504 } 6505 6506 // Otherwise, this is a register or register class output. 6507 6508 // Copy the output from the appropriate register. Find a register that 6509 // we can use. 6510 if (OpInfo.AssignedRegs.Regs.empty()) { 6511 LLVMContext &Ctx = *DAG.getContext(); 6512 Ctx.emitError(CS.getInstruction(), 6513 "couldn't allocate output register for constraint '" + 6514 Twine(OpInfo.ConstraintCode) + "'"); 6515 return; 6516 } 6517 6518 // If this is an indirect operand, store through the pointer after the 6519 // asm. 6520 if (OpInfo.isIndirect) { 6521 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6522 OpInfo.CallOperandVal)); 6523 } else { 6524 // This is the result value of the call. 6525 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6526 // Concatenate this output onto the outputs list. 6527 RetValRegs.append(OpInfo.AssignedRegs); 6528 } 6529 6530 // Add information to the INLINEASM node to know that this register is 6531 // set. 6532 OpInfo.AssignedRegs 6533 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6534 ? InlineAsm::Kind_RegDefEarlyClobber 6535 : InlineAsm::Kind_RegDef, 6536 false, 0, DAG, AsmNodeOperands); 6537 break; 6538 } 6539 case InlineAsm::isInput: { 6540 SDValue InOperandVal = OpInfo.CallOperand; 6541 6542 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6543 // If this is required to match an output register we have already set, 6544 // just use its register. 6545 unsigned OperandNo = OpInfo.getMatchedOperand(); 6546 6547 // Scan until we find the definition we already emitted of this operand. 6548 // When we find it, create a RegsForValue operand. 6549 unsigned CurOp = InlineAsm::Op_FirstOperand; 6550 for (; OperandNo; --OperandNo) { 6551 // Advance to the next operand. 6552 unsigned OpFlag = 6553 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6554 assert((InlineAsm::isRegDefKind(OpFlag) || 6555 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6556 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6557 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6558 } 6559 6560 unsigned OpFlag = 6561 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6562 if (InlineAsm::isRegDefKind(OpFlag) || 6563 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6564 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6565 if (OpInfo.isIndirect) { 6566 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6567 LLVMContext &Ctx = *DAG.getContext(); 6568 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6569 " don't know how to handle tied " 6570 "indirect register inputs"); 6571 return; 6572 } 6573 6574 RegsForValue MatchedRegs; 6575 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6576 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6577 MatchedRegs.RegVTs.push_back(RegVT); 6578 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6579 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6580 i != e; ++i) { 6581 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6582 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6583 else { 6584 LLVMContext &Ctx = *DAG.getContext(); 6585 Ctx.emitError(CS.getInstruction(), 6586 "inline asm error: This value" 6587 " type register class is not natively supported!"); 6588 return; 6589 } 6590 } 6591 // Use the produced MatchedRegs object to 6592 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6593 Chain, &Flag, CS.getInstruction()); 6594 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6595 true, OpInfo.getMatchedOperand(), 6596 DAG, AsmNodeOperands); 6597 break; 6598 } 6599 6600 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6601 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6602 "Unexpected number of operands"); 6603 // Add information to the INLINEASM node to know about this input. 6604 // See InlineAsm.h isUseOperandTiedToDef. 6605 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6606 OpInfo.getMatchedOperand()); 6607 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6608 TLI->getPointerTy())); 6609 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6610 break; 6611 } 6612 6613 // Treat indirect 'X' constraint as memory. 6614 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6615 OpInfo.isIndirect) 6616 OpInfo.ConstraintType = TargetLowering::C_Memory; 6617 6618 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6619 std::vector<SDValue> Ops; 6620 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6621 Ops, DAG); 6622 if (Ops.empty()) { 6623 LLVMContext &Ctx = *DAG.getContext(); 6624 Ctx.emitError(CS.getInstruction(), 6625 "invalid operand for inline asm constraint '" + 6626 Twine(OpInfo.ConstraintCode) + "'"); 6627 return; 6628 } 6629 6630 // Add information to the INLINEASM node to know about this input. 6631 unsigned ResOpType = 6632 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6633 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6634 TLI->getPointerTy())); 6635 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6636 break; 6637 } 6638 6639 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6640 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6641 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6642 "Memory operands expect pointer values"); 6643 6644 // Add information to the INLINEASM node to know about this input. 6645 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6646 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6647 TLI->getPointerTy())); 6648 AsmNodeOperands.push_back(InOperandVal); 6649 break; 6650 } 6651 6652 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6653 OpInfo.ConstraintType == TargetLowering::C_Register) && 6654 "Unknown constraint type!"); 6655 6656 // TODO: Support this. 6657 if (OpInfo.isIndirect) { 6658 LLVMContext &Ctx = *DAG.getContext(); 6659 Ctx.emitError(CS.getInstruction(), 6660 "Don't know how to handle indirect register inputs yet " 6661 "for constraint '" + 6662 Twine(OpInfo.ConstraintCode) + "'"); 6663 return; 6664 } 6665 6666 // Copy the input into the appropriate registers. 6667 if (OpInfo.AssignedRegs.Regs.empty()) { 6668 LLVMContext &Ctx = *DAG.getContext(); 6669 Ctx.emitError(CS.getInstruction(), 6670 "couldn't allocate input reg for constraint '" + 6671 Twine(OpInfo.ConstraintCode) + "'"); 6672 return; 6673 } 6674 6675 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6676 Chain, &Flag, CS.getInstruction()); 6677 6678 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6679 DAG, AsmNodeOperands); 6680 break; 6681 } 6682 case InlineAsm::isClobber: { 6683 // Add the clobbered value to the operand list, so that the register 6684 // allocator is aware that the physreg got clobbered. 6685 if (!OpInfo.AssignedRegs.Regs.empty()) 6686 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6687 false, 0, DAG, 6688 AsmNodeOperands); 6689 break; 6690 } 6691 } 6692 } 6693 6694 // Finish up input operands. Set the input chain and add the flag last. 6695 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6696 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6697 6698 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6699 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6700 Flag = Chain.getValue(1); 6701 6702 // If this asm returns a register value, copy the result from that register 6703 // and set it as the value of the call. 6704 if (!RetValRegs.Regs.empty()) { 6705 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6706 Chain, &Flag, CS.getInstruction()); 6707 6708 // FIXME: Why don't we do this for inline asms with MRVs? 6709 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6710 EVT ResultType = TLI->getValueType(CS.getType()); 6711 6712 // If any of the results of the inline asm is a vector, it may have the 6713 // wrong width/num elts. This can happen for register classes that can 6714 // contain multiple different value types. The preg or vreg allocated may 6715 // not have the same VT as was expected. Convert it to the right type 6716 // with bit_convert. 6717 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6718 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6719 ResultType, Val); 6720 6721 } else if (ResultType != Val.getValueType() && 6722 ResultType.isInteger() && Val.getValueType().isInteger()) { 6723 // If a result value was tied to an input value, the computed result may 6724 // have a wider width than the expected result. Extract the relevant 6725 // portion. 6726 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6727 } 6728 6729 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6730 } 6731 6732 setValue(CS.getInstruction(), Val); 6733 // Don't need to use this as a chain in this case. 6734 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6735 return; 6736 } 6737 6738 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6739 6740 // Process indirect outputs, first output all of the flagged copies out of 6741 // physregs. 6742 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6743 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6744 const Value *Ptr = IndirectStoresToEmit[i].second; 6745 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6746 Chain, &Flag, IA); 6747 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6748 } 6749 6750 // Emit the non-flagged stores from the physregs. 6751 SmallVector<SDValue, 8> OutChains; 6752 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6753 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6754 StoresToEmit[i].first, 6755 getValue(StoresToEmit[i].second), 6756 MachinePointerInfo(StoresToEmit[i].second), 6757 false, false, 0); 6758 OutChains.push_back(Val); 6759 } 6760 6761 if (!OutChains.empty()) 6762 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6763 6764 DAG.setRoot(Chain); 6765 } 6766 6767 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6768 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6769 MVT::Other, getRoot(), 6770 getValue(I.getArgOperand(0)), 6771 DAG.getSrcValue(I.getArgOperand(0)))); 6772 } 6773 6774 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6775 const TargetLowering *TLI = TM.getTargetLowering(); 6776 const DataLayout &DL = *TLI->getDataLayout(); 6777 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6778 getRoot(), getValue(I.getOperand(0)), 6779 DAG.getSrcValue(I.getOperand(0)), 6780 DL.getABITypeAlignment(I.getType())); 6781 setValue(&I, V); 6782 DAG.setRoot(V.getValue(1)); 6783 } 6784 6785 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6786 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6787 MVT::Other, getRoot(), 6788 getValue(I.getArgOperand(0)), 6789 DAG.getSrcValue(I.getArgOperand(0)))); 6790 } 6791 6792 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6793 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6794 MVT::Other, getRoot(), 6795 getValue(I.getArgOperand(0)), 6796 getValue(I.getArgOperand(1)), 6797 DAG.getSrcValue(I.getArgOperand(0)), 6798 DAG.getSrcValue(I.getArgOperand(1)))); 6799 } 6800 6801 /// \brief Lower an argument list according to the target calling convention. 6802 /// 6803 /// \return A tuple of <return-value, token-chain> 6804 /// 6805 /// This is a helper for lowering intrinsics that follow a target calling 6806 /// convention or require stack pointer adjustment. Only a subset of the 6807 /// intrinsic's operands need to participate in the calling convention. 6808 std::pair<SDValue, SDValue> 6809 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6810 unsigned NumArgs, SDValue Callee, 6811 bool useVoidTy) { 6812 TargetLowering::ArgListTy Args; 6813 Args.reserve(NumArgs); 6814 6815 // Populate the argument list. 6816 // Attributes for args start at offset 1, after the return attribute. 6817 ImmutableCallSite CS(&CI); 6818 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6819 ArgI != ArgE; ++ArgI) { 6820 const Value *V = CI.getOperand(ArgI); 6821 6822 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6823 6824 TargetLowering::ArgListEntry Entry; 6825 Entry.Node = getValue(V); 6826 Entry.Ty = V->getType(); 6827 Entry.setAttributes(&CS, AttrI); 6828 Args.push_back(Entry); 6829 } 6830 6831 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6832 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6833 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6834 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6835 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6836 6837 const TargetLowering *TLI = TM.getTargetLowering(); 6838 return TLI->LowerCallTo(CLI); 6839 } 6840 6841 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6842 /// or patchpoint target node's operand list. 6843 /// 6844 /// Constants are converted to TargetConstants purely as an optimization to 6845 /// avoid constant materialization and register allocation. 6846 /// 6847 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6848 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6849 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6850 /// address materialization and register allocation, but may also be required 6851 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6852 /// alloca in the entry block, then the runtime may assume that the alloca's 6853 /// StackMap location can be read immediately after compilation and that the 6854 /// location is valid at any point during execution (this is similar to the 6855 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6856 /// only available in a register, then the runtime would need to trap when 6857 /// execution reaches the StackMap in order to read the alloca's location. 6858 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6859 SmallVectorImpl<SDValue> &Ops, 6860 SelectionDAGBuilder &Builder) { 6861 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6862 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6863 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6864 Ops.push_back( 6865 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6866 Ops.push_back( 6867 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6868 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6869 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6870 Ops.push_back( 6871 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6872 } else 6873 Ops.push_back(OpVal); 6874 } 6875 } 6876 6877 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6878 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6879 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6880 // [live variables...]) 6881 6882 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6883 6884 SDValue Chain, InFlag, Callee, NullPtr; 6885 SmallVector<SDValue, 32> Ops; 6886 6887 SDLoc DL = getCurSDLoc(); 6888 Callee = getValue(CI.getCalledValue()); 6889 NullPtr = DAG.getIntPtrConstant(0, true); 6890 6891 // The stackmap intrinsic only records the live variables (the arguemnts 6892 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6893 // intrinsic, this won't be lowered to a function call. This means we don't 6894 // have to worry about calling conventions and target specific lowering code. 6895 // Instead we perform the call lowering right here. 6896 // 6897 // chain, flag = CALLSEQ_START(chain, 0) 6898 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6899 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6900 // 6901 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6902 InFlag = Chain.getValue(1); 6903 6904 // Add the <id> and <numBytes> constants. 6905 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6906 Ops.push_back(DAG.getTargetConstant( 6907 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6908 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6909 Ops.push_back(DAG.getTargetConstant( 6910 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6911 6912 // Push live variables for the stack map. 6913 addStackMapLiveVars(CI, 2, Ops, *this); 6914 6915 // We are not pushing any register mask info here on the operands list, 6916 // because the stackmap doesn't clobber anything. 6917 6918 // Push the chain and the glue flag. 6919 Ops.push_back(Chain); 6920 Ops.push_back(InFlag); 6921 6922 // Create the STACKMAP node. 6923 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6924 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6925 Chain = SDValue(SM, 0); 6926 InFlag = Chain.getValue(1); 6927 6928 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6929 6930 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6931 6932 // Set the root to the target-lowered call chain. 6933 DAG.setRoot(Chain); 6934 6935 // Inform the Frame Information that we have a stackmap in this function. 6936 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6937 } 6938 6939 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6940 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6941 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6942 // i32 <numBytes>, 6943 // i8* <target>, 6944 // i32 <numArgs>, 6945 // [Args...], 6946 // [live variables...]) 6947 6948 CallingConv::ID CC = CI.getCallingConv(); 6949 bool isAnyRegCC = CC == CallingConv::AnyReg; 6950 bool hasDef = !CI.getType()->isVoidTy(); 6951 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6952 6953 // Get the real number of arguments participating in the call <numArgs> 6954 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6955 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6956 6957 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6958 // Intrinsics include all meta-operands up to but not including CC. 6959 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6960 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6961 "Not enough arguments provided to the patchpoint intrinsic"); 6962 6963 // For AnyRegCC the arguments are lowered later on manually. 6964 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6965 std::pair<SDValue, SDValue> Result = 6966 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6967 6968 // Set the root to the target-lowered call chain. 6969 SDValue Chain = Result.second; 6970 DAG.setRoot(Chain); 6971 6972 SDNode *CallEnd = Chain.getNode(); 6973 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6974 CallEnd = CallEnd->getOperand(0).getNode(); 6975 6976 /// Get a call instruction from the call sequence chain. 6977 /// Tail calls are not allowed. 6978 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6979 "Expected a callseq node."); 6980 SDNode *Call = CallEnd->getOperand(0).getNode(); 6981 bool hasGlue = Call->getGluedNode(); 6982 6983 // Replace the target specific call node with the patchable intrinsic. 6984 SmallVector<SDValue, 8> Ops; 6985 6986 // Add the <id> and <numBytes> constants. 6987 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6988 Ops.push_back(DAG.getTargetConstant( 6989 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6990 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6991 Ops.push_back(DAG.getTargetConstant( 6992 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6993 6994 // Assume that the Callee is a constant address. 6995 // FIXME: handle function symbols in the future. 6996 Ops.push_back( 6997 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 6998 /*isTarget=*/true)); 6999 7000 // Adjust <numArgs> to account for any arguments that have been passed on the 7001 // stack instead. 7002 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7003 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7004 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7005 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7006 7007 // Add the calling convention 7008 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7009 7010 // Add the arguments we omitted previously. The register allocator should 7011 // place these in any free register. 7012 if (isAnyRegCC) 7013 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7014 Ops.push_back(getValue(CI.getArgOperand(i))); 7015 7016 // Push the arguments from the call instruction up to the register mask. 7017 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7018 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7019 Ops.push_back(*i); 7020 7021 // Push live variables for the stack map. 7022 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7023 7024 // Push the register mask info. 7025 if (hasGlue) 7026 Ops.push_back(*(Call->op_end()-2)); 7027 else 7028 Ops.push_back(*(Call->op_end()-1)); 7029 7030 // Push the chain (this is originally the first operand of the call, but 7031 // becomes now the last or second to last operand). 7032 Ops.push_back(*(Call->op_begin())); 7033 7034 // Push the glue flag (last operand). 7035 if (hasGlue) 7036 Ops.push_back(*(Call->op_end()-1)); 7037 7038 SDVTList NodeTys; 7039 if (isAnyRegCC && hasDef) { 7040 // Create the return types based on the intrinsic definition 7041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7042 SmallVector<EVT, 3> ValueVTs; 7043 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7044 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7045 7046 // There is always a chain and a glue type at the end 7047 ValueVTs.push_back(MVT::Other); 7048 ValueVTs.push_back(MVT::Glue); 7049 NodeTys = DAG.getVTList(ValueVTs); 7050 } else 7051 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7052 7053 // Replace the target specific call node with a PATCHPOINT node. 7054 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7055 getCurSDLoc(), NodeTys, Ops); 7056 7057 // Update the NodeMap. 7058 if (hasDef) { 7059 if (isAnyRegCC) 7060 setValue(&CI, SDValue(MN, 0)); 7061 else 7062 setValue(&CI, Result.first); 7063 } 7064 7065 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7066 // call sequence. Furthermore the location of the chain and glue can change 7067 // when the AnyReg calling convention is used and the intrinsic returns a 7068 // value. 7069 if (isAnyRegCC && hasDef) { 7070 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7071 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7072 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7073 } else 7074 DAG.ReplaceAllUsesWith(Call, MN); 7075 DAG.DeleteNode(Call); 7076 7077 // Inform the Frame Information that we have a patchpoint in this function. 7078 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7079 } 7080 7081 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7082 /// implementation, which just calls LowerCall. 7083 /// FIXME: When all targets are 7084 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7085 std::pair<SDValue, SDValue> 7086 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7087 // Handle the incoming return values from the call. 7088 CLI.Ins.clear(); 7089 SmallVector<EVT, 4> RetTys; 7090 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7091 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7092 EVT VT = RetTys[I]; 7093 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7094 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7095 for (unsigned i = 0; i != NumRegs; ++i) { 7096 ISD::InputArg MyFlags; 7097 MyFlags.VT = RegisterVT; 7098 MyFlags.ArgVT = VT; 7099 MyFlags.Used = CLI.IsReturnValueUsed; 7100 if (CLI.RetSExt) 7101 MyFlags.Flags.setSExt(); 7102 if (CLI.RetZExt) 7103 MyFlags.Flags.setZExt(); 7104 if (CLI.IsInReg) 7105 MyFlags.Flags.setInReg(); 7106 CLI.Ins.push_back(MyFlags); 7107 } 7108 } 7109 7110 // Handle all of the outgoing arguments. 7111 CLI.Outs.clear(); 7112 CLI.OutVals.clear(); 7113 ArgListTy &Args = CLI.Args; 7114 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7115 SmallVector<EVT, 4> ValueVTs; 7116 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7117 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7118 Value != NumValues; ++Value) { 7119 EVT VT = ValueVTs[Value]; 7120 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7121 SDValue Op = SDValue(Args[i].Node.getNode(), 7122 Args[i].Node.getResNo() + Value); 7123 ISD::ArgFlagsTy Flags; 7124 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7125 7126 if (Args[i].isZExt) 7127 Flags.setZExt(); 7128 if (Args[i].isSExt) 7129 Flags.setSExt(); 7130 if (Args[i].isInReg) 7131 Flags.setInReg(); 7132 if (Args[i].isSRet) 7133 Flags.setSRet(); 7134 if (Args[i].isByVal) 7135 Flags.setByVal(); 7136 if (Args[i].isInAlloca) { 7137 Flags.setInAlloca(); 7138 // Set the byval flag for CCAssignFn callbacks that don't know about 7139 // inalloca. This way we can know how many bytes we should've allocated 7140 // and how many bytes a callee cleanup function will pop. If we port 7141 // inalloca to more targets, we'll have to add custom inalloca handling 7142 // in the various CC lowering callbacks. 7143 Flags.setByVal(); 7144 } 7145 if (Args[i].isByVal || Args[i].isInAlloca) { 7146 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7147 Type *ElementTy = Ty->getElementType(); 7148 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7149 // For ByVal, alignment should come from FE. BE will guess if this 7150 // info is not there but there are cases it cannot get right. 7151 unsigned FrameAlign; 7152 if (Args[i].Alignment) 7153 FrameAlign = Args[i].Alignment; 7154 else 7155 FrameAlign = getByValTypeAlignment(ElementTy); 7156 Flags.setByValAlign(FrameAlign); 7157 } 7158 if (Args[i].isNest) 7159 Flags.setNest(); 7160 Flags.setOrigAlign(OriginalAlignment); 7161 7162 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7163 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7164 SmallVector<SDValue, 4> Parts(NumParts); 7165 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7166 7167 if (Args[i].isSExt) 7168 ExtendKind = ISD::SIGN_EXTEND; 7169 else if (Args[i].isZExt) 7170 ExtendKind = ISD::ZERO_EXTEND; 7171 7172 // Conservatively only handle 'returned' on non-vectors for now 7173 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7174 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7175 "unexpected use of 'returned'"); 7176 // Before passing 'returned' to the target lowering code, ensure that 7177 // either the register MVT and the actual EVT are the same size or that 7178 // the return value and argument are extended in the same way; in these 7179 // cases it's safe to pass the argument register value unchanged as the 7180 // return register value (although it's at the target's option whether 7181 // to do so) 7182 // TODO: allow code generation to take advantage of partially preserved 7183 // registers rather than clobbering the entire register when the 7184 // parameter extension method is not compatible with the return 7185 // extension method 7186 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7187 (ExtendKind != ISD::ANY_EXTEND && 7188 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7189 Flags.setReturned(); 7190 } 7191 7192 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7193 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7194 7195 for (unsigned j = 0; j != NumParts; ++j) { 7196 // if it isn't first piece, alignment must be 1 7197 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7198 i < CLI.NumFixedArgs, 7199 i, j*Parts[j].getValueType().getStoreSize()); 7200 if (NumParts > 1 && j == 0) 7201 MyFlags.Flags.setSplit(); 7202 else if (j != 0) 7203 MyFlags.Flags.setOrigAlign(1); 7204 7205 CLI.Outs.push_back(MyFlags); 7206 CLI.OutVals.push_back(Parts[j]); 7207 } 7208 } 7209 } 7210 7211 SmallVector<SDValue, 4> InVals; 7212 CLI.Chain = LowerCall(CLI, InVals); 7213 7214 // Verify that the target's LowerCall behaved as expected. 7215 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7216 "LowerCall didn't return a valid chain!"); 7217 assert((!CLI.IsTailCall || InVals.empty()) && 7218 "LowerCall emitted a return value for a tail call!"); 7219 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7220 "LowerCall didn't emit the correct number of values!"); 7221 7222 // For a tail call, the return value is merely live-out and there aren't 7223 // any nodes in the DAG representing it. Return a special value to 7224 // indicate that a tail call has been emitted and no more Instructions 7225 // should be processed in the current block. 7226 if (CLI.IsTailCall) { 7227 CLI.DAG.setRoot(CLI.Chain); 7228 return std::make_pair(SDValue(), SDValue()); 7229 } 7230 7231 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7232 assert(InVals[i].getNode() && 7233 "LowerCall emitted a null value!"); 7234 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7235 "LowerCall emitted a value with the wrong type!"); 7236 }); 7237 7238 // Collect the legal value parts into potentially illegal values 7239 // that correspond to the original function's return values. 7240 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7241 if (CLI.RetSExt) 7242 AssertOp = ISD::AssertSext; 7243 else if (CLI.RetZExt) 7244 AssertOp = ISD::AssertZext; 7245 SmallVector<SDValue, 4> ReturnValues; 7246 unsigned CurReg = 0; 7247 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7248 EVT VT = RetTys[I]; 7249 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7250 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7251 7252 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7253 NumRegs, RegisterVT, VT, nullptr, 7254 AssertOp)); 7255 CurReg += NumRegs; 7256 } 7257 7258 // For a function returning void, there is no return value. We can't create 7259 // such a node, so we just return a null return value in that case. In 7260 // that case, nothing will actually look at the value. 7261 if (ReturnValues.empty()) 7262 return std::make_pair(SDValue(), CLI.Chain); 7263 7264 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7265 CLI.DAG.getVTList(RetTys), ReturnValues); 7266 return std::make_pair(Res, CLI.Chain); 7267 } 7268 7269 void TargetLowering::LowerOperationWrapper(SDNode *N, 7270 SmallVectorImpl<SDValue> &Results, 7271 SelectionDAG &DAG) const { 7272 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7273 if (Res.getNode()) 7274 Results.push_back(Res); 7275 } 7276 7277 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7278 llvm_unreachable("LowerOperation not implemented for this target!"); 7279 } 7280 7281 void 7282 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7283 SDValue Op = getNonRegisterValue(V); 7284 assert((Op.getOpcode() != ISD::CopyFromReg || 7285 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7286 "Copy from a reg to the same reg!"); 7287 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7288 7289 const TargetLowering *TLI = TM.getTargetLowering(); 7290 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7291 SDValue Chain = DAG.getEntryNode(); 7292 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7293 PendingExports.push_back(Chain); 7294 } 7295 7296 #include "llvm/CodeGen/SelectionDAGISel.h" 7297 7298 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7299 /// entry block, return true. This includes arguments used by switches, since 7300 /// the switch may expand into multiple basic blocks. 7301 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7302 // With FastISel active, we may be splitting blocks, so force creation 7303 // of virtual registers for all non-dead arguments. 7304 if (FastISel) 7305 return A->use_empty(); 7306 7307 const BasicBlock *Entry = A->getParent()->begin(); 7308 for (const User *U : A->users()) 7309 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7310 return false; // Use not in entry block. 7311 7312 return true; 7313 } 7314 7315 void SelectionDAGISel::LowerArguments(const Function &F) { 7316 SelectionDAG &DAG = SDB->DAG; 7317 SDLoc dl = SDB->getCurSDLoc(); 7318 const TargetLowering *TLI = getTargetLowering(); 7319 const DataLayout *DL = TLI->getDataLayout(); 7320 SmallVector<ISD::InputArg, 16> Ins; 7321 7322 if (!FuncInfo->CanLowerReturn) { 7323 // Put in an sret pointer parameter before all the other parameters. 7324 SmallVector<EVT, 1> ValueVTs; 7325 ComputeValueVTs(*getTargetLowering(), 7326 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7327 7328 // NOTE: Assuming that a pointer will never break down to more than one VT 7329 // or one register. 7330 ISD::ArgFlagsTy Flags; 7331 Flags.setSRet(); 7332 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7333 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7334 Ins.push_back(RetArg); 7335 } 7336 7337 // Set up the incoming argument description vector. 7338 unsigned Idx = 1; 7339 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7340 I != E; ++I, ++Idx) { 7341 SmallVector<EVT, 4> ValueVTs; 7342 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7343 bool isArgValueUsed = !I->use_empty(); 7344 unsigned PartBase = 0; 7345 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7346 Value != NumValues; ++Value) { 7347 EVT VT = ValueVTs[Value]; 7348 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7349 ISD::ArgFlagsTy Flags; 7350 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7351 7352 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7353 Flags.setZExt(); 7354 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7355 Flags.setSExt(); 7356 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7357 Flags.setInReg(); 7358 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7359 Flags.setSRet(); 7360 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7361 Flags.setByVal(); 7362 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7363 Flags.setInAlloca(); 7364 // Set the byval flag for CCAssignFn callbacks that don't know about 7365 // inalloca. This way we can know how many bytes we should've allocated 7366 // and how many bytes a callee cleanup function will pop. If we port 7367 // inalloca to more targets, we'll have to add custom inalloca handling 7368 // in the various CC lowering callbacks. 7369 Flags.setByVal(); 7370 } 7371 if (Flags.isByVal() || Flags.isInAlloca()) { 7372 PointerType *Ty = cast<PointerType>(I->getType()); 7373 Type *ElementTy = Ty->getElementType(); 7374 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7375 // For ByVal, alignment should be passed from FE. BE will guess if 7376 // this info is not there but there are cases it cannot get right. 7377 unsigned FrameAlign; 7378 if (F.getParamAlignment(Idx)) 7379 FrameAlign = F.getParamAlignment(Idx); 7380 else 7381 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7382 Flags.setByValAlign(FrameAlign); 7383 } 7384 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7385 Flags.setNest(); 7386 Flags.setOrigAlign(OriginalAlignment); 7387 7388 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7389 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7390 for (unsigned i = 0; i != NumRegs; ++i) { 7391 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7392 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7393 if (NumRegs > 1 && i == 0) 7394 MyFlags.Flags.setSplit(); 7395 // if it isn't first piece, alignment must be 1 7396 else if (i > 0) 7397 MyFlags.Flags.setOrigAlign(1); 7398 Ins.push_back(MyFlags); 7399 } 7400 PartBase += VT.getStoreSize(); 7401 } 7402 } 7403 7404 // Call the target to set up the argument values. 7405 SmallVector<SDValue, 8> InVals; 7406 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7407 F.isVarArg(), Ins, 7408 dl, DAG, InVals); 7409 7410 // Verify that the target's LowerFormalArguments behaved as expected. 7411 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7412 "LowerFormalArguments didn't return a valid chain!"); 7413 assert(InVals.size() == Ins.size() && 7414 "LowerFormalArguments didn't emit the correct number of values!"); 7415 DEBUG({ 7416 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7417 assert(InVals[i].getNode() && 7418 "LowerFormalArguments emitted a null value!"); 7419 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7420 "LowerFormalArguments emitted a value with the wrong type!"); 7421 } 7422 }); 7423 7424 // Update the DAG with the new chain value resulting from argument lowering. 7425 DAG.setRoot(NewRoot); 7426 7427 // Set up the argument values. 7428 unsigned i = 0; 7429 Idx = 1; 7430 if (!FuncInfo->CanLowerReturn) { 7431 // Create a virtual register for the sret pointer, and put in a copy 7432 // from the sret argument into it. 7433 SmallVector<EVT, 1> ValueVTs; 7434 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7435 MVT VT = ValueVTs[0].getSimpleVT(); 7436 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7437 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7438 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7439 RegVT, VT, nullptr, AssertOp); 7440 7441 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7442 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7443 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7444 FuncInfo->DemoteRegister = SRetReg; 7445 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7446 SRetReg, ArgValue); 7447 DAG.setRoot(NewRoot); 7448 7449 // i indexes lowered arguments. Bump it past the hidden sret argument. 7450 // Idx indexes LLVM arguments. Don't touch it. 7451 ++i; 7452 } 7453 7454 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7455 ++I, ++Idx) { 7456 SmallVector<SDValue, 4> ArgValues; 7457 SmallVector<EVT, 4> ValueVTs; 7458 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7459 unsigned NumValues = ValueVTs.size(); 7460 7461 // If this argument is unused then remember its value. It is used to generate 7462 // debugging information. 7463 if (I->use_empty() && NumValues) { 7464 SDB->setUnusedArgValue(I, InVals[i]); 7465 7466 // Also remember any frame index for use in FastISel. 7467 if (FrameIndexSDNode *FI = 7468 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7469 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7470 } 7471 7472 for (unsigned Val = 0; Val != NumValues; ++Val) { 7473 EVT VT = ValueVTs[Val]; 7474 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7475 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7476 7477 if (!I->use_empty()) { 7478 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7479 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7480 AssertOp = ISD::AssertSext; 7481 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7482 AssertOp = ISD::AssertZext; 7483 7484 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7485 NumParts, PartVT, VT, 7486 nullptr, AssertOp)); 7487 } 7488 7489 i += NumParts; 7490 } 7491 7492 // We don't need to do anything else for unused arguments. 7493 if (ArgValues.empty()) 7494 continue; 7495 7496 // Note down frame index. 7497 if (FrameIndexSDNode *FI = 7498 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7499 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7500 7501 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7502 SDB->getCurSDLoc()); 7503 7504 SDB->setValue(I, Res); 7505 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7506 if (LoadSDNode *LNode = 7507 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7508 if (FrameIndexSDNode *FI = 7509 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7510 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7511 } 7512 7513 // If this argument is live outside of the entry block, insert a copy from 7514 // wherever we got it to the vreg that other BB's will reference it as. 7515 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7516 // If we can, though, try to skip creating an unnecessary vreg. 7517 // FIXME: This isn't very clean... it would be nice to make this more 7518 // general. It's also subtly incompatible with the hacks FastISel 7519 // uses with vregs. 7520 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7521 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7522 FuncInfo->ValueMap[I] = Reg; 7523 continue; 7524 } 7525 } 7526 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7527 FuncInfo->InitializeRegForValue(I); 7528 SDB->CopyToExportRegsIfNeeded(I); 7529 } 7530 } 7531 7532 assert(i == InVals.size() && "Argument register count mismatch!"); 7533 7534 // Finally, if the target has anything special to do, allow it to do so. 7535 // FIXME: this should insert code into the DAG! 7536 EmitFunctionEntryCode(); 7537 } 7538 7539 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7540 /// ensure constants are generated when needed. Remember the virtual registers 7541 /// that need to be added to the Machine PHI nodes as input. We cannot just 7542 /// directly add them, because expansion might result in multiple MBB's for one 7543 /// BB. As such, the start of the BB might correspond to a different MBB than 7544 /// the end. 7545 /// 7546 void 7547 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7548 const TerminatorInst *TI = LLVMBB->getTerminator(); 7549 7550 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7551 7552 // Check successor nodes' PHI nodes that expect a constant to be available 7553 // from this block. 7554 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7555 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7556 if (!isa<PHINode>(SuccBB->begin())) continue; 7557 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7558 7559 // If this terminator has multiple identical successors (common for 7560 // switches), only handle each succ once. 7561 if (!SuccsHandled.insert(SuccMBB)) continue; 7562 7563 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7564 7565 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7566 // nodes and Machine PHI nodes, but the incoming operands have not been 7567 // emitted yet. 7568 for (BasicBlock::const_iterator I = SuccBB->begin(); 7569 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7570 // Ignore dead phi's. 7571 if (PN->use_empty()) continue; 7572 7573 // Skip empty types 7574 if (PN->getType()->isEmptyTy()) 7575 continue; 7576 7577 unsigned Reg; 7578 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7579 7580 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7581 unsigned &RegOut = ConstantsOut[C]; 7582 if (RegOut == 0) { 7583 RegOut = FuncInfo.CreateRegs(C->getType()); 7584 CopyValueToVirtualRegister(C, RegOut); 7585 } 7586 Reg = RegOut; 7587 } else { 7588 DenseMap<const Value *, unsigned>::iterator I = 7589 FuncInfo.ValueMap.find(PHIOp); 7590 if (I != FuncInfo.ValueMap.end()) 7591 Reg = I->second; 7592 else { 7593 assert(isa<AllocaInst>(PHIOp) && 7594 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7595 "Didn't codegen value into a register!??"); 7596 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7597 CopyValueToVirtualRegister(PHIOp, Reg); 7598 } 7599 } 7600 7601 // Remember that this register needs to added to the machine PHI node as 7602 // the input for this MBB. 7603 SmallVector<EVT, 4> ValueVTs; 7604 const TargetLowering *TLI = TM.getTargetLowering(); 7605 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7606 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7607 EVT VT = ValueVTs[vti]; 7608 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7609 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7610 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7611 Reg += NumRegisters; 7612 } 7613 } 7614 } 7615 7616 ConstantsOut.clear(); 7617 } 7618 7619 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7620 /// is 0. 7621 MachineBasicBlock * 7622 SelectionDAGBuilder::StackProtectorDescriptor:: 7623 AddSuccessorMBB(const BasicBlock *BB, 7624 MachineBasicBlock *ParentMBB, 7625 MachineBasicBlock *SuccMBB) { 7626 // If SuccBB has not been created yet, create it. 7627 if (!SuccMBB) { 7628 MachineFunction *MF = ParentMBB->getParent(); 7629 MachineFunction::iterator BBI = ParentMBB; 7630 SuccMBB = MF->CreateMachineBasicBlock(BB); 7631 MF->insert(++BBI, SuccMBB); 7632 } 7633 // Add it as a successor of ParentMBB. 7634 ParentMBB->addSuccessor(SuccMBB); 7635 return SuccMBB; 7636 } 7637