1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // Vector/Vector bitcast. 403 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 404 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 405 406 // If the element type of the source/dest vectors are the same, but the 407 // parts vector has more elements than the value vector, then we have a 408 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 409 // elements we want. 410 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 411 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 412 ValueVT.getVectorElementCount().getKnownMinValue()) && 413 (PartEVT.getVectorElementCount().isScalable() == 414 ValueVT.getVectorElementCount().isScalable()) && 415 "Cannot narrow, it would be a lossy transformation"); 416 PartEVT = 417 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 418 ValueVT.getVectorElementCount()); 419 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 420 DAG.getVectorIdxConstant(0, DL)); 421 if (PartEVT == ValueVT) 422 return Val; 423 } 424 425 // Promoted vector extract 426 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 427 } 428 429 // Trivial bitcast if the types are the same size and the destination 430 // vector type is legal. 431 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 432 TLI.isTypeLegal(ValueVT)) 433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 434 435 if (ValueVT.getVectorNumElements() != 1) { 436 // Certain ABIs require that vectors are passed as integers. For vectors 437 // are the same size, this is an obvious bitcast. 438 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 } else if (ValueVT.bitsLT(PartEVT)) { 441 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 442 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 443 // Drop the extra bits. 444 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 445 return DAG.getBitcast(ValueVT, Val); 446 } 447 448 diagnosePossiblyInvalidConstraint( 449 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 450 return DAG.getUNDEF(ValueVT); 451 } 452 453 // Handle cases such as i8 -> <1 x i1> 454 EVT ValueSVT = ValueVT.getVectorElementType(); 455 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 456 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 457 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 458 else 459 Val = ValueVT.isFloatingPoint() 460 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 461 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 462 } 463 464 return DAG.getBuildVector(ValueVT, DL, Val); 465 } 466 467 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 468 SDValue Val, SDValue *Parts, unsigned NumParts, 469 MVT PartVT, const Value *V, 470 Optional<CallingConv::ID> CallConv); 471 472 /// getCopyToParts - Create a series of nodes that contain the specified value 473 /// split into legal parts. If the parts contain more bits than Val, then, for 474 /// integers, ExtendKind can be used to specify how to generate the extra bits. 475 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 476 SDValue *Parts, unsigned NumParts, MVT PartVT, 477 const Value *V, 478 Optional<CallingConv::ID> CallConv = None, 479 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 480 // Let the target split the parts if it wants to 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 483 CallConv)) 484 return; 485 EVT ValueVT = Val.getValueType(); 486 487 // Handle the vector case separately. 488 if (ValueVT.isVector()) 489 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 490 CallConv); 491 492 unsigned PartBits = PartVT.getSizeInBits(); 493 unsigned OrigNumParts = NumParts; 494 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 495 "Copying to an illegal type!"); 496 497 if (NumParts == 0) 498 return; 499 500 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 501 EVT PartEVT = PartVT; 502 if (PartEVT == ValueVT) { 503 assert(NumParts == 1 && "No-op copy with multiple parts!"); 504 Parts[0] = Val; 505 return; 506 } 507 508 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 509 // If the parts cover more bits than the value has, promote the value. 510 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 511 assert(NumParts == 1 && "Do not know what to promote to!"); 512 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 513 } else { 514 if (ValueVT.isFloatingPoint()) { 515 // FP values need to be bitcast, then extended if they are being put 516 // into a larger container. 517 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 518 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 519 } 520 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 521 ValueVT.isInteger() && 522 "Unknown mismatch!"); 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 524 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 525 if (PartVT == MVT::x86mmx) 526 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 527 } 528 } else if (PartBits == ValueVT.getSizeInBits()) { 529 // Different types of the same size. 530 assert(NumParts == 1 && PartEVT != ValueVT); 531 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 532 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 533 // If the parts cover less bits than value has, truncate the value. 534 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 535 ValueVT.isInteger() && 536 "Unknown mismatch!"); 537 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 538 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 539 if (PartVT == MVT::x86mmx) 540 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 541 } 542 543 // The value may have changed - recompute ValueVT. 544 ValueVT = Val.getValueType(); 545 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 546 "Failed to tile the value with PartVT!"); 547 548 if (NumParts == 1) { 549 if (PartEVT != ValueVT) { 550 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 551 "scalar-to-vector conversion failed"); 552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 553 } 554 555 Parts[0] = Val; 556 return; 557 } 558 559 // Expand the value into multiple parts. 560 if (NumParts & (NumParts - 1)) { 561 // The number of parts is not a power of 2. Split off and copy the tail. 562 assert(PartVT.isInteger() && ValueVT.isInteger() && 563 "Do not know what to expand to!"); 564 unsigned RoundParts = 1 << Log2_32(NumParts); 565 unsigned RoundBits = RoundParts * PartBits; 566 unsigned OddParts = NumParts - RoundParts; 567 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 568 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 569 570 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 571 CallConv); 572 573 if (DAG.getDataLayout().isBigEndian()) 574 // The odd parts were reversed by getCopyToParts - unreverse them. 575 std::reverse(Parts + RoundParts, Parts + NumParts); 576 577 NumParts = RoundParts; 578 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 579 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 580 } 581 582 // The number of parts is a power of 2. Repeatedly bisect the value using 583 // EXTRACT_ELEMENT. 584 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 585 EVT::getIntegerVT(*DAG.getContext(), 586 ValueVT.getSizeInBits()), 587 Val); 588 589 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 590 for (unsigned i = 0; i < NumParts; i += StepSize) { 591 unsigned ThisBits = StepSize * PartBits / 2; 592 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 593 SDValue &Part0 = Parts[i]; 594 SDValue &Part1 = Parts[i+StepSize/2]; 595 596 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 597 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 598 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 599 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 600 601 if (ThisBits == PartBits && ThisVT != PartVT) { 602 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 603 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 604 } 605 } 606 } 607 608 if (DAG.getDataLayout().isBigEndian()) 609 std::reverse(Parts, Parts + OrigNumParts); 610 } 611 612 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 613 const SDLoc &DL, EVT PartVT) { 614 if (!PartVT.isVector()) 615 return SDValue(); 616 617 EVT ValueVT = Val.getValueType(); 618 ElementCount PartNumElts = PartVT.getVectorElementCount(); 619 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 620 621 // We only support widening vectors with equivalent element types and 622 // fixed/scalable properties. If a target needs to widen a fixed-length type 623 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 624 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 625 PartNumElts.isScalable() != ValueNumElts.isScalable() || 626 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 627 return SDValue(); 628 629 // Widening a scalable vector to another scalable vector is done by inserting 630 // the vector into a larger undef one. 631 if (PartNumElts.isScalable()) 632 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 633 Val, DAG.getVectorIdxConstant(0, DL)); 634 635 EVT ElementVT = PartVT.getVectorElementType(); 636 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 637 // undef elements. 638 SmallVector<SDValue, 16> Ops; 639 DAG.ExtractVectorElements(Val, Ops); 640 SDValue EltUndef = DAG.getUNDEF(ElementVT); 641 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 642 643 // FIXME: Use CONCAT for 2x -> 4x. 644 return DAG.getBuildVector(PartVT, DL, Ops); 645 } 646 647 /// getCopyToPartsVector - Create a series of nodes that contain the specified 648 /// value split into legal parts. 649 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 650 SDValue Val, SDValue *Parts, unsigned NumParts, 651 MVT PartVT, const Value *V, 652 Optional<CallingConv::ID> CallConv) { 653 EVT ValueVT = Val.getValueType(); 654 assert(ValueVT.isVector() && "Not a vector"); 655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 656 const bool IsABIRegCopy = CallConv.hasValue(); 657 658 if (NumParts == 1) { 659 EVT PartEVT = PartVT; 660 if (PartEVT == ValueVT) { 661 // Nothing to do. 662 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 663 // Bitconvert vector->vector case. 664 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 665 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 666 Val = Widened; 667 } else if (PartVT.isVector() && 668 PartEVT.getVectorElementType().bitsGE( 669 ValueVT.getVectorElementType()) && 670 PartEVT.getVectorElementCount() == 671 ValueVT.getVectorElementCount()) { 672 673 // Promoted vector extract 674 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 675 } else { 676 if (ValueVT.getVectorElementCount().isScalar()) { 677 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 678 DAG.getVectorIdxConstant(0, DL)); 679 } else { 680 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 681 assert(PartVT.getFixedSizeInBits() > ValueSize && 682 "lossy conversion of vector to scalar type"); 683 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 684 Val = DAG.getBitcast(IntermediateType, Val); 685 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 686 } 687 } 688 689 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 690 Parts[0] = Val; 691 return; 692 } 693 694 // Handle a multi-element vector. 695 EVT IntermediateVT; 696 MVT RegisterVT; 697 unsigned NumIntermediates; 698 unsigned NumRegs; 699 if (IsABIRegCopy) { 700 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 701 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 702 NumIntermediates, RegisterVT); 703 } else { 704 NumRegs = 705 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 706 NumIntermediates, RegisterVT); 707 } 708 709 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 710 NumParts = NumRegs; // Silence a compiler warning. 711 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 712 713 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 714 "Mixing scalable and fixed vectors when copying in parts"); 715 716 Optional<ElementCount> DestEltCnt; 717 718 if (IntermediateVT.isVector()) 719 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 720 else 721 DestEltCnt = ElementCount::getFixed(NumIntermediates); 722 723 EVT BuiltVectorTy = EVT::getVectorVT( 724 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 725 726 if (ValueVT == BuiltVectorTy) { 727 // Nothing to do. 728 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 729 // Bitconvert vector->vector case. 730 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 731 } else { 732 if (BuiltVectorTy.getVectorElementType().bitsGT( 733 ValueVT.getVectorElementType())) { 734 // Integer promotion. 735 ValueVT = EVT::getVectorVT(*DAG.getContext(), 736 BuiltVectorTy.getVectorElementType(), 737 ValueVT.getVectorElementCount()); 738 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 739 } 740 741 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 742 Val = Widened; 743 } 744 } 745 746 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 747 748 // Split the vector into intermediate operands. 749 SmallVector<SDValue, 8> Ops(NumIntermediates); 750 for (unsigned i = 0; i != NumIntermediates; ++i) { 751 if (IntermediateVT.isVector()) { 752 // This does something sensible for scalable vectors - see the 753 // definition of EXTRACT_SUBVECTOR for further details. 754 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 755 Ops[i] = 756 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 757 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 758 } else { 759 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 760 DAG.getVectorIdxConstant(i, DL)); 761 } 762 } 763 764 // Split the intermediate operands into legal parts. 765 if (NumParts == NumIntermediates) { 766 // If the register was not expanded, promote or copy the value, 767 // as appropriate. 768 for (unsigned i = 0; i != NumParts; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 770 } else if (NumParts > 0) { 771 // If the intermediate type was expanded, split each the value into 772 // legal parts. 773 assert(NumIntermediates != 0 && "division by zero"); 774 assert(NumParts % NumIntermediates == 0 && 775 "Must expand into a divisible number of parts!"); 776 unsigned Factor = NumParts / NumIntermediates; 777 for (unsigned i = 0; i != NumIntermediates; ++i) 778 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 779 CallConv); 780 } 781 } 782 783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 784 EVT valuevt, Optional<CallingConv::ID> CC) 785 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 786 RegCount(1, regs.size()), CallConv(CC) {} 787 788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 789 const DataLayout &DL, unsigned Reg, Type *Ty, 790 Optional<CallingConv::ID> CC) { 791 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 792 793 CallConv = CC; 794 795 for (EVT ValueVT : ValueVTs) { 796 unsigned NumRegs = 797 isABIMangled() 798 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 799 : TLI.getNumRegisters(Context, ValueVT); 800 MVT RegisterVT = 801 isABIMangled() 802 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 803 : TLI.getRegisterType(Context, ValueVT); 804 for (unsigned i = 0; i != NumRegs; ++i) 805 Regs.push_back(Reg + i); 806 RegVTs.push_back(RegisterVT); 807 RegCount.push_back(NumRegs); 808 Reg += NumRegs; 809 } 810 } 811 812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 813 FunctionLoweringInfo &FuncInfo, 814 const SDLoc &dl, SDValue &Chain, 815 SDValue *Flag, const Value *V) const { 816 // A Value with type {} or [0 x %t] needs no registers. 817 if (ValueVTs.empty()) 818 return SDValue(); 819 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 // Assemble the legal parts into the final values. 823 SmallVector<SDValue, 4> Values(ValueVTs.size()); 824 SmallVector<SDValue, 8> Parts; 825 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 826 // Copy the legal parts from the registers. 827 EVT ValueVT = ValueVTs[Value]; 828 unsigned NumRegs = RegCount[Value]; 829 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 830 *DAG.getContext(), 831 CallConv.getValue(), RegVTs[Value]) 832 : RegVTs[Value]; 833 834 Parts.resize(NumRegs); 835 for (unsigned i = 0; i != NumRegs; ++i) { 836 SDValue P; 837 if (!Flag) { 838 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 839 } else { 840 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 841 *Flag = P.getValue(2); 842 } 843 844 Chain = P.getValue(1); 845 Parts[i] = P; 846 847 // If the source register was virtual and if we know something about it, 848 // add an assert node. 849 if (!Register::isVirtualRegister(Regs[Part + i]) || 850 !RegisterVT.isInteger()) 851 continue; 852 853 const FunctionLoweringInfo::LiveOutInfo *LOI = 854 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 855 if (!LOI) 856 continue; 857 858 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 859 unsigned NumSignBits = LOI->NumSignBits; 860 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 861 862 if (NumZeroBits == RegSize) { 863 // The current value is a zero. 864 // Explicitly express that as it would be easier for 865 // optimizations to kick in. 866 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 867 continue; 868 } 869 870 // FIXME: We capture more information than the dag can represent. For 871 // now, just use the tightest assertzext/assertsext possible. 872 bool isSExt; 873 EVT FromVT(MVT::Other); 874 if (NumZeroBits) { 875 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 876 isSExt = false; 877 } else if (NumSignBits > 1) { 878 FromVT = 879 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 880 isSExt = true; 881 } else { 882 continue; 883 } 884 // Add an assertion node. 885 assert(FromVT != MVT::Other); 886 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 887 RegisterVT, P, DAG.getValueType(FromVT)); 888 } 889 890 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 891 RegisterVT, ValueVT, V, CallConv); 892 Part += NumRegs; 893 Parts.clear(); 894 } 895 896 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 897 } 898 899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 900 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 901 const Value *V, 902 ISD::NodeType PreferredExtendType) const { 903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 904 ISD::NodeType ExtendKind = PreferredExtendType; 905 906 // Get the list of the values's legal parts. 907 unsigned NumRegs = Regs.size(); 908 SmallVector<SDValue, 8> Parts(NumRegs); 909 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 910 unsigned NumParts = RegCount[Value]; 911 912 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 913 *DAG.getContext(), 914 CallConv.getValue(), RegVTs[Value]) 915 : RegVTs[Value]; 916 917 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 918 ExtendKind = ISD::ZERO_EXTEND; 919 920 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 921 NumParts, RegisterVT, V, CallConv, ExtendKind); 922 Part += NumParts; 923 } 924 925 // Copy the parts into the registers. 926 SmallVector<SDValue, 8> Chains(NumRegs); 927 for (unsigned i = 0; i != NumRegs; ++i) { 928 SDValue Part; 929 if (!Flag) { 930 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 931 } else { 932 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 933 *Flag = Part.getValue(1); 934 } 935 936 Chains[i] = Part.getValue(0); 937 } 938 939 if (NumRegs == 1 || Flag) 940 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 941 // flagged to it. That is the CopyToReg nodes and the user are considered 942 // a single scheduling unit. If we create a TokenFactor and return it as 943 // chain, then the TokenFactor is both a predecessor (operand) of the 944 // user as well as a successor (the TF operands are flagged to the user). 945 // c1, f1 = CopyToReg 946 // c2, f2 = CopyToReg 947 // c3 = TokenFactor c1, c2 948 // ... 949 // = op c3, ..., f2 950 Chain = Chains[NumRegs-1]; 951 else 952 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 953 } 954 955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 956 unsigned MatchingIdx, const SDLoc &dl, 957 SelectionDAG &DAG, 958 std::vector<SDValue> &Ops) const { 959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 960 961 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 962 if (HasMatching) 963 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 964 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 965 // Put the register class of the virtual registers in the flag word. That 966 // way, later passes can recompute register class constraints for inline 967 // assembly as well as normal instructions. 968 // Don't do this for tied operands that can use the regclass information 969 // from the def. 970 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 971 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 972 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 973 } 974 975 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 976 Ops.push_back(Res); 977 978 if (Code == InlineAsm::Kind_Clobber) { 979 // Clobbers should always have a 1:1 mapping with registers, and may 980 // reference registers that have illegal (e.g. vector) types. Hence, we 981 // shouldn't try to apply any sort of splitting logic to them. 982 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 983 "No 1:1 mapping from clobbers to regs?"); 984 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 985 (void)SP; 986 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 987 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 988 assert( 989 (Regs[I] != SP || 990 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 991 "If we clobbered the stack pointer, MFI should know about it."); 992 } 993 return; 994 } 995 996 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 997 MVT RegisterVT = RegVTs[Value]; 998 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 999 RegisterVT); 1000 for (unsigned i = 0; i != NumRegs; ++i) { 1001 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1002 unsigned TheReg = Regs[Reg++]; 1003 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1004 } 1005 } 1006 } 1007 1008 SmallVector<std::pair<unsigned, TypeSize>, 4> 1009 RegsForValue::getRegsAndSizes() const { 1010 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1011 unsigned I = 0; 1012 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1013 unsigned RegCount = std::get<0>(CountAndVT); 1014 MVT RegisterVT = std::get<1>(CountAndVT); 1015 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1016 for (unsigned E = I + RegCount; I != E; ++I) 1017 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1018 } 1019 return OutVec; 1020 } 1021 1022 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1023 const TargetLibraryInfo *li) { 1024 AA = aa; 1025 GFI = gfi; 1026 LibInfo = li; 1027 DL = &DAG.getDataLayout(); 1028 Context = DAG.getContext(); 1029 LPadToCallSiteMap.clear(); 1030 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1031 } 1032 1033 void SelectionDAGBuilder::clear() { 1034 NodeMap.clear(); 1035 UnusedArgNodeMap.clear(); 1036 PendingLoads.clear(); 1037 PendingExports.clear(); 1038 PendingConstrainedFP.clear(); 1039 PendingConstrainedFPStrict.clear(); 1040 CurInst = nullptr; 1041 HasTailCall = false; 1042 SDNodeOrder = LowestSDNodeOrder; 1043 StatepointLowering.clear(); 1044 } 1045 1046 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1047 DanglingDebugInfoMap.clear(); 1048 } 1049 1050 // Update DAG root to include dependencies on Pending chains. 1051 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1052 SDValue Root = DAG.getRoot(); 1053 1054 if (Pending.empty()) 1055 return Root; 1056 1057 // Add current root to PendingChains, unless we already indirectly 1058 // depend on it. 1059 if (Root.getOpcode() != ISD::EntryToken) { 1060 unsigned i = 0, e = Pending.size(); 1061 for (; i != e; ++i) { 1062 assert(Pending[i].getNode()->getNumOperands() > 1); 1063 if (Pending[i].getNode()->getOperand(0) == Root) 1064 break; // Don't add the root if we already indirectly depend on it. 1065 } 1066 1067 if (i == e) 1068 Pending.push_back(Root); 1069 } 1070 1071 if (Pending.size() == 1) 1072 Root = Pending[0]; 1073 else 1074 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1075 1076 DAG.setRoot(Root); 1077 Pending.clear(); 1078 return Root; 1079 } 1080 1081 SDValue SelectionDAGBuilder::getMemoryRoot() { 1082 return updateRoot(PendingLoads); 1083 } 1084 1085 SDValue SelectionDAGBuilder::getRoot() { 1086 // Chain up all pending constrained intrinsics together with all 1087 // pending loads, by simply appending them to PendingLoads and 1088 // then calling getMemoryRoot(). 1089 PendingLoads.reserve(PendingLoads.size() + 1090 PendingConstrainedFP.size() + 1091 PendingConstrainedFPStrict.size()); 1092 PendingLoads.append(PendingConstrainedFP.begin(), 1093 PendingConstrainedFP.end()); 1094 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1095 PendingConstrainedFPStrict.end()); 1096 PendingConstrainedFP.clear(); 1097 PendingConstrainedFPStrict.clear(); 1098 return getMemoryRoot(); 1099 } 1100 1101 SDValue SelectionDAGBuilder::getControlRoot() { 1102 // We need to emit pending fpexcept.strict constrained intrinsics, 1103 // so append them to the PendingExports list. 1104 PendingExports.append(PendingConstrainedFPStrict.begin(), 1105 PendingConstrainedFPStrict.end()); 1106 PendingConstrainedFPStrict.clear(); 1107 return updateRoot(PendingExports); 1108 } 1109 1110 void SelectionDAGBuilder::visit(const Instruction &I) { 1111 // Set up outgoing PHI node register values before emitting the terminator. 1112 if (I.isTerminator()) { 1113 HandlePHINodesInSuccessorBlocks(I.getParent()); 1114 } 1115 1116 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1117 if (!isa<DbgInfoIntrinsic>(I)) 1118 ++SDNodeOrder; 1119 1120 CurInst = &I; 1121 1122 visit(I.getOpcode(), I); 1123 1124 if (!I.isTerminator() && !HasTailCall && 1125 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1126 CopyToExportRegsIfNeeded(&I); 1127 1128 CurInst = nullptr; 1129 } 1130 1131 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1132 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1133 } 1134 1135 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1136 // Note: this doesn't use InstVisitor, because it has to work with 1137 // ConstantExpr's in addition to instructions. 1138 switch (Opcode) { 1139 default: llvm_unreachable("Unknown instruction type encountered!"); 1140 // Build the switch statement using the Instruction.def file. 1141 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1142 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1143 #include "llvm/IR/Instruction.def" 1144 } 1145 } 1146 1147 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1148 DebugLoc DL, unsigned Order) { 1149 // We treat variadic dbg_values differently at this stage. 1150 if (DI->hasArgList()) { 1151 // For variadic dbg_values we will now insert an undef. 1152 // FIXME: We can potentially recover these! 1153 SmallVector<SDDbgOperand, 2> Locs; 1154 for (const Value *V : DI->getValues()) { 1155 auto Undef = UndefValue::get(V->getType()); 1156 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1157 } 1158 SDDbgValue *SDV = DAG.getDbgValueList( 1159 DI->getVariable(), DI->getExpression(), Locs, {}, 1160 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1161 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1162 } else { 1163 // TODO: Dangling debug info will eventually either be resolved or produce 1164 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1165 // between the original dbg.value location and its resolved DBG_VALUE, 1166 // which we should ideally fill with an extra Undef DBG_VALUE. 1167 assert(DI->getNumVariableLocationOps() == 1 && 1168 "DbgValueInst without an ArgList should have a single location " 1169 "operand."); 1170 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1171 } 1172 } 1173 1174 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1175 const DIExpression *Expr) { 1176 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1177 const DbgValueInst *DI = DDI.getDI(); 1178 DIVariable *DanglingVariable = DI->getVariable(); 1179 DIExpression *DanglingExpr = DI->getExpression(); 1180 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1181 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1182 return true; 1183 } 1184 return false; 1185 }; 1186 1187 for (auto &DDIMI : DanglingDebugInfoMap) { 1188 DanglingDebugInfoVector &DDIV = DDIMI.second; 1189 1190 // If debug info is to be dropped, run it through final checks to see 1191 // whether it can be salvaged. 1192 for (auto &DDI : DDIV) 1193 if (isMatchingDbgValue(DDI)) 1194 salvageUnresolvedDbgValue(DDI); 1195 1196 erase_if(DDIV, isMatchingDbgValue); 1197 } 1198 } 1199 1200 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1201 // generate the debug data structures now that we've seen its definition. 1202 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1203 SDValue Val) { 1204 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1205 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1206 return; 1207 1208 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1209 for (auto &DDI : DDIV) { 1210 const DbgValueInst *DI = DDI.getDI(); 1211 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1212 assert(DI && "Ill-formed DanglingDebugInfo"); 1213 DebugLoc dl = DDI.getdl(); 1214 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1215 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1216 DILocalVariable *Variable = DI->getVariable(); 1217 DIExpression *Expr = DI->getExpression(); 1218 assert(Variable->isValidLocationForIntrinsic(dl) && 1219 "Expected inlined-at fields to agree"); 1220 SDDbgValue *SDV; 1221 if (Val.getNode()) { 1222 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1223 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1224 // we couldn't resolve it directly when examining the DbgValue intrinsic 1225 // in the first place we should not be more successful here). Unless we 1226 // have some test case that prove this to be correct we should avoid 1227 // calling EmitFuncArgumentDbgValue here. 1228 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1229 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1230 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1231 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1232 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1233 // inserted after the definition of Val when emitting the instructions 1234 // after ISel. An alternative could be to teach 1235 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1236 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1237 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1238 << ValSDNodeOrder << "\n"); 1239 SDV = getDbgValue(Val, Variable, Expr, dl, 1240 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1241 DAG.AddDbgValue(SDV, false); 1242 } else 1243 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1244 << "in EmitFuncArgumentDbgValue\n"); 1245 } else { 1246 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1247 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1248 auto SDV = 1249 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1250 DAG.AddDbgValue(SDV, false); 1251 } 1252 } 1253 DDIV.clear(); 1254 } 1255 1256 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1257 // TODO: For the variadic implementation, instead of only checking the fail 1258 // state of `handleDebugValue`, we need know specifically which values were 1259 // invalid, so that we attempt to salvage only those values when processing 1260 // a DIArgList. 1261 assert(!DDI.getDI()->hasArgList() && 1262 "Not implemented for variadic dbg_values"); 1263 Value *V = DDI.getDI()->getValue(0); 1264 DILocalVariable *Var = DDI.getDI()->getVariable(); 1265 DIExpression *Expr = DDI.getDI()->getExpression(); 1266 DebugLoc DL = DDI.getdl(); 1267 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1268 unsigned SDOrder = DDI.getSDNodeOrder(); 1269 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1270 // that DW_OP_stack_value is desired. 1271 assert(isa<DbgValueInst>(DDI.getDI())); 1272 bool StackValue = true; 1273 1274 // Can this Value can be encoded without any further work? 1275 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1276 return; 1277 1278 // Attempt to salvage back through as many instructions as possible. Bail if 1279 // a non-instruction is seen, such as a constant expression or global 1280 // variable. FIXME: Further work could recover those too. 1281 while (isa<Instruction>(V)) { 1282 Instruction &VAsInst = *cast<Instruction>(V); 1283 // Temporary "0", awaiting real implementation. 1284 SmallVector<Value *, 4> AdditionalValues; 1285 DIExpression *SalvagedExpr = 1286 salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0, AdditionalValues); 1287 1288 // If we cannot salvage any further, and haven't yet found a suitable debug 1289 // expression, bail out. 1290 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1291 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1292 // here for variadic dbg_values, remove that condition. 1293 if (!SalvagedExpr || !AdditionalValues.empty()) 1294 break; 1295 1296 // New value and expr now represent this debuginfo. 1297 V = VAsInst.getOperand(0); 1298 Expr = SalvagedExpr; 1299 1300 // Some kind of simplification occurred: check whether the operand of the 1301 // salvaged debug expression can be encoded in this DAG. 1302 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1303 /*IsVariadic=*/false)) { 1304 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1305 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1306 return; 1307 } 1308 } 1309 1310 // This was the final opportunity to salvage this debug information, and it 1311 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1312 // any earlier variable location. 1313 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1314 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1315 DAG.AddDbgValue(SDV, false); 1316 1317 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1318 << "\n"); 1319 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1320 << "\n"); 1321 } 1322 1323 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1324 DILocalVariable *Var, 1325 DIExpression *Expr, DebugLoc dl, 1326 DebugLoc InstDL, unsigned Order, 1327 bool IsVariadic) { 1328 if (Values.empty()) 1329 return true; 1330 SmallVector<SDDbgOperand> LocationOps; 1331 SmallVector<SDNode *> Dependencies; 1332 for (const Value *V : Values) { 1333 // Constant value. 1334 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1335 isa<ConstantPointerNull>(V)) { 1336 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1337 continue; 1338 } 1339 1340 // If the Value is a frame index, we can create a FrameIndex debug value 1341 // without relying on the DAG at all. 1342 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1343 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1344 if (SI != FuncInfo.StaticAllocaMap.end()) { 1345 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1346 continue; 1347 } 1348 } 1349 1350 // Do not use getValue() in here; we don't want to generate code at 1351 // this point if it hasn't been done yet. 1352 SDValue N = NodeMap[V]; 1353 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1354 N = UnusedArgNodeMap[V]; 1355 if (N.getNode()) { 1356 // Only emit func arg dbg value for non-variadic dbg.values for now. 1357 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1358 return true; 1359 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1360 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1361 // describe stack slot locations. 1362 // 1363 // Consider "int x = 0; int *px = &x;". There are two kinds of 1364 // interesting debug values here after optimization: 1365 // 1366 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1367 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1368 // 1369 // Both describe the direct values of their associated variables. 1370 Dependencies.push_back(N.getNode()); 1371 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1372 continue; 1373 } 1374 LocationOps.emplace_back( 1375 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1376 continue; 1377 } 1378 1379 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1380 // Special rules apply for the first dbg.values of parameter variables in a 1381 // function. Identify them by the fact they reference Argument Values, that 1382 // they're parameters, and they are parameters of the current function. We 1383 // need to let them dangle until they get an SDNode. 1384 bool IsParamOfFunc = 1385 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1386 if (IsParamOfFunc) 1387 return false; 1388 1389 // The value is not used in this block yet (or it would have an SDNode). 1390 // We still want the value to appear for the user if possible -- if it has 1391 // an associated VReg, we can refer to that instead. 1392 auto VMI = FuncInfo.ValueMap.find(V); 1393 if (VMI != FuncInfo.ValueMap.end()) { 1394 unsigned Reg = VMI->second; 1395 // If this is a PHI node, it may be split up into several MI PHI nodes 1396 // (in FunctionLoweringInfo::set). 1397 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1398 V->getType(), None); 1399 if (RFV.occupiesMultipleRegs()) { 1400 // FIXME: We could potentially support variadic dbg_values here. 1401 if (IsVariadic) 1402 return false; 1403 unsigned Offset = 0; 1404 unsigned BitsToDescribe = 0; 1405 if (auto VarSize = Var->getSizeInBits()) 1406 BitsToDescribe = *VarSize; 1407 if (auto Fragment = Expr->getFragmentInfo()) 1408 BitsToDescribe = Fragment->SizeInBits; 1409 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1410 // Bail out if all bits are described already. 1411 if (Offset >= BitsToDescribe) 1412 break; 1413 // TODO: handle scalable vectors. 1414 unsigned RegisterSize = RegAndSize.second; 1415 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1416 ? BitsToDescribe - Offset 1417 : RegisterSize; 1418 auto FragmentExpr = DIExpression::createFragmentExpression( 1419 Expr, Offset, FragmentSize); 1420 if (!FragmentExpr) 1421 continue; 1422 SDDbgValue *SDV = DAG.getVRegDbgValue( 1423 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1424 DAG.AddDbgValue(SDV, false); 1425 Offset += RegisterSize; 1426 } 1427 return true; 1428 } 1429 // We can use simple vreg locations for variadic dbg_values as well. 1430 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1431 continue; 1432 } 1433 // We failed to create a SDDbgOperand for V. 1434 return false; 1435 } 1436 1437 // We have created a SDDbgOperand for each Value in Values. 1438 // Should use Order instead of SDNodeOrder? 1439 assert(!LocationOps.empty()); 1440 SDDbgValue *SDV = 1441 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1442 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1443 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1444 return true; 1445 } 1446 1447 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1448 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1449 for (auto &Pair : DanglingDebugInfoMap) 1450 for (auto &DDI : Pair.second) 1451 salvageUnresolvedDbgValue(DDI); 1452 clearDanglingDebugInfo(); 1453 } 1454 1455 /// getCopyFromRegs - If there was virtual register allocated for the value V 1456 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1457 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1458 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1459 SDValue Result; 1460 1461 if (It != FuncInfo.ValueMap.end()) { 1462 Register InReg = It->second; 1463 1464 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1465 DAG.getDataLayout(), InReg, Ty, 1466 None); // This is not an ABI copy. 1467 SDValue Chain = DAG.getEntryNode(); 1468 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1469 V); 1470 resolveDanglingDebugInfo(V, Result); 1471 } 1472 1473 return Result; 1474 } 1475 1476 /// getValue - Return an SDValue for the given Value. 1477 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1478 // If we already have an SDValue for this value, use it. It's important 1479 // to do this first, so that we don't create a CopyFromReg if we already 1480 // have a regular SDValue. 1481 SDValue &N = NodeMap[V]; 1482 if (N.getNode()) return N; 1483 1484 // If there's a virtual register allocated and initialized for this 1485 // value, use it. 1486 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1487 return copyFromReg; 1488 1489 // Otherwise create a new SDValue and remember it. 1490 SDValue Val = getValueImpl(V); 1491 NodeMap[V] = Val; 1492 resolveDanglingDebugInfo(V, Val); 1493 return Val; 1494 } 1495 1496 /// getNonRegisterValue - Return an SDValue for the given Value, but 1497 /// don't look in FuncInfo.ValueMap for a virtual register. 1498 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1499 // If we already have an SDValue for this value, use it. 1500 SDValue &N = NodeMap[V]; 1501 if (N.getNode()) { 1502 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1503 // Remove the debug location from the node as the node is about to be used 1504 // in a location which may differ from the original debug location. This 1505 // is relevant to Constant and ConstantFP nodes because they can appear 1506 // as constant expressions inside PHI nodes. 1507 N->setDebugLoc(DebugLoc()); 1508 } 1509 return N; 1510 } 1511 1512 // Otherwise create a new SDValue and remember it. 1513 SDValue Val = getValueImpl(V); 1514 NodeMap[V] = Val; 1515 resolveDanglingDebugInfo(V, Val); 1516 return Val; 1517 } 1518 1519 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1520 /// Create an SDValue for the given value. 1521 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1523 1524 if (const Constant *C = dyn_cast<Constant>(V)) { 1525 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1526 1527 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1528 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1529 1530 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1531 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1532 1533 if (isa<ConstantPointerNull>(C)) { 1534 unsigned AS = V->getType()->getPointerAddressSpace(); 1535 return DAG.getConstant(0, getCurSDLoc(), 1536 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1537 } 1538 1539 if (match(C, m_VScale(DAG.getDataLayout()))) 1540 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1541 1542 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1543 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1544 1545 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1546 return DAG.getUNDEF(VT); 1547 1548 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1549 visit(CE->getOpcode(), *CE); 1550 SDValue N1 = NodeMap[V]; 1551 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1552 return N1; 1553 } 1554 1555 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1556 SmallVector<SDValue, 4> Constants; 1557 for (const Use &U : C->operands()) { 1558 SDNode *Val = getValue(U).getNode(); 1559 // If the operand is an empty aggregate, there are no values. 1560 if (!Val) continue; 1561 // Add each leaf value from the operand to the Constants list 1562 // to form a flattened list of all the values. 1563 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1564 Constants.push_back(SDValue(Val, i)); 1565 } 1566 1567 return DAG.getMergeValues(Constants, getCurSDLoc()); 1568 } 1569 1570 if (const ConstantDataSequential *CDS = 1571 dyn_cast<ConstantDataSequential>(C)) { 1572 SmallVector<SDValue, 4> Ops; 1573 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1574 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1575 // Add each leaf value from the operand to the Constants list 1576 // to form a flattened list of all the values. 1577 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1578 Ops.push_back(SDValue(Val, i)); 1579 } 1580 1581 if (isa<ArrayType>(CDS->getType())) 1582 return DAG.getMergeValues(Ops, getCurSDLoc()); 1583 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1584 } 1585 1586 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1587 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1588 "Unknown struct or array constant!"); 1589 1590 SmallVector<EVT, 4> ValueVTs; 1591 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1592 unsigned NumElts = ValueVTs.size(); 1593 if (NumElts == 0) 1594 return SDValue(); // empty struct 1595 SmallVector<SDValue, 4> Constants(NumElts); 1596 for (unsigned i = 0; i != NumElts; ++i) { 1597 EVT EltVT = ValueVTs[i]; 1598 if (isa<UndefValue>(C)) 1599 Constants[i] = DAG.getUNDEF(EltVT); 1600 else if (EltVT.isFloatingPoint()) 1601 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1602 else 1603 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1604 } 1605 1606 return DAG.getMergeValues(Constants, getCurSDLoc()); 1607 } 1608 1609 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1610 return DAG.getBlockAddress(BA, VT); 1611 1612 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1613 return getValue(Equiv->getGlobalValue()); 1614 1615 VectorType *VecTy = cast<VectorType>(V->getType()); 1616 1617 // Now that we know the number and type of the elements, get that number of 1618 // elements into the Ops array based on what kind of constant it is. 1619 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1620 SmallVector<SDValue, 16> Ops; 1621 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1622 for (unsigned i = 0; i != NumElements; ++i) 1623 Ops.push_back(getValue(CV->getOperand(i))); 1624 1625 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1626 } else if (isa<ConstantAggregateZero>(C)) { 1627 EVT EltVT = 1628 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1629 1630 SDValue Op; 1631 if (EltVT.isFloatingPoint()) 1632 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1633 else 1634 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1635 1636 if (isa<ScalableVectorType>(VecTy)) 1637 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1638 else { 1639 SmallVector<SDValue, 16> Ops; 1640 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1641 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1642 } 1643 } 1644 llvm_unreachable("Unknown vector constant"); 1645 } 1646 1647 // If this is a static alloca, generate it as the frameindex instead of 1648 // computation. 1649 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1650 DenseMap<const AllocaInst*, int>::iterator SI = 1651 FuncInfo.StaticAllocaMap.find(AI); 1652 if (SI != FuncInfo.StaticAllocaMap.end()) 1653 return DAG.getFrameIndex(SI->second, 1654 TLI.getFrameIndexTy(DAG.getDataLayout())); 1655 } 1656 1657 // If this is an instruction which fast-isel has deferred, select it now. 1658 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1659 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1660 1661 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1662 Inst->getType(), None); 1663 SDValue Chain = DAG.getEntryNode(); 1664 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1665 } 1666 1667 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1668 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1669 } 1670 llvm_unreachable("Can't get register for value!"); 1671 } 1672 1673 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1674 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1675 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1676 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1677 bool IsSEH = isAsynchronousEHPersonality(Pers); 1678 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1679 if (!IsSEH) 1680 CatchPadMBB->setIsEHScopeEntry(); 1681 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1682 if (IsMSVCCXX || IsCoreCLR) 1683 CatchPadMBB->setIsEHFuncletEntry(); 1684 } 1685 1686 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1687 // Update machine-CFG edge. 1688 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1689 FuncInfo.MBB->addSuccessor(TargetMBB); 1690 TargetMBB->setIsEHCatchretTarget(true); 1691 DAG.getMachineFunction().setHasEHCatchret(true); 1692 1693 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1694 bool IsSEH = isAsynchronousEHPersonality(Pers); 1695 if (IsSEH) { 1696 // If this is not a fall-through branch or optimizations are switched off, 1697 // emit the branch. 1698 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1699 TM.getOptLevel() == CodeGenOpt::None) 1700 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1701 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1702 return; 1703 } 1704 1705 // Figure out the funclet membership for the catchret's successor. 1706 // This will be used by the FuncletLayout pass to determine how to order the 1707 // BB's. 1708 // A 'catchret' returns to the outer scope's color. 1709 Value *ParentPad = I.getCatchSwitchParentPad(); 1710 const BasicBlock *SuccessorColor; 1711 if (isa<ConstantTokenNone>(ParentPad)) 1712 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1713 else 1714 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1715 assert(SuccessorColor && "No parent funclet for catchret!"); 1716 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1717 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1718 1719 // Create the terminator node. 1720 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1721 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1722 DAG.getBasicBlock(SuccessorColorMBB)); 1723 DAG.setRoot(Ret); 1724 } 1725 1726 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1727 // Don't emit any special code for the cleanuppad instruction. It just marks 1728 // the start of an EH scope/funclet. 1729 FuncInfo.MBB->setIsEHScopeEntry(); 1730 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1731 if (Pers != EHPersonality::Wasm_CXX) { 1732 FuncInfo.MBB->setIsEHFuncletEntry(); 1733 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1734 } 1735 } 1736 1737 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1738 // not match, it is OK to add only the first unwind destination catchpad to the 1739 // successors, because there will be at least one invoke instruction within the 1740 // catch scope that points to the next unwind destination, if one exists, so 1741 // CFGSort cannot mess up with BB sorting order. 1742 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1743 // call within them, and catchpads only consisting of 'catch (...)' have a 1744 // '__cxa_end_catch' call within them, both of which generate invokes in case 1745 // the next unwind destination exists, i.e., the next unwind destination is not 1746 // the caller.) 1747 // 1748 // Having at most one EH pad successor is also simpler and helps later 1749 // transformations. 1750 // 1751 // For example, 1752 // current: 1753 // invoke void @foo to ... unwind label %catch.dispatch 1754 // catch.dispatch: 1755 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1756 // catch.start: 1757 // ... 1758 // ... in this BB or some other child BB dominated by this BB there will be an 1759 // invoke that points to 'next' BB as an unwind destination 1760 // 1761 // next: ; We don't need to add this to 'current' BB's successor 1762 // ... 1763 static void findWasmUnwindDestinations( 1764 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1765 BranchProbability Prob, 1766 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1767 &UnwindDests) { 1768 while (EHPadBB) { 1769 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1770 if (isa<CleanupPadInst>(Pad)) { 1771 // Stop on cleanup pads. 1772 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1773 UnwindDests.back().first->setIsEHScopeEntry(); 1774 break; 1775 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1776 // Add the catchpad handlers to the possible destinations. We don't 1777 // continue to the unwind destination of the catchswitch for wasm. 1778 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1779 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1780 UnwindDests.back().first->setIsEHScopeEntry(); 1781 } 1782 break; 1783 } else { 1784 continue; 1785 } 1786 } 1787 } 1788 1789 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1790 /// many places it could ultimately go. In the IR, we have a single unwind 1791 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1792 /// This function skips over imaginary basic blocks that hold catchswitch 1793 /// instructions, and finds all the "real" machine 1794 /// basic block destinations. As those destinations may not be successors of 1795 /// EHPadBB, here we also calculate the edge probability to those destinations. 1796 /// The passed-in Prob is the edge probability to EHPadBB. 1797 static void findUnwindDestinations( 1798 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1799 BranchProbability Prob, 1800 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1801 &UnwindDests) { 1802 EHPersonality Personality = 1803 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1804 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1805 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1806 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1807 bool IsSEH = isAsynchronousEHPersonality(Personality); 1808 1809 if (IsWasmCXX) { 1810 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1811 assert(UnwindDests.size() <= 1 && 1812 "There should be at most one unwind destination for wasm"); 1813 return; 1814 } 1815 1816 while (EHPadBB) { 1817 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1818 BasicBlock *NewEHPadBB = nullptr; 1819 if (isa<LandingPadInst>(Pad)) { 1820 // Stop on landingpads. They are not funclets. 1821 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1822 break; 1823 } else if (isa<CleanupPadInst>(Pad)) { 1824 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1825 // personalities. 1826 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1827 UnwindDests.back().first->setIsEHScopeEntry(); 1828 UnwindDests.back().first->setIsEHFuncletEntry(); 1829 break; 1830 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1831 // Add the catchpad handlers to the possible destinations. 1832 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1833 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1834 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1835 if (IsMSVCCXX || IsCoreCLR) 1836 UnwindDests.back().first->setIsEHFuncletEntry(); 1837 if (!IsSEH) 1838 UnwindDests.back().first->setIsEHScopeEntry(); 1839 } 1840 NewEHPadBB = CatchSwitch->getUnwindDest(); 1841 } else { 1842 continue; 1843 } 1844 1845 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1846 if (BPI && NewEHPadBB) 1847 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1848 EHPadBB = NewEHPadBB; 1849 } 1850 } 1851 1852 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1853 // Update successor info. 1854 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1855 auto UnwindDest = I.getUnwindDest(); 1856 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1857 BranchProbability UnwindDestProb = 1858 (BPI && UnwindDest) 1859 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1860 : BranchProbability::getZero(); 1861 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1862 for (auto &UnwindDest : UnwindDests) { 1863 UnwindDest.first->setIsEHPad(); 1864 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1865 } 1866 FuncInfo.MBB->normalizeSuccProbs(); 1867 1868 // Create the terminator node. 1869 SDValue Ret = 1870 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1871 DAG.setRoot(Ret); 1872 } 1873 1874 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1875 report_fatal_error("visitCatchSwitch not yet implemented!"); 1876 } 1877 1878 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1880 auto &DL = DAG.getDataLayout(); 1881 SDValue Chain = getControlRoot(); 1882 SmallVector<ISD::OutputArg, 8> Outs; 1883 SmallVector<SDValue, 8> OutVals; 1884 1885 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1886 // lower 1887 // 1888 // %val = call <ty> @llvm.experimental.deoptimize() 1889 // ret <ty> %val 1890 // 1891 // differently. 1892 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1893 LowerDeoptimizingReturn(); 1894 return; 1895 } 1896 1897 if (!FuncInfo.CanLowerReturn) { 1898 unsigned DemoteReg = FuncInfo.DemoteRegister; 1899 const Function *F = I.getParent()->getParent(); 1900 1901 // Emit a store of the return value through the virtual register. 1902 // Leave Outs empty so that LowerReturn won't try to load return 1903 // registers the usual way. 1904 SmallVector<EVT, 1> PtrValueVTs; 1905 ComputeValueVTs(TLI, DL, 1906 F->getReturnType()->getPointerTo( 1907 DAG.getDataLayout().getAllocaAddrSpace()), 1908 PtrValueVTs); 1909 1910 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1911 DemoteReg, PtrValueVTs[0]); 1912 SDValue RetOp = getValue(I.getOperand(0)); 1913 1914 SmallVector<EVT, 4> ValueVTs, MemVTs; 1915 SmallVector<uint64_t, 4> Offsets; 1916 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1917 &Offsets); 1918 unsigned NumValues = ValueVTs.size(); 1919 1920 SmallVector<SDValue, 4> Chains(NumValues); 1921 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1922 for (unsigned i = 0; i != NumValues; ++i) { 1923 // An aggregate return value cannot wrap around the address space, so 1924 // offsets to its parts don't wrap either. 1925 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1926 TypeSize::Fixed(Offsets[i])); 1927 1928 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1929 if (MemVTs[i] != ValueVTs[i]) 1930 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1931 Chains[i] = DAG.getStore( 1932 Chain, getCurSDLoc(), Val, 1933 // FIXME: better loc info would be nice. 1934 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1935 commonAlignment(BaseAlign, Offsets[i])); 1936 } 1937 1938 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1939 MVT::Other, Chains); 1940 } else if (I.getNumOperands() != 0) { 1941 SmallVector<EVT, 4> ValueVTs; 1942 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1943 unsigned NumValues = ValueVTs.size(); 1944 if (NumValues) { 1945 SDValue RetOp = getValue(I.getOperand(0)); 1946 1947 const Function *F = I.getParent()->getParent(); 1948 1949 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1950 I.getOperand(0)->getType(), F->getCallingConv(), 1951 /*IsVarArg*/ false, DL); 1952 1953 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1954 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1955 Attribute::SExt)) 1956 ExtendKind = ISD::SIGN_EXTEND; 1957 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1958 Attribute::ZExt)) 1959 ExtendKind = ISD::ZERO_EXTEND; 1960 1961 LLVMContext &Context = F->getContext(); 1962 bool RetInReg = F->getAttributes().hasAttribute( 1963 AttributeList::ReturnIndex, Attribute::InReg); 1964 1965 for (unsigned j = 0; j != NumValues; ++j) { 1966 EVT VT = ValueVTs[j]; 1967 1968 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1969 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1970 1971 CallingConv::ID CC = F->getCallingConv(); 1972 1973 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1974 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1975 SmallVector<SDValue, 4> Parts(NumParts); 1976 getCopyToParts(DAG, getCurSDLoc(), 1977 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1978 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1979 1980 // 'inreg' on function refers to return value 1981 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1982 if (RetInReg) 1983 Flags.setInReg(); 1984 1985 if (I.getOperand(0)->getType()->isPointerTy()) { 1986 Flags.setPointer(); 1987 Flags.setPointerAddrSpace( 1988 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1989 } 1990 1991 if (NeedsRegBlock) { 1992 Flags.setInConsecutiveRegs(); 1993 if (j == NumValues - 1) 1994 Flags.setInConsecutiveRegsLast(); 1995 } 1996 1997 // Propagate extension type if any 1998 if (ExtendKind == ISD::SIGN_EXTEND) 1999 Flags.setSExt(); 2000 else if (ExtendKind == ISD::ZERO_EXTEND) 2001 Flags.setZExt(); 2002 2003 for (unsigned i = 0; i < NumParts; ++i) { 2004 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 2005 VT, /*isfixed=*/true, 0, 0)); 2006 OutVals.push_back(Parts[i]); 2007 } 2008 } 2009 } 2010 } 2011 2012 // Push in swifterror virtual register as the last element of Outs. This makes 2013 // sure swifterror virtual register will be returned in the swifterror 2014 // physical register. 2015 const Function *F = I.getParent()->getParent(); 2016 if (TLI.supportSwiftError() && 2017 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2018 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2019 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2020 Flags.setSwiftError(); 2021 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 2022 EVT(TLI.getPointerTy(DL)) /*argvt*/, 2023 true /*isfixed*/, 1 /*origidx*/, 2024 0 /*partOffs*/)); 2025 // Create SDNode for the swifterror virtual register. 2026 OutVals.push_back( 2027 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2028 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2029 EVT(TLI.getPointerTy(DL)))); 2030 } 2031 2032 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2033 CallingConv::ID CallConv = 2034 DAG.getMachineFunction().getFunction().getCallingConv(); 2035 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2036 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2037 2038 // Verify that the target's LowerReturn behaved as expected. 2039 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2040 "LowerReturn didn't return a valid chain!"); 2041 2042 // Update the DAG with the new chain value resulting from return lowering. 2043 DAG.setRoot(Chain); 2044 } 2045 2046 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2047 /// created for it, emit nodes to copy the value into the virtual 2048 /// registers. 2049 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2050 // Skip empty types 2051 if (V->getType()->isEmptyTy()) 2052 return; 2053 2054 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2055 if (VMI != FuncInfo.ValueMap.end()) { 2056 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2057 CopyValueToVirtualRegister(V, VMI->second); 2058 } 2059 } 2060 2061 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2062 /// the current basic block, add it to ValueMap now so that we'll get a 2063 /// CopyTo/FromReg. 2064 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2065 // No need to export constants. 2066 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2067 2068 // Already exported? 2069 if (FuncInfo.isExportedInst(V)) return; 2070 2071 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2072 CopyValueToVirtualRegister(V, Reg); 2073 } 2074 2075 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2076 const BasicBlock *FromBB) { 2077 // The operands of the setcc have to be in this block. We don't know 2078 // how to export them from some other block. 2079 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2080 // Can export from current BB. 2081 if (VI->getParent() == FromBB) 2082 return true; 2083 2084 // Is already exported, noop. 2085 return FuncInfo.isExportedInst(V); 2086 } 2087 2088 // If this is an argument, we can export it if the BB is the entry block or 2089 // if it is already exported. 2090 if (isa<Argument>(V)) { 2091 if (FromBB->isEntryBlock()) 2092 return true; 2093 2094 // Otherwise, can only export this if it is already exported. 2095 return FuncInfo.isExportedInst(V); 2096 } 2097 2098 // Otherwise, constants can always be exported. 2099 return true; 2100 } 2101 2102 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2103 BranchProbability 2104 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2105 const MachineBasicBlock *Dst) const { 2106 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2107 const BasicBlock *SrcBB = Src->getBasicBlock(); 2108 const BasicBlock *DstBB = Dst->getBasicBlock(); 2109 if (!BPI) { 2110 // If BPI is not available, set the default probability as 1 / N, where N is 2111 // the number of successors. 2112 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2113 return BranchProbability(1, SuccSize); 2114 } 2115 return BPI->getEdgeProbability(SrcBB, DstBB); 2116 } 2117 2118 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2119 MachineBasicBlock *Dst, 2120 BranchProbability Prob) { 2121 if (!FuncInfo.BPI) 2122 Src->addSuccessorWithoutProb(Dst); 2123 else { 2124 if (Prob.isUnknown()) 2125 Prob = getEdgeProbability(Src, Dst); 2126 Src->addSuccessor(Dst, Prob); 2127 } 2128 } 2129 2130 static bool InBlock(const Value *V, const BasicBlock *BB) { 2131 if (const Instruction *I = dyn_cast<Instruction>(V)) 2132 return I->getParent() == BB; 2133 return true; 2134 } 2135 2136 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2137 /// This function emits a branch and is used at the leaves of an OR or an 2138 /// AND operator tree. 2139 void 2140 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2141 MachineBasicBlock *TBB, 2142 MachineBasicBlock *FBB, 2143 MachineBasicBlock *CurBB, 2144 MachineBasicBlock *SwitchBB, 2145 BranchProbability TProb, 2146 BranchProbability FProb, 2147 bool InvertCond) { 2148 const BasicBlock *BB = CurBB->getBasicBlock(); 2149 2150 // If the leaf of the tree is a comparison, merge the condition into 2151 // the caseblock. 2152 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2153 // The operands of the cmp have to be in this block. We don't know 2154 // how to export them from some other block. If this is the first block 2155 // of the sequence, no exporting is needed. 2156 if (CurBB == SwitchBB || 2157 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2158 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2159 ISD::CondCode Condition; 2160 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2161 ICmpInst::Predicate Pred = 2162 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2163 Condition = getICmpCondCode(Pred); 2164 } else { 2165 const FCmpInst *FC = cast<FCmpInst>(Cond); 2166 FCmpInst::Predicate Pred = 2167 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2168 Condition = getFCmpCondCode(Pred); 2169 if (TM.Options.NoNaNsFPMath) 2170 Condition = getFCmpCodeWithoutNaN(Condition); 2171 } 2172 2173 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2174 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2175 SL->SwitchCases.push_back(CB); 2176 return; 2177 } 2178 } 2179 2180 // Create a CaseBlock record representing this branch. 2181 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2182 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2183 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2184 SL->SwitchCases.push_back(CB); 2185 } 2186 2187 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2188 MachineBasicBlock *TBB, 2189 MachineBasicBlock *FBB, 2190 MachineBasicBlock *CurBB, 2191 MachineBasicBlock *SwitchBB, 2192 Instruction::BinaryOps Opc, 2193 BranchProbability TProb, 2194 BranchProbability FProb, 2195 bool InvertCond) { 2196 // Skip over not part of the tree and remember to invert op and operands at 2197 // next level. 2198 Value *NotCond; 2199 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2200 InBlock(NotCond, CurBB->getBasicBlock())) { 2201 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2202 !InvertCond); 2203 return; 2204 } 2205 2206 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2207 const Value *BOpOp0, *BOpOp1; 2208 // Compute the effective opcode for Cond, taking into account whether it needs 2209 // to be inverted, e.g. 2210 // and (not (or A, B)), C 2211 // gets lowered as 2212 // and (and (not A, not B), C) 2213 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2214 if (BOp) { 2215 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2216 ? Instruction::And 2217 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2218 ? Instruction::Or 2219 : (Instruction::BinaryOps)0); 2220 if (InvertCond) { 2221 if (BOpc == Instruction::And) 2222 BOpc = Instruction::Or; 2223 else if (BOpc == Instruction::Or) 2224 BOpc = Instruction::And; 2225 } 2226 } 2227 2228 // If this node is not part of the or/and tree, emit it as a branch. 2229 // Note that all nodes in the tree should have same opcode. 2230 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2231 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2232 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2233 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2234 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2235 TProb, FProb, InvertCond); 2236 return; 2237 } 2238 2239 // Create TmpBB after CurBB. 2240 MachineFunction::iterator BBI(CurBB); 2241 MachineFunction &MF = DAG.getMachineFunction(); 2242 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2243 CurBB->getParent()->insert(++BBI, TmpBB); 2244 2245 if (Opc == Instruction::Or) { 2246 // Codegen X | Y as: 2247 // BB1: 2248 // jmp_if_X TBB 2249 // jmp TmpBB 2250 // TmpBB: 2251 // jmp_if_Y TBB 2252 // jmp FBB 2253 // 2254 2255 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2256 // The requirement is that 2257 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2258 // = TrueProb for original BB. 2259 // Assuming the original probabilities are A and B, one choice is to set 2260 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2261 // A/(1+B) and 2B/(1+B). This choice assumes that 2262 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2263 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2264 // TmpBB, but the math is more complicated. 2265 2266 auto NewTrueProb = TProb / 2; 2267 auto NewFalseProb = TProb / 2 + FProb; 2268 // Emit the LHS condition. 2269 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2270 NewFalseProb, InvertCond); 2271 2272 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2273 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2274 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2275 // Emit the RHS condition into TmpBB. 2276 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2277 Probs[1], InvertCond); 2278 } else { 2279 assert(Opc == Instruction::And && "Unknown merge op!"); 2280 // Codegen X & Y as: 2281 // BB1: 2282 // jmp_if_X TmpBB 2283 // jmp FBB 2284 // TmpBB: 2285 // jmp_if_Y TBB 2286 // jmp FBB 2287 // 2288 // This requires creation of TmpBB after CurBB. 2289 2290 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2291 // The requirement is that 2292 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2293 // = FalseProb for original BB. 2294 // Assuming the original probabilities are A and B, one choice is to set 2295 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2296 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2297 // TrueProb for BB1 * FalseProb for TmpBB. 2298 2299 auto NewTrueProb = TProb + FProb / 2; 2300 auto NewFalseProb = FProb / 2; 2301 // Emit the LHS condition. 2302 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2303 NewFalseProb, InvertCond); 2304 2305 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2306 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2307 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2308 // Emit the RHS condition into TmpBB. 2309 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2310 Probs[1], InvertCond); 2311 } 2312 } 2313 2314 /// If the set of cases should be emitted as a series of branches, return true. 2315 /// If we should emit this as a bunch of and/or'd together conditions, return 2316 /// false. 2317 bool 2318 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2319 if (Cases.size() != 2) return true; 2320 2321 // If this is two comparisons of the same values or'd or and'd together, they 2322 // will get folded into a single comparison, so don't emit two blocks. 2323 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2324 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2325 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2326 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2327 return false; 2328 } 2329 2330 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2331 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2332 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2333 Cases[0].CC == Cases[1].CC && 2334 isa<Constant>(Cases[0].CmpRHS) && 2335 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2336 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2337 return false; 2338 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2339 return false; 2340 } 2341 2342 return true; 2343 } 2344 2345 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2346 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2347 2348 // Update machine-CFG edges. 2349 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2350 2351 if (I.isUnconditional()) { 2352 // Update machine-CFG edges. 2353 BrMBB->addSuccessor(Succ0MBB); 2354 2355 // If this is not a fall-through branch or optimizations are switched off, 2356 // emit the branch. 2357 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2358 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2359 MVT::Other, getControlRoot(), 2360 DAG.getBasicBlock(Succ0MBB))); 2361 2362 return; 2363 } 2364 2365 // If this condition is one of the special cases we handle, do special stuff 2366 // now. 2367 const Value *CondVal = I.getCondition(); 2368 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2369 2370 // If this is a series of conditions that are or'd or and'd together, emit 2371 // this as a sequence of branches instead of setcc's with and/or operations. 2372 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2373 // unpredictable branches, and vector extracts because those jumps are likely 2374 // expensive for any target), this should improve performance. 2375 // For example, instead of something like: 2376 // cmp A, B 2377 // C = seteq 2378 // cmp D, E 2379 // F = setle 2380 // or C, F 2381 // jnz foo 2382 // Emit: 2383 // cmp A, B 2384 // je foo 2385 // cmp D, E 2386 // jle foo 2387 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2388 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2389 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2390 Value *Vec; 2391 const Value *BOp0, *BOp1; 2392 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2393 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2394 Opcode = Instruction::And; 2395 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2396 Opcode = Instruction::Or; 2397 2398 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2399 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2400 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2401 getEdgeProbability(BrMBB, Succ0MBB), 2402 getEdgeProbability(BrMBB, Succ1MBB), 2403 /*InvertCond=*/false); 2404 // If the compares in later blocks need to use values not currently 2405 // exported from this block, export them now. This block should always 2406 // be the first entry. 2407 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2408 2409 // Allow some cases to be rejected. 2410 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2411 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2412 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2413 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2414 } 2415 2416 // Emit the branch for this block. 2417 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2418 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2419 return; 2420 } 2421 2422 // Okay, we decided not to do this, remove any inserted MBB's and clear 2423 // SwitchCases. 2424 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2425 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2426 2427 SL->SwitchCases.clear(); 2428 } 2429 } 2430 2431 // Create a CaseBlock record representing this branch. 2432 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2433 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2434 2435 // Use visitSwitchCase to actually insert the fast branch sequence for this 2436 // cond branch. 2437 visitSwitchCase(CB, BrMBB); 2438 } 2439 2440 /// visitSwitchCase - Emits the necessary code to represent a single node in 2441 /// the binary search tree resulting from lowering a switch instruction. 2442 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2443 MachineBasicBlock *SwitchBB) { 2444 SDValue Cond; 2445 SDValue CondLHS = getValue(CB.CmpLHS); 2446 SDLoc dl = CB.DL; 2447 2448 if (CB.CC == ISD::SETTRUE) { 2449 // Branch or fall through to TrueBB. 2450 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2451 SwitchBB->normalizeSuccProbs(); 2452 if (CB.TrueBB != NextBlock(SwitchBB)) { 2453 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2454 DAG.getBasicBlock(CB.TrueBB))); 2455 } 2456 return; 2457 } 2458 2459 auto &TLI = DAG.getTargetLoweringInfo(); 2460 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2461 2462 // Build the setcc now. 2463 if (!CB.CmpMHS) { 2464 // Fold "(X == true)" to X and "(X == false)" to !X to 2465 // handle common cases produced by branch lowering. 2466 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2467 CB.CC == ISD::SETEQ) 2468 Cond = CondLHS; 2469 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2470 CB.CC == ISD::SETEQ) { 2471 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2472 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2473 } else { 2474 SDValue CondRHS = getValue(CB.CmpRHS); 2475 2476 // If a pointer's DAG type is larger than its memory type then the DAG 2477 // values are zero-extended. This breaks signed comparisons so truncate 2478 // back to the underlying type before doing the compare. 2479 if (CondLHS.getValueType() != MemVT) { 2480 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2481 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2482 } 2483 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2484 } 2485 } else { 2486 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2487 2488 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2489 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2490 2491 SDValue CmpOp = getValue(CB.CmpMHS); 2492 EVT VT = CmpOp.getValueType(); 2493 2494 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2495 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2496 ISD::SETLE); 2497 } else { 2498 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2499 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2500 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2501 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2502 } 2503 } 2504 2505 // Update successor info 2506 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2507 // TrueBB and FalseBB are always different unless the incoming IR is 2508 // degenerate. This only happens when running llc on weird IR. 2509 if (CB.TrueBB != CB.FalseBB) 2510 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2511 SwitchBB->normalizeSuccProbs(); 2512 2513 // If the lhs block is the next block, invert the condition so that we can 2514 // fall through to the lhs instead of the rhs block. 2515 if (CB.TrueBB == NextBlock(SwitchBB)) { 2516 std::swap(CB.TrueBB, CB.FalseBB); 2517 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2518 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2519 } 2520 2521 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2522 MVT::Other, getControlRoot(), Cond, 2523 DAG.getBasicBlock(CB.TrueBB)); 2524 2525 // Insert the false branch. Do this even if it's a fall through branch, 2526 // this makes it easier to do DAG optimizations which require inverting 2527 // the branch condition. 2528 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2529 DAG.getBasicBlock(CB.FalseBB)); 2530 2531 DAG.setRoot(BrCond); 2532 } 2533 2534 /// visitJumpTable - Emit JumpTable node in the current MBB 2535 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2536 // Emit the code for the jump table 2537 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2538 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2539 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2540 JT.Reg, PTy); 2541 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2542 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2543 MVT::Other, Index.getValue(1), 2544 Table, Index); 2545 DAG.setRoot(BrJumpTable); 2546 } 2547 2548 /// visitJumpTableHeader - This function emits necessary code to produce index 2549 /// in the JumpTable from switch case. 2550 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2551 JumpTableHeader &JTH, 2552 MachineBasicBlock *SwitchBB) { 2553 SDLoc dl = getCurSDLoc(); 2554 2555 // Subtract the lowest switch case value from the value being switched on. 2556 SDValue SwitchOp = getValue(JTH.SValue); 2557 EVT VT = SwitchOp.getValueType(); 2558 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2559 DAG.getConstant(JTH.First, dl, VT)); 2560 2561 // The SDNode we just created, which holds the value being switched on minus 2562 // the smallest case value, needs to be copied to a virtual register so it 2563 // can be used as an index into the jump table in a subsequent basic block. 2564 // This value may be smaller or larger than the target's pointer type, and 2565 // therefore require extension or truncating. 2566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2567 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2568 2569 unsigned JumpTableReg = 2570 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2571 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2572 JumpTableReg, SwitchOp); 2573 JT.Reg = JumpTableReg; 2574 2575 if (!JTH.OmitRangeCheck) { 2576 // Emit the range check for the jump table, and branch to the default block 2577 // for the switch statement if the value being switched on exceeds the 2578 // largest case in the switch. 2579 SDValue CMP = DAG.getSetCC( 2580 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2581 Sub.getValueType()), 2582 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2583 2584 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2585 MVT::Other, CopyTo, CMP, 2586 DAG.getBasicBlock(JT.Default)); 2587 2588 // Avoid emitting unnecessary branches to the next block. 2589 if (JT.MBB != NextBlock(SwitchBB)) 2590 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2591 DAG.getBasicBlock(JT.MBB)); 2592 2593 DAG.setRoot(BrCond); 2594 } else { 2595 // Avoid emitting unnecessary branches to the next block. 2596 if (JT.MBB != NextBlock(SwitchBB)) 2597 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2598 DAG.getBasicBlock(JT.MBB))); 2599 else 2600 DAG.setRoot(CopyTo); 2601 } 2602 } 2603 2604 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2605 /// variable if there exists one. 2606 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2607 SDValue &Chain) { 2608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2609 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2610 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2611 MachineFunction &MF = DAG.getMachineFunction(); 2612 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2613 MachineSDNode *Node = 2614 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2615 if (Global) { 2616 MachinePointerInfo MPInfo(Global); 2617 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2618 MachineMemOperand::MODereferenceable; 2619 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2620 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2621 DAG.setNodeMemRefs(Node, {MemRef}); 2622 } 2623 if (PtrTy != PtrMemTy) 2624 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2625 return SDValue(Node, 0); 2626 } 2627 2628 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2629 /// tail spliced into a stack protector check success bb. 2630 /// 2631 /// For a high level explanation of how this fits into the stack protector 2632 /// generation see the comment on the declaration of class 2633 /// StackProtectorDescriptor. 2634 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2635 MachineBasicBlock *ParentBB) { 2636 2637 // First create the loads to the guard/stack slot for the comparison. 2638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2639 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2640 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2641 2642 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2643 int FI = MFI.getStackProtectorIndex(); 2644 2645 SDValue Guard; 2646 SDLoc dl = getCurSDLoc(); 2647 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2648 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2649 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2650 2651 // Generate code to load the content of the guard slot. 2652 SDValue GuardVal = DAG.getLoad( 2653 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2654 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2655 MachineMemOperand::MOVolatile); 2656 2657 if (TLI.useStackGuardXorFP()) 2658 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2659 2660 // Retrieve guard check function, nullptr if instrumentation is inlined. 2661 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2662 // The target provides a guard check function to validate the guard value. 2663 // Generate a call to that function with the content of the guard slot as 2664 // argument. 2665 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2666 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2667 2668 TargetLowering::ArgListTy Args; 2669 TargetLowering::ArgListEntry Entry; 2670 Entry.Node = GuardVal; 2671 Entry.Ty = FnTy->getParamType(0); 2672 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2673 Entry.IsInReg = true; 2674 Args.push_back(Entry); 2675 2676 TargetLowering::CallLoweringInfo CLI(DAG); 2677 CLI.setDebugLoc(getCurSDLoc()) 2678 .setChain(DAG.getEntryNode()) 2679 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2680 getValue(GuardCheckFn), std::move(Args)); 2681 2682 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2683 DAG.setRoot(Result.second); 2684 return; 2685 } 2686 2687 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2688 // Otherwise, emit a volatile load to retrieve the stack guard value. 2689 SDValue Chain = DAG.getEntryNode(); 2690 if (TLI.useLoadStackGuardNode()) { 2691 Guard = getLoadStackGuard(DAG, dl, Chain); 2692 } else { 2693 const Value *IRGuard = TLI.getSDagStackGuard(M); 2694 SDValue GuardPtr = getValue(IRGuard); 2695 2696 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2697 MachinePointerInfo(IRGuard, 0), Align, 2698 MachineMemOperand::MOVolatile); 2699 } 2700 2701 // Perform the comparison via a getsetcc. 2702 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2703 *DAG.getContext(), 2704 Guard.getValueType()), 2705 Guard, GuardVal, ISD::SETNE); 2706 2707 // If the guard/stackslot do not equal, branch to failure MBB. 2708 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2709 MVT::Other, GuardVal.getOperand(0), 2710 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2711 // Otherwise branch to success MBB. 2712 SDValue Br = DAG.getNode(ISD::BR, dl, 2713 MVT::Other, BrCond, 2714 DAG.getBasicBlock(SPD.getSuccessMBB())); 2715 2716 DAG.setRoot(Br); 2717 } 2718 2719 /// Codegen the failure basic block for a stack protector check. 2720 /// 2721 /// A failure stack protector machine basic block consists simply of a call to 2722 /// __stack_chk_fail(). 2723 /// 2724 /// For a high level explanation of how this fits into the stack protector 2725 /// generation see the comment on the declaration of class 2726 /// StackProtectorDescriptor. 2727 void 2728 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2730 TargetLowering::MakeLibCallOptions CallOptions; 2731 CallOptions.setDiscardResult(true); 2732 SDValue Chain = 2733 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2734 None, CallOptions, getCurSDLoc()).second; 2735 // On PS4, the "return address" must still be within the calling function, 2736 // even if it's at the very end, so emit an explicit TRAP here. 2737 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2738 if (TM.getTargetTriple().isPS4CPU()) 2739 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2740 // WebAssembly needs an unreachable instruction after a non-returning call, 2741 // because the function return type can be different from __stack_chk_fail's 2742 // return type (void). 2743 if (TM.getTargetTriple().isWasm()) 2744 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2745 2746 DAG.setRoot(Chain); 2747 } 2748 2749 /// visitBitTestHeader - This function emits necessary code to produce value 2750 /// suitable for "bit tests" 2751 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2752 MachineBasicBlock *SwitchBB) { 2753 SDLoc dl = getCurSDLoc(); 2754 2755 // Subtract the minimum value. 2756 SDValue SwitchOp = getValue(B.SValue); 2757 EVT VT = SwitchOp.getValueType(); 2758 SDValue RangeSub = 2759 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2760 2761 // Determine the type of the test operands. 2762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2763 bool UsePtrType = false; 2764 if (!TLI.isTypeLegal(VT)) { 2765 UsePtrType = true; 2766 } else { 2767 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2768 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2769 // Switch table case range are encoded into series of masks. 2770 // Just use pointer type, it's guaranteed to fit. 2771 UsePtrType = true; 2772 break; 2773 } 2774 } 2775 SDValue Sub = RangeSub; 2776 if (UsePtrType) { 2777 VT = TLI.getPointerTy(DAG.getDataLayout()); 2778 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2779 } 2780 2781 B.RegVT = VT.getSimpleVT(); 2782 B.Reg = FuncInfo.CreateReg(B.RegVT); 2783 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2784 2785 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2786 2787 if (!B.OmitRangeCheck) 2788 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2789 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2790 SwitchBB->normalizeSuccProbs(); 2791 2792 SDValue Root = CopyTo; 2793 if (!B.OmitRangeCheck) { 2794 // Conditional branch to the default block. 2795 SDValue RangeCmp = DAG.getSetCC(dl, 2796 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2797 RangeSub.getValueType()), 2798 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2799 ISD::SETUGT); 2800 2801 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2802 DAG.getBasicBlock(B.Default)); 2803 } 2804 2805 // Avoid emitting unnecessary branches to the next block. 2806 if (MBB != NextBlock(SwitchBB)) 2807 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2808 2809 DAG.setRoot(Root); 2810 } 2811 2812 /// visitBitTestCase - this function produces one "bit test" 2813 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2814 MachineBasicBlock* NextMBB, 2815 BranchProbability BranchProbToNext, 2816 unsigned Reg, 2817 BitTestCase &B, 2818 MachineBasicBlock *SwitchBB) { 2819 SDLoc dl = getCurSDLoc(); 2820 MVT VT = BB.RegVT; 2821 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2822 SDValue Cmp; 2823 unsigned PopCount = countPopulation(B.Mask); 2824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2825 if (PopCount == 1) { 2826 // Testing for a single bit; just compare the shift count with what it 2827 // would need to be to shift a 1 bit in that position. 2828 Cmp = DAG.getSetCC( 2829 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2830 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2831 ISD::SETEQ); 2832 } else if (PopCount == BB.Range) { 2833 // There is only one zero bit in the range, test for it directly. 2834 Cmp = DAG.getSetCC( 2835 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2836 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2837 ISD::SETNE); 2838 } else { 2839 // Make desired shift 2840 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2841 DAG.getConstant(1, dl, VT), ShiftOp); 2842 2843 // Emit bit tests and jumps 2844 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2845 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2846 Cmp = DAG.getSetCC( 2847 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2848 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2849 } 2850 2851 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2852 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2853 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2854 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2855 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2856 // one as they are relative probabilities (and thus work more like weights), 2857 // and hence we need to normalize them to let the sum of them become one. 2858 SwitchBB->normalizeSuccProbs(); 2859 2860 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2861 MVT::Other, getControlRoot(), 2862 Cmp, DAG.getBasicBlock(B.TargetBB)); 2863 2864 // Avoid emitting unnecessary branches to the next block. 2865 if (NextMBB != NextBlock(SwitchBB)) 2866 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2867 DAG.getBasicBlock(NextMBB)); 2868 2869 DAG.setRoot(BrAnd); 2870 } 2871 2872 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2873 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2874 2875 // Retrieve successors. Look through artificial IR level blocks like 2876 // catchswitch for successors. 2877 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2878 const BasicBlock *EHPadBB = I.getSuccessor(1); 2879 2880 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2881 // have to do anything here to lower funclet bundles. 2882 assert(!I.hasOperandBundlesOtherThan( 2883 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2884 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2885 LLVMContext::OB_cfguardtarget, 2886 LLVMContext::OB_clang_arc_attachedcall}) && 2887 "Cannot lower invokes with arbitrary operand bundles yet!"); 2888 2889 const Value *Callee(I.getCalledOperand()); 2890 const Function *Fn = dyn_cast<Function>(Callee); 2891 if (isa<InlineAsm>(Callee)) 2892 visitInlineAsm(I, EHPadBB); 2893 else if (Fn && Fn->isIntrinsic()) { 2894 switch (Fn->getIntrinsicID()) { 2895 default: 2896 llvm_unreachable("Cannot invoke this intrinsic"); 2897 case Intrinsic::donothing: 2898 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2899 case Intrinsic::seh_try_begin: 2900 case Intrinsic::seh_scope_begin: 2901 case Intrinsic::seh_try_end: 2902 case Intrinsic::seh_scope_end: 2903 break; 2904 case Intrinsic::experimental_patchpoint_void: 2905 case Intrinsic::experimental_patchpoint_i64: 2906 visitPatchpoint(I, EHPadBB); 2907 break; 2908 case Intrinsic::experimental_gc_statepoint: 2909 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2910 break; 2911 case Intrinsic::wasm_rethrow: { 2912 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2913 // special because it can be invoked, so we manually lower it to a DAG 2914 // node here. 2915 SmallVector<SDValue, 8> Ops; 2916 Ops.push_back(getRoot()); // inchain 2917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2918 Ops.push_back( 2919 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2920 TLI.getPointerTy(DAG.getDataLayout()))); 2921 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2922 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2923 break; 2924 } 2925 } 2926 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2927 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2928 // Eventually we will support lowering the @llvm.experimental.deoptimize 2929 // intrinsic, and right now there are no plans to support other intrinsics 2930 // with deopt state. 2931 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2932 } else { 2933 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2934 } 2935 2936 // If the value of the invoke is used outside of its defining block, make it 2937 // available as a virtual register. 2938 // We already took care of the exported value for the statepoint instruction 2939 // during call to the LowerStatepoint. 2940 if (!isa<GCStatepointInst>(I)) { 2941 CopyToExportRegsIfNeeded(&I); 2942 } 2943 2944 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2945 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2946 BranchProbability EHPadBBProb = 2947 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2948 : BranchProbability::getZero(); 2949 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2950 2951 // Update successor info. 2952 addSuccessorWithProb(InvokeMBB, Return); 2953 for (auto &UnwindDest : UnwindDests) { 2954 UnwindDest.first->setIsEHPad(); 2955 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2956 } 2957 InvokeMBB->normalizeSuccProbs(); 2958 2959 // Drop into normal successor. 2960 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2961 DAG.getBasicBlock(Return))); 2962 } 2963 2964 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2965 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2966 2967 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2968 // have to do anything here to lower funclet bundles. 2969 assert(!I.hasOperandBundlesOtherThan( 2970 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2971 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2972 2973 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2974 visitInlineAsm(I); 2975 CopyToExportRegsIfNeeded(&I); 2976 2977 // Retrieve successors. 2978 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2979 2980 // Update successor info. 2981 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2982 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2983 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2984 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2985 Target->setIsInlineAsmBrIndirectTarget(); 2986 } 2987 CallBrMBB->normalizeSuccProbs(); 2988 2989 // Drop into default successor. 2990 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2991 MVT::Other, getControlRoot(), 2992 DAG.getBasicBlock(Return))); 2993 } 2994 2995 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2996 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2997 } 2998 2999 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3000 assert(FuncInfo.MBB->isEHPad() && 3001 "Call to landingpad not in landing pad!"); 3002 3003 // If there aren't registers to copy the values into (e.g., during SjLj 3004 // exceptions), then don't bother to create these DAG nodes. 3005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3006 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3007 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3008 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3009 return; 3010 3011 // If landingpad's return type is token type, we don't create DAG nodes 3012 // for its exception pointer and selector value. The extraction of exception 3013 // pointer or selector value from token type landingpads is not currently 3014 // supported. 3015 if (LP.getType()->isTokenTy()) 3016 return; 3017 3018 SmallVector<EVT, 2> ValueVTs; 3019 SDLoc dl = getCurSDLoc(); 3020 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3021 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3022 3023 // Get the two live-in registers as SDValues. The physregs have already been 3024 // copied into virtual registers. 3025 SDValue Ops[2]; 3026 if (FuncInfo.ExceptionPointerVirtReg) { 3027 Ops[0] = DAG.getZExtOrTrunc( 3028 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3029 FuncInfo.ExceptionPointerVirtReg, 3030 TLI.getPointerTy(DAG.getDataLayout())), 3031 dl, ValueVTs[0]); 3032 } else { 3033 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3034 } 3035 Ops[1] = DAG.getZExtOrTrunc( 3036 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3037 FuncInfo.ExceptionSelectorVirtReg, 3038 TLI.getPointerTy(DAG.getDataLayout())), 3039 dl, ValueVTs[1]); 3040 3041 // Merge into one. 3042 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3043 DAG.getVTList(ValueVTs), Ops); 3044 setValue(&LP, Res); 3045 } 3046 3047 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3048 MachineBasicBlock *Last) { 3049 // Update JTCases. 3050 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 3051 if (SL->JTCases[i].first.HeaderBB == First) 3052 SL->JTCases[i].first.HeaderBB = Last; 3053 3054 // Update BitTestCases. 3055 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 3056 if (SL->BitTestCases[i].Parent == First) 3057 SL->BitTestCases[i].Parent = Last; 3058 } 3059 3060 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3061 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3062 3063 // Update machine-CFG edges with unique successors. 3064 SmallSet<BasicBlock*, 32> Done; 3065 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3066 BasicBlock *BB = I.getSuccessor(i); 3067 bool Inserted = Done.insert(BB).second; 3068 if (!Inserted) 3069 continue; 3070 3071 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3072 addSuccessorWithProb(IndirectBrMBB, Succ); 3073 } 3074 IndirectBrMBB->normalizeSuccProbs(); 3075 3076 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3077 MVT::Other, getControlRoot(), 3078 getValue(I.getAddress()))); 3079 } 3080 3081 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3082 if (!DAG.getTarget().Options.TrapUnreachable) 3083 return; 3084 3085 // We may be able to ignore unreachable behind a noreturn call. 3086 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3087 const BasicBlock &BB = *I.getParent(); 3088 if (&I != &BB.front()) { 3089 BasicBlock::const_iterator PredI = 3090 std::prev(BasicBlock::const_iterator(&I)); 3091 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3092 if (Call->doesNotReturn()) 3093 return; 3094 } 3095 } 3096 } 3097 3098 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3099 } 3100 3101 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3102 SDNodeFlags Flags; 3103 3104 SDValue Op = getValue(I.getOperand(0)); 3105 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3106 Op, Flags); 3107 setValue(&I, UnNodeValue); 3108 } 3109 3110 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3111 SDNodeFlags Flags; 3112 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3113 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3114 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3115 } 3116 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3117 Flags.setExact(ExactOp->isExact()); 3118 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3119 Flags.copyFMF(*FPOp); 3120 3121 SDValue Op1 = getValue(I.getOperand(0)); 3122 SDValue Op2 = getValue(I.getOperand(1)); 3123 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3124 Op1, Op2, Flags); 3125 setValue(&I, BinNodeValue); 3126 } 3127 3128 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3129 SDValue Op1 = getValue(I.getOperand(0)); 3130 SDValue Op2 = getValue(I.getOperand(1)); 3131 3132 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3133 Op1.getValueType(), DAG.getDataLayout()); 3134 3135 // Coerce the shift amount to the right type if we can. 3136 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3137 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3138 unsigned Op2Size = Op2.getValueSizeInBits(); 3139 SDLoc DL = getCurSDLoc(); 3140 3141 // If the operand is smaller than the shift count type, promote it. 3142 if (ShiftSize > Op2Size) 3143 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3144 3145 // If the operand is larger than the shift count type but the shift 3146 // count type has enough bits to represent any shift value, truncate 3147 // it now. This is a common case and it exposes the truncate to 3148 // optimization early. 3149 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3150 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3151 // Otherwise we'll need to temporarily settle for some other convenient 3152 // type. Type legalization will make adjustments once the shiftee is split. 3153 else 3154 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3155 } 3156 3157 bool nuw = false; 3158 bool nsw = false; 3159 bool exact = false; 3160 3161 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3162 3163 if (const OverflowingBinaryOperator *OFBinOp = 3164 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3165 nuw = OFBinOp->hasNoUnsignedWrap(); 3166 nsw = OFBinOp->hasNoSignedWrap(); 3167 } 3168 if (const PossiblyExactOperator *ExactOp = 3169 dyn_cast<const PossiblyExactOperator>(&I)) 3170 exact = ExactOp->isExact(); 3171 } 3172 SDNodeFlags Flags; 3173 Flags.setExact(exact); 3174 Flags.setNoSignedWrap(nsw); 3175 Flags.setNoUnsignedWrap(nuw); 3176 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3177 Flags); 3178 setValue(&I, Res); 3179 } 3180 3181 void SelectionDAGBuilder::visitSDiv(const User &I) { 3182 SDValue Op1 = getValue(I.getOperand(0)); 3183 SDValue Op2 = getValue(I.getOperand(1)); 3184 3185 SDNodeFlags Flags; 3186 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3187 cast<PossiblyExactOperator>(&I)->isExact()); 3188 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3189 Op2, Flags)); 3190 } 3191 3192 void SelectionDAGBuilder::visitICmp(const User &I) { 3193 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3194 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3195 predicate = IC->getPredicate(); 3196 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3197 predicate = ICmpInst::Predicate(IC->getPredicate()); 3198 SDValue Op1 = getValue(I.getOperand(0)); 3199 SDValue Op2 = getValue(I.getOperand(1)); 3200 ISD::CondCode Opcode = getICmpCondCode(predicate); 3201 3202 auto &TLI = DAG.getTargetLoweringInfo(); 3203 EVT MemVT = 3204 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3205 3206 // If a pointer's DAG type is larger than its memory type then the DAG values 3207 // are zero-extended. This breaks signed comparisons so truncate back to the 3208 // underlying type before doing the compare. 3209 if (Op1.getValueType() != MemVT) { 3210 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3211 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3212 } 3213 3214 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3215 I.getType()); 3216 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3217 } 3218 3219 void SelectionDAGBuilder::visitFCmp(const User &I) { 3220 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3221 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3222 predicate = FC->getPredicate(); 3223 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3224 predicate = FCmpInst::Predicate(FC->getPredicate()); 3225 SDValue Op1 = getValue(I.getOperand(0)); 3226 SDValue Op2 = getValue(I.getOperand(1)); 3227 3228 ISD::CondCode Condition = getFCmpCondCode(predicate); 3229 auto *FPMO = cast<FPMathOperator>(&I); 3230 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3231 Condition = getFCmpCodeWithoutNaN(Condition); 3232 3233 SDNodeFlags Flags; 3234 Flags.copyFMF(*FPMO); 3235 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3236 3237 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3238 I.getType()); 3239 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3240 } 3241 3242 // Check if the condition of the select has one use or two users that are both 3243 // selects with the same condition. 3244 static bool hasOnlySelectUsers(const Value *Cond) { 3245 return llvm::all_of(Cond->users(), [](const Value *V) { 3246 return isa<SelectInst>(V); 3247 }); 3248 } 3249 3250 void SelectionDAGBuilder::visitSelect(const User &I) { 3251 SmallVector<EVT, 4> ValueVTs; 3252 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3253 ValueVTs); 3254 unsigned NumValues = ValueVTs.size(); 3255 if (NumValues == 0) return; 3256 3257 SmallVector<SDValue, 4> Values(NumValues); 3258 SDValue Cond = getValue(I.getOperand(0)); 3259 SDValue LHSVal = getValue(I.getOperand(1)); 3260 SDValue RHSVal = getValue(I.getOperand(2)); 3261 SmallVector<SDValue, 1> BaseOps(1, Cond); 3262 ISD::NodeType OpCode = 3263 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3264 3265 bool IsUnaryAbs = false; 3266 bool Negate = false; 3267 3268 SDNodeFlags Flags; 3269 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3270 Flags.copyFMF(*FPOp); 3271 3272 // Min/max matching is only viable if all output VTs are the same. 3273 if (is_splat(ValueVTs)) { 3274 EVT VT = ValueVTs[0]; 3275 LLVMContext &Ctx = *DAG.getContext(); 3276 auto &TLI = DAG.getTargetLoweringInfo(); 3277 3278 // We care about the legality of the operation after it has been type 3279 // legalized. 3280 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3281 VT = TLI.getTypeToTransformTo(Ctx, VT); 3282 3283 // If the vselect is legal, assume we want to leave this as a vector setcc + 3284 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3285 // min/max is legal on the scalar type. 3286 bool UseScalarMinMax = VT.isVector() && 3287 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3288 3289 Value *LHS, *RHS; 3290 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3291 ISD::NodeType Opc = ISD::DELETED_NODE; 3292 switch (SPR.Flavor) { 3293 case SPF_UMAX: Opc = ISD::UMAX; break; 3294 case SPF_UMIN: Opc = ISD::UMIN; break; 3295 case SPF_SMAX: Opc = ISD::SMAX; break; 3296 case SPF_SMIN: Opc = ISD::SMIN; break; 3297 case SPF_FMINNUM: 3298 switch (SPR.NaNBehavior) { 3299 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3300 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3301 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3302 case SPNB_RETURNS_ANY: { 3303 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3304 Opc = ISD::FMINNUM; 3305 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3306 Opc = ISD::FMINIMUM; 3307 else if (UseScalarMinMax) 3308 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3309 ISD::FMINNUM : ISD::FMINIMUM; 3310 break; 3311 } 3312 } 3313 break; 3314 case SPF_FMAXNUM: 3315 switch (SPR.NaNBehavior) { 3316 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3317 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3318 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3319 case SPNB_RETURNS_ANY: 3320 3321 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3322 Opc = ISD::FMAXNUM; 3323 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3324 Opc = ISD::FMAXIMUM; 3325 else if (UseScalarMinMax) 3326 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3327 ISD::FMAXNUM : ISD::FMAXIMUM; 3328 break; 3329 } 3330 break; 3331 case SPF_NABS: 3332 Negate = true; 3333 LLVM_FALLTHROUGH; 3334 case SPF_ABS: 3335 IsUnaryAbs = true; 3336 Opc = ISD::ABS; 3337 break; 3338 default: break; 3339 } 3340 3341 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3342 (TLI.isOperationLegalOrCustom(Opc, VT) || 3343 (UseScalarMinMax && 3344 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3345 // If the underlying comparison instruction is used by any other 3346 // instruction, the consumed instructions won't be destroyed, so it is 3347 // not profitable to convert to a min/max. 3348 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3349 OpCode = Opc; 3350 LHSVal = getValue(LHS); 3351 RHSVal = getValue(RHS); 3352 BaseOps.clear(); 3353 } 3354 3355 if (IsUnaryAbs) { 3356 OpCode = Opc; 3357 LHSVal = getValue(LHS); 3358 BaseOps.clear(); 3359 } 3360 } 3361 3362 if (IsUnaryAbs) { 3363 for (unsigned i = 0; i != NumValues; ++i) { 3364 SDLoc dl = getCurSDLoc(); 3365 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3366 Values[i] = 3367 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3368 if (Negate) 3369 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3370 Values[i]); 3371 } 3372 } else { 3373 for (unsigned i = 0; i != NumValues; ++i) { 3374 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3375 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3376 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3377 Values[i] = DAG.getNode( 3378 OpCode, getCurSDLoc(), 3379 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3380 } 3381 } 3382 3383 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3384 DAG.getVTList(ValueVTs), Values)); 3385 } 3386 3387 void SelectionDAGBuilder::visitTrunc(const User &I) { 3388 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3389 SDValue N = getValue(I.getOperand(0)); 3390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3391 I.getType()); 3392 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3393 } 3394 3395 void SelectionDAGBuilder::visitZExt(const User &I) { 3396 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3397 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3398 SDValue N = getValue(I.getOperand(0)); 3399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3400 I.getType()); 3401 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3402 } 3403 3404 void SelectionDAGBuilder::visitSExt(const User &I) { 3405 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3406 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3407 SDValue N = getValue(I.getOperand(0)); 3408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3409 I.getType()); 3410 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3411 } 3412 3413 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3414 // FPTrunc is never a no-op cast, no need to check 3415 SDValue N = getValue(I.getOperand(0)); 3416 SDLoc dl = getCurSDLoc(); 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3419 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3420 DAG.getTargetConstant( 3421 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3422 } 3423 3424 void SelectionDAGBuilder::visitFPExt(const User &I) { 3425 // FPExt is never a no-op cast, no need to check 3426 SDValue N = getValue(I.getOperand(0)); 3427 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3428 I.getType()); 3429 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3430 } 3431 3432 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3433 // FPToUI is never a no-op cast, no need to check 3434 SDValue N = getValue(I.getOperand(0)); 3435 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3436 I.getType()); 3437 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3438 } 3439 3440 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3441 // FPToSI is never a no-op cast, no need to check 3442 SDValue N = getValue(I.getOperand(0)); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3446 } 3447 3448 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3449 // UIToFP is never a no-op cast, no need to check 3450 SDValue N = getValue(I.getOperand(0)); 3451 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3452 I.getType()); 3453 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3454 } 3455 3456 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3457 // SIToFP is never a no-op cast, no need to check 3458 SDValue N = getValue(I.getOperand(0)); 3459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3460 I.getType()); 3461 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3462 } 3463 3464 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3465 // What to do depends on the size of the integer and the size of the pointer. 3466 // We can either truncate, zero extend, or no-op, accordingly. 3467 SDValue N = getValue(I.getOperand(0)); 3468 auto &TLI = DAG.getTargetLoweringInfo(); 3469 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3470 I.getType()); 3471 EVT PtrMemVT = 3472 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3473 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3474 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3475 setValue(&I, N); 3476 } 3477 3478 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3479 // What to do depends on the size of the integer and the size of the pointer. 3480 // We can either truncate, zero extend, or no-op, accordingly. 3481 SDValue N = getValue(I.getOperand(0)); 3482 auto &TLI = DAG.getTargetLoweringInfo(); 3483 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3484 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3485 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3486 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3487 setValue(&I, N); 3488 } 3489 3490 void SelectionDAGBuilder::visitBitCast(const User &I) { 3491 SDValue N = getValue(I.getOperand(0)); 3492 SDLoc dl = getCurSDLoc(); 3493 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3494 I.getType()); 3495 3496 // BitCast assures us that source and destination are the same size so this is 3497 // either a BITCAST or a no-op. 3498 if (DestVT != N.getValueType()) 3499 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3500 DestVT, N)); // convert types. 3501 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3502 // might fold any kind of constant expression to an integer constant and that 3503 // is not what we are looking for. Only recognize a bitcast of a genuine 3504 // constant integer as an opaque constant. 3505 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3506 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3507 /*isOpaque*/true)); 3508 else 3509 setValue(&I, N); // noop cast. 3510 } 3511 3512 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3514 const Value *SV = I.getOperand(0); 3515 SDValue N = getValue(SV); 3516 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3517 3518 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3519 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3520 3521 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3522 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3523 3524 setValue(&I, N); 3525 } 3526 3527 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3529 SDValue InVec = getValue(I.getOperand(0)); 3530 SDValue InVal = getValue(I.getOperand(1)); 3531 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3532 TLI.getVectorIdxTy(DAG.getDataLayout())); 3533 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3534 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3535 InVec, InVal, InIdx)); 3536 } 3537 3538 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3540 SDValue InVec = getValue(I.getOperand(0)); 3541 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3542 TLI.getVectorIdxTy(DAG.getDataLayout())); 3543 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3544 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3545 InVec, InIdx)); 3546 } 3547 3548 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3549 SDValue Src1 = getValue(I.getOperand(0)); 3550 SDValue Src2 = getValue(I.getOperand(1)); 3551 ArrayRef<int> Mask; 3552 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3553 Mask = SVI->getShuffleMask(); 3554 else 3555 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3556 SDLoc DL = getCurSDLoc(); 3557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3559 EVT SrcVT = Src1.getValueType(); 3560 3561 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3562 VT.isScalableVector()) { 3563 // Canonical splat form of first element of first input vector. 3564 SDValue FirstElt = 3565 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3566 DAG.getVectorIdxConstant(0, DL)); 3567 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3568 return; 3569 } 3570 3571 // For now, we only handle splats for scalable vectors. 3572 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3573 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3574 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3575 3576 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3577 unsigned MaskNumElts = Mask.size(); 3578 3579 if (SrcNumElts == MaskNumElts) { 3580 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3581 return; 3582 } 3583 3584 // Normalize the shuffle vector since mask and vector length don't match. 3585 if (SrcNumElts < MaskNumElts) { 3586 // Mask is longer than the source vectors. We can use concatenate vector to 3587 // make the mask and vectors lengths match. 3588 3589 if (MaskNumElts % SrcNumElts == 0) { 3590 // Mask length is a multiple of the source vector length. 3591 // Check if the shuffle is some kind of concatenation of the input 3592 // vectors. 3593 unsigned NumConcat = MaskNumElts / SrcNumElts; 3594 bool IsConcat = true; 3595 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3596 for (unsigned i = 0; i != MaskNumElts; ++i) { 3597 int Idx = Mask[i]; 3598 if (Idx < 0) 3599 continue; 3600 // Ensure the indices in each SrcVT sized piece are sequential and that 3601 // the same source is used for the whole piece. 3602 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3603 (ConcatSrcs[i / SrcNumElts] >= 0 && 3604 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3605 IsConcat = false; 3606 break; 3607 } 3608 // Remember which source this index came from. 3609 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3610 } 3611 3612 // The shuffle is concatenating multiple vectors together. Just emit 3613 // a CONCAT_VECTORS operation. 3614 if (IsConcat) { 3615 SmallVector<SDValue, 8> ConcatOps; 3616 for (auto Src : ConcatSrcs) { 3617 if (Src < 0) 3618 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3619 else if (Src == 0) 3620 ConcatOps.push_back(Src1); 3621 else 3622 ConcatOps.push_back(Src2); 3623 } 3624 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3625 return; 3626 } 3627 } 3628 3629 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3630 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3631 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3632 PaddedMaskNumElts); 3633 3634 // Pad both vectors with undefs to make them the same length as the mask. 3635 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3636 3637 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3638 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3639 MOps1[0] = Src1; 3640 MOps2[0] = Src2; 3641 3642 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3643 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3644 3645 // Readjust mask for new input vector length. 3646 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3647 for (unsigned i = 0; i != MaskNumElts; ++i) { 3648 int Idx = Mask[i]; 3649 if (Idx >= (int)SrcNumElts) 3650 Idx -= SrcNumElts - PaddedMaskNumElts; 3651 MappedOps[i] = Idx; 3652 } 3653 3654 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3655 3656 // If the concatenated vector was padded, extract a subvector with the 3657 // correct number of elements. 3658 if (MaskNumElts != PaddedMaskNumElts) 3659 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3660 DAG.getVectorIdxConstant(0, DL)); 3661 3662 setValue(&I, Result); 3663 return; 3664 } 3665 3666 if (SrcNumElts > MaskNumElts) { 3667 // Analyze the access pattern of the vector to see if we can extract 3668 // two subvectors and do the shuffle. 3669 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3670 bool CanExtract = true; 3671 for (int Idx : Mask) { 3672 unsigned Input = 0; 3673 if (Idx < 0) 3674 continue; 3675 3676 if (Idx >= (int)SrcNumElts) { 3677 Input = 1; 3678 Idx -= SrcNumElts; 3679 } 3680 3681 // If all the indices come from the same MaskNumElts sized portion of 3682 // the sources we can use extract. Also make sure the extract wouldn't 3683 // extract past the end of the source. 3684 int NewStartIdx = alignDown(Idx, MaskNumElts); 3685 if (NewStartIdx + MaskNumElts > SrcNumElts || 3686 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3687 CanExtract = false; 3688 // Make sure we always update StartIdx as we use it to track if all 3689 // elements are undef. 3690 StartIdx[Input] = NewStartIdx; 3691 } 3692 3693 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3694 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3695 return; 3696 } 3697 if (CanExtract) { 3698 // Extract appropriate subvector and generate a vector shuffle 3699 for (unsigned Input = 0; Input < 2; ++Input) { 3700 SDValue &Src = Input == 0 ? Src1 : Src2; 3701 if (StartIdx[Input] < 0) 3702 Src = DAG.getUNDEF(VT); 3703 else { 3704 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3705 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3706 } 3707 } 3708 3709 // Calculate new mask. 3710 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3711 for (int &Idx : MappedOps) { 3712 if (Idx >= (int)SrcNumElts) 3713 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3714 else if (Idx >= 0) 3715 Idx -= StartIdx[0]; 3716 } 3717 3718 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3719 return; 3720 } 3721 } 3722 3723 // We can't use either concat vectors or extract subvectors so fall back to 3724 // replacing the shuffle with extract and build vector. 3725 // to insert and build vector. 3726 EVT EltVT = VT.getVectorElementType(); 3727 SmallVector<SDValue,8> Ops; 3728 for (int Idx : Mask) { 3729 SDValue Res; 3730 3731 if (Idx < 0) { 3732 Res = DAG.getUNDEF(EltVT); 3733 } else { 3734 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3735 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3736 3737 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3738 DAG.getVectorIdxConstant(Idx, DL)); 3739 } 3740 3741 Ops.push_back(Res); 3742 } 3743 3744 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3745 } 3746 3747 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3748 ArrayRef<unsigned> Indices; 3749 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3750 Indices = IV->getIndices(); 3751 else 3752 Indices = cast<ConstantExpr>(&I)->getIndices(); 3753 3754 const Value *Op0 = I.getOperand(0); 3755 const Value *Op1 = I.getOperand(1); 3756 Type *AggTy = I.getType(); 3757 Type *ValTy = Op1->getType(); 3758 bool IntoUndef = isa<UndefValue>(Op0); 3759 bool FromUndef = isa<UndefValue>(Op1); 3760 3761 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3762 3763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3764 SmallVector<EVT, 4> AggValueVTs; 3765 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3766 SmallVector<EVT, 4> ValValueVTs; 3767 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3768 3769 unsigned NumAggValues = AggValueVTs.size(); 3770 unsigned NumValValues = ValValueVTs.size(); 3771 SmallVector<SDValue, 4> Values(NumAggValues); 3772 3773 // Ignore an insertvalue that produces an empty object 3774 if (!NumAggValues) { 3775 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3776 return; 3777 } 3778 3779 SDValue Agg = getValue(Op0); 3780 unsigned i = 0; 3781 // Copy the beginning value(s) from the original aggregate. 3782 for (; i != LinearIndex; ++i) 3783 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3784 SDValue(Agg.getNode(), Agg.getResNo() + i); 3785 // Copy values from the inserted value(s). 3786 if (NumValValues) { 3787 SDValue Val = getValue(Op1); 3788 for (; i != LinearIndex + NumValValues; ++i) 3789 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3790 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3791 } 3792 // Copy remaining value(s) from the original aggregate. 3793 for (; i != NumAggValues; ++i) 3794 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3795 SDValue(Agg.getNode(), Agg.getResNo() + i); 3796 3797 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3798 DAG.getVTList(AggValueVTs), Values)); 3799 } 3800 3801 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3802 ArrayRef<unsigned> Indices; 3803 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3804 Indices = EV->getIndices(); 3805 else 3806 Indices = cast<ConstantExpr>(&I)->getIndices(); 3807 3808 const Value *Op0 = I.getOperand(0); 3809 Type *AggTy = Op0->getType(); 3810 Type *ValTy = I.getType(); 3811 bool OutOfUndef = isa<UndefValue>(Op0); 3812 3813 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3814 3815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3816 SmallVector<EVT, 4> ValValueVTs; 3817 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3818 3819 unsigned NumValValues = ValValueVTs.size(); 3820 3821 // Ignore a extractvalue that produces an empty object 3822 if (!NumValValues) { 3823 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3824 return; 3825 } 3826 3827 SmallVector<SDValue, 4> Values(NumValValues); 3828 3829 SDValue Agg = getValue(Op0); 3830 // Copy out the selected value(s). 3831 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3832 Values[i - LinearIndex] = 3833 OutOfUndef ? 3834 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3835 SDValue(Agg.getNode(), Agg.getResNo() + i); 3836 3837 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3838 DAG.getVTList(ValValueVTs), Values)); 3839 } 3840 3841 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3842 Value *Op0 = I.getOperand(0); 3843 // Note that the pointer operand may be a vector of pointers. Take the scalar 3844 // element which holds a pointer. 3845 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3846 SDValue N = getValue(Op0); 3847 SDLoc dl = getCurSDLoc(); 3848 auto &TLI = DAG.getTargetLoweringInfo(); 3849 3850 // Normalize Vector GEP - all scalar operands should be converted to the 3851 // splat vector. 3852 bool IsVectorGEP = I.getType()->isVectorTy(); 3853 ElementCount VectorElementCount = 3854 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3855 : ElementCount::getFixed(0); 3856 3857 if (IsVectorGEP && !N.getValueType().isVector()) { 3858 LLVMContext &Context = *DAG.getContext(); 3859 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3860 if (VectorElementCount.isScalable()) 3861 N = DAG.getSplatVector(VT, dl, N); 3862 else 3863 N = DAG.getSplatBuildVector(VT, dl, N); 3864 } 3865 3866 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3867 GTI != E; ++GTI) { 3868 const Value *Idx = GTI.getOperand(); 3869 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3870 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3871 if (Field) { 3872 // N = N + Offset 3873 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3874 3875 // In an inbounds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3882 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3883 } 3884 } else { 3885 // IdxSize is the width of the arithmetic according to IR semantics. 3886 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3887 // (and fix up the result later). 3888 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3889 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3890 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3891 // We intentionally mask away the high bits here; ElementSize may not 3892 // fit in IdxTy. 3893 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3894 bool ElementScalable = ElementSize.isScalable(); 3895 3896 // If this is a scalar constant or a splat vector of constants, 3897 // handle it quickly. 3898 const auto *C = dyn_cast<Constant>(Idx); 3899 if (C && isa<VectorType>(C->getType())) 3900 C = C->getSplatValue(); 3901 3902 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3903 if (CI && CI->isZero()) 3904 continue; 3905 if (CI && !ElementScalable) { 3906 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3907 LLVMContext &Context = *DAG.getContext(); 3908 SDValue OffsVal; 3909 if (IsVectorGEP) 3910 OffsVal = DAG.getConstant( 3911 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3912 else 3913 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3914 3915 // In an inbounds GEP with an offset that is nonnegative even when 3916 // interpreted as signed, assume there is no unsigned overflow. 3917 SDNodeFlags Flags; 3918 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3919 Flags.setNoUnsignedWrap(true); 3920 3921 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3922 3923 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3924 continue; 3925 } 3926 3927 // N = N + Idx * ElementMul; 3928 SDValue IdxN = getValue(Idx); 3929 3930 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3931 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3932 VectorElementCount); 3933 if (VectorElementCount.isScalable()) 3934 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3935 else 3936 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3937 } 3938 3939 // If the index is smaller or larger than intptr_t, truncate or extend 3940 // it. 3941 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3942 3943 if (ElementScalable) { 3944 EVT VScaleTy = N.getValueType().getScalarType(); 3945 SDValue VScale = DAG.getNode( 3946 ISD::VSCALE, dl, VScaleTy, 3947 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3948 if (IsVectorGEP) 3949 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3950 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3951 } else { 3952 // If this is a multiply by a power of two, turn it into a shl 3953 // immediately. This is a very common case. 3954 if (ElementMul != 1) { 3955 if (ElementMul.isPowerOf2()) { 3956 unsigned Amt = ElementMul.logBase2(); 3957 IdxN = DAG.getNode(ISD::SHL, dl, 3958 N.getValueType(), IdxN, 3959 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3960 } else { 3961 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3962 IdxN.getValueType()); 3963 IdxN = DAG.getNode(ISD::MUL, dl, 3964 N.getValueType(), IdxN, Scale); 3965 } 3966 } 3967 } 3968 3969 N = DAG.getNode(ISD::ADD, dl, 3970 N.getValueType(), N, IdxN); 3971 } 3972 } 3973 3974 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3975 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3976 if (IsVectorGEP) { 3977 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3978 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3979 } 3980 3981 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3982 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3983 3984 setValue(&I, N); 3985 } 3986 3987 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3988 // If this is a fixed sized alloca in the entry block of the function, 3989 // allocate it statically on the stack. 3990 if (FuncInfo.StaticAllocaMap.count(&I)) 3991 return; // getValue will auto-populate this. 3992 3993 SDLoc dl = getCurSDLoc(); 3994 Type *Ty = I.getAllocatedType(); 3995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3996 auto &DL = DAG.getDataLayout(); 3997 uint64_t TySize = DL.getTypeAllocSize(Ty); 3998 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3999 4000 SDValue AllocSize = getValue(I.getArraySize()); 4001 4002 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4003 if (AllocSize.getValueType() != IntPtr) 4004 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4005 4006 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4007 AllocSize, 4008 DAG.getConstant(TySize, dl, IntPtr)); 4009 4010 // Handle alignment. If the requested alignment is less than or equal to 4011 // the stack alignment, ignore it. If the size is greater than or equal to 4012 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4013 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4014 if (*Alignment <= StackAlign) 4015 Alignment = None; 4016 4017 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4018 // Round the size of the allocation up to the stack alignment size 4019 // by add SA-1 to the size. This doesn't overflow because we're computing 4020 // an address inside an alloca. 4021 SDNodeFlags Flags; 4022 Flags.setNoUnsignedWrap(true); 4023 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4024 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4025 4026 // Mask out the low bits for alignment purposes. 4027 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4028 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4029 4030 SDValue Ops[] = { 4031 getRoot(), AllocSize, 4032 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4033 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4034 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4035 setValue(&I, DSA); 4036 DAG.setRoot(DSA.getValue(1)); 4037 4038 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4039 } 4040 4041 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4042 if (I.isAtomic()) 4043 return visitAtomicLoad(I); 4044 4045 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4046 const Value *SV = I.getOperand(0); 4047 if (TLI.supportSwiftError()) { 4048 // Swifterror values can come from either a function parameter with 4049 // swifterror attribute or an alloca with swifterror attribute. 4050 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4051 if (Arg->hasSwiftErrorAttr()) 4052 return visitLoadFromSwiftError(I); 4053 } 4054 4055 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4056 if (Alloca->isSwiftError()) 4057 return visitLoadFromSwiftError(I); 4058 } 4059 } 4060 4061 SDValue Ptr = getValue(SV); 4062 4063 Type *Ty = I.getType(); 4064 Align Alignment = I.getAlign(); 4065 4066 AAMDNodes AAInfo; 4067 I.getAAMetadata(AAInfo); 4068 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4069 4070 SmallVector<EVT, 4> ValueVTs, MemVTs; 4071 SmallVector<uint64_t, 4> Offsets; 4072 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4073 unsigned NumValues = ValueVTs.size(); 4074 if (NumValues == 0) 4075 return; 4076 4077 bool isVolatile = I.isVolatile(); 4078 4079 SDValue Root; 4080 bool ConstantMemory = false; 4081 if (isVolatile) 4082 // Serialize volatile loads with other side effects. 4083 Root = getRoot(); 4084 else if (NumValues > MaxParallelChains) 4085 Root = getMemoryRoot(); 4086 else if (AA && 4087 AA->pointsToConstantMemory(MemoryLocation( 4088 SV, 4089 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4090 AAInfo))) { 4091 // Do not serialize (non-volatile) loads of constant memory with anything. 4092 Root = DAG.getEntryNode(); 4093 ConstantMemory = true; 4094 } else { 4095 // Do not serialize non-volatile loads against each other. 4096 Root = DAG.getRoot(); 4097 } 4098 4099 SDLoc dl = getCurSDLoc(); 4100 4101 if (isVolatile) 4102 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4103 4104 // An aggregate load cannot wrap around the address space, so offsets to its 4105 // parts don't wrap either. 4106 SDNodeFlags Flags; 4107 Flags.setNoUnsignedWrap(true); 4108 4109 SmallVector<SDValue, 4> Values(NumValues); 4110 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4111 EVT PtrVT = Ptr.getValueType(); 4112 4113 MachineMemOperand::Flags MMOFlags 4114 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4115 4116 unsigned ChainI = 0; 4117 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4118 // Serializing loads here may result in excessive register pressure, and 4119 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4120 // could recover a bit by hoisting nodes upward in the chain by recognizing 4121 // they are side-effect free or do not alias. The optimizer should really 4122 // avoid this case by converting large object/array copies to llvm.memcpy 4123 // (MaxParallelChains should always remain as failsafe). 4124 if (ChainI == MaxParallelChains) { 4125 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4126 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4127 makeArrayRef(Chains.data(), ChainI)); 4128 Root = Chain; 4129 ChainI = 0; 4130 } 4131 SDValue A = DAG.getNode(ISD::ADD, dl, 4132 PtrVT, Ptr, 4133 DAG.getConstant(Offsets[i], dl, PtrVT), 4134 Flags); 4135 4136 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4137 MachinePointerInfo(SV, Offsets[i]), Alignment, 4138 MMOFlags, AAInfo, Ranges); 4139 Chains[ChainI] = L.getValue(1); 4140 4141 if (MemVTs[i] != ValueVTs[i]) 4142 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4143 4144 Values[i] = L; 4145 } 4146 4147 if (!ConstantMemory) { 4148 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4149 makeArrayRef(Chains.data(), ChainI)); 4150 if (isVolatile) 4151 DAG.setRoot(Chain); 4152 else 4153 PendingLoads.push_back(Chain); 4154 } 4155 4156 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4157 DAG.getVTList(ValueVTs), Values)); 4158 } 4159 4160 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4161 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4162 "call visitStoreToSwiftError when backend supports swifterror"); 4163 4164 SmallVector<EVT, 4> ValueVTs; 4165 SmallVector<uint64_t, 4> Offsets; 4166 const Value *SrcV = I.getOperand(0); 4167 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4168 SrcV->getType(), ValueVTs, &Offsets); 4169 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4170 "expect a single EVT for swifterror"); 4171 4172 SDValue Src = getValue(SrcV); 4173 // Create a virtual register, then update the virtual register. 4174 Register VReg = 4175 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4176 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4177 // Chain can be getRoot or getControlRoot. 4178 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4179 SDValue(Src.getNode(), Src.getResNo())); 4180 DAG.setRoot(CopyNode); 4181 } 4182 4183 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4184 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4185 "call visitLoadFromSwiftError when backend supports swifterror"); 4186 4187 assert(!I.isVolatile() && 4188 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4189 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4190 "Support volatile, non temporal, invariant for load_from_swift_error"); 4191 4192 const Value *SV = I.getOperand(0); 4193 Type *Ty = I.getType(); 4194 AAMDNodes AAInfo; 4195 I.getAAMetadata(AAInfo); 4196 assert( 4197 (!AA || 4198 !AA->pointsToConstantMemory(MemoryLocation( 4199 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4200 AAInfo))) && 4201 "load_from_swift_error should not be constant memory"); 4202 4203 SmallVector<EVT, 4> ValueVTs; 4204 SmallVector<uint64_t, 4> Offsets; 4205 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4206 ValueVTs, &Offsets); 4207 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4208 "expect a single EVT for swifterror"); 4209 4210 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4211 SDValue L = DAG.getCopyFromReg( 4212 getRoot(), getCurSDLoc(), 4213 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4214 4215 setValue(&I, L); 4216 } 4217 4218 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4219 if (I.isAtomic()) 4220 return visitAtomicStore(I); 4221 4222 const Value *SrcV = I.getOperand(0); 4223 const Value *PtrV = I.getOperand(1); 4224 4225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4226 if (TLI.supportSwiftError()) { 4227 // Swifterror values can come from either a function parameter with 4228 // swifterror attribute or an alloca with swifterror attribute. 4229 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4230 if (Arg->hasSwiftErrorAttr()) 4231 return visitStoreToSwiftError(I); 4232 } 4233 4234 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4235 if (Alloca->isSwiftError()) 4236 return visitStoreToSwiftError(I); 4237 } 4238 } 4239 4240 SmallVector<EVT, 4> ValueVTs, MemVTs; 4241 SmallVector<uint64_t, 4> Offsets; 4242 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4243 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4244 unsigned NumValues = ValueVTs.size(); 4245 if (NumValues == 0) 4246 return; 4247 4248 // Get the lowered operands. Note that we do this after 4249 // checking if NumResults is zero, because with zero results 4250 // the operands won't have values in the map. 4251 SDValue Src = getValue(SrcV); 4252 SDValue Ptr = getValue(PtrV); 4253 4254 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4255 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4256 SDLoc dl = getCurSDLoc(); 4257 Align Alignment = I.getAlign(); 4258 AAMDNodes AAInfo; 4259 I.getAAMetadata(AAInfo); 4260 4261 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4262 4263 // An aggregate load cannot wrap around the address space, so offsets to its 4264 // parts don't wrap either. 4265 SDNodeFlags Flags; 4266 Flags.setNoUnsignedWrap(true); 4267 4268 unsigned ChainI = 0; 4269 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4270 // See visitLoad comments. 4271 if (ChainI == MaxParallelChains) { 4272 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4273 makeArrayRef(Chains.data(), ChainI)); 4274 Root = Chain; 4275 ChainI = 0; 4276 } 4277 SDValue Add = 4278 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4279 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4280 if (MemVTs[i] != ValueVTs[i]) 4281 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4282 SDValue St = 4283 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4284 Alignment, MMOFlags, AAInfo); 4285 Chains[ChainI] = St; 4286 } 4287 4288 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4289 makeArrayRef(Chains.data(), ChainI)); 4290 DAG.setRoot(StoreNode); 4291 } 4292 4293 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4294 bool IsCompressing) { 4295 SDLoc sdl = getCurSDLoc(); 4296 4297 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4298 MaybeAlign &Alignment) { 4299 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4300 Src0 = I.getArgOperand(0); 4301 Ptr = I.getArgOperand(1); 4302 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4303 Mask = I.getArgOperand(3); 4304 }; 4305 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4306 MaybeAlign &Alignment) { 4307 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4308 Src0 = I.getArgOperand(0); 4309 Ptr = I.getArgOperand(1); 4310 Mask = I.getArgOperand(2); 4311 Alignment = None; 4312 }; 4313 4314 Value *PtrOperand, *MaskOperand, *Src0Operand; 4315 MaybeAlign Alignment; 4316 if (IsCompressing) 4317 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4318 else 4319 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4320 4321 SDValue Ptr = getValue(PtrOperand); 4322 SDValue Src0 = getValue(Src0Operand); 4323 SDValue Mask = getValue(MaskOperand); 4324 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4325 4326 EVT VT = Src0.getValueType(); 4327 if (!Alignment) 4328 Alignment = DAG.getEVTAlign(VT); 4329 4330 AAMDNodes AAInfo; 4331 I.getAAMetadata(AAInfo); 4332 4333 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4334 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4335 // TODO: Make MachineMemOperands aware of scalable 4336 // vectors. 4337 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4338 SDValue StoreNode = 4339 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4340 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4341 DAG.setRoot(StoreNode); 4342 setValue(&I, StoreNode); 4343 } 4344 4345 // Get a uniform base for the Gather/Scatter intrinsic. 4346 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4347 // We try to represent it as a base pointer + vector of indices. 4348 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4349 // The first operand of the GEP may be a single pointer or a vector of pointers 4350 // Example: 4351 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4352 // or 4353 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4354 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4355 // 4356 // When the first GEP operand is a single pointer - it is the uniform base we 4357 // are looking for. If first operand of the GEP is a splat vector - we 4358 // extract the splat value and use it as a uniform base. 4359 // In all other cases the function returns 'false'. 4360 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4361 ISD::MemIndexType &IndexType, SDValue &Scale, 4362 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4363 SelectionDAG& DAG = SDB->DAG; 4364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4365 const DataLayout &DL = DAG.getDataLayout(); 4366 4367 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4368 4369 // Handle splat constant pointer. 4370 if (auto *C = dyn_cast<Constant>(Ptr)) { 4371 C = C->getSplatValue(); 4372 if (!C) 4373 return false; 4374 4375 Base = SDB->getValue(C); 4376 4377 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4378 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4379 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4380 IndexType = ISD::SIGNED_SCALED; 4381 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4382 return true; 4383 } 4384 4385 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4386 if (!GEP || GEP->getParent() != CurBB) 4387 return false; 4388 4389 if (GEP->getNumOperands() != 2) 4390 return false; 4391 4392 const Value *BasePtr = GEP->getPointerOperand(); 4393 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4394 4395 // Make sure the base is scalar and the index is a vector. 4396 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4397 return false; 4398 4399 Base = SDB->getValue(BasePtr); 4400 Index = SDB->getValue(IndexVal); 4401 IndexType = ISD::SIGNED_SCALED; 4402 Scale = DAG.getTargetConstant( 4403 DL.getTypeAllocSize(GEP->getResultElementType()), 4404 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4405 return true; 4406 } 4407 4408 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4409 SDLoc sdl = getCurSDLoc(); 4410 4411 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4412 const Value *Ptr = I.getArgOperand(1); 4413 SDValue Src0 = getValue(I.getArgOperand(0)); 4414 SDValue Mask = getValue(I.getArgOperand(3)); 4415 EVT VT = Src0.getValueType(); 4416 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4417 ->getMaybeAlignValue() 4418 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4420 4421 AAMDNodes AAInfo; 4422 I.getAAMetadata(AAInfo); 4423 4424 SDValue Base; 4425 SDValue Index; 4426 ISD::MemIndexType IndexType; 4427 SDValue Scale; 4428 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4429 I.getParent()); 4430 4431 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4432 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4433 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4434 // TODO: Make MachineMemOperands aware of scalable 4435 // vectors. 4436 MemoryLocation::UnknownSize, Alignment, AAInfo); 4437 if (!UniformBase) { 4438 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4439 Index = getValue(Ptr); 4440 IndexType = ISD::SIGNED_UNSCALED; 4441 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4442 } 4443 4444 EVT IdxVT = Index.getValueType(); 4445 EVT EltTy = IdxVT.getVectorElementType(); 4446 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4447 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4448 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4449 } 4450 4451 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4452 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4453 Ops, MMO, IndexType, false); 4454 DAG.setRoot(Scatter); 4455 setValue(&I, Scatter); 4456 } 4457 4458 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4459 SDLoc sdl = getCurSDLoc(); 4460 4461 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4462 MaybeAlign &Alignment) { 4463 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4464 Ptr = I.getArgOperand(0); 4465 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4466 Mask = I.getArgOperand(2); 4467 Src0 = I.getArgOperand(3); 4468 }; 4469 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4470 MaybeAlign &Alignment) { 4471 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4472 Ptr = I.getArgOperand(0); 4473 Alignment = None; 4474 Mask = I.getArgOperand(1); 4475 Src0 = I.getArgOperand(2); 4476 }; 4477 4478 Value *PtrOperand, *MaskOperand, *Src0Operand; 4479 MaybeAlign Alignment; 4480 if (IsExpanding) 4481 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4482 else 4483 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4484 4485 SDValue Ptr = getValue(PtrOperand); 4486 SDValue Src0 = getValue(Src0Operand); 4487 SDValue Mask = getValue(MaskOperand); 4488 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4489 4490 EVT VT = Src0.getValueType(); 4491 if (!Alignment) 4492 Alignment = DAG.getEVTAlign(VT); 4493 4494 AAMDNodes AAInfo; 4495 I.getAAMetadata(AAInfo); 4496 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4497 4498 // Do not serialize masked loads of constant memory with anything. 4499 MemoryLocation ML; 4500 if (VT.isScalableVector()) 4501 ML = MemoryLocation::getAfter(PtrOperand); 4502 else 4503 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4504 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4505 AAInfo); 4506 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4507 4508 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4509 4510 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4511 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4512 // TODO: Make MachineMemOperands aware of scalable 4513 // vectors. 4514 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4515 4516 SDValue Load = 4517 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4518 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4519 if (AddToChain) 4520 PendingLoads.push_back(Load.getValue(1)); 4521 setValue(&I, Load); 4522 } 4523 4524 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4525 SDLoc sdl = getCurSDLoc(); 4526 4527 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4528 const Value *Ptr = I.getArgOperand(0); 4529 SDValue Src0 = getValue(I.getArgOperand(3)); 4530 SDValue Mask = getValue(I.getArgOperand(2)); 4531 4532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4533 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4534 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4535 ->getMaybeAlignValue() 4536 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4537 4538 AAMDNodes AAInfo; 4539 I.getAAMetadata(AAInfo); 4540 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4541 4542 SDValue Root = DAG.getRoot(); 4543 SDValue Base; 4544 SDValue Index; 4545 ISD::MemIndexType IndexType; 4546 SDValue Scale; 4547 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4548 I.getParent()); 4549 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4550 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4551 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4552 // TODO: Make MachineMemOperands aware of scalable 4553 // vectors. 4554 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4555 4556 if (!UniformBase) { 4557 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4558 Index = getValue(Ptr); 4559 IndexType = ISD::SIGNED_UNSCALED; 4560 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4561 } 4562 4563 EVT IdxVT = Index.getValueType(); 4564 EVT EltTy = IdxVT.getVectorElementType(); 4565 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4566 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4567 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4568 } 4569 4570 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4571 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4572 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4573 4574 PendingLoads.push_back(Gather.getValue(1)); 4575 setValue(&I, Gather); 4576 } 4577 4578 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4579 SDLoc dl = getCurSDLoc(); 4580 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4581 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4582 SyncScope::ID SSID = I.getSyncScopeID(); 4583 4584 SDValue InChain = getRoot(); 4585 4586 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4587 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4588 4589 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4590 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4591 4592 MachineFunction &MF = DAG.getMachineFunction(); 4593 MachineMemOperand *MMO = MF.getMachineMemOperand( 4594 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4595 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4596 FailureOrdering); 4597 4598 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4599 dl, MemVT, VTs, InChain, 4600 getValue(I.getPointerOperand()), 4601 getValue(I.getCompareOperand()), 4602 getValue(I.getNewValOperand()), MMO); 4603 4604 SDValue OutChain = L.getValue(2); 4605 4606 setValue(&I, L); 4607 DAG.setRoot(OutChain); 4608 } 4609 4610 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4611 SDLoc dl = getCurSDLoc(); 4612 ISD::NodeType NT; 4613 switch (I.getOperation()) { 4614 default: llvm_unreachable("Unknown atomicrmw operation"); 4615 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4616 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4617 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4618 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4619 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4620 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4621 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4622 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4623 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4624 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4625 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4626 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4627 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4628 } 4629 AtomicOrdering Ordering = I.getOrdering(); 4630 SyncScope::ID SSID = I.getSyncScopeID(); 4631 4632 SDValue InChain = getRoot(); 4633 4634 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4635 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4636 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4637 4638 MachineFunction &MF = DAG.getMachineFunction(); 4639 MachineMemOperand *MMO = MF.getMachineMemOperand( 4640 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4641 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4642 4643 SDValue L = 4644 DAG.getAtomic(NT, dl, MemVT, InChain, 4645 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4646 MMO); 4647 4648 SDValue OutChain = L.getValue(1); 4649 4650 setValue(&I, L); 4651 DAG.setRoot(OutChain); 4652 } 4653 4654 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4655 SDLoc dl = getCurSDLoc(); 4656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4657 SDValue Ops[3]; 4658 Ops[0] = getRoot(); 4659 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4660 TLI.getFenceOperandTy(DAG.getDataLayout())); 4661 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4662 TLI.getFenceOperandTy(DAG.getDataLayout())); 4663 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4664 } 4665 4666 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4667 SDLoc dl = getCurSDLoc(); 4668 AtomicOrdering Order = I.getOrdering(); 4669 SyncScope::ID SSID = I.getSyncScopeID(); 4670 4671 SDValue InChain = getRoot(); 4672 4673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4674 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4675 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4676 4677 if (!TLI.supportsUnalignedAtomics() && 4678 I.getAlignment() < MemVT.getSizeInBits() / 8) 4679 report_fatal_error("Cannot generate unaligned atomic load"); 4680 4681 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4682 4683 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4684 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4685 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4686 4687 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4688 4689 SDValue Ptr = getValue(I.getPointerOperand()); 4690 4691 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4692 // TODO: Once this is better exercised by tests, it should be merged with 4693 // the normal path for loads to prevent future divergence. 4694 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4695 if (MemVT != VT) 4696 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4697 4698 setValue(&I, L); 4699 SDValue OutChain = L.getValue(1); 4700 if (!I.isUnordered()) 4701 DAG.setRoot(OutChain); 4702 else 4703 PendingLoads.push_back(OutChain); 4704 return; 4705 } 4706 4707 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4708 Ptr, MMO); 4709 4710 SDValue OutChain = L.getValue(1); 4711 if (MemVT != VT) 4712 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4713 4714 setValue(&I, L); 4715 DAG.setRoot(OutChain); 4716 } 4717 4718 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4719 SDLoc dl = getCurSDLoc(); 4720 4721 AtomicOrdering Ordering = I.getOrdering(); 4722 SyncScope::ID SSID = I.getSyncScopeID(); 4723 4724 SDValue InChain = getRoot(); 4725 4726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4727 EVT MemVT = 4728 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4729 4730 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4731 report_fatal_error("Cannot generate unaligned atomic store"); 4732 4733 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4734 4735 MachineFunction &MF = DAG.getMachineFunction(); 4736 MachineMemOperand *MMO = MF.getMachineMemOperand( 4737 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4738 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4739 4740 SDValue Val = getValue(I.getValueOperand()); 4741 if (Val.getValueType() != MemVT) 4742 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4743 SDValue Ptr = getValue(I.getPointerOperand()); 4744 4745 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4746 // TODO: Once this is better exercised by tests, it should be merged with 4747 // the normal path for stores to prevent future divergence. 4748 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4749 DAG.setRoot(S); 4750 return; 4751 } 4752 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4753 Ptr, Val, MMO); 4754 4755 4756 DAG.setRoot(OutChain); 4757 } 4758 4759 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4760 /// node. 4761 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4762 unsigned Intrinsic) { 4763 // Ignore the callsite's attributes. A specific call site may be marked with 4764 // readnone, but the lowering code will expect the chain based on the 4765 // definition. 4766 const Function *F = I.getCalledFunction(); 4767 bool HasChain = !F->doesNotAccessMemory(); 4768 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4769 4770 // Build the operand list. 4771 SmallVector<SDValue, 8> Ops; 4772 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4773 if (OnlyLoad) { 4774 // We don't need to serialize loads against other loads. 4775 Ops.push_back(DAG.getRoot()); 4776 } else { 4777 Ops.push_back(getRoot()); 4778 } 4779 } 4780 4781 // Info is set by getTgtMemInstrinsic 4782 TargetLowering::IntrinsicInfo Info; 4783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4784 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4785 DAG.getMachineFunction(), 4786 Intrinsic); 4787 4788 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4789 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4790 Info.opc == ISD::INTRINSIC_W_CHAIN) 4791 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4792 TLI.getPointerTy(DAG.getDataLayout()))); 4793 4794 // Add all operands of the call to the operand list. 4795 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4796 const Value *Arg = I.getArgOperand(i); 4797 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4798 Ops.push_back(getValue(Arg)); 4799 continue; 4800 } 4801 4802 // Use TargetConstant instead of a regular constant for immarg. 4803 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4804 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4805 assert(CI->getBitWidth() <= 64 && 4806 "large intrinsic immediates not handled"); 4807 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4808 } else { 4809 Ops.push_back( 4810 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4811 } 4812 } 4813 4814 SmallVector<EVT, 4> ValueVTs; 4815 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4816 4817 if (HasChain) 4818 ValueVTs.push_back(MVT::Other); 4819 4820 SDVTList VTs = DAG.getVTList(ValueVTs); 4821 4822 // Propagate fast-math-flags from IR to node(s). 4823 SDNodeFlags Flags; 4824 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4825 Flags.copyFMF(*FPMO); 4826 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4827 4828 // Create the node. 4829 SDValue Result; 4830 if (IsTgtIntrinsic) { 4831 // This is target intrinsic that touches memory 4832 AAMDNodes AAInfo; 4833 I.getAAMetadata(AAInfo); 4834 Result = 4835 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4836 MachinePointerInfo(Info.ptrVal, Info.offset), 4837 Info.align, Info.flags, Info.size, AAInfo); 4838 } else if (!HasChain) { 4839 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4840 } else if (!I.getType()->isVoidTy()) { 4841 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4842 } else { 4843 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4844 } 4845 4846 if (HasChain) { 4847 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4848 if (OnlyLoad) 4849 PendingLoads.push_back(Chain); 4850 else 4851 DAG.setRoot(Chain); 4852 } 4853 4854 if (!I.getType()->isVoidTy()) { 4855 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4856 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4857 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4858 } else 4859 Result = lowerRangeToAssertZExt(DAG, I, Result); 4860 4861 MaybeAlign Alignment = I.getRetAlign(); 4862 if (!Alignment) 4863 Alignment = F->getAttributes().getRetAlignment(); 4864 // Insert `assertalign` node if there's an alignment. 4865 if (InsertAssertAlign && Alignment) { 4866 Result = 4867 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4868 } 4869 4870 setValue(&I, Result); 4871 } 4872 } 4873 4874 /// GetSignificand - Get the significand and build it into a floating-point 4875 /// number with exponent of 1: 4876 /// 4877 /// Op = (Op & 0x007fffff) | 0x3f800000; 4878 /// 4879 /// where Op is the hexadecimal representation of floating point value. 4880 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4881 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4882 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4883 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4884 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4885 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4886 } 4887 4888 /// GetExponent - Get the exponent: 4889 /// 4890 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4891 /// 4892 /// where Op is the hexadecimal representation of floating point value. 4893 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4894 const TargetLowering &TLI, const SDLoc &dl) { 4895 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4896 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4897 SDValue t1 = DAG.getNode( 4898 ISD::SRL, dl, MVT::i32, t0, 4899 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4900 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4901 DAG.getConstant(127, dl, MVT::i32)); 4902 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4903 } 4904 4905 /// getF32Constant - Get 32-bit floating point constant. 4906 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4907 const SDLoc &dl) { 4908 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4909 MVT::f32); 4910 } 4911 4912 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4913 SelectionDAG &DAG) { 4914 // TODO: What fast-math-flags should be set on the floating-point nodes? 4915 4916 // IntegerPartOfX = ((int32_t)(t0); 4917 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4918 4919 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4920 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4921 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4922 4923 // IntegerPartOfX <<= 23; 4924 IntegerPartOfX = DAG.getNode( 4925 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4926 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4927 DAG.getDataLayout()))); 4928 4929 SDValue TwoToFractionalPartOfX; 4930 if (LimitFloatPrecision <= 6) { 4931 // For floating-point precision of 6: 4932 // 4933 // TwoToFractionalPartOfX = 4934 // 0.997535578f + 4935 // (0.735607626f + 0.252464424f * x) * x; 4936 // 4937 // error 0.0144103317, which is 6 bits 4938 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4939 getF32Constant(DAG, 0x3e814304, dl)); 4940 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4941 getF32Constant(DAG, 0x3f3c50c8, dl)); 4942 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4943 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4944 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4945 } else if (LimitFloatPrecision <= 12) { 4946 // For floating-point precision of 12: 4947 // 4948 // TwoToFractionalPartOfX = 4949 // 0.999892986f + 4950 // (0.696457318f + 4951 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4952 // 4953 // error 0.000107046256, which is 13 to 14 bits 4954 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4955 getF32Constant(DAG, 0x3da235e3, dl)); 4956 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4957 getF32Constant(DAG, 0x3e65b8f3, dl)); 4958 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4959 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4960 getF32Constant(DAG, 0x3f324b07, dl)); 4961 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4962 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4963 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4964 } else { // LimitFloatPrecision <= 18 4965 // For floating-point precision of 18: 4966 // 4967 // TwoToFractionalPartOfX = 4968 // 0.999999982f + 4969 // (0.693148872f + 4970 // (0.240227044f + 4971 // (0.554906021e-1f + 4972 // (0.961591928e-2f + 4973 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4974 // error 2.47208000*10^(-7), which is better than 18 bits 4975 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4976 getF32Constant(DAG, 0x3924b03e, dl)); 4977 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4978 getF32Constant(DAG, 0x3ab24b87, dl)); 4979 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4980 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4981 getF32Constant(DAG, 0x3c1d8c17, dl)); 4982 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4983 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4984 getF32Constant(DAG, 0x3d634a1d, dl)); 4985 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4986 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4987 getF32Constant(DAG, 0x3e75fe14, dl)); 4988 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4989 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4990 getF32Constant(DAG, 0x3f317234, dl)); 4991 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4992 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4993 getF32Constant(DAG, 0x3f800000, dl)); 4994 } 4995 4996 // Add the exponent into the result in integer domain. 4997 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4998 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4999 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5000 } 5001 5002 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5003 /// limited-precision mode. 5004 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5005 const TargetLowering &TLI, SDNodeFlags Flags) { 5006 if (Op.getValueType() == MVT::f32 && 5007 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5008 5009 // Put the exponent in the right bit position for later addition to the 5010 // final result: 5011 // 5012 // t0 = Op * log2(e) 5013 5014 // TODO: What fast-math-flags should be set here? 5015 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5016 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5017 return getLimitedPrecisionExp2(t0, dl, DAG); 5018 } 5019 5020 // No special expansion. 5021 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5022 } 5023 5024 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5025 /// limited-precision mode. 5026 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5027 const TargetLowering &TLI, SDNodeFlags Flags) { 5028 // TODO: What fast-math-flags should be set on the floating-point nodes? 5029 5030 if (Op.getValueType() == MVT::f32 && 5031 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5032 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5033 5034 // Scale the exponent by log(2). 5035 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5036 SDValue LogOfExponent = 5037 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5038 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5039 5040 // Get the significand and build it into a floating-point number with 5041 // exponent of 1. 5042 SDValue X = GetSignificand(DAG, Op1, dl); 5043 5044 SDValue LogOfMantissa; 5045 if (LimitFloatPrecision <= 6) { 5046 // For floating-point precision of 6: 5047 // 5048 // LogofMantissa = 5049 // -1.1609546f + 5050 // (1.4034025f - 0.23903021f * x) * x; 5051 // 5052 // error 0.0034276066, which is better than 8 bits 5053 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5054 getF32Constant(DAG, 0xbe74c456, dl)); 5055 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5056 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5057 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5058 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5059 getF32Constant(DAG, 0x3f949a29, dl)); 5060 } else if (LimitFloatPrecision <= 12) { 5061 // For floating-point precision of 12: 5062 // 5063 // LogOfMantissa = 5064 // -1.7417939f + 5065 // (2.8212026f + 5066 // (-1.4699568f + 5067 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5068 // 5069 // error 0.000061011436, which is 14 bits 5070 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5071 getF32Constant(DAG, 0xbd67b6d6, dl)); 5072 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5073 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5074 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5075 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5076 getF32Constant(DAG, 0x3fbc278b, dl)); 5077 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5078 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5079 getF32Constant(DAG, 0x40348e95, dl)); 5080 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5081 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5082 getF32Constant(DAG, 0x3fdef31a, dl)); 5083 } else { // LimitFloatPrecision <= 18 5084 // For floating-point precision of 18: 5085 // 5086 // LogOfMantissa = 5087 // -2.1072184f + 5088 // (4.2372794f + 5089 // (-3.7029485f + 5090 // (2.2781945f + 5091 // (-0.87823314f + 5092 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5093 // 5094 // error 0.0000023660568, which is better than 18 bits 5095 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5096 getF32Constant(DAG, 0xbc91e5ac, dl)); 5097 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5098 getF32Constant(DAG, 0x3e4350aa, dl)); 5099 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5100 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5101 getF32Constant(DAG, 0x3f60d3e3, dl)); 5102 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5103 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5104 getF32Constant(DAG, 0x4011cdf0, dl)); 5105 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5106 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5107 getF32Constant(DAG, 0x406cfd1c, dl)); 5108 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5109 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5110 getF32Constant(DAG, 0x408797cb, dl)); 5111 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5112 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5113 getF32Constant(DAG, 0x4006dcab, dl)); 5114 } 5115 5116 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5117 } 5118 5119 // No special expansion. 5120 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5121 } 5122 5123 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5124 /// limited-precision mode. 5125 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5126 const TargetLowering &TLI, SDNodeFlags Flags) { 5127 // TODO: What fast-math-flags should be set on the floating-point nodes? 5128 5129 if (Op.getValueType() == MVT::f32 && 5130 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5131 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5132 5133 // Get the exponent. 5134 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5135 5136 // Get the significand and build it into a floating-point number with 5137 // exponent of 1. 5138 SDValue X = GetSignificand(DAG, Op1, dl); 5139 5140 // Different possible minimax approximations of significand in 5141 // floating-point for various degrees of accuracy over [1,2]. 5142 SDValue Log2ofMantissa; 5143 if (LimitFloatPrecision <= 6) { 5144 // For floating-point precision of 6: 5145 // 5146 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5147 // 5148 // error 0.0049451742, which is more than 7 bits 5149 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5150 getF32Constant(DAG, 0xbeb08fe0, dl)); 5151 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5152 getF32Constant(DAG, 0x40019463, dl)); 5153 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5154 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5155 getF32Constant(DAG, 0x3fd6633d, dl)); 5156 } else if (LimitFloatPrecision <= 12) { 5157 // For floating-point precision of 12: 5158 // 5159 // Log2ofMantissa = 5160 // -2.51285454f + 5161 // (4.07009056f + 5162 // (-2.12067489f + 5163 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5164 // 5165 // error 0.0000876136000, which is better than 13 bits 5166 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5167 getF32Constant(DAG, 0xbda7262e, dl)); 5168 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5169 getF32Constant(DAG, 0x3f25280b, dl)); 5170 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5171 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5172 getF32Constant(DAG, 0x4007b923, dl)); 5173 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5174 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5175 getF32Constant(DAG, 0x40823e2f, dl)); 5176 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5177 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5178 getF32Constant(DAG, 0x4020d29c, dl)); 5179 } else { // LimitFloatPrecision <= 18 5180 // For floating-point precision of 18: 5181 // 5182 // Log2ofMantissa = 5183 // -3.0400495f + 5184 // (6.1129976f + 5185 // (-5.3420409f + 5186 // (3.2865683f + 5187 // (-1.2669343f + 5188 // (0.27515199f - 5189 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5190 // 5191 // error 0.0000018516, which is better than 18 bits 5192 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5193 getF32Constant(DAG, 0xbcd2769e, dl)); 5194 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5195 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5196 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5197 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5198 getF32Constant(DAG, 0x3fa22ae7, dl)); 5199 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5200 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5201 getF32Constant(DAG, 0x40525723, dl)); 5202 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5203 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5204 getF32Constant(DAG, 0x40aaf200, dl)); 5205 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5206 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5207 getF32Constant(DAG, 0x40c39dad, dl)); 5208 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5209 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5210 getF32Constant(DAG, 0x4042902c, dl)); 5211 } 5212 5213 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5214 } 5215 5216 // No special expansion. 5217 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5218 } 5219 5220 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5221 /// limited-precision mode. 5222 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5223 const TargetLowering &TLI, SDNodeFlags Flags) { 5224 // TODO: What fast-math-flags should be set on the floating-point nodes? 5225 5226 if (Op.getValueType() == MVT::f32 && 5227 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5228 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5229 5230 // Scale the exponent by log10(2) [0.30102999f]. 5231 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5232 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5233 getF32Constant(DAG, 0x3e9a209a, dl)); 5234 5235 // Get the significand and build it into a floating-point number with 5236 // exponent of 1. 5237 SDValue X = GetSignificand(DAG, Op1, dl); 5238 5239 SDValue Log10ofMantissa; 5240 if (LimitFloatPrecision <= 6) { 5241 // For floating-point precision of 6: 5242 // 5243 // Log10ofMantissa = 5244 // -0.50419619f + 5245 // (0.60948995f - 0.10380950f * x) * x; 5246 // 5247 // error 0.0014886165, which is 6 bits 5248 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5249 getF32Constant(DAG, 0xbdd49a13, dl)); 5250 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5251 getF32Constant(DAG, 0x3f1c0789, dl)); 5252 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5253 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5254 getF32Constant(DAG, 0x3f011300, dl)); 5255 } else if (LimitFloatPrecision <= 12) { 5256 // For floating-point precision of 12: 5257 // 5258 // Log10ofMantissa = 5259 // -0.64831180f + 5260 // (0.91751397f + 5261 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5262 // 5263 // error 0.00019228036, which is better than 12 bits 5264 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5265 getF32Constant(DAG, 0x3d431f31, dl)); 5266 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5267 getF32Constant(DAG, 0x3ea21fb2, dl)); 5268 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5269 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5270 getF32Constant(DAG, 0x3f6ae232, dl)); 5271 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5272 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5273 getF32Constant(DAG, 0x3f25f7c3, dl)); 5274 } else { // LimitFloatPrecision <= 18 5275 // For floating-point precision of 18: 5276 // 5277 // Log10ofMantissa = 5278 // -0.84299375f + 5279 // (1.5327582f + 5280 // (-1.0688956f + 5281 // (0.49102474f + 5282 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5283 // 5284 // error 0.0000037995730, which is better than 18 bits 5285 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5286 getF32Constant(DAG, 0x3c5d51ce, dl)); 5287 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5288 getF32Constant(DAG, 0x3e00685a, dl)); 5289 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5290 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5291 getF32Constant(DAG, 0x3efb6798, dl)); 5292 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5293 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5294 getF32Constant(DAG, 0x3f88d192, dl)); 5295 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5296 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5297 getF32Constant(DAG, 0x3fc4316c, dl)); 5298 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5299 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5300 getF32Constant(DAG, 0x3f57ce70, dl)); 5301 } 5302 5303 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5304 } 5305 5306 // No special expansion. 5307 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5308 } 5309 5310 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5311 /// limited-precision mode. 5312 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5313 const TargetLowering &TLI, SDNodeFlags Flags) { 5314 if (Op.getValueType() == MVT::f32 && 5315 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5316 return getLimitedPrecisionExp2(Op, dl, DAG); 5317 5318 // No special expansion. 5319 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5320 } 5321 5322 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5323 /// limited-precision mode with x == 10.0f. 5324 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5325 SelectionDAG &DAG, const TargetLowering &TLI, 5326 SDNodeFlags Flags) { 5327 bool IsExp10 = false; 5328 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5329 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5330 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5331 APFloat Ten(10.0f); 5332 IsExp10 = LHSC->isExactlyValue(Ten); 5333 } 5334 } 5335 5336 // TODO: What fast-math-flags should be set on the FMUL node? 5337 if (IsExp10) { 5338 // Put the exponent in the right bit position for later addition to the 5339 // final result: 5340 // 5341 // #define LOG2OF10 3.3219281f 5342 // t0 = Op * LOG2OF10; 5343 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5344 getF32Constant(DAG, 0x40549a78, dl)); 5345 return getLimitedPrecisionExp2(t0, dl, DAG); 5346 } 5347 5348 // No special expansion. 5349 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5350 } 5351 5352 /// ExpandPowI - Expand a llvm.powi intrinsic. 5353 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5354 SelectionDAG &DAG) { 5355 // If RHS is a constant, we can expand this out to a multiplication tree, 5356 // otherwise we end up lowering to a call to __powidf2 (for example). When 5357 // optimizing for size, we only want to do this if the expansion would produce 5358 // a small number of multiplies, otherwise we do the full expansion. 5359 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5360 // Get the exponent as a positive value. 5361 unsigned Val = RHSC->getSExtValue(); 5362 if ((int)Val < 0) Val = -Val; 5363 5364 // powi(x, 0) -> 1.0 5365 if (Val == 0) 5366 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5367 5368 bool OptForSize = DAG.shouldOptForSize(); 5369 if (!OptForSize || 5370 // If optimizing for size, don't insert too many multiplies. 5371 // This inserts up to 5 multiplies. 5372 countPopulation(Val) + Log2_32(Val) < 7) { 5373 // We use the simple binary decomposition method to generate the multiply 5374 // sequence. There are more optimal ways to do this (for example, 5375 // powi(x,15) generates one more multiply than it should), but this has 5376 // the benefit of being both really simple and much better than a libcall. 5377 SDValue Res; // Logically starts equal to 1.0 5378 SDValue CurSquare = LHS; 5379 // TODO: Intrinsics should have fast-math-flags that propagate to these 5380 // nodes. 5381 while (Val) { 5382 if (Val & 1) { 5383 if (Res.getNode()) 5384 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5385 else 5386 Res = CurSquare; // 1.0*CurSquare. 5387 } 5388 5389 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5390 CurSquare, CurSquare); 5391 Val >>= 1; 5392 } 5393 5394 // If the original was negative, invert the result, producing 1/(x*x*x). 5395 if (RHSC->getSExtValue() < 0) 5396 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5397 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5398 return Res; 5399 } 5400 } 5401 5402 // Otherwise, expand to a libcall. 5403 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5404 } 5405 5406 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5407 SDValue LHS, SDValue RHS, SDValue Scale, 5408 SelectionDAG &DAG, const TargetLowering &TLI) { 5409 EVT VT = LHS.getValueType(); 5410 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5411 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5412 LLVMContext &Ctx = *DAG.getContext(); 5413 5414 // If the type is legal but the operation isn't, this node might survive all 5415 // the way to operation legalization. If we end up there and we do not have 5416 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5417 // node. 5418 5419 // Coax the legalizer into expanding the node during type legalization instead 5420 // by bumping the size by one bit. This will force it to Promote, enabling the 5421 // early expansion and avoiding the need to expand later. 5422 5423 // We don't have to do this if Scale is 0; that can always be expanded, unless 5424 // it's a saturating signed operation. Those can experience true integer 5425 // division overflow, a case which we must avoid. 5426 5427 // FIXME: We wouldn't have to do this (or any of the early 5428 // expansion/promotion) if it was possible to expand a libcall of an 5429 // illegal type during operation legalization. But it's not, so things 5430 // get a bit hacky. 5431 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5432 if ((ScaleInt > 0 || (Saturating && Signed)) && 5433 (TLI.isTypeLegal(VT) || 5434 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5435 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5436 Opcode, VT, ScaleInt); 5437 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5438 EVT PromVT; 5439 if (VT.isScalarInteger()) 5440 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5441 else if (VT.isVector()) { 5442 PromVT = VT.getVectorElementType(); 5443 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5444 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5445 } else 5446 llvm_unreachable("Wrong VT for DIVFIX?"); 5447 if (Signed) { 5448 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5449 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5450 } else { 5451 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5452 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5453 } 5454 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5455 // For saturating operations, we need to shift up the LHS to get the 5456 // proper saturation width, and then shift down again afterwards. 5457 if (Saturating) 5458 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5459 DAG.getConstant(1, DL, ShiftTy)); 5460 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5461 if (Saturating) 5462 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5463 DAG.getConstant(1, DL, ShiftTy)); 5464 return DAG.getZExtOrTrunc(Res, DL, VT); 5465 } 5466 } 5467 5468 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5469 } 5470 5471 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5472 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5473 static void 5474 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5475 const SDValue &N) { 5476 switch (N.getOpcode()) { 5477 case ISD::CopyFromReg: { 5478 SDValue Op = N.getOperand(1); 5479 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5480 Op.getValueType().getSizeInBits()); 5481 return; 5482 } 5483 case ISD::BITCAST: 5484 case ISD::AssertZext: 5485 case ISD::AssertSext: 5486 case ISD::TRUNCATE: 5487 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5488 return; 5489 case ISD::BUILD_PAIR: 5490 case ISD::BUILD_VECTOR: 5491 case ISD::CONCAT_VECTORS: 5492 for (SDValue Op : N->op_values()) 5493 getUnderlyingArgRegs(Regs, Op); 5494 return; 5495 default: 5496 return; 5497 } 5498 } 5499 5500 /// If the DbgValueInst is a dbg_value of a function argument, create the 5501 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5502 /// instruction selection, they will be inserted to the entry BB. 5503 /// We don't currently support this for variadic dbg_values, as they shouldn't 5504 /// appear for function arguments or in the prologue. 5505 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5506 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5507 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5508 const Argument *Arg = dyn_cast<Argument>(V); 5509 if (!Arg) 5510 return false; 5511 5512 MachineFunction &MF = DAG.getMachineFunction(); 5513 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5514 5515 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5516 // we've been asked to pursue. 5517 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5518 bool Indirect) { 5519 if (Reg.isVirtual() && TM.Options.ValueTrackingVariableLocations) { 5520 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5521 // pointing at the VReg, which will be patched up later. 5522 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5523 auto MIB = BuildMI(MF, DL, Inst); 5524 MIB.addReg(Reg, RegState::Debug); 5525 MIB.addImm(0); 5526 MIB.addMetadata(Variable); 5527 auto *NewDIExpr = FragExpr; 5528 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5529 // the DIExpression. 5530 if (Indirect) 5531 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5532 MIB.addMetadata(NewDIExpr); 5533 return MIB; 5534 } else { 5535 // Create a completely standard DBG_VALUE. 5536 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5537 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5538 } 5539 }; 5540 5541 if (!IsDbgDeclare) { 5542 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5543 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5544 // the entry block. 5545 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5546 if (!IsInEntryBlock) 5547 return false; 5548 5549 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5550 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5551 // variable that also is a param. 5552 // 5553 // Although, if we are at the top of the entry block already, we can still 5554 // emit using ArgDbgValue. This might catch some situations when the 5555 // dbg.value refers to an argument that isn't used in the entry block, so 5556 // any CopyToReg node would be optimized out and the only way to express 5557 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5558 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5559 // we should only emit as ArgDbgValue if the Variable is an argument to the 5560 // current function, and the dbg.value intrinsic is found in the entry 5561 // block. 5562 bool VariableIsFunctionInputArg = Variable->isParameter() && 5563 !DL->getInlinedAt(); 5564 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5565 if (!IsInPrologue && !VariableIsFunctionInputArg) 5566 return false; 5567 5568 // Here we assume that a function argument on IR level only can be used to 5569 // describe one input parameter on source level. If we for example have 5570 // source code like this 5571 // 5572 // struct A { long x, y; }; 5573 // void foo(struct A a, long b) { 5574 // ... 5575 // b = a.x; 5576 // ... 5577 // } 5578 // 5579 // and IR like this 5580 // 5581 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5582 // entry: 5583 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5584 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5585 // call void @llvm.dbg.value(metadata i32 %b, "b", 5586 // ... 5587 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5588 // ... 5589 // 5590 // then the last dbg.value is describing a parameter "b" using a value that 5591 // is an argument. But since we already has used %a1 to describe a parameter 5592 // we should not handle that last dbg.value here (that would result in an 5593 // incorrect hoisting of the DBG_VALUE to the function entry). 5594 // Notice that we allow one dbg.value per IR level argument, to accommodate 5595 // for the situation with fragments above. 5596 if (VariableIsFunctionInputArg) { 5597 unsigned ArgNo = Arg->getArgNo(); 5598 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5599 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5600 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5601 return false; 5602 FuncInfo.DescribedArgs.set(ArgNo); 5603 } 5604 } 5605 5606 bool IsIndirect = false; 5607 Optional<MachineOperand> Op; 5608 // Some arguments' frame index is recorded during argument lowering. 5609 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5610 if (FI != std::numeric_limits<int>::max()) 5611 Op = MachineOperand::CreateFI(FI); 5612 5613 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5614 if (!Op && N.getNode()) { 5615 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5616 Register Reg; 5617 if (ArgRegsAndSizes.size() == 1) 5618 Reg = ArgRegsAndSizes.front().first; 5619 5620 if (Reg && Reg.isVirtual()) { 5621 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5622 Register PR = RegInfo.getLiveInPhysReg(Reg); 5623 if (PR) 5624 Reg = PR; 5625 } 5626 if (Reg) { 5627 Op = MachineOperand::CreateReg(Reg, false); 5628 IsIndirect = IsDbgDeclare; 5629 } 5630 } 5631 5632 if (!Op && N.getNode()) { 5633 // Check if frame index is available. 5634 SDValue LCandidate = peekThroughBitcasts(N); 5635 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5636 if (FrameIndexSDNode *FINode = 5637 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5638 Op = MachineOperand::CreateFI(FINode->getIndex()); 5639 } 5640 5641 if (!Op) { 5642 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5643 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5644 SplitRegs) { 5645 unsigned Offset = 0; 5646 for (auto RegAndSize : SplitRegs) { 5647 // If the expression is already a fragment, the current register 5648 // offset+size might extend beyond the fragment. In this case, only 5649 // the register bits that are inside the fragment are relevant. 5650 int RegFragmentSizeInBits = RegAndSize.second; 5651 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5652 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5653 // The register is entirely outside the expression fragment, 5654 // so is irrelevant for debug info. 5655 if (Offset >= ExprFragmentSizeInBits) 5656 break; 5657 // The register is partially outside the expression fragment, only 5658 // the low bits within the fragment are relevant for debug info. 5659 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5660 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5661 } 5662 } 5663 5664 auto FragmentExpr = DIExpression::createFragmentExpression( 5665 Expr, Offset, RegFragmentSizeInBits); 5666 Offset += RegAndSize.second; 5667 // If a valid fragment expression cannot be created, the variable's 5668 // correct value cannot be determined and so it is set as Undef. 5669 if (!FragmentExpr) { 5670 SDDbgValue *SDV = DAG.getConstantDbgValue( 5671 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5672 DAG.AddDbgValue(SDV, false); 5673 continue; 5674 } 5675 MachineInstr *NewMI = 5676 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5677 FuncInfo.ArgDbgValues.push_back(NewMI); 5678 } 5679 }; 5680 5681 // Check if ValueMap has reg number. 5682 DenseMap<const Value *, Register>::const_iterator 5683 VMI = FuncInfo.ValueMap.find(V); 5684 if (VMI != FuncInfo.ValueMap.end()) { 5685 const auto &TLI = DAG.getTargetLoweringInfo(); 5686 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5687 V->getType(), None); 5688 if (RFV.occupiesMultipleRegs()) { 5689 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5690 return true; 5691 } 5692 5693 Op = MachineOperand::CreateReg(VMI->second, false); 5694 IsIndirect = IsDbgDeclare; 5695 } else if (ArgRegsAndSizes.size() > 1) { 5696 // This was split due to the calling convention, and no virtual register 5697 // mapping exists for the value. 5698 splitMultiRegDbgValue(ArgRegsAndSizes); 5699 return true; 5700 } 5701 } 5702 5703 if (!Op) 5704 return false; 5705 5706 assert(Variable->isValidLocationForIntrinsic(DL) && 5707 "Expected inlined-at fields to agree"); 5708 MachineInstr *NewMI = nullptr; 5709 5710 if (Op->isReg()) 5711 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5712 else 5713 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5714 Variable, Expr); 5715 5716 FuncInfo.ArgDbgValues.push_back(NewMI); 5717 return true; 5718 } 5719 5720 /// Return the appropriate SDDbgValue based on N. 5721 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5722 DILocalVariable *Variable, 5723 DIExpression *Expr, 5724 const DebugLoc &dl, 5725 unsigned DbgSDNodeOrder) { 5726 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5727 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5728 // stack slot locations. 5729 // 5730 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5731 // debug values here after optimization: 5732 // 5733 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5734 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5735 // 5736 // Both describe the direct values of their associated variables. 5737 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5738 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5739 } 5740 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5741 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5742 } 5743 5744 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5745 switch (Intrinsic) { 5746 case Intrinsic::smul_fix: 5747 return ISD::SMULFIX; 5748 case Intrinsic::umul_fix: 5749 return ISD::UMULFIX; 5750 case Intrinsic::smul_fix_sat: 5751 return ISD::SMULFIXSAT; 5752 case Intrinsic::umul_fix_sat: 5753 return ISD::UMULFIXSAT; 5754 case Intrinsic::sdiv_fix: 5755 return ISD::SDIVFIX; 5756 case Intrinsic::udiv_fix: 5757 return ISD::UDIVFIX; 5758 case Intrinsic::sdiv_fix_sat: 5759 return ISD::SDIVFIXSAT; 5760 case Intrinsic::udiv_fix_sat: 5761 return ISD::UDIVFIXSAT; 5762 default: 5763 llvm_unreachable("Unhandled fixed point intrinsic"); 5764 } 5765 } 5766 5767 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5768 const char *FunctionName) { 5769 assert(FunctionName && "FunctionName must not be nullptr"); 5770 SDValue Callee = DAG.getExternalSymbol( 5771 FunctionName, 5772 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5773 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5774 } 5775 5776 /// Given a @llvm.call.preallocated.setup, return the corresponding 5777 /// preallocated call. 5778 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5779 assert(cast<CallBase>(PreallocatedSetup) 5780 ->getCalledFunction() 5781 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5782 "expected call_preallocated_setup Value"); 5783 for (auto *U : PreallocatedSetup->users()) { 5784 auto *UseCall = cast<CallBase>(U); 5785 const Function *Fn = UseCall->getCalledFunction(); 5786 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5787 return UseCall; 5788 } 5789 } 5790 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5791 } 5792 5793 /// Lower the call to the specified intrinsic function. 5794 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5795 unsigned Intrinsic) { 5796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5797 SDLoc sdl = getCurSDLoc(); 5798 DebugLoc dl = getCurDebugLoc(); 5799 SDValue Res; 5800 5801 SDNodeFlags Flags; 5802 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5803 Flags.copyFMF(*FPOp); 5804 5805 switch (Intrinsic) { 5806 default: 5807 // By default, turn this into a target intrinsic node. 5808 visitTargetIntrinsic(I, Intrinsic); 5809 return; 5810 case Intrinsic::vscale: { 5811 match(&I, m_VScale(DAG.getDataLayout())); 5812 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5813 setValue(&I, 5814 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5815 return; 5816 } 5817 case Intrinsic::vastart: visitVAStart(I); return; 5818 case Intrinsic::vaend: visitVAEnd(I); return; 5819 case Intrinsic::vacopy: visitVACopy(I); return; 5820 case Intrinsic::returnaddress: 5821 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5822 TLI.getPointerTy(DAG.getDataLayout()), 5823 getValue(I.getArgOperand(0)))); 5824 return; 5825 case Intrinsic::addressofreturnaddress: 5826 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5827 TLI.getPointerTy(DAG.getDataLayout()))); 5828 return; 5829 case Intrinsic::sponentry: 5830 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5831 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5832 return; 5833 case Intrinsic::frameaddress: 5834 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5835 TLI.getFrameIndexTy(DAG.getDataLayout()), 5836 getValue(I.getArgOperand(0)))); 5837 return; 5838 case Intrinsic::read_volatile_register: 5839 case Intrinsic::read_register: { 5840 Value *Reg = I.getArgOperand(0); 5841 SDValue Chain = getRoot(); 5842 SDValue RegName = 5843 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5844 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5845 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5846 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5847 setValue(&I, Res); 5848 DAG.setRoot(Res.getValue(1)); 5849 return; 5850 } 5851 case Intrinsic::write_register: { 5852 Value *Reg = I.getArgOperand(0); 5853 Value *RegValue = I.getArgOperand(1); 5854 SDValue Chain = getRoot(); 5855 SDValue RegName = 5856 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5857 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5858 RegName, getValue(RegValue))); 5859 return; 5860 } 5861 case Intrinsic::memcpy: { 5862 const auto &MCI = cast<MemCpyInst>(I); 5863 SDValue Op1 = getValue(I.getArgOperand(0)); 5864 SDValue Op2 = getValue(I.getArgOperand(1)); 5865 SDValue Op3 = getValue(I.getArgOperand(2)); 5866 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5867 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5868 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5869 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5870 bool isVol = MCI.isVolatile(); 5871 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5872 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5873 // node. 5874 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5875 AAMDNodes AAInfo; 5876 I.getAAMetadata(AAInfo); 5877 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5878 /* AlwaysInline */ false, isTC, 5879 MachinePointerInfo(I.getArgOperand(0)), 5880 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5881 updateDAGForMaybeTailCall(MC); 5882 return; 5883 } 5884 case Intrinsic::memcpy_inline: { 5885 const auto &MCI = cast<MemCpyInlineInst>(I); 5886 SDValue Dst = getValue(I.getArgOperand(0)); 5887 SDValue Src = getValue(I.getArgOperand(1)); 5888 SDValue Size = getValue(I.getArgOperand(2)); 5889 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5890 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5891 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5892 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5893 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5894 bool isVol = MCI.isVolatile(); 5895 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5896 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5897 // node. 5898 AAMDNodes AAInfo; 5899 I.getAAMetadata(AAInfo); 5900 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5901 /* AlwaysInline */ true, isTC, 5902 MachinePointerInfo(I.getArgOperand(0)), 5903 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5904 updateDAGForMaybeTailCall(MC); 5905 return; 5906 } 5907 case Intrinsic::memset: { 5908 const auto &MSI = cast<MemSetInst>(I); 5909 SDValue Op1 = getValue(I.getArgOperand(0)); 5910 SDValue Op2 = getValue(I.getArgOperand(1)); 5911 SDValue Op3 = getValue(I.getArgOperand(2)); 5912 // @llvm.memset defines 0 and 1 to both mean no alignment. 5913 Align Alignment = MSI.getDestAlign().valueOrOne(); 5914 bool isVol = MSI.isVolatile(); 5915 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5916 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5917 AAMDNodes AAInfo; 5918 I.getAAMetadata(AAInfo); 5919 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5920 MachinePointerInfo(I.getArgOperand(0)), AAInfo); 5921 updateDAGForMaybeTailCall(MS); 5922 return; 5923 } 5924 case Intrinsic::memmove: { 5925 const auto &MMI = cast<MemMoveInst>(I); 5926 SDValue Op1 = getValue(I.getArgOperand(0)); 5927 SDValue Op2 = getValue(I.getArgOperand(1)); 5928 SDValue Op3 = getValue(I.getArgOperand(2)); 5929 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5930 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5931 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5932 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5933 bool isVol = MMI.isVolatile(); 5934 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5935 // FIXME: Support passing different dest/src alignments to the memmove DAG 5936 // node. 5937 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5938 AAMDNodes AAInfo; 5939 I.getAAMetadata(AAInfo); 5940 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5941 isTC, MachinePointerInfo(I.getArgOperand(0)), 5942 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5943 updateDAGForMaybeTailCall(MM); 5944 return; 5945 } 5946 case Intrinsic::memcpy_element_unordered_atomic: { 5947 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5948 SDValue Dst = getValue(MI.getRawDest()); 5949 SDValue Src = getValue(MI.getRawSource()); 5950 SDValue Length = getValue(MI.getLength()); 5951 5952 unsigned DstAlign = MI.getDestAlignment(); 5953 unsigned SrcAlign = MI.getSourceAlignment(); 5954 Type *LengthTy = MI.getLength()->getType(); 5955 unsigned ElemSz = MI.getElementSizeInBytes(); 5956 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5957 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5958 SrcAlign, Length, LengthTy, ElemSz, isTC, 5959 MachinePointerInfo(MI.getRawDest()), 5960 MachinePointerInfo(MI.getRawSource())); 5961 updateDAGForMaybeTailCall(MC); 5962 return; 5963 } 5964 case Intrinsic::memmove_element_unordered_atomic: { 5965 auto &MI = cast<AtomicMemMoveInst>(I); 5966 SDValue Dst = getValue(MI.getRawDest()); 5967 SDValue Src = getValue(MI.getRawSource()); 5968 SDValue Length = getValue(MI.getLength()); 5969 5970 unsigned DstAlign = MI.getDestAlignment(); 5971 unsigned SrcAlign = MI.getSourceAlignment(); 5972 Type *LengthTy = MI.getLength()->getType(); 5973 unsigned ElemSz = MI.getElementSizeInBytes(); 5974 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5975 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5976 SrcAlign, Length, LengthTy, ElemSz, isTC, 5977 MachinePointerInfo(MI.getRawDest()), 5978 MachinePointerInfo(MI.getRawSource())); 5979 updateDAGForMaybeTailCall(MC); 5980 return; 5981 } 5982 case Intrinsic::memset_element_unordered_atomic: { 5983 auto &MI = cast<AtomicMemSetInst>(I); 5984 SDValue Dst = getValue(MI.getRawDest()); 5985 SDValue Val = getValue(MI.getValue()); 5986 SDValue Length = getValue(MI.getLength()); 5987 5988 unsigned DstAlign = MI.getDestAlignment(); 5989 Type *LengthTy = MI.getLength()->getType(); 5990 unsigned ElemSz = MI.getElementSizeInBytes(); 5991 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5992 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5993 LengthTy, ElemSz, isTC, 5994 MachinePointerInfo(MI.getRawDest())); 5995 updateDAGForMaybeTailCall(MC); 5996 return; 5997 } 5998 case Intrinsic::call_preallocated_setup: { 5999 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6000 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6001 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6002 getRoot(), SrcValue); 6003 setValue(&I, Res); 6004 DAG.setRoot(Res); 6005 return; 6006 } 6007 case Intrinsic::call_preallocated_arg: { 6008 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6009 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6010 SDValue Ops[3]; 6011 Ops[0] = getRoot(); 6012 Ops[1] = SrcValue; 6013 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6014 MVT::i32); // arg index 6015 SDValue Res = DAG.getNode( 6016 ISD::PREALLOCATED_ARG, sdl, 6017 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6018 setValue(&I, Res); 6019 DAG.setRoot(Res.getValue(1)); 6020 return; 6021 } 6022 case Intrinsic::dbg_addr: 6023 case Intrinsic::dbg_declare: { 6024 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6025 // they are non-variadic. 6026 const auto &DI = cast<DbgVariableIntrinsic>(I); 6027 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6028 DILocalVariable *Variable = DI.getVariable(); 6029 DIExpression *Expression = DI.getExpression(); 6030 dropDanglingDebugInfo(Variable, Expression); 6031 assert(Variable && "Missing variable"); 6032 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6033 << "\n"); 6034 // Check if address has undef value. 6035 const Value *Address = DI.getVariableLocationOp(0); 6036 if (!Address || isa<UndefValue>(Address) || 6037 (Address->use_empty() && !isa<Argument>(Address))) { 6038 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6039 << " (bad/undef/unused-arg address)\n"); 6040 return; 6041 } 6042 6043 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6044 6045 // Check if this variable can be described by a frame index, typically 6046 // either as a static alloca or a byval parameter. 6047 int FI = std::numeric_limits<int>::max(); 6048 if (const auto *AI = 6049 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6050 if (AI->isStaticAlloca()) { 6051 auto I = FuncInfo.StaticAllocaMap.find(AI); 6052 if (I != FuncInfo.StaticAllocaMap.end()) 6053 FI = I->second; 6054 } 6055 } else if (const auto *Arg = dyn_cast<Argument>( 6056 Address->stripInBoundsConstantOffsets())) { 6057 FI = FuncInfo.getArgumentFrameIndex(Arg); 6058 } 6059 6060 // llvm.dbg.addr is control dependent and always generates indirect 6061 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6062 // the MachineFunction variable table. 6063 if (FI != std::numeric_limits<int>::max()) { 6064 if (Intrinsic == Intrinsic::dbg_addr) { 6065 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6066 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6067 dl, SDNodeOrder); 6068 DAG.AddDbgValue(SDV, isParameter); 6069 } else { 6070 LLVM_DEBUG(dbgs() << "Skipping " << DI 6071 << " (variable info stashed in MF side table)\n"); 6072 } 6073 return; 6074 } 6075 6076 SDValue &N = NodeMap[Address]; 6077 if (!N.getNode() && isa<Argument>(Address)) 6078 // Check unused arguments map. 6079 N = UnusedArgNodeMap[Address]; 6080 SDDbgValue *SDV; 6081 if (N.getNode()) { 6082 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6083 Address = BCI->getOperand(0); 6084 // Parameters are handled specially. 6085 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6086 if (isParameter && FINode) { 6087 // Byval parameter. We have a frame index at this point. 6088 SDV = 6089 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6090 /*IsIndirect*/ true, dl, SDNodeOrder); 6091 } else if (isa<Argument>(Address)) { 6092 // Address is an argument, so try to emit its dbg value using 6093 // virtual register info from the FuncInfo.ValueMap. 6094 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6095 return; 6096 } else { 6097 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6098 true, dl, SDNodeOrder); 6099 } 6100 DAG.AddDbgValue(SDV, isParameter); 6101 } else { 6102 // If Address is an argument then try to emit its dbg value using 6103 // virtual register info from the FuncInfo.ValueMap. 6104 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6105 N)) { 6106 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6107 << " (could not emit func-arg dbg_value)\n"); 6108 } 6109 } 6110 return; 6111 } 6112 case Intrinsic::dbg_label: { 6113 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6114 DILabel *Label = DI.getLabel(); 6115 assert(Label && "Missing label"); 6116 6117 SDDbgLabel *SDV; 6118 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6119 DAG.AddDbgLabel(SDV); 6120 return; 6121 } 6122 case Intrinsic::dbg_value: { 6123 const DbgValueInst &DI = cast<DbgValueInst>(I); 6124 assert(DI.getVariable() && "Missing variable"); 6125 6126 DILocalVariable *Variable = DI.getVariable(); 6127 DIExpression *Expression = DI.getExpression(); 6128 dropDanglingDebugInfo(Variable, Expression); 6129 SmallVector<Value *, 4> Values(DI.getValues()); 6130 if (Values.empty()) 6131 return; 6132 6133 if (std::count(Values.begin(), Values.end(), nullptr)) 6134 return; 6135 6136 bool IsVariadic = DI.hasArgList(); 6137 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6138 SDNodeOrder, IsVariadic)) 6139 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6140 return; 6141 } 6142 6143 case Intrinsic::eh_typeid_for: { 6144 // Find the type id for the given typeinfo. 6145 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6146 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6147 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6148 setValue(&I, Res); 6149 return; 6150 } 6151 6152 case Intrinsic::eh_return_i32: 6153 case Intrinsic::eh_return_i64: 6154 DAG.getMachineFunction().setCallsEHReturn(true); 6155 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6156 MVT::Other, 6157 getControlRoot(), 6158 getValue(I.getArgOperand(0)), 6159 getValue(I.getArgOperand(1)))); 6160 return; 6161 case Intrinsic::eh_unwind_init: 6162 DAG.getMachineFunction().setCallsUnwindInit(true); 6163 return; 6164 case Intrinsic::eh_dwarf_cfa: 6165 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6166 TLI.getPointerTy(DAG.getDataLayout()), 6167 getValue(I.getArgOperand(0)))); 6168 return; 6169 case Intrinsic::eh_sjlj_callsite: { 6170 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6171 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6172 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6173 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6174 6175 MMI.setCurrentCallSite(CI->getZExtValue()); 6176 return; 6177 } 6178 case Intrinsic::eh_sjlj_functioncontext: { 6179 // Get and store the index of the function context. 6180 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6181 AllocaInst *FnCtx = 6182 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6183 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6184 MFI.setFunctionContextIndex(FI); 6185 return; 6186 } 6187 case Intrinsic::eh_sjlj_setjmp: { 6188 SDValue Ops[2]; 6189 Ops[0] = getRoot(); 6190 Ops[1] = getValue(I.getArgOperand(0)); 6191 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6192 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6193 setValue(&I, Op.getValue(0)); 6194 DAG.setRoot(Op.getValue(1)); 6195 return; 6196 } 6197 case Intrinsic::eh_sjlj_longjmp: 6198 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6199 getRoot(), getValue(I.getArgOperand(0)))); 6200 return; 6201 case Intrinsic::eh_sjlj_setup_dispatch: 6202 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6203 getRoot())); 6204 return; 6205 case Intrinsic::masked_gather: 6206 visitMaskedGather(I); 6207 return; 6208 case Intrinsic::masked_load: 6209 visitMaskedLoad(I); 6210 return; 6211 case Intrinsic::masked_scatter: 6212 visitMaskedScatter(I); 6213 return; 6214 case Intrinsic::masked_store: 6215 visitMaskedStore(I); 6216 return; 6217 case Intrinsic::masked_expandload: 6218 visitMaskedLoad(I, true /* IsExpanding */); 6219 return; 6220 case Intrinsic::masked_compressstore: 6221 visitMaskedStore(I, true /* IsCompressing */); 6222 return; 6223 case Intrinsic::powi: 6224 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6225 getValue(I.getArgOperand(1)), DAG)); 6226 return; 6227 case Intrinsic::log: 6228 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6229 return; 6230 case Intrinsic::log2: 6231 setValue(&I, 6232 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6233 return; 6234 case Intrinsic::log10: 6235 setValue(&I, 6236 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6237 return; 6238 case Intrinsic::exp: 6239 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6240 return; 6241 case Intrinsic::exp2: 6242 setValue(&I, 6243 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6244 return; 6245 case Intrinsic::pow: 6246 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6247 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6248 return; 6249 case Intrinsic::sqrt: 6250 case Intrinsic::fabs: 6251 case Intrinsic::sin: 6252 case Intrinsic::cos: 6253 case Intrinsic::floor: 6254 case Intrinsic::ceil: 6255 case Intrinsic::trunc: 6256 case Intrinsic::rint: 6257 case Intrinsic::nearbyint: 6258 case Intrinsic::round: 6259 case Intrinsic::roundeven: 6260 case Intrinsic::canonicalize: { 6261 unsigned Opcode; 6262 switch (Intrinsic) { 6263 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6264 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6265 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6266 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6267 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6268 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6269 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6270 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6271 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6272 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6273 case Intrinsic::round: Opcode = ISD::FROUND; break; 6274 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6275 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6276 } 6277 6278 setValue(&I, DAG.getNode(Opcode, sdl, 6279 getValue(I.getArgOperand(0)).getValueType(), 6280 getValue(I.getArgOperand(0)), Flags)); 6281 return; 6282 } 6283 case Intrinsic::lround: 6284 case Intrinsic::llround: 6285 case Intrinsic::lrint: 6286 case Intrinsic::llrint: { 6287 unsigned Opcode; 6288 switch (Intrinsic) { 6289 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6290 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6291 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6292 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6293 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6294 } 6295 6296 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6297 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6298 getValue(I.getArgOperand(0)))); 6299 return; 6300 } 6301 case Intrinsic::minnum: 6302 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6303 getValue(I.getArgOperand(0)).getValueType(), 6304 getValue(I.getArgOperand(0)), 6305 getValue(I.getArgOperand(1)), Flags)); 6306 return; 6307 case Intrinsic::maxnum: 6308 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6309 getValue(I.getArgOperand(0)).getValueType(), 6310 getValue(I.getArgOperand(0)), 6311 getValue(I.getArgOperand(1)), Flags)); 6312 return; 6313 case Intrinsic::minimum: 6314 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6315 getValue(I.getArgOperand(0)).getValueType(), 6316 getValue(I.getArgOperand(0)), 6317 getValue(I.getArgOperand(1)), Flags)); 6318 return; 6319 case Intrinsic::maximum: 6320 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6321 getValue(I.getArgOperand(0)).getValueType(), 6322 getValue(I.getArgOperand(0)), 6323 getValue(I.getArgOperand(1)), Flags)); 6324 return; 6325 case Intrinsic::copysign: 6326 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6327 getValue(I.getArgOperand(0)).getValueType(), 6328 getValue(I.getArgOperand(0)), 6329 getValue(I.getArgOperand(1)), Flags)); 6330 return; 6331 case Intrinsic::arithmetic_fence: { 6332 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6333 getValue(I.getArgOperand(0)).getValueType(), 6334 getValue(I.getArgOperand(0)), Flags)); 6335 return; 6336 } 6337 case Intrinsic::fma: 6338 setValue(&I, DAG.getNode( 6339 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6340 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6341 getValue(I.getArgOperand(2)), Flags)); 6342 return; 6343 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6344 case Intrinsic::INTRINSIC: 6345 #include "llvm/IR/ConstrainedOps.def" 6346 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6347 return; 6348 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6349 #include "llvm/IR/VPIntrinsics.def" 6350 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6351 return; 6352 case Intrinsic::fmuladd: { 6353 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6354 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6355 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6356 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6357 getValue(I.getArgOperand(0)).getValueType(), 6358 getValue(I.getArgOperand(0)), 6359 getValue(I.getArgOperand(1)), 6360 getValue(I.getArgOperand(2)), Flags)); 6361 } else { 6362 // TODO: Intrinsic calls should have fast-math-flags. 6363 SDValue Mul = DAG.getNode( 6364 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6365 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6366 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6367 getValue(I.getArgOperand(0)).getValueType(), 6368 Mul, getValue(I.getArgOperand(2)), Flags); 6369 setValue(&I, Add); 6370 } 6371 return; 6372 } 6373 case Intrinsic::convert_to_fp16: 6374 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6375 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6376 getValue(I.getArgOperand(0)), 6377 DAG.getTargetConstant(0, sdl, 6378 MVT::i32)))); 6379 return; 6380 case Intrinsic::convert_from_fp16: 6381 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6382 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6383 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6384 getValue(I.getArgOperand(0))))); 6385 return; 6386 case Intrinsic::fptosi_sat: { 6387 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6388 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6389 getValue(I.getArgOperand(0)), 6390 DAG.getValueType(VT.getScalarType()))); 6391 return; 6392 } 6393 case Intrinsic::fptoui_sat: { 6394 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6395 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6396 getValue(I.getArgOperand(0)), 6397 DAG.getValueType(VT.getScalarType()))); 6398 return; 6399 } 6400 case Intrinsic::set_rounding: 6401 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6402 {getRoot(), getValue(I.getArgOperand(0))}); 6403 setValue(&I, Res); 6404 DAG.setRoot(Res.getValue(0)); 6405 return; 6406 case Intrinsic::pcmarker: { 6407 SDValue Tmp = getValue(I.getArgOperand(0)); 6408 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6409 return; 6410 } 6411 case Intrinsic::readcyclecounter: { 6412 SDValue Op = getRoot(); 6413 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6414 DAG.getVTList(MVT::i64, MVT::Other), Op); 6415 setValue(&I, Res); 6416 DAG.setRoot(Res.getValue(1)); 6417 return; 6418 } 6419 case Intrinsic::bitreverse: 6420 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6421 getValue(I.getArgOperand(0)).getValueType(), 6422 getValue(I.getArgOperand(0)))); 6423 return; 6424 case Intrinsic::bswap: 6425 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6426 getValue(I.getArgOperand(0)).getValueType(), 6427 getValue(I.getArgOperand(0)))); 6428 return; 6429 case Intrinsic::cttz: { 6430 SDValue Arg = getValue(I.getArgOperand(0)); 6431 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6432 EVT Ty = Arg.getValueType(); 6433 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6434 sdl, Ty, Arg)); 6435 return; 6436 } 6437 case Intrinsic::ctlz: { 6438 SDValue Arg = getValue(I.getArgOperand(0)); 6439 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6440 EVT Ty = Arg.getValueType(); 6441 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6442 sdl, Ty, Arg)); 6443 return; 6444 } 6445 case Intrinsic::ctpop: { 6446 SDValue Arg = getValue(I.getArgOperand(0)); 6447 EVT Ty = Arg.getValueType(); 6448 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6449 return; 6450 } 6451 case Intrinsic::fshl: 6452 case Intrinsic::fshr: { 6453 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6454 SDValue X = getValue(I.getArgOperand(0)); 6455 SDValue Y = getValue(I.getArgOperand(1)); 6456 SDValue Z = getValue(I.getArgOperand(2)); 6457 EVT VT = X.getValueType(); 6458 6459 if (X == Y) { 6460 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6461 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6462 } else { 6463 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6464 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6465 } 6466 return; 6467 } 6468 case Intrinsic::sadd_sat: { 6469 SDValue Op1 = getValue(I.getArgOperand(0)); 6470 SDValue Op2 = getValue(I.getArgOperand(1)); 6471 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6472 return; 6473 } 6474 case Intrinsic::uadd_sat: { 6475 SDValue Op1 = getValue(I.getArgOperand(0)); 6476 SDValue Op2 = getValue(I.getArgOperand(1)); 6477 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6478 return; 6479 } 6480 case Intrinsic::ssub_sat: { 6481 SDValue Op1 = getValue(I.getArgOperand(0)); 6482 SDValue Op2 = getValue(I.getArgOperand(1)); 6483 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6484 return; 6485 } 6486 case Intrinsic::usub_sat: { 6487 SDValue Op1 = getValue(I.getArgOperand(0)); 6488 SDValue Op2 = getValue(I.getArgOperand(1)); 6489 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6490 return; 6491 } 6492 case Intrinsic::sshl_sat: { 6493 SDValue Op1 = getValue(I.getArgOperand(0)); 6494 SDValue Op2 = getValue(I.getArgOperand(1)); 6495 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6496 return; 6497 } 6498 case Intrinsic::ushl_sat: { 6499 SDValue Op1 = getValue(I.getArgOperand(0)); 6500 SDValue Op2 = getValue(I.getArgOperand(1)); 6501 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6502 return; 6503 } 6504 case Intrinsic::smul_fix: 6505 case Intrinsic::umul_fix: 6506 case Intrinsic::smul_fix_sat: 6507 case Intrinsic::umul_fix_sat: { 6508 SDValue Op1 = getValue(I.getArgOperand(0)); 6509 SDValue Op2 = getValue(I.getArgOperand(1)); 6510 SDValue Op3 = getValue(I.getArgOperand(2)); 6511 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6512 Op1.getValueType(), Op1, Op2, Op3)); 6513 return; 6514 } 6515 case Intrinsic::sdiv_fix: 6516 case Intrinsic::udiv_fix: 6517 case Intrinsic::sdiv_fix_sat: 6518 case Intrinsic::udiv_fix_sat: { 6519 SDValue Op1 = getValue(I.getArgOperand(0)); 6520 SDValue Op2 = getValue(I.getArgOperand(1)); 6521 SDValue Op3 = getValue(I.getArgOperand(2)); 6522 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6523 Op1, Op2, Op3, DAG, TLI)); 6524 return; 6525 } 6526 case Intrinsic::smax: { 6527 SDValue Op1 = getValue(I.getArgOperand(0)); 6528 SDValue Op2 = getValue(I.getArgOperand(1)); 6529 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6530 return; 6531 } 6532 case Intrinsic::smin: { 6533 SDValue Op1 = getValue(I.getArgOperand(0)); 6534 SDValue Op2 = getValue(I.getArgOperand(1)); 6535 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6536 return; 6537 } 6538 case Intrinsic::umax: { 6539 SDValue Op1 = getValue(I.getArgOperand(0)); 6540 SDValue Op2 = getValue(I.getArgOperand(1)); 6541 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6542 return; 6543 } 6544 case Intrinsic::umin: { 6545 SDValue Op1 = getValue(I.getArgOperand(0)); 6546 SDValue Op2 = getValue(I.getArgOperand(1)); 6547 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6548 return; 6549 } 6550 case Intrinsic::abs: { 6551 // TODO: Preserve "int min is poison" arg in SDAG? 6552 SDValue Op1 = getValue(I.getArgOperand(0)); 6553 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6554 return; 6555 } 6556 case Intrinsic::stacksave: { 6557 SDValue Op = getRoot(); 6558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6559 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6560 setValue(&I, Res); 6561 DAG.setRoot(Res.getValue(1)); 6562 return; 6563 } 6564 case Intrinsic::stackrestore: 6565 Res = getValue(I.getArgOperand(0)); 6566 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6567 return; 6568 case Intrinsic::get_dynamic_area_offset: { 6569 SDValue Op = getRoot(); 6570 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6571 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6572 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6573 // target. 6574 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6575 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6576 " intrinsic!"); 6577 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6578 Op); 6579 DAG.setRoot(Op); 6580 setValue(&I, Res); 6581 return; 6582 } 6583 case Intrinsic::stackguard: { 6584 MachineFunction &MF = DAG.getMachineFunction(); 6585 const Module &M = *MF.getFunction().getParent(); 6586 SDValue Chain = getRoot(); 6587 if (TLI.useLoadStackGuardNode()) { 6588 Res = getLoadStackGuard(DAG, sdl, Chain); 6589 } else { 6590 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6591 const Value *Global = TLI.getSDagStackGuard(M); 6592 Align Align = DL->getPrefTypeAlign(Global->getType()); 6593 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6594 MachinePointerInfo(Global, 0), Align, 6595 MachineMemOperand::MOVolatile); 6596 } 6597 if (TLI.useStackGuardXorFP()) 6598 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6599 DAG.setRoot(Chain); 6600 setValue(&I, Res); 6601 return; 6602 } 6603 case Intrinsic::stackprotector: { 6604 // Emit code into the DAG to store the stack guard onto the stack. 6605 MachineFunction &MF = DAG.getMachineFunction(); 6606 MachineFrameInfo &MFI = MF.getFrameInfo(); 6607 SDValue Src, Chain = getRoot(); 6608 6609 if (TLI.useLoadStackGuardNode()) 6610 Src = getLoadStackGuard(DAG, sdl, Chain); 6611 else 6612 Src = getValue(I.getArgOperand(0)); // The guard's value. 6613 6614 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6615 6616 int FI = FuncInfo.StaticAllocaMap[Slot]; 6617 MFI.setStackProtectorIndex(FI); 6618 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6619 6620 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6621 6622 // Store the stack protector onto the stack. 6623 Res = DAG.getStore( 6624 Chain, sdl, Src, FIN, 6625 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6626 MaybeAlign(), MachineMemOperand::MOVolatile); 6627 setValue(&I, Res); 6628 DAG.setRoot(Res); 6629 return; 6630 } 6631 case Intrinsic::objectsize: 6632 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6633 6634 case Intrinsic::is_constant: 6635 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6636 6637 case Intrinsic::annotation: 6638 case Intrinsic::ptr_annotation: 6639 case Intrinsic::launder_invariant_group: 6640 case Intrinsic::strip_invariant_group: 6641 // Drop the intrinsic, but forward the value 6642 setValue(&I, getValue(I.getOperand(0))); 6643 return; 6644 6645 case Intrinsic::assume: 6646 case Intrinsic::experimental_noalias_scope_decl: 6647 case Intrinsic::var_annotation: 6648 case Intrinsic::sideeffect: 6649 // Discard annotate attributes, noalias scope declarations, assumptions, and 6650 // artificial side-effects. 6651 return; 6652 6653 case Intrinsic::codeview_annotation: { 6654 // Emit a label associated with this metadata. 6655 MachineFunction &MF = DAG.getMachineFunction(); 6656 MCSymbol *Label = 6657 MF.getMMI().getContext().createTempSymbol("annotation", true); 6658 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6659 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6660 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6661 DAG.setRoot(Res); 6662 return; 6663 } 6664 6665 case Intrinsic::init_trampoline: { 6666 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6667 6668 SDValue Ops[6]; 6669 Ops[0] = getRoot(); 6670 Ops[1] = getValue(I.getArgOperand(0)); 6671 Ops[2] = getValue(I.getArgOperand(1)); 6672 Ops[3] = getValue(I.getArgOperand(2)); 6673 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6674 Ops[5] = DAG.getSrcValue(F); 6675 6676 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6677 6678 DAG.setRoot(Res); 6679 return; 6680 } 6681 case Intrinsic::adjust_trampoline: 6682 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6683 TLI.getPointerTy(DAG.getDataLayout()), 6684 getValue(I.getArgOperand(0)))); 6685 return; 6686 case Intrinsic::gcroot: { 6687 assert(DAG.getMachineFunction().getFunction().hasGC() && 6688 "only valid in functions with gc specified, enforced by Verifier"); 6689 assert(GFI && "implied by previous"); 6690 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6691 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6692 6693 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6694 GFI->addStackRoot(FI->getIndex(), TypeMap); 6695 return; 6696 } 6697 case Intrinsic::gcread: 6698 case Intrinsic::gcwrite: 6699 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6700 case Intrinsic::flt_rounds: 6701 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6702 setValue(&I, Res); 6703 DAG.setRoot(Res.getValue(1)); 6704 return; 6705 6706 case Intrinsic::expect: 6707 // Just replace __builtin_expect(exp, c) with EXP. 6708 setValue(&I, getValue(I.getArgOperand(0))); 6709 return; 6710 6711 case Intrinsic::ubsantrap: 6712 case Intrinsic::debugtrap: 6713 case Intrinsic::trap: { 6714 StringRef TrapFuncName = 6715 I.getAttributes() 6716 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6717 .getValueAsString(); 6718 if (TrapFuncName.empty()) { 6719 switch (Intrinsic) { 6720 case Intrinsic::trap: 6721 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6722 break; 6723 case Intrinsic::debugtrap: 6724 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6725 break; 6726 case Intrinsic::ubsantrap: 6727 DAG.setRoot(DAG.getNode( 6728 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6729 DAG.getTargetConstant( 6730 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6731 MVT::i32))); 6732 break; 6733 default: llvm_unreachable("unknown trap intrinsic"); 6734 } 6735 return; 6736 } 6737 TargetLowering::ArgListTy Args; 6738 if (Intrinsic == Intrinsic::ubsantrap) { 6739 Args.push_back(TargetLoweringBase::ArgListEntry()); 6740 Args[0].Val = I.getArgOperand(0); 6741 Args[0].Node = getValue(Args[0].Val); 6742 Args[0].Ty = Args[0].Val->getType(); 6743 } 6744 6745 TargetLowering::CallLoweringInfo CLI(DAG); 6746 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6747 CallingConv::C, I.getType(), 6748 DAG.getExternalSymbol(TrapFuncName.data(), 6749 TLI.getPointerTy(DAG.getDataLayout())), 6750 std::move(Args)); 6751 6752 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6753 DAG.setRoot(Result.second); 6754 return; 6755 } 6756 6757 case Intrinsic::uadd_with_overflow: 6758 case Intrinsic::sadd_with_overflow: 6759 case Intrinsic::usub_with_overflow: 6760 case Intrinsic::ssub_with_overflow: 6761 case Intrinsic::umul_with_overflow: 6762 case Intrinsic::smul_with_overflow: { 6763 ISD::NodeType Op; 6764 switch (Intrinsic) { 6765 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6766 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6767 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6768 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6769 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6770 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6771 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6772 } 6773 SDValue Op1 = getValue(I.getArgOperand(0)); 6774 SDValue Op2 = getValue(I.getArgOperand(1)); 6775 6776 EVT ResultVT = Op1.getValueType(); 6777 EVT OverflowVT = MVT::i1; 6778 if (ResultVT.isVector()) 6779 OverflowVT = EVT::getVectorVT( 6780 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6781 6782 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6783 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6784 return; 6785 } 6786 case Intrinsic::prefetch: { 6787 SDValue Ops[5]; 6788 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6789 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6790 Ops[0] = DAG.getRoot(); 6791 Ops[1] = getValue(I.getArgOperand(0)); 6792 Ops[2] = getValue(I.getArgOperand(1)); 6793 Ops[3] = getValue(I.getArgOperand(2)); 6794 Ops[4] = getValue(I.getArgOperand(3)); 6795 SDValue Result = DAG.getMemIntrinsicNode( 6796 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6797 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6798 /* align */ None, Flags); 6799 6800 // Chain the prefetch in parallell with any pending loads, to stay out of 6801 // the way of later optimizations. 6802 PendingLoads.push_back(Result); 6803 Result = getRoot(); 6804 DAG.setRoot(Result); 6805 return; 6806 } 6807 case Intrinsic::lifetime_start: 6808 case Intrinsic::lifetime_end: { 6809 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6810 // Stack coloring is not enabled in O0, discard region information. 6811 if (TM.getOptLevel() == CodeGenOpt::None) 6812 return; 6813 6814 const int64_t ObjectSize = 6815 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6816 Value *const ObjectPtr = I.getArgOperand(1); 6817 SmallVector<const Value *, 4> Allocas; 6818 getUnderlyingObjects(ObjectPtr, Allocas); 6819 6820 for (const Value *Alloca : Allocas) { 6821 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6822 6823 // Could not find an Alloca. 6824 if (!LifetimeObject) 6825 continue; 6826 6827 // First check that the Alloca is static, otherwise it won't have a 6828 // valid frame index. 6829 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6830 if (SI == FuncInfo.StaticAllocaMap.end()) 6831 return; 6832 6833 const int FrameIndex = SI->second; 6834 int64_t Offset; 6835 if (GetPointerBaseWithConstantOffset( 6836 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6837 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6838 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6839 Offset); 6840 DAG.setRoot(Res); 6841 } 6842 return; 6843 } 6844 case Intrinsic::pseudoprobe: { 6845 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6846 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6847 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6848 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6849 DAG.setRoot(Res); 6850 return; 6851 } 6852 case Intrinsic::invariant_start: 6853 // Discard region information. 6854 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6855 return; 6856 case Intrinsic::invariant_end: 6857 // Discard region information. 6858 return; 6859 case Intrinsic::clear_cache: 6860 /// FunctionName may be null. 6861 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6862 lowerCallToExternalSymbol(I, FunctionName); 6863 return; 6864 case Intrinsic::donothing: 6865 case Intrinsic::seh_try_begin: 6866 case Intrinsic::seh_scope_begin: 6867 case Intrinsic::seh_try_end: 6868 case Intrinsic::seh_scope_end: 6869 // ignore 6870 return; 6871 case Intrinsic::experimental_stackmap: 6872 visitStackmap(I); 6873 return; 6874 case Intrinsic::experimental_patchpoint_void: 6875 case Intrinsic::experimental_patchpoint_i64: 6876 visitPatchpoint(I); 6877 return; 6878 case Intrinsic::experimental_gc_statepoint: 6879 LowerStatepoint(cast<GCStatepointInst>(I)); 6880 return; 6881 case Intrinsic::experimental_gc_result: 6882 visitGCResult(cast<GCResultInst>(I)); 6883 return; 6884 case Intrinsic::experimental_gc_relocate: 6885 visitGCRelocate(cast<GCRelocateInst>(I)); 6886 return; 6887 case Intrinsic::instrprof_increment: 6888 llvm_unreachable("instrprof failed to lower an increment"); 6889 case Intrinsic::instrprof_value_profile: 6890 llvm_unreachable("instrprof failed to lower a value profiling call"); 6891 case Intrinsic::localescape: { 6892 MachineFunction &MF = DAG.getMachineFunction(); 6893 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6894 6895 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6896 // is the same on all targets. 6897 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6898 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6899 if (isa<ConstantPointerNull>(Arg)) 6900 continue; // Skip null pointers. They represent a hole in index space. 6901 AllocaInst *Slot = cast<AllocaInst>(Arg); 6902 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6903 "can only escape static allocas"); 6904 int FI = FuncInfo.StaticAllocaMap[Slot]; 6905 MCSymbol *FrameAllocSym = 6906 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6907 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6908 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6909 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6910 .addSym(FrameAllocSym) 6911 .addFrameIndex(FI); 6912 } 6913 6914 return; 6915 } 6916 6917 case Intrinsic::localrecover: { 6918 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6919 MachineFunction &MF = DAG.getMachineFunction(); 6920 6921 // Get the symbol that defines the frame offset. 6922 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6923 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6924 unsigned IdxVal = 6925 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6926 MCSymbol *FrameAllocSym = 6927 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6928 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6929 6930 Value *FP = I.getArgOperand(1); 6931 SDValue FPVal = getValue(FP); 6932 EVT PtrVT = FPVal.getValueType(); 6933 6934 // Create a MCSymbol for the label to avoid any target lowering 6935 // that would make this PC relative. 6936 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6937 SDValue OffsetVal = 6938 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6939 6940 // Add the offset to the FP. 6941 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6942 setValue(&I, Add); 6943 6944 return; 6945 } 6946 6947 case Intrinsic::eh_exceptionpointer: 6948 case Intrinsic::eh_exceptioncode: { 6949 // Get the exception pointer vreg, copy from it, and resize it to fit. 6950 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6951 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6952 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6953 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6954 SDValue N = 6955 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6956 if (Intrinsic == Intrinsic::eh_exceptioncode) 6957 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6958 setValue(&I, N); 6959 return; 6960 } 6961 case Intrinsic::xray_customevent: { 6962 // Here we want to make sure that the intrinsic behaves as if it has a 6963 // specific calling convention, and only for x86_64. 6964 // FIXME: Support other platforms later. 6965 const auto &Triple = DAG.getTarget().getTargetTriple(); 6966 if (Triple.getArch() != Triple::x86_64) 6967 return; 6968 6969 SDLoc DL = getCurSDLoc(); 6970 SmallVector<SDValue, 8> Ops; 6971 6972 // We want to say that we always want the arguments in registers. 6973 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6974 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6975 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6976 SDValue Chain = getRoot(); 6977 Ops.push_back(LogEntryVal); 6978 Ops.push_back(StrSizeVal); 6979 Ops.push_back(Chain); 6980 6981 // We need to enforce the calling convention for the callsite, so that 6982 // argument ordering is enforced correctly, and that register allocation can 6983 // see that some registers may be assumed clobbered and have to preserve 6984 // them across calls to the intrinsic. 6985 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6986 DL, NodeTys, Ops); 6987 SDValue patchableNode = SDValue(MN, 0); 6988 DAG.setRoot(patchableNode); 6989 setValue(&I, patchableNode); 6990 return; 6991 } 6992 case Intrinsic::xray_typedevent: { 6993 // Here we want to make sure that the intrinsic behaves as if it has a 6994 // specific calling convention, and only for x86_64. 6995 // FIXME: Support other platforms later. 6996 const auto &Triple = DAG.getTarget().getTargetTriple(); 6997 if (Triple.getArch() != Triple::x86_64) 6998 return; 6999 7000 SDLoc DL = getCurSDLoc(); 7001 SmallVector<SDValue, 8> Ops; 7002 7003 // We want to say that we always want the arguments in registers. 7004 // It's unclear to me how manipulating the selection DAG here forces callers 7005 // to provide arguments in registers instead of on the stack. 7006 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7007 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7008 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7009 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7010 SDValue Chain = getRoot(); 7011 Ops.push_back(LogTypeId); 7012 Ops.push_back(LogEntryVal); 7013 Ops.push_back(StrSizeVal); 7014 Ops.push_back(Chain); 7015 7016 // We need to enforce the calling convention for the callsite, so that 7017 // argument ordering is enforced correctly, and that register allocation can 7018 // see that some registers may be assumed clobbered and have to preserve 7019 // them across calls to the intrinsic. 7020 MachineSDNode *MN = DAG.getMachineNode( 7021 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 7022 SDValue patchableNode = SDValue(MN, 0); 7023 DAG.setRoot(patchableNode); 7024 setValue(&I, patchableNode); 7025 return; 7026 } 7027 case Intrinsic::experimental_deoptimize: 7028 LowerDeoptimizeCall(&I); 7029 return; 7030 case Intrinsic::experimental_stepvector: 7031 visitStepVector(I); 7032 return; 7033 case Intrinsic::vector_reduce_fadd: 7034 case Intrinsic::vector_reduce_fmul: 7035 case Intrinsic::vector_reduce_add: 7036 case Intrinsic::vector_reduce_mul: 7037 case Intrinsic::vector_reduce_and: 7038 case Intrinsic::vector_reduce_or: 7039 case Intrinsic::vector_reduce_xor: 7040 case Intrinsic::vector_reduce_smax: 7041 case Intrinsic::vector_reduce_smin: 7042 case Intrinsic::vector_reduce_umax: 7043 case Intrinsic::vector_reduce_umin: 7044 case Intrinsic::vector_reduce_fmax: 7045 case Intrinsic::vector_reduce_fmin: 7046 visitVectorReduce(I, Intrinsic); 7047 return; 7048 7049 case Intrinsic::icall_branch_funnel: { 7050 SmallVector<SDValue, 16> Ops; 7051 Ops.push_back(getValue(I.getArgOperand(0))); 7052 7053 int64_t Offset; 7054 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7055 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7056 if (!Base) 7057 report_fatal_error( 7058 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7059 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 7060 7061 struct BranchFunnelTarget { 7062 int64_t Offset; 7063 SDValue Target; 7064 }; 7065 SmallVector<BranchFunnelTarget, 8> Targets; 7066 7067 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 7068 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7069 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7070 if (ElemBase != Base) 7071 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7072 "to the same GlobalValue"); 7073 7074 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7075 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7076 if (!GA) 7077 report_fatal_error( 7078 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7079 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7080 GA->getGlobal(), getCurSDLoc(), 7081 Val.getValueType(), GA->getOffset())}); 7082 } 7083 llvm::sort(Targets, 7084 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7085 return T1.Offset < T2.Offset; 7086 }); 7087 7088 for (auto &T : Targets) { 7089 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 7090 Ops.push_back(T.Target); 7091 } 7092 7093 Ops.push_back(DAG.getRoot()); // Chain 7094 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 7095 getCurSDLoc(), MVT::Other, Ops), 7096 0); 7097 DAG.setRoot(N); 7098 setValue(&I, N); 7099 HasTailCall = true; 7100 return; 7101 } 7102 7103 case Intrinsic::wasm_landingpad_index: 7104 // Information this intrinsic contained has been transferred to 7105 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7106 // delete it now. 7107 return; 7108 7109 case Intrinsic::aarch64_settag: 7110 case Intrinsic::aarch64_settag_zero: { 7111 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7112 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7113 SDValue Val = TSI.EmitTargetCodeForSetTag( 7114 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 7115 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7116 ZeroMemory); 7117 DAG.setRoot(Val); 7118 setValue(&I, Val); 7119 return; 7120 } 7121 case Intrinsic::ptrmask: { 7122 SDValue Ptr = getValue(I.getOperand(0)); 7123 SDValue Const = getValue(I.getOperand(1)); 7124 7125 EVT PtrVT = Ptr.getValueType(); 7126 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 7127 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 7128 return; 7129 } 7130 case Intrinsic::get_active_lane_mask: { 7131 auto DL = getCurSDLoc(); 7132 SDValue Index = getValue(I.getOperand(0)); 7133 SDValue TripCount = getValue(I.getOperand(1)); 7134 Type *ElementTy = I.getOperand(0)->getType(); 7135 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7136 unsigned VecWidth = VT.getVectorNumElements(); 7137 7138 SmallVector<SDValue, 16> OpsTripCount; 7139 SmallVector<SDValue, 16> OpsIndex; 7140 SmallVector<SDValue, 16> OpsStepConstants; 7141 for (unsigned i = 0; i < VecWidth; i++) { 7142 OpsTripCount.push_back(TripCount); 7143 OpsIndex.push_back(Index); 7144 OpsStepConstants.push_back( 7145 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 7146 } 7147 7148 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 7149 7150 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 7151 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 7152 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 7153 SDValue VectorInduction = DAG.getNode( 7154 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 7155 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 7156 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 7157 VectorTripCount, ISD::CondCode::SETULT); 7158 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 7159 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 7160 SetCC)); 7161 return; 7162 } 7163 case Intrinsic::experimental_vector_insert: { 7164 auto DL = getCurSDLoc(); 7165 7166 SDValue Vec = getValue(I.getOperand(0)); 7167 SDValue SubVec = getValue(I.getOperand(1)); 7168 SDValue Index = getValue(I.getOperand(2)); 7169 7170 // The intrinsic's index type is i64, but the SDNode requires an index type 7171 // suitable for the target. Convert the index as required. 7172 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7173 if (Index.getValueType() != VectorIdxTy) 7174 Index = DAG.getVectorIdxConstant( 7175 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7176 7177 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7178 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec, 7179 Index)); 7180 return; 7181 } 7182 case Intrinsic::experimental_vector_extract: { 7183 auto DL = getCurSDLoc(); 7184 7185 SDValue Vec = getValue(I.getOperand(0)); 7186 SDValue Index = getValue(I.getOperand(1)); 7187 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7188 7189 // The intrinsic's index type is i64, but the SDNode requires an index type 7190 // suitable for the target. Convert the index as required. 7191 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7192 if (Index.getValueType() != VectorIdxTy) 7193 Index = DAG.getVectorIdxConstant( 7194 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7195 7196 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index)); 7197 return; 7198 } 7199 case Intrinsic::experimental_vector_reverse: 7200 visitVectorReverse(I); 7201 return; 7202 case Intrinsic::experimental_vector_splice: 7203 visitVectorSplice(I); 7204 return; 7205 } 7206 } 7207 7208 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7209 const ConstrainedFPIntrinsic &FPI) { 7210 SDLoc sdl = getCurSDLoc(); 7211 7212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7213 SmallVector<EVT, 4> ValueVTs; 7214 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7215 ValueVTs.push_back(MVT::Other); // Out chain 7216 7217 // We do not need to serialize constrained FP intrinsics against 7218 // each other or against (nonvolatile) loads, so they can be 7219 // chained like loads. 7220 SDValue Chain = DAG.getRoot(); 7221 SmallVector<SDValue, 4> Opers; 7222 Opers.push_back(Chain); 7223 if (FPI.isUnaryOp()) { 7224 Opers.push_back(getValue(FPI.getArgOperand(0))); 7225 } else if (FPI.isTernaryOp()) { 7226 Opers.push_back(getValue(FPI.getArgOperand(0))); 7227 Opers.push_back(getValue(FPI.getArgOperand(1))); 7228 Opers.push_back(getValue(FPI.getArgOperand(2))); 7229 } else { 7230 Opers.push_back(getValue(FPI.getArgOperand(0))); 7231 Opers.push_back(getValue(FPI.getArgOperand(1))); 7232 } 7233 7234 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7235 assert(Result.getNode()->getNumValues() == 2); 7236 7237 // Push node to the appropriate list so that future instructions can be 7238 // chained up correctly. 7239 SDValue OutChain = Result.getValue(1); 7240 switch (EB) { 7241 case fp::ExceptionBehavior::ebIgnore: 7242 // The only reason why ebIgnore nodes still need to be chained is that 7243 // they might depend on the current rounding mode, and therefore must 7244 // not be moved across instruction that may change that mode. 7245 LLVM_FALLTHROUGH; 7246 case fp::ExceptionBehavior::ebMayTrap: 7247 // These must not be moved across calls or instructions that may change 7248 // floating-point exception masks. 7249 PendingConstrainedFP.push_back(OutChain); 7250 break; 7251 case fp::ExceptionBehavior::ebStrict: 7252 // These must not be moved across calls or instructions that may change 7253 // floating-point exception masks or read floating-point exception flags. 7254 // In addition, they cannot be optimized out even if unused. 7255 PendingConstrainedFPStrict.push_back(OutChain); 7256 break; 7257 } 7258 }; 7259 7260 SDVTList VTs = DAG.getVTList(ValueVTs); 7261 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7262 7263 SDNodeFlags Flags; 7264 if (EB == fp::ExceptionBehavior::ebIgnore) 7265 Flags.setNoFPExcept(true); 7266 7267 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7268 Flags.copyFMF(*FPOp); 7269 7270 unsigned Opcode; 7271 switch (FPI.getIntrinsicID()) { 7272 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7273 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7274 case Intrinsic::INTRINSIC: \ 7275 Opcode = ISD::STRICT_##DAGN; \ 7276 break; 7277 #include "llvm/IR/ConstrainedOps.def" 7278 case Intrinsic::experimental_constrained_fmuladd: { 7279 Opcode = ISD::STRICT_FMA; 7280 // Break fmuladd into fmul and fadd. 7281 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7282 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7283 ValueVTs[0])) { 7284 Opers.pop_back(); 7285 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7286 pushOutChain(Mul, EB); 7287 Opcode = ISD::STRICT_FADD; 7288 Opers.clear(); 7289 Opers.push_back(Mul.getValue(1)); 7290 Opers.push_back(Mul.getValue(0)); 7291 Opers.push_back(getValue(FPI.getArgOperand(2))); 7292 } 7293 break; 7294 } 7295 } 7296 7297 // A few strict DAG nodes carry additional operands that are not 7298 // set up by the default code above. 7299 switch (Opcode) { 7300 default: break; 7301 case ISD::STRICT_FP_ROUND: 7302 Opers.push_back( 7303 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7304 break; 7305 case ISD::STRICT_FSETCC: 7306 case ISD::STRICT_FSETCCS: { 7307 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7308 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7309 if (TM.Options.NoNaNsFPMath) 7310 Condition = getFCmpCodeWithoutNaN(Condition); 7311 Opers.push_back(DAG.getCondCode(Condition)); 7312 break; 7313 } 7314 } 7315 7316 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7317 pushOutChain(Result, EB); 7318 7319 SDValue FPResult = Result.getValue(0); 7320 setValue(&FPI, FPResult); 7321 } 7322 7323 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7324 Optional<unsigned> ResOPC; 7325 switch (VPIntrin.getIntrinsicID()) { 7326 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN: 7327 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID; 7328 #define END_REGISTER_VP_INTRINSIC(...) break; 7329 #include "llvm/IR/VPIntrinsics.def" 7330 } 7331 7332 if (!ResOPC.hasValue()) 7333 llvm_unreachable( 7334 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7335 7336 return ResOPC.getValue(); 7337 } 7338 7339 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7340 const VPIntrinsic &VPIntrin) { 7341 SDLoc DL = getCurSDLoc(); 7342 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7343 7344 SmallVector<EVT, 4> ValueVTs; 7345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7346 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7347 SDVTList VTs = DAG.getVTList(ValueVTs); 7348 7349 auto EVLParamPos = 7350 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7351 7352 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7353 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7354 "Unexpected target EVL type"); 7355 7356 // Request operands. 7357 SmallVector<SDValue, 7> OpValues; 7358 for (unsigned I = 0; I < VPIntrin.getNumArgOperands(); ++I) { 7359 auto Op = getValue(VPIntrin.getArgOperand(I)); 7360 if (I == EVLParamPos) 7361 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7362 OpValues.push_back(Op); 7363 } 7364 7365 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7366 setValue(&VPIntrin, Result); 7367 } 7368 7369 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7370 const BasicBlock *EHPadBB, 7371 MCSymbol *&BeginLabel) { 7372 MachineFunction &MF = DAG.getMachineFunction(); 7373 MachineModuleInfo &MMI = MF.getMMI(); 7374 7375 // Insert a label before the invoke call to mark the try range. This can be 7376 // used to detect deletion of the invoke via the MachineModuleInfo. 7377 BeginLabel = MMI.getContext().createTempSymbol(); 7378 7379 // For SjLj, keep track of which landing pads go with which invokes 7380 // so as to maintain the ordering of pads in the LSDA. 7381 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7382 if (CallSiteIndex) { 7383 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7384 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7385 7386 // Now that the call site is handled, stop tracking it. 7387 MMI.setCurrentCallSite(0); 7388 } 7389 7390 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7391 } 7392 7393 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7394 const BasicBlock *EHPadBB, 7395 MCSymbol *BeginLabel) { 7396 assert(BeginLabel && "BeginLabel should've been set"); 7397 7398 MachineFunction &MF = DAG.getMachineFunction(); 7399 MachineModuleInfo &MMI = MF.getMMI(); 7400 7401 // Insert a label at the end of the invoke call to mark the try range. This 7402 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7403 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7404 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7405 7406 // Inform MachineModuleInfo of range. 7407 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7408 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7409 // actually use outlined funclets and their LSDA info style. 7410 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7411 assert(II && "II should've been set"); 7412 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7413 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7414 } else if (!isScopedEHPersonality(Pers)) { 7415 assert(EHPadBB); 7416 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7417 } 7418 7419 return Chain; 7420 } 7421 7422 std::pair<SDValue, SDValue> 7423 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7424 const BasicBlock *EHPadBB) { 7425 MCSymbol *BeginLabel = nullptr; 7426 7427 if (EHPadBB) { 7428 // Both PendingLoads and PendingExports must be flushed here; 7429 // this call might not return. 7430 (void)getRoot(); 7431 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7432 CLI.setChain(getRoot()); 7433 } 7434 7435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7436 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7437 7438 assert((CLI.IsTailCall || Result.second.getNode()) && 7439 "Non-null chain expected with non-tail call!"); 7440 assert((Result.second.getNode() || !Result.first.getNode()) && 7441 "Null value expected with tail call!"); 7442 7443 if (!Result.second.getNode()) { 7444 // As a special case, a null chain means that a tail call has been emitted 7445 // and the DAG root is already updated. 7446 HasTailCall = true; 7447 7448 // Since there's no actual continuation from this block, nothing can be 7449 // relying on us setting vregs for them. 7450 PendingExports.clear(); 7451 } else { 7452 DAG.setRoot(Result.second); 7453 } 7454 7455 if (EHPadBB) { 7456 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7457 BeginLabel)); 7458 } 7459 7460 return Result; 7461 } 7462 7463 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7464 bool isTailCall, 7465 bool isMustTailCall, 7466 const BasicBlock *EHPadBB) { 7467 auto &DL = DAG.getDataLayout(); 7468 FunctionType *FTy = CB.getFunctionType(); 7469 Type *RetTy = CB.getType(); 7470 7471 TargetLowering::ArgListTy Args; 7472 Args.reserve(CB.arg_size()); 7473 7474 const Value *SwiftErrorVal = nullptr; 7475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7476 7477 if (isTailCall) { 7478 // Avoid emitting tail calls in functions with the disable-tail-calls 7479 // attribute. 7480 auto *Caller = CB.getParent()->getParent(); 7481 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7482 "true" && !isMustTailCall) 7483 isTailCall = false; 7484 7485 // We can't tail call inside a function with a swifterror argument. Lowering 7486 // does not support this yet. It would have to move into the swifterror 7487 // register before the call. 7488 if (TLI.supportSwiftError() && 7489 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7490 isTailCall = false; 7491 } 7492 7493 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7494 TargetLowering::ArgListEntry Entry; 7495 const Value *V = *I; 7496 7497 // Skip empty types 7498 if (V->getType()->isEmptyTy()) 7499 continue; 7500 7501 SDValue ArgNode = getValue(V); 7502 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7503 7504 Entry.setAttributes(&CB, I - CB.arg_begin()); 7505 7506 // Use swifterror virtual register as input to the call. 7507 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7508 SwiftErrorVal = V; 7509 // We find the virtual register for the actual swifterror argument. 7510 // Instead of using the Value, we use the virtual register instead. 7511 Entry.Node = 7512 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7513 EVT(TLI.getPointerTy(DL))); 7514 } 7515 7516 Args.push_back(Entry); 7517 7518 // If we have an explicit sret argument that is an Instruction, (i.e., it 7519 // might point to function-local memory), we can't meaningfully tail-call. 7520 if (Entry.IsSRet && isa<Instruction>(V)) 7521 isTailCall = false; 7522 } 7523 7524 // If call site has a cfguardtarget operand bundle, create and add an 7525 // additional ArgListEntry. 7526 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7527 TargetLowering::ArgListEntry Entry; 7528 Value *V = Bundle->Inputs[0]; 7529 SDValue ArgNode = getValue(V); 7530 Entry.Node = ArgNode; 7531 Entry.Ty = V->getType(); 7532 Entry.IsCFGuardTarget = true; 7533 Args.push_back(Entry); 7534 } 7535 7536 // Check if target-independent constraints permit a tail call here. 7537 // Target-dependent constraints are checked within TLI->LowerCallTo. 7538 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7539 isTailCall = false; 7540 7541 // Disable tail calls if there is an swifterror argument. Targets have not 7542 // been updated to support tail calls. 7543 if (TLI.supportSwiftError() && SwiftErrorVal) 7544 isTailCall = false; 7545 7546 TargetLowering::CallLoweringInfo CLI(DAG); 7547 CLI.setDebugLoc(getCurSDLoc()) 7548 .setChain(getRoot()) 7549 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7550 .setTailCall(isTailCall) 7551 .setConvergent(CB.isConvergent()) 7552 .setIsPreallocated( 7553 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7554 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7555 7556 if (Result.first.getNode()) { 7557 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7558 setValue(&CB, Result.first); 7559 } 7560 7561 // The last element of CLI.InVals has the SDValue for swifterror return. 7562 // Here we copy it to a virtual register and update SwiftErrorMap for 7563 // book-keeping. 7564 if (SwiftErrorVal && TLI.supportSwiftError()) { 7565 // Get the last element of InVals. 7566 SDValue Src = CLI.InVals.back(); 7567 Register VReg = 7568 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7569 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7570 DAG.setRoot(CopyNode); 7571 } 7572 } 7573 7574 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7575 SelectionDAGBuilder &Builder) { 7576 // Check to see if this load can be trivially constant folded, e.g. if the 7577 // input is from a string literal. 7578 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7579 // Cast pointer to the type we really want to load. 7580 Type *LoadTy = 7581 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7582 if (LoadVT.isVector()) 7583 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7584 7585 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7586 PointerType::getUnqual(LoadTy)); 7587 7588 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7589 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7590 return Builder.getValue(LoadCst); 7591 } 7592 7593 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7594 // still constant memory, the input chain can be the entry node. 7595 SDValue Root; 7596 bool ConstantMemory = false; 7597 7598 // Do not serialize (non-volatile) loads of constant memory with anything. 7599 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7600 Root = Builder.DAG.getEntryNode(); 7601 ConstantMemory = true; 7602 } else { 7603 // Do not serialize non-volatile loads against each other. 7604 Root = Builder.DAG.getRoot(); 7605 } 7606 7607 SDValue Ptr = Builder.getValue(PtrVal); 7608 SDValue LoadVal = 7609 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7610 MachinePointerInfo(PtrVal), Align(1)); 7611 7612 if (!ConstantMemory) 7613 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7614 return LoadVal; 7615 } 7616 7617 /// Record the value for an instruction that produces an integer result, 7618 /// converting the type where necessary. 7619 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7620 SDValue Value, 7621 bool IsSigned) { 7622 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7623 I.getType(), true); 7624 if (IsSigned) 7625 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7626 else 7627 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7628 setValue(&I, Value); 7629 } 7630 7631 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7632 /// true and lower it. Otherwise return false, and it will be lowered like a 7633 /// normal call. 7634 /// The caller already checked that \p I calls the appropriate LibFunc with a 7635 /// correct prototype. 7636 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7637 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7638 const Value *Size = I.getArgOperand(2); 7639 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7640 if (CSize && CSize->getZExtValue() == 0) { 7641 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7642 I.getType(), true); 7643 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7644 return true; 7645 } 7646 7647 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7648 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7649 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7650 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7651 if (Res.first.getNode()) { 7652 processIntegerCallValue(I, Res.first, true); 7653 PendingLoads.push_back(Res.second); 7654 return true; 7655 } 7656 7657 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7658 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7659 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7660 return false; 7661 7662 // If the target has a fast compare for the given size, it will return a 7663 // preferred load type for that size. Require that the load VT is legal and 7664 // that the target supports unaligned loads of that type. Otherwise, return 7665 // INVALID. 7666 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7668 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7669 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7670 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7671 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7672 // TODO: Check alignment of src and dest ptrs. 7673 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7674 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7675 if (!TLI.isTypeLegal(LVT) || 7676 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7677 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7678 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7679 } 7680 7681 return LVT; 7682 }; 7683 7684 // This turns into unaligned loads. We only do this if the target natively 7685 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7686 // we'll only produce a small number of byte loads. 7687 MVT LoadVT; 7688 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7689 switch (NumBitsToCompare) { 7690 default: 7691 return false; 7692 case 16: 7693 LoadVT = MVT::i16; 7694 break; 7695 case 32: 7696 LoadVT = MVT::i32; 7697 break; 7698 case 64: 7699 case 128: 7700 case 256: 7701 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7702 break; 7703 } 7704 7705 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7706 return false; 7707 7708 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7709 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7710 7711 // Bitcast to a wide integer type if the loads are vectors. 7712 if (LoadVT.isVector()) { 7713 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7714 LoadL = DAG.getBitcast(CmpVT, LoadL); 7715 LoadR = DAG.getBitcast(CmpVT, LoadR); 7716 } 7717 7718 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7719 processIntegerCallValue(I, Cmp, false); 7720 return true; 7721 } 7722 7723 /// See if we can lower a memchr call into an optimized form. If so, return 7724 /// true and lower it. Otherwise return false, and it will be lowered like a 7725 /// normal call. 7726 /// The caller already checked that \p I calls the appropriate LibFunc with a 7727 /// correct prototype. 7728 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7729 const Value *Src = I.getArgOperand(0); 7730 const Value *Char = I.getArgOperand(1); 7731 const Value *Length = I.getArgOperand(2); 7732 7733 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7734 std::pair<SDValue, SDValue> Res = 7735 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7736 getValue(Src), getValue(Char), getValue(Length), 7737 MachinePointerInfo(Src)); 7738 if (Res.first.getNode()) { 7739 setValue(&I, Res.first); 7740 PendingLoads.push_back(Res.second); 7741 return true; 7742 } 7743 7744 return false; 7745 } 7746 7747 /// See if we can lower a mempcpy call into an optimized form. If so, return 7748 /// true and lower it. Otherwise return false, and it will be lowered like a 7749 /// normal call. 7750 /// The caller already checked that \p I calls the appropriate LibFunc with a 7751 /// correct prototype. 7752 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7753 SDValue Dst = getValue(I.getArgOperand(0)); 7754 SDValue Src = getValue(I.getArgOperand(1)); 7755 SDValue Size = getValue(I.getArgOperand(2)); 7756 7757 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7758 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7759 // DAG::getMemcpy needs Alignment to be defined. 7760 Align Alignment = std::min(DstAlign, SrcAlign); 7761 7762 bool isVol = false; 7763 SDLoc sdl = getCurSDLoc(); 7764 7765 // In the mempcpy context we need to pass in a false value for isTailCall 7766 // because the return pointer needs to be adjusted by the size of 7767 // the copied memory. 7768 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7769 AAMDNodes AAInfo; 7770 I.getAAMetadata(AAInfo); 7771 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7772 /*isTailCall=*/false, 7773 MachinePointerInfo(I.getArgOperand(0)), 7774 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 7775 assert(MC.getNode() != nullptr && 7776 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7777 DAG.setRoot(MC); 7778 7779 // Check if Size needs to be truncated or extended. 7780 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7781 7782 // Adjust return pointer to point just past the last dst byte. 7783 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7784 Dst, Size); 7785 setValue(&I, DstPlusSize); 7786 return true; 7787 } 7788 7789 /// See if we can lower a strcpy call into an optimized form. If so, return 7790 /// true and lower it, otherwise return false and it will be lowered like a 7791 /// normal call. 7792 /// The caller already checked that \p I calls the appropriate LibFunc with a 7793 /// correct prototype. 7794 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7795 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7796 7797 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7798 std::pair<SDValue, SDValue> Res = 7799 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7800 getValue(Arg0), getValue(Arg1), 7801 MachinePointerInfo(Arg0), 7802 MachinePointerInfo(Arg1), isStpcpy); 7803 if (Res.first.getNode()) { 7804 setValue(&I, Res.first); 7805 DAG.setRoot(Res.second); 7806 return true; 7807 } 7808 7809 return false; 7810 } 7811 7812 /// See if we can lower a strcmp call into an optimized form. If so, return 7813 /// true and lower it, otherwise return false and it will be lowered like a 7814 /// normal call. 7815 /// The caller already checked that \p I calls the appropriate LibFunc with a 7816 /// correct prototype. 7817 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7818 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7819 7820 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7821 std::pair<SDValue, SDValue> Res = 7822 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7823 getValue(Arg0), getValue(Arg1), 7824 MachinePointerInfo(Arg0), 7825 MachinePointerInfo(Arg1)); 7826 if (Res.first.getNode()) { 7827 processIntegerCallValue(I, Res.first, true); 7828 PendingLoads.push_back(Res.second); 7829 return true; 7830 } 7831 7832 return false; 7833 } 7834 7835 /// See if we can lower a strlen call into an optimized form. If so, return 7836 /// true and lower it, otherwise return false and it will be lowered like a 7837 /// normal call. 7838 /// The caller already checked that \p I calls the appropriate LibFunc with a 7839 /// correct prototype. 7840 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7841 const Value *Arg0 = I.getArgOperand(0); 7842 7843 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7844 std::pair<SDValue, SDValue> Res = 7845 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7846 getValue(Arg0), MachinePointerInfo(Arg0)); 7847 if (Res.first.getNode()) { 7848 processIntegerCallValue(I, Res.first, false); 7849 PendingLoads.push_back(Res.second); 7850 return true; 7851 } 7852 7853 return false; 7854 } 7855 7856 /// See if we can lower a strnlen call into an optimized form. If so, return 7857 /// true and lower it, otherwise return false and it will be lowered like a 7858 /// normal call. 7859 /// The caller already checked that \p I calls the appropriate LibFunc with a 7860 /// correct prototype. 7861 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7862 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7863 7864 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7865 std::pair<SDValue, SDValue> Res = 7866 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7867 getValue(Arg0), getValue(Arg1), 7868 MachinePointerInfo(Arg0)); 7869 if (Res.first.getNode()) { 7870 processIntegerCallValue(I, Res.first, false); 7871 PendingLoads.push_back(Res.second); 7872 return true; 7873 } 7874 7875 return false; 7876 } 7877 7878 /// See if we can lower a unary floating-point operation into an SDNode with 7879 /// the specified Opcode. If so, return true and lower it, otherwise return 7880 /// false and it will be lowered like a normal call. 7881 /// The caller already checked that \p I calls the appropriate LibFunc with a 7882 /// correct prototype. 7883 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7884 unsigned Opcode) { 7885 // We already checked this call's prototype; verify it doesn't modify errno. 7886 if (!I.onlyReadsMemory()) 7887 return false; 7888 7889 SDNodeFlags Flags; 7890 Flags.copyFMF(cast<FPMathOperator>(I)); 7891 7892 SDValue Tmp = getValue(I.getArgOperand(0)); 7893 setValue(&I, 7894 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7895 return true; 7896 } 7897 7898 /// See if we can lower a binary floating-point operation into an SDNode with 7899 /// the specified Opcode. If so, return true and lower it. Otherwise return 7900 /// false, and it will be lowered like a normal call. 7901 /// The caller already checked that \p I calls the appropriate LibFunc with a 7902 /// correct prototype. 7903 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7904 unsigned Opcode) { 7905 // We already checked this call's prototype; verify it doesn't modify errno. 7906 if (!I.onlyReadsMemory()) 7907 return false; 7908 7909 SDNodeFlags Flags; 7910 Flags.copyFMF(cast<FPMathOperator>(I)); 7911 7912 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7913 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7914 EVT VT = Tmp0.getValueType(); 7915 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7916 return true; 7917 } 7918 7919 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7920 // Handle inline assembly differently. 7921 if (I.isInlineAsm()) { 7922 visitInlineAsm(I); 7923 return; 7924 } 7925 7926 if (Function *F = I.getCalledFunction()) { 7927 if (F->isDeclaration()) { 7928 // Is this an LLVM intrinsic or a target-specific intrinsic? 7929 unsigned IID = F->getIntrinsicID(); 7930 if (!IID) 7931 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7932 IID = II->getIntrinsicID(F); 7933 7934 if (IID) { 7935 visitIntrinsicCall(I, IID); 7936 return; 7937 } 7938 } 7939 7940 // Check for well-known libc/libm calls. If the function is internal, it 7941 // can't be a library call. Don't do the check if marked as nobuiltin for 7942 // some reason or the call site requires strict floating point semantics. 7943 LibFunc Func; 7944 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7945 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7946 LibInfo->hasOptimizedCodeGen(Func)) { 7947 switch (Func) { 7948 default: break; 7949 case LibFunc_bcmp: 7950 if (visitMemCmpBCmpCall(I)) 7951 return; 7952 break; 7953 case LibFunc_copysign: 7954 case LibFunc_copysignf: 7955 case LibFunc_copysignl: 7956 // We already checked this call's prototype; verify it doesn't modify 7957 // errno. 7958 if (I.onlyReadsMemory()) { 7959 SDValue LHS = getValue(I.getArgOperand(0)); 7960 SDValue RHS = getValue(I.getArgOperand(1)); 7961 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7962 LHS.getValueType(), LHS, RHS)); 7963 return; 7964 } 7965 break; 7966 case LibFunc_fabs: 7967 case LibFunc_fabsf: 7968 case LibFunc_fabsl: 7969 if (visitUnaryFloatCall(I, ISD::FABS)) 7970 return; 7971 break; 7972 case LibFunc_fmin: 7973 case LibFunc_fminf: 7974 case LibFunc_fminl: 7975 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7976 return; 7977 break; 7978 case LibFunc_fmax: 7979 case LibFunc_fmaxf: 7980 case LibFunc_fmaxl: 7981 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7982 return; 7983 break; 7984 case LibFunc_sin: 7985 case LibFunc_sinf: 7986 case LibFunc_sinl: 7987 if (visitUnaryFloatCall(I, ISD::FSIN)) 7988 return; 7989 break; 7990 case LibFunc_cos: 7991 case LibFunc_cosf: 7992 case LibFunc_cosl: 7993 if (visitUnaryFloatCall(I, ISD::FCOS)) 7994 return; 7995 break; 7996 case LibFunc_sqrt: 7997 case LibFunc_sqrtf: 7998 case LibFunc_sqrtl: 7999 case LibFunc_sqrt_finite: 8000 case LibFunc_sqrtf_finite: 8001 case LibFunc_sqrtl_finite: 8002 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8003 return; 8004 break; 8005 case LibFunc_floor: 8006 case LibFunc_floorf: 8007 case LibFunc_floorl: 8008 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8009 return; 8010 break; 8011 case LibFunc_nearbyint: 8012 case LibFunc_nearbyintf: 8013 case LibFunc_nearbyintl: 8014 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8015 return; 8016 break; 8017 case LibFunc_ceil: 8018 case LibFunc_ceilf: 8019 case LibFunc_ceill: 8020 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8021 return; 8022 break; 8023 case LibFunc_rint: 8024 case LibFunc_rintf: 8025 case LibFunc_rintl: 8026 if (visitUnaryFloatCall(I, ISD::FRINT)) 8027 return; 8028 break; 8029 case LibFunc_round: 8030 case LibFunc_roundf: 8031 case LibFunc_roundl: 8032 if (visitUnaryFloatCall(I, ISD::FROUND)) 8033 return; 8034 break; 8035 case LibFunc_trunc: 8036 case LibFunc_truncf: 8037 case LibFunc_truncl: 8038 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8039 return; 8040 break; 8041 case LibFunc_log2: 8042 case LibFunc_log2f: 8043 case LibFunc_log2l: 8044 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8045 return; 8046 break; 8047 case LibFunc_exp2: 8048 case LibFunc_exp2f: 8049 case LibFunc_exp2l: 8050 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8051 return; 8052 break; 8053 case LibFunc_memcmp: 8054 if (visitMemCmpBCmpCall(I)) 8055 return; 8056 break; 8057 case LibFunc_mempcpy: 8058 if (visitMemPCpyCall(I)) 8059 return; 8060 break; 8061 case LibFunc_memchr: 8062 if (visitMemChrCall(I)) 8063 return; 8064 break; 8065 case LibFunc_strcpy: 8066 if (visitStrCpyCall(I, false)) 8067 return; 8068 break; 8069 case LibFunc_stpcpy: 8070 if (visitStrCpyCall(I, true)) 8071 return; 8072 break; 8073 case LibFunc_strcmp: 8074 if (visitStrCmpCall(I)) 8075 return; 8076 break; 8077 case LibFunc_strlen: 8078 if (visitStrLenCall(I)) 8079 return; 8080 break; 8081 case LibFunc_strnlen: 8082 if (visitStrNLenCall(I)) 8083 return; 8084 break; 8085 } 8086 } 8087 } 8088 8089 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8090 // have to do anything here to lower funclet bundles. 8091 // CFGuardTarget bundles are lowered in LowerCallTo. 8092 assert(!I.hasOperandBundlesOtherThan( 8093 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8094 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8095 LLVMContext::OB_clang_arc_attachedcall}) && 8096 "Cannot lower calls with arbitrary operand bundles!"); 8097 8098 SDValue Callee = getValue(I.getCalledOperand()); 8099 8100 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8101 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8102 else 8103 // Check if we can potentially perform a tail call. More detailed checking 8104 // is be done within LowerCallTo, after more information about the call is 8105 // known. 8106 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8107 } 8108 8109 namespace { 8110 8111 /// AsmOperandInfo - This contains information for each constraint that we are 8112 /// lowering. 8113 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8114 public: 8115 /// CallOperand - If this is the result output operand or a clobber 8116 /// this is null, otherwise it is the incoming operand to the CallInst. 8117 /// This gets modified as the asm is processed. 8118 SDValue CallOperand; 8119 8120 /// AssignedRegs - If this is a register or register class operand, this 8121 /// contains the set of register corresponding to the operand. 8122 RegsForValue AssignedRegs; 8123 8124 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8125 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8126 } 8127 8128 /// Whether or not this operand accesses memory 8129 bool hasMemory(const TargetLowering &TLI) const { 8130 // Indirect operand accesses access memory. 8131 if (isIndirect) 8132 return true; 8133 8134 for (const auto &Code : Codes) 8135 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8136 return true; 8137 8138 return false; 8139 } 8140 8141 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8142 /// corresponds to. If there is no Value* for this operand, it returns 8143 /// MVT::Other. 8144 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8145 const DataLayout &DL) const { 8146 if (!CallOperandVal) return MVT::Other; 8147 8148 if (isa<BasicBlock>(CallOperandVal)) 8149 return TLI.getProgramPointerTy(DL); 8150 8151 llvm::Type *OpTy = CallOperandVal->getType(); 8152 8153 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8154 // If this is an indirect operand, the operand is a pointer to the 8155 // accessed type. 8156 if (isIndirect) { 8157 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 8158 if (!PtrTy) 8159 report_fatal_error("Indirect operand for inline asm not a pointer!"); 8160 OpTy = PtrTy->getElementType(); 8161 } 8162 8163 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8164 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8165 if (STy->getNumElements() == 1) 8166 OpTy = STy->getElementType(0); 8167 8168 // If OpTy is not a single value, it may be a struct/union that we 8169 // can tile with integers. 8170 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8171 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8172 switch (BitSize) { 8173 default: break; 8174 case 1: 8175 case 8: 8176 case 16: 8177 case 32: 8178 case 64: 8179 case 128: 8180 OpTy = IntegerType::get(Context, BitSize); 8181 break; 8182 } 8183 } 8184 8185 return TLI.getAsmOperandValueType(DL, OpTy, true); 8186 } 8187 }; 8188 8189 8190 } // end anonymous namespace 8191 8192 /// Make sure that the output operand \p OpInfo and its corresponding input 8193 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8194 /// out). 8195 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8196 SDISelAsmOperandInfo &MatchingOpInfo, 8197 SelectionDAG &DAG) { 8198 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8199 return; 8200 8201 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8202 const auto &TLI = DAG.getTargetLoweringInfo(); 8203 8204 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8205 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8206 OpInfo.ConstraintVT); 8207 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8208 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8209 MatchingOpInfo.ConstraintVT); 8210 if ((OpInfo.ConstraintVT.isInteger() != 8211 MatchingOpInfo.ConstraintVT.isInteger()) || 8212 (MatchRC.second != InputRC.second)) { 8213 // FIXME: error out in a more elegant fashion 8214 report_fatal_error("Unsupported asm: input constraint" 8215 " with a matching output constraint of" 8216 " incompatible type!"); 8217 } 8218 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8219 } 8220 8221 /// Get a direct memory input to behave well as an indirect operand. 8222 /// This may introduce stores, hence the need for a \p Chain. 8223 /// \return The (possibly updated) chain. 8224 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8225 SDISelAsmOperandInfo &OpInfo, 8226 SelectionDAG &DAG) { 8227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8228 8229 // If we don't have an indirect input, put it in the constpool if we can, 8230 // otherwise spill it to a stack slot. 8231 // TODO: This isn't quite right. We need to handle these according to 8232 // the addressing mode that the constraint wants. Also, this may take 8233 // an additional register for the computation and we don't want that 8234 // either. 8235 8236 // If the operand is a float, integer, or vector constant, spill to a 8237 // constant pool entry to get its address. 8238 const Value *OpVal = OpInfo.CallOperandVal; 8239 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8240 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8241 OpInfo.CallOperand = DAG.getConstantPool( 8242 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8243 return Chain; 8244 } 8245 8246 // Otherwise, create a stack slot and emit a store to it before the asm. 8247 Type *Ty = OpVal->getType(); 8248 auto &DL = DAG.getDataLayout(); 8249 uint64_t TySize = DL.getTypeAllocSize(Ty); 8250 MachineFunction &MF = DAG.getMachineFunction(); 8251 int SSFI = MF.getFrameInfo().CreateStackObject( 8252 TySize, DL.getPrefTypeAlign(Ty), false); 8253 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8254 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8255 MachinePointerInfo::getFixedStack(MF, SSFI), 8256 TLI.getMemValueType(DL, Ty)); 8257 OpInfo.CallOperand = StackSlot; 8258 8259 return Chain; 8260 } 8261 8262 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8263 /// specified operand. We prefer to assign virtual registers, to allow the 8264 /// register allocator to handle the assignment process. However, if the asm 8265 /// uses features that we can't model on machineinstrs, we have SDISel do the 8266 /// allocation. This produces generally horrible, but correct, code. 8267 /// 8268 /// OpInfo describes the operand 8269 /// RefOpInfo describes the matching operand if any, the operand otherwise 8270 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8271 SDISelAsmOperandInfo &OpInfo, 8272 SDISelAsmOperandInfo &RefOpInfo) { 8273 LLVMContext &Context = *DAG.getContext(); 8274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8275 8276 MachineFunction &MF = DAG.getMachineFunction(); 8277 SmallVector<unsigned, 4> Regs; 8278 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8279 8280 // No work to do for memory operations. 8281 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8282 return; 8283 8284 // If this is a constraint for a single physreg, or a constraint for a 8285 // register class, find it. 8286 unsigned AssignedReg; 8287 const TargetRegisterClass *RC; 8288 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8289 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8290 // RC is unset only on failure. Return immediately. 8291 if (!RC) 8292 return; 8293 8294 // Get the actual register value type. This is important, because the user 8295 // may have asked for (e.g.) the AX register in i32 type. We need to 8296 // remember that AX is actually i16 to get the right extension. 8297 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8298 8299 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8300 // If this is an FP operand in an integer register (or visa versa), or more 8301 // generally if the operand value disagrees with the register class we plan 8302 // to stick it in, fix the operand type. 8303 // 8304 // If this is an input value, the bitcast to the new type is done now. 8305 // Bitcast for output value is done at the end of visitInlineAsm(). 8306 if ((OpInfo.Type == InlineAsm::isOutput || 8307 OpInfo.Type == InlineAsm::isInput) && 8308 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8309 // Try to convert to the first EVT that the reg class contains. If the 8310 // types are identical size, use a bitcast to convert (e.g. two differing 8311 // vector types). Note: output bitcast is done at the end of 8312 // visitInlineAsm(). 8313 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8314 // Exclude indirect inputs while they are unsupported because the code 8315 // to perform the load is missing and thus OpInfo.CallOperand still 8316 // refers to the input address rather than the pointed-to value. 8317 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8318 OpInfo.CallOperand = 8319 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8320 OpInfo.ConstraintVT = RegVT; 8321 // If the operand is an FP value and we want it in integer registers, 8322 // use the corresponding integer type. This turns an f64 value into 8323 // i64, which can be passed with two i32 values on a 32-bit machine. 8324 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8325 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8326 if (OpInfo.Type == InlineAsm::isInput) 8327 OpInfo.CallOperand = 8328 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8329 OpInfo.ConstraintVT = VT; 8330 } 8331 } 8332 } 8333 8334 // No need to allocate a matching input constraint since the constraint it's 8335 // matching to has already been allocated. 8336 if (OpInfo.isMatchingInputConstraint()) 8337 return; 8338 8339 EVT ValueVT = OpInfo.ConstraintVT; 8340 if (OpInfo.ConstraintVT == MVT::Other) 8341 ValueVT = RegVT; 8342 8343 // Initialize NumRegs. 8344 unsigned NumRegs = 1; 8345 if (OpInfo.ConstraintVT != MVT::Other) 8346 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8347 8348 // If this is a constraint for a specific physical register, like {r17}, 8349 // assign it now. 8350 8351 // If this associated to a specific register, initialize iterator to correct 8352 // place. If virtual, make sure we have enough registers 8353 8354 // Initialize iterator if necessary 8355 TargetRegisterClass::iterator I = RC->begin(); 8356 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8357 8358 // Do not check for single registers. 8359 if (AssignedReg) { 8360 for (; *I != AssignedReg; ++I) 8361 assert(I != RC->end() && "AssignedReg should be member of RC"); 8362 } 8363 8364 for (; NumRegs; --NumRegs, ++I) { 8365 assert(I != RC->end() && "Ran out of registers to allocate!"); 8366 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8367 Regs.push_back(R); 8368 } 8369 8370 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8371 } 8372 8373 static unsigned 8374 findMatchingInlineAsmOperand(unsigned OperandNo, 8375 const std::vector<SDValue> &AsmNodeOperands) { 8376 // Scan until we find the definition we already emitted of this operand. 8377 unsigned CurOp = InlineAsm::Op_FirstOperand; 8378 for (; OperandNo; --OperandNo) { 8379 // Advance to the next operand. 8380 unsigned OpFlag = 8381 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8382 assert((InlineAsm::isRegDefKind(OpFlag) || 8383 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8384 InlineAsm::isMemKind(OpFlag)) && 8385 "Skipped past definitions?"); 8386 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8387 } 8388 return CurOp; 8389 } 8390 8391 namespace { 8392 8393 class ExtraFlags { 8394 unsigned Flags = 0; 8395 8396 public: 8397 explicit ExtraFlags(const CallBase &Call) { 8398 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8399 if (IA->hasSideEffects()) 8400 Flags |= InlineAsm::Extra_HasSideEffects; 8401 if (IA->isAlignStack()) 8402 Flags |= InlineAsm::Extra_IsAlignStack; 8403 if (Call.isConvergent()) 8404 Flags |= InlineAsm::Extra_IsConvergent; 8405 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8406 } 8407 8408 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8409 // Ideally, we would only check against memory constraints. However, the 8410 // meaning of an Other constraint can be target-specific and we can't easily 8411 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8412 // for Other constraints as well. 8413 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8414 OpInfo.ConstraintType == TargetLowering::C_Other) { 8415 if (OpInfo.Type == InlineAsm::isInput) 8416 Flags |= InlineAsm::Extra_MayLoad; 8417 else if (OpInfo.Type == InlineAsm::isOutput) 8418 Flags |= InlineAsm::Extra_MayStore; 8419 else if (OpInfo.Type == InlineAsm::isClobber) 8420 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8421 } 8422 } 8423 8424 unsigned get() const { return Flags; } 8425 }; 8426 8427 } // end anonymous namespace 8428 8429 /// visitInlineAsm - Handle a call to an InlineAsm object. 8430 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8431 const BasicBlock *EHPadBB) { 8432 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8433 8434 /// ConstraintOperands - Information about all of the constraints. 8435 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8436 8437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8438 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8439 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8440 8441 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8442 // AsmDialect, MayLoad, MayStore). 8443 bool HasSideEffect = IA->hasSideEffects(); 8444 ExtraFlags ExtraInfo(Call); 8445 8446 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8447 unsigned ResNo = 0; // ResNo - The result number of the next output. 8448 unsigned NumMatchingOps = 0; 8449 for (auto &T : TargetConstraints) { 8450 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8451 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8452 8453 // Compute the value type for each operand. 8454 if (OpInfo.Type == InlineAsm::isInput || 8455 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8456 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8457 8458 // Process the call argument. BasicBlocks are labels, currently appearing 8459 // only in asm's. 8460 if (isa<CallBrInst>(Call) && 8461 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8462 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8463 NumMatchingOps) && 8464 (NumMatchingOps == 0 || 8465 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8466 NumMatchingOps))) { 8467 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8468 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8469 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8470 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8471 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8472 } else { 8473 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8474 } 8475 8476 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8477 DAG.getDataLayout()); 8478 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8479 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8480 // The return value of the call is this value. As such, there is no 8481 // corresponding argument. 8482 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8483 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8484 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8485 DAG.getDataLayout(), STy->getElementType(ResNo)); 8486 } else { 8487 assert(ResNo == 0 && "Asm only has one result!"); 8488 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8489 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8490 } 8491 ++ResNo; 8492 } else { 8493 OpInfo.ConstraintVT = MVT::Other; 8494 } 8495 8496 if (OpInfo.hasMatchingInput()) 8497 ++NumMatchingOps; 8498 8499 if (!HasSideEffect) 8500 HasSideEffect = OpInfo.hasMemory(TLI); 8501 8502 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8503 // FIXME: Could we compute this on OpInfo rather than T? 8504 8505 // Compute the constraint code and ConstraintType to use. 8506 TLI.ComputeConstraintToUse(T, SDValue()); 8507 8508 if (T.ConstraintType == TargetLowering::C_Immediate && 8509 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8510 // We've delayed emitting a diagnostic like the "n" constraint because 8511 // inlining could cause an integer showing up. 8512 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8513 "' expects an integer constant " 8514 "expression"); 8515 8516 ExtraInfo.update(T); 8517 } 8518 8519 // We won't need to flush pending loads if this asm doesn't touch 8520 // memory and is nonvolatile. 8521 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8522 8523 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8524 if (EmitEHLabels) { 8525 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8526 } 8527 bool IsCallBr = isa<CallBrInst>(Call); 8528 8529 if (IsCallBr || EmitEHLabels) { 8530 // If this is a callbr or invoke we need to flush pending exports since 8531 // inlineasm_br and invoke are terminators. 8532 // We need to do this before nodes are glued to the inlineasm_br node. 8533 Chain = getControlRoot(); 8534 } 8535 8536 MCSymbol *BeginLabel = nullptr; 8537 if (EmitEHLabels) { 8538 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8539 } 8540 8541 // Second pass over the constraints: compute which constraint option to use. 8542 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8543 // If this is an output operand with a matching input operand, look up the 8544 // matching input. If their types mismatch, e.g. one is an integer, the 8545 // other is floating point, or their sizes are different, flag it as an 8546 // error. 8547 if (OpInfo.hasMatchingInput()) { 8548 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8549 patchMatchingInput(OpInfo, Input, DAG); 8550 } 8551 8552 // Compute the constraint code and ConstraintType to use. 8553 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8554 8555 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8556 OpInfo.Type == InlineAsm::isClobber) 8557 continue; 8558 8559 // If this is a memory input, and if the operand is not indirect, do what we 8560 // need to provide an address for the memory input. 8561 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8562 !OpInfo.isIndirect) { 8563 assert((OpInfo.isMultipleAlternative || 8564 (OpInfo.Type == InlineAsm::isInput)) && 8565 "Can only indirectify direct input operands!"); 8566 8567 // Memory operands really want the address of the value. 8568 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8569 8570 // There is no longer a Value* corresponding to this operand. 8571 OpInfo.CallOperandVal = nullptr; 8572 8573 // It is now an indirect operand. 8574 OpInfo.isIndirect = true; 8575 } 8576 8577 } 8578 8579 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8580 std::vector<SDValue> AsmNodeOperands; 8581 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8582 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8583 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8584 8585 // If we have a !srcloc metadata node associated with it, we want to attach 8586 // this to the ultimately generated inline asm machineinstr. To do this, we 8587 // pass in the third operand as this (potentially null) inline asm MDNode. 8588 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8589 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8590 8591 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8592 // bits as operand 3. 8593 AsmNodeOperands.push_back(DAG.getTargetConstant( 8594 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8595 8596 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8597 // this, assign virtual and physical registers for inputs and otput. 8598 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8599 // Assign Registers. 8600 SDISelAsmOperandInfo &RefOpInfo = 8601 OpInfo.isMatchingInputConstraint() 8602 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8603 : OpInfo; 8604 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8605 8606 auto DetectWriteToReservedRegister = [&]() { 8607 const MachineFunction &MF = DAG.getMachineFunction(); 8608 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8609 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8610 if (Register::isPhysicalRegister(Reg) && 8611 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8612 const char *RegName = TRI.getName(Reg); 8613 emitInlineAsmError(Call, "write to reserved register '" + 8614 Twine(RegName) + "'"); 8615 return true; 8616 } 8617 } 8618 return false; 8619 }; 8620 8621 switch (OpInfo.Type) { 8622 case InlineAsm::isOutput: 8623 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8624 unsigned ConstraintID = 8625 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8626 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8627 "Failed to convert memory constraint code to constraint id."); 8628 8629 // Add information to the INLINEASM node to know about this output. 8630 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8631 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8632 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8633 MVT::i32)); 8634 AsmNodeOperands.push_back(OpInfo.CallOperand); 8635 } else { 8636 // Otherwise, this outputs to a register (directly for C_Register / 8637 // C_RegisterClass, and a target-defined fashion for 8638 // C_Immediate/C_Other). Find a register that we can use. 8639 if (OpInfo.AssignedRegs.Regs.empty()) { 8640 emitInlineAsmError( 8641 Call, "couldn't allocate output register for constraint '" + 8642 Twine(OpInfo.ConstraintCode) + "'"); 8643 return; 8644 } 8645 8646 if (DetectWriteToReservedRegister()) 8647 return; 8648 8649 // Add information to the INLINEASM node to know that this register is 8650 // set. 8651 OpInfo.AssignedRegs.AddInlineAsmOperands( 8652 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8653 : InlineAsm::Kind_RegDef, 8654 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8655 } 8656 break; 8657 8658 case InlineAsm::isInput: { 8659 SDValue InOperandVal = OpInfo.CallOperand; 8660 8661 if (OpInfo.isMatchingInputConstraint()) { 8662 // If this is required to match an output register we have already set, 8663 // just use its register. 8664 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8665 AsmNodeOperands); 8666 unsigned OpFlag = 8667 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8668 if (InlineAsm::isRegDefKind(OpFlag) || 8669 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8670 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8671 if (OpInfo.isIndirect) { 8672 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8673 emitInlineAsmError(Call, "inline asm not supported yet: " 8674 "don't know how to handle tied " 8675 "indirect register inputs"); 8676 return; 8677 } 8678 8679 SmallVector<unsigned, 4> Regs; 8680 MachineFunction &MF = DAG.getMachineFunction(); 8681 MachineRegisterInfo &MRI = MF.getRegInfo(); 8682 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8683 RegisterSDNode *R = dyn_cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8684 Register TiedReg = R->getReg(); 8685 MVT RegVT = R->getSimpleValueType(0); 8686 const TargetRegisterClass *RC = TiedReg.isVirtual() ? 8687 MRI.getRegClass(TiedReg) : TRI.getMinimalPhysRegClass(TiedReg); 8688 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8689 for (unsigned i = 0; i != NumRegs; ++i) 8690 Regs.push_back(MRI.createVirtualRegister(RC)); 8691 8692 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8693 8694 SDLoc dl = getCurSDLoc(); 8695 // Use the produced MatchedRegs object to 8696 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8697 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8698 true, OpInfo.getMatchedOperand(), dl, 8699 DAG, AsmNodeOperands); 8700 break; 8701 } 8702 8703 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8704 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8705 "Unexpected number of operands"); 8706 // Add information to the INLINEASM node to know about this input. 8707 // See InlineAsm.h isUseOperandTiedToDef. 8708 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8709 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8710 OpInfo.getMatchedOperand()); 8711 AsmNodeOperands.push_back(DAG.getTargetConstant( 8712 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8713 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8714 break; 8715 } 8716 8717 // Treat indirect 'X' constraint as memory. 8718 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8719 OpInfo.isIndirect) 8720 OpInfo.ConstraintType = TargetLowering::C_Memory; 8721 8722 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8723 OpInfo.ConstraintType == TargetLowering::C_Other) { 8724 std::vector<SDValue> Ops; 8725 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8726 Ops, DAG); 8727 if (Ops.empty()) { 8728 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8729 if (isa<ConstantSDNode>(InOperandVal)) { 8730 emitInlineAsmError(Call, "value out of range for constraint '" + 8731 Twine(OpInfo.ConstraintCode) + "'"); 8732 return; 8733 } 8734 8735 emitInlineAsmError(Call, 8736 "invalid operand for inline asm constraint '" + 8737 Twine(OpInfo.ConstraintCode) + "'"); 8738 return; 8739 } 8740 8741 // Add information to the INLINEASM node to know about this input. 8742 unsigned ResOpType = 8743 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8744 AsmNodeOperands.push_back(DAG.getTargetConstant( 8745 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8746 llvm::append_range(AsmNodeOperands, Ops); 8747 break; 8748 } 8749 8750 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8751 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8752 assert(InOperandVal.getValueType() == 8753 TLI.getPointerTy(DAG.getDataLayout()) && 8754 "Memory operands expect pointer values"); 8755 8756 unsigned ConstraintID = 8757 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8758 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8759 "Failed to convert memory constraint code to constraint id."); 8760 8761 // Add information to the INLINEASM node to know about this input. 8762 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8763 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8764 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8765 getCurSDLoc(), 8766 MVT::i32)); 8767 AsmNodeOperands.push_back(InOperandVal); 8768 break; 8769 } 8770 8771 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8772 OpInfo.ConstraintType == TargetLowering::C_Register) && 8773 "Unknown constraint type!"); 8774 8775 // TODO: Support this. 8776 if (OpInfo.isIndirect) { 8777 emitInlineAsmError( 8778 Call, "Don't know how to handle indirect register inputs yet " 8779 "for constraint '" + 8780 Twine(OpInfo.ConstraintCode) + "'"); 8781 return; 8782 } 8783 8784 // Copy the input into the appropriate registers. 8785 if (OpInfo.AssignedRegs.Regs.empty()) { 8786 emitInlineAsmError(Call, 8787 "couldn't allocate input reg for constraint '" + 8788 Twine(OpInfo.ConstraintCode) + "'"); 8789 return; 8790 } 8791 8792 if (DetectWriteToReservedRegister()) 8793 return; 8794 8795 SDLoc dl = getCurSDLoc(); 8796 8797 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8798 &Call); 8799 8800 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8801 dl, DAG, AsmNodeOperands); 8802 break; 8803 } 8804 case InlineAsm::isClobber: 8805 // Add the clobbered value to the operand list, so that the register 8806 // allocator is aware that the physreg got clobbered. 8807 if (!OpInfo.AssignedRegs.Regs.empty()) 8808 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8809 false, 0, getCurSDLoc(), DAG, 8810 AsmNodeOperands); 8811 break; 8812 } 8813 } 8814 8815 // Finish up input operands. Set the input chain and add the flag last. 8816 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8817 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8818 8819 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8820 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8821 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8822 Flag = Chain.getValue(1); 8823 8824 // Do additional work to generate outputs. 8825 8826 SmallVector<EVT, 1> ResultVTs; 8827 SmallVector<SDValue, 1> ResultValues; 8828 SmallVector<SDValue, 8> OutChains; 8829 8830 llvm::Type *CallResultType = Call.getType(); 8831 ArrayRef<Type *> ResultTypes; 8832 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8833 ResultTypes = StructResult->elements(); 8834 else if (!CallResultType->isVoidTy()) 8835 ResultTypes = makeArrayRef(CallResultType); 8836 8837 auto CurResultType = ResultTypes.begin(); 8838 auto handleRegAssign = [&](SDValue V) { 8839 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8840 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8841 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8842 ++CurResultType; 8843 // If the type of the inline asm call site return value is different but has 8844 // same size as the type of the asm output bitcast it. One example of this 8845 // is for vectors with different width / number of elements. This can 8846 // happen for register classes that can contain multiple different value 8847 // types. The preg or vreg allocated may not have the same VT as was 8848 // expected. 8849 // 8850 // This can also happen for a return value that disagrees with the register 8851 // class it is put in, eg. a double in a general-purpose register on a 8852 // 32-bit machine. 8853 if (ResultVT != V.getValueType() && 8854 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8855 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8856 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8857 V.getValueType().isInteger()) { 8858 // If a result value was tied to an input value, the computed result 8859 // may have a wider width than the expected result. Extract the 8860 // relevant portion. 8861 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8862 } 8863 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8864 ResultVTs.push_back(ResultVT); 8865 ResultValues.push_back(V); 8866 }; 8867 8868 // Deal with output operands. 8869 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8870 if (OpInfo.Type == InlineAsm::isOutput) { 8871 SDValue Val; 8872 // Skip trivial output operands. 8873 if (OpInfo.AssignedRegs.Regs.empty()) 8874 continue; 8875 8876 switch (OpInfo.ConstraintType) { 8877 case TargetLowering::C_Register: 8878 case TargetLowering::C_RegisterClass: 8879 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8880 Chain, &Flag, &Call); 8881 break; 8882 case TargetLowering::C_Immediate: 8883 case TargetLowering::C_Other: 8884 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8885 OpInfo, DAG); 8886 break; 8887 case TargetLowering::C_Memory: 8888 break; // Already handled. 8889 case TargetLowering::C_Unknown: 8890 assert(false && "Unexpected unknown constraint"); 8891 } 8892 8893 // Indirect output manifest as stores. Record output chains. 8894 if (OpInfo.isIndirect) { 8895 const Value *Ptr = OpInfo.CallOperandVal; 8896 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8897 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8898 MachinePointerInfo(Ptr)); 8899 OutChains.push_back(Store); 8900 } else { 8901 // generate CopyFromRegs to associated registers. 8902 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8903 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8904 for (const SDValue &V : Val->op_values()) 8905 handleRegAssign(V); 8906 } else 8907 handleRegAssign(Val); 8908 } 8909 } 8910 } 8911 8912 // Set results. 8913 if (!ResultValues.empty()) { 8914 assert(CurResultType == ResultTypes.end() && 8915 "Mismatch in number of ResultTypes"); 8916 assert(ResultValues.size() == ResultTypes.size() && 8917 "Mismatch in number of output operands in asm result"); 8918 8919 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8920 DAG.getVTList(ResultVTs), ResultValues); 8921 setValue(&Call, V); 8922 } 8923 8924 // Collect store chains. 8925 if (!OutChains.empty()) 8926 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8927 8928 if (EmitEHLabels) { 8929 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 8930 } 8931 8932 // Only Update Root if inline assembly has a memory effect. 8933 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 8934 EmitEHLabels) 8935 DAG.setRoot(Chain); 8936 } 8937 8938 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8939 const Twine &Message) { 8940 LLVMContext &Ctx = *DAG.getContext(); 8941 Ctx.emitError(&Call, Message); 8942 8943 // Make sure we leave the DAG in a valid state 8944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8945 SmallVector<EVT, 1> ValueVTs; 8946 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8947 8948 if (ValueVTs.empty()) 8949 return; 8950 8951 SmallVector<SDValue, 1> Ops; 8952 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8953 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8954 8955 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8956 } 8957 8958 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8959 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8960 MVT::Other, getRoot(), 8961 getValue(I.getArgOperand(0)), 8962 DAG.getSrcValue(I.getArgOperand(0)))); 8963 } 8964 8965 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8967 const DataLayout &DL = DAG.getDataLayout(); 8968 SDValue V = DAG.getVAArg( 8969 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8970 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8971 DL.getABITypeAlign(I.getType()).value()); 8972 DAG.setRoot(V.getValue(1)); 8973 8974 if (I.getType()->isPointerTy()) 8975 V = DAG.getPtrExtOrTrunc( 8976 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8977 setValue(&I, V); 8978 } 8979 8980 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8981 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8982 MVT::Other, getRoot(), 8983 getValue(I.getArgOperand(0)), 8984 DAG.getSrcValue(I.getArgOperand(0)))); 8985 } 8986 8987 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8988 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8989 MVT::Other, getRoot(), 8990 getValue(I.getArgOperand(0)), 8991 getValue(I.getArgOperand(1)), 8992 DAG.getSrcValue(I.getArgOperand(0)), 8993 DAG.getSrcValue(I.getArgOperand(1)))); 8994 } 8995 8996 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8997 const Instruction &I, 8998 SDValue Op) { 8999 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9000 if (!Range) 9001 return Op; 9002 9003 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9004 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9005 return Op; 9006 9007 APInt Lo = CR.getUnsignedMin(); 9008 if (!Lo.isMinValue()) 9009 return Op; 9010 9011 APInt Hi = CR.getUnsignedMax(); 9012 unsigned Bits = std::max(Hi.getActiveBits(), 9013 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9014 9015 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9016 9017 SDLoc SL = getCurSDLoc(); 9018 9019 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9020 DAG.getValueType(SmallVT)); 9021 unsigned NumVals = Op.getNode()->getNumValues(); 9022 if (NumVals == 1) 9023 return ZExt; 9024 9025 SmallVector<SDValue, 4> Ops; 9026 9027 Ops.push_back(ZExt); 9028 for (unsigned I = 1; I != NumVals; ++I) 9029 Ops.push_back(Op.getValue(I)); 9030 9031 return DAG.getMergeValues(Ops, SL); 9032 } 9033 9034 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9035 /// the call being lowered. 9036 /// 9037 /// This is a helper for lowering intrinsics that follow a target calling 9038 /// convention or require stack pointer adjustment. Only a subset of the 9039 /// intrinsic's operands need to participate in the calling convention. 9040 void SelectionDAGBuilder::populateCallLoweringInfo( 9041 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9042 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9043 bool IsPatchPoint) { 9044 TargetLowering::ArgListTy Args; 9045 Args.reserve(NumArgs); 9046 9047 // Populate the argument list. 9048 // Attributes for args start at offset 1, after the return attribute. 9049 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9050 ArgI != ArgE; ++ArgI) { 9051 const Value *V = Call->getOperand(ArgI); 9052 9053 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9054 9055 TargetLowering::ArgListEntry Entry; 9056 Entry.Node = getValue(V); 9057 Entry.Ty = V->getType(); 9058 Entry.setAttributes(Call, ArgI); 9059 Args.push_back(Entry); 9060 } 9061 9062 CLI.setDebugLoc(getCurSDLoc()) 9063 .setChain(getRoot()) 9064 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9065 .setDiscardResult(Call->use_empty()) 9066 .setIsPatchPoint(IsPatchPoint) 9067 .setIsPreallocated( 9068 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9069 } 9070 9071 /// Add a stack map intrinsic call's live variable operands to a stackmap 9072 /// or patchpoint target node's operand list. 9073 /// 9074 /// Constants are converted to TargetConstants purely as an optimization to 9075 /// avoid constant materialization and register allocation. 9076 /// 9077 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9078 /// generate addess computation nodes, and so FinalizeISel can convert the 9079 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9080 /// address materialization and register allocation, but may also be required 9081 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9082 /// alloca in the entry block, then the runtime may assume that the alloca's 9083 /// StackMap location can be read immediately after compilation and that the 9084 /// location is valid at any point during execution (this is similar to the 9085 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9086 /// only available in a register, then the runtime would need to trap when 9087 /// execution reaches the StackMap in order to read the alloca's location. 9088 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9089 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9090 SelectionDAGBuilder &Builder) { 9091 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9092 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9093 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9094 Ops.push_back( 9095 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9096 Ops.push_back( 9097 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9098 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9099 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9100 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9101 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9102 } else 9103 Ops.push_back(OpVal); 9104 } 9105 } 9106 9107 /// Lower llvm.experimental.stackmap directly to its target opcode. 9108 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9109 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9110 // [live variables...]) 9111 9112 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9113 9114 SDValue Chain, InFlag, Callee, NullPtr; 9115 SmallVector<SDValue, 32> Ops; 9116 9117 SDLoc DL = getCurSDLoc(); 9118 Callee = getValue(CI.getCalledOperand()); 9119 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9120 9121 // The stackmap intrinsic only records the live variables (the arguments 9122 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9123 // intrinsic, this won't be lowered to a function call. This means we don't 9124 // have to worry about calling conventions and target specific lowering code. 9125 // Instead we perform the call lowering right here. 9126 // 9127 // chain, flag = CALLSEQ_START(chain, 0, 0) 9128 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9129 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9130 // 9131 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9132 InFlag = Chain.getValue(1); 9133 9134 // Add the <id> and <numBytes> constants. 9135 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9136 Ops.push_back(DAG.getTargetConstant( 9137 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9138 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9139 Ops.push_back(DAG.getTargetConstant( 9140 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9141 MVT::i32)); 9142 9143 // Push live variables for the stack map. 9144 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9145 9146 // We are not pushing any register mask info here on the operands list, 9147 // because the stackmap doesn't clobber anything. 9148 9149 // Push the chain and the glue flag. 9150 Ops.push_back(Chain); 9151 Ops.push_back(InFlag); 9152 9153 // Create the STACKMAP node. 9154 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9155 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9156 Chain = SDValue(SM, 0); 9157 InFlag = Chain.getValue(1); 9158 9159 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9160 9161 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9162 9163 // Set the root to the target-lowered call chain. 9164 DAG.setRoot(Chain); 9165 9166 // Inform the Frame Information that we have a stackmap in this function. 9167 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9168 } 9169 9170 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9171 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9172 const BasicBlock *EHPadBB) { 9173 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9174 // i32 <numBytes>, 9175 // i8* <target>, 9176 // i32 <numArgs>, 9177 // [Args...], 9178 // [live variables...]) 9179 9180 CallingConv::ID CC = CB.getCallingConv(); 9181 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9182 bool HasDef = !CB.getType()->isVoidTy(); 9183 SDLoc dl = getCurSDLoc(); 9184 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9185 9186 // Handle immediate and symbolic callees. 9187 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9188 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9189 /*isTarget=*/true); 9190 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9191 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9192 SDLoc(SymbolicCallee), 9193 SymbolicCallee->getValueType(0)); 9194 9195 // Get the real number of arguments participating in the call <numArgs> 9196 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9197 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9198 9199 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9200 // Intrinsics include all meta-operands up to but not including CC. 9201 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9202 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9203 "Not enough arguments provided to the patchpoint intrinsic"); 9204 9205 // For AnyRegCC the arguments are lowered later on manually. 9206 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9207 Type *ReturnTy = 9208 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9209 9210 TargetLowering::CallLoweringInfo CLI(DAG); 9211 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9212 ReturnTy, true); 9213 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9214 9215 SDNode *CallEnd = Result.second.getNode(); 9216 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9217 CallEnd = CallEnd->getOperand(0).getNode(); 9218 9219 /// Get a call instruction from the call sequence chain. 9220 /// Tail calls are not allowed. 9221 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9222 "Expected a callseq node."); 9223 SDNode *Call = CallEnd->getOperand(0).getNode(); 9224 bool HasGlue = Call->getGluedNode(); 9225 9226 // Replace the target specific call node with the patchable intrinsic. 9227 SmallVector<SDValue, 8> Ops; 9228 9229 // Add the <id> and <numBytes> constants. 9230 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9231 Ops.push_back(DAG.getTargetConstant( 9232 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9233 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9234 Ops.push_back(DAG.getTargetConstant( 9235 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9236 MVT::i32)); 9237 9238 // Add the callee. 9239 Ops.push_back(Callee); 9240 9241 // Adjust <numArgs> to account for any arguments that have been passed on the 9242 // stack instead. 9243 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9244 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9245 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9246 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9247 9248 // Add the calling convention 9249 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9250 9251 // Add the arguments we omitted previously. The register allocator should 9252 // place these in any free register. 9253 if (IsAnyRegCC) 9254 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9255 Ops.push_back(getValue(CB.getArgOperand(i))); 9256 9257 // Push the arguments from the call instruction up to the register mask. 9258 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9259 Ops.append(Call->op_begin() + 2, e); 9260 9261 // Push live variables for the stack map. 9262 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9263 9264 // Push the register mask info. 9265 if (HasGlue) 9266 Ops.push_back(*(Call->op_end()-2)); 9267 else 9268 Ops.push_back(*(Call->op_end()-1)); 9269 9270 // Push the chain (this is originally the first operand of the call, but 9271 // becomes now the last or second to last operand). 9272 Ops.push_back(*(Call->op_begin())); 9273 9274 // Push the glue flag (last operand). 9275 if (HasGlue) 9276 Ops.push_back(*(Call->op_end()-1)); 9277 9278 SDVTList NodeTys; 9279 if (IsAnyRegCC && HasDef) { 9280 // Create the return types based on the intrinsic definition 9281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9282 SmallVector<EVT, 3> ValueVTs; 9283 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9284 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9285 9286 // There is always a chain and a glue type at the end 9287 ValueVTs.push_back(MVT::Other); 9288 ValueVTs.push_back(MVT::Glue); 9289 NodeTys = DAG.getVTList(ValueVTs); 9290 } else 9291 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9292 9293 // Replace the target specific call node with a PATCHPOINT node. 9294 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9295 dl, NodeTys, Ops); 9296 9297 // Update the NodeMap. 9298 if (HasDef) { 9299 if (IsAnyRegCC) 9300 setValue(&CB, SDValue(MN, 0)); 9301 else 9302 setValue(&CB, Result.first); 9303 } 9304 9305 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9306 // call sequence. Furthermore the location of the chain and glue can change 9307 // when the AnyReg calling convention is used and the intrinsic returns a 9308 // value. 9309 if (IsAnyRegCC && HasDef) { 9310 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9311 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9312 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9313 } else 9314 DAG.ReplaceAllUsesWith(Call, MN); 9315 DAG.DeleteNode(Call); 9316 9317 // Inform the Frame Information that we have a patchpoint in this function. 9318 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9319 } 9320 9321 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9322 unsigned Intrinsic) { 9323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9324 SDValue Op1 = getValue(I.getArgOperand(0)); 9325 SDValue Op2; 9326 if (I.getNumArgOperands() > 1) 9327 Op2 = getValue(I.getArgOperand(1)); 9328 SDLoc dl = getCurSDLoc(); 9329 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9330 SDValue Res; 9331 SDNodeFlags SDFlags; 9332 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9333 SDFlags.copyFMF(*FPMO); 9334 9335 switch (Intrinsic) { 9336 case Intrinsic::vector_reduce_fadd: 9337 if (SDFlags.hasAllowReassociation()) 9338 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9339 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9340 SDFlags); 9341 else 9342 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9343 break; 9344 case Intrinsic::vector_reduce_fmul: 9345 if (SDFlags.hasAllowReassociation()) 9346 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9347 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9348 SDFlags); 9349 else 9350 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9351 break; 9352 case Intrinsic::vector_reduce_add: 9353 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9354 break; 9355 case Intrinsic::vector_reduce_mul: 9356 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9357 break; 9358 case Intrinsic::vector_reduce_and: 9359 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9360 break; 9361 case Intrinsic::vector_reduce_or: 9362 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9363 break; 9364 case Intrinsic::vector_reduce_xor: 9365 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9366 break; 9367 case Intrinsic::vector_reduce_smax: 9368 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9369 break; 9370 case Intrinsic::vector_reduce_smin: 9371 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9372 break; 9373 case Intrinsic::vector_reduce_umax: 9374 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9375 break; 9376 case Intrinsic::vector_reduce_umin: 9377 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9378 break; 9379 case Intrinsic::vector_reduce_fmax: 9380 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9381 break; 9382 case Intrinsic::vector_reduce_fmin: 9383 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9384 break; 9385 default: 9386 llvm_unreachable("Unhandled vector reduce intrinsic"); 9387 } 9388 setValue(&I, Res); 9389 } 9390 9391 /// Returns an AttributeList representing the attributes applied to the return 9392 /// value of the given call. 9393 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9394 SmallVector<Attribute::AttrKind, 2> Attrs; 9395 if (CLI.RetSExt) 9396 Attrs.push_back(Attribute::SExt); 9397 if (CLI.RetZExt) 9398 Attrs.push_back(Attribute::ZExt); 9399 if (CLI.IsInReg) 9400 Attrs.push_back(Attribute::InReg); 9401 9402 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9403 Attrs); 9404 } 9405 9406 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9407 /// implementation, which just calls LowerCall. 9408 /// FIXME: When all targets are 9409 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9410 std::pair<SDValue, SDValue> 9411 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9412 // Handle the incoming return values from the call. 9413 CLI.Ins.clear(); 9414 Type *OrigRetTy = CLI.RetTy; 9415 SmallVector<EVT, 4> RetTys; 9416 SmallVector<uint64_t, 4> Offsets; 9417 auto &DL = CLI.DAG.getDataLayout(); 9418 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9419 9420 if (CLI.IsPostTypeLegalization) { 9421 // If we are lowering a libcall after legalization, split the return type. 9422 SmallVector<EVT, 4> OldRetTys; 9423 SmallVector<uint64_t, 4> OldOffsets; 9424 RetTys.swap(OldRetTys); 9425 Offsets.swap(OldOffsets); 9426 9427 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9428 EVT RetVT = OldRetTys[i]; 9429 uint64_t Offset = OldOffsets[i]; 9430 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9431 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9432 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9433 RetTys.append(NumRegs, RegisterVT); 9434 for (unsigned j = 0; j != NumRegs; ++j) 9435 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9436 } 9437 } 9438 9439 SmallVector<ISD::OutputArg, 4> Outs; 9440 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9441 9442 bool CanLowerReturn = 9443 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9444 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9445 9446 SDValue DemoteStackSlot; 9447 int DemoteStackIdx = -100; 9448 if (!CanLowerReturn) { 9449 // FIXME: equivalent assert? 9450 // assert(!CS.hasInAllocaArgument() && 9451 // "sret demotion is incompatible with inalloca"); 9452 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9453 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9454 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9455 DemoteStackIdx = 9456 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9457 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9458 DL.getAllocaAddrSpace()); 9459 9460 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9461 ArgListEntry Entry; 9462 Entry.Node = DemoteStackSlot; 9463 Entry.Ty = StackSlotPtrType; 9464 Entry.IsSExt = false; 9465 Entry.IsZExt = false; 9466 Entry.IsInReg = false; 9467 Entry.IsSRet = true; 9468 Entry.IsNest = false; 9469 Entry.IsByVal = false; 9470 Entry.IsByRef = false; 9471 Entry.IsReturned = false; 9472 Entry.IsSwiftSelf = false; 9473 Entry.IsSwiftAsync = false; 9474 Entry.IsSwiftError = false; 9475 Entry.IsCFGuardTarget = false; 9476 Entry.Alignment = Alignment; 9477 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9478 CLI.NumFixedArgs += 1; 9479 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9480 9481 // sret demotion isn't compatible with tail-calls, since the sret argument 9482 // points into the callers stack frame. 9483 CLI.IsTailCall = false; 9484 } else { 9485 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9486 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9487 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9488 ISD::ArgFlagsTy Flags; 9489 if (NeedsRegBlock) { 9490 Flags.setInConsecutiveRegs(); 9491 if (I == RetTys.size() - 1) 9492 Flags.setInConsecutiveRegsLast(); 9493 } 9494 EVT VT = RetTys[I]; 9495 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9496 CLI.CallConv, VT); 9497 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9498 CLI.CallConv, VT); 9499 for (unsigned i = 0; i != NumRegs; ++i) { 9500 ISD::InputArg MyFlags; 9501 MyFlags.Flags = Flags; 9502 MyFlags.VT = RegisterVT; 9503 MyFlags.ArgVT = VT; 9504 MyFlags.Used = CLI.IsReturnValueUsed; 9505 if (CLI.RetTy->isPointerTy()) { 9506 MyFlags.Flags.setPointer(); 9507 MyFlags.Flags.setPointerAddrSpace( 9508 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9509 } 9510 if (CLI.RetSExt) 9511 MyFlags.Flags.setSExt(); 9512 if (CLI.RetZExt) 9513 MyFlags.Flags.setZExt(); 9514 if (CLI.IsInReg) 9515 MyFlags.Flags.setInReg(); 9516 CLI.Ins.push_back(MyFlags); 9517 } 9518 } 9519 } 9520 9521 // We push in swifterror return as the last element of CLI.Ins. 9522 ArgListTy &Args = CLI.getArgs(); 9523 if (supportSwiftError()) { 9524 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9525 if (Args[i].IsSwiftError) { 9526 ISD::InputArg MyFlags; 9527 MyFlags.VT = getPointerTy(DL); 9528 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9529 MyFlags.Flags.setSwiftError(); 9530 CLI.Ins.push_back(MyFlags); 9531 } 9532 } 9533 } 9534 9535 // Handle all of the outgoing arguments. 9536 CLI.Outs.clear(); 9537 CLI.OutVals.clear(); 9538 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9539 SmallVector<EVT, 4> ValueVTs; 9540 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9541 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9542 Type *FinalType = Args[i].Ty; 9543 if (Args[i].IsByVal) 9544 FinalType = Args[i].IndirectType; 9545 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9546 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9547 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9548 ++Value) { 9549 EVT VT = ValueVTs[Value]; 9550 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9551 SDValue Op = SDValue(Args[i].Node.getNode(), 9552 Args[i].Node.getResNo() + Value); 9553 ISD::ArgFlagsTy Flags; 9554 9555 // Certain targets (such as MIPS), may have a different ABI alignment 9556 // for a type depending on the context. Give the target a chance to 9557 // specify the alignment it wants. 9558 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9559 Flags.setOrigAlign(OriginalAlignment); 9560 9561 if (Args[i].Ty->isPointerTy()) { 9562 Flags.setPointer(); 9563 Flags.setPointerAddrSpace( 9564 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9565 } 9566 if (Args[i].IsZExt) 9567 Flags.setZExt(); 9568 if (Args[i].IsSExt) 9569 Flags.setSExt(); 9570 if (Args[i].IsInReg) { 9571 // If we are using vectorcall calling convention, a structure that is 9572 // passed InReg - is surely an HVA 9573 if (CLI.CallConv == CallingConv::X86_VectorCall && 9574 isa<StructType>(FinalType)) { 9575 // The first value of a structure is marked 9576 if (0 == Value) 9577 Flags.setHvaStart(); 9578 Flags.setHva(); 9579 } 9580 // Set InReg Flag 9581 Flags.setInReg(); 9582 } 9583 if (Args[i].IsSRet) 9584 Flags.setSRet(); 9585 if (Args[i].IsSwiftSelf) 9586 Flags.setSwiftSelf(); 9587 if (Args[i].IsSwiftAsync) 9588 Flags.setSwiftAsync(); 9589 if (Args[i].IsSwiftError) 9590 Flags.setSwiftError(); 9591 if (Args[i].IsCFGuardTarget) 9592 Flags.setCFGuardTarget(); 9593 if (Args[i].IsByVal) 9594 Flags.setByVal(); 9595 if (Args[i].IsByRef) 9596 Flags.setByRef(); 9597 if (Args[i].IsPreallocated) { 9598 Flags.setPreallocated(); 9599 // Set the byval flag for CCAssignFn callbacks that don't know about 9600 // preallocated. This way we can know how many bytes we should've 9601 // allocated and how many bytes a callee cleanup function will pop. If 9602 // we port preallocated to more targets, we'll have to add custom 9603 // preallocated handling in the various CC lowering callbacks. 9604 Flags.setByVal(); 9605 } 9606 if (Args[i].IsInAlloca) { 9607 Flags.setInAlloca(); 9608 // Set the byval flag for CCAssignFn callbacks that don't know about 9609 // inalloca. This way we can know how many bytes we should've allocated 9610 // and how many bytes a callee cleanup function will pop. If we port 9611 // inalloca to more targets, we'll have to add custom inalloca handling 9612 // in the various CC lowering callbacks. 9613 Flags.setByVal(); 9614 } 9615 Align MemAlign; 9616 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9617 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9618 Flags.setByValSize(FrameSize); 9619 9620 // info is not there but there are cases it cannot get right. 9621 if (auto MA = Args[i].Alignment) 9622 MemAlign = *MA; 9623 else 9624 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9625 } else if (auto MA = Args[i].Alignment) { 9626 MemAlign = *MA; 9627 } else { 9628 MemAlign = OriginalAlignment; 9629 } 9630 Flags.setMemAlign(MemAlign); 9631 if (Args[i].IsNest) 9632 Flags.setNest(); 9633 if (NeedsRegBlock) 9634 Flags.setInConsecutiveRegs(); 9635 9636 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9637 CLI.CallConv, VT); 9638 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9639 CLI.CallConv, VT); 9640 SmallVector<SDValue, 4> Parts(NumParts); 9641 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9642 9643 if (Args[i].IsSExt) 9644 ExtendKind = ISD::SIGN_EXTEND; 9645 else if (Args[i].IsZExt) 9646 ExtendKind = ISD::ZERO_EXTEND; 9647 9648 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9649 // for now. 9650 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9651 CanLowerReturn) { 9652 assert((CLI.RetTy == Args[i].Ty || 9653 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9654 CLI.RetTy->getPointerAddressSpace() == 9655 Args[i].Ty->getPointerAddressSpace())) && 9656 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9657 // Before passing 'returned' to the target lowering code, ensure that 9658 // either the register MVT and the actual EVT are the same size or that 9659 // the return value and argument are extended in the same way; in these 9660 // cases it's safe to pass the argument register value unchanged as the 9661 // return register value (although it's at the target's option whether 9662 // to do so) 9663 // TODO: allow code generation to take advantage of partially preserved 9664 // registers rather than clobbering the entire register when the 9665 // parameter extension method is not compatible with the return 9666 // extension method 9667 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9668 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9669 CLI.RetZExt == Args[i].IsZExt)) 9670 Flags.setReturned(); 9671 } 9672 9673 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9674 CLI.CallConv, ExtendKind); 9675 9676 for (unsigned j = 0; j != NumParts; ++j) { 9677 // if it isn't first piece, alignment must be 1 9678 // For scalable vectors the scalable part is currently handled 9679 // by individual targets, so we just use the known minimum size here. 9680 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9681 i < CLI.NumFixedArgs, i, 9682 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9683 if (NumParts > 1 && j == 0) 9684 MyFlags.Flags.setSplit(); 9685 else if (j != 0) { 9686 MyFlags.Flags.setOrigAlign(Align(1)); 9687 if (j == NumParts - 1) 9688 MyFlags.Flags.setSplitEnd(); 9689 } 9690 9691 CLI.Outs.push_back(MyFlags); 9692 CLI.OutVals.push_back(Parts[j]); 9693 } 9694 9695 if (NeedsRegBlock && Value == NumValues - 1) 9696 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9697 } 9698 } 9699 9700 SmallVector<SDValue, 4> InVals; 9701 CLI.Chain = LowerCall(CLI, InVals); 9702 9703 // Update CLI.InVals to use outside of this function. 9704 CLI.InVals = InVals; 9705 9706 // Verify that the target's LowerCall behaved as expected. 9707 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9708 "LowerCall didn't return a valid chain!"); 9709 assert((!CLI.IsTailCall || InVals.empty()) && 9710 "LowerCall emitted a return value for a tail call!"); 9711 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9712 "LowerCall didn't emit the correct number of values!"); 9713 9714 // For a tail call, the return value is merely live-out and there aren't 9715 // any nodes in the DAG representing it. Return a special value to 9716 // indicate that a tail call has been emitted and no more Instructions 9717 // should be processed in the current block. 9718 if (CLI.IsTailCall) { 9719 CLI.DAG.setRoot(CLI.Chain); 9720 return std::make_pair(SDValue(), SDValue()); 9721 } 9722 9723 #ifndef NDEBUG 9724 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9725 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9726 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9727 "LowerCall emitted a value with the wrong type!"); 9728 } 9729 #endif 9730 9731 SmallVector<SDValue, 4> ReturnValues; 9732 if (!CanLowerReturn) { 9733 // The instruction result is the result of loading from the 9734 // hidden sret parameter. 9735 SmallVector<EVT, 1> PVTs; 9736 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9737 9738 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9739 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9740 EVT PtrVT = PVTs[0]; 9741 9742 unsigned NumValues = RetTys.size(); 9743 ReturnValues.resize(NumValues); 9744 SmallVector<SDValue, 4> Chains(NumValues); 9745 9746 // An aggregate return value cannot wrap around the address space, so 9747 // offsets to its parts don't wrap either. 9748 SDNodeFlags Flags; 9749 Flags.setNoUnsignedWrap(true); 9750 9751 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9752 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9753 for (unsigned i = 0; i < NumValues; ++i) { 9754 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9755 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9756 PtrVT), Flags); 9757 SDValue L = CLI.DAG.getLoad( 9758 RetTys[i], CLI.DL, CLI.Chain, Add, 9759 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9760 DemoteStackIdx, Offsets[i]), 9761 HiddenSRetAlign); 9762 ReturnValues[i] = L; 9763 Chains[i] = L.getValue(1); 9764 } 9765 9766 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9767 } else { 9768 // Collect the legal value parts into potentially illegal values 9769 // that correspond to the original function's return values. 9770 Optional<ISD::NodeType> AssertOp; 9771 if (CLI.RetSExt) 9772 AssertOp = ISD::AssertSext; 9773 else if (CLI.RetZExt) 9774 AssertOp = ISD::AssertZext; 9775 unsigned CurReg = 0; 9776 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9777 EVT VT = RetTys[I]; 9778 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9779 CLI.CallConv, VT); 9780 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9781 CLI.CallConv, VT); 9782 9783 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9784 NumRegs, RegisterVT, VT, nullptr, 9785 CLI.CallConv, AssertOp)); 9786 CurReg += NumRegs; 9787 } 9788 9789 // For a function returning void, there is no return value. We can't create 9790 // such a node, so we just return a null return value in that case. In 9791 // that case, nothing will actually look at the value. 9792 if (ReturnValues.empty()) 9793 return std::make_pair(SDValue(), CLI.Chain); 9794 } 9795 9796 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9797 CLI.DAG.getVTList(RetTys), ReturnValues); 9798 return std::make_pair(Res, CLI.Chain); 9799 } 9800 9801 /// Places new result values for the node in Results (their number 9802 /// and types must exactly match those of the original return values of 9803 /// the node), or leaves Results empty, which indicates that the node is not 9804 /// to be custom lowered after all. 9805 void TargetLowering::LowerOperationWrapper(SDNode *N, 9806 SmallVectorImpl<SDValue> &Results, 9807 SelectionDAG &DAG) const { 9808 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9809 9810 if (!Res.getNode()) 9811 return; 9812 9813 // If the original node has one result, take the return value from 9814 // LowerOperation as is. It might not be result number 0. 9815 if (N->getNumValues() == 1) { 9816 Results.push_back(Res); 9817 return; 9818 } 9819 9820 // If the original node has multiple results, then the return node should 9821 // have the same number of results. 9822 assert((N->getNumValues() == Res->getNumValues()) && 9823 "Lowering returned the wrong number of results!"); 9824 9825 // Places new result values base on N result number. 9826 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9827 Results.push_back(Res.getValue(I)); 9828 } 9829 9830 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9831 llvm_unreachable("LowerOperation not implemented for this target!"); 9832 } 9833 9834 void 9835 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9836 SDValue Op = getNonRegisterValue(V); 9837 assert((Op.getOpcode() != ISD::CopyFromReg || 9838 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9839 "Copy from a reg to the same reg!"); 9840 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9841 9842 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9843 // If this is an InlineAsm we have to match the registers required, not the 9844 // notional registers required by the type. 9845 9846 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9847 None); // This is not an ABI copy. 9848 SDValue Chain = DAG.getEntryNode(); 9849 9850 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9851 FuncInfo.PreferredExtendType.end()) 9852 ? ISD::ANY_EXTEND 9853 : FuncInfo.PreferredExtendType[V]; 9854 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9855 PendingExports.push_back(Chain); 9856 } 9857 9858 #include "llvm/CodeGen/SelectionDAGISel.h" 9859 9860 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9861 /// entry block, return true. This includes arguments used by switches, since 9862 /// the switch may expand into multiple basic blocks. 9863 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9864 // With FastISel active, we may be splitting blocks, so force creation 9865 // of virtual registers for all non-dead arguments. 9866 if (FastISel) 9867 return A->use_empty(); 9868 9869 const BasicBlock &Entry = A->getParent()->front(); 9870 for (const User *U : A->users()) 9871 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9872 return false; // Use not in entry block. 9873 9874 return true; 9875 } 9876 9877 using ArgCopyElisionMapTy = 9878 DenseMap<const Argument *, 9879 std::pair<const AllocaInst *, const StoreInst *>>; 9880 9881 /// Scan the entry block of the function in FuncInfo for arguments that look 9882 /// like copies into a local alloca. Record any copied arguments in 9883 /// ArgCopyElisionCandidates. 9884 static void 9885 findArgumentCopyElisionCandidates(const DataLayout &DL, 9886 FunctionLoweringInfo *FuncInfo, 9887 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9888 // Record the state of every static alloca used in the entry block. Argument 9889 // allocas are all used in the entry block, so we need approximately as many 9890 // entries as we have arguments. 9891 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9892 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9893 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9894 StaticAllocas.reserve(NumArgs * 2); 9895 9896 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9897 if (!V) 9898 return nullptr; 9899 V = V->stripPointerCasts(); 9900 const auto *AI = dyn_cast<AllocaInst>(V); 9901 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9902 return nullptr; 9903 auto Iter = StaticAllocas.insert({AI, Unknown}); 9904 return &Iter.first->second; 9905 }; 9906 9907 // Look for stores of arguments to static allocas. Look through bitcasts and 9908 // GEPs to handle type coercions, as long as the alloca is fully initialized 9909 // by the store. Any non-store use of an alloca escapes it and any subsequent 9910 // unanalyzed store might write it. 9911 // FIXME: Handle structs initialized with multiple stores. 9912 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9913 // Look for stores, and handle non-store uses conservatively. 9914 const auto *SI = dyn_cast<StoreInst>(&I); 9915 if (!SI) { 9916 // We will look through cast uses, so ignore them completely. 9917 if (I.isCast()) 9918 continue; 9919 // Ignore debug info and pseudo op intrinsics, they don't escape or store 9920 // to allocas. 9921 if (I.isDebugOrPseudoInst()) 9922 continue; 9923 // This is an unknown instruction. Assume it escapes or writes to all 9924 // static alloca operands. 9925 for (const Use &U : I.operands()) { 9926 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9927 *Info = StaticAllocaInfo::Clobbered; 9928 } 9929 continue; 9930 } 9931 9932 // If the stored value is a static alloca, mark it as escaped. 9933 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9934 *Info = StaticAllocaInfo::Clobbered; 9935 9936 // Check if the destination is a static alloca. 9937 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9938 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9939 if (!Info) 9940 continue; 9941 const AllocaInst *AI = cast<AllocaInst>(Dst); 9942 9943 // Skip allocas that have been initialized or clobbered. 9944 if (*Info != StaticAllocaInfo::Unknown) 9945 continue; 9946 9947 // Check if the stored value is an argument, and that this store fully 9948 // initializes the alloca. 9949 // If the argument type has padding bits we can't directly forward a pointer 9950 // as the upper bits may contain garbage. 9951 // Don't elide copies from the same argument twice. 9952 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9953 const auto *Arg = dyn_cast<Argument>(Val); 9954 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9955 Arg->getType()->isEmptyTy() || 9956 DL.getTypeStoreSize(Arg->getType()) != 9957 DL.getTypeAllocSize(AI->getAllocatedType()) || 9958 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 9959 ArgCopyElisionCandidates.count(Arg)) { 9960 *Info = StaticAllocaInfo::Clobbered; 9961 continue; 9962 } 9963 9964 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9965 << '\n'); 9966 9967 // Mark this alloca and store for argument copy elision. 9968 *Info = StaticAllocaInfo::Elidable; 9969 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9970 9971 // Stop scanning if we've seen all arguments. This will happen early in -O0 9972 // builds, which is useful, because -O0 builds have large entry blocks and 9973 // many allocas. 9974 if (ArgCopyElisionCandidates.size() == NumArgs) 9975 break; 9976 } 9977 } 9978 9979 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9980 /// ArgVal is a load from a suitable fixed stack object. 9981 static void tryToElideArgumentCopy( 9982 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9983 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9984 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9985 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9986 SDValue ArgVal, bool &ArgHasUses) { 9987 // Check if this is a load from a fixed stack object. 9988 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9989 if (!LNode) 9990 return; 9991 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9992 if (!FINode) 9993 return; 9994 9995 // Check that the fixed stack object is the right size and alignment. 9996 // Look at the alignment that the user wrote on the alloca instead of looking 9997 // at the stack object. 9998 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9999 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10000 const AllocaInst *AI = ArgCopyIter->second.first; 10001 int FixedIndex = FINode->getIndex(); 10002 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10003 int OldIndex = AllocaIndex; 10004 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10005 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10006 LLVM_DEBUG( 10007 dbgs() << " argument copy elision failed due to bad fixed stack " 10008 "object size\n"); 10009 return; 10010 } 10011 Align RequiredAlignment = AI->getAlign(); 10012 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10013 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10014 "greater than stack argument alignment (" 10015 << DebugStr(RequiredAlignment) << " vs " 10016 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10017 return; 10018 } 10019 10020 // Perform the elision. Delete the old stack object and replace its only use 10021 // in the variable info map. Mark the stack object as mutable. 10022 LLVM_DEBUG({ 10023 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10024 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10025 << '\n'; 10026 }); 10027 MFI.RemoveStackObject(OldIndex); 10028 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10029 AllocaIndex = FixedIndex; 10030 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10031 Chains.push_back(ArgVal.getValue(1)); 10032 10033 // Avoid emitting code for the store implementing the copy. 10034 const StoreInst *SI = ArgCopyIter->second.second; 10035 ElidedArgCopyInstrs.insert(SI); 10036 10037 // Check for uses of the argument again so that we can avoid exporting ArgVal 10038 // if it is't used by anything other than the store. 10039 for (const Value *U : Arg.users()) { 10040 if (U != SI) { 10041 ArgHasUses = true; 10042 break; 10043 } 10044 } 10045 } 10046 10047 void SelectionDAGISel::LowerArguments(const Function &F) { 10048 SelectionDAG &DAG = SDB->DAG; 10049 SDLoc dl = SDB->getCurSDLoc(); 10050 const DataLayout &DL = DAG.getDataLayout(); 10051 SmallVector<ISD::InputArg, 16> Ins; 10052 10053 // In Naked functions we aren't going to save any registers. 10054 if (F.hasFnAttribute(Attribute::Naked)) 10055 return; 10056 10057 if (!FuncInfo->CanLowerReturn) { 10058 // Put in an sret pointer parameter before all the other parameters. 10059 SmallVector<EVT, 1> ValueVTs; 10060 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10061 F.getReturnType()->getPointerTo( 10062 DAG.getDataLayout().getAllocaAddrSpace()), 10063 ValueVTs); 10064 10065 // NOTE: Assuming that a pointer will never break down to more than one VT 10066 // or one register. 10067 ISD::ArgFlagsTy Flags; 10068 Flags.setSRet(); 10069 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10070 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10071 ISD::InputArg::NoArgIndex, 0); 10072 Ins.push_back(RetArg); 10073 } 10074 10075 // Look for stores of arguments to static allocas. Mark such arguments with a 10076 // flag to ask the target to give us the memory location of that argument if 10077 // available. 10078 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10079 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10080 ArgCopyElisionCandidates); 10081 10082 // Set up the incoming argument description vector. 10083 for (const Argument &Arg : F.args()) { 10084 unsigned ArgNo = Arg.getArgNo(); 10085 SmallVector<EVT, 4> ValueVTs; 10086 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10087 bool isArgValueUsed = !Arg.use_empty(); 10088 unsigned PartBase = 0; 10089 Type *FinalType = Arg.getType(); 10090 if (Arg.hasAttribute(Attribute::ByVal)) 10091 FinalType = Arg.getParamByValType(); 10092 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10093 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10094 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10095 Value != NumValues; ++Value) { 10096 EVT VT = ValueVTs[Value]; 10097 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10098 ISD::ArgFlagsTy Flags; 10099 10100 10101 if (Arg.getType()->isPointerTy()) { 10102 Flags.setPointer(); 10103 Flags.setPointerAddrSpace( 10104 cast<PointerType>(Arg.getType())->getAddressSpace()); 10105 } 10106 if (Arg.hasAttribute(Attribute::ZExt)) 10107 Flags.setZExt(); 10108 if (Arg.hasAttribute(Attribute::SExt)) 10109 Flags.setSExt(); 10110 if (Arg.hasAttribute(Attribute::InReg)) { 10111 // If we are using vectorcall calling convention, a structure that is 10112 // passed InReg - is surely an HVA 10113 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10114 isa<StructType>(Arg.getType())) { 10115 // The first value of a structure is marked 10116 if (0 == Value) 10117 Flags.setHvaStart(); 10118 Flags.setHva(); 10119 } 10120 // Set InReg Flag 10121 Flags.setInReg(); 10122 } 10123 if (Arg.hasAttribute(Attribute::StructRet)) 10124 Flags.setSRet(); 10125 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10126 Flags.setSwiftSelf(); 10127 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10128 Flags.setSwiftAsync(); 10129 if (Arg.hasAttribute(Attribute::SwiftError)) 10130 Flags.setSwiftError(); 10131 if (Arg.hasAttribute(Attribute::ByVal)) 10132 Flags.setByVal(); 10133 if (Arg.hasAttribute(Attribute::ByRef)) 10134 Flags.setByRef(); 10135 if (Arg.hasAttribute(Attribute::InAlloca)) { 10136 Flags.setInAlloca(); 10137 // Set the byval flag for CCAssignFn callbacks that don't know about 10138 // inalloca. This way we can know how many bytes we should've allocated 10139 // and how many bytes a callee cleanup function will pop. If we port 10140 // inalloca to more targets, we'll have to add custom inalloca handling 10141 // in the various CC lowering callbacks. 10142 Flags.setByVal(); 10143 } 10144 if (Arg.hasAttribute(Attribute::Preallocated)) { 10145 Flags.setPreallocated(); 10146 // Set the byval flag for CCAssignFn callbacks that don't know about 10147 // preallocated. This way we can know how many bytes we should've 10148 // allocated and how many bytes a callee cleanup function will pop. If 10149 // we port preallocated to more targets, we'll have to add custom 10150 // preallocated handling in the various CC lowering callbacks. 10151 Flags.setByVal(); 10152 } 10153 10154 // Certain targets (such as MIPS), may have a different ABI alignment 10155 // for a type depending on the context. Give the target a chance to 10156 // specify the alignment it wants. 10157 const Align OriginalAlignment( 10158 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10159 Flags.setOrigAlign(OriginalAlignment); 10160 10161 Align MemAlign; 10162 Type *ArgMemTy = nullptr; 10163 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10164 Flags.isByRef()) { 10165 if (!ArgMemTy) 10166 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10167 10168 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10169 10170 // For in-memory arguments, size and alignment should be passed from FE. 10171 // BE will guess if this info is not there but there are cases it cannot 10172 // get right. 10173 if (auto ParamAlign = Arg.getParamStackAlign()) 10174 MemAlign = *ParamAlign; 10175 else if ((ParamAlign = Arg.getParamAlign())) 10176 MemAlign = *ParamAlign; 10177 else 10178 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10179 if (Flags.isByRef()) 10180 Flags.setByRefSize(MemSize); 10181 else 10182 Flags.setByValSize(MemSize); 10183 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10184 MemAlign = *ParamAlign; 10185 } else { 10186 MemAlign = OriginalAlignment; 10187 } 10188 Flags.setMemAlign(MemAlign); 10189 10190 if (Arg.hasAttribute(Attribute::Nest)) 10191 Flags.setNest(); 10192 if (NeedsRegBlock) 10193 Flags.setInConsecutiveRegs(); 10194 if (ArgCopyElisionCandidates.count(&Arg)) 10195 Flags.setCopyElisionCandidate(); 10196 if (Arg.hasAttribute(Attribute::Returned)) 10197 Flags.setReturned(); 10198 10199 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10200 *CurDAG->getContext(), F.getCallingConv(), VT); 10201 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10202 *CurDAG->getContext(), F.getCallingConv(), VT); 10203 for (unsigned i = 0; i != NumRegs; ++i) { 10204 // For scalable vectors, use the minimum size; individual targets 10205 // are responsible for handling scalable vector arguments and 10206 // return values. 10207 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10208 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10209 if (NumRegs > 1 && i == 0) 10210 MyFlags.Flags.setSplit(); 10211 // if it isn't first piece, alignment must be 1 10212 else if (i > 0) { 10213 MyFlags.Flags.setOrigAlign(Align(1)); 10214 if (i == NumRegs - 1) 10215 MyFlags.Flags.setSplitEnd(); 10216 } 10217 Ins.push_back(MyFlags); 10218 } 10219 if (NeedsRegBlock && Value == NumValues - 1) 10220 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10221 PartBase += VT.getStoreSize().getKnownMinSize(); 10222 } 10223 } 10224 10225 // Call the target to set up the argument values. 10226 SmallVector<SDValue, 8> InVals; 10227 SDValue NewRoot = TLI->LowerFormalArguments( 10228 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10229 10230 // Verify that the target's LowerFormalArguments behaved as expected. 10231 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10232 "LowerFormalArguments didn't return a valid chain!"); 10233 assert(InVals.size() == Ins.size() && 10234 "LowerFormalArguments didn't emit the correct number of values!"); 10235 LLVM_DEBUG({ 10236 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10237 assert(InVals[i].getNode() && 10238 "LowerFormalArguments emitted a null value!"); 10239 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10240 "LowerFormalArguments emitted a value with the wrong type!"); 10241 } 10242 }); 10243 10244 // Update the DAG with the new chain value resulting from argument lowering. 10245 DAG.setRoot(NewRoot); 10246 10247 // Set up the argument values. 10248 unsigned i = 0; 10249 if (!FuncInfo->CanLowerReturn) { 10250 // Create a virtual register for the sret pointer, and put in a copy 10251 // from the sret argument into it. 10252 SmallVector<EVT, 1> ValueVTs; 10253 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10254 F.getReturnType()->getPointerTo( 10255 DAG.getDataLayout().getAllocaAddrSpace()), 10256 ValueVTs); 10257 MVT VT = ValueVTs[0].getSimpleVT(); 10258 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10259 Optional<ISD::NodeType> AssertOp = None; 10260 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10261 nullptr, F.getCallingConv(), AssertOp); 10262 10263 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10264 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10265 Register SRetReg = 10266 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10267 FuncInfo->DemoteRegister = SRetReg; 10268 NewRoot = 10269 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10270 DAG.setRoot(NewRoot); 10271 10272 // i indexes lowered arguments. Bump it past the hidden sret argument. 10273 ++i; 10274 } 10275 10276 SmallVector<SDValue, 4> Chains; 10277 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10278 for (const Argument &Arg : F.args()) { 10279 SmallVector<SDValue, 4> ArgValues; 10280 SmallVector<EVT, 4> ValueVTs; 10281 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10282 unsigned NumValues = ValueVTs.size(); 10283 if (NumValues == 0) 10284 continue; 10285 10286 bool ArgHasUses = !Arg.use_empty(); 10287 10288 // Elide the copying store if the target loaded this argument from a 10289 // suitable fixed stack object. 10290 if (Ins[i].Flags.isCopyElisionCandidate()) { 10291 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10292 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10293 InVals[i], ArgHasUses); 10294 } 10295 10296 // If this argument is unused then remember its value. It is used to generate 10297 // debugging information. 10298 bool isSwiftErrorArg = 10299 TLI->supportSwiftError() && 10300 Arg.hasAttribute(Attribute::SwiftError); 10301 if (!ArgHasUses && !isSwiftErrorArg) { 10302 SDB->setUnusedArgValue(&Arg, InVals[i]); 10303 10304 // Also remember any frame index for use in FastISel. 10305 if (FrameIndexSDNode *FI = 10306 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10307 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10308 } 10309 10310 for (unsigned Val = 0; Val != NumValues; ++Val) { 10311 EVT VT = ValueVTs[Val]; 10312 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10313 F.getCallingConv(), VT); 10314 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10315 *CurDAG->getContext(), F.getCallingConv(), VT); 10316 10317 // Even an apparent 'unused' swifterror argument needs to be returned. So 10318 // we do generate a copy for it that can be used on return from the 10319 // function. 10320 if (ArgHasUses || isSwiftErrorArg) { 10321 Optional<ISD::NodeType> AssertOp; 10322 if (Arg.hasAttribute(Attribute::SExt)) 10323 AssertOp = ISD::AssertSext; 10324 else if (Arg.hasAttribute(Attribute::ZExt)) 10325 AssertOp = ISD::AssertZext; 10326 10327 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10328 PartVT, VT, nullptr, 10329 F.getCallingConv(), AssertOp)); 10330 } 10331 10332 i += NumParts; 10333 } 10334 10335 // We don't need to do anything else for unused arguments. 10336 if (ArgValues.empty()) 10337 continue; 10338 10339 // Note down frame index. 10340 if (FrameIndexSDNode *FI = 10341 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10342 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10343 10344 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10345 SDB->getCurSDLoc()); 10346 10347 SDB->setValue(&Arg, Res); 10348 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10349 // We want to associate the argument with the frame index, among 10350 // involved operands, that correspond to the lowest address. The 10351 // getCopyFromParts function, called earlier, is swapping the order of 10352 // the operands to BUILD_PAIR depending on endianness. The result of 10353 // that swapping is that the least significant bits of the argument will 10354 // be in the first operand of the BUILD_PAIR node, and the most 10355 // significant bits will be in the second operand. 10356 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10357 if (LoadSDNode *LNode = 10358 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10359 if (FrameIndexSDNode *FI = 10360 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10361 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10362 } 10363 10364 // Analyses past this point are naive and don't expect an assertion. 10365 if (Res.getOpcode() == ISD::AssertZext) 10366 Res = Res.getOperand(0); 10367 10368 // Update the SwiftErrorVRegDefMap. 10369 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10370 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10371 if (Register::isVirtualRegister(Reg)) 10372 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10373 Reg); 10374 } 10375 10376 // If this argument is live outside of the entry block, insert a copy from 10377 // wherever we got it to the vreg that other BB's will reference it as. 10378 if (Res.getOpcode() == ISD::CopyFromReg) { 10379 // If we can, though, try to skip creating an unnecessary vreg. 10380 // FIXME: This isn't very clean... it would be nice to make this more 10381 // general. 10382 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10383 if (Register::isVirtualRegister(Reg)) { 10384 FuncInfo->ValueMap[&Arg] = Reg; 10385 continue; 10386 } 10387 } 10388 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10389 FuncInfo->InitializeRegForValue(&Arg); 10390 SDB->CopyToExportRegsIfNeeded(&Arg); 10391 } 10392 } 10393 10394 if (!Chains.empty()) { 10395 Chains.push_back(NewRoot); 10396 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10397 } 10398 10399 DAG.setRoot(NewRoot); 10400 10401 assert(i == InVals.size() && "Argument register count mismatch!"); 10402 10403 // If any argument copy elisions occurred and we have debug info, update the 10404 // stale frame indices used in the dbg.declare variable info table. 10405 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10406 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10407 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10408 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10409 if (I != ArgCopyElisionFrameIndexMap.end()) 10410 VI.Slot = I->second; 10411 } 10412 } 10413 10414 // Finally, if the target has anything special to do, allow it to do so. 10415 emitFunctionEntryCode(); 10416 } 10417 10418 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10419 /// ensure constants are generated when needed. Remember the virtual registers 10420 /// that need to be added to the Machine PHI nodes as input. We cannot just 10421 /// directly add them, because expansion might result in multiple MBB's for one 10422 /// BB. As such, the start of the BB might correspond to a different MBB than 10423 /// the end. 10424 void 10425 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10426 const Instruction *TI = LLVMBB->getTerminator(); 10427 10428 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10429 10430 // Check PHI nodes in successors that expect a value to be available from this 10431 // block. 10432 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10433 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10434 if (!isa<PHINode>(SuccBB->begin())) continue; 10435 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10436 10437 // If this terminator has multiple identical successors (common for 10438 // switches), only handle each succ once. 10439 if (!SuccsHandled.insert(SuccMBB).second) 10440 continue; 10441 10442 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10443 10444 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10445 // nodes and Machine PHI nodes, but the incoming operands have not been 10446 // emitted yet. 10447 for (const PHINode &PN : SuccBB->phis()) { 10448 // Ignore dead phi's. 10449 if (PN.use_empty()) 10450 continue; 10451 10452 // Skip empty types 10453 if (PN.getType()->isEmptyTy()) 10454 continue; 10455 10456 unsigned Reg; 10457 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10458 10459 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10460 unsigned &RegOut = ConstantsOut[C]; 10461 if (RegOut == 0) { 10462 RegOut = FuncInfo.CreateRegs(C); 10463 CopyValueToVirtualRegister(C, RegOut); 10464 } 10465 Reg = RegOut; 10466 } else { 10467 DenseMap<const Value *, Register>::iterator I = 10468 FuncInfo.ValueMap.find(PHIOp); 10469 if (I != FuncInfo.ValueMap.end()) 10470 Reg = I->second; 10471 else { 10472 assert(isa<AllocaInst>(PHIOp) && 10473 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10474 "Didn't codegen value into a register!??"); 10475 Reg = FuncInfo.CreateRegs(PHIOp); 10476 CopyValueToVirtualRegister(PHIOp, Reg); 10477 } 10478 } 10479 10480 // Remember that this register needs to added to the machine PHI node as 10481 // the input for this MBB. 10482 SmallVector<EVT, 4> ValueVTs; 10483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10484 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10485 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10486 EVT VT = ValueVTs[vti]; 10487 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10488 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10489 FuncInfo.PHINodesToUpdate.push_back( 10490 std::make_pair(&*MBBI++, Reg + i)); 10491 Reg += NumRegisters; 10492 } 10493 } 10494 } 10495 10496 ConstantsOut.clear(); 10497 } 10498 10499 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10500 /// is 0. 10501 MachineBasicBlock * 10502 SelectionDAGBuilder::StackProtectorDescriptor:: 10503 AddSuccessorMBB(const BasicBlock *BB, 10504 MachineBasicBlock *ParentMBB, 10505 bool IsLikely, 10506 MachineBasicBlock *SuccMBB) { 10507 // If SuccBB has not been created yet, create it. 10508 if (!SuccMBB) { 10509 MachineFunction *MF = ParentMBB->getParent(); 10510 MachineFunction::iterator BBI(ParentMBB); 10511 SuccMBB = MF->CreateMachineBasicBlock(BB); 10512 MF->insert(++BBI, SuccMBB); 10513 } 10514 // Add it as a successor of ParentMBB. 10515 ParentMBB->addSuccessor( 10516 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10517 return SuccMBB; 10518 } 10519 10520 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10521 MachineFunction::iterator I(MBB); 10522 if (++I == FuncInfo.MF->end()) 10523 return nullptr; 10524 return &*I; 10525 } 10526 10527 /// During lowering new call nodes can be created (such as memset, etc.). 10528 /// Those will become new roots of the current DAG, but complications arise 10529 /// when they are tail calls. In such cases, the call lowering will update 10530 /// the root, but the builder still needs to know that a tail call has been 10531 /// lowered in order to avoid generating an additional return. 10532 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10533 // If the node is null, we do have a tail call. 10534 if (MaybeTC.getNode() != nullptr) 10535 DAG.setRoot(MaybeTC); 10536 else 10537 HasTailCall = true; 10538 } 10539 10540 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10541 MachineBasicBlock *SwitchMBB, 10542 MachineBasicBlock *DefaultMBB) { 10543 MachineFunction *CurMF = FuncInfo.MF; 10544 MachineBasicBlock *NextMBB = nullptr; 10545 MachineFunction::iterator BBI(W.MBB); 10546 if (++BBI != FuncInfo.MF->end()) 10547 NextMBB = &*BBI; 10548 10549 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10550 10551 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10552 10553 if (Size == 2 && W.MBB == SwitchMBB) { 10554 // If any two of the cases has the same destination, and if one value 10555 // is the same as the other, but has one bit unset that the other has set, 10556 // use bit manipulation to do two compares at once. For example: 10557 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10558 // TODO: This could be extended to merge any 2 cases in switches with 3 10559 // cases. 10560 // TODO: Handle cases where W.CaseBB != SwitchBB. 10561 CaseCluster &Small = *W.FirstCluster; 10562 CaseCluster &Big = *W.LastCluster; 10563 10564 if (Small.Low == Small.High && Big.Low == Big.High && 10565 Small.MBB == Big.MBB) { 10566 const APInt &SmallValue = Small.Low->getValue(); 10567 const APInt &BigValue = Big.Low->getValue(); 10568 10569 // Check that there is only one bit different. 10570 APInt CommonBit = BigValue ^ SmallValue; 10571 if (CommonBit.isPowerOf2()) { 10572 SDValue CondLHS = getValue(Cond); 10573 EVT VT = CondLHS.getValueType(); 10574 SDLoc DL = getCurSDLoc(); 10575 10576 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10577 DAG.getConstant(CommonBit, DL, VT)); 10578 SDValue Cond = DAG.getSetCC( 10579 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10580 ISD::SETEQ); 10581 10582 // Update successor info. 10583 // Both Small and Big will jump to Small.BB, so we sum up the 10584 // probabilities. 10585 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10586 if (BPI) 10587 addSuccessorWithProb( 10588 SwitchMBB, DefaultMBB, 10589 // The default destination is the first successor in IR. 10590 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10591 else 10592 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10593 10594 // Insert the true branch. 10595 SDValue BrCond = 10596 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10597 DAG.getBasicBlock(Small.MBB)); 10598 // Insert the false branch. 10599 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10600 DAG.getBasicBlock(DefaultMBB)); 10601 10602 DAG.setRoot(BrCond); 10603 return; 10604 } 10605 } 10606 } 10607 10608 if (TM.getOptLevel() != CodeGenOpt::None) { 10609 // Here, we order cases by probability so the most likely case will be 10610 // checked first. However, two clusters can have the same probability in 10611 // which case their relative ordering is non-deterministic. So we use Low 10612 // as a tie-breaker as clusters are guaranteed to never overlap. 10613 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10614 [](const CaseCluster &a, const CaseCluster &b) { 10615 return a.Prob != b.Prob ? 10616 a.Prob > b.Prob : 10617 a.Low->getValue().slt(b.Low->getValue()); 10618 }); 10619 10620 // Rearrange the case blocks so that the last one falls through if possible 10621 // without changing the order of probabilities. 10622 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10623 --I; 10624 if (I->Prob > W.LastCluster->Prob) 10625 break; 10626 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10627 std::swap(*I, *W.LastCluster); 10628 break; 10629 } 10630 } 10631 } 10632 10633 // Compute total probability. 10634 BranchProbability DefaultProb = W.DefaultProb; 10635 BranchProbability UnhandledProbs = DefaultProb; 10636 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10637 UnhandledProbs += I->Prob; 10638 10639 MachineBasicBlock *CurMBB = W.MBB; 10640 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10641 bool FallthroughUnreachable = false; 10642 MachineBasicBlock *Fallthrough; 10643 if (I == W.LastCluster) { 10644 // For the last cluster, fall through to the default destination. 10645 Fallthrough = DefaultMBB; 10646 FallthroughUnreachable = isa<UnreachableInst>( 10647 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10648 } else { 10649 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10650 CurMF->insert(BBI, Fallthrough); 10651 // Put Cond in a virtual register to make it available from the new blocks. 10652 ExportFromCurrentBlock(Cond); 10653 } 10654 UnhandledProbs -= I->Prob; 10655 10656 switch (I->Kind) { 10657 case CC_JumpTable: { 10658 // FIXME: Optimize away range check based on pivot comparisons. 10659 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10660 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10661 10662 // The jump block hasn't been inserted yet; insert it here. 10663 MachineBasicBlock *JumpMBB = JT->MBB; 10664 CurMF->insert(BBI, JumpMBB); 10665 10666 auto JumpProb = I->Prob; 10667 auto FallthroughProb = UnhandledProbs; 10668 10669 // If the default statement is a target of the jump table, we evenly 10670 // distribute the default probability to successors of CurMBB. Also 10671 // update the probability on the edge from JumpMBB to Fallthrough. 10672 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10673 SE = JumpMBB->succ_end(); 10674 SI != SE; ++SI) { 10675 if (*SI == DefaultMBB) { 10676 JumpProb += DefaultProb / 2; 10677 FallthroughProb -= DefaultProb / 2; 10678 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10679 JumpMBB->normalizeSuccProbs(); 10680 break; 10681 } 10682 } 10683 10684 if (FallthroughUnreachable) { 10685 // Skip the range check if the fallthrough block is unreachable. 10686 JTH->OmitRangeCheck = true; 10687 } 10688 10689 if (!JTH->OmitRangeCheck) 10690 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10691 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10692 CurMBB->normalizeSuccProbs(); 10693 10694 // The jump table header will be inserted in our current block, do the 10695 // range check, and fall through to our fallthrough block. 10696 JTH->HeaderBB = CurMBB; 10697 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10698 10699 // If we're in the right place, emit the jump table header right now. 10700 if (CurMBB == SwitchMBB) { 10701 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10702 JTH->Emitted = true; 10703 } 10704 break; 10705 } 10706 case CC_BitTests: { 10707 // FIXME: Optimize away range check based on pivot comparisons. 10708 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10709 10710 // The bit test blocks haven't been inserted yet; insert them here. 10711 for (BitTestCase &BTC : BTB->Cases) 10712 CurMF->insert(BBI, BTC.ThisBB); 10713 10714 // Fill in fields of the BitTestBlock. 10715 BTB->Parent = CurMBB; 10716 BTB->Default = Fallthrough; 10717 10718 BTB->DefaultProb = UnhandledProbs; 10719 // If the cases in bit test don't form a contiguous range, we evenly 10720 // distribute the probability on the edge to Fallthrough to two 10721 // successors of CurMBB. 10722 if (!BTB->ContiguousRange) { 10723 BTB->Prob += DefaultProb / 2; 10724 BTB->DefaultProb -= DefaultProb / 2; 10725 } 10726 10727 if (FallthroughUnreachable) { 10728 // Skip the range check if the fallthrough block is unreachable. 10729 BTB->OmitRangeCheck = true; 10730 } 10731 10732 // If we're in the right place, emit the bit test header right now. 10733 if (CurMBB == SwitchMBB) { 10734 visitBitTestHeader(*BTB, SwitchMBB); 10735 BTB->Emitted = true; 10736 } 10737 break; 10738 } 10739 case CC_Range: { 10740 const Value *RHS, *LHS, *MHS; 10741 ISD::CondCode CC; 10742 if (I->Low == I->High) { 10743 // Check Cond == I->Low. 10744 CC = ISD::SETEQ; 10745 LHS = Cond; 10746 RHS=I->Low; 10747 MHS = nullptr; 10748 } else { 10749 // Check I->Low <= Cond <= I->High. 10750 CC = ISD::SETLE; 10751 LHS = I->Low; 10752 MHS = Cond; 10753 RHS = I->High; 10754 } 10755 10756 // If Fallthrough is unreachable, fold away the comparison. 10757 if (FallthroughUnreachable) 10758 CC = ISD::SETTRUE; 10759 10760 // The false probability is the sum of all unhandled cases. 10761 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10762 getCurSDLoc(), I->Prob, UnhandledProbs); 10763 10764 if (CurMBB == SwitchMBB) 10765 visitSwitchCase(CB, SwitchMBB); 10766 else 10767 SL->SwitchCases.push_back(CB); 10768 10769 break; 10770 } 10771 } 10772 CurMBB = Fallthrough; 10773 } 10774 } 10775 10776 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10777 CaseClusterIt First, 10778 CaseClusterIt Last) { 10779 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10780 if (X.Prob != CC.Prob) 10781 return X.Prob > CC.Prob; 10782 10783 // Ties are broken by comparing the case value. 10784 return X.Low->getValue().slt(CC.Low->getValue()); 10785 }); 10786 } 10787 10788 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10789 const SwitchWorkListItem &W, 10790 Value *Cond, 10791 MachineBasicBlock *SwitchMBB) { 10792 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10793 "Clusters not sorted?"); 10794 10795 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10796 10797 // Balance the tree based on branch probabilities to create a near-optimal (in 10798 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10799 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10800 CaseClusterIt LastLeft = W.FirstCluster; 10801 CaseClusterIt FirstRight = W.LastCluster; 10802 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10803 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10804 10805 // Move LastLeft and FirstRight towards each other from opposite directions to 10806 // find a partitioning of the clusters which balances the probability on both 10807 // sides. If LeftProb and RightProb are equal, alternate which side is 10808 // taken to ensure 0-probability nodes are distributed evenly. 10809 unsigned I = 0; 10810 while (LastLeft + 1 < FirstRight) { 10811 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10812 LeftProb += (++LastLeft)->Prob; 10813 else 10814 RightProb += (--FirstRight)->Prob; 10815 I++; 10816 } 10817 10818 while (true) { 10819 // Our binary search tree differs from a typical BST in that ours can have up 10820 // to three values in each leaf. The pivot selection above doesn't take that 10821 // into account, which means the tree might require more nodes and be less 10822 // efficient. We compensate for this here. 10823 10824 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10825 unsigned NumRight = W.LastCluster - FirstRight + 1; 10826 10827 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10828 // If one side has less than 3 clusters, and the other has more than 3, 10829 // consider taking a cluster from the other side. 10830 10831 if (NumLeft < NumRight) { 10832 // Consider moving the first cluster on the right to the left side. 10833 CaseCluster &CC = *FirstRight; 10834 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10835 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10836 if (LeftSideRank <= RightSideRank) { 10837 // Moving the cluster to the left does not demote it. 10838 ++LastLeft; 10839 ++FirstRight; 10840 continue; 10841 } 10842 } else { 10843 assert(NumRight < NumLeft); 10844 // Consider moving the last element on the left to the right side. 10845 CaseCluster &CC = *LastLeft; 10846 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10847 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10848 if (RightSideRank <= LeftSideRank) { 10849 // Moving the cluster to the right does not demot it. 10850 --LastLeft; 10851 --FirstRight; 10852 continue; 10853 } 10854 } 10855 } 10856 break; 10857 } 10858 10859 assert(LastLeft + 1 == FirstRight); 10860 assert(LastLeft >= W.FirstCluster); 10861 assert(FirstRight <= W.LastCluster); 10862 10863 // Use the first element on the right as pivot since we will make less-than 10864 // comparisons against it. 10865 CaseClusterIt PivotCluster = FirstRight; 10866 assert(PivotCluster > W.FirstCluster); 10867 assert(PivotCluster <= W.LastCluster); 10868 10869 CaseClusterIt FirstLeft = W.FirstCluster; 10870 CaseClusterIt LastRight = W.LastCluster; 10871 10872 const ConstantInt *Pivot = PivotCluster->Low; 10873 10874 // New blocks will be inserted immediately after the current one. 10875 MachineFunction::iterator BBI(W.MBB); 10876 ++BBI; 10877 10878 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10879 // we can branch to its destination directly if it's squeezed exactly in 10880 // between the known lower bound and Pivot - 1. 10881 MachineBasicBlock *LeftMBB; 10882 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10883 FirstLeft->Low == W.GE && 10884 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10885 LeftMBB = FirstLeft->MBB; 10886 } else { 10887 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10888 FuncInfo.MF->insert(BBI, LeftMBB); 10889 WorkList.push_back( 10890 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10891 // Put Cond in a virtual register to make it available from the new blocks. 10892 ExportFromCurrentBlock(Cond); 10893 } 10894 10895 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10896 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10897 // directly if RHS.High equals the current upper bound. 10898 MachineBasicBlock *RightMBB; 10899 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10900 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10901 RightMBB = FirstRight->MBB; 10902 } else { 10903 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10904 FuncInfo.MF->insert(BBI, RightMBB); 10905 WorkList.push_back( 10906 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10907 // Put Cond in a virtual register to make it available from the new blocks. 10908 ExportFromCurrentBlock(Cond); 10909 } 10910 10911 // Create the CaseBlock record that will be used to lower the branch. 10912 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10913 getCurSDLoc(), LeftProb, RightProb); 10914 10915 if (W.MBB == SwitchMBB) 10916 visitSwitchCase(CB, SwitchMBB); 10917 else 10918 SL->SwitchCases.push_back(CB); 10919 } 10920 10921 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10922 // from the swith statement. 10923 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10924 BranchProbability PeeledCaseProb) { 10925 if (PeeledCaseProb == BranchProbability::getOne()) 10926 return BranchProbability::getZero(); 10927 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10928 10929 uint32_t Numerator = CaseProb.getNumerator(); 10930 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10931 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10932 } 10933 10934 // Try to peel the top probability case if it exceeds the threshold. 10935 // Return current MachineBasicBlock for the switch statement if the peeling 10936 // does not occur. 10937 // If the peeling is performed, return the newly created MachineBasicBlock 10938 // for the peeled switch statement. Also update Clusters to remove the peeled 10939 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10940 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10941 const SwitchInst &SI, CaseClusterVector &Clusters, 10942 BranchProbability &PeeledCaseProb) { 10943 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10944 // Don't perform if there is only one cluster or optimizing for size. 10945 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10946 TM.getOptLevel() == CodeGenOpt::None || 10947 SwitchMBB->getParent()->getFunction().hasMinSize()) 10948 return SwitchMBB; 10949 10950 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10951 unsigned PeeledCaseIndex = 0; 10952 bool SwitchPeeled = false; 10953 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10954 CaseCluster &CC = Clusters[Index]; 10955 if (CC.Prob < TopCaseProb) 10956 continue; 10957 TopCaseProb = CC.Prob; 10958 PeeledCaseIndex = Index; 10959 SwitchPeeled = true; 10960 } 10961 if (!SwitchPeeled) 10962 return SwitchMBB; 10963 10964 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10965 << TopCaseProb << "\n"); 10966 10967 // Record the MBB for the peeled switch statement. 10968 MachineFunction::iterator BBI(SwitchMBB); 10969 ++BBI; 10970 MachineBasicBlock *PeeledSwitchMBB = 10971 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10972 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10973 10974 ExportFromCurrentBlock(SI.getCondition()); 10975 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10976 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10977 nullptr, nullptr, TopCaseProb.getCompl()}; 10978 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10979 10980 Clusters.erase(PeeledCaseIt); 10981 for (CaseCluster &CC : Clusters) { 10982 LLVM_DEBUG( 10983 dbgs() << "Scale the probablity for one cluster, before scaling: " 10984 << CC.Prob << "\n"); 10985 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10986 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10987 } 10988 PeeledCaseProb = TopCaseProb; 10989 return PeeledSwitchMBB; 10990 } 10991 10992 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10993 // Extract cases from the switch. 10994 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10995 CaseClusterVector Clusters; 10996 Clusters.reserve(SI.getNumCases()); 10997 for (auto I : SI.cases()) { 10998 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10999 const ConstantInt *CaseVal = I.getCaseValue(); 11000 BranchProbability Prob = 11001 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11002 : BranchProbability(1, SI.getNumCases() + 1); 11003 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11004 } 11005 11006 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11007 11008 // Cluster adjacent cases with the same destination. We do this at all 11009 // optimization levels because it's cheap to do and will make codegen faster 11010 // if there are many clusters. 11011 sortAndRangeify(Clusters); 11012 11013 // The branch probablity of the peeled case. 11014 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11015 MachineBasicBlock *PeeledSwitchMBB = 11016 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11017 11018 // If there is only the default destination, jump there directly. 11019 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11020 if (Clusters.empty()) { 11021 assert(PeeledSwitchMBB == SwitchMBB); 11022 SwitchMBB->addSuccessor(DefaultMBB); 11023 if (DefaultMBB != NextBlock(SwitchMBB)) { 11024 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11025 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11026 } 11027 return; 11028 } 11029 11030 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11031 SL->findBitTestClusters(Clusters, &SI); 11032 11033 LLVM_DEBUG({ 11034 dbgs() << "Case clusters: "; 11035 for (const CaseCluster &C : Clusters) { 11036 if (C.Kind == CC_JumpTable) 11037 dbgs() << "JT:"; 11038 if (C.Kind == CC_BitTests) 11039 dbgs() << "BT:"; 11040 11041 C.Low->getValue().print(dbgs(), true); 11042 if (C.Low != C.High) { 11043 dbgs() << '-'; 11044 C.High->getValue().print(dbgs(), true); 11045 } 11046 dbgs() << ' '; 11047 } 11048 dbgs() << '\n'; 11049 }); 11050 11051 assert(!Clusters.empty()); 11052 SwitchWorkList WorkList; 11053 CaseClusterIt First = Clusters.begin(); 11054 CaseClusterIt Last = Clusters.end() - 1; 11055 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11056 // Scale the branchprobability for DefaultMBB if the peel occurs and 11057 // DefaultMBB is not replaced. 11058 if (PeeledCaseProb != BranchProbability::getZero() && 11059 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11060 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11061 WorkList.push_back( 11062 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11063 11064 while (!WorkList.empty()) { 11065 SwitchWorkListItem W = WorkList.pop_back_val(); 11066 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11067 11068 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11069 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11070 // For optimized builds, lower large range as a balanced binary tree. 11071 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11072 continue; 11073 } 11074 11075 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11076 } 11077 } 11078 11079 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11081 auto DL = getCurSDLoc(); 11082 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11083 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11084 } 11085 11086 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11088 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11089 11090 SDLoc DL = getCurSDLoc(); 11091 SDValue V = getValue(I.getOperand(0)); 11092 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11093 11094 if (VT.isScalableVector()) { 11095 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11096 return; 11097 } 11098 11099 // Use VECTOR_SHUFFLE for the fixed-length vector 11100 // to maintain existing behavior. 11101 SmallVector<int, 8> Mask; 11102 unsigned NumElts = VT.getVectorMinNumElements(); 11103 for (unsigned i = 0; i != NumElts; ++i) 11104 Mask.push_back(NumElts - 1 - i); 11105 11106 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11107 } 11108 11109 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11110 SmallVector<EVT, 4> ValueVTs; 11111 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11112 ValueVTs); 11113 unsigned NumValues = ValueVTs.size(); 11114 if (NumValues == 0) return; 11115 11116 SmallVector<SDValue, 4> Values(NumValues); 11117 SDValue Op = getValue(I.getOperand(0)); 11118 11119 for (unsigned i = 0; i != NumValues; ++i) 11120 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11121 SDValue(Op.getNode(), Op.getResNo() + i)); 11122 11123 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11124 DAG.getVTList(ValueVTs), Values)); 11125 } 11126 11127 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11128 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11129 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11130 11131 SDLoc DL = getCurSDLoc(); 11132 SDValue V1 = getValue(I.getOperand(0)); 11133 SDValue V2 = getValue(I.getOperand(1)); 11134 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11135 11136 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11137 if (VT.isScalableVector()) { 11138 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11139 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11140 DAG.getConstant(Imm, DL, IdxVT))); 11141 return; 11142 } 11143 11144 unsigned NumElts = VT.getVectorNumElements(); 11145 11146 if ((-Imm > NumElts) || (Imm >= NumElts)) { 11147 // Result is undefined if immediate is out-of-bounds. 11148 setValue(&I, DAG.getUNDEF(VT)); 11149 return; 11150 } 11151 11152 uint64_t Idx = (NumElts + Imm) % NumElts; 11153 11154 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11155 SmallVector<int, 8> Mask; 11156 for (unsigned i = 0; i < NumElts; ++i) 11157 Mask.push_back(Idx + i); 11158 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11159 } 11160