xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 1f62af63467e4834e1e386619b3eccab245489d4)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // Vector/Vector bitcast.
403     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
404       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
405 
406     // If the element type of the source/dest vectors are the same, but the
407     // parts vector has more elements than the value vector, then we have a
408     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
409     // elements we want.
410     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
411       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
412               ValueVT.getVectorElementCount().getKnownMinValue()) &&
413              (PartEVT.getVectorElementCount().isScalable() ==
414               ValueVT.getVectorElementCount().isScalable()) &&
415              "Cannot narrow, it would be a lossy transformation");
416       PartEVT =
417           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
418                            ValueVT.getVectorElementCount());
419       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
420                         DAG.getVectorIdxConstant(0, DL));
421       if (PartEVT == ValueVT)
422         return Val;
423     }
424 
425     // Promoted vector extract
426     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
427   }
428 
429   // Trivial bitcast if the types are the same size and the destination
430   // vector type is legal.
431   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
432       TLI.isTypeLegal(ValueVT))
433     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434 
435   if (ValueVT.getVectorNumElements() != 1) {
436      // Certain ABIs require that vectors are passed as integers. For vectors
437      // are the same size, this is an obvious bitcast.
438      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
439        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440      } else if (ValueVT.bitsLT(PartEVT)) {
441        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
442        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
443        // Drop the extra bits.
444        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
445        return DAG.getBitcast(ValueVT, Val);
446      }
447 
448      diagnosePossiblyInvalidConstraint(
449          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
450      return DAG.getUNDEF(ValueVT);
451   }
452 
453   // Handle cases such as i8 -> <1 x i1>
454   EVT ValueSVT = ValueVT.getVectorElementType();
455   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
456     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
457       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
458     else
459       Val = ValueVT.isFloatingPoint()
460                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
461                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
462   }
463 
464   return DAG.getBuildVector(ValueVT, DL, Val);
465 }
466 
467 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
468                                  SDValue Val, SDValue *Parts, unsigned NumParts,
469                                  MVT PartVT, const Value *V,
470                                  Optional<CallingConv::ID> CallConv);
471 
472 /// getCopyToParts - Create a series of nodes that contain the specified value
473 /// split into legal parts.  If the parts contain more bits than Val, then, for
474 /// integers, ExtendKind can be used to specify how to generate the extra bits.
475 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
476                            SDValue *Parts, unsigned NumParts, MVT PartVT,
477                            const Value *V,
478                            Optional<CallingConv::ID> CallConv = None,
479                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
480   // Let the target split the parts if it wants to
481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
482   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
483                                       CallConv))
484     return;
485   EVT ValueVT = Val.getValueType();
486 
487   // Handle the vector case separately.
488   if (ValueVT.isVector())
489     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
490                                 CallConv);
491 
492   unsigned PartBits = PartVT.getSizeInBits();
493   unsigned OrigNumParts = NumParts;
494   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
495          "Copying to an illegal type!");
496 
497   if (NumParts == 0)
498     return;
499 
500   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
501   EVT PartEVT = PartVT;
502   if (PartEVT == ValueVT) {
503     assert(NumParts == 1 && "No-op copy with multiple parts!");
504     Parts[0] = Val;
505     return;
506   }
507 
508   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
509     // If the parts cover more bits than the value has, promote the value.
510     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
511       assert(NumParts == 1 && "Do not know what to promote to!");
512       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
513     } else {
514       if (ValueVT.isFloatingPoint()) {
515         // FP values need to be bitcast, then extended if they are being put
516         // into a larger container.
517         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
518         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
519       }
520       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
521              ValueVT.isInteger() &&
522              "Unknown mismatch!");
523       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
524       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
525       if (PartVT == MVT::x86mmx)
526         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     }
528   } else if (PartBits == ValueVT.getSizeInBits()) {
529     // Different types of the same size.
530     assert(NumParts == 1 && PartEVT != ValueVT);
531     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
532   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
533     // If the parts cover less bits than value has, truncate the value.
534     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
535            ValueVT.isInteger() &&
536            "Unknown mismatch!");
537     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
538     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
539     if (PartVT == MVT::x86mmx)
540       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
541   }
542 
543   // The value may have changed - recompute ValueVT.
544   ValueVT = Val.getValueType();
545   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
546          "Failed to tile the value with PartVT!");
547 
548   if (NumParts == 1) {
549     if (PartEVT != ValueVT) {
550       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
551                                         "scalar-to-vector conversion failed");
552       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
553     }
554 
555     Parts[0] = Val;
556     return;
557   }
558 
559   // Expand the value into multiple parts.
560   if (NumParts & (NumParts - 1)) {
561     // The number of parts is not a power of 2.  Split off and copy the tail.
562     assert(PartVT.isInteger() && ValueVT.isInteger() &&
563            "Do not know what to expand to!");
564     unsigned RoundParts = 1 << Log2_32(NumParts);
565     unsigned RoundBits = RoundParts * PartBits;
566     unsigned OddParts = NumParts - RoundParts;
567     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
568       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
569 
570     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
571                    CallConv);
572 
573     if (DAG.getDataLayout().isBigEndian())
574       // The odd parts were reversed by getCopyToParts - unreverse them.
575       std::reverse(Parts + RoundParts, Parts + NumParts);
576 
577     NumParts = RoundParts;
578     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
579     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
580   }
581 
582   // The number of parts is a power of 2.  Repeatedly bisect the value using
583   // EXTRACT_ELEMENT.
584   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
585                          EVT::getIntegerVT(*DAG.getContext(),
586                                            ValueVT.getSizeInBits()),
587                          Val);
588 
589   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
590     for (unsigned i = 0; i < NumParts; i += StepSize) {
591       unsigned ThisBits = StepSize * PartBits / 2;
592       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
593       SDValue &Part0 = Parts[i];
594       SDValue &Part1 = Parts[i+StepSize/2];
595 
596       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
597                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
598       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
599                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
600 
601       if (ThisBits == PartBits && ThisVT != PartVT) {
602         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
603         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
604       }
605     }
606   }
607 
608   if (DAG.getDataLayout().isBigEndian())
609     std::reverse(Parts, Parts + OrigNumParts);
610 }
611 
612 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
613                                      const SDLoc &DL, EVT PartVT) {
614   if (!PartVT.isVector())
615     return SDValue();
616 
617   EVT ValueVT = Val.getValueType();
618   ElementCount PartNumElts = PartVT.getVectorElementCount();
619   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
620 
621   // We only support widening vectors with equivalent element types and
622   // fixed/scalable properties. If a target needs to widen a fixed-length type
623   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
624   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
625       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
626       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
627     return SDValue();
628 
629   // Widening a scalable vector to another scalable vector is done by inserting
630   // the vector into a larger undef one.
631   if (PartNumElts.isScalable())
632     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
633                        Val, DAG.getVectorIdxConstant(0, DL));
634 
635   EVT ElementVT = PartVT.getVectorElementType();
636   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
637   // undef elements.
638   SmallVector<SDValue, 16> Ops;
639   DAG.ExtractVectorElements(Val, Ops);
640   SDValue EltUndef = DAG.getUNDEF(ElementVT);
641   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
642 
643   // FIXME: Use CONCAT for 2x -> 4x.
644   return DAG.getBuildVector(PartVT, DL, Ops);
645 }
646 
647 /// getCopyToPartsVector - Create a series of nodes that contain the specified
648 /// value split into legal parts.
649 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
650                                  SDValue Val, SDValue *Parts, unsigned NumParts,
651                                  MVT PartVT, const Value *V,
652                                  Optional<CallingConv::ID> CallConv) {
653   EVT ValueVT = Val.getValueType();
654   assert(ValueVT.isVector() && "Not a vector");
655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
656   const bool IsABIRegCopy = CallConv.hasValue();
657 
658   if (NumParts == 1) {
659     EVT PartEVT = PartVT;
660     if (PartEVT == ValueVT) {
661       // Nothing to do.
662     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
663       // Bitconvert vector->vector case.
664       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
665     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
666       Val = Widened;
667     } else if (PartVT.isVector() &&
668                PartEVT.getVectorElementType().bitsGE(
669                    ValueVT.getVectorElementType()) &&
670                PartEVT.getVectorElementCount() ==
671                    ValueVT.getVectorElementCount()) {
672 
673       // Promoted vector extract
674       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
675     } else {
676       if (ValueVT.getVectorElementCount().isScalar()) {
677         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
678                           DAG.getVectorIdxConstant(0, DL));
679       } else {
680         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
681         assert(PartVT.getFixedSizeInBits() > ValueSize &&
682                "lossy conversion of vector to scalar type");
683         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
684         Val = DAG.getBitcast(IntermediateType, Val);
685         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
686       }
687     }
688 
689     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
690     Parts[0] = Val;
691     return;
692   }
693 
694   // Handle a multi-element vector.
695   EVT IntermediateVT;
696   MVT RegisterVT;
697   unsigned NumIntermediates;
698   unsigned NumRegs;
699   if (IsABIRegCopy) {
700     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
701         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
702         NumIntermediates, RegisterVT);
703   } else {
704     NumRegs =
705         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
706                                    NumIntermediates, RegisterVT);
707   }
708 
709   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
710   NumParts = NumRegs; // Silence a compiler warning.
711   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
712 
713   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
714          "Mixing scalable and fixed vectors when copying in parts");
715 
716   Optional<ElementCount> DestEltCnt;
717 
718   if (IntermediateVT.isVector())
719     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
720   else
721     DestEltCnt = ElementCount::getFixed(NumIntermediates);
722 
723   EVT BuiltVectorTy = EVT::getVectorVT(
724       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
725 
726   if (ValueVT == BuiltVectorTy) {
727     // Nothing to do.
728   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
729     // Bitconvert vector->vector case.
730     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
731   } else {
732     if (BuiltVectorTy.getVectorElementType().bitsGT(
733             ValueVT.getVectorElementType())) {
734       // Integer promotion.
735       ValueVT = EVT::getVectorVT(*DAG.getContext(),
736                                  BuiltVectorTy.getVectorElementType(),
737                                  ValueVT.getVectorElementCount());
738       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
739     }
740 
741     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
742       Val = Widened;
743     }
744   }
745 
746   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
747 
748   // Split the vector into intermediate operands.
749   SmallVector<SDValue, 8> Ops(NumIntermediates);
750   for (unsigned i = 0; i != NumIntermediates; ++i) {
751     if (IntermediateVT.isVector()) {
752       // This does something sensible for scalable vectors - see the
753       // definition of EXTRACT_SUBVECTOR for further details.
754       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
755       Ops[i] =
756           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
757                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
758     } else {
759       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
760                            DAG.getVectorIdxConstant(i, DL));
761     }
762   }
763 
764   // Split the intermediate operands into legal parts.
765   if (NumParts == NumIntermediates) {
766     // If the register was not expanded, promote or copy the value,
767     // as appropriate.
768     for (unsigned i = 0; i != NumParts; ++i)
769       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
770   } else if (NumParts > 0) {
771     // If the intermediate type was expanded, split each the value into
772     // legal parts.
773     assert(NumIntermediates != 0 && "division by zero");
774     assert(NumParts % NumIntermediates == 0 &&
775            "Must expand into a divisible number of parts!");
776     unsigned Factor = NumParts / NumIntermediates;
777     for (unsigned i = 0; i != NumIntermediates; ++i)
778       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
779                      CallConv);
780   }
781 }
782 
783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
784                            EVT valuevt, Optional<CallingConv::ID> CC)
785     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
786       RegCount(1, regs.size()), CallConv(CC) {}
787 
788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
789                            const DataLayout &DL, unsigned Reg, Type *Ty,
790                            Optional<CallingConv::ID> CC) {
791   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
792 
793   CallConv = CC;
794 
795   for (EVT ValueVT : ValueVTs) {
796     unsigned NumRegs =
797         isABIMangled()
798             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
799             : TLI.getNumRegisters(Context, ValueVT);
800     MVT RegisterVT =
801         isABIMangled()
802             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
803             : TLI.getRegisterType(Context, ValueVT);
804     for (unsigned i = 0; i != NumRegs; ++i)
805       Regs.push_back(Reg + i);
806     RegVTs.push_back(RegisterVT);
807     RegCount.push_back(NumRegs);
808     Reg += NumRegs;
809   }
810 }
811 
812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
813                                       FunctionLoweringInfo &FuncInfo,
814                                       const SDLoc &dl, SDValue &Chain,
815                                       SDValue *Flag, const Value *V) const {
816   // A Value with type {} or [0 x %t] needs no registers.
817   if (ValueVTs.empty())
818     return SDValue();
819 
820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821 
822   // Assemble the legal parts into the final values.
823   SmallVector<SDValue, 4> Values(ValueVTs.size());
824   SmallVector<SDValue, 8> Parts;
825   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
826     // Copy the legal parts from the registers.
827     EVT ValueVT = ValueVTs[Value];
828     unsigned NumRegs = RegCount[Value];
829     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
830                                           *DAG.getContext(),
831                                           CallConv.getValue(), RegVTs[Value])
832                                     : RegVTs[Value];
833 
834     Parts.resize(NumRegs);
835     for (unsigned i = 0; i != NumRegs; ++i) {
836       SDValue P;
837       if (!Flag) {
838         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
839       } else {
840         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
841         *Flag = P.getValue(2);
842       }
843 
844       Chain = P.getValue(1);
845       Parts[i] = P;
846 
847       // If the source register was virtual and if we know something about it,
848       // add an assert node.
849       if (!Register::isVirtualRegister(Regs[Part + i]) ||
850           !RegisterVT.isInteger())
851         continue;
852 
853       const FunctionLoweringInfo::LiveOutInfo *LOI =
854         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
855       if (!LOI)
856         continue;
857 
858       unsigned RegSize = RegisterVT.getScalarSizeInBits();
859       unsigned NumSignBits = LOI->NumSignBits;
860       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
861 
862       if (NumZeroBits == RegSize) {
863         // The current value is a zero.
864         // Explicitly express that as it would be easier for
865         // optimizations to kick in.
866         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
867         continue;
868       }
869 
870       // FIXME: We capture more information than the dag can represent.  For
871       // now, just use the tightest assertzext/assertsext possible.
872       bool isSExt;
873       EVT FromVT(MVT::Other);
874       if (NumZeroBits) {
875         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
876         isSExt = false;
877       } else if (NumSignBits > 1) {
878         FromVT =
879             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
880         isSExt = true;
881       } else {
882         continue;
883       }
884       // Add an assertion node.
885       assert(FromVT != MVT::Other);
886       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
887                              RegisterVT, P, DAG.getValueType(FromVT));
888     }
889 
890     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
891                                      RegisterVT, ValueVT, V, CallConv);
892     Part += NumRegs;
893     Parts.clear();
894   }
895 
896   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
897 }
898 
899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
900                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
901                                  const Value *V,
902                                  ISD::NodeType PreferredExtendType) const {
903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
904   ISD::NodeType ExtendKind = PreferredExtendType;
905 
906   // Get the list of the values's legal parts.
907   unsigned NumRegs = Regs.size();
908   SmallVector<SDValue, 8> Parts(NumRegs);
909   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
910     unsigned NumParts = RegCount[Value];
911 
912     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
913                                           *DAG.getContext(),
914                                           CallConv.getValue(), RegVTs[Value])
915                                     : RegVTs[Value];
916 
917     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
918       ExtendKind = ISD::ZERO_EXTEND;
919 
920     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
921                    NumParts, RegisterVT, V, CallConv, ExtendKind);
922     Part += NumParts;
923   }
924 
925   // Copy the parts into the registers.
926   SmallVector<SDValue, 8> Chains(NumRegs);
927   for (unsigned i = 0; i != NumRegs; ++i) {
928     SDValue Part;
929     if (!Flag) {
930       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
931     } else {
932       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
933       *Flag = Part.getValue(1);
934     }
935 
936     Chains[i] = Part.getValue(0);
937   }
938 
939   if (NumRegs == 1 || Flag)
940     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
941     // flagged to it. That is the CopyToReg nodes and the user are considered
942     // a single scheduling unit. If we create a TokenFactor and return it as
943     // chain, then the TokenFactor is both a predecessor (operand) of the
944     // user as well as a successor (the TF operands are flagged to the user).
945     // c1, f1 = CopyToReg
946     // c2, f2 = CopyToReg
947     // c3     = TokenFactor c1, c2
948     // ...
949     //        = op c3, ..., f2
950     Chain = Chains[NumRegs-1];
951   else
952     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
953 }
954 
955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
956                                         unsigned MatchingIdx, const SDLoc &dl,
957                                         SelectionDAG &DAG,
958                                         std::vector<SDValue> &Ops) const {
959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
960 
961   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
962   if (HasMatching)
963     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
964   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
965     // Put the register class of the virtual registers in the flag word.  That
966     // way, later passes can recompute register class constraints for inline
967     // assembly as well as normal instructions.
968     // Don't do this for tied operands that can use the regclass information
969     // from the def.
970     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
971     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
972     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
973   }
974 
975   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
976   Ops.push_back(Res);
977 
978   if (Code == InlineAsm::Kind_Clobber) {
979     // Clobbers should always have a 1:1 mapping with registers, and may
980     // reference registers that have illegal (e.g. vector) types. Hence, we
981     // shouldn't try to apply any sort of splitting logic to them.
982     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
983            "No 1:1 mapping from clobbers to regs?");
984     Register SP = TLI.getStackPointerRegisterToSaveRestore();
985     (void)SP;
986     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
987       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
988       assert(
989           (Regs[I] != SP ||
990            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
991           "If we clobbered the stack pointer, MFI should know about it.");
992     }
993     return;
994   }
995 
996   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
997     MVT RegisterVT = RegVTs[Value];
998     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
999                                            RegisterVT);
1000     for (unsigned i = 0; i != NumRegs; ++i) {
1001       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1002       unsigned TheReg = Regs[Reg++];
1003       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1004     }
1005   }
1006 }
1007 
1008 SmallVector<std::pair<unsigned, TypeSize>, 4>
1009 RegsForValue::getRegsAndSizes() const {
1010   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1011   unsigned I = 0;
1012   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1013     unsigned RegCount = std::get<0>(CountAndVT);
1014     MVT RegisterVT = std::get<1>(CountAndVT);
1015     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1016     for (unsigned E = I + RegCount; I != E; ++I)
1017       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1018   }
1019   return OutVec;
1020 }
1021 
1022 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1023                                const TargetLibraryInfo *li) {
1024   AA = aa;
1025   GFI = gfi;
1026   LibInfo = li;
1027   DL = &DAG.getDataLayout();
1028   Context = DAG.getContext();
1029   LPadToCallSiteMap.clear();
1030   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1031 }
1032 
1033 void SelectionDAGBuilder::clear() {
1034   NodeMap.clear();
1035   UnusedArgNodeMap.clear();
1036   PendingLoads.clear();
1037   PendingExports.clear();
1038   PendingConstrainedFP.clear();
1039   PendingConstrainedFPStrict.clear();
1040   CurInst = nullptr;
1041   HasTailCall = false;
1042   SDNodeOrder = LowestSDNodeOrder;
1043   StatepointLowering.clear();
1044 }
1045 
1046 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1047   DanglingDebugInfoMap.clear();
1048 }
1049 
1050 // Update DAG root to include dependencies on Pending chains.
1051 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1052   SDValue Root = DAG.getRoot();
1053 
1054   if (Pending.empty())
1055     return Root;
1056 
1057   // Add current root to PendingChains, unless we already indirectly
1058   // depend on it.
1059   if (Root.getOpcode() != ISD::EntryToken) {
1060     unsigned i = 0, e = Pending.size();
1061     for (; i != e; ++i) {
1062       assert(Pending[i].getNode()->getNumOperands() > 1);
1063       if (Pending[i].getNode()->getOperand(0) == Root)
1064         break;  // Don't add the root if we already indirectly depend on it.
1065     }
1066 
1067     if (i == e)
1068       Pending.push_back(Root);
1069   }
1070 
1071   if (Pending.size() == 1)
1072     Root = Pending[0];
1073   else
1074     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1075 
1076   DAG.setRoot(Root);
1077   Pending.clear();
1078   return Root;
1079 }
1080 
1081 SDValue SelectionDAGBuilder::getMemoryRoot() {
1082   return updateRoot(PendingLoads);
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getRoot() {
1086   // Chain up all pending constrained intrinsics together with all
1087   // pending loads, by simply appending them to PendingLoads and
1088   // then calling getMemoryRoot().
1089   PendingLoads.reserve(PendingLoads.size() +
1090                        PendingConstrainedFP.size() +
1091                        PendingConstrainedFPStrict.size());
1092   PendingLoads.append(PendingConstrainedFP.begin(),
1093                       PendingConstrainedFP.end());
1094   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1095                       PendingConstrainedFPStrict.end());
1096   PendingConstrainedFP.clear();
1097   PendingConstrainedFPStrict.clear();
1098   return getMemoryRoot();
1099 }
1100 
1101 SDValue SelectionDAGBuilder::getControlRoot() {
1102   // We need to emit pending fpexcept.strict constrained intrinsics,
1103   // so append them to the PendingExports list.
1104   PendingExports.append(PendingConstrainedFPStrict.begin(),
1105                         PendingConstrainedFPStrict.end());
1106   PendingConstrainedFPStrict.clear();
1107   return updateRoot(PendingExports);
1108 }
1109 
1110 void SelectionDAGBuilder::visit(const Instruction &I) {
1111   // Set up outgoing PHI node register values before emitting the terminator.
1112   if (I.isTerminator()) {
1113     HandlePHINodesInSuccessorBlocks(I.getParent());
1114   }
1115 
1116   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1117   if (!isa<DbgInfoIntrinsic>(I))
1118     ++SDNodeOrder;
1119 
1120   CurInst = &I;
1121 
1122   visit(I.getOpcode(), I);
1123 
1124   if (!I.isTerminator() && !HasTailCall &&
1125       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1126     CopyToExportRegsIfNeeded(&I);
1127 
1128   CurInst = nullptr;
1129 }
1130 
1131 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1132   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1133 }
1134 
1135 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1136   // Note: this doesn't use InstVisitor, because it has to work with
1137   // ConstantExpr's in addition to instructions.
1138   switch (Opcode) {
1139   default: llvm_unreachable("Unknown instruction type encountered!");
1140     // Build the switch statement using the Instruction.def file.
1141 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1142     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1143 #include "llvm/IR/Instruction.def"
1144   }
1145 }
1146 
1147 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1148                                                DebugLoc DL, unsigned Order) {
1149   // We treat variadic dbg_values differently at this stage.
1150   if (DI->hasArgList()) {
1151     // For variadic dbg_values we will now insert an undef.
1152     // FIXME: We can potentially recover these!
1153     SmallVector<SDDbgOperand, 2> Locs;
1154     for (const Value *V : DI->getValues()) {
1155       auto Undef = UndefValue::get(V->getType());
1156       Locs.push_back(SDDbgOperand::fromConst(Undef));
1157     }
1158     SDDbgValue *SDV = DAG.getDbgValueList(
1159         DI->getVariable(), DI->getExpression(), Locs, {},
1160         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1161     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1162   } else {
1163     // TODO: Dangling debug info will eventually either be resolved or produce
1164     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1165     // between the original dbg.value location and its resolved DBG_VALUE,
1166     // which we should ideally fill with an extra Undef DBG_VALUE.
1167     assert(DI->getNumVariableLocationOps() == 1 &&
1168            "DbgValueInst without an ArgList should have a single location "
1169            "operand.");
1170     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1171   }
1172 }
1173 
1174 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1175                                                 const DIExpression *Expr) {
1176   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1177     const DbgValueInst *DI = DDI.getDI();
1178     DIVariable *DanglingVariable = DI->getVariable();
1179     DIExpression *DanglingExpr = DI->getExpression();
1180     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1181       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1182       return true;
1183     }
1184     return false;
1185   };
1186 
1187   for (auto &DDIMI : DanglingDebugInfoMap) {
1188     DanglingDebugInfoVector &DDIV = DDIMI.second;
1189 
1190     // If debug info is to be dropped, run it through final checks to see
1191     // whether it can be salvaged.
1192     for (auto &DDI : DDIV)
1193       if (isMatchingDbgValue(DDI))
1194         salvageUnresolvedDbgValue(DDI);
1195 
1196     erase_if(DDIV, isMatchingDbgValue);
1197   }
1198 }
1199 
1200 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1201 // generate the debug data structures now that we've seen its definition.
1202 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1203                                                    SDValue Val) {
1204   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1205   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1206     return;
1207 
1208   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1209   for (auto &DDI : DDIV) {
1210     const DbgValueInst *DI = DDI.getDI();
1211     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1212     assert(DI && "Ill-formed DanglingDebugInfo");
1213     DebugLoc dl = DDI.getdl();
1214     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1215     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1216     DILocalVariable *Variable = DI->getVariable();
1217     DIExpression *Expr = DI->getExpression();
1218     assert(Variable->isValidLocationForIntrinsic(dl) &&
1219            "Expected inlined-at fields to agree");
1220     SDDbgValue *SDV;
1221     if (Val.getNode()) {
1222       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1223       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1224       // we couldn't resolve it directly when examining the DbgValue intrinsic
1225       // in the first place we should not be more successful here). Unless we
1226       // have some test case that prove this to be correct we should avoid
1227       // calling EmitFuncArgumentDbgValue here.
1228       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1229         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1230                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1231         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1232         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1233         // inserted after the definition of Val when emitting the instructions
1234         // after ISel. An alternative could be to teach
1235         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1236         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1237                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1238                    << ValSDNodeOrder << "\n");
1239         SDV = getDbgValue(Val, Variable, Expr, dl,
1240                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1241         DAG.AddDbgValue(SDV, false);
1242       } else
1243         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1244                           << "in EmitFuncArgumentDbgValue\n");
1245     } else {
1246       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1247       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1248       auto SDV =
1249           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1250       DAG.AddDbgValue(SDV, false);
1251     }
1252   }
1253   DDIV.clear();
1254 }
1255 
1256 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1257   // TODO: For the variadic implementation, instead of only checking the fail
1258   // state of `handleDebugValue`, we need know specifically which values were
1259   // invalid, so that we attempt to salvage only those values when processing
1260   // a DIArgList.
1261   assert(!DDI.getDI()->hasArgList() &&
1262          "Not implemented for variadic dbg_values");
1263   Value *V = DDI.getDI()->getValue(0);
1264   DILocalVariable *Var = DDI.getDI()->getVariable();
1265   DIExpression *Expr = DDI.getDI()->getExpression();
1266   DebugLoc DL = DDI.getdl();
1267   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1268   unsigned SDOrder = DDI.getSDNodeOrder();
1269   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1270   // that DW_OP_stack_value is desired.
1271   assert(isa<DbgValueInst>(DDI.getDI()));
1272   bool StackValue = true;
1273 
1274   // Can this Value can be encoded without any further work?
1275   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1276     return;
1277 
1278   // Attempt to salvage back through as many instructions as possible. Bail if
1279   // a non-instruction is seen, such as a constant expression or global
1280   // variable. FIXME: Further work could recover those too.
1281   while (isa<Instruction>(V)) {
1282     Instruction &VAsInst = *cast<Instruction>(V);
1283     // Temporary "0", awaiting real implementation.
1284     SmallVector<Value *, 4> AdditionalValues;
1285     DIExpression *SalvagedExpr =
1286         salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0, AdditionalValues);
1287 
1288     // If we cannot salvage any further, and haven't yet found a suitable debug
1289     // expression, bail out.
1290     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1291     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1292     // here for variadic dbg_values, remove that condition.
1293     if (!SalvagedExpr || !AdditionalValues.empty())
1294       break;
1295 
1296     // New value and expr now represent this debuginfo.
1297     V = VAsInst.getOperand(0);
1298     Expr = SalvagedExpr;
1299 
1300     // Some kind of simplification occurred: check whether the operand of the
1301     // salvaged debug expression can be encoded in this DAG.
1302     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1303                          /*IsVariadic=*/false)) {
1304       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1305                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1306       return;
1307     }
1308   }
1309 
1310   // This was the final opportunity to salvage this debug information, and it
1311   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1312   // any earlier variable location.
1313   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1314   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1315   DAG.AddDbgValue(SDV, false);
1316 
1317   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1318                     << "\n");
1319   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1320                     << "\n");
1321 }
1322 
1323 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1324                                            DILocalVariable *Var,
1325                                            DIExpression *Expr, DebugLoc dl,
1326                                            DebugLoc InstDL, unsigned Order,
1327                                            bool IsVariadic) {
1328   if (Values.empty())
1329     return true;
1330   SmallVector<SDDbgOperand> LocationOps;
1331   SmallVector<SDNode *> Dependencies;
1332   for (const Value *V : Values) {
1333     // Constant value.
1334     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1335         isa<ConstantPointerNull>(V)) {
1336       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1337       continue;
1338     }
1339 
1340     // If the Value is a frame index, we can create a FrameIndex debug value
1341     // without relying on the DAG at all.
1342     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1343       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1344       if (SI != FuncInfo.StaticAllocaMap.end()) {
1345         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1346         continue;
1347       }
1348     }
1349 
1350     // Do not use getValue() in here; we don't want to generate code at
1351     // this point if it hasn't been done yet.
1352     SDValue N = NodeMap[V];
1353     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1354       N = UnusedArgNodeMap[V];
1355     if (N.getNode()) {
1356       // Only emit func arg dbg value for non-variadic dbg.values for now.
1357       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1358         return true;
1359       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1360         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1361         // describe stack slot locations.
1362         //
1363         // Consider "int x = 0; int *px = &x;". There are two kinds of
1364         // interesting debug values here after optimization:
1365         //
1366         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1367         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1368         //
1369         // Both describe the direct values of their associated variables.
1370         Dependencies.push_back(N.getNode());
1371         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1372         continue;
1373       }
1374       LocationOps.emplace_back(
1375           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1376       continue;
1377     }
1378 
1379     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1380     // Special rules apply for the first dbg.values of parameter variables in a
1381     // function. Identify them by the fact they reference Argument Values, that
1382     // they're parameters, and they are parameters of the current function. We
1383     // need to let them dangle until they get an SDNode.
1384     bool IsParamOfFunc =
1385         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1386     if (IsParamOfFunc)
1387       return false;
1388 
1389     // The value is not used in this block yet (or it would have an SDNode).
1390     // We still want the value to appear for the user if possible -- if it has
1391     // an associated VReg, we can refer to that instead.
1392     auto VMI = FuncInfo.ValueMap.find(V);
1393     if (VMI != FuncInfo.ValueMap.end()) {
1394       unsigned Reg = VMI->second;
1395       // If this is a PHI node, it may be split up into several MI PHI nodes
1396       // (in FunctionLoweringInfo::set).
1397       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1398                        V->getType(), None);
1399       if (RFV.occupiesMultipleRegs()) {
1400         // FIXME: We could potentially support variadic dbg_values here.
1401         if (IsVariadic)
1402           return false;
1403         unsigned Offset = 0;
1404         unsigned BitsToDescribe = 0;
1405         if (auto VarSize = Var->getSizeInBits())
1406           BitsToDescribe = *VarSize;
1407         if (auto Fragment = Expr->getFragmentInfo())
1408           BitsToDescribe = Fragment->SizeInBits;
1409         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1410           // Bail out if all bits are described already.
1411           if (Offset >= BitsToDescribe)
1412             break;
1413           // TODO: handle scalable vectors.
1414           unsigned RegisterSize = RegAndSize.second;
1415           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1416                                       ? BitsToDescribe - Offset
1417                                       : RegisterSize;
1418           auto FragmentExpr = DIExpression::createFragmentExpression(
1419               Expr, Offset, FragmentSize);
1420           if (!FragmentExpr)
1421             continue;
1422           SDDbgValue *SDV = DAG.getVRegDbgValue(
1423               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1424           DAG.AddDbgValue(SDV, false);
1425           Offset += RegisterSize;
1426         }
1427         return true;
1428       }
1429       // We can use simple vreg locations for variadic dbg_values as well.
1430       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1431       continue;
1432     }
1433     // We failed to create a SDDbgOperand for V.
1434     return false;
1435   }
1436 
1437   // We have created a SDDbgOperand for each Value in Values.
1438   // Should use Order instead of SDNodeOrder?
1439   assert(!LocationOps.empty());
1440   SDDbgValue *SDV =
1441       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1442                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1443   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1444   return true;
1445 }
1446 
1447 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1448   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1449   for (auto &Pair : DanglingDebugInfoMap)
1450     for (auto &DDI : Pair.second)
1451       salvageUnresolvedDbgValue(DDI);
1452   clearDanglingDebugInfo();
1453 }
1454 
1455 /// getCopyFromRegs - If there was virtual register allocated for the value V
1456 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1457 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1458   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1459   SDValue Result;
1460 
1461   if (It != FuncInfo.ValueMap.end()) {
1462     Register InReg = It->second;
1463 
1464     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1465                      DAG.getDataLayout(), InReg, Ty,
1466                      None); // This is not an ABI copy.
1467     SDValue Chain = DAG.getEntryNode();
1468     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1469                                  V);
1470     resolveDanglingDebugInfo(V, Result);
1471   }
1472 
1473   return Result;
1474 }
1475 
1476 /// getValue - Return an SDValue for the given Value.
1477 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1478   // If we already have an SDValue for this value, use it. It's important
1479   // to do this first, so that we don't create a CopyFromReg if we already
1480   // have a regular SDValue.
1481   SDValue &N = NodeMap[V];
1482   if (N.getNode()) return N;
1483 
1484   // If there's a virtual register allocated and initialized for this
1485   // value, use it.
1486   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1487     return copyFromReg;
1488 
1489   // Otherwise create a new SDValue and remember it.
1490   SDValue Val = getValueImpl(V);
1491   NodeMap[V] = Val;
1492   resolveDanglingDebugInfo(V, Val);
1493   return Val;
1494 }
1495 
1496 /// getNonRegisterValue - Return an SDValue for the given Value, but
1497 /// don't look in FuncInfo.ValueMap for a virtual register.
1498 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1499   // If we already have an SDValue for this value, use it.
1500   SDValue &N = NodeMap[V];
1501   if (N.getNode()) {
1502     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1503       // Remove the debug location from the node as the node is about to be used
1504       // in a location which may differ from the original debug location.  This
1505       // is relevant to Constant and ConstantFP nodes because they can appear
1506       // as constant expressions inside PHI nodes.
1507       N->setDebugLoc(DebugLoc());
1508     }
1509     return N;
1510   }
1511 
1512   // Otherwise create a new SDValue and remember it.
1513   SDValue Val = getValueImpl(V);
1514   NodeMap[V] = Val;
1515   resolveDanglingDebugInfo(V, Val);
1516   return Val;
1517 }
1518 
1519 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1520 /// Create an SDValue for the given value.
1521 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1523 
1524   if (const Constant *C = dyn_cast<Constant>(V)) {
1525     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1526 
1527     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1528       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1529 
1530     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1531       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1532 
1533     if (isa<ConstantPointerNull>(C)) {
1534       unsigned AS = V->getType()->getPointerAddressSpace();
1535       return DAG.getConstant(0, getCurSDLoc(),
1536                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1537     }
1538 
1539     if (match(C, m_VScale(DAG.getDataLayout())))
1540       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1541 
1542     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1543       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1544 
1545     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1546       return DAG.getUNDEF(VT);
1547 
1548     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1549       visit(CE->getOpcode(), *CE);
1550       SDValue N1 = NodeMap[V];
1551       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1552       return N1;
1553     }
1554 
1555     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1556       SmallVector<SDValue, 4> Constants;
1557       for (const Use &U : C->operands()) {
1558         SDNode *Val = getValue(U).getNode();
1559         // If the operand is an empty aggregate, there are no values.
1560         if (!Val) continue;
1561         // Add each leaf value from the operand to the Constants list
1562         // to form a flattened list of all the values.
1563         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1564           Constants.push_back(SDValue(Val, i));
1565       }
1566 
1567       return DAG.getMergeValues(Constants, getCurSDLoc());
1568     }
1569 
1570     if (const ConstantDataSequential *CDS =
1571           dyn_cast<ConstantDataSequential>(C)) {
1572       SmallVector<SDValue, 4> Ops;
1573       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1574         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1575         // Add each leaf value from the operand to the Constants list
1576         // to form a flattened list of all the values.
1577         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1578           Ops.push_back(SDValue(Val, i));
1579       }
1580 
1581       if (isa<ArrayType>(CDS->getType()))
1582         return DAG.getMergeValues(Ops, getCurSDLoc());
1583       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1584     }
1585 
1586     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1587       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1588              "Unknown struct or array constant!");
1589 
1590       SmallVector<EVT, 4> ValueVTs;
1591       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1592       unsigned NumElts = ValueVTs.size();
1593       if (NumElts == 0)
1594         return SDValue(); // empty struct
1595       SmallVector<SDValue, 4> Constants(NumElts);
1596       for (unsigned i = 0; i != NumElts; ++i) {
1597         EVT EltVT = ValueVTs[i];
1598         if (isa<UndefValue>(C))
1599           Constants[i] = DAG.getUNDEF(EltVT);
1600         else if (EltVT.isFloatingPoint())
1601           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1602         else
1603           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1604       }
1605 
1606       return DAG.getMergeValues(Constants, getCurSDLoc());
1607     }
1608 
1609     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1610       return DAG.getBlockAddress(BA, VT);
1611 
1612     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1613       return getValue(Equiv->getGlobalValue());
1614 
1615     VectorType *VecTy = cast<VectorType>(V->getType());
1616 
1617     // Now that we know the number and type of the elements, get that number of
1618     // elements into the Ops array based on what kind of constant it is.
1619     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1620       SmallVector<SDValue, 16> Ops;
1621       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1622       for (unsigned i = 0; i != NumElements; ++i)
1623         Ops.push_back(getValue(CV->getOperand(i)));
1624 
1625       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1626     } else if (isa<ConstantAggregateZero>(C)) {
1627       EVT EltVT =
1628           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1629 
1630       SDValue Op;
1631       if (EltVT.isFloatingPoint())
1632         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1633       else
1634         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1635 
1636       if (isa<ScalableVectorType>(VecTy))
1637         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1638       else {
1639         SmallVector<SDValue, 16> Ops;
1640         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1641         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1642       }
1643     }
1644     llvm_unreachable("Unknown vector constant");
1645   }
1646 
1647   // If this is a static alloca, generate it as the frameindex instead of
1648   // computation.
1649   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1650     DenseMap<const AllocaInst*, int>::iterator SI =
1651       FuncInfo.StaticAllocaMap.find(AI);
1652     if (SI != FuncInfo.StaticAllocaMap.end())
1653       return DAG.getFrameIndex(SI->second,
1654                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1655   }
1656 
1657   // If this is an instruction which fast-isel has deferred, select it now.
1658   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1659     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1660 
1661     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1662                      Inst->getType(), None);
1663     SDValue Chain = DAG.getEntryNode();
1664     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1665   }
1666 
1667   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1668     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1669   }
1670   llvm_unreachable("Can't get register for value!");
1671 }
1672 
1673 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1674   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1675   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1676   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1677   bool IsSEH = isAsynchronousEHPersonality(Pers);
1678   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1679   if (!IsSEH)
1680     CatchPadMBB->setIsEHScopeEntry();
1681   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1682   if (IsMSVCCXX || IsCoreCLR)
1683     CatchPadMBB->setIsEHFuncletEntry();
1684 }
1685 
1686 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1687   // Update machine-CFG edge.
1688   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1689   FuncInfo.MBB->addSuccessor(TargetMBB);
1690   TargetMBB->setIsEHCatchretTarget(true);
1691   DAG.getMachineFunction().setHasEHCatchret(true);
1692 
1693   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1694   bool IsSEH = isAsynchronousEHPersonality(Pers);
1695   if (IsSEH) {
1696     // If this is not a fall-through branch or optimizations are switched off,
1697     // emit the branch.
1698     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1699         TM.getOptLevel() == CodeGenOpt::None)
1700       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1701                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1702     return;
1703   }
1704 
1705   // Figure out the funclet membership for the catchret's successor.
1706   // This will be used by the FuncletLayout pass to determine how to order the
1707   // BB's.
1708   // A 'catchret' returns to the outer scope's color.
1709   Value *ParentPad = I.getCatchSwitchParentPad();
1710   const BasicBlock *SuccessorColor;
1711   if (isa<ConstantTokenNone>(ParentPad))
1712     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1713   else
1714     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1715   assert(SuccessorColor && "No parent funclet for catchret!");
1716   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1717   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1718 
1719   // Create the terminator node.
1720   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1721                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1722                             DAG.getBasicBlock(SuccessorColorMBB));
1723   DAG.setRoot(Ret);
1724 }
1725 
1726 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1727   // Don't emit any special code for the cleanuppad instruction. It just marks
1728   // the start of an EH scope/funclet.
1729   FuncInfo.MBB->setIsEHScopeEntry();
1730   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1731   if (Pers != EHPersonality::Wasm_CXX) {
1732     FuncInfo.MBB->setIsEHFuncletEntry();
1733     FuncInfo.MBB->setIsCleanupFuncletEntry();
1734   }
1735 }
1736 
1737 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1738 // not match, it is OK to add only the first unwind destination catchpad to the
1739 // successors, because there will be at least one invoke instruction within the
1740 // catch scope that points to the next unwind destination, if one exists, so
1741 // CFGSort cannot mess up with BB sorting order.
1742 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1743 // call within them, and catchpads only consisting of 'catch (...)' have a
1744 // '__cxa_end_catch' call within them, both of which generate invokes in case
1745 // the next unwind destination exists, i.e., the next unwind destination is not
1746 // the caller.)
1747 //
1748 // Having at most one EH pad successor is also simpler and helps later
1749 // transformations.
1750 //
1751 // For example,
1752 // current:
1753 //   invoke void @foo to ... unwind label %catch.dispatch
1754 // catch.dispatch:
1755 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1756 // catch.start:
1757 //   ...
1758 //   ... in this BB or some other child BB dominated by this BB there will be an
1759 //   invoke that points to 'next' BB as an unwind destination
1760 //
1761 // next: ; We don't need to add this to 'current' BB's successor
1762 //   ...
1763 static void findWasmUnwindDestinations(
1764     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1765     BranchProbability Prob,
1766     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1767         &UnwindDests) {
1768   while (EHPadBB) {
1769     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1770     if (isa<CleanupPadInst>(Pad)) {
1771       // Stop on cleanup pads.
1772       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1773       UnwindDests.back().first->setIsEHScopeEntry();
1774       break;
1775     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1776       // Add the catchpad handlers to the possible destinations. We don't
1777       // continue to the unwind destination of the catchswitch for wasm.
1778       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1779         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1780         UnwindDests.back().first->setIsEHScopeEntry();
1781       }
1782       break;
1783     } else {
1784       continue;
1785     }
1786   }
1787 }
1788 
1789 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1790 /// many places it could ultimately go. In the IR, we have a single unwind
1791 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1792 /// This function skips over imaginary basic blocks that hold catchswitch
1793 /// instructions, and finds all the "real" machine
1794 /// basic block destinations. As those destinations may not be successors of
1795 /// EHPadBB, here we also calculate the edge probability to those destinations.
1796 /// The passed-in Prob is the edge probability to EHPadBB.
1797 static void findUnwindDestinations(
1798     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1799     BranchProbability Prob,
1800     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1801         &UnwindDests) {
1802   EHPersonality Personality =
1803     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1804   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1805   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1806   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1807   bool IsSEH = isAsynchronousEHPersonality(Personality);
1808 
1809   if (IsWasmCXX) {
1810     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1811     assert(UnwindDests.size() <= 1 &&
1812            "There should be at most one unwind destination for wasm");
1813     return;
1814   }
1815 
1816   while (EHPadBB) {
1817     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1818     BasicBlock *NewEHPadBB = nullptr;
1819     if (isa<LandingPadInst>(Pad)) {
1820       // Stop on landingpads. They are not funclets.
1821       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1822       break;
1823     } else if (isa<CleanupPadInst>(Pad)) {
1824       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1825       // personalities.
1826       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1827       UnwindDests.back().first->setIsEHScopeEntry();
1828       UnwindDests.back().first->setIsEHFuncletEntry();
1829       break;
1830     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1831       // Add the catchpad handlers to the possible destinations.
1832       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1833         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1834         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1835         if (IsMSVCCXX || IsCoreCLR)
1836           UnwindDests.back().first->setIsEHFuncletEntry();
1837         if (!IsSEH)
1838           UnwindDests.back().first->setIsEHScopeEntry();
1839       }
1840       NewEHPadBB = CatchSwitch->getUnwindDest();
1841     } else {
1842       continue;
1843     }
1844 
1845     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1846     if (BPI && NewEHPadBB)
1847       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1848     EHPadBB = NewEHPadBB;
1849   }
1850 }
1851 
1852 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1853   // Update successor info.
1854   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1855   auto UnwindDest = I.getUnwindDest();
1856   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1857   BranchProbability UnwindDestProb =
1858       (BPI && UnwindDest)
1859           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1860           : BranchProbability::getZero();
1861   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1862   for (auto &UnwindDest : UnwindDests) {
1863     UnwindDest.first->setIsEHPad();
1864     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1865   }
1866   FuncInfo.MBB->normalizeSuccProbs();
1867 
1868   // Create the terminator node.
1869   SDValue Ret =
1870       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1871   DAG.setRoot(Ret);
1872 }
1873 
1874 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1875   report_fatal_error("visitCatchSwitch not yet implemented!");
1876 }
1877 
1878 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1880   auto &DL = DAG.getDataLayout();
1881   SDValue Chain = getControlRoot();
1882   SmallVector<ISD::OutputArg, 8> Outs;
1883   SmallVector<SDValue, 8> OutVals;
1884 
1885   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1886   // lower
1887   //
1888   //   %val = call <ty> @llvm.experimental.deoptimize()
1889   //   ret <ty> %val
1890   //
1891   // differently.
1892   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1893     LowerDeoptimizingReturn();
1894     return;
1895   }
1896 
1897   if (!FuncInfo.CanLowerReturn) {
1898     unsigned DemoteReg = FuncInfo.DemoteRegister;
1899     const Function *F = I.getParent()->getParent();
1900 
1901     // Emit a store of the return value through the virtual register.
1902     // Leave Outs empty so that LowerReturn won't try to load return
1903     // registers the usual way.
1904     SmallVector<EVT, 1> PtrValueVTs;
1905     ComputeValueVTs(TLI, DL,
1906                     F->getReturnType()->getPointerTo(
1907                         DAG.getDataLayout().getAllocaAddrSpace()),
1908                     PtrValueVTs);
1909 
1910     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1911                                         DemoteReg, PtrValueVTs[0]);
1912     SDValue RetOp = getValue(I.getOperand(0));
1913 
1914     SmallVector<EVT, 4> ValueVTs, MemVTs;
1915     SmallVector<uint64_t, 4> Offsets;
1916     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1917                     &Offsets);
1918     unsigned NumValues = ValueVTs.size();
1919 
1920     SmallVector<SDValue, 4> Chains(NumValues);
1921     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1922     for (unsigned i = 0; i != NumValues; ++i) {
1923       // An aggregate return value cannot wrap around the address space, so
1924       // offsets to its parts don't wrap either.
1925       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1926                                            TypeSize::Fixed(Offsets[i]));
1927 
1928       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1929       if (MemVTs[i] != ValueVTs[i])
1930         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1931       Chains[i] = DAG.getStore(
1932           Chain, getCurSDLoc(), Val,
1933           // FIXME: better loc info would be nice.
1934           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1935           commonAlignment(BaseAlign, Offsets[i]));
1936     }
1937 
1938     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1939                         MVT::Other, Chains);
1940   } else if (I.getNumOperands() != 0) {
1941     SmallVector<EVT, 4> ValueVTs;
1942     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1943     unsigned NumValues = ValueVTs.size();
1944     if (NumValues) {
1945       SDValue RetOp = getValue(I.getOperand(0));
1946 
1947       const Function *F = I.getParent()->getParent();
1948 
1949       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1950           I.getOperand(0)->getType(), F->getCallingConv(),
1951           /*IsVarArg*/ false, DL);
1952 
1953       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1954       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1955                                           Attribute::SExt))
1956         ExtendKind = ISD::SIGN_EXTEND;
1957       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1958                                                Attribute::ZExt))
1959         ExtendKind = ISD::ZERO_EXTEND;
1960 
1961       LLVMContext &Context = F->getContext();
1962       bool RetInReg = F->getAttributes().hasAttribute(
1963           AttributeList::ReturnIndex, Attribute::InReg);
1964 
1965       for (unsigned j = 0; j != NumValues; ++j) {
1966         EVT VT = ValueVTs[j];
1967 
1968         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1969           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1970 
1971         CallingConv::ID CC = F->getCallingConv();
1972 
1973         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1974         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1975         SmallVector<SDValue, 4> Parts(NumParts);
1976         getCopyToParts(DAG, getCurSDLoc(),
1977                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1978                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1979 
1980         // 'inreg' on function refers to return value
1981         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1982         if (RetInReg)
1983           Flags.setInReg();
1984 
1985         if (I.getOperand(0)->getType()->isPointerTy()) {
1986           Flags.setPointer();
1987           Flags.setPointerAddrSpace(
1988               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1989         }
1990 
1991         if (NeedsRegBlock) {
1992           Flags.setInConsecutiveRegs();
1993           if (j == NumValues - 1)
1994             Flags.setInConsecutiveRegsLast();
1995         }
1996 
1997         // Propagate extension type if any
1998         if (ExtendKind == ISD::SIGN_EXTEND)
1999           Flags.setSExt();
2000         else if (ExtendKind == ISD::ZERO_EXTEND)
2001           Flags.setZExt();
2002 
2003         for (unsigned i = 0; i < NumParts; ++i) {
2004           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
2005                                         VT, /*isfixed=*/true, 0, 0));
2006           OutVals.push_back(Parts[i]);
2007         }
2008       }
2009     }
2010   }
2011 
2012   // Push in swifterror virtual register as the last element of Outs. This makes
2013   // sure swifterror virtual register will be returned in the swifterror
2014   // physical register.
2015   const Function *F = I.getParent()->getParent();
2016   if (TLI.supportSwiftError() &&
2017       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2018     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2019     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2020     Flags.setSwiftError();
2021     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
2022                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
2023                                   true /*isfixed*/, 1 /*origidx*/,
2024                                   0 /*partOffs*/));
2025     // Create SDNode for the swifterror virtual register.
2026     OutVals.push_back(
2027         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2028                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2029                         EVT(TLI.getPointerTy(DL))));
2030   }
2031 
2032   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2033   CallingConv::ID CallConv =
2034     DAG.getMachineFunction().getFunction().getCallingConv();
2035   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2036       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2037 
2038   // Verify that the target's LowerReturn behaved as expected.
2039   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2040          "LowerReturn didn't return a valid chain!");
2041 
2042   // Update the DAG with the new chain value resulting from return lowering.
2043   DAG.setRoot(Chain);
2044 }
2045 
2046 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2047 /// created for it, emit nodes to copy the value into the virtual
2048 /// registers.
2049 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2050   // Skip empty types
2051   if (V->getType()->isEmptyTy())
2052     return;
2053 
2054   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2055   if (VMI != FuncInfo.ValueMap.end()) {
2056     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2057     CopyValueToVirtualRegister(V, VMI->second);
2058   }
2059 }
2060 
2061 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2062 /// the current basic block, add it to ValueMap now so that we'll get a
2063 /// CopyTo/FromReg.
2064 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2065   // No need to export constants.
2066   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2067 
2068   // Already exported?
2069   if (FuncInfo.isExportedInst(V)) return;
2070 
2071   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2072   CopyValueToVirtualRegister(V, Reg);
2073 }
2074 
2075 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2076                                                      const BasicBlock *FromBB) {
2077   // The operands of the setcc have to be in this block.  We don't know
2078   // how to export them from some other block.
2079   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2080     // Can export from current BB.
2081     if (VI->getParent() == FromBB)
2082       return true;
2083 
2084     // Is already exported, noop.
2085     return FuncInfo.isExportedInst(V);
2086   }
2087 
2088   // If this is an argument, we can export it if the BB is the entry block or
2089   // if it is already exported.
2090   if (isa<Argument>(V)) {
2091     if (FromBB->isEntryBlock())
2092       return true;
2093 
2094     // Otherwise, can only export this if it is already exported.
2095     return FuncInfo.isExportedInst(V);
2096   }
2097 
2098   // Otherwise, constants can always be exported.
2099   return true;
2100 }
2101 
2102 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2103 BranchProbability
2104 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2105                                         const MachineBasicBlock *Dst) const {
2106   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2107   const BasicBlock *SrcBB = Src->getBasicBlock();
2108   const BasicBlock *DstBB = Dst->getBasicBlock();
2109   if (!BPI) {
2110     // If BPI is not available, set the default probability as 1 / N, where N is
2111     // the number of successors.
2112     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2113     return BranchProbability(1, SuccSize);
2114   }
2115   return BPI->getEdgeProbability(SrcBB, DstBB);
2116 }
2117 
2118 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2119                                                MachineBasicBlock *Dst,
2120                                                BranchProbability Prob) {
2121   if (!FuncInfo.BPI)
2122     Src->addSuccessorWithoutProb(Dst);
2123   else {
2124     if (Prob.isUnknown())
2125       Prob = getEdgeProbability(Src, Dst);
2126     Src->addSuccessor(Dst, Prob);
2127   }
2128 }
2129 
2130 static bool InBlock(const Value *V, const BasicBlock *BB) {
2131   if (const Instruction *I = dyn_cast<Instruction>(V))
2132     return I->getParent() == BB;
2133   return true;
2134 }
2135 
2136 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2137 /// This function emits a branch and is used at the leaves of an OR or an
2138 /// AND operator tree.
2139 void
2140 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2141                                                   MachineBasicBlock *TBB,
2142                                                   MachineBasicBlock *FBB,
2143                                                   MachineBasicBlock *CurBB,
2144                                                   MachineBasicBlock *SwitchBB,
2145                                                   BranchProbability TProb,
2146                                                   BranchProbability FProb,
2147                                                   bool InvertCond) {
2148   const BasicBlock *BB = CurBB->getBasicBlock();
2149 
2150   // If the leaf of the tree is a comparison, merge the condition into
2151   // the caseblock.
2152   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2153     // The operands of the cmp have to be in this block.  We don't know
2154     // how to export them from some other block.  If this is the first block
2155     // of the sequence, no exporting is needed.
2156     if (CurBB == SwitchBB ||
2157         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2158          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2159       ISD::CondCode Condition;
2160       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2161         ICmpInst::Predicate Pred =
2162             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2163         Condition = getICmpCondCode(Pred);
2164       } else {
2165         const FCmpInst *FC = cast<FCmpInst>(Cond);
2166         FCmpInst::Predicate Pred =
2167             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2168         Condition = getFCmpCondCode(Pred);
2169         if (TM.Options.NoNaNsFPMath)
2170           Condition = getFCmpCodeWithoutNaN(Condition);
2171       }
2172 
2173       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2174                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2175       SL->SwitchCases.push_back(CB);
2176       return;
2177     }
2178   }
2179 
2180   // Create a CaseBlock record representing this branch.
2181   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2182   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2183                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2184   SL->SwitchCases.push_back(CB);
2185 }
2186 
2187 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2188                                                MachineBasicBlock *TBB,
2189                                                MachineBasicBlock *FBB,
2190                                                MachineBasicBlock *CurBB,
2191                                                MachineBasicBlock *SwitchBB,
2192                                                Instruction::BinaryOps Opc,
2193                                                BranchProbability TProb,
2194                                                BranchProbability FProb,
2195                                                bool InvertCond) {
2196   // Skip over not part of the tree and remember to invert op and operands at
2197   // next level.
2198   Value *NotCond;
2199   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2200       InBlock(NotCond, CurBB->getBasicBlock())) {
2201     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2202                          !InvertCond);
2203     return;
2204   }
2205 
2206   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2207   const Value *BOpOp0, *BOpOp1;
2208   // Compute the effective opcode for Cond, taking into account whether it needs
2209   // to be inverted, e.g.
2210   //   and (not (or A, B)), C
2211   // gets lowered as
2212   //   and (and (not A, not B), C)
2213   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2214   if (BOp) {
2215     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2216                ? Instruction::And
2217                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2218                       ? Instruction::Or
2219                       : (Instruction::BinaryOps)0);
2220     if (InvertCond) {
2221       if (BOpc == Instruction::And)
2222         BOpc = Instruction::Or;
2223       else if (BOpc == Instruction::Or)
2224         BOpc = Instruction::And;
2225     }
2226   }
2227 
2228   // If this node is not part of the or/and tree, emit it as a branch.
2229   // Note that all nodes in the tree should have same opcode.
2230   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2231   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2232       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2233       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2234     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2235                                  TProb, FProb, InvertCond);
2236     return;
2237   }
2238 
2239   //  Create TmpBB after CurBB.
2240   MachineFunction::iterator BBI(CurBB);
2241   MachineFunction &MF = DAG.getMachineFunction();
2242   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2243   CurBB->getParent()->insert(++BBI, TmpBB);
2244 
2245   if (Opc == Instruction::Or) {
2246     // Codegen X | Y as:
2247     // BB1:
2248     //   jmp_if_X TBB
2249     //   jmp TmpBB
2250     // TmpBB:
2251     //   jmp_if_Y TBB
2252     //   jmp FBB
2253     //
2254 
2255     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2256     // The requirement is that
2257     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2258     //     = TrueProb for original BB.
2259     // Assuming the original probabilities are A and B, one choice is to set
2260     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2261     // A/(1+B) and 2B/(1+B). This choice assumes that
2262     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2263     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2264     // TmpBB, but the math is more complicated.
2265 
2266     auto NewTrueProb = TProb / 2;
2267     auto NewFalseProb = TProb / 2 + FProb;
2268     // Emit the LHS condition.
2269     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2270                          NewFalseProb, InvertCond);
2271 
2272     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2273     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2274     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2275     // Emit the RHS condition into TmpBB.
2276     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2277                          Probs[1], InvertCond);
2278   } else {
2279     assert(Opc == Instruction::And && "Unknown merge op!");
2280     // Codegen X & Y as:
2281     // BB1:
2282     //   jmp_if_X TmpBB
2283     //   jmp FBB
2284     // TmpBB:
2285     //   jmp_if_Y TBB
2286     //   jmp FBB
2287     //
2288     //  This requires creation of TmpBB after CurBB.
2289 
2290     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2291     // The requirement is that
2292     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2293     //     = FalseProb for original BB.
2294     // Assuming the original probabilities are A and B, one choice is to set
2295     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2296     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2297     // TrueProb for BB1 * FalseProb for TmpBB.
2298 
2299     auto NewTrueProb = TProb + FProb / 2;
2300     auto NewFalseProb = FProb / 2;
2301     // Emit the LHS condition.
2302     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2303                          NewFalseProb, InvertCond);
2304 
2305     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2306     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2307     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2308     // Emit the RHS condition into TmpBB.
2309     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2310                          Probs[1], InvertCond);
2311   }
2312 }
2313 
2314 /// If the set of cases should be emitted as a series of branches, return true.
2315 /// If we should emit this as a bunch of and/or'd together conditions, return
2316 /// false.
2317 bool
2318 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2319   if (Cases.size() != 2) return true;
2320 
2321   // If this is two comparisons of the same values or'd or and'd together, they
2322   // will get folded into a single comparison, so don't emit two blocks.
2323   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2324        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2325       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2326        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2327     return false;
2328   }
2329 
2330   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2331   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2332   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2333       Cases[0].CC == Cases[1].CC &&
2334       isa<Constant>(Cases[0].CmpRHS) &&
2335       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2336     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2337       return false;
2338     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2339       return false;
2340   }
2341 
2342   return true;
2343 }
2344 
2345 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2346   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2347 
2348   // Update machine-CFG edges.
2349   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2350 
2351   if (I.isUnconditional()) {
2352     // Update machine-CFG edges.
2353     BrMBB->addSuccessor(Succ0MBB);
2354 
2355     // If this is not a fall-through branch or optimizations are switched off,
2356     // emit the branch.
2357     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2358       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2359                               MVT::Other, getControlRoot(),
2360                               DAG.getBasicBlock(Succ0MBB)));
2361 
2362     return;
2363   }
2364 
2365   // If this condition is one of the special cases we handle, do special stuff
2366   // now.
2367   const Value *CondVal = I.getCondition();
2368   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2369 
2370   // If this is a series of conditions that are or'd or and'd together, emit
2371   // this as a sequence of branches instead of setcc's with and/or operations.
2372   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2373   // unpredictable branches, and vector extracts because those jumps are likely
2374   // expensive for any target), this should improve performance.
2375   // For example, instead of something like:
2376   //     cmp A, B
2377   //     C = seteq
2378   //     cmp D, E
2379   //     F = setle
2380   //     or C, F
2381   //     jnz foo
2382   // Emit:
2383   //     cmp A, B
2384   //     je foo
2385   //     cmp D, E
2386   //     jle foo
2387   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2388   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2389       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2390     Value *Vec;
2391     const Value *BOp0, *BOp1;
2392     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2393     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2394       Opcode = Instruction::And;
2395     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2396       Opcode = Instruction::Or;
2397 
2398     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2399                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2400       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2401                            getEdgeProbability(BrMBB, Succ0MBB),
2402                            getEdgeProbability(BrMBB, Succ1MBB),
2403                            /*InvertCond=*/false);
2404       // If the compares in later blocks need to use values not currently
2405       // exported from this block, export them now.  This block should always
2406       // be the first entry.
2407       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2408 
2409       // Allow some cases to be rejected.
2410       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2411         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2412           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2413           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2414         }
2415 
2416         // Emit the branch for this block.
2417         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2418         SL->SwitchCases.erase(SL->SwitchCases.begin());
2419         return;
2420       }
2421 
2422       // Okay, we decided not to do this, remove any inserted MBB's and clear
2423       // SwitchCases.
2424       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2425         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2426 
2427       SL->SwitchCases.clear();
2428     }
2429   }
2430 
2431   // Create a CaseBlock record representing this branch.
2432   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2433                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2434 
2435   // Use visitSwitchCase to actually insert the fast branch sequence for this
2436   // cond branch.
2437   visitSwitchCase(CB, BrMBB);
2438 }
2439 
2440 /// visitSwitchCase - Emits the necessary code to represent a single node in
2441 /// the binary search tree resulting from lowering a switch instruction.
2442 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2443                                           MachineBasicBlock *SwitchBB) {
2444   SDValue Cond;
2445   SDValue CondLHS = getValue(CB.CmpLHS);
2446   SDLoc dl = CB.DL;
2447 
2448   if (CB.CC == ISD::SETTRUE) {
2449     // Branch or fall through to TrueBB.
2450     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2451     SwitchBB->normalizeSuccProbs();
2452     if (CB.TrueBB != NextBlock(SwitchBB)) {
2453       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2454                               DAG.getBasicBlock(CB.TrueBB)));
2455     }
2456     return;
2457   }
2458 
2459   auto &TLI = DAG.getTargetLoweringInfo();
2460   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2461 
2462   // Build the setcc now.
2463   if (!CB.CmpMHS) {
2464     // Fold "(X == true)" to X and "(X == false)" to !X to
2465     // handle common cases produced by branch lowering.
2466     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2467         CB.CC == ISD::SETEQ)
2468       Cond = CondLHS;
2469     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2470              CB.CC == ISD::SETEQ) {
2471       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2472       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2473     } else {
2474       SDValue CondRHS = getValue(CB.CmpRHS);
2475 
2476       // If a pointer's DAG type is larger than its memory type then the DAG
2477       // values are zero-extended. This breaks signed comparisons so truncate
2478       // back to the underlying type before doing the compare.
2479       if (CondLHS.getValueType() != MemVT) {
2480         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2481         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2482       }
2483       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2484     }
2485   } else {
2486     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2487 
2488     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2489     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2490 
2491     SDValue CmpOp = getValue(CB.CmpMHS);
2492     EVT VT = CmpOp.getValueType();
2493 
2494     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2495       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2496                           ISD::SETLE);
2497     } else {
2498       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2499                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2500       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2501                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2502     }
2503   }
2504 
2505   // Update successor info
2506   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2507   // TrueBB and FalseBB are always different unless the incoming IR is
2508   // degenerate. This only happens when running llc on weird IR.
2509   if (CB.TrueBB != CB.FalseBB)
2510     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2511   SwitchBB->normalizeSuccProbs();
2512 
2513   // If the lhs block is the next block, invert the condition so that we can
2514   // fall through to the lhs instead of the rhs block.
2515   if (CB.TrueBB == NextBlock(SwitchBB)) {
2516     std::swap(CB.TrueBB, CB.FalseBB);
2517     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2518     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2519   }
2520 
2521   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2522                                MVT::Other, getControlRoot(), Cond,
2523                                DAG.getBasicBlock(CB.TrueBB));
2524 
2525   // Insert the false branch. Do this even if it's a fall through branch,
2526   // this makes it easier to do DAG optimizations which require inverting
2527   // the branch condition.
2528   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2529                        DAG.getBasicBlock(CB.FalseBB));
2530 
2531   DAG.setRoot(BrCond);
2532 }
2533 
2534 /// visitJumpTable - Emit JumpTable node in the current MBB
2535 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2536   // Emit the code for the jump table
2537   assert(JT.Reg != -1U && "Should lower JT Header first!");
2538   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2539   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2540                                      JT.Reg, PTy);
2541   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2542   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2543                                     MVT::Other, Index.getValue(1),
2544                                     Table, Index);
2545   DAG.setRoot(BrJumpTable);
2546 }
2547 
2548 /// visitJumpTableHeader - This function emits necessary code to produce index
2549 /// in the JumpTable from switch case.
2550 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2551                                                JumpTableHeader &JTH,
2552                                                MachineBasicBlock *SwitchBB) {
2553   SDLoc dl = getCurSDLoc();
2554 
2555   // Subtract the lowest switch case value from the value being switched on.
2556   SDValue SwitchOp = getValue(JTH.SValue);
2557   EVT VT = SwitchOp.getValueType();
2558   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2559                             DAG.getConstant(JTH.First, dl, VT));
2560 
2561   // The SDNode we just created, which holds the value being switched on minus
2562   // the smallest case value, needs to be copied to a virtual register so it
2563   // can be used as an index into the jump table in a subsequent basic block.
2564   // This value may be smaller or larger than the target's pointer type, and
2565   // therefore require extension or truncating.
2566   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2567   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2568 
2569   unsigned JumpTableReg =
2570       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2571   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2572                                     JumpTableReg, SwitchOp);
2573   JT.Reg = JumpTableReg;
2574 
2575   if (!JTH.OmitRangeCheck) {
2576     // Emit the range check for the jump table, and branch to the default block
2577     // for the switch statement if the value being switched on exceeds the
2578     // largest case in the switch.
2579     SDValue CMP = DAG.getSetCC(
2580         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2581                                    Sub.getValueType()),
2582         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2583 
2584     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2585                                  MVT::Other, CopyTo, CMP,
2586                                  DAG.getBasicBlock(JT.Default));
2587 
2588     // Avoid emitting unnecessary branches to the next block.
2589     if (JT.MBB != NextBlock(SwitchBB))
2590       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2591                            DAG.getBasicBlock(JT.MBB));
2592 
2593     DAG.setRoot(BrCond);
2594   } else {
2595     // Avoid emitting unnecessary branches to the next block.
2596     if (JT.MBB != NextBlock(SwitchBB))
2597       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2598                               DAG.getBasicBlock(JT.MBB)));
2599     else
2600       DAG.setRoot(CopyTo);
2601   }
2602 }
2603 
2604 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2605 /// variable if there exists one.
2606 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2607                                  SDValue &Chain) {
2608   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2609   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2610   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2611   MachineFunction &MF = DAG.getMachineFunction();
2612   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2613   MachineSDNode *Node =
2614       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2615   if (Global) {
2616     MachinePointerInfo MPInfo(Global);
2617     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2618                  MachineMemOperand::MODereferenceable;
2619     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2620         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2621     DAG.setNodeMemRefs(Node, {MemRef});
2622   }
2623   if (PtrTy != PtrMemTy)
2624     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2625   return SDValue(Node, 0);
2626 }
2627 
2628 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2629 /// tail spliced into a stack protector check success bb.
2630 ///
2631 /// For a high level explanation of how this fits into the stack protector
2632 /// generation see the comment on the declaration of class
2633 /// StackProtectorDescriptor.
2634 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2635                                                   MachineBasicBlock *ParentBB) {
2636 
2637   // First create the loads to the guard/stack slot for the comparison.
2638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2639   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2640   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2641 
2642   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2643   int FI = MFI.getStackProtectorIndex();
2644 
2645   SDValue Guard;
2646   SDLoc dl = getCurSDLoc();
2647   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2648   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2649   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2650 
2651   // Generate code to load the content of the guard slot.
2652   SDValue GuardVal = DAG.getLoad(
2653       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2654       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2655       MachineMemOperand::MOVolatile);
2656 
2657   if (TLI.useStackGuardXorFP())
2658     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2659 
2660   // Retrieve guard check function, nullptr if instrumentation is inlined.
2661   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2662     // The target provides a guard check function to validate the guard value.
2663     // Generate a call to that function with the content of the guard slot as
2664     // argument.
2665     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2666     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2667 
2668     TargetLowering::ArgListTy Args;
2669     TargetLowering::ArgListEntry Entry;
2670     Entry.Node = GuardVal;
2671     Entry.Ty = FnTy->getParamType(0);
2672     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2673       Entry.IsInReg = true;
2674     Args.push_back(Entry);
2675 
2676     TargetLowering::CallLoweringInfo CLI(DAG);
2677     CLI.setDebugLoc(getCurSDLoc())
2678         .setChain(DAG.getEntryNode())
2679         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2680                    getValue(GuardCheckFn), std::move(Args));
2681 
2682     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2683     DAG.setRoot(Result.second);
2684     return;
2685   }
2686 
2687   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2688   // Otherwise, emit a volatile load to retrieve the stack guard value.
2689   SDValue Chain = DAG.getEntryNode();
2690   if (TLI.useLoadStackGuardNode()) {
2691     Guard = getLoadStackGuard(DAG, dl, Chain);
2692   } else {
2693     const Value *IRGuard = TLI.getSDagStackGuard(M);
2694     SDValue GuardPtr = getValue(IRGuard);
2695 
2696     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2697                         MachinePointerInfo(IRGuard, 0), Align,
2698                         MachineMemOperand::MOVolatile);
2699   }
2700 
2701   // Perform the comparison via a getsetcc.
2702   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2703                                                         *DAG.getContext(),
2704                                                         Guard.getValueType()),
2705                              Guard, GuardVal, ISD::SETNE);
2706 
2707   // If the guard/stackslot do not equal, branch to failure MBB.
2708   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2709                                MVT::Other, GuardVal.getOperand(0),
2710                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2711   // Otherwise branch to success MBB.
2712   SDValue Br = DAG.getNode(ISD::BR, dl,
2713                            MVT::Other, BrCond,
2714                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2715 
2716   DAG.setRoot(Br);
2717 }
2718 
2719 /// Codegen the failure basic block for a stack protector check.
2720 ///
2721 /// A failure stack protector machine basic block consists simply of a call to
2722 /// __stack_chk_fail().
2723 ///
2724 /// For a high level explanation of how this fits into the stack protector
2725 /// generation see the comment on the declaration of class
2726 /// StackProtectorDescriptor.
2727 void
2728 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2729   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2730   TargetLowering::MakeLibCallOptions CallOptions;
2731   CallOptions.setDiscardResult(true);
2732   SDValue Chain =
2733       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2734                       None, CallOptions, getCurSDLoc()).second;
2735   // On PS4, the "return address" must still be within the calling function,
2736   // even if it's at the very end, so emit an explicit TRAP here.
2737   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2738   if (TM.getTargetTriple().isPS4CPU())
2739     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2740   // WebAssembly needs an unreachable instruction after a non-returning call,
2741   // because the function return type can be different from __stack_chk_fail's
2742   // return type (void).
2743   if (TM.getTargetTriple().isWasm())
2744     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2745 
2746   DAG.setRoot(Chain);
2747 }
2748 
2749 /// visitBitTestHeader - This function emits necessary code to produce value
2750 /// suitable for "bit tests"
2751 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2752                                              MachineBasicBlock *SwitchBB) {
2753   SDLoc dl = getCurSDLoc();
2754 
2755   // Subtract the minimum value.
2756   SDValue SwitchOp = getValue(B.SValue);
2757   EVT VT = SwitchOp.getValueType();
2758   SDValue RangeSub =
2759       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2760 
2761   // Determine the type of the test operands.
2762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2763   bool UsePtrType = false;
2764   if (!TLI.isTypeLegal(VT)) {
2765     UsePtrType = true;
2766   } else {
2767     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2768       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2769         // Switch table case range are encoded into series of masks.
2770         // Just use pointer type, it's guaranteed to fit.
2771         UsePtrType = true;
2772         break;
2773       }
2774   }
2775   SDValue Sub = RangeSub;
2776   if (UsePtrType) {
2777     VT = TLI.getPointerTy(DAG.getDataLayout());
2778     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2779   }
2780 
2781   B.RegVT = VT.getSimpleVT();
2782   B.Reg = FuncInfo.CreateReg(B.RegVT);
2783   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2784 
2785   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2786 
2787   if (!B.OmitRangeCheck)
2788     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2789   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2790   SwitchBB->normalizeSuccProbs();
2791 
2792   SDValue Root = CopyTo;
2793   if (!B.OmitRangeCheck) {
2794     // Conditional branch to the default block.
2795     SDValue RangeCmp = DAG.getSetCC(dl,
2796         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2797                                RangeSub.getValueType()),
2798         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2799         ISD::SETUGT);
2800 
2801     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2802                        DAG.getBasicBlock(B.Default));
2803   }
2804 
2805   // Avoid emitting unnecessary branches to the next block.
2806   if (MBB != NextBlock(SwitchBB))
2807     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2808 
2809   DAG.setRoot(Root);
2810 }
2811 
2812 /// visitBitTestCase - this function produces one "bit test"
2813 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2814                                            MachineBasicBlock* NextMBB,
2815                                            BranchProbability BranchProbToNext,
2816                                            unsigned Reg,
2817                                            BitTestCase &B,
2818                                            MachineBasicBlock *SwitchBB) {
2819   SDLoc dl = getCurSDLoc();
2820   MVT VT = BB.RegVT;
2821   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2822   SDValue Cmp;
2823   unsigned PopCount = countPopulation(B.Mask);
2824   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2825   if (PopCount == 1) {
2826     // Testing for a single bit; just compare the shift count with what it
2827     // would need to be to shift a 1 bit in that position.
2828     Cmp = DAG.getSetCC(
2829         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2830         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2831         ISD::SETEQ);
2832   } else if (PopCount == BB.Range) {
2833     // There is only one zero bit in the range, test for it directly.
2834     Cmp = DAG.getSetCC(
2835         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2836         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2837         ISD::SETNE);
2838   } else {
2839     // Make desired shift
2840     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2841                                     DAG.getConstant(1, dl, VT), ShiftOp);
2842 
2843     // Emit bit tests and jumps
2844     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2845                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2846     Cmp = DAG.getSetCC(
2847         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2848         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2849   }
2850 
2851   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2852   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2853   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2854   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2855   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2856   // one as they are relative probabilities (and thus work more like weights),
2857   // and hence we need to normalize them to let the sum of them become one.
2858   SwitchBB->normalizeSuccProbs();
2859 
2860   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2861                               MVT::Other, getControlRoot(),
2862                               Cmp, DAG.getBasicBlock(B.TargetBB));
2863 
2864   // Avoid emitting unnecessary branches to the next block.
2865   if (NextMBB != NextBlock(SwitchBB))
2866     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2867                         DAG.getBasicBlock(NextMBB));
2868 
2869   DAG.setRoot(BrAnd);
2870 }
2871 
2872 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2873   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2874 
2875   // Retrieve successors. Look through artificial IR level blocks like
2876   // catchswitch for successors.
2877   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2878   const BasicBlock *EHPadBB = I.getSuccessor(1);
2879 
2880   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2881   // have to do anything here to lower funclet bundles.
2882   assert(!I.hasOperandBundlesOtherThan(
2883              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2884               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2885               LLVMContext::OB_cfguardtarget,
2886               LLVMContext::OB_clang_arc_attachedcall}) &&
2887          "Cannot lower invokes with arbitrary operand bundles yet!");
2888 
2889   const Value *Callee(I.getCalledOperand());
2890   const Function *Fn = dyn_cast<Function>(Callee);
2891   if (isa<InlineAsm>(Callee))
2892     visitInlineAsm(I, EHPadBB);
2893   else if (Fn && Fn->isIntrinsic()) {
2894     switch (Fn->getIntrinsicID()) {
2895     default:
2896       llvm_unreachable("Cannot invoke this intrinsic");
2897     case Intrinsic::donothing:
2898       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2899     case Intrinsic::seh_try_begin:
2900     case Intrinsic::seh_scope_begin:
2901     case Intrinsic::seh_try_end:
2902     case Intrinsic::seh_scope_end:
2903       break;
2904     case Intrinsic::experimental_patchpoint_void:
2905     case Intrinsic::experimental_patchpoint_i64:
2906       visitPatchpoint(I, EHPadBB);
2907       break;
2908     case Intrinsic::experimental_gc_statepoint:
2909       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2910       break;
2911     case Intrinsic::wasm_rethrow: {
2912       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2913       // special because it can be invoked, so we manually lower it to a DAG
2914       // node here.
2915       SmallVector<SDValue, 8> Ops;
2916       Ops.push_back(getRoot()); // inchain
2917       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2918       Ops.push_back(
2919           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2920                                 TLI.getPointerTy(DAG.getDataLayout())));
2921       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2922       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2923       break;
2924     }
2925     }
2926   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2927     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2928     // Eventually we will support lowering the @llvm.experimental.deoptimize
2929     // intrinsic, and right now there are no plans to support other intrinsics
2930     // with deopt state.
2931     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2932   } else {
2933     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2934   }
2935 
2936   // If the value of the invoke is used outside of its defining block, make it
2937   // available as a virtual register.
2938   // We already took care of the exported value for the statepoint instruction
2939   // during call to the LowerStatepoint.
2940   if (!isa<GCStatepointInst>(I)) {
2941     CopyToExportRegsIfNeeded(&I);
2942   }
2943 
2944   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2945   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2946   BranchProbability EHPadBBProb =
2947       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2948           : BranchProbability::getZero();
2949   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2950 
2951   // Update successor info.
2952   addSuccessorWithProb(InvokeMBB, Return);
2953   for (auto &UnwindDest : UnwindDests) {
2954     UnwindDest.first->setIsEHPad();
2955     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2956   }
2957   InvokeMBB->normalizeSuccProbs();
2958 
2959   // Drop into normal successor.
2960   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2961                           DAG.getBasicBlock(Return)));
2962 }
2963 
2964 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2965   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2966 
2967   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2968   // have to do anything here to lower funclet bundles.
2969   assert(!I.hasOperandBundlesOtherThan(
2970              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2971          "Cannot lower callbrs with arbitrary operand bundles yet!");
2972 
2973   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2974   visitInlineAsm(I);
2975   CopyToExportRegsIfNeeded(&I);
2976 
2977   // Retrieve successors.
2978   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2979 
2980   // Update successor info.
2981   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2982   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2983     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2984     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2985     Target->setIsInlineAsmBrIndirectTarget();
2986   }
2987   CallBrMBB->normalizeSuccProbs();
2988 
2989   // Drop into default successor.
2990   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2991                           MVT::Other, getControlRoot(),
2992                           DAG.getBasicBlock(Return)));
2993 }
2994 
2995 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2996   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2997 }
2998 
2999 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3000   assert(FuncInfo.MBB->isEHPad() &&
3001          "Call to landingpad not in landing pad!");
3002 
3003   // If there aren't registers to copy the values into (e.g., during SjLj
3004   // exceptions), then don't bother to create these DAG nodes.
3005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3006   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3007   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3008       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3009     return;
3010 
3011   // If landingpad's return type is token type, we don't create DAG nodes
3012   // for its exception pointer and selector value. The extraction of exception
3013   // pointer or selector value from token type landingpads is not currently
3014   // supported.
3015   if (LP.getType()->isTokenTy())
3016     return;
3017 
3018   SmallVector<EVT, 2> ValueVTs;
3019   SDLoc dl = getCurSDLoc();
3020   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3021   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3022 
3023   // Get the two live-in registers as SDValues. The physregs have already been
3024   // copied into virtual registers.
3025   SDValue Ops[2];
3026   if (FuncInfo.ExceptionPointerVirtReg) {
3027     Ops[0] = DAG.getZExtOrTrunc(
3028         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3029                            FuncInfo.ExceptionPointerVirtReg,
3030                            TLI.getPointerTy(DAG.getDataLayout())),
3031         dl, ValueVTs[0]);
3032   } else {
3033     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3034   }
3035   Ops[1] = DAG.getZExtOrTrunc(
3036       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3037                          FuncInfo.ExceptionSelectorVirtReg,
3038                          TLI.getPointerTy(DAG.getDataLayout())),
3039       dl, ValueVTs[1]);
3040 
3041   // Merge into one.
3042   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3043                             DAG.getVTList(ValueVTs), Ops);
3044   setValue(&LP, Res);
3045 }
3046 
3047 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3048                                            MachineBasicBlock *Last) {
3049   // Update JTCases.
3050   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3051     if (SL->JTCases[i].first.HeaderBB == First)
3052       SL->JTCases[i].first.HeaderBB = Last;
3053 
3054   // Update BitTestCases.
3055   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3056     if (SL->BitTestCases[i].Parent == First)
3057       SL->BitTestCases[i].Parent = Last;
3058 }
3059 
3060 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3061   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3062 
3063   // Update machine-CFG edges with unique successors.
3064   SmallSet<BasicBlock*, 32> Done;
3065   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3066     BasicBlock *BB = I.getSuccessor(i);
3067     bool Inserted = Done.insert(BB).second;
3068     if (!Inserted)
3069         continue;
3070 
3071     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3072     addSuccessorWithProb(IndirectBrMBB, Succ);
3073   }
3074   IndirectBrMBB->normalizeSuccProbs();
3075 
3076   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3077                           MVT::Other, getControlRoot(),
3078                           getValue(I.getAddress())));
3079 }
3080 
3081 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3082   if (!DAG.getTarget().Options.TrapUnreachable)
3083     return;
3084 
3085   // We may be able to ignore unreachable behind a noreturn call.
3086   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3087     const BasicBlock &BB = *I.getParent();
3088     if (&I != &BB.front()) {
3089       BasicBlock::const_iterator PredI =
3090         std::prev(BasicBlock::const_iterator(&I));
3091       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3092         if (Call->doesNotReturn())
3093           return;
3094       }
3095     }
3096   }
3097 
3098   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3099 }
3100 
3101 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3102   SDNodeFlags Flags;
3103 
3104   SDValue Op = getValue(I.getOperand(0));
3105   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3106                                     Op, Flags);
3107   setValue(&I, UnNodeValue);
3108 }
3109 
3110 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3111   SDNodeFlags Flags;
3112   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3113     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3114     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3115   }
3116   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3117     Flags.setExact(ExactOp->isExact());
3118   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3119     Flags.copyFMF(*FPOp);
3120 
3121   SDValue Op1 = getValue(I.getOperand(0));
3122   SDValue Op2 = getValue(I.getOperand(1));
3123   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3124                                      Op1, Op2, Flags);
3125   setValue(&I, BinNodeValue);
3126 }
3127 
3128 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3129   SDValue Op1 = getValue(I.getOperand(0));
3130   SDValue Op2 = getValue(I.getOperand(1));
3131 
3132   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3133       Op1.getValueType(), DAG.getDataLayout());
3134 
3135   // Coerce the shift amount to the right type if we can.
3136   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3137     unsigned ShiftSize = ShiftTy.getSizeInBits();
3138     unsigned Op2Size = Op2.getValueSizeInBits();
3139     SDLoc DL = getCurSDLoc();
3140 
3141     // If the operand is smaller than the shift count type, promote it.
3142     if (ShiftSize > Op2Size)
3143       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3144 
3145     // If the operand is larger than the shift count type but the shift
3146     // count type has enough bits to represent any shift value, truncate
3147     // it now. This is a common case and it exposes the truncate to
3148     // optimization early.
3149     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3150       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3151     // Otherwise we'll need to temporarily settle for some other convenient
3152     // type.  Type legalization will make adjustments once the shiftee is split.
3153     else
3154       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3155   }
3156 
3157   bool nuw = false;
3158   bool nsw = false;
3159   bool exact = false;
3160 
3161   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3162 
3163     if (const OverflowingBinaryOperator *OFBinOp =
3164             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3165       nuw = OFBinOp->hasNoUnsignedWrap();
3166       nsw = OFBinOp->hasNoSignedWrap();
3167     }
3168     if (const PossiblyExactOperator *ExactOp =
3169             dyn_cast<const PossiblyExactOperator>(&I))
3170       exact = ExactOp->isExact();
3171   }
3172   SDNodeFlags Flags;
3173   Flags.setExact(exact);
3174   Flags.setNoSignedWrap(nsw);
3175   Flags.setNoUnsignedWrap(nuw);
3176   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3177                             Flags);
3178   setValue(&I, Res);
3179 }
3180 
3181 void SelectionDAGBuilder::visitSDiv(const User &I) {
3182   SDValue Op1 = getValue(I.getOperand(0));
3183   SDValue Op2 = getValue(I.getOperand(1));
3184 
3185   SDNodeFlags Flags;
3186   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3187                  cast<PossiblyExactOperator>(&I)->isExact());
3188   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3189                            Op2, Flags));
3190 }
3191 
3192 void SelectionDAGBuilder::visitICmp(const User &I) {
3193   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3194   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3195     predicate = IC->getPredicate();
3196   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3197     predicate = ICmpInst::Predicate(IC->getPredicate());
3198   SDValue Op1 = getValue(I.getOperand(0));
3199   SDValue Op2 = getValue(I.getOperand(1));
3200   ISD::CondCode Opcode = getICmpCondCode(predicate);
3201 
3202   auto &TLI = DAG.getTargetLoweringInfo();
3203   EVT MemVT =
3204       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3205 
3206   // If a pointer's DAG type is larger than its memory type then the DAG values
3207   // are zero-extended. This breaks signed comparisons so truncate back to the
3208   // underlying type before doing the compare.
3209   if (Op1.getValueType() != MemVT) {
3210     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3211     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3212   }
3213 
3214   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3215                                                         I.getType());
3216   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3217 }
3218 
3219 void SelectionDAGBuilder::visitFCmp(const User &I) {
3220   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3221   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3222     predicate = FC->getPredicate();
3223   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3224     predicate = FCmpInst::Predicate(FC->getPredicate());
3225   SDValue Op1 = getValue(I.getOperand(0));
3226   SDValue Op2 = getValue(I.getOperand(1));
3227 
3228   ISD::CondCode Condition = getFCmpCondCode(predicate);
3229   auto *FPMO = cast<FPMathOperator>(&I);
3230   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3231     Condition = getFCmpCodeWithoutNaN(Condition);
3232 
3233   SDNodeFlags Flags;
3234   Flags.copyFMF(*FPMO);
3235   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3236 
3237   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3238                                                         I.getType());
3239   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3240 }
3241 
3242 // Check if the condition of the select has one use or two users that are both
3243 // selects with the same condition.
3244 static bool hasOnlySelectUsers(const Value *Cond) {
3245   return llvm::all_of(Cond->users(), [](const Value *V) {
3246     return isa<SelectInst>(V);
3247   });
3248 }
3249 
3250 void SelectionDAGBuilder::visitSelect(const User &I) {
3251   SmallVector<EVT, 4> ValueVTs;
3252   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3253                   ValueVTs);
3254   unsigned NumValues = ValueVTs.size();
3255   if (NumValues == 0) return;
3256 
3257   SmallVector<SDValue, 4> Values(NumValues);
3258   SDValue Cond     = getValue(I.getOperand(0));
3259   SDValue LHSVal   = getValue(I.getOperand(1));
3260   SDValue RHSVal   = getValue(I.getOperand(2));
3261   SmallVector<SDValue, 1> BaseOps(1, Cond);
3262   ISD::NodeType OpCode =
3263       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3264 
3265   bool IsUnaryAbs = false;
3266   bool Negate = false;
3267 
3268   SDNodeFlags Flags;
3269   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3270     Flags.copyFMF(*FPOp);
3271 
3272   // Min/max matching is only viable if all output VTs are the same.
3273   if (is_splat(ValueVTs)) {
3274     EVT VT = ValueVTs[0];
3275     LLVMContext &Ctx = *DAG.getContext();
3276     auto &TLI = DAG.getTargetLoweringInfo();
3277 
3278     // We care about the legality of the operation after it has been type
3279     // legalized.
3280     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3281       VT = TLI.getTypeToTransformTo(Ctx, VT);
3282 
3283     // If the vselect is legal, assume we want to leave this as a vector setcc +
3284     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3285     // min/max is legal on the scalar type.
3286     bool UseScalarMinMax = VT.isVector() &&
3287       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3288 
3289     Value *LHS, *RHS;
3290     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3291     ISD::NodeType Opc = ISD::DELETED_NODE;
3292     switch (SPR.Flavor) {
3293     case SPF_UMAX:    Opc = ISD::UMAX; break;
3294     case SPF_UMIN:    Opc = ISD::UMIN; break;
3295     case SPF_SMAX:    Opc = ISD::SMAX; break;
3296     case SPF_SMIN:    Opc = ISD::SMIN; break;
3297     case SPF_FMINNUM:
3298       switch (SPR.NaNBehavior) {
3299       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3300       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3301       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3302       case SPNB_RETURNS_ANY: {
3303         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3304           Opc = ISD::FMINNUM;
3305         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3306           Opc = ISD::FMINIMUM;
3307         else if (UseScalarMinMax)
3308           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3309             ISD::FMINNUM : ISD::FMINIMUM;
3310         break;
3311       }
3312       }
3313       break;
3314     case SPF_FMAXNUM:
3315       switch (SPR.NaNBehavior) {
3316       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3317       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3318       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3319       case SPNB_RETURNS_ANY:
3320 
3321         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3322           Opc = ISD::FMAXNUM;
3323         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3324           Opc = ISD::FMAXIMUM;
3325         else if (UseScalarMinMax)
3326           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3327             ISD::FMAXNUM : ISD::FMAXIMUM;
3328         break;
3329       }
3330       break;
3331     case SPF_NABS:
3332       Negate = true;
3333       LLVM_FALLTHROUGH;
3334     case SPF_ABS:
3335       IsUnaryAbs = true;
3336       Opc = ISD::ABS;
3337       break;
3338     default: break;
3339     }
3340 
3341     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3342         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3343          (UseScalarMinMax &&
3344           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3345         // If the underlying comparison instruction is used by any other
3346         // instruction, the consumed instructions won't be destroyed, so it is
3347         // not profitable to convert to a min/max.
3348         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3349       OpCode = Opc;
3350       LHSVal = getValue(LHS);
3351       RHSVal = getValue(RHS);
3352       BaseOps.clear();
3353     }
3354 
3355     if (IsUnaryAbs) {
3356       OpCode = Opc;
3357       LHSVal = getValue(LHS);
3358       BaseOps.clear();
3359     }
3360   }
3361 
3362   if (IsUnaryAbs) {
3363     for (unsigned i = 0; i != NumValues; ++i) {
3364       SDLoc dl = getCurSDLoc();
3365       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3366       Values[i] =
3367           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3368       if (Negate)
3369         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3370                                 Values[i]);
3371     }
3372   } else {
3373     for (unsigned i = 0; i != NumValues; ++i) {
3374       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3375       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3376       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3377       Values[i] = DAG.getNode(
3378           OpCode, getCurSDLoc(),
3379           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3380     }
3381   }
3382 
3383   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3384                            DAG.getVTList(ValueVTs), Values));
3385 }
3386 
3387 void SelectionDAGBuilder::visitTrunc(const User &I) {
3388   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3389   SDValue N = getValue(I.getOperand(0));
3390   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3391                                                         I.getType());
3392   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3393 }
3394 
3395 void SelectionDAGBuilder::visitZExt(const User &I) {
3396   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3397   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3398   SDValue N = getValue(I.getOperand(0));
3399   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3400                                                         I.getType());
3401   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3402 }
3403 
3404 void SelectionDAGBuilder::visitSExt(const User &I) {
3405   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3406   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3407   SDValue N = getValue(I.getOperand(0));
3408   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3409                                                         I.getType());
3410   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3411 }
3412 
3413 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3414   // FPTrunc is never a no-op cast, no need to check
3415   SDValue N = getValue(I.getOperand(0));
3416   SDLoc dl = getCurSDLoc();
3417   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3418   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3419   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3420                            DAG.getTargetConstant(
3421                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3422 }
3423 
3424 void SelectionDAGBuilder::visitFPExt(const User &I) {
3425   // FPExt is never a no-op cast, no need to check
3426   SDValue N = getValue(I.getOperand(0));
3427   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3428                                                         I.getType());
3429   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3430 }
3431 
3432 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3433   // FPToUI is never a no-op cast, no need to check
3434   SDValue N = getValue(I.getOperand(0));
3435   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3436                                                         I.getType());
3437   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3438 }
3439 
3440 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3441   // FPToSI is never a no-op cast, no need to check
3442   SDValue N = getValue(I.getOperand(0));
3443   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3444                                                         I.getType());
3445   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3446 }
3447 
3448 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3449   // UIToFP is never a no-op cast, no need to check
3450   SDValue N = getValue(I.getOperand(0));
3451   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3452                                                         I.getType());
3453   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3454 }
3455 
3456 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3457   // SIToFP is never a no-op cast, no need to check
3458   SDValue N = getValue(I.getOperand(0));
3459   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3460                                                         I.getType());
3461   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3462 }
3463 
3464 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3465   // What to do depends on the size of the integer and the size of the pointer.
3466   // We can either truncate, zero extend, or no-op, accordingly.
3467   SDValue N = getValue(I.getOperand(0));
3468   auto &TLI = DAG.getTargetLoweringInfo();
3469   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3470                                                         I.getType());
3471   EVT PtrMemVT =
3472       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3473   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3474   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3475   setValue(&I, N);
3476 }
3477 
3478 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3479   // What to do depends on the size of the integer and the size of the pointer.
3480   // We can either truncate, zero extend, or no-op, accordingly.
3481   SDValue N = getValue(I.getOperand(0));
3482   auto &TLI = DAG.getTargetLoweringInfo();
3483   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3484   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3485   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3486   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3487   setValue(&I, N);
3488 }
3489 
3490 void SelectionDAGBuilder::visitBitCast(const User &I) {
3491   SDValue N = getValue(I.getOperand(0));
3492   SDLoc dl = getCurSDLoc();
3493   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3494                                                         I.getType());
3495 
3496   // BitCast assures us that source and destination are the same size so this is
3497   // either a BITCAST or a no-op.
3498   if (DestVT != N.getValueType())
3499     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3500                              DestVT, N)); // convert types.
3501   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3502   // might fold any kind of constant expression to an integer constant and that
3503   // is not what we are looking for. Only recognize a bitcast of a genuine
3504   // constant integer as an opaque constant.
3505   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3506     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3507                                  /*isOpaque*/true));
3508   else
3509     setValue(&I, N);            // noop cast.
3510 }
3511 
3512 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3514   const Value *SV = I.getOperand(0);
3515   SDValue N = getValue(SV);
3516   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3517 
3518   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3519   unsigned DestAS = I.getType()->getPointerAddressSpace();
3520 
3521   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3522     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3523 
3524   setValue(&I, N);
3525 }
3526 
3527 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3529   SDValue InVec = getValue(I.getOperand(0));
3530   SDValue InVal = getValue(I.getOperand(1));
3531   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3532                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3533   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3534                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3535                            InVec, InVal, InIdx));
3536 }
3537 
3538 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3540   SDValue InVec = getValue(I.getOperand(0));
3541   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3542                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3543   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3544                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3545                            InVec, InIdx));
3546 }
3547 
3548 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3549   SDValue Src1 = getValue(I.getOperand(0));
3550   SDValue Src2 = getValue(I.getOperand(1));
3551   ArrayRef<int> Mask;
3552   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3553     Mask = SVI->getShuffleMask();
3554   else
3555     Mask = cast<ConstantExpr>(I).getShuffleMask();
3556   SDLoc DL = getCurSDLoc();
3557   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3558   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3559   EVT SrcVT = Src1.getValueType();
3560 
3561   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3562       VT.isScalableVector()) {
3563     // Canonical splat form of first element of first input vector.
3564     SDValue FirstElt =
3565         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3566                     DAG.getVectorIdxConstant(0, DL));
3567     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3568     return;
3569   }
3570 
3571   // For now, we only handle splats for scalable vectors.
3572   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3573   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3574   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3575 
3576   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3577   unsigned MaskNumElts = Mask.size();
3578 
3579   if (SrcNumElts == MaskNumElts) {
3580     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3581     return;
3582   }
3583 
3584   // Normalize the shuffle vector since mask and vector length don't match.
3585   if (SrcNumElts < MaskNumElts) {
3586     // Mask is longer than the source vectors. We can use concatenate vector to
3587     // make the mask and vectors lengths match.
3588 
3589     if (MaskNumElts % SrcNumElts == 0) {
3590       // Mask length is a multiple of the source vector length.
3591       // Check if the shuffle is some kind of concatenation of the input
3592       // vectors.
3593       unsigned NumConcat = MaskNumElts / SrcNumElts;
3594       bool IsConcat = true;
3595       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3596       for (unsigned i = 0; i != MaskNumElts; ++i) {
3597         int Idx = Mask[i];
3598         if (Idx < 0)
3599           continue;
3600         // Ensure the indices in each SrcVT sized piece are sequential and that
3601         // the same source is used for the whole piece.
3602         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3603             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3604              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3605           IsConcat = false;
3606           break;
3607         }
3608         // Remember which source this index came from.
3609         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3610       }
3611 
3612       // The shuffle is concatenating multiple vectors together. Just emit
3613       // a CONCAT_VECTORS operation.
3614       if (IsConcat) {
3615         SmallVector<SDValue, 8> ConcatOps;
3616         for (auto Src : ConcatSrcs) {
3617           if (Src < 0)
3618             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3619           else if (Src == 0)
3620             ConcatOps.push_back(Src1);
3621           else
3622             ConcatOps.push_back(Src2);
3623         }
3624         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3625         return;
3626       }
3627     }
3628 
3629     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3630     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3631     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3632                                     PaddedMaskNumElts);
3633 
3634     // Pad both vectors with undefs to make them the same length as the mask.
3635     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3636 
3637     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3638     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3639     MOps1[0] = Src1;
3640     MOps2[0] = Src2;
3641 
3642     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3643     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3644 
3645     // Readjust mask for new input vector length.
3646     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3647     for (unsigned i = 0; i != MaskNumElts; ++i) {
3648       int Idx = Mask[i];
3649       if (Idx >= (int)SrcNumElts)
3650         Idx -= SrcNumElts - PaddedMaskNumElts;
3651       MappedOps[i] = Idx;
3652     }
3653 
3654     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3655 
3656     // If the concatenated vector was padded, extract a subvector with the
3657     // correct number of elements.
3658     if (MaskNumElts != PaddedMaskNumElts)
3659       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3660                            DAG.getVectorIdxConstant(0, DL));
3661 
3662     setValue(&I, Result);
3663     return;
3664   }
3665 
3666   if (SrcNumElts > MaskNumElts) {
3667     // Analyze the access pattern of the vector to see if we can extract
3668     // two subvectors and do the shuffle.
3669     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3670     bool CanExtract = true;
3671     for (int Idx : Mask) {
3672       unsigned Input = 0;
3673       if (Idx < 0)
3674         continue;
3675 
3676       if (Idx >= (int)SrcNumElts) {
3677         Input = 1;
3678         Idx -= SrcNumElts;
3679       }
3680 
3681       // If all the indices come from the same MaskNumElts sized portion of
3682       // the sources we can use extract. Also make sure the extract wouldn't
3683       // extract past the end of the source.
3684       int NewStartIdx = alignDown(Idx, MaskNumElts);
3685       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3686           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3687         CanExtract = false;
3688       // Make sure we always update StartIdx as we use it to track if all
3689       // elements are undef.
3690       StartIdx[Input] = NewStartIdx;
3691     }
3692 
3693     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3694       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3695       return;
3696     }
3697     if (CanExtract) {
3698       // Extract appropriate subvector and generate a vector shuffle
3699       for (unsigned Input = 0; Input < 2; ++Input) {
3700         SDValue &Src = Input == 0 ? Src1 : Src2;
3701         if (StartIdx[Input] < 0)
3702           Src = DAG.getUNDEF(VT);
3703         else {
3704           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3705                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3706         }
3707       }
3708 
3709       // Calculate new mask.
3710       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3711       for (int &Idx : MappedOps) {
3712         if (Idx >= (int)SrcNumElts)
3713           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3714         else if (Idx >= 0)
3715           Idx -= StartIdx[0];
3716       }
3717 
3718       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3719       return;
3720     }
3721   }
3722 
3723   // We can't use either concat vectors or extract subvectors so fall back to
3724   // replacing the shuffle with extract and build vector.
3725   // to insert and build vector.
3726   EVT EltVT = VT.getVectorElementType();
3727   SmallVector<SDValue,8> Ops;
3728   for (int Idx : Mask) {
3729     SDValue Res;
3730 
3731     if (Idx < 0) {
3732       Res = DAG.getUNDEF(EltVT);
3733     } else {
3734       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3735       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3736 
3737       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3738                         DAG.getVectorIdxConstant(Idx, DL));
3739     }
3740 
3741     Ops.push_back(Res);
3742   }
3743 
3744   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3745 }
3746 
3747 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3748   ArrayRef<unsigned> Indices;
3749   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3750     Indices = IV->getIndices();
3751   else
3752     Indices = cast<ConstantExpr>(&I)->getIndices();
3753 
3754   const Value *Op0 = I.getOperand(0);
3755   const Value *Op1 = I.getOperand(1);
3756   Type *AggTy = I.getType();
3757   Type *ValTy = Op1->getType();
3758   bool IntoUndef = isa<UndefValue>(Op0);
3759   bool FromUndef = isa<UndefValue>(Op1);
3760 
3761   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3762 
3763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3764   SmallVector<EVT, 4> AggValueVTs;
3765   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3766   SmallVector<EVT, 4> ValValueVTs;
3767   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3768 
3769   unsigned NumAggValues = AggValueVTs.size();
3770   unsigned NumValValues = ValValueVTs.size();
3771   SmallVector<SDValue, 4> Values(NumAggValues);
3772 
3773   // Ignore an insertvalue that produces an empty object
3774   if (!NumAggValues) {
3775     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3776     return;
3777   }
3778 
3779   SDValue Agg = getValue(Op0);
3780   unsigned i = 0;
3781   // Copy the beginning value(s) from the original aggregate.
3782   for (; i != LinearIndex; ++i)
3783     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3784                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3785   // Copy values from the inserted value(s).
3786   if (NumValValues) {
3787     SDValue Val = getValue(Op1);
3788     for (; i != LinearIndex + NumValValues; ++i)
3789       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3790                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3791   }
3792   // Copy remaining value(s) from the original aggregate.
3793   for (; i != NumAggValues; ++i)
3794     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3795                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3796 
3797   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3798                            DAG.getVTList(AggValueVTs), Values));
3799 }
3800 
3801 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3802   ArrayRef<unsigned> Indices;
3803   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3804     Indices = EV->getIndices();
3805   else
3806     Indices = cast<ConstantExpr>(&I)->getIndices();
3807 
3808   const Value *Op0 = I.getOperand(0);
3809   Type *AggTy = Op0->getType();
3810   Type *ValTy = I.getType();
3811   bool OutOfUndef = isa<UndefValue>(Op0);
3812 
3813   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3814 
3815   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3816   SmallVector<EVT, 4> ValValueVTs;
3817   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3818 
3819   unsigned NumValValues = ValValueVTs.size();
3820 
3821   // Ignore a extractvalue that produces an empty object
3822   if (!NumValValues) {
3823     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3824     return;
3825   }
3826 
3827   SmallVector<SDValue, 4> Values(NumValValues);
3828 
3829   SDValue Agg = getValue(Op0);
3830   // Copy out the selected value(s).
3831   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3832     Values[i - LinearIndex] =
3833       OutOfUndef ?
3834         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3835         SDValue(Agg.getNode(), Agg.getResNo() + i);
3836 
3837   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3838                            DAG.getVTList(ValValueVTs), Values));
3839 }
3840 
3841 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3842   Value *Op0 = I.getOperand(0);
3843   // Note that the pointer operand may be a vector of pointers. Take the scalar
3844   // element which holds a pointer.
3845   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3846   SDValue N = getValue(Op0);
3847   SDLoc dl = getCurSDLoc();
3848   auto &TLI = DAG.getTargetLoweringInfo();
3849 
3850   // Normalize Vector GEP - all scalar operands should be converted to the
3851   // splat vector.
3852   bool IsVectorGEP = I.getType()->isVectorTy();
3853   ElementCount VectorElementCount =
3854       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3855                   : ElementCount::getFixed(0);
3856 
3857   if (IsVectorGEP && !N.getValueType().isVector()) {
3858     LLVMContext &Context = *DAG.getContext();
3859     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3860     if (VectorElementCount.isScalable())
3861       N = DAG.getSplatVector(VT, dl, N);
3862     else
3863       N = DAG.getSplatBuildVector(VT, dl, N);
3864   }
3865 
3866   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3867        GTI != E; ++GTI) {
3868     const Value *Idx = GTI.getOperand();
3869     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3870       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3871       if (Field) {
3872         // N = N + Offset
3873         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3874 
3875         // In an inbounds GEP with an offset that is nonnegative even when
3876         // interpreted as signed, assume there is no unsigned overflow.
3877         SDNodeFlags Flags;
3878         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3879           Flags.setNoUnsignedWrap(true);
3880 
3881         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3882                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3883       }
3884     } else {
3885       // IdxSize is the width of the arithmetic according to IR semantics.
3886       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3887       // (and fix up the result later).
3888       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3889       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3890       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3891       // We intentionally mask away the high bits here; ElementSize may not
3892       // fit in IdxTy.
3893       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3894       bool ElementScalable = ElementSize.isScalable();
3895 
3896       // If this is a scalar constant or a splat vector of constants,
3897       // handle it quickly.
3898       const auto *C = dyn_cast<Constant>(Idx);
3899       if (C && isa<VectorType>(C->getType()))
3900         C = C->getSplatValue();
3901 
3902       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3903       if (CI && CI->isZero())
3904         continue;
3905       if (CI && !ElementScalable) {
3906         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3907         LLVMContext &Context = *DAG.getContext();
3908         SDValue OffsVal;
3909         if (IsVectorGEP)
3910           OffsVal = DAG.getConstant(
3911               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3912         else
3913           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3914 
3915         // In an inbounds GEP with an offset that is nonnegative even when
3916         // interpreted as signed, assume there is no unsigned overflow.
3917         SDNodeFlags Flags;
3918         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3919           Flags.setNoUnsignedWrap(true);
3920 
3921         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3922 
3923         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3924         continue;
3925       }
3926 
3927       // N = N + Idx * ElementMul;
3928       SDValue IdxN = getValue(Idx);
3929 
3930       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3931         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3932                                   VectorElementCount);
3933         if (VectorElementCount.isScalable())
3934           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3935         else
3936           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3937       }
3938 
3939       // If the index is smaller or larger than intptr_t, truncate or extend
3940       // it.
3941       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3942 
3943       if (ElementScalable) {
3944         EVT VScaleTy = N.getValueType().getScalarType();
3945         SDValue VScale = DAG.getNode(
3946             ISD::VSCALE, dl, VScaleTy,
3947             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3948         if (IsVectorGEP)
3949           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3950         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3951       } else {
3952         // If this is a multiply by a power of two, turn it into a shl
3953         // immediately.  This is a very common case.
3954         if (ElementMul != 1) {
3955           if (ElementMul.isPowerOf2()) {
3956             unsigned Amt = ElementMul.logBase2();
3957             IdxN = DAG.getNode(ISD::SHL, dl,
3958                                N.getValueType(), IdxN,
3959                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3960           } else {
3961             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3962                                             IdxN.getValueType());
3963             IdxN = DAG.getNode(ISD::MUL, dl,
3964                                N.getValueType(), IdxN, Scale);
3965           }
3966         }
3967       }
3968 
3969       N = DAG.getNode(ISD::ADD, dl,
3970                       N.getValueType(), N, IdxN);
3971     }
3972   }
3973 
3974   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3975   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3976   if (IsVectorGEP) {
3977     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3978     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3979   }
3980 
3981   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3982     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3983 
3984   setValue(&I, N);
3985 }
3986 
3987 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3988   // If this is a fixed sized alloca in the entry block of the function,
3989   // allocate it statically on the stack.
3990   if (FuncInfo.StaticAllocaMap.count(&I))
3991     return;   // getValue will auto-populate this.
3992 
3993   SDLoc dl = getCurSDLoc();
3994   Type *Ty = I.getAllocatedType();
3995   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3996   auto &DL = DAG.getDataLayout();
3997   uint64_t TySize = DL.getTypeAllocSize(Ty);
3998   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3999 
4000   SDValue AllocSize = getValue(I.getArraySize());
4001 
4002   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4003   if (AllocSize.getValueType() != IntPtr)
4004     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4005 
4006   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4007                           AllocSize,
4008                           DAG.getConstant(TySize, dl, IntPtr));
4009 
4010   // Handle alignment.  If the requested alignment is less than or equal to
4011   // the stack alignment, ignore it.  If the size is greater than or equal to
4012   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4013   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4014   if (*Alignment <= StackAlign)
4015     Alignment = None;
4016 
4017   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4018   // Round the size of the allocation up to the stack alignment size
4019   // by add SA-1 to the size. This doesn't overflow because we're computing
4020   // an address inside an alloca.
4021   SDNodeFlags Flags;
4022   Flags.setNoUnsignedWrap(true);
4023   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4024                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4025 
4026   // Mask out the low bits for alignment purposes.
4027   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4028                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4029 
4030   SDValue Ops[] = {
4031       getRoot(), AllocSize,
4032       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4033   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4034   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4035   setValue(&I, DSA);
4036   DAG.setRoot(DSA.getValue(1));
4037 
4038   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4039 }
4040 
4041 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4042   if (I.isAtomic())
4043     return visitAtomicLoad(I);
4044 
4045   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4046   const Value *SV = I.getOperand(0);
4047   if (TLI.supportSwiftError()) {
4048     // Swifterror values can come from either a function parameter with
4049     // swifterror attribute or an alloca with swifterror attribute.
4050     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4051       if (Arg->hasSwiftErrorAttr())
4052         return visitLoadFromSwiftError(I);
4053     }
4054 
4055     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4056       if (Alloca->isSwiftError())
4057         return visitLoadFromSwiftError(I);
4058     }
4059   }
4060 
4061   SDValue Ptr = getValue(SV);
4062 
4063   Type *Ty = I.getType();
4064   Align Alignment = I.getAlign();
4065 
4066   AAMDNodes AAInfo;
4067   I.getAAMetadata(AAInfo);
4068   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4069 
4070   SmallVector<EVT, 4> ValueVTs, MemVTs;
4071   SmallVector<uint64_t, 4> Offsets;
4072   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4073   unsigned NumValues = ValueVTs.size();
4074   if (NumValues == 0)
4075     return;
4076 
4077   bool isVolatile = I.isVolatile();
4078 
4079   SDValue Root;
4080   bool ConstantMemory = false;
4081   if (isVolatile)
4082     // Serialize volatile loads with other side effects.
4083     Root = getRoot();
4084   else if (NumValues > MaxParallelChains)
4085     Root = getMemoryRoot();
4086   else if (AA &&
4087            AA->pointsToConstantMemory(MemoryLocation(
4088                SV,
4089                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4090                AAInfo))) {
4091     // Do not serialize (non-volatile) loads of constant memory with anything.
4092     Root = DAG.getEntryNode();
4093     ConstantMemory = true;
4094   } else {
4095     // Do not serialize non-volatile loads against each other.
4096     Root = DAG.getRoot();
4097   }
4098 
4099   SDLoc dl = getCurSDLoc();
4100 
4101   if (isVolatile)
4102     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4103 
4104   // An aggregate load cannot wrap around the address space, so offsets to its
4105   // parts don't wrap either.
4106   SDNodeFlags Flags;
4107   Flags.setNoUnsignedWrap(true);
4108 
4109   SmallVector<SDValue, 4> Values(NumValues);
4110   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4111   EVT PtrVT = Ptr.getValueType();
4112 
4113   MachineMemOperand::Flags MMOFlags
4114     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4115 
4116   unsigned ChainI = 0;
4117   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4118     // Serializing loads here may result in excessive register pressure, and
4119     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4120     // could recover a bit by hoisting nodes upward in the chain by recognizing
4121     // they are side-effect free or do not alias. The optimizer should really
4122     // avoid this case by converting large object/array copies to llvm.memcpy
4123     // (MaxParallelChains should always remain as failsafe).
4124     if (ChainI == MaxParallelChains) {
4125       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4126       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4127                                   makeArrayRef(Chains.data(), ChainI));
4128       Root = Chain;
4129       ChainI = 0;
4130     }
4131     SDValue A = DAG.getNode(ISD::ADD, dl,
4132                             PtrVT, Ptr,
4133                             DAG.getConstant(Offsets[i], dl, PtrVT),
4134                             Flags);
4135 
4136     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4137                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4138                             MMOFlags, AAInfo, Ranges);
4139     Chains[ChainI] = L.getValue(1);
4140 
4141     if (MemVTs[i] != ValueVTs[i])
4142       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4143 
4144     Values[i] = L;
4145   }
4146 
4147   if (!ConstantMemory) {
4148     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4149                                 makeArrayRef(Chains.data(), ChainI));
4150     if (isVolatile)
4151       DAG.setRoot(Chain);
4152     else
4153       PendingLoads.push_back(Chain);
4154   }
4155 
4156   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4157                            DAG.getVTList(ValueVTs), Values));
4158 }
4159 
4160 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4161   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4162          "call visitStoreToSwiftError when backend supports swifterror");
4163 
4164   SmallVector<EVT, 4> ValueVTs;
4165   SmallVector<uint64_t, 4> Offsets;
4166   const Value *SrcV = I.getOperand(0);
4167   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4168                   SrcV->getType(), ValueVTs, &Offsets);
4169   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4170          "expect a single EVT for swifterror");
4171 
4172   SDValue Src = getValue(SrcV);
4173   // Create a virtual register, then update the virtual register.
4174   Register VReg =
4175       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4176   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4177   // Chain can be getRoot or getControlRoot.
4178   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4179                                       SDValue(Src.getNode(), Src.getResNo()));
4180   DAG.setRoot(CopyNode);
4181 }
4182 
4183 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4184   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4185          "call visitLoadFromSwiftError when backend supports swifterror");
4186 
4187   assert(!I.isVolatile() &&
4188          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4189          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4190          "Support volatile, non temporal, invariant for load_from_swift_error");
4191 
4192   const Value *SV = I.getOperand(0);
4193   Type *Ty = I.getType();
4194   AAMDNodes AAInfo;
4195   I.getAAMetadata(AAInfo);
4196   assert(
4197       (!AA ||
4198        !AA->pointsToConstantMemory(MemoryLocation(
4199            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4200            AAInfo))) &&
4201       "load_from_swift_error should not be constant memory");
4202 
4203   SmallVector<EVT, 4> ValueVTs;
4204   SmallVector<uint64_t, 4> Offsets;
4205   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4206                   ValueVTs, &Offsets);
4207   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4208          "expect a single EVT for swifterror");
4209 
4210   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4211   SDValue L = DAG.getCopyFromReg(
4212       getRoot(), getCurSDLoc(),
4213       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4214 
4215   setValue(&I, L);
4216 }
4217 
4218 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4219   if (I.isAtomic())
4220     return visitAtomicStore(I);
4221 
4222   const Value *SrcV = I.getOperand(0);
4223   const Value *PtrV = I.getOperand(1);
4224 
4225   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4226   if (TLI.supportSwiftError()) {
4227     // Swifterror values can come from either a function parameter with
4228     // swifterror attribute or an alloca with swifterror attribute.
4229     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4230       if (Arg->hasSwiftErrorAttr())
4231         return visitStoreToSwiftError(I);
4232     }
4233 
4234     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4235       if (Alloca->isSwiftError())
4236         return visitStoreToSwiftError(I);
4237     }
4238   }
4239 
4240   SmallVector<EVT, 4> ValueVTs, MemVTs;
4241   SmallVector<uint64_t, 4> Offsets;
4242   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4243                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4244   unsigned NumValues = ValueVTs.size();
4245   if (NumValues == 0)
4246     return;
4247 
4248   // Get the lowered operands. Note that we do this after
4249   // checking if NumResults is zero, because with zero results
4250   // the operands won't have values in the map.
4251   SDValue Src = getValue(SrcV);
4252   SDValue Ptr = getValue(PtrV);
4253 
4254   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4255   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4256   SDLoc dl = getCurSDLoc();
4257   Align Alignment = I.getAlign();
4258   AAMDNodes AAInfo;
4259   I.getAAMetadata(AAInfo);
4260 
4261   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4262 
4263   // An aggregate load cannot wrap around the address space, so offsets to its
4264   // parts don't wrap either.
4265   SDNodeFlags Flags;
4266   Flags.setNoUnsignedWrap(true);
4267 
4268   unsigned ChainI = 0;
4269   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4270     // See visitLoad comments.
4271     if (ChainI == MaxParallelChains) {
4272       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4273                                   makeArrayRef(Chains.data(), ChainI));
4274       Root = Chain;
4275       ChainI = 0;
4276     }
4277     SDValue Add =
4278         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4279     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4280     if (MemVTs[i] != ValueVTs[i])
4281       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4282     SDValue St =
4283         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4284                      Alignment, MMOFlags, AAInfo);
4285     Chains[ChainI] = St;
4286   }
4287 
4288   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4289                                   makeArrayRef(Chains.data(), ChainI));
4290   DAG.setRoot(StoreNode);
4291 }
4292 
4293 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4294                                            bool IsCompressing) {
4295   SDLoc sdl = getCurSDLoc();
4296 
4297   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4298                                MaybeAlign &Alignment) {
4299     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4300     Src0 = I.getArgOperand(0);
4301     Ptr = I.getArgOperand(1);
4302     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4303     Mask = I.getArgOperand(3);
4304   };
4305   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4306                                     MaybeAlign &Alignment) {
4307     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4308     Src0 = I.getArgOperand(0);
4309     Ptr = I.getArgOperand(1);
4310     Mask = I.getArgOperand(2);
4311     Alignment = None;
4312   };
4313 
4314   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4315   MaybeAlign Alignment;
4316   if (IsCompressing)
4317     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4318   else
4319     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4320 
4321   SDValue Ptr = getValue(PtrOperand);
4322   SDValue Src0 = getValue(Src0Operand);
4323   SDValue Mask = getValue(MaskOperand);
4324   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4325 
4326   EVT VT = Src0.getValueType();
4327   if (!Alignment)
4328     Alignment = DAG.getEVTAlign(VT);
4329 
4330   AAMDNodes AAInfo;
4331   I.getAAMetadata(AAInfo);
4332 
4333   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4334       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4335       // TODO: Make MachineMemOperands aware of scalable
4336       // vectors.
4337       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4338   SDValue StoreNode =
4339       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4340                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4341   DAG.setRoot(StoreNode);
4342   setValue(&I, StoreNode);
4343 }
4344 
4345 // Get a uniform base for the Gather/Scatter intrinsic.
4346 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4347 // We try to represent it as a base pointer + vector of indices.
4348 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4349 // The first operand of the GEP may be a single pointer or a vector of pointers
4350 // Example:
4351 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4352 //  or
4353 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4354 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4355 //
4356 // When the first GEP operand is a single pointer - it is the uniform base we
4357 // are looking for. If first operand of the GEP is a splat vector - we
4358 // extract the splat value and use it as a uniform base.
4359 // In all other cases the function returns 'false'.
4360 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4361                            ISD::MemIndexType &IndexType, SDValue &Scale,
4362                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4363   SelectionDAG& DAG = SDB->DAG;
4364   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4365   const DataLayout &DL = DAG.getDataLayout();
4366 
4367   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4368 
4369   // Handle splat constant pointer.
4370   if (auto *C = dyn_cast<Constant>(Ptr)) {
4371     C = C->getSplatValue();
4372     if (!C)
4373       return false;
4374 
4375     Base = SDB->getValue(C);
4376 
4377     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4378     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4379     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4380     IndexType = ISD::SIGNED_SCALED;
4381     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4382     return true;
4383   }
4384 
4385   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4386   if (!GEP || GEP->getParent() != CurBB)
4387     return false;
4388 
4389   if (GEP->getNumOperands() != 2)
4390     return false;
4391 
4392   const Value *BasePtr = GEP->getPointerOperand();
4393   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4394 
4395   // Make sure the base is scalar and the index is a vector.
4396   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4397     return false;
4398 
4399   Base = SDB->getValue(BasePtr);
4400   Index = SDB->getValue(IndexVal);
4401   IndexType = ISD::SIGNED_SCALED;
4402   Scale = DAG.getTargetConstant(
4403               DL.getTypeAllocSize(GEP->getResultElementType()),
4404               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4405   return true;
4406 }
4407 
4408 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4409   SDLoc sdl = getCurSDLoc();
4410 
4411   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4412   const Value *Ptr = I.getArgOperand(1);
4413   SDValue Src0 = getValue(I.getArgOperand(0));
4414   SDValue Mask = getValue(I.getArgOperand(3));
4415   EVT VT = Src0.getValueType();
4416   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4417                         ->getMaybeAlignValue()
4418                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4420 
4421   AAMDNodes AAInfo;
4422   I.getAAMetadata(AAInfo);
4423 
4424   SDValue Base;
4425   SDValue Index;
4426   ISD::MemIndexType IndexType;
4427   SDValue Scale;
4428   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4429                                     I.getParent());
4430 
4431   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4432   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4433       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4434       // TODO: Make MachineMemOperands aware of scalable
4435       // vectors.
4436       MemoryLocation::UnknownSize, Alignment, AAInfo);
4437   if (!UniformBase) {
4438     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4439     Index = getValue(Ptr);
4440     IndexType = ISD::SIGNED_UNSCALED;
4441     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4442   }
4443 
4444   EVT IdxVT = Index.getValueType();
4445   EVT EltTy = IdxVT.getVectorElementType();
4446   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4447     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4448     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4449   }
4450 
4451   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4452   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4453                                          Ops, MMO, IndexType, false);
4454   DAG.setRoot(Scatter);
4455   setValue(&I, Scatter);
4456 }
4457 
4458 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4459   SDLoc sdl = getCurSDLoc();
4460 
4461   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4462                               MaybeAlign &Alignment) {
4463     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4464     Ptr = I.getArgOperand(0);
4465     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4466     Mask = I.getArgOperand(2);
4467     Src0 = I.getArgOperand(3);
4468   };
4469   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4470                                  MaybeAlign &Alignment) {
4471     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4472     Ptr = I.getArgOperand(0);
4473     Alignment = None;
4474     Mask = I.getArgOperand(1);
4475     Src0 = I.getArgOperand(2);
4476   };
4477 
4478   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4479   MaybeAlign Alignment;
4480   if (IsExpanding)
4481     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4482   else
4483     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4484 
4485   SDValue Ptr = getValue(PtrOperand);
4486   SDValue Src0 = getValue(Src0Operand);
4487   SDValue Mask = getValue(MaskOperand);
4488   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4489 
4490   EVT VT = Src0.getValueType();
4491   if (!Alignment)
4492     Alignment = DAG.getEVTAlign(VT);
4493 
4494   AAMDNodes AAInfo;
4495   I.getAAMetadata(AAInfo);
4496   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4497 
4498   // Do not serialize masked loads of constant memory with anything.
4499   MemoryLocation ML;
4500   if (VT.isScalableVector())
4501     ML = MemoryLocation::getAfter(PtrOperand);
4502   else
4503     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4504                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4505                            AAInfo);
4506   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4507 
4508   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4509 
4510   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4511       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4512       // TODO: Make MachineMemOperands aware of scalable
4513       // vectors.
4514       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4515 
4516   SDValue Load =
4517       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4518                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4519   if (AddToChain)
4520     PendingLoads.push_back(Load.getValue(1));
4521   setValue(&I, Load);
4522 }
4523 
4524 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4525   SDLoc sdl = getCurSDLoc();
4526 
4527   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4528   const Value *Ptr = I.getArgOperand(0);
4529   SDValue Src0 = getValue(I.getArgOperand(3));
4530   SDValue Mask = getValue(I.getArgOperand(2));
4531 
4532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4533   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4534   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4535                         ->getMaybeAlignValue()
4536                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4537 
4538   AAMDNodes AAInfo;
4539   I.getAAMetadata(AAInfo);
4540   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4541 
4542   SDValue Root = DAG.getRoot();
4543   SDValue Base;
4544   SDValue Index;
4545   ISD::MemIndexType IndexType;
4546   SDValue Scale;
4547   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4548                                     I.getParent());
4549   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4550   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4551       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4552       // TODO: Make MachineMemOperands aware of scalable
4553       // vectors.
4554       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4555 
4556   if (!UniformBase) {
4557     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4558     Index = getValue(Ptr);
4559     IndexType = ISD::SIGNED_UNSCALED;
4560     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4561   }
4562 
4563   EVT IdxVT = Index.getValueType();
4564   EVT EltTy = IdxVT.getVectorElementType();
4565   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4566     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4567     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4568   }
4569 
4570   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4571   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4572                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4573 
4574   PendingLoads.push_back(Gather.getValue(1));
4575   setValue(&I, Gather);
4576 }
4577 
4578 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4579   SDLoc dl = getCurSDLoc();
4580   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4581   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4582   SyncScope::ID SSID = I.getSyncScopeID();
4583 
4584   SDValue InChain = getRoot();
4585 
4586   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4587   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4588 
4589   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4590   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4591 
4592   MachineFunction &MF = DAG.getMachineFunction();
4593   MachineMemOperand *MMO = MF.getMachineMemOperand(
4594       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4595       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4596       FailureOrdering);
4597 
4598   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4599                                    dl, MemVT, VTs, InChain,
4600                                    getValue(I.getPointerOperand()),
4601                                    getValue(I.getCompareOperand()),
4602                                    getValue(I.getNewValOperand()), MMO);
4603 
4604   SDValue OutChain = L.getValue(2);
4605 
4606   setValue(&I, L);
4607   DAG.setRoot(OutChain);
4608 }
4609 
4610 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4611   SDLoc dl = getCurSDLoc();
4612   ISD::NodeType NT;
4613   switch (I.getOperation()) {
4614   default: llvm_unreachable("Unknown atomicrmw operation");
4615   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4616   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4617   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4618   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4619   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4620   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4621   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4622   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4623   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4624   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4625   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4626   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4627   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4628   }
4629   AtomicOrdering Ordering = I.getOrdering();
4630   SyncScope::ID SSID = I.getSyncScopeID();
4631 
4632   SDValue InChain = getRoot();
4633 
4634   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4635   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4636   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4637 
4638   MachineFunction &MF = DAG.getMachineFunction();
4639   MachineMemOperand *MMO = MF.getMachineMemOperand(
4640       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4641       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4642 
4643   SDValue L =
4644     DAG.getAtomic(NT, dl, MemVT, InChain,
4645                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4646                   MMO);
4647 
4648   SDValue OutChain = L.getValue(1);
4649 
4650   setValue(&I, L);
4651   DAG.setRoot(OutChain);
4652 }
4653 
4654 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4655   SDLoc dl = getCurSDLoc();
4656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4657   SDValue Ops[3];
4658   Ops[0] = getRoot();
4659   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4660                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4661   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4662                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4663   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4664 }
4665 
4666 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4667   SDLoc dl = getCurSDLoc();
4668   AtomicOrdering Order = I.getOrdering();
4669   SyncScope::ID SSID = I.getSyncScopeID();
4670 
4671   SDValue InChain = getRoot();
4672 
4673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4674   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4675   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4676 
4677   if (!TLI.supportsUnalignedAtomics() &&
4678       I.getAlignment() < MemVT.getSizeInBits() / 8)
4679     report_fatal_error("Cannot generate unaligned atomic load");
4680 
4681   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4682 
4683   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4684       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4685       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4686 
4687   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4688 
4689   SDValue Ptr = getValue(I.getPointerOperand());
4690 
4691   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4692     // TODO: Once this is better exercised by tests, it should be merged with
4693     // the normal path for loads to prevent future divergence.
4694     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4695     if (MemVT != VT)
4696       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4697 
4698     setValue(&I, L);
4699     SDValue OutChain = L.getValue(1);
4700     if (!I.isUnordered())
4701       DAG.setRoot(OutChain);
4702     else
4703       PendingLoads.push_back(OutChain);
4704     return;
4705   }
4706 
4707   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4708                             Ptr, MMO);
4709 
4710   SDValue OutChain = L.getValue(1);
4711   if (MemVT != VT)
4712     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4713 
4714   setValue(&I, L);
4715   DAG.setRoot(OutChain);
4716 }
4717 
4718 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4719   SDLoc dl = getCurSDLoc();
4720 
4721   AtomicOrdering Ordering = I.getOrdering();
4722   SyncScope::ID SSID = I.getSyncScopeID();
4723 
4724   SDValue InChain = getRoot();
4725 
4726   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4727   EVT MemVT =
4728       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4729 
4730   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4731     report_fatal_error("Cannot generate unaligned atomic store");
4732 
4733   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4734 
4735   MachineFunction &MF = DAG.getMachineFunction();
4736   MachineMemOperand *MMO = MF.getMachineMemOperand(
4737       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4738       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4739 
4740   SDValue Val = getValue(I.getValueOperand());
4741   if (Val.getValueType() != MemVT)
4742     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4743   SDValue Ptr = getValue(I.getPointerOperand());
4744 
4745   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4746     // TODO: Once this is better exercised by tests, it should be merged with
4747     // the normal path for stores to prevent future divergence.
4748     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4749     DAG.setRoot(S);
4750     return;
4751   }
4752   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4753                                    Ptr, Val, MMO);
4754 
4755 
4756   DAG.setRoot(OutChain);
4757 }
4758 
4759 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4760 /// node.
4761 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4762                                                unsigned Intrinsic) {
4763   // Ignore the callsite's attributes. A specific call site may be marked with
4764   // readnone, but the lowering code will expect the chain based on the
4765   // definition.
4766   const Function *F = I.getCalledFunction();
4767   bool HasChain = !F->doesNotAccessMemory();
4768   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4769 
4770   // Build the operand list.
4771   SmallVector<SDValue, 8> Ops;
4772   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4773     if (OnlyLoad) {
4774       // We don't need to serialize loads against other loads.
4775       Ops.push_back(DAG.getRoot());
4776     } else {
4777       Ops.push_back(getRoot());
4778     }
4779   }
4780 
4781   // Info is set by getTgtMemInstrinsic
4782   TargetLowering::IntrinsicInfo Info;
4783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4784   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4785                                                DAG.getMachineFunction(),
4786                                                Intrinsic);
4787 
4788   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4789   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4790       Info.opc == ISD::INTRINSIC_W_CHAIN)
4791     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4792                                         TLI.getPointerTy(DAG.getDataLayout())));
4793 
4794   // Add all operands of the call to the operand list.
4795   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4796     const Value *Arg = I.getArgOperand(i);
4797     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4798       Ops.push_back(getValue(Arg));
4799       continue;
4800     }
4801 
4802     // Use TargetConstant instead of a regular constant for immarg.
4803     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4804     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4805       assert(CI->getBitWidth() <= 64 &&
4806              "large intrinsic immediates not handled");
4807       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4808     } else {
4809       Ops.push_back(
4810           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4811     }
4812   }
4813 
4814   SmallVector<EVT, 4> ValueVTs;
4815   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4816 
4817   if (HasChain)
4818     ValueVTs.push_back(MVT::Other);
4819 
4820   SDVTList VTs = DAG.getVTList(ValueVTs);
4821 
4822   // Propagate fast-math-flags from IR to node(s).
4823   SDNodeFlags Flags;
4824   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4825     Flags.copyFMF(*FPMO);
4826   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4827 
4828   // Create the node.
4829   SDValue Result;
4830   if (IsTgtIntrinsic) {
4831     // This is target intrinsic that touches memory
4832     AAMDNodes AAInfo;
4833     I.getAAMetadata(AAInfo);
4834     Result =
4835         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4836                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4837                                 Info.align, Info.flags, Info.size, AAInfo);
4838   } else if (!HasChain) {
4839     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4840   } else if (!I.getType()->isVoidTy()) {
4841     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4842   } else {
4843     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4844   }
4845 
4846   if (HasChain) {
4847     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4848     if (OnlyLoad)
4849       PendingLoads.push_back(Chain);
4850     else
4851       DAG.setRoot(Chain);
4852   }
4853 
4854   if (!I.getType()->isVoidTy()) {
4855     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4856       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4857       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4858     } else
4859       Result = lowerRangeToAssertZExt(DAG, I, Result);
4860 
4861     MaybeAlign Alignment = I.getRetAlign();
4862     if (!Alignment)
4863       Alignment = F->getAttributes().getRetAlignment();
4864     // Insert `assertalign` node if there's an alignment.
4865     if (InsertAssertAlign && Alignment) {
4866       Result =
4867           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4868     }
4869 
4870     setValue(&I, Result);
4871   }
4872 }
4873 
4874 /// GetSignificand - Get the significand and build it into a floating-point
4875 /// number with exponent of 1:
4876 ///
4877 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4878 ///
4879 /// where Op is the hexadecimal representation of floating point value.
4880 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4881   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4882                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4883   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4884                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4885   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4886 }
4887 
4888 /// GetExponent - Get the exponent:
4889 ///
4890 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4891 ///
4892 /// where Op is the hexadecimal representation of floating point value.
4893 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4894                            const TargetLowering &TLI, const SDLoc &dl) {
4895   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4896                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4897   SDValue t1 = DAG.getNode(
4898       ISD::SRL, dl, MVT::i32, t0,
4899       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4900   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4901                            DAG.getConstant(127, dl, MVT::i32));
4902   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4903 }
4904 
4905 /// getF32Constant - Get 32-bit floating point constant.
4906 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4907                               const SDLoc &dl) {
4908   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4909                            MVT::f32);
4910 }
4911 
4912 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4913                                        SelectionDAG &DAG) {
4914   // TODO: What fast-math-flags should be set on the floating-point nodes?
4915 
4916   //   IntegerPartOfX = ((int32_t)(t0);
4917   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4918 
4919   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4920   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4921   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4922 
4923   //   IntegerPartOfX <<= 23;
4924   IntegerPartOfX = DAG.getNode(
4925       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4926       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4927                                   DAG.getDataLayout())));
4928 
4929   SDValue TwoToFractionalPartOfX;
4930   if (LimitFloatPrecision <= 6) {
4931     // For floating-point precision of 6:
4932     //
4933     //   TwoToFractionalPartOfX =
4934     //     0.997535578f +
4935     //       (0.735607626f + 0.252464424f * x) * x;
4936     //
4937     // error 0.0144103317, which is 6 bits
4938     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4939                              getF32Constant(DAG, 0x3e814304, dl));
4940     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4941                              getF32Constant(DAG, 0x3f3c50c8, dl));
4942     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4943     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4944                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4945   } else if (LimitFloatPrecision <= 12) {
4946     // For floating-point precision of 12:
4947     //
4948     //   TwoToFractionalPartOfX =
4949     //     0.999892986f +
4950     //       (0.696457318f +
4951     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4952     //
4953     // error 0.000107046256, which is 13 to 14 bits
4954     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4955                              getF32Constant(DAG, 0x3da235e3, dl));
4956     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4957                              getF32Constant(DAG, 0x3e65b8f3, dl));
4958     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4959     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4960                              getF32Constant(DAG, 0x3f324b07, dl));
4961     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4962     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4963                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4964   } else { // LimitFloatPrecision <= 18
4965     // For floating-point precision of 18:
4966     //
4967     //   TwoToFractionalPartOfX =
4968     //     0.999999982f +
4969     //       (0.693148872f +
4970     //         (0.240227044f +
4971     //           (0.554906021e-1f +
4972     //             (0.961591928e-2f +
4973     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4974     // error 2.47208000*10^(-7), which is better than 18 bits
4975     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4976                              getF32Constant(DAG, 0x3924b03e, dl));
4977     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4978                              getF32Constant(DAG, 0x3ab24b87, dl));
4979     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4980     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4981                              getF32Constant(DAG, 0x3c1d8c17, dl));
4982     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4983     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4984                              getF32Constant(DAG, 0x3d634a1d, dl));
4985     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4986     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4987                              getF32Constant(DAG, 0x3e75fe14, dl));
4988     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4989     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4990                               getF32Constant(DAG, 0x3f317234, dl));
4991     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4992     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4993                                          getF32Constant(DAG, 0x3f800000, dl));
4994   }
4995 
4996   // Add the exponent into the result in integer domain.
4997   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4998   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4999                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5000 }
5001 
5002 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5003 /// limited-precision mode.
5004 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5005                          const TargetLowering &TLI, SDNodeFlags Flags) {
5006   if (Op.getValueType() == MVT::f32 &&
5007       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5008 
5009     // Put the exponent in the right bit position for later addition to the
5010     // final result:
5011     //
5012     // t0 = Op * log2(e)
5013 
5014     // TODO: What fast-math-flags should be set here?
5015     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5016                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5017     return getLimitedPrecisionExp2(t0, dl, DAG);
5018   }
5019 
5020   // No special expansion.
5021   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5022 }
5023 
5024 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5025 /// limited-precision mode.
5026 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5027                          const TargetLowering &TLI, SDNodeFlags Flags) {
5028   // TODO: What fast-math-flags should be set on the floating-point nodes?
5029 
5030   if (Op.getValueType() == MVT::f32 &&
5031       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5032     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5033 
5034     // Scale the exponent by log(2).
5035     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5036     SDValue LogOfExponent =
5037         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5038                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5039 
5040     // Get the significand and build it into a floating-point number with
5041     // exponent of 1.
5042     SDValue X = GetSignificand(DAG, Op1, dl);
5043 
5044     SDValue LogOfMantissa;
5045     if (LimitFloatPrecision <= 6) {
5046       // For floating-point precision of 6:
5047       //
5048       //   LogofMantissa =
5049       //     -1.1609546f +
5050       //       (1.4034025f - 0.23903021f * x) * x;
5051       //
5052       // error 0.0034276066, which is better than 8 bits
5053       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5054                                getF32Constant(DAG, 0xbe74c456, dl));
5055       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5056                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5057       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5058       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5059                                   getF32Constant(DAG, 0x3f949a29, dl));
5060     } else if (LimitFloatPrecision <= 12) {
5061       // For floating-point precision of 12:
5062       //
5063       //   LogOfMantissa =
5064       //     -1.7417939f +
5065       //       (2.8212026f +
5066       //         (-1.4699568f +
5067       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5068       //
5069       // error 0.000061011436, which is 14 bits
5070       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5071                                getF32Constant(DAG, 0xbd67b6d6, dl));
5072       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5073                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5074       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5075       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5076                                getF32Constant(DAG, 0x3fbc278b, dl));
5077       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5078       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5079                                getF32Constant(DAG, 0x40348e95, dl));
5080       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5081       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5082                                   getF32Constant(DAG, 0x3fdef31a, dl));
5083     } else { // LimitFloatPrecision <= 18
5084       // For floating-point precision of 18:
5085       //
5086       //   LogOfMantissa =
5087       //     -2.1072184f +
5088       //       (4.2372794f +
5089       //         (-3.7029485f +
5090       //           (2.2781945f +
5091       //             (-0.87823314f +
5092       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5093       //
5094       // error 0.0000023660568, which is better than 18 bits
5095       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5096                                getF32Constant(DAG, 0xbc91e5ac, dl));
5097       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5098                                getF32Constant(DAG, 0x3e4350aa, dl));
5099       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5100       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5101                                getF32Constant(DAG, 0x3f60d3e3, dl));
5102       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5103       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5104                                getF32Constant(DAG, 0x4011cdf0, dl));
5105       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5106       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5107                                getF32Constant(DAG, 0x406cfd1c, dl));
5108       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5109       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5110                                getF32Constant(DAG, 0x408797cb, dl));
5111       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5112       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5113                                   getF32Constant(DAG, 0x4006dcab, dl));
5114     }
5115 
5116     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5117   }
5118 
5119   // No special expansion.
5120   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5121 }
5122 
5123 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5124 /// limited-precision mode.
5125 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5126                           const TargetLowering &TLI, SDNodeFlags Flags) {
5127   // TODO: What fast-math-flags should be set on the floating-point nodes?
5128 
5129   if (Op.getValueType() == MVT::f32 &&
5130       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5131     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5132 
5133     // Get the exponent.
5134     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5135 
5136     // Get the significand and build it into a floating-point number with
5137     // exponent of 1.
5138     SDValue X = GetSignificand(DAG, Op1, dl);
5139 
5140     // Different possible minimax approximations of significand in
5141     // floating-point for various degrees of accuracy over [1,2].
5142     SDValue Log2ofMantissa;
5143     if (LimitFloatPrecision <= 6) {
5144       // For floating-point precision of 6:
5145       //
5146       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5147       //
5148       // error 0.0049451742, which is more than 7 bits
5149       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5150                                getF32Constant(DAG, 0xbeb08fe0, dl));
5151       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5152                                getF32Constant(DAG, 0x40019463, dl));
5153       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5154       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5155                                    getF32Constant(DAG, 0x3fd6633d, dl));
5156     } else if (LimitFloatPrecision <= 12) {
5157       // For floating-point precision of 12:
5158       //
5159       //   Log2ofMantissa =
5160       //     -2.51285454f +
5161       //       (4.07009056f +
5162       //         (-2.12067489f +
5163       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5164       //
5165       // error 0.0000876136000, which is better than 13 bits
5166       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5167                                getF32Constant(DAG, 0xbda7262e, dl));
5168       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5169                                getF32Constant(DAG, 0x3f25280b, dl));
5170       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5171       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5172                                getF32Constant(DAG, 0x4007b923, dl));
5173       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5174       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5175                                getF32Constant(DAG, 0x40823e2f, dl));
5176       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5177       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5178                                    getF32Constant(DAG, 0x4020d29c, dl));
5179     } else { // LimitFloatPrecision <= 18
5180       // For floating-point precision of 18:
5181       //
5182       //   Log2ofMantissa =
5183       //     -3.0400495f +
5184       //       (6.1129976f +
5185       //         (-5.3420409f +
5186       //           (3.2865683f +
5187       //             (-1.2669343f +
5188       //               (0.27515199f -
5189       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5190       //
5191       // error 0.0000018516, which is better than 18 bits
5192       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5193                                getF32Constant(DAG, 0xbcd2769e, dl));
5194       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5195                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5196       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5197       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5198                                getF32Constant(DAG, 0x3fa22ae7, dl));
5199       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5200       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5201                                getF32Constant(DAG, 0x40525723, dl));
5202       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5203       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5204                                getF32Constant(DAG, 0x40aaf200, dl));
5205       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5206       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5207                                getF32Constant(DAG, 0x40c39dad, dl));
5208       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5209       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5210                                    getF32Constant(DAG, 0x4042902c, dl));
5211     }
5212 
5213     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5214   }
5215 
5216   // No special expansion.
5217   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5218 }
5219 
5220 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5221 /// limited-precision mode.
5222 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5223                            const TargetLowering &TLI, SDNodeFlags Flags) {
5224   // TODO: What fast-math-flags should be set on the floating-point nodes?
5225 
5226   if (Op.getValueType() == MVT::f32 &&
5227       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5228     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5229 
5230     // Scale the exponent by log10(2) [0.30102999f].
5231     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5232     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5233                                         getF32Constant(DAG, 0x3e9a209a, dl));
5234 
5235     // Get the significand and build it into a floating-point number with
5236     // exponent of 1.
5237     SDValue X = GetSignificand(DAG, Op1, dl);
5238 
5239     SDValue Log10ofMantissa;
5240     if (LimitFloatPrecision <= 6) {
5241       // For floating-point precision of 6:
5242       //
5243       //   Log10ofMantissa =
5244       //     -0.50419619f +
5245       //       (0.60948995f - 0.10380950f * x) * x;
5246       //
5247       // error 0.0014886165, which is 6 bits
5248       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5249                                getF32Constant(DAG, 0xbdd49a13, dl));
5250       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5251                                getF32Constant(DAG, 0x3f1c0789, dl));
5252       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5253       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5254                                     getF32Constant(DAG, 0x3f011300, dl));
5255     } else if (LimitFloatPrecision <= 12) {
5256       // For floating-point precision of 12:
5257       //
5258       //   Log10ofMantissa =
5259       //     -0.64831180f +
5260       //       (0.91751397f +
5261       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5262       //
5263       // error 0.00019228036, which is better than 12 bits
5264       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5265                                getF32Constant(DAG, 0x3d431f31, dl));
5266       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5267                                getF32Constant(DAG, 0x3ea21fb2, dl));
5268       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5269       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5270                                getF32Constant(DAG, 0x3f6ae232, dl));
5271       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5272       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5273                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5274     } else { // LimitFloatPrecision <= 18
5275       // For floating-point precision of 18:
5276       //
5277       //   Log10ofMantissa =
5278       //     -0.84299375f +
5279       //       (1.5327582f +
5280       //         (-1.0688956f +
5281       //           (0.49102474f +
5282       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5283       //
5284       // error 0.0000037995730, which is better than 18 bits
5285       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5286                                getF32Constant(DAG, 0x3c5d51ce, dl));
5287       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5288                                getF32Constant(DAG, 0x3e00685a, dl));
5289       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5290       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5291                                getF32Constant(DAG, 0x3efb6798, dl));
5292       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5293       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5294                                getF32Constant(DAG, 0x3f88d192, dl));
5295       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5296       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5297                                getF32Constant(DAG, 0x3fc4316c, dl));
5298       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5299       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5300                                     getF32Constant(DAG, 0x3f57ce70, dl));
5301     }
5302 
5303     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5304   }
5305 
5306   // No special expansion.
5307   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5308 }
5309 
5310 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5311 /// limited-precision mode.
5312 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5313                           const TargetLowering &TLI, SDNodeFlags Flags) {
5314   if (Op.getValueType() == MVT::f32 &&
5315       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5316     return getLimitedPrecisionExp2(Op, dl, DAG);
5317 
5318   // No special expansion.
5319   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5320 }
5321 
5322 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5323 /// limited-precision mode with x == 10.0f.
5324 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5325                          SelectionDAG &DAG, const TargetLowering &TLI,
5326                          SDNodeFlags Flags) {
5327   bool IsExp10 = false;
5328   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5329       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5330     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5331       APFloat Ten(10.0f);
5332       IsExp10 = LHSC->isExactlyValue(Ten);
5333     }
5334   }
5335 
5336   // TODO: What fast-math-flags should be set on the FMUL node?
5337   if (IsExp10) {
5338     // Put the exponent in the right bit position for later addition to the
5339     // final result:
5340     //
5341     //   #define LOG2OF10 3.3219281f
5342     //   t0 = Op * LOG2OF10;
5343     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5344                              getF32Constant(DAG, 0x40549a78, dl));
5345     return getLimitedPrecisionExp2(t0, dl, DAG);
5346   }
5347 
5348   // No special expansion.
5349   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5350 }
5351 
5352 /// ExpandPowI - Expand a llvm.powi intrinsic.
5353 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5354                           SelectionDAG &DAG) {
5355   // If RHS is a constant, we can expand this out to a multiplication tree,
5356   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5357   // optimizing for size, we only want to do this if the expansion would produce
5358   // a small number of multiplies, otherwise we do the full expansion.
5359   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5360     // Get the exponent as a positive value.
5361     unsigned Val = RHSC->getSExtValue();
5362     if ((int)Val < 0) Val = -Val;
5363 
5364     // powi(x, 0) -> 1.0
5365     if (Val == 0)
5366       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5367 
5368     bool OptForSize = DAG.shouldOptForSize();
5369     if (!OptForSize ||
5370         // If optimizing for size, don't insert too many multiplies.
5371         // This inserts up to 5 multiplies.
5372         countPopulation(Val) + Log2_32(Val) < 7) {
5373       // We use the simple binary decomposition method to generate the multiply
5374       // sequence.  There are more optimal ways to do this (for example,
5375       // powi(x,15) generates one more multiply than it should), but this has
5376       // the benefit of being both really simple and much better than a libcall.
5377       SDValue Res;  // Logically starts equal to 1.0
5378       SDValue CurSquare = LHS;
5379       // TODO: Intrinsics should have fast-math-flags that propagate to these
5380       // nodes.
5381       while (Val) {
5382         if (Val & 1) {
5383           if (Res.getNode())
5384             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5385           else
5386             Res = CurSquare;  // 1.0*CurSquare.
5387         }
5388 
5389         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5390                                 CurSquare, CurSquare);
5391         Val >>= 1;
5392       }
5393 
5394       // If the original was negative, invert the result, producing 1/(x*x*x).
5395       if (RHSC->getSExtValue() < 0)
5396         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5397                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5398       return Res;
5399     }
5400   }
5401 
5402   // Otherwise, expand to a libcall.
5403   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5404 }
5405 
5406 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5407                             SDValue LHS, SDValue RHS, SDValue Scale,
5408                             SelectionDAG &DAG, const TargetLowering &TLI) {
5409   EVT VT = LHS.getValueType();
5410   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5411   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5412   LLVMContext &Ctx = *DAG.getContext();
5413 
5414   // If the type is legal but the operation isn't, this node might survive all
5415   // the way to operation legalization. If we end up there and we do not have
5416   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5417   // node.
5418 
5419   // Coax the legalizer into expanding the node during type legalization instead
5420   // by bumping the size by one bit. This will force it to Promote, enabling the
5421   // early expansion and avoiding the need to expand later.
5422 
5423   // We don't have to do this if Scale is 0; that can always be expanded, unless
5424   // it's a saturating signed operation. Those can experience true integer
5425   // division overflow, a case which we must avoid.
5426 
5427   // FIXME: We wouldn't have to do this (or any of the early
5428   // expansion/promotion) if it was possible to expand a libcall of an
5429   // illegal type during operation legalization. But it's not, so things
5430   // get a bit hacky.
5431   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5432   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5433       (TLI.isTypeLegal(VT) ||
5434        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5435     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5436         Opcode, VT, ScaleInt);
5437     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5438       EVT PromVT;
5439       if (VT.isScalarInteger())
5440         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5441       else if (VT.isVector()) {
5442         PromVT = VT.getVectorElementType();
5443         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5444         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5445       } else
5446         llvm_unreachable("Wrong VT for DIVFIX?");
5447       if (Signed) {
5448         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5449         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5450       } else {
5451         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5452         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5453       }
5454       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5455       // For saturating operations, we need to shift up the LHS to get the
5456       // proper saturation width, and then shift down again afterwards.
5457       if (Saturating)
5458         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5459                           DAG.getConstant(1, DL, ShiftTy));
5460       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5461       if (Saturating)
5462         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5463                           DAG.getConstant(1, DL, ShiftTy));
5464       return DAG.getZExtOrTrunc(Res, DL, VT);
5465     }
5466   }
5467 
5468   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5469 }
5470 
5471 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5472 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5473 static void
5474 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5475                      const SDValue &N) {
5476   switch (N.getOpcode()) {
5477   case ISD::CopyFromReg: {
5478     SDValue Op = N.getOperand(1);
5479     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5480                       Op.getValueType().getSizeInBits());
5481     return;
5482   }
5483   case ISD::BITCAST:
5484   case ISD::AssertZext:
5485   case ISD::AssertSext:
5486   case ISD::TRUNCATE:
5487     getUnderlyingArgRegs(Regs, N.getOperand(0));
5488     return;
5489   case ISD::BUILD_PAIR:
5490   case ISD::BUILD_VECTOR:
5491   case ISD::CONCAT_VECTORS:
5492     for (SDValue Op : N->op_values())
5493       getUnderlyingArgRegs(Regs, Op);
5494     return;
5495   default:
5496     return;
5497   }
5498 }
5499 
5500 /// If the DbgValueInst is a dbg_value of a function argument, create the
5501 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5502 /// instruction selection, they will be inserted to the entry BB.
5503 /// We don't currently support this for variadic dbg_values, as they shouldn't
5504 /// appear for function arguments or in the prologue.
5505 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5506     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5507     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5508   const Argument *Arg = dyn_cast<Argument>(V);
5509   if (!Arg)
5510     return false;
5511 
5512   MachineFunction &MF = DAG.getMachineFunction();
5513   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5514 
5515   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5516   // we've been asked to pursue.
5517   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5518                               bool Indirect) {
5519     if (Reg.isVirtual() && TM.Options.ValueTrackingVariableLocations) {
5520       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5521       // pointing at the VReg, which will be patched up later.
5522       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5523       auto MIB = BuildMI(MF, DL, Inst);
5524       MIB.addReg(Reg, RegState::Debug);
5525       MIB.addImm(0);
5526       MIB.addMetadata(Variable);
5527       auto *NewDIExpr = FragExpr;
5528       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5529       // the DIExpression.
5530       if (Indirect)
5531         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5532       MIB.addMetadata(NewDIExpr);
5533       return MIB;
5534     } else {
5535       // Create a completely standard DBG_VALUE.
5536       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5537       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5538     }
5539   };
5540 
5541   if (!IsDbgDeclare) {
5542     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5543     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5544     // the entry block.
5545     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5546     if (!IsInEntryBlock)
5547       return false;
5548 
5549     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5550     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5551     // variable that also is a param.
5552     //
5553     // Although, if we are at the top of the entry block already, we can still
5554     // emit using ArgDbgValue. This might catch some situations when the
5555     // dbg.value refers to an argument that isn't used in the entry block, so
5556     // any CopyToReg node would be optimized out and the only way to express
5557     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5558     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5559     // we should only emit as ArgDbgValue if the Variable is an argument to the
5560     // current function, and the dbg.value intrinsic is found in the entry
5561     // block.
5562     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5563         !DL->getInlinedAt();
5564     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5565     if (!IsInPrologue && !VariableIsFunctionInputArg)
5566       return false;
5567 
5568     // Here we assume that a function argument on IR level only can be used to
5569     // describe one input parameter on source level. If we for example have
5570     // source code like this
5571     //
5572     //    struct A { long x, y; };
5573     //    void foo(struct A a, long b) {
5574     //      ...
5575     //      b = a.x;
5576     //      ...
5577     //    }
5578     //
5579     // and IR like this
5580     //
5581     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5582     //  entry:
5583     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5584     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5585     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5586     //    ...
5587     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5588     //    ...
5589     //
5590     // then the last dbg.value is describing a parameter "b" using a value that
5591     // is an argument. But since we already has used %a1 to describe a parameter
5592     // we should not handle that last dbg.value here (that would result in an
5593     // incorrect hoisting of the DBG_VALUE to the function entry).
5594     // Notice that we allow one dbg.value per IR level argument, to accommodate
5595     // for the situation with fragments above.
5596     if (VariableIsFunctionInputArg) {
5597       unsigned ArgNo = Arg->getArgNo();
5598       if (ArgNo >= FuncInfo.DescribedArgs.size())
5599         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5600       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5601         return false;
5602       FuncInfo.DescribedArgs.set(ArgNo);
5603     }
5604   }
5605 
5606   bool IsIndirect = false;
5607   Optional<MachineOperand> Op;
5608   // Some arguments' frame index is recorded during argument lowering.
5609   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5610   if (FI != std::numeric_limits<int>::max())
5611     Op = MachineOperand::CreateFI(FI);
5612 
5613   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5614   if (!Op && N.getNode()) {
5615     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5616     Register Reg;
5617     if (ArgRegsAndSizes.size() == 1)
5618       Reg = ArgRegsAndSizes.front().first;
5619 
5620     if (Reg && Reg.isVirtual()) {
5621       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5622       Register PR = RegInfo.getLiveInPhysReg(Reg);
5623       if (PR)
5624         Reg = PR;
5625     }
5626     if (Reg) {
5627       Op = MachineOperand::CreateReg(Reg, false);
5628       IsIndirect = IsDbgDeclare;
5629     }
5630   }
5631 
5632   if (!Op && N.getNode()) {
5633     // Check if frame index is available.
5634     SDValue LCandidate = peekThroughBitcasts(N);
5635     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5636       if (FrameIndexSDNode *FINode =
5637           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5638         Op = MachineOperand::CreateFI(FINode->getIndex());
5639   }
5640 
5641   if (!Op) {
5642     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5643     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5644                                          SplitRegs) {
5645       unsigned Offset = 0;
5646       for (auto RegAndSize : SplitRegs) {
5647         // If the expression is already a fragment, the current register
5648         // offset+size might extend beyond the fragment. In this case, only
5649         // the register bits that are inside the fragment are relevant.
5650         int RegFragmentSizeInBits = RegAndSize.second;
5651         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5652           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5653           // The register is entirely outside the expression fragment,
5654           // so is irrelevant for debug info.
5655           if (Offset >= ExprFragmentSizeInBits)
5656             break;
5657           // The register is partially outside the expression fragment, only
5658           // the low bits within the fragment are relevant for debug info.
5659           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5660             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5661           }
5662         }
5663 
5664         auto FragmentExpr = DIExpression::createFragmentExpression(
5665             Expr, Offset, RegFragmentSizeInBits);
5666         Offset += RegAndSize.second;
5667         // If a valid fragment expression cannot be created, the variable's
5668         // correct value cannot be determined and so it is set as Undef.
5669         if (!FragmentExpr) {
5670           SDDbgValue *SDV = DAG.getConstantDbgValue(
5671               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5672           DAG.AddDbgValue(SDV, false);
5673           continue;
5674         }
5675         MachineInstr *NewMI =
5676             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare);
5677         FuncInfo.ArgDbgValues.push_back(NewMI);
5678       }
5679     };
5680 
5681     // Check if ValueMap has reg number.
5682     DenseMap<const Value *, Register>::const_iterator
5683       VMI = FuncInfo.ValueMap.find(V);
5684     if (VMI != FuncInfo.ValueMap.end()) {
5685       const auto &TLI = DAG.getTargetLoweringInfo();
5686       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5687                        V->getType(), None);
5688       if (RFV.occupiesMultipleRegs()) {
5689         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5690         return true;
5691       }
5692 
5693       Op = MachineOperand::CreateReg(VMI->second, false);
5694       IsIndirect = IsDbgDeclare;
5695     } else if (ArgRegsAndSizes.size() > 1) {
5696       // This was split due to the calling convention, and no virtual register
5697       // mapping exists for the value.
5698       splitMultiRegDbgValue(ArgRegsAndSizes);
5699       return true;
5700     }
5701   }
5702 
5703   if (!Op)
5704     return false;
5705 
5706   assert(Variable->isValidLocationForIntrinsic(DL) &&
5707          "Expected inlined-at fields to agree");
5708   MachineInstr *NewMI = nullptr;
5709 
5710   if (Op->isReg())
5711     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5712   else
5713     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5714                     Variable, Expr);
5715 
5716   FuncInfo.ArgDbgValues.push_back(NewMI);
5717   return true;
5718 }
5719 
5720 /// Return the appropriate SDDbgValue based on N.
5721 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5722                                              DILocalVariable *Variable,
5723                                              DIExpression *Expr,
5724                                              const DebugLoc &dl,
5725                                              unsigned DbgSDNodeOrder) {
5726   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5727     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5728     // stack slot locations.
5729     //
5730     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5731     // debug values here after optimization:
5732     //
5733     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5734     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5735     //
5736     // Both describe the direct values of their associated variables.
5737     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5738                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5739   }
5740   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5741                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5742 }
5743 
5744 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5745   switch (Intrinsic) {
5746   case Intrinsic::smul_fix:
5747     return ISD::SMULFIX;
5748   case Intrinsic::umul_fix:
5749     return ISD::UMULFIX;
5750   case Intrinsic::smul_fix_sat:
5751     return ISD::SMULFIXSAT;
5752   case Intrinsic::umul_fix_sat:
5753     return ISD::UMULFIXSAT;
5754   case Intrinsic::sdiv_fix:
5755     return ISD::SDIVFIX;
5756   case Intrinsic::udiv_fix:
5757     return ISD::UDIVFIX;
5758   case Intrinsic::sdiv_fix_sat:
5759     return ISD::SDIVFIXSAT;
5760   case Intrinsic::udiv_fix_sat:
5761     return ISD::UDIVFIXSAT;
5762   default:
5763     llvm_unreachable("Unhandled fixed point intrinsic");
5764   }
5765 }
5766 
5767 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5768                                            const char *FunctionName) {
5769   assert(FunctionName && "FunctionName must not be nullptr");
5770   SDValue Callee = DAG.getExternalSymbol(
5771       FunctionName,
5772       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5773   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5774 }
5775 
5776 /// Given a @llvm.call.preallocated.setup, return the corresponding
5777 /// preallocated call.
5778 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5779   assert(cast<CallBase>(PreallocatedSetup)
5780                  ->getCalledFunction()
5781                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5782          "expected call_preallocated_setup Value");
5783   for (auto *U : PreallocatedSetup->users()) {
5784     auto *UseCall = cast<CallBase>(U);
5785     const Function *Fn = UseCall->getCalledFunction();
5786     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5787       return UseCall;
5788     }
5789   }
5790   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5791 }
5792 
5793 /// Lower the call to the specified intrinsic function.
5794 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5795                                              unsigned Intrinsic) {
5796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5797   SDLoc sdl = getCurSDLoc();
5798   DebugLoc dl = getCurDebugLoc();
5799   SDValue Res;
5800 
5801   SDNodeFlags Flags;
5802   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5803     Flags.copyFMF(*FPOp);
5804 
5805   switch (Intrinsic) {
5806   default:
5807     // By default, turn this into a target intrinsic node.
5808     visitTargetIntrinsic(I, Intrinsic);
5809     return;
5810   case Intrinsic::vscale: {
5811     match(&I, m_VScale(DAG.getDataLayout()));
5812     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5813     setValue(&I,
5814              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5815     return;
5816   }
5817   case Intrinsic::vastart:  visitVAStart(I); return;
5818   case Intrinsic::vaend:    visitVAEnd(I); return;
5819   case Intrinsic::vacopy:   visitVACopy(I); return;
5820   case Intrinsic::returnaddress:
5821     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5822                              TLI.getPointerTy(DAG.getDataLayout()),
5823                              getValue(I.getArgOperand(0))));
5824     return;
5825   case Intrinsic::addressofreturnaddress:
5826     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5827                              TLI.getPointerTy(DAG.getDataLayout())));
5828     return;
5829   case Intrinsic::sponentry:
5830     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5831                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5832     return;
5833   case Intrinsic::frameaddress:
5834     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5835                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5836                              getValue(I.getArgOperand(0))));
5837     return;
5838   case Intrinsic::read_volatile_register:
5839   case Intrinsic::read_register: {
5840     Value *Reg = I.getArgOperand(0);
5841     SDValue Chain = getRoot();
5842     SDValue RegName =
5843         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5844     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5845     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5846       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5847     setValue(&I, Res);
5848     DAG.setRoot(Res.getValue(1));
5849     return;
5850   }
5851   case Intrinsic::write_register: {
5852     Value *Reg = I.getArgOperand(0);
5853     Value *RegValue = I.getArgOperand(1);
5854     SDValue Chain = getRoot();
5855     SDValue RegName =
5856         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5857     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5858                             RegName, getValue(RegValue)));
5859     return;
5860   }
5861   case Intrinsic::memcpy: {
5862     const auto &MCI = cast<MemCpyInst>(I);
5863     SDValue Op1 = getValue(I.getArgOperand(0));
5864     SDValue Op2 = getValue(I.getArgOperand(1));
5865     SDValue Op3 = getValue(I.getArgOperand(2));
5866     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5867     Align DstAlign = MCI.getDestAlign().valueOrOne();
5868     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5869     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5870     bool isVol = MCI.isVolatile();
5871     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5872     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5873     // node.
5874     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5875     AAMDNodes AAInfo;
5876     I.getAAMetadata(AAInfo);
5877     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5878                                /* AlwaysInline */ false, isTC,
5879                                MachinePointerInfo(I.getArgOperand(0)),
5880                                MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5881     updateDAGForMaybeTailCall(MC);
5882     return;
5883   }
5884   case Intrinsic::memcpy_inline: {
5885     const auto &MCI = cast<MemCpyInlineInst>(I);
5886     SDValue Dst = getValue(I.getArgOperand(0));
5887     SDValue Src = getValue(I.getArgOperand(1));
5888     SDValue Size = getValue(I.getArgOperand(2));
5889     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5890     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5891     Align DstAlign = MCI.getDestAlign().valueOrOne();
5892     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5893     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5894     bool isVol = MCI.isVolatile();
5895     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5896     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5897     // node.
5898     AAMDNodes AAInfo;
5899     I.getAAMetadata(AAInfo);
5900     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5901                                /* AlwaysInline */ true, isTC,
5902                                MachinePointerInfo(I.getArgOperand(0)),
5903                                MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5904     updateDAGForMaybeTailCall(MC);
5905     return;
5906   }
5907   case Intrinsic::memset: {
5908     const auto &MSI = cast<MemSetInst>(I);
5909     SDValue Op1 = getValue(I.getArgOperand(0));
5910     SDValue Op2 = getValue(I.getArgOperand(1));
5911     SDValue Op3 = getValue(I.getArgOperand(2));
5912     // @llvm.memset defines 0 and 1 to both mean no alignment.
5913     Align Alignment = MSI.getDestAlign().valueOrOne();
5914     bool isVol = MSI.isVolatile();
5915     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5916     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5917     AAMDNodes AAInfo;
5918     I.getAAMetadata(AAInfo);
5919     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5920                                MachinePointerInfo(I.getArgOperand(0)), AAInfo);
5921     updateDAGForMaybeTailCall(MS);
5922     return;
5923   }
5924   case Intrinsic::memmove: {
5925     const auto &MMI = cast<MemMoveInst>(I);
5926     SDValue Op1 = getValue(I.getArgOperand(0));
5927     SDValue Op2 = getValue(I.getArgOperand(1));
5928     SDValue Op3 = getValue(I.getArgOperand(2));
5929     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5930     Align DstAlign = MMI.getDestAlign().valueOrOne();
5931     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5932     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5933     bool isVol = MMI.isVolatile();
5934     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5935     // FIXME: Support passing different dest/src alignments to the memmove DAG
5936     // node.
5937     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5938     AAMDNodes AAInfo;
5939     I.getAAMetadata(AAInfo);
5940     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5941                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5942                                 MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5943     updateDAGForMaybeTailCall(MM);
5944     return;
5945   }
5946   case Intrinsic::memcpy_element_unordered_atomic: {
5947     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5948     SDValue Dst = getValue(MI.getRawDest());
5949     SDValue Src = getValue(MI.getRawSource());
5950     SDValue Length = getValue(MI.getLength());
5951 
5952     unsigned DstAlign = MI.getDestAlignment();
5953     unsigned SrcAlign = MI.getSourceAlignment();
5954     Type *LengthTy = MI.getLength()->getType();
5955     unsigned ElemSz = MI.getElementSizeInBytes();
5956     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5957     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5958                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5959                                      MachinePointerInfo(MI.getRawDest()),
5960                                      MachinePointerInfo(MI.getRawSource()));
5961     updateDAGForMaybeTailCall(MC);
5962     return;
5963   }
5964   case Intrinsic::memmove_element_unordered_atomic: {
5965     auto &MI = cast<AtomicMemMoveInst>(I);
5966     SDValue Dst = getValue(MI.getRawDest());
5967     SDValue Src = getValue(MI.getRawSource());
5968     SDValue Length = getValue(MI.getLength());
5969 
5970     unsigned DstAlign = MI.getDestAlignment();
5971     unsigned SrcAlign = MI.getSourceAlignment();
5972     Type *LengthTy = MI.getLength()->getType();
5973     unsigned ElemSz = MI.getElementSizeInBytes();
5974     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5975     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5976                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5977                                       MachinePointerInfo(MI.getRawDest()),
5978                                       MachinePointerInfo(MI.getRawSource()));
5979     updateDAGForMaybeTailCall(MC);
5980     return;
5981   }
5982   case Intrinsic::memset_element_unordered_atomic: {
5983     auto &MI = cast<AtomicMemSetInst>(I);
5984     SDValue Dst = getValue(MI.getRawDest());
5985     SDValue Val = getValue(MI.getValue());
5986     SDValue Length = getValue(MI.getLength());
5987 
5988     unsigned DstAlign = MI.getDestAlignment();
5989     Type *LengthTy = MI.getLength()->getType();
5990     unsigned ElemSz = MI.getElementSizeInBytes();
5991     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5992     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5993                                      LengthTy, ElemSz, isTC,
5994                                      MachinePointerInfo(MI.getRawDest()));
5995     updateDAGForMaybeTailCall(MC);
5996     return;
5997   }
5998   case Intrinsic::call_preallocated_setup: {
5999     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6000     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6001     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6002                               getRoot(), SrcValue);
6003     setValue(&I, Res);
6004     DAG.setRoot(Res);
6005     return;
6006   }
6007   case Intrinsic::call_preallocated_arg: {
6008     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6009     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6010     SDValue Ops[3];
6011     Ops[0] = getRoot();
6012     Ops[1] = SrcValue;
6013     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6014                                    MVT::i32); // arg index
6015     SDValue Res = DAG.getNode(
6016         ISD::PREALLOCATED_ARG, sdl,
6017         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6018     setValue(&I, Res);
6019     DAG.setRoot(Res.getValue(1));
6020     return;
6021   }
6022   case Intrinsic::dbg_addr:
6023   case Intrinsic::dbg_declare: {
6024     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6025     // they are non-variadic.
6026     const auto &DI = cast<DbgVariableIntrinsic>(I);
6027     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6028     DILocalVariable *Variable = DI.getVariable();
6029     DIExpression *Expression = DI.getExpression();
6030     dropDanglingDebugInfo(Variable, Expression);
6031     assert(Variable && "Missing variable");
6032     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6033                       << "\n");
6034     // Check if address has undef value.
6035     const Value *Address = DI.getVariableLocationOp(0);
6036     if (!Address || isa<UndefValue>(Address) ||
6037         (Address->use_empty() && !isa<Argument>(Address))) {
6038       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6039                         << " (bad/undef/unused-arg address)\n");
6040       return;
6041     }
6042 
6043     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6044 
6045     // Check if this variable can be described by a frame index, typically
6046     // either as a static alloca or a byval parameter.
6047     int FI = std::numeric_limits<int>::max();
6048     if (const auto *AI =
6049             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6050       if (AI->isStaticAlloca()) {
6051         auto I = FuncInfo.StaticAllocaMap.find(AI);
6052         if (I != FuncInfo.StaticAllocaMap.end())
6053           FI = I->second;
6054       }
6055     } else if (const auto *Arg = dyn_cast<Argument>(
6056                    Address->stripInBoundsConstantOffsets())) {
6057       FI = FuncInfo.getArgumentFrameIndex(Arg);
6058     }
6059 
6060     // llvm.dbg.addr is control dependent and always generates indirect
6061     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6062     // the MachineFunction variable table.
6063     if (FI != std::numeric_limits<int>::max()) {
6064       if (Intrinsic == Intrinsic::dbg_addr) {
6065         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6066             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6067             dl, SDNodeOrder);
6068         DAG.AddDbgValue(SDV, isParameter);
6069       } else {
6070         LLVM_DEBUG(dbgs() << "Skipping " << DI
6071                           << " (variable info stashed in MF side table)\n");
6072       }
6073       return;
6074     }
6075 
6076     SDValue &N = NodeMap[Address];
6077     if (!N.getNode() && isa<Argument>(Address))
6078       // Check unused arguments map.
6079       N = UnusedArgNodeMap[Address];
6080     SDDbgValue *SDV;
6081     if (N.getNode()) {
6082       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6083         Address = BCI->getOperand(0);
6084       // Parameters are handled specially.
6085       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6086       if (isParameter && FINode) {
6087         // Byval parameter. We have a frame index at this point.
6088         SDV =
6089             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6090                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6091       } else if (isa<Argument>(Address)) {
6092         // Address is an argument, so try to emit its dbg value using
6093         // virtual register info from the FuncInfo.ValueMap.
6094         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6095         return;
6096       } else {
6097         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6098                               true, dl, SDNodeOrder);
6099       }
6100       DAG.AddDbgValue(SDV, isParameter);
6101     } else {
6102       // If Address is an argument then try to emit its dbg value using
6103       // virtual register info from the FuncInfo.ValueMap.
6104       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6105                                     N)) {
6106         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6107                           << " (could not emit func-arg dbg_value)\n");
6108       }
6109     }
6110     return;
6111   }
6112   case Intrinsic::dbg_label: {
6113     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6114     DILabel *Label = DI.getLabel();
6115     assert(Label && "Missing label");
6116 
6117     SDDbgLabel *SDV;
6118     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6119     DAG.AddDbgLabel(SDV);
6120     return;
6121   }
6122   case Intrinsic::dbg_value: {
6123     const DbgValueInst &DI = cast<DbgValueInst>(I);
6124     assert(DI.getVariable() && "Missing variable");
6125 
6126     DILocalVariable *Variable = DI.getVariable();
6127     DIExpression *Expression = DI.getExpression();
6128     dropDanglingDebugInfo(Variable, Expression);
6129     SmallVector<Value *, 4> Values(DI.getValues());
6130     if (Values.empty())
6131       return;
6132 
6133     if (std::count(Values.begin(), Values.end(), nullptr))
6134       return;
6135 
6136     bool IsVariadic = DI.hasArgList();
6137     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6138                           SDNodeOrder, IsVariadic))
6139       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6140     return;
6141   }
6142 
6143   case Intrinsic::eh_typeid_for: {
6144     // Find the type id for the given typeinfo.
6145     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6146     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6147     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6148     setValue(&I, Res);
6149     return;
6150   }
6151 
6152   case Intrinsic::eh_return_i32:
6153   case Intrinsic::eh_return_i64:
6154     DAG.getMachineFunction().setCallsEHReturn(true);
6155     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6156                             MVT::Other,
6157                             getControlRoot(),
6158                             getValue(I.getArgOperand(0)),
6159                             getValue(I.getArgOperand(1))));
6160     return;
6161   case Intrinsic::eh_unwind_init:
6162     DAG.getMachineFunction().setCallsUnwindInit(true);
6163     return;
6164   case Intrinsic::eh_dwarf_cfa:
6165     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6166                              TLI.getPointerTy(DAG.getDataLayout()),
6167                              getValue(I.getArgOperand(0))));
6168     return;
6169   case Intrinsic::eh_sjlj_callsite: {
6170     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6171     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6172     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6173     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6174 
6175     MMI.setCurrentCallSite(CI->getZExtValue());
6176     return;
6177   }
6178   case Intrinsic::eh_sjlj_functioncontext: {
6179     // Get and store the index of the function context.
6180     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6181     AllocaInst *FnCtx =
6182       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6183     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6184     MFI.setFunctionContextIndex(FI);
6185     return;
6186   }
6187   case Intrinsic::eh_sjlj_setjmp: {
6188     SDValue Ops[2];
6189     Ops[0] = getRoot();
6190     Ops[1] = getValue(I.getArgOperand(0));
6191     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6192                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6193     setValue(&I, Op.getValue(0));
6194     DAG.setRoot(Op.getValue(1));
6195     return;
6196   }
6197   case Intrinsic::eh_sjlj_longjmp:
6198     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6199                             getRoot(), getValue(I.getArgOperand(0))));
6200     return;
6201   case Intrinsic::eh_sjlj_setup_dispatch:
6202     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6203                             getRoot()));
6204     return;
6205   case Intrinsic::masked_gather:
6206     visitMaskedGather(I);
6207     return;
6208   case Intrinsic::masked_load:
6209     visitMaskedLoad(I);
6210     return;
6211   case Intrinsic::masked_scatter:
6212     visitMaskedScatter(I);
6213     return;
6214   case Intrinsic::masked_store:
6215     visitMaskedStore(I);
6216     return;
6217   case Intrinsic::masked_expandload:
6218     visitMaskedLoad(I, true /* IsExpanding */);
6219     return;
6220   case Intrinsic::masked_compressstore:
6221     visitMaskedStore(I, true /* IsCompressing */);
6222     return;
6223   case Intrinsic::powi:
6224     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6225                             getValue(I.getArgOperand(1)), DAG));
6226     return;
6227   case Intrinsic::log:
6228     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6229     return;
6230   case Intrinsic::log2:
6231     setValue(&I,
6232              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6233     return;
6234   case Intrinsic::log10:
6235     setValue(&I,
6236              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6237     return;
6238   case Intrinsic::exp:
6239     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6240     return;
6241   case Intrinsic::exp2:
6242     setValue(&I,
6243              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6244     return;
6245   case Intrinsic::pow:
6246     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6247                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6248     return;
6249   case Intrinsic::sqrt:
6250   case Intrinsic::fabs:
6251   case Intrinsic::sin:
6252   case Intrinsic::cos:
6253   case Intrinsic::floor:
6254   case Intrinsic::ceil:
6255   case Intrinsic::trunc:
6256   case Intrinsic::rint:
6257   case Intrinsic::nearbyint:
6258   case Intrinsic::round:
6259   case Intrinsic::roundeven:
6260   case Intrinsic::canonicalize: {
6261     unsigned Opcode;
6262     switch (Intrinsic) {
6263     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6264     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6265     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6266     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6267     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6268     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6269     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6270     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6271     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6272     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6273     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6274     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6275     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6276     }
6277 
6278     setValue(&I, DAG.getNode(Opcode, sdl,
6279                              getValue(I.getArgOperand(0)).getValueType(),
6280                              getValue(I.getArgOperand(0)), Flags));
6281     return;
6282   }
6283   case Intrinsic::lround:
6284   case Intrinsic::llround:
6285   case Intrinsic::lrint:
6286   case Intrinsic::llrint: {
6287     unsigned Opcode;
6288     switch (Intrinsic) {
6289     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6290     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6291     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6292     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6293     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6294     }
6295 
6296     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6297     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6298                              getValue(I.getArgOperand(0))));
6299     return;
6300   }
6301   case Intrinsic::minnum:
6302     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6303                              getValue(I.getArgOperand(0)).getValueType(),
6304                              getValue(I.getArgOperand(0)),
6305                              getValue(I.getArgOperand(1)), Flags));
6306     return;
6307   case Intrinsic::maxnum:
6308     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6309                              getValue(I.getArgOperand(0)).getValueType(),
6310                              getValue(I.getArgOperand(0)),
6311                              getValue(I.getArgOperand(1)), Flags));
6312     return;
6313   case Intrinsic::minimum:
6314     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6315                              getValue(I.getArgOperand(0)).getValueType(),
6316                              getValue(I.getArgOperand(0)),
6317                              getValue(I.getArgOperand(1)), Flags));
6318     return;
6319   case Intrinsic::maximum:
6320     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6321                              getValue(I.getArgOperand(0)).getValueType(),
6322                              getValue(I.getArgOperand(0)),
6323                              getValue(I.getArgOperand(1)), Flags));
6324     return;
6325   case Intrinsic::copysign:
6326     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6327                              getValue(I.getArgOperand(0)).getValueType(),
6328                              getValue(I.getArgOperand(0)),
6329                              getValue(I.getArgOperand(1)), Flags));
6330     return;
6331   case Intrinsic::arithmetic_fence: {
6332     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6333                              getValue(I.getArgOperand(0)).getValueType(),
6334                              getValue(I.getArgOperand(0)), Flags));
6335     return;
6336   }
6337   case Intrinsic::fma:
6338     setValue(&I, DAG.getNode(
6339                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6340                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6341                      getValue(I.getArgOperand(2)), Flags));
6342     return;
6343 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6344   case Intrinsic::INTRINSIC:
6345 #include "llvm/IR/ConstrainedOps.def"
6346     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6347     return;
6348 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6349 #include "llvm/IR/VPIntrinsics.def"
6350     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6351     return;
6352   case Intrinsic::fmuladd: {
6353     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6354     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6355         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6356       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6357                                getValue(I.getArgOperand(0)).getValueType(),
6358                                getValue(I.getArgOperand(0)),
6359                                getValue(I.getArgOperand(1)),
6360                                getValue(I.getArgOperand(2)), Flags));
6361     } else {
6362       // TODO: Intrinsic calls should have fast-math-flags.
6363       SDValue Mul = DAG.getNode(
6364           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6365           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6366       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6367                                 getValue(I.getArgOperand(0)).getValueType(),
6368                                 Mul, getValue(I.getArgOperand(2)), Flags);
6369       setValue(&I, Add);
6370     }
6371     return;
6372   }
6373   case Intrinsic::convert_to_fp16:
6374     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6375                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6376                                          getValue(I.getArgOperand(0)),
6377                                          DAG.getTargetConstant(0, sdl,
6378                                                                MVT::i32))));
6379     return;
6380   case Intrinsic::convert_from_fp16:
6381     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6382                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6383                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6384                                          getValue(I.getArgOperand(0)))));
6385     return;
6386   case Intrinsic::fptosi_sat: {
6387     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6388     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6389                              getValue(I.getArgOperand(0)),
6390                              DAG.getValueType(VT.getScalarType())));
6391     return;
6392   }
6393   case Intrinsic::fptoui_sat: {
6394     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6395     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6396                              getValue(I.getArgOperand(0)),
6397                              DAG.getValueType(VT.getScalarType())));
6398     return;
6399   }
6400   case Intrinsic::set_rounding:
6401     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6402                       {getRoot(), getValue(I.getArgOperand(0))});
6403     setValue(&I, Res);
6404     DAG.setRoot(Res.getValue(0));
6405     return;
6406   case Intrinsic::pcmarker: {
6407     SDValue Tmp = getValue(I.getArgOperand(0));
6408     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6409     return;
6410   }
6411   case Intrinsic::readcyclecounter: {
6412     SDValue Op = getRoot();
6413     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6414                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6415     setValue(&I, Res);
6416     DAG.setRoot(Res.getValue(1));
6417     return;
6418   }
6419   case Intrinsic::bitreverse:
6420     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6421                              getValue(I.getArgOperand(0)).getValueType(),
6422                              getValue(I.getArgOperand(0))));
6423     return;
6424   case Intrinsic::bswap:
6425     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6426                              getValue(I.getArgOperand(0)).getValueType(),
6427                              getValue(I.getArgOperand(0))));
6428     return;
6429   case Intrinsic::cttz: {
6430     SDValue Arg = getValue(I.getArgOperand(0));
6431     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6432     EVT Ty = Arg.getValueType();
6433     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6434                              sdl, Ty, Arg));
6435     return;
6436   }
6437   case Intrinsic::ctlz: {
6438     SDValue Arg = getValue(I.getArgOperand(0));
6439     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6440     EVT Ty = Arg.getValueType();
6441     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6442                              sdl, Ty, Arg));
6443     return;
6444   }
6445   case Intrinsic::ctpop: {
6446     SDValue Arg = getValue(I.getArgOperand(0));
6447     EVT Ty = Arg.getValueType();
6448     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6449     return;
6450   }
6451   case Intrinsic::fshl:
6452   case Intrinsic::fshr: {
6453     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6454     SDValue X = getValue(I.getArgOperand(0));
6455     SDValue Y = getValue(I.getArgOperand(1));
6456     SDValue Z = getValue(I.getArgOperand(2));
6457     EVT VT = X.getValueType();
6458 
6459     if (X == Y) {
6460       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6461       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6462     } else {
6463       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6464       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6465     }
6466     return;
6467   }
6468   case Intrinsic::sadd_sat: {
6469     SDValue Op1 = getValue(I.getArgOperand(0));
6470     SDValue Op2 = getValue(I.getArgOperand(1));
6471     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6472     return;
6473   }
6474   case Intrinsic::uadd_sat: {
6475     SDValue Op1 = getValue(I.getArgOperand(0));
6476     SDValue Op2 = getValue(I.getArgOperand(1));
6477     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6478     return;
6479   }
6480   case Intrinsic::ssub_sat: {
6481     SDValue Op1 = getValue(I.getArgOperand(0));
6482     SDValue Op2 = getValue(I.getArgOperand(1));
6483     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6484     return;
6485   }
6486   case Intrinsic::usub_sat: {
6487     SDValue Op1 = getValue(I.getArgOperand(0));
6488     SDValue Op2 = getValue(I.getArgOperand(1));
6489     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6490     return;
6491   }
6492   case Intrinsic::sshl_sat: {
6493     SDValue Op1 = getValue(I.getArgOperand(0));
6494     SDValue Op2 = getValue(I.getArgOperand(1));
6495     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6496     return;
6497   }
6498   case Intrinsic::ushl_sat: {
6499     SDValue Op1 = getValue(I.getArgOperand(0));
6500     SDValue Op2 = getValue(I.getArgOperand(1));
6501     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6502     return;
6503   }
6504   case Intrinsic::smul_fix:
6505   case Intrinsic::umul_fix:
6506   case Intrinsic::smul_fix_sat:
6507   case Intrinsic::umul_fix_sat: {
6508     SDValue Op1 = getValue(I.getArgOperand(0));
6509     SDValue Op2 = getValue(I.getArgOperand(1));
6510     SDValue Op3 = getValue(I.getArgOperand(2));
6511     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6512                              Op1.getValueType(), Op1, Op2, Op3));
6513     return;
6514   }
6515   case Intrinsic::sdiv_fix:
6516   case Intrinsic::udiv_fix:
6517   case Intrinsic::sdiv_fix_sat:
6518   case Intrinsic::udiv_fix_sat: {
6519     SDValue Op1 = getValue(I.getArgOperand(0));
6520     SDValue Op2 = getValue(I.getArgOperand(1));
6521     SDValue Op3 = getValue(I.getArgOperand(2));
6522     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6523                               Op1, Op2, Op3, DAG, TLI));
6524     return;
6525   }
6526   case Intrinsic::smax: {
6527     SDValue Op1 = getValue(I.getArgOperand(0));
6528     SDValue Op2 = getValue(I.getArgOperand(1));
6529     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6530     return;
6531   }
6532   case Intrinsic::smin: {
6533     SDValue Op1 = getValue(I.getArgOperand(0));
6534     SDValue Op2 = getValue(I.getArgOperand(1));
6535     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6536     return;
6537   }
6538   case Intrinsic::umax: {
6539     SDValue Op1 = getValue(I.getArgOperand(0));
6540     SDValue Op2 = getValue(I.getArgOperand(1));
6541     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6542     return;
6543   }
6544   case Intrinsic::umin: {
6545     SDValue Op1 = getValue(I.getArgOperand(0));
6546     SDValue Op2 = getValue(I.getArgOperand(1));
6547     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6548     return;
6549   }
6550   case Intrinsic::abs: {
6551     // TODO: Preserve "int min is poison" arg in SDAG?
6552     SDValue Op1 = getValue(I.getArgOperand(0));
6553     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6554     return;
6555   }
6556   case Intrinsic::stacksave: {
6557     SDValue Op = getRoot();
6558     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6559     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6560     setValue(&I, Res);
6561     DAG.setRoot(Res.getValue(1));
6562     return;
6563   }
6564   case Intrinsic::stackrestore:
6565     Res = getValue(I.getArgOperand(0));
6566     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6567     return;
6568   case Intrinsic::get_dynamic_area_offset: {
6569     SDValue Op = getRoot();
6570     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6571     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6572     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6573     // target.
6574     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6575       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6576                          " intrinsic!");
6577     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6578                       Op);
6579     DAG.setRoot(Op);
6580     setValue(&I, Res);
6581     return;
6582   }
6583   case Intrinsic::stackguard: {
6584     MachineFunction &MF = DAG.getMachineFunction();
6585     const Module &M = *MF.getFunction().getParent();
6586     SDValue Chain = getRoot();
6587     if (TLI.useLoadStackGuardNode()) {
6588       Res = getLoadStackGuard(DAG, sdl, Chain);
6589     } else {
6590       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6591       const Value *Global = TLI.getSDagStackGuard(M);
6592       Align Align = DL->getPrefTypeAlign(Global->getType());
6593       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6594                         MachinePointerInfo(Global, 0), Align,
6595                         MachineMemOperand::MOVolatile);
6596     }
6597     if (TLI.useStackGuardXorFP())
6598       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6599     DAG.setRoot(Chain);
6600     setValue(&I, Res);
6601     return;
6602   }
6603   case Intrinsic::stackprotector: {
6604     // Emit code into the DAG to store the stack guard onto the stack.
6605     MachineFunction &MF = DAG.getMachineFunction();
6606     MachineFrameInfo &MFI = MF.getFrameInfo();
6607     SDValue Src, Chain = getRoot();
6608 
6609     if (TLI.useLoadStackGuardNode())
6610       Src = getLoadStackGuard(DAG, sdl, Chain);
6611     else
6612       Src = getValue(I.getArgOperand(0));   // The guard's value.
6613 
6614     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6615 
6616     int FI = FuncInfo.StaticAllocaMap[Slot];
6617     MFI.setStackProtectorIndex(FI);
6618     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6619 
6620     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6621 
6622     // Store the stack protector onto the stack.
6623     Res = DAG.getStore(
6624         Chain, sdl, Src, FIN,
6625         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6626         MaybeAlign(), MachineMemOperand::MOVolatile);
6627     setValue(&I, Res);
6628     DAG.setRoot(Res);
6629     return;
6630   }
6631   case Intrinsic::objectsize:
6632     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6633 
6634   case Intrinsic::is_constant:
6635     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6636 
6637   case Intrinsic::annotation:
6638   case Intrinsic::ptr_annotation:
6639   case Intrinsic::launder_invariant_group:
6640   case Intrinsic::strip_invariant_group:
6641     // Drop the intrinsic, but forward the value
6642     setValue(&I, getValue(I.getOperand(0)));
6643     return;
6644 
6645   case Intrinsic::assume:
6646   case Intrinsic::experimental_noalias_scope_decl:
6647   case Intrinsic::var_annotation:
6648   case Intrinsic::sideeffect:
6649     // Discard annotate attributes, noalias scope declarations, assumptions, and
6650     // artificial side-effects.
6651     return;
6652 
6653   case Intrinsic::codeview_annotation: {
6654     // Emit a label associated with this metadata.
6655     MachineFunction &MF = DAG.getMachineFunction();
6656     MCSymbol *Label =
6657         MF.getMMI().getContext().createTempSymbol("annotation", true);
6658     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6659     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6660     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6661     DAG.setRoot(Res);
6662     return;
6663   }
6664 
6665   case Intrinsic::init_trampoline: {
6666     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6667 
6668     SDValue Ops[6];
6669     Ops[0] = getRoot();
6670     Ops[1] = getValue(I.getArgOperand(0));
6671     Ops[2] = getValue(I.getArgOperand(1));
6672     Ops[3] = getValue(I.getArgOperand(2));
6673     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6674     Ops[5] = DAG.getSrcValue(F);
6675 
6676     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6677 
6678     DAG.setRoot(Res);
6679     return;
6680   }
6681   case Intrinsic::adjust_trampoline:
6682     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6683                              TLI.getPointerTy(DAG.getDataLayout()),
6684                              getValue(I.getArgOperand(0))));
6685     return;
6686   case Intrinsic::gcroot: {
6687     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6688            "only valid in functions with gc specified, enforced by Verifier");
6689     assert(GFI && "implied by previous");
6690     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6691     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6692 
6693     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6694     GFI->addStackRoot(FI->getIndex(), TypeMap);
6695     return;
6696   }
6697   case Intrinsic::gcread:
6698   case Intrinsic::gcwrite:
6699     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6700   case Intrinsic::flt_rounds:
6701     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6702     setValue(&I, Res);
6703     DAG.setRoot(Res.getValue(1));
6704     return;
6705 
6706   case Intrinsic::expect:
6707     // Just replace __builtin_expect(exp, c) with EXP.
6708     setValue(&I, getValue(I.getArgOperand(0)));
6709     return;
6710 
6711   case Intrinsic::ubsantrap:
6712   case Intrinsic::debugtrap:
6713   case Intrinsic::trap: {
6714     StringRef TrapFuncName =
6715         I.getAttributes()
6716             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6717             .getValueAsString();
6718     if (TrapFuncName.empty()) {
6719       switch (Intrinsic) {
6720       case Intrinsic::trap:
6721         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6722         break;
6723       case Intrinsic::debugtrap:
6724         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6725         break;
6726       case Intrinsic::ubsantrap:
6727         DAG.setRoot(DAG.getNode(
6728             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6729             DAG.getTargetConstant(
6730                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6731                 MVT::i32)));
6732         break;
6733       default: llvm_unreachable("unknown trap intrinsic");
6734       }
6735       return;
6736     }
6737     TargetLowering::ArgListTy Args;
6738     if (Intrinsic == Intrinsic::ubsantrap) {
6739       Args.push_back(TargetLoweringBase::ArgListEntry());
6740       Args[0].Val = I.getArgOperand(0);
6741       Args[0].Node = getValue(Args[0].Val);
6742       Args[0].Ty = Args[0].Val->getType();
6743     }
6744 
6745     TargetLowering::CallLoweringInfo CLI(DAG);
6746     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6747         CallingConv::C, I.getType(),
6748         DAG.getExternalSymbol(TrapFuncName.data(),
6749                               TLI.getPointerTy(DAG.getDataLayout())),
6750         std::move(Args));
6751 
6752     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6753     DAG.setRoot(Result.second);
6754     return;
6755   }
6756 
6757   case Intrinsic::uadd_with_overflow:
6758   case Intrinsic::sadd_with_overflow:
6759   case Intrinsic::usub_with_overflow:
6760   case Intrinsic::ssub_with_overflow:
6761   case Intrinsic::umul_with_overflow:
6762   case Intrinsic::smul_with_overflow: {
6763     ISD::NodeType Op;
6764     switch (Intrinsic) {
6765     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6766     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6767     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6768     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6769     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6770     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6771     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6772     }
6773     SDValue Op1 = getValue(I.getArgOperand(0));
6774     SDValue Op2 = getValue(I.getArgOperand(1));
6775 
6776     EVT ResultVT = Op1.getValueType();
6777     EVT OverflowVT = MVT::i1;
6778     if (ResultVT.isVector())
6779       OverflowVT = EVT::getVectorVT(
6780           *Context, OverflowVT, ResultVT.getVectorElementCount());
6781 
6782     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6783     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6784     return;
6785   }
6786   case Intrinsic::prefetch: {
6787     SDValue Ops[5];
6788     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6789     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6790     Ops[0] = DAG.getRoot();
6791     Ops[1] = getValue(I.getArgOperand(0));
6792     Ops[2] = getValue(I.getArgOperand(1));
6793     Ops[3] = getValue(I.getArgOperand(2));
6794     Ops[4] = getValue(I.getArgOperand(3));
6795     SDValue Result = DAG.getMemIntrinsicNode(
6796         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6797         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6798         /* align */ None, Flags);
6799 
6800     // Chain the prefetch in parallell with any pending loads, to stay out of
6801     // the way of later optimizations.
6802     PendingLoads.push_back(Result);
6803     Result = getRoot();
6804     DAG.setRoot(Result);
6805     return;
6806   }
6807   case Intrinsic::lifetime_start:
6808   case Intrinsic::lifetime_end: {
6809     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6810     // Stack coloring is not enabled in O0, discard region information.
6811     if (TM.getOptLevel() == CodeGenOpt::None)
6812       return;
6813 
6814     const int64_t ObjectSize =
6815         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6816     Value *const ObjectPtr = I.getArgOperand(1);
6817     SmallVector<const Value *, 4> Allocas;
6818     getUnderlyingObjects(ObjectPtr, Allocas);
6819 
6820     for (const Value *Alloca : Allocas) {
6821       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6822 
6823       // Could not find an Alloca.
6824       if (!LifetimeObject)
6825         continue;
6826 
6827       // First check that the Alloca is static, otherwise it won't have a
6828       // valid frame index.
6829       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6830       if (SI == FuncInfo.StaticAllocaMap.end())
6831         return;
6832 
6833       const int FrameIndex = SI->second;
6834       int64_t Offset;
6835       if (GetPointerBaseWithConstantOffset(
6836               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6837         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6838       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6839                                 Offset);
6840       DAG.setRoot(Res);
6841     }
6842     return;
6843   }
6844   case Intrinsic::pseudoprobe: {
6845     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6846     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6847     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6848     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6849     DAG.setRoot(Res);
6850     return;
6851   }
6852   case Intrinsic::invariant_start:
6853     // Discard region information.
6854     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6855     return;
6856   case Intrinsic::invariant_end:
6857     // Discard region information.
6858     return;
6859   case Intrinsic::clear_cache:
6860     /// FunctionName may be null.
6861     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6862       lowerCallToExternalSymbol(I, FunctionName);
6863     return;
6864   case Intrinsic::donothing:
6865   case Intrinsic::seh_try_begin:
6866   case Intrinsic::seh_scope_begin:
6867   case Intrinsic::seh_try_end:
6868   case Intrinsic::seh_scope_end:
6869     // ignore
6870     return;
6871   case Intrinsic::experimental_stackmap:
6872     visitStackmap(I);
6873     return;
6874   case Intrinsic::experimental_patchpoint_void:
6875   case Intrinsic::experimental_patchpoint_i64:
6876     visitPatchpoint(I);
6877     return;
6878   case Intrinsic::experimental_gc_statepoint:
6879     LowerStatepoint(cast<GCStatepointInst>(I));
6880     return;
6881   case Intrinsic::experimental_gc_result:
6882     visitGCResult(cast<GCResultInst>(I));
6883     return;
6884   case Intrinsic::experimental_gc_relocate:
6885     visitGCRelocate(cast<GCRelocateInst>(I));
6886     return;
6887   case Intrinsic::instrprof_increment:
6888     llvm_unreachable("instrprof failed to lower an increment");
6889   case Intrinsic::instrprof_value_profile:
6890     llvm_unreachable("instrprof failed to lower a value profiling call");
6891   case Intrinsic::localescape: {
6892     MachineFunction &MF = DAG.getMachineFunction();
6893     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6894 
6895     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6896     // is the same on all targets.
6897     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6898       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6899       if (isa<ConstantPointerNull>(Arg))
6900         continue; // Skip null pointers. They represent a hole in index space.
6901       AllocaInst *Slot = cast<AllocaInst>(Arg);
6902       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6903              "can only escape static allocas");
6904       int FI = FuncInfo.StaticAllocaMap[Slot];
6905       MCSymbol *FrameAllocSym =
6906           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6907               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6908       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6909               TII->get(TargetOpcode::LOCAL_ESCAPE))
6910           .addSym(FrameAllocSym)
6911           .addFrameIndex(FI);
6912     }
6913 
6914     return;
6915   }
6916 
6917   case Intrinsic::localrecover: {
6918     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6919     MachineFunction &MF = DAG.getMachineFunction();
6920 
6921     // Get the symbol that defines the frame offset.
6922     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6923     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6924     unsigned IdxVal =
6925         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6926     MCSymbol *FrameAllocSym =
6927         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6928             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6929 
6930     Value *FP = I.getArgOperand(1);
6931     SDValue FPVal = getValue(FP);
6932     EVT PtrVT = FPVal.getValueType();
6933 
6934     // Create a MCSymbol for the label to avoid any target lowering
6935     // that would make this PC relative.
6936     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6937     SDValue OffsetVal =
6938         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6939 
6940     // Add the offset to the FP.
6941     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6942     setValue(&I, Add);
6943 
6944     return;
6945   }
6946 
6947   case Intrinsic::eh_exceptionpointer:
6948   case Intrinsic::eh_exceptioncode: {
6949     // Get the exception pointer vreg, copy from it, and resize it to fit.
6950     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6951     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6952     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6953     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6954     SDValue N =
6955         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6956     if (Intrinsic == Intrinsic::eh_exceptioncode)
6957       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6958     setValue(&I, N);
6959     return;
6960   }
6961   case Intrinsic::xray_customevent: {
6962     // Here we want to make sure that the intrinsic behaves as if it has a
6963     // specific calling convention, and only for x86_64.
6964     // FIXME: Support other platforms later.
6965     const auto &Triple = DAG.getTarget().getTargetTriple();
6966     if (Triple.getArch() != Triple::x86_64)
6967       return;
6968 
6969     SDLoc DL = getCurSDLoc();
6970     SmallVector<SDValue, 8> Ops;
6971 
6972     // We want to say that we always want the arguments in registers.
6973     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6974     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6975     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6976     SDValue Chain = getRoot();
6977     Ops.push_back(LogEntryVal);
6978     Ops.push_back(StrSizeVal);
6979     Ops.push_back(Chain);
6980 
6981     // We need to enforce the calling convention for the callsite, so that
6982     // argument ordering is enforced correctly, and that register allocation can
6983     // see that some registers may be assumed clobbered and have to preserve
6984     // them across calls to the intrinsic.
6985     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6986                                            DL, NodeTys, Ops);
6987     SDValue patchableNode = SDValue(MN, 0);
6988     DAG.setRoot(patchableNode);
6989     setValue(&I, patchableNode);
6990     return;
6991   }
6992   case Intrinsic::xray_typedevent: {
6993     // Here we want to make sure that the intrinsic behaves as if it has a
6994     // specific calling convention, and only for x86_64.
6995     // FIXME: Support other platforms later.
6996     const auto &Triple = DAG.getTarget().getTargetTriple();
6997     if (Triple.getArch() != Triple::x86_64)
6998       return;
6999 
7000     SDLoc DL = getCurSDLoc();
7001     SmallVector<SDValue, 8> Ops;
7002 
7003     // We want to say that we always want the arguments in registers.
7004     // It's unclear to me how manipulating the selection DAG here forces callers
7005     // to provide arguments in registers instead of on the stack.
7006     SDValue LogTypeId = getValue(I.getArgOperand(0));
7007     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7008     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7009     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7010     SDValue Chain = getRoot();
7011     Ops.push_back(LogTypeId);
7012     Ops.push_back(LogEntryVal);
7013     Ops.push_back(StrSizeVal);
7014     Ops.push_back(Chain);
7015 
7016     // We need to enforce the calling convention for the callsite, so that
7017     // argument ordering is enforced correctly, and that register allocation can
7018     // see that some registers may be assumed clobbered and have to preserve
7019     // them across calls to the intrinsic.
7020     MachineSDNode *MN = DAG.getMachineNode(
7021         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
7022     SDValue patchableNode = SDValue(MN, 0);
7023     DAG.setRoot(patchableNode);
7024     setValue(&I, patchableNode);
7025     return;
7026   }
7027   case Intrinsic::experimental_deoptimize:
7028     LowerDeoptimizeCall(&I);
7029     return;
7030   case Intrinsic::experimental_stepvector:
7031     visitStepVector(I);
7032     return;
7033   case Intrinsic::vector_reduce_fadd:
7034   case Intrinsic::vector_reduce_fmul:
7035   case Intrinsic::vector_reduce_add:
7036   case Intrinsic::vector_reduce_mul:
7037   case Intrinsic::vector_reduce_and:
7038   case Intrinsic::vector_reduce_or:
7039   case Intrinsic::vector_reduce_xor:
7040   case Intrinsic::vector_reduce_smax:
7041   case Intrinsic::vector_reduce_smin:
7042   case Intrinsic::vector_reduce_umax:
7043   case Intrinsic::vector_reduce_umin:
7044   case Intrinsic::vector_reduce_fmax:
7045   case Intrinsic::vector_reduce_fmin:
7046     visitVectorReduce(I, Intrinsic);
7047     return;
7048 
7049   case Intrinsic::icall_branch_funnel: {
7050     SmallVector<SDValue, 16> Ops;
7051     Ops.push_back(getValue(I.getArgOperand(0)));
7052 
7053     int64_t Offset;
7054     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7055         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7056     if (!Base)
7057       report_fatal_error(
7058           "llvm.icall.branch.funnel operand must be a GlobalValue");
7059     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
7060 
7061     struct BranchFunnelTarget {
7062       int64_t Offset;
7063       SDValue Target;
7064     };
7065     SmallVector<BranchFunnelTarget, 8> Targets;
7066 
7067     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
7068       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7069           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7070       if (ElemBase != Base)
7071         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7072                            "to the same GlobalValue");
7073 
7074       SDValue Val = getValue(I.getArgOperand(Op + 1));
7075       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7076       if (!GA)
7077         report_fatal_error(
7078             "llvm.icall.branch.funnel operand must be a GlobalValue");
7079       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7080                                      GA->getGlobal(), getCurSDLoc(),
7081                                      Val.getValueType(), GA->getOffset())});
7082     }
7083     llvm::sort(Targets,
7084                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7085                  return T1.Offset < T2.Offset;
7086                });
7087 
7088     for (auto &T : Targets) {
7089       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
7090       Ops.push_back(T.Target);
7091     }
7092 
7093     Ops.push_back(DAG.getRoot()); // Chain
7094     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7095                                  getCurSDLoc(), MVT::Other, Ops),
7096               0);
7097     DAG.setRoot(N);
7098     setValue(&I, N);
7099     HasTailCall = true;
7100     return;
7101   }
7102 
7103   case Intrinsic::wasm_landingpad_index:
7104     // Information this intrinsic contained has been transferred to
7105     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7106     // delete it now.
7107     return;
7108 
7109   case Intrinsic::aarch64_settag:
7110   case Intrinsic::aarch64_settag_zero: {
7111     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7112     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7113     SDValue Val = TSI.EmitTargetCodeForSetTag(
7114         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7115         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7116         ZeroMemory);
7117     DAG.setRoot(Val);
7118     setValue(&I, Val);
7119     return;
7120   }
7121   case Intrinsic::ptrmask: {
7122     SDValue Ptr = getValue(I.getOperand(0));
7123     SDValue Const = getValue(I.getOperand(1));
7124 
7125     EVT PtrVT = Ptr.getValueType();
7126     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7127                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7128     return;
7129   }
7130   case Intrinsic::get_active_lane_mask: {
7131     auto DL = getCurSDLoc();
7132     SDValue Index = getValue(I.getOperand(0));
7133     SDValue TripCount = getValue(I.getOperand(1));
7134     Type *ElementTy = I.getOperand(0)->getType();
7135     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7136     unsigned VecWidth = VT.getVectorNumElements();
7137 
7138     SmallVector<SDValue, 16> OpsTripCount;
7139     SmallVector<SDValue, 16> OpsIndex;
7140     SmallVector<SDValue, 16> OpsStepConstants;
7141     for (unsigned i = 0; i < VecWidth; i++) {
7142       OpsTripCount.push_back(TripCount);
7143       OpsIndex.push_back(Index);
7144       OpsStepConstants.push_back(
7145           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7146     }
7147 
7148     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7149 
7150     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7151     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7152     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7153     SDValue VectorInduction = DAG.getNode(
7154        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7155     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7156     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7157                                  VectorTripCount, ISD::CondCode::SETULT);
7158     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7159                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7160                              SetCC));
7161     return;
7162   }
7163   case Intrinsic::experimental_vector_insert: {
7164     auto DL = getCurSDLoc();
7165 
7166     SDValue Vec = getValue(I.getOperand(0));
7167     SDValue SubVec = getValue(I.getOperand(1));
7168     SDValue Index = getValue(I.getOperand(2));
7169 
7170     // The intrinsic's index type is i64, but the SDNode requires an index type
7171     // suitable for the target. Convert the index as required.
7172     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7173     if (Index.getValueType() != VectorIdxTy)
7174       Index = DAG.getVectorIdxConstant(
7175           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7176 
7177     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7178     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7179                              Index));
7180     return;
7181   }
7182   case Intrinsic::experimental_vector_extract: {
7183     auto DL = getCurSDLoc();
7184 
7185     SDValue Vec = getValue(I.getOperand(0));
7186     SDValue Index = getValue(I.getOperand(1));
7187     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7188 
7189     // The intrinsic's index type is i64, but the SDNode requires an index type
7190     // suitable for the target. Convert the index as required.
7191     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7192     if (Index.getValueType() != VectorIdxTy)
7193       Index = DAG.getVectorIdxConstant(
7194           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7195 
7196     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7197     return;
7198   }
7199   case Intrinsic::experimental_vector_reverse:
7200     visitVectorReverse(I);
7201     return;
7202   case Intrinsic::experimental_vector_splice:
7203     visitVectorSplice(I);
7204     return;
7205   }
7206 }
7207 
7208 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7209     const ConstrainedFPIntrinsic &FPI) {
7210   SDLoc sdl = getCurSDLoc();
7211 
7212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7213   SmallVector<EVT, 4> ValueVTs;
7214   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7215   ValueVTs.push_back(MVT::Other); // Out chain
7216 
7217   // We do not need to serialize constrained FP intrinsics against
7218   // each other or against (nonvolatile) loads, so they can be
7219   // chained like loads.
7220   SDValue Chain = DAG.getRoot();
7221   SmallVector<SDValue, 4> Opers;
7222   Opers.push_back(Chain);
7223   if (FPI.isUnaryOp()) {
7224     Opers.push_back(getValue(FPI.getArgOperand(0)));
7225   } else if (FPI.isTernaryOp()) {
7226     Opers.push_back(getValue(FPI.getArgOperand(0)));
7227     Opers.push_back(getValue(FPI.getArgOperand(1)));
7228     Opers.push_back(getValue(FPI.getArgOperand(2)));
7229   } else {
7230     Opers.push_back(getValue(FPI.getArgOperand(0)));
7231     Opers.push_back(getValue(FPI.getArgOperand(1)));
7232   }
7233 
7234   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7235     assert(Result.getNode()->getNumValues() == 2);
7236 
7237     // Push node to the appropriate list so that future instructions can be
7238     // chained up correctly.
7239     SDValue OutChain = Result.getValue(1);
7240     switch (EB) {
7241     case fp::ExceptionBehavior::ebIgnore:
7242       // The only reason why ebIgnore nodes still need to be chained is that
7243       // they might depend on the current rounding mode, and therefore must
7244       // not be moved across instruction that may change that mode.
7245       LLVM_FALLTHROUGH;
7246     case fp::ExceptionBehavior::ebMayTrap:
7247       // These must not be moved across calls or instructions that may change
7248       // floating-point exception masks.
7249       PendingConstrainedFP.push_back(OutChain);
7250       break;
7251     case fp::ExceptionBehavior::ebStrict:
7252       // These must not be moved across calls or instructions that may change
7253       // floating-point exception masks or read floating-point exception flags.
7254       // In addition, they cannot be optimized out even if unused.
7255       PendingConstrainedFPStrict.push_back(OutChain);
7256       break;
7257     }
7258   };
7259 
7260   SDVTList VTs = DAG.getVTList(ValueVTs);
7261   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7262 
7263   SDNodeFlags Flags;
7264   if (EB == fp::ExceptionBehavior::ebIgnore)
7265     Flags.setNoFPExcept(true);
7266 
7267   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7268     Flags.copyFMF(*FPOp);
7269 
7270   unsigned Opcode;
7271   switch (FPI.getIntrinsicID()) {
7272   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7273 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7274   case Intrinsic::INTRINSIC:                                                   \
7275     Opcode = ISD::STRICT_##DAGN;                                               \
7276     break;
7277 #include "llvm/IR/ConstrainedOps.def"
7278   case Intrinsic::experimental_constrained_fmuladd: {
7279     Opcode = ISD::STRICT_FMA;
7280     // Break fmuladd into fmul and fadd.
7281     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7282         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7283                                         ValueVTs[0])) {
7284       Opers.pop_back();
7285       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7286       pushOutChain(Mul, EB);
7287       Opcode = ISD::STRICT_FADD;
7288       Opers.clear();
7289       Opers.push_back(Mul.getValue(1));
7290       Opers.push_back(Mul.getValue(0));
7291       Opers.push_back(getValue(FPI.getArgOperand(2)));
7292     }
7293     break;
7294   }
7295   }
7296 
7297   // A few strict DAG nodes carry additional operands that are not
7298   // set up by the default code above.
7299   switch (Opcode) {
7300   default: break;
7301   case ISD::STRICT_FP_ROUND:
7302     Opers.push_back(
7303         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7304     break;
7305   case ISD::STRICT_FSETCC:
7306   case ISD::STRICT_FSETCCS: {
7307     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7308     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7309     if (TM.Options.NoNaNsFPMath)
7310       Condition = getFCmpCodeWithoutNaN(Condition);
7311     Opers.push_back(DAG.getCondCode(Condition));
7312     break;
7313   }
7314   }
7315 
7316   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7317   pushOutChain(Result, EB);
7318 
7319   SDValue FPResult = Result.getValue(0);
7320   setValue(&FPI, FPResult);
7321 }
7322 
7323 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7324   Optional<unsigned> ResOPC;
7325   switch (VPIntrin.getIntrinsicID()) {
7326 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7327 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7328 #define END_REGISTER_VP_INTRINSIC(...) break;
7329 #include "llvm/IR/VPIntrinsics.def"
7330   }
7331 
7332   if (!ResOPC.hasValue())
7333     llvm_unreachable(
7334         "Inconsistency: no SDNode available for this VPIntrinsic!");
7335 
7336   return ResOPC.getValue();
7337 }
7338 
7339 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7340     const VPIntrinsic &VPIntrin) {
7341   SDLoc DL = getCurSDLoc();
7342   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7343 
7344   SmallVector<EVT, 4> ValueVTs;
7345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7346   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7347   SDVTList VTs = DAG.getVTList(ValueVTs);
7348 
7349   auto EVLParamPos =
7350       VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7351 
7352   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7353   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7354          "Unexpected target EVL type");
7355 
7356   // Request operands.
7357   SmallVector<SDValue, 7> OpValues;
7358   for (unsigned I = 0; I < VPIntrin.getNumArgOperands(); ++I) {
7359     auto Op = getValue(VPIntrin.getArgOperand(I));
7360     if (I == EVLParamPos)
7361       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7362     OpValues.push_back(Op);
7363   }
7364 
7365   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7366   setValue(&VPIntrin, Result);
7367 }
7368 
7369 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7370                                           const BasicBlock *EHPadBB,
7371                                           MCSymbol *&BeginLabel) {
7372   MachineFunction &MF = DAG.getMachineFunction();
7373   MachineModuleInfo &MMI = MF.getMMI();
7374 
7375   // Insert a label before the invoke call to mark the try range.  This can be
7376   // used to detect deletion of the invoke via the MachineModuleInfo.
7377   BeginLabel = MMI.getContext().createTempSymbol();
7378 
7379   // For SjLj, keep track of which landing pads go with which invokes
7380   // so as to maintain the ordering of pads in the LSDA.
7381   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7382   if (CallSiteIndex) {
7383     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7384     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7385 
7386     // Now that the call site is handled, stop tracking it.
7387     MMI.setCurrentCallSite(0);
7388   }
7389 
7390   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7391 }
7392 
7393 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7394                                         const BasicBlock *EHPadBB,
7395                                         MCSymbol *BeginLabel) {
7396   assert(BeginLabel && "BeginLabel should've been set");
7397 
7398   MachineFunction &MF = DAG.getMachineFunction();
7399   MachineModuleInfo &MMI = MF.getMMI();
7400 
7401   // Insert a label at the end of the invoke call to mark the try range.  This
7402   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7403   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7404   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7405 
7406   // Inform MachineModuleInfo of range.
7407   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7408   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7409   // actually use outlined funclets and their LSDA info style.
7410   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7411     assert(II && "II should've been set");
7412     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7413     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7414   } else if (!isScopedEHPersonality(Pers)) {
7415     assert(EHPadBB);
7416     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7417   }
7418 
7419   return Chain;
7420 }
7421 
7422 std::pair<SDValue, SDValue>
7423 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7424                                     const BasicBlock *EHPadBB) {
7425   MCSymbol *BeginLabel = nullptr;
7426 
7427   if (EHPadBB) {
7428     // Both PendingLoads and PendingExports must be flushed here;
7429     // this call might not return.
7430     (void)getRoot();
7431     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7432     CLI.setChain(getRoot());
7433   }
7434 
7435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7436   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7437 
7438   assert((CLI.IsTailCall || Result.second.getNode()) &&
7439          "Non-null chain expected with non-tail call!");
7440   assert((Result.second.getNode() || !Result.first.getNode()) &&
7441          "Null value expected with tail call!");
7442 
7443   if (!Result.second.getNode()) {
7444     // As a special case, a null chain means that a tail call has been emitted
7445     // and the DAG root is already updated.
7446     HasTailCall = true;
7447 
7448     // Since there's no actual continuation from this block, nothing can be
7449     // relying on us setting vregs for them.
7450     PendingExports.clear();
7451   } else {
7452     DAG.setRoot(Result.second);
7453   }
7454 
7455   if (EHPadBB) {
7456     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7457                            BeginLabel));
7458   }
7459 
7460   return Result;
7461 }
7462 
7463 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7464                                       bool isTailCall,
7465                                       bool isMustTailCall,
7466                                       const BasicBlock *EHPadBB) {
7467   auto &DL = DAG.getDataLayout();
7468   FunctionType *FTy = CB.getFunctionType();
7469   Type *RetTy = CB.getType();
7470 
7471   TargetLowering::ArgListTy Args;
7472   Args.reserve(CB.arg_size());
7473 
7474   const Value *SwiftErrorVal = nullptr;
7475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7476 
7477   if (isTailCall) {
7478     // Avoid emitting tail calls in functions with the disable-tail-calls
7479     // attribute.
7480     auto *Caller = CB.getParent()->getParent();
7481     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7482         "true" && !isMustTailCall)
7483       isTailCall = false;
7484 
7485     // We can't tail call inside a function with a swifterror argument. Lowering
7486     // does not support this yet. It would have to move into the swifterror
7487     // register before the call.
7488     if (TLI.supportSwiftError() &&
7489         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7490       isTailCall = false;
7491   }
7492 
7493   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7494     TargetLowering::ArgListEntry Entry;
7495     const Value *V = *I;
7496 
7497     // Skip empty types
7498     if (V->getType()->isEmptyTy())
7499       continue;
7500 
7501     SDValue ArgNode = getValue(V);
7502     Entry.Node = ArgNode; Entry.Ty = V->getType();
7503 
7504     Entry.setAttributes(&CB, I - CB.arg_begin());
7505 
7506     // Use swifterror virtual register as input to the call.
7507     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7508       SwiftErrorVal = V;
7509       // We find the virtual register for the actual swifterror argument.
7510       // Instead of using the Value, we use the virtual register instead.
7511       Entry.Node =
7512           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7513                           EVT(TLI.getPointerTy(DL)));
7514     }
7515 
7516     Args.push_back(Entry);
7517 
7518     // If we have an explicit sret argument that is an Instruction, (i.e., it
7519     // might point to function-local memory), we can't meaningfully tail-call.
7520     if (Entry.IsSRet && isa<Instruction>(V))
7521       isTailCall = false;
7522   }
7523 
7524   // If call site has a cfguardtarget operand bundle, create and add an
7525   // additional ArgListEntry.
7526   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7527     TargetLowering::ArgListEntry Entry;
7528     Value *V = Bundle->Inputs[0];
7529     SDValue ArgNode = getValue(V);
7530     Entry.Node = ArgNode;
7531     Entry.Ty = V->getType();
7532     Entry.IsCFGuardTarget = true;
7533     Args.push_back(Entry);
7534   }
7535 
7536   // Check if target-independent constraints permit a tail call here.
7537   // Target-dependent constraints are checked within TLI->LowerCallTo.
7538   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7539     isTailCall = false;
7540 
7541   // Disable tail calls if there is an swifterror argument. Targets have not
7542   // been updated to support tail calls.
7543   if (TLI.supportSwiftError() && SwiftErrorVal)
7544     isTailCall = false;
7545 
7546   TargetLowering::CallLoweringInfo CLI(DAG);
7547   CLI.setDebugLoc(getCurSDLoc())
7548       .setChain(getRoot())
7549       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7550       .setTailCall(isTailCall)
7551       .setConvergent(CB.isConvergent())
7552       .setIsPreallocated(
7553           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7554   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7555 
7556   if (Result.first.getNode()) {
7557     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7558     setValue(&CB, Result.first);
7559   }
7560 
7561   // The last element of CLI.InVals has the SDValue for swifterror return.
7562   // Here we copy it to a virtual register and update SwiftErrorMap for
7563   // book-keeping.
7564   if (SwiftErrorVal && TLI.supportSwiftError()) {
7565     // Get the last element of InVals.
7566     SDValue Src = CLI.InVals.back();
7567     Register VReg =
7568         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7569     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7570     DAG.setRoot(CopyNode);
7571   }
7572 }
7573 
7574 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7575                              SelectionDAGBuilder &Builder) {
7576   // Check to see if this load can be trivially constant folded, e.g. if the
7577   // input is from a string literal.
7578   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7579     // Cast pointer to the type we really want to load.
7580     Type *LoadTy =
7581         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7582     if (LoadVT.isVector())
7583       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7584 
7585     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7586                                          PointerType::getUnqual(LoadTy));
7587 
7588     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7589             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7590       return Builder.getValue(LoadCst);
7591   }
7592 
7593   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7594   // still constant memory, the input chain can be the entry node.
7595   SDValue Root;
7596   bool ConstantMemory = false;
7597 
7598   // Do not serialize (non-volatile) loads of constant memory with anything.
7599   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7600     Root = Builder.DAG.getEntryNode();
7601     ConstantMemory = true;
7602   } else {
7603     // Do not serialize non-volatile loads against each other.
7604     Root = Builder.DAG.getRoot();
7605   }
7606 
7607   SDValue Ptr = Builder.getValue(PtrVal);
7608   SDValue LoadVal =
7609       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7610                           MachinePointerInfo(PtrVal), Align(1));
7611 
7612   if (!ConstantMemory)
7613     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7614   return LoadVal;
7615 }
7616 
7617 /// Record the value for an instruction that produces an integer result,
7618 /// converting the type where necessary.
7619 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7620                                                   SDValue Value,
7621                                                   bool IsSigned) {
7622   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7623                                                     I.getType(), true);
7624   if (IsSigned)
7625     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7626   else
7627     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7628   setValue(&I, Value);
7629 }
7630 
7631 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7632 /// true and lower it. Otherwise return false, and it will be lowered like a
7633 /// normal call.
7634 /// The caller already checked that \p I calls the appropriate LibFunc with a
7635 /// correct prototype.
7636 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7637   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7638   const Value *Size = I.getArgOperand(2);
7639   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7640   if (CSize && CSize->getZExtValue() == 0) {
7641     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7642                                                           I.getType(), true);
7643     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7644     return true;
7645   }
7646 
7647   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7648   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7649       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7650       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7651   if (Res.first.getNode()) {
7652     processIntegerCallValue(I, Res.first, true);
7653     PendingLoads.push_back(Res.second);
7654     return true;
7655   }
7656 
7657   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7658   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7659   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7660     return false;
7661 
7662   // If the target has a fast compare for the given size, it will return a
7663   // preferred load type for that size. Require that the load VT is legal and
7664   // that the target supports unaligned loads of that type. Otherwise, return
7665   // INVALID.
7666   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7667     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7668     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7669     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7670       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7671       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7672       // TODO: Check alignment of src and dest ptrs.
7673       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7674       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7675       if (!TLI.isTypeLegal(LVT) ||
7676           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7677           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7678         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7679     }
7680 
7681     return LVT;
7682   };
7683 
7684   // This turns into unaligned loads. We only do this if the target natively
7685   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7686   // we'll only produce a small number of byte loads.
7687   MVT LoadVT;
7688   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7689   switch (NumBitsToCompare) {
7690   default:
7691     return false;
7692   case 16:
7693     LoadVT = MVT::i16;
7694     break;
7695   case 32:
7696     LoadVT = MVT::i32;
7697     break;
7698   case 64:
7699   case 128:
7700   case 256:
7701     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7702     break;
7703   }
7704 
7705   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7706     return false;
7707 
7708   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7709   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7710 
7711   // Bitcast to a wide integer type if the loads are vectors.
7712   if (LoadVT.isVector()) {
7713     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7714     LoadL = DAG.getBitcast(CmpVT, LoadL);
7715     LoadR = DAG.getBitcast(CmpVT, LoadR);
7716   }
7717 
7718   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7719   processIntegerCallValue(I, Cmp, false);
7720   return true;
7721 }
7722 
7723 /// See if we can lower a memchr call into an optimized form. If so, return
7724 /// true and lower it. Otherwise return false, and it will be lowered like a
7725 /// normal call.
7726 /// The caller already checked that \p I calls the appropriate LibFunc with a
7727 /// correct prototype.
7728 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7729   const Value *Src = I.getArgOperand(0);
7730   const Value *Char = I.getArgOperand(1);
7731   const Value *Length = I.getArgOperand(2);
7732 
7733   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7734   std::pair<SDValue, SDValue> Res =
7735     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7736                                 getValue(Src), getValue(Char), getValue(Length),
7737                                 MachinePointerInfo(Src));
7738   if (Res.first.getNode()) {
7739     setValue(&I, Res.first);
7740     PendingLoads.push_back(Res.second);
7741     return true;
7742   }
7743 
7744   return false;
7745 }
7746 
7747 /// See if we can lower a mempcpy call into an optimized form. If so, return
7748 /// true and lower it. Otherwise return false, and it will be lowered like a
7749 /// normal call.
7750 /// The caller already checked that \p I calls the appropriate LibFunc with a
7751 /// correct prototype.
7752 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7753   SDValue Dst = getValue(I.getArgOperand(0));
7754   SDValue Src = getValue(I.getArgOperand(1));
7755   SDValue Size = getValue(I.getArgOperand(2));
7756 
7757   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7758   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7759   // DAG::getMemcpy needs Alignment to be defined.
7760   Align Alignment = std::min(DstAlign, SrcAlign);
7761 
7762   bool isVol = false;
7763   SDLoc sdl = getCurSDLoc();
7764 
7765   // In the mempcpy context we need to pass in a false value for isTailCall
7766   // because the return pointer needs to be adjusted by the size of
7767   // the copied memory.
7768   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7769   AAMDNodes AAInfo;
7770   I.getAAMetadata(AAInfo);
7771   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7772                              /*isTailCall=*/false,
7773                              MachinePointerInfo(I.getArgOperand(0)),
7774                              MachinePointerInfo(I.getArgOperand(1)), AAInfo);
7775   assert(MC.getNode() != nullptr &&
7776          "** memcpy should not be lowered as TailCall in mempcpy context **");
7777   DAG.setRoot(MC);
7778 
7779   // Check if Size needs to be truncated or extended.
7780   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7781 
7782   // Adjust return pointer to point just past the last dst byte.
7783   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7784                                     Dst, Size);
7785   setValue(&I, DstPlusSize);
7786   return true;
7787 }
7788 
7789 /// See if we can lower a strcpy call into an optimized form.  If so, return
7790 /// true and lower it, otherwise return false and it will be lowered like a
7791 /// normal call.
7792 /// The caller already checked that \p I calls the appropriate LibFunc with a
7793 /// correct prototype.
7794 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7795   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7796 
7797   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7798   std::pair<SDValue, SDValue> Res =
7799     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7800                                 getValue(Arg0), getValue(Arg1),
7801                                 MachinePointerInfo(Arg0),
7802                                 MachinePointerInfo(Arg1), isStpcpy);
7803   if (Res.first.getNode()) {
7804     setValue(&I, Res.first);
7805     DAG.setRoot(Res.second);
7806     return true;
7807   }
7808 
7809   return false;
7810 }
7811 
7812 /// See if we can lower a strcmp call into an optimized form.  If so, return
7813 /// true and lower it, otherwise return false and it will be lowered like a
7814 /// normal call.
7815 /// The caller already checked that \p I calls the appropriate LibFunc with a
7816 /// correct prototype.
7817 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7818   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7819 
7820   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7821   std::pair<SDValue, SDValue> Res =
7822     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7823                                 getValue(Arg0), getValue(Arg1),
7824                                 MachinePointerInfo(Arg0),
7825                                 MachinePointerInfo(Arg1));
7826   if (Res.first.getNode()) {
7827     processIntegerCallValue(I, Res.first, true);
7828     PendingLoads.push_back(Res.second);
7829     return true;
7830   }
7831 
7832   return false;
7833 }
7834 
7835 /// See if we can lower a strlen call into an optimized form.  If so, return
7836 /// true and lower it, otherwise return false and it will be lowered like a
7837 /// normal call.
7838 /// The caller already checked that \p I calls the appropriate LibFunc with a
7839 /// correct prototype.
7840 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7841   const Value *Arg0 = I.getArgOperand(0);
7842 
7843   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7844   std::pair<SDValue, SDValue> Res =
7845     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7846                                 getValue(Arg0), MachinePointerInfo(Arg0));
7847   if (Res.first.getNode()) {
7848     processIntegerCallValue(I, Res.first, false);
7849     PendingLoads.push_back(Res.second);
7850     return true;
7851   }
7852 
7853   return false;
7854 }
7855 
7856 /// See if we can lower a strnlen call into an optimized form.  If so, return
7857 /// true and lower it, otherwise return false and it will be lowered like a
7858 /// normal call.
7859 /// The caller already checked that \p I calls the appropriate LibFunc with a
7860 /// correct prototype.
7861 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7862   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7863 
7864   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7865   std::pair<SDValue, SDValue> Res =
7866     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7867                                  getValue(Arg0), getValue(Arg1),
7868                                  MachinePointerInfo(Arg0));
7869   if (Res.first.getNode()) {
7870     processIntegerCallValue(I, Res.first, false);
7871     PendingLoads.push_back(Res.second);
7872     return true;
7873   }
7874 
7875   return false;
7876 }
7877 
7878 /// See if we can lower a unary floating-point operation into an SDNode with
7879 /// the specified Opcode.  If so, return true and lower it, otherwise return
7880 /// false and it will be lowered like a normal call.
7881 /// The caller already checked that \p I calls the appropriate LibFunc with a
7882 /// correct prototype.
7883 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7884                                               unsigned Opcode) {
7885   // We already checked this call's prototype; verify it doesn't modify errno.
7886   if (!I.onlyReadsMemory())
7887     return false;
7888 
7889   SDNodeFlags Flags;
7890   Flags.copyFMF(cast<FPMathOperator>(I));
7891 
7892   SDValue Tmp = getValue(I.getArgOperand(0));
7893   setValue(&I,
7894            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7895   return true;
7896 }
7897 
7898 /// See if we can lower a binary floating-point operation into an SDNode with
7899 /// the specified Opcode. If so, return true and lower it. Otherwise return
7900 /// false, and it will be lowered like a normal call.
7901 /// The caller already checked that \p I calls the appropriate LibFunc with a
7902 /// correct prototype.
7903 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7904                                                unsigned Opcode) {
7905   // We already checked this call's prototype; verify it doesn't modify errno.
7906   if (!I.onlyReadsMemory())
7907     return false;
7908 
7909   SDNodeFlags Flags;
7910   Flags.copyFMF(cast<FPMathOperator>(I));
7911 
7912   SDValue Tmp0 = getValue(I.getArgOperand(0));
7913   SDValue Tmp1 = getValue(I.getArgOperand(1));
7914   EVT VT = Tmp0.getValueType();
7915   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7916   return true;
7917 }
7918 
7919 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7920   // Handle inline assembly differently.
7921   if (I.isInlineAsm()) {
7922     visitInlineAsm(I);
7923     return;
7924   }
7925 
7926   if (Function *F = I.getCalledFunction()) {
7927     if (F->isDeclaration()) {
7928       // Is this an LLVM intrinsic or a target-specific intrinsic?
7929       unsigned IID = F->getIntrinsicID();
7930       if (!IID)
7931         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7932           IID = II->getIntrinsicID(F);
7933 
7934       if (IID) {
7935         visitIntrinsicCall(I, IID);
7936         return;
7937       }
7938     }
7939 
7940     // Check for well-known libc/libm calls.  If the function is internal, it
7941     // can't be a library call.  Don't do the check if marked as nobuiltin for
7942     // some reason or the call site requires strict floating point semantics.
7943     LibFunc Func;
7944     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7945         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7946         LibInfo->hasOptimizedCodeGen(Func)) {
7947       switch (Func) {
7948       default: break;
7949       case LibFunc_bcmp:
7950         if (visitMemCmpBCmpCall(I))
7951           return;
7952         break;
7953       case LibFunc_copysign:
7954       case LibFunc_copysignf:
7955       case LibFunc_copysignl:
7956         // We already checked this call's prototype; verify it doesn't modify
7957         // errno.
7958         if (I.onlyReadsMemory()) {
7959           SDValue LHS = getValue(I.getArgOperand(0));
7960           SDValue RHS = getValue(I.getArgOperand(1));
7961           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7962                                    LHS.getValueType(), LHS, RHS));
7963           return;
7964         }
7965         break;
7966       case LibFunc_fabs:
7967       case LibFunc_fabsf:
7968       case LibFunc_fabsl:
7969         if (visitUnaryFloatCall(I, ISD::FABS))
7970           return;
7971         break;
7972       case LibFunc_fmin:
7973       case LibFunc_fminf:
7974       case LibFunc_fminl:
7975         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7976           return;
7977         break;
7978       case LibFunc_fmax:
7979       case LibFunc_fmaxf:
7980       case LibFunc_fmaxl:
7981         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7982           return;
7983         break;
7984       case LibFunc_sin:
7985       case LibFunc_sinf:
7986       case LibFunc_sinl:
7987         if (visitUnaryFloatCall(I, ISD::FSIN))
7988           return;
7989         break;
7990       case LibFunc_cos:
7991       case LibFunc_cosf:
7992       case LibFunc_cosl:
7993         if (visitUnaryFloatCall(I, ISD::FCOS))
7994           return;
7995         break;
7996       case LibFunc_sqrt:
7997       case LibFunc_sqrtf:
7998       case LibFunc_sqrtl:
7999       case LibFunc_sqrt_finite:
8000       case LibFunc_sqrtf_finite:
8001       case LibFunc_sqrtl_finite:
8002         if (visitUnaryFloatCall(I, ISD::FSQRT))
8003           return;
8004         break;
8005       case LibFunc_floor:
8006       case LibFunc_floorf:
8007       case LibFunc_floorl:
8008         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8009           return;
8010         break;
8011       case LibFunc_nearbyint:
8012       case LibFunc_nearbyintf:
8013       case LibFunc_nearbyintl:
8014         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8015           return;
8016         break;
8017       case LibFunc_ceil:
8018       case LibFunc_ceilf:
8019       case LibFunc_ceill:
8020         if (visitUnaryFloatCall(I, ISD::FCEIL))
8021           return;
8022         break;
8023       case LibFunc_rint:
8024       case LibFunc_rintf:
8025       case LibFunc_rintl:
8026         if (visitUnaryFloatCall(I, ISD::FRINT))
8027           return;
8028         break;
8029       case LibFunc_round:
8030       case LibFunc_roundf:
8031       case LibFunc_roundl:
8032         if (visitUnaryFloatCall(I, ISD::FROUND))
8033           return;
8034         break;
8035       case LibFunc_trunc:
8036       case LibFunc_truncf:
8037       case LibFunc_truncl:
8038         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8039           return;
8040         break;
8041       case LibFunc_log2:
8042       case LibFunc_log2f:
8043       case LibFunc_log2l:
8044         if (visitUnaryFloatCall(I, ISD::FLOG2))
8045           return;
8046         break;
8047       case LibFunc_exp2:
8048       case LibFunc_exp2f:
8049       case LibFunc_exp2l:
8050         if (visitUnaryFloatCall(I, ISD::FEXP2))
8051           return;
8052         break;
8053       case LibFunc_memcmp:
8054         if (visitMemCmpBCmpCall(I))
8055           return;
8056         break;
8057       case LibFunc_mempcpy:
8058         if (visitMemPCpyCall(I))
8059           return;
8060         break;
8061       case LibFunc_memchr:
8062         if (visitMemChrCall(I))
8063           return;
8064         break;
8065       case LibFunc_strcpy:
8066         if (visitStrCpyCall(I, false))
8067           return;
8068         break;
8069       case LibFunc_stpcpy:
8070         if (visitStrCpyCall(I, true))
8071           return;
8072         break;
8073       case LibFunc_strcmp:
8074         if (visitStrCmpCall(I))
8075           return;
8076         break;
8077       case LibFunc_strlen:
8078         if (visitStrLenCall(I))
8079           return;
8080         break;
8081       case LibFunc_strnlen:
8082         if (visitStrNLenCall(I))
8083           return;
8084         break;
8085       }
8086     }
8087   }
8088 
8089   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8090   // have to do anything here to lower funclet bundles.
8091   // CFGuardTarget bundles are lowered in LowerCallTo.
8092   assert(!I.hasOperandBundlesOtherThan(
8093              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8094               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8095               LLVMContext::OB_clang_arc_attachedcall}) &&
8096          "Cannot lower calls with arbitrary operand bundles!");
8097 
8098   SDValue Callee = getValue(I.getCalledOperand());
8099 
8100   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8101     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8102   else
8103     // Check if we can potentially perform a tail call. More detailed checking
8104     // is be done within LowerCallTo, after more information about the call is
8105     // known.
8106     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8107 }
8108 
8109 namespace {
8110 
8111 /// AsmOperandInfo - This contains information for each constraint that we are
8112 /// lowering.
8113 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8114 public:
8115   /// CallOperand - If this is the result output operand or a clobber
8116   /// this is null, otherwise it is the incoming operand to the CallInst.
8117   /// This gets modified as the asm is processed.
8118   SDValue CallOperand;
8119 
8120   /// AssignedRegs - If this is a register or register class operand, this
8121   /// contains the set of register corresponding to the operand.
8122   RegsForValue AssignedRegs;
8123 
8124   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8125     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8126   }
8127 
8128   /// Whether or not this operand accesses memory
8129   bool hasMemory(const TargetLowering &TLI) const {
8130     // Indirect operand accesses access memory.
8131     if (isIndirect)
8132       return true;
8133 
8134     for (const auto &Code : Codes)
8135       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8136         return true;
8137 
8138     return false;
8139   }
8140 
8141   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8142   /// corresponds to.  If there is no Value* for this operand, it returns
8143   /// MVT::Other.
8144   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8145                            const DataLayout &DL) const {
8146     if (!CallOperandVal) return MVT::Other;
8147 
8148     if (isa<BasicBlock>(CallOperandVal))
8149       return TLI.getProgramPointerTy(DL);
8150 
8151     llvm::Type *OpTy = CallOperandVal->getType();
8152 
8153     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8154     // If this is an indirect operand, the operand is a pointer to the
8155     // accessed type.
8156     if (isIndirect) {
8157       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8158       if (!PtrTy)
8159         report_fatal_error("Indirect operand for inline asm not a pointer!");
8160       OpTy = PtrTy->getElementType();
8161     }
8162 
8163     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8164     if (StructType *STy = dyn_cast<StructType>(OpTy))
8165       if (STy->getNumElements() == 1)
8166         OpTy = STy->getElementType(0);
8167 
8168     // If OpTy is not a single value, it may be a struct/union that we
8169     // can tile with integers.
8170     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8171       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8172       switch (BitSize) {
8173       default: break;
8174       case 1:
8175       case 8:
8176       case 16:
8177       case 32:
8178       case 64:
8179       case 128:
8180         OpTy = IntegerType::get(Context, BitSize);
8181         break;
8182       }
8183     }
8184 
8185     return TLI.getAsmOperandValueType(DL, OpTy, true);
8186   }
8187 };
8188 
8189 
8190 } // end anonymous namespace
8191 
8192 /// Make sure that the output operand \p OpInfo and its corresponding input
8193 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8194 /// out).
8195 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8196                                SDISelAsmOperandInfo &MatchingOpInfo,
8197                                SelectionDAG &DAG) {
8198   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8199     return;
8200 
8201   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8202   const auto &TLI = DAG.getTargetLoweringInfo();
8203 
8204   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8205       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8206                                        OpInfo.ConstraintVT);
8207   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8208       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8209                                        MatchingOpInfo.ConstraintVT);
8210   if ((OpInfo.ConstraintVT.isInteger() !=
8211        MatchingOpInfo.ConstraintVT.isInteger()) ||
8212       (MatchRC.second != InputRC.second)) {
8213     // FIXME: error out in a more elegant fashion
8214     report_fatal_error("Unsupported asm: input constraint"
8215                        " with a matching output constraint of"
8216                        " incompatible type!");
8217   }
8218   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8219 }
8220 
8221 /// Get a direct memory input to behave well as an indirect operand.
8222 /// This may introduce stores, hence the need for a \p Chain.
8223 /// \return The (possibly updated) chain.
8224 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8225                                         SDISelAsmOperandInfo &OpInfo,
8226                                         SelectionDAG &DAG) {
8227   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8228 
8229   // If we don't have an indirect input, put it in the constpool if we can,
8230   // otherwise spill it to a stack slot.
8231   // TODO: This isn't quite right. We need to handle these according to
8232   // the addressing mode that the constraint wants. Also, this may take
8233   // an additional register for the computation and we don't want that
8234   // either.
8235 
8236   // If the operand is a float, integer, or vector constant, spill to a
8237   // constant pool entry to get its address.
8238   const Value *OpVal = OpInfo.CallOperandVal;
8239   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8240       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8241     OpInfo.CallOperand = DAG.getConstantPool(
8242         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8243     return Chain;
8244   }
8245 
8246   // Otherwise, create a stack slot and emit a store to it before the asm.
8247   Type *Ty = OpVal->getType();
8248   auto &DL = DAG.getDataLayout();
8249   uint64_t TySize = DL.getTypeAllocSize(Ty);
8250   MachineFunction &MF = DAG.getMachineFunction();
8251   int SSFI = MF.getFrameInfo().CreateStackObject(
8252       TySize, DL.getPrefTypeAlign(Ty), false);
8253   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8254   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8255                             MachinePointerInfo::getFixedStack(MF, SSFI),
8256                             TLI.getMemValueType(DL, Ty));
8257   OpInfo.CallOperand = StackSlot;
8258 
8259   return Chain;
8260 }
8261 
8262 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8263 /// specified operand.  We prefer to assign virtual registers, to allow the
8264 /// register allocator to handle the assignment process.  However, if the asm
8265 /// uses features that we can't model on machineinstrs, we have SDISel do the
8266 /// allocation.  This produces generally horrible, but correct, code.
8267 ///
8268 ///   OpInfo describes the operand
8269 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8270 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8271                                  SDISelAsmOperandInfo &OpInfo,
8272                                  SDISelAsmOperandInfo &RefOpInfo) {
8273   LLVMContext &Context = *DAG.getContext();
8274   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8275 
8276   MachineFunction &MF = DAG.getMachineFunction();
8277   SmallVector<unsigned, 4> Regs;
8278   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8279 
8280   // No work to do for memory operations.
8281   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8282     return;
8283 
8284   // If this is a constraint for a single physreg, or a constraint for a
8285   // register class, find it.
8286   unsigned AssignedReg;
8287   const TargetRegisterClass *RC;
8288   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8289       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8290   // RC is unset only on failure. Return immediately.
8291   if (!RC)
8292     return;
8293 
8294   // Get the actual register value type.  This is important, because the user
8295   // may have asked for (e.g.) the AX register in i32 type.  We need to
8296   // remember that AX is actually i16 to get the right extension.
8297   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8298 
8299   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8300     // If this is an FP operand in an integer register (or visa versa), or more
8301     // generally if the operand value disagrees with the register class we plan
8302     // to stick it in, fix the operand type.
8303     //
8304     // If this is an input value, the bitcast to the new type is done now.
8305     // Bitcast for output value is done at the end of visitInlineAsm().
8306     if ((OpInfo.Type == InlineAsm::isOutput ||
8307          OpInfo.Type == InlineAsm::isInput) &&
8308         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8309       // Try to convert to the first EVT that the reg class contains.  If the
8310       // types are identical size, use a bitcast to convert (e.g. two differing
8311       // vector types).  Note: output bitcast is done at the end of
8312       // visitInlineAsm().
8313       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8314         // Exclude indirect inputs while they are unsupported because the code
8315         // to perform the load is missing and thus OpInfo.CallOperand still
8316         // refers to the input address rather than the pointed-to value.
8317         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8318           OpInfo.CallOperand =
8319               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8320         OpInfo.ConstraintVT = RegVT;
8321         // If the operand is an FP value and we want it in integer registers,
8322         // use the corresponding integer type. This turns an f64 value into
8323         // i64, which can be passed with two i32 values on a 32-bit machine.
8324       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8325         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8326         if (OpInfo.Type == InlineAsm::isInput)
8327           OpInfo.CallOperand =
8328               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8329         OpInfo.ConstraintVT = VT;
8330       }
8331     }
8332   }
8333 
8334   // No need to allocate a matching input constraint since the constraint it's
8335   // matching to has already been allocated.
8336   if (OpInfo.isMatchingInputConstraint())
8337     return;
8338 
8339   EVT ValueVT = OpInfo.ConstraintVT;
8340   if (OpInfo.ConstraintVT == MVT::Other)
8341     ValueVT = RegVT;
8342 
8343   // Initialize NumRegs.
8344   unsigned NumRegs = 1;
8345   if (OpInfo.ConstraintVT != MVT::Other)
8346     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8347 
8348   // If this is a constraint for a specific physical register, like {r17},
8349   // assign it now.
8350 
8351   // If this associated to a specific register, initialize iterator to correct
8352   // place. If virtual, make sure we have enough registers
8353 
8354   // Initialize iterator if necessary
8355   TargetRegisterClass::iterator I = RC->begin();
8356   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8357 
8358   // Do not check for single registers.
8359   if (AssignedReg) {
8360       for (; *I != AssignedReg; ++I)
8361         assert(I != RC->end() && "AssignedReg should be member of RC");
8362   }
8363 
8364   for (; NumRegs; --NumRegs, ++I) {
8365     assert(I != RC->end() && "Ran out of registers to allocate!");
8366     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8367     Regs.push_back(R);
8368   }
8369 
8370   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8371 }
8372 
8373 static unsigned
8374 findMatchingInlineAsmOperand(unsigned OperandNo,
8375                              const std::vector<SDValue> &AsmNodeOperands) {
8376   // Scan until we find the definition we already emitted of this operand.
8377   unsigned CurOp = InlineAsm::Op_FirstOperand;
8378   for (; OperandNo; --OperandNo) {
8379     // Advance to the next operand.
8380     unsigned OpFlag =
8381         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8382     assert((InlineAsm::isRegDefKind(OpFlag) ||
8383             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8384             InlineAsm::isMemKind(OpFlag)) &&
8385            "Skipped past definitions?");
8386     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8387   }
8388   return CurOp;
8389 }
8390 
8391 namespace {
8392 
8393 class ExtraFlags {
8394   unsigned Flags = 0;
8395 
8396 public:
8397   explicit ExtraFlags(const CallBase &Call) {
8398     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8399     if (IA->hasSideEffects())
8400       Flags |= InlineAsm::Extra_HasSideEffects;
8401     if (IA->isAlignStack())
8402       Flags |= InlineAsm::Extra_IsAlignStack;
8403     if (Call.isConvergent())
8404       Flags |= InlineAsm::Extra_IsConvergent;
8405     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8406   }
8407 
8408   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8409     // Ideally, we would only check against memory constraints.  However, the
8410     // meaning of an Other constraint can be target-specific and we can't easily
8411     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8412     // for Other constraints as well.
8413     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8414         OpInfo.ConstraintType == TargetLowering::C_Other) {
8415       if (OpInfo.Type == InlineAsm::isInput)
8416         Flags |= InlineAsm::Extra_MayLoad;
8417       else if (OpInfo.Type == InlineAsm::isOutput)
8418         Flags |= InlineAsm::Extra_MayStore;
8419       else if (OpInfo.Type == InlineAsm::isClobber)
8420         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8421     }
8422   }
8423 
8424   unsigned get() const { return Flags; }
8425 };
8426 
8427 } // end anonymous namespace
8428 
8429 /// visitInlineAsm - Handle a call to an InlineAsm object.
8430 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8431                                          const BasicBlock *EHPadBB) {
8432   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8433 
8434   /// ConstraintOperands - Information about all of the constraints.
8435   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8436 
8437   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8438   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8439       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8440 
8441   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8442   // AsmDialect, MayLoad, MayStore).
8443   bool HasSideEffect = IA->hasSideEffects();
8444   ExtraFlags ExtraInfo(Call);
8445 
8446   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8447   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8448   unsigned NumMatchingOps = 0;
8449   for (auto &T : TargetConstraints) {
8450     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8451     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8452 
8453     // Compute the value type for each operand.
8454     if (OpInfo.Type == InlineAsm::isInput ||
8455         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8456       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8457 
8458       // Process the call argument. BasicBlocks are labels, currently appearing
8459       // only in asm's.
8460       if (isa<CallBrInst>(Call) &&
8461           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8462                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8463                         NumMatchingOps) &&
8464           (NumMatchingOps == 0 ||
8465            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8466                         NumMatchingOps))) {
8467         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8468         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8469         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8470       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8471         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8472       } else {
8473         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8474       }
8475 
8476       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8477                                            DAG.getDataLayout());
8478       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8479     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8480       // The return value of the call is this value.  As such, there is no
8481       // corresponding argument.
8482       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8483       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8484         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8485             DAG.getDataLayout(), STy->getElementType(ResNo));
8486       } else {
8487         assert(ResNo == 0 && "Asm only has one result!");
8488         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8489             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8490       }
8491       ++ResNo;
8492     } else {
8493       OpInfo.ConstraintVT = MVT::Other;
8494     }
8495 
8496     if (OpInfo.hasMatchingInput())
8497       ++NumMatchingOps;
8498 
8499     if (!HasSideEffect)
8500       HasSideEffect = OpInfo.hasMemory(TLI);
8501 
8502     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8503     // FIXME: Could we compute this on OpInfo rather than T?
8504 
8505     // Compute the constraint code and ConstraintType to use.
8506     TLI.ComputeConstraintToUse(T, SDValue());
8507 
8508     if (T.ConstraintType == TargetLowering::C_Immediate &&
8509         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8510       // We've delayed emitting a diagnostic like the "n" constraint because
8511       // inlining could cause an integer showing up.
8512       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8513                                           "' expects an integer constant "
8514                                           "expression");
8515 
8516     ExtraInfo.update(T);
8517   }
8518 
8519   // We won't need to flush pending loads if this asm doesn't touch
8520   // memory and is nonvolatile.
8521   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8522 
8523   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8524   if (EmitEHLabels) {
8525     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8526   }
8527   bool IsCallBr = isa<CallBrInst>(Call);
8528 
8529   if (IsCallBr || EmitEHLabels) {
8530     // If this is a callbr or invoke we need to flush pending exports since
8531     // inlineasm_br and invoke are terminators.
8532     // We need to do this before nodes are glued to the inlineasm_br node.
8533     Chain = getControlRoot();
8534   }
8535 
8536   MCSymbol *BeginLabel = nullptr;
8537   if (EmitEHLabels) {
8538     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8539   }
8540 
8541   // Second pass over the constraints: compute which constraint option to use.
8542   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8543     // If this is an output operand with a matching input operand, look up the
8544     // matching input. If their types mismatch, e.g. one is an integer, the
8545     // other is floating point, or their sizes are different, flag it as an
8546     // error.
8547     if (OpInfo.hasMatchingInput()) {
8548       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8549       patchMatchingInput(OpInfo, Input, DAG);
8550     }
8551 
8552     // Compute the constraint code and ConstraintType to use.
8553     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8554 
8555     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8556         OpInfo.Type == InlineAsm::isClobber)
8557       continue;
8558 
8559     // If this is a memory input, and if the operand is not indirect, do what we
8560     // need to provide an address for the memory input.
8561     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8562         !OpInfo.isIndirect) {
8563       assert((OpInfo.isMultipleAlternative ||
8564               (OpInfo.Type == InlineAsm::isInput)) &&
8565              "Can only indirectify direct input operands!");
8566 
8567       // Memory operands really want the address of the value.
8568       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8569 
8570       // There is no longer a Value* corresponding to this operand.
8571       OpInfo.CallOperandVal = nullptr;
8572 
8573       // It is now an indirect operand.
8574       OpInfo.isIndirect = true;
8575     }
8576 
8577   }
8578 
8579   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8580   std::vector<SDValue> AsmNodeOperands;
8581   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8582   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8583       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8584 
8585   // If we have a !srcloc metadata node associated with it, we want to attach
8586   // this to the ultimately generated inline asm machineinstr.  To do this, we
8587   // pass in the third operand as this (potentially null) inline asm MDNode.
8588   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8589   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8590 
8591   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8592   // bits as operand 3.
8593   AsmNodeOperands.push_back(DAG.getTargetConstant(
8594       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8595 
8596   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8597   // this, assign virtual and physical registers for inputs and otput.
8598   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8599     // Assign Registers.
8600     SDISelAsmOperandInfo &RefOpInfo =
8601         OpInfo.isMatchingInputConstraint()
8602             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8603             : OpInfo;
8604     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8605 
8606     auto DetectWriteToReservedRegister = [&]() {
8607       const MachineFunction &MF = DAG.getMachineFunction();
8608       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8609       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8610         if (Register::isPhysicalRegister(Reg) &&
8611             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8612           const char *RegName = TRI.getName(Reg);
8613           emitInlineAsmError(Call, "write to reserved register '" +
8614                                        Twine(RegName) + "'");
8615           return true;
8616         }
8617       }
8618       return false;
8619     };
8620 
8621     switch (OpInfo.Type) {
8622     case InlineAsm::isOutput:
8623       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8624         unsigned ConstraintID =
8625             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8626         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8627                "Failed to convert memory constraint code to constraint id.");
8628 
8629         // Add information to the INLINEASM node to know about this output.
8630         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8631         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8632         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8633                                                         MVT::i32));
8634         AsmNodeOperands.push_back(OpInfo.CallOperand);
8635       } else {
8636         // Otherwise, this outputs to a register (directly for C_Register /
8637         // C_RegisterClass, and a target-defined fashion for
8638         // C_Immediate/C_Other). Find a register that we can use.
8639         if (OpInfo.AssignedRegs.Regs.empty()) {
8640           emitInlineAsmError(
8641               Call, "couldn't allocate output register for constraint '" +
8642                         Twine(OpInfo.ConstraintCode) + "'");
8643           return;
8644         }
8645 
8646         if (DetectWriteToReservedRegister())
8647           return;
8648 
8649         // Add information to the INLINEASM node to know that this register is
8650         // set.
8651         OpInfo.AssignedRegs.AddInlineAsmOperands(
8652             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8653                                   : InlineAsm::Kind_RegDef,
8654             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8655       }
8656       break;
8657 
8658     case InlineAsm::isInput: {
8659       SDValue InOperandVal = OpInfo.CallOperand;
8660 
8661       if (OpInfo.isMatchingInputConstraint()) {
8662         // If this is required to match an output register we have already set,
8663         // just use its register.
8664         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8665                                                   AsmNodeOperands);
8666         unsigned OpFlag =
8667           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8668         if (InlineAsm::isRegDefKind(OpFlag) ||
8669             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8670           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8671           if (OpInfo.isIndirect) {
8672             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8673             emitInlineAsmError(Call, "inline asm not supported yet: "
8674                                      "don't know how to handle tied "
8675                                      "indirect register inputs");
8676             return;
8677           }
8678 
8679           SmallVector<unsigned, 4> Regs;
8680           MachineFunction &MF = DAG.getMachineFunction();
8681           MachineRegisterInfo &MRI = MF.getRegInfo();
8682           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8683           RegisterSDNode *R = dyn_cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8684           Register TiedReg = R->getReg();
8685           MVT RegVT = R->getSimpleValueType(0);
8686           const TargetRegisterClass *RC = TiedReg.isVirtual() ?
8687             MRI.getRegClass(TiedReg) : TRI.getMinimalPhysRegClass(TiedReg);
8688           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8689           for (unsigned i = 0; i != NumRegs; ++i)
8690             Regs.push_back(MRI.createVirtualRegister(RC));
8691 
8692           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8693 
8694           SDLoc dl = getCurSDLoc();
8695           // Use the produced MatchedRegs object to
8696           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8697           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8698                                            true, OpInfo.getMatchedOperand(), dl,
8699                                            DAG, AsmNodeOperands);
8700           break;
8701         }
8702 
8703         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8704         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8705                "Unexpected number of operands");
8706         // Add information to the INLINEASM node to know about this input.
8707         // See InlineAsm.h isUseOperandTiedToDef.
8708         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8709         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8710                                                     OpInfo.getMatchedOperand());
8711         AsmNodeOperands.push_back(DAG.getTargetConstant(
8712             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8713         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8714         break;
8715       }
8716 
8717       // Treat indirect 'X' constraint as memory.
8718       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8719           OpInfo.isIndirect)
8720         OpInfo.ConstraintType = TargetLowering::C_Memory;
8721 
8722       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8723           OpInfo.ConstraintType == TargetLowering::C_Other) {
8724         std::vector<SDValue> Ops;
8725         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8726                                           Ops, DAG);
8727         if (Ops.empty()) {
8728           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8729             if (isa<ConstantSDNode>(InOperandVal)) {
8730               emitInlineAsmError(Call, "value out of range for constraint '" +
8731                                            Twine(OpInfo.ConstraintCode) + "'");
8732               return;
8733             }
8734 
8735           emitInlineAsmError(Call,
8736                              "invalid operand for inline asm constraint '" +
8737                                  Twine(OpInfo.ConstraintCode) + "'");
8738           return;
8739         }
8740 
8741         // Add information to the INLINEASM node to know about this input.
8742         unsigned ResOpType =
8743           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8744         AsmNodeOperands.push_back(DAG.getTargetConstant(
8745             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8746         llvm::append_range(AsmNodeOperands, Ops);
8747         break;
8748       }
8749 
8750       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8751         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8752         assert(InOperandVal.getValueType() ==
8753                    TLI.getPointerTy(DAG.getDataLayout()) &&
8754                "Memory operands expect pointer values");
8755 
8756         unsigned ConstraintID =
8757             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8758         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8759                "Failed to convert memory constraint code to constraint id.");
8760 
8761         // Add information to the INLINEASM node to know about this input.
8762         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8763         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8764         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8765                                                         getCurSDLoc(),
8766                                                         MVT::i32));
8767         AsmNodeOperands.push_back(InOperandVal);
8768         break;
8769       }
8770 
8771       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8772               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8773              "Unknown constraint type!");
8774 
8775       // TODO: Support this.
8776       if (OpInfo.isIndirect) {
8777         emitInlineAsmError(
8778             Call, "Don't know how to handle indirect register inputs yet "
8779                   "for constraint '" +
8780                       Twine(OpInfo.ConstraintCode) + "'");
8781         return;
8782       }
8783 
8784       // Copy the input into the appropriate registers.
8785       if (OpInfo.AssignedRegs.Regs.empty()) {
8786         emitInlineAsmError(Call,
8787                            "couldn't allocate input reg for constraint '" +
8788                                Twine(OpInfo.ConstraintCode) + "'");
8789         return;
8790       }
8791 
8792       if (DetectWriteToReservedRegister())
8793         return;
8794 
8795       SDLoc dl = getCurSDLoc();
8796 
8797       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8798                                         &Call);
8799 
8800       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8801                                                dl, DAG, AsmNodeOperands);
8802       break;
8803     }
8804     case InlineAsm::isClobber:
8805       // Add the clobbered value to the operand list, so that the register
8806       // allocator is aware that the physreg got clobbered.
8807       if (!OpInfo.AssignedRegs.Regs.empty())
8808         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8809                                                  false, 0, getCurSDLoc(), DAG,
8810                                                  AsmNodeOperands);
8811       break;
8812     }
8813   }
8814 
8815   // Finish up input operands.  Set the input chain and add the flag last.
8816   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8817   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8818 
8819   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8820   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8821                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8822   Flag = Chain.getValue(1);
8823 
8824   // Do additional work to generate outputs.
8825 
8826   SmallVector<EVT, 1> ResultVTs;
8827   SmallVector<SDValue, 1> ResultValues;
8828   SmallVector<SDValue, 8> OutChains;
8829 
8830   llvm::Type *CallResultType = Call.getType();
8831   ArrayRef<Type *> ResultTypes;
8832   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8833     ResultTypes = StructResult->elements();
8834   else if (!CallResultType->isVoidTy())
8835     ResultTypes = makeArrayRef(CallResultType);
8836 
8837   auto CurResultType = ResultTypes.begin();
8838   auto handleRegAssign = [&](SDValue V) {
8839     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8840     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8841     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8842     ++CurResultType;
8843     // If the type of the inline asm call site return value is different but has
8844     // same size as the type of the asm output bitcast it.  One example of this
8845     // is for vectors with different width / number of elements.  This can
8846     // happen for register classes that can contain multiple different value
8847     // types.  The preg or vreg allocated may not have the same VT as was
8848     // expected.
8849     //
8850     // This can also happen for a return value that disagrees with the register
8851     // class it is put in, eg. a double in a general-purpose register on a
8852     // 32-bit machine.
8853     if (ResultVT != V.getValueType() &&
8854         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8855       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8856     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8857              V.getValueType().isInteger()) {
8858       // If a result value was tied to an input value, the computed result
8859       // may have a wider width than the expected result.  Extract the
8860       // relevant portion.
8861       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8862     }
8863     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8864     ResultVTs.push_back(ResultVT);
8865     ResultValues.push_back(V);
8866   };
8867 
8868   // Deal with output operands.
8869   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8870     if (OpInfo.Type == InlineAsm::isOutput) {
8871       SDValue Val;
8872       // Skip trivial output operands.
8873       if (OpInfo.AssignedRegs.Regs.empty())
8874         continue;
8875 
8876       switch (OpInfo.ConstraintType) {
8877       case TargetLowering::C_Register:
8878       case TargetLowering::C_RegisterClass:
8879         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8880                                                   Chain, &Flag, &Call);
8881         break;
8882       case TargetLowering::C_Immediate:
8883       case TargetLowering::C_Other:
8884         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8885                                               OpInfo, DAG);
8886         break;
8887       case TargetLowering::C_Memory:
8888         break; // Already handled.
8889       case TargetLowering::C_Unknown:
8890         assert(false && "Unexpected unknown constraint");
8891       }
8892 
8893       // Indirect output manifest as stores. Record output chains.
8894       if (OpInfo.isIndirect) {
8895         const Value *Ptr = OpInfo.CallOperandVal;
8896         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8897         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8898                                      MachinePointerInfo(Ptr));
8899         OutChains.push_back(Store);
8900       } else {
8901         // generate CopyFromRegs to associated registers.
8902         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8903         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8904           for (const SDValue &V : Val->op_values())
8905             handleRegAssign(V);
8906         } else
8907           handleRegAssign(Val);
8908       }
8909     }
8910   }
8911 
8912   // Set results.
8913   if (!ResultValues.empty()) {
8914     assert(CurResultType == ResultTypes.end() &&
8915            "Mismatch in number of ResultTypes");
8916     assert(ResultValues.size() == ResultTypes.size() &&
8917            "Mismatch in number of output operands in asm result");
8918 
8919     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8920                             DAG.getVTList(ResultVTs), ResultValues);
8921     setValue(&Call, V);
8922   }
8923 
8924   // Collect store chains.
8925   if (!OutChains.empty())
8926     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8927 
8928   if (EmitEHLabels) {
8929     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
8930   }
8931 
8932   // Only Update Root if inline assembly has a memory effect.
8933   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
8934       EmitEHLabels)
8935     DAG.setRoot(Chain);
8936 }
8937 
8938 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8939                                              const Twine &Message) {
8940   LLVMContext &Ctx = *DAG.getContext();
8941   Ctx.emitError(&Call, Message);
8942 
8943   // Make sure we leave the DAG in a valid state
8944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8945   SmallVector<EVT, 1> ValueVTs;
8946   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8947 
8948   if (ValueVTs.empty())
8949     return;
8950 
8951   SmallVector<SDValue, 1> Ops;
8952   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8953     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8954 
8955   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8956 }
8957 
8958 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8959   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8960                           MVT::Other, getRoot(),
8961                           getValue(I.getArgOperand(0)),
8962                           DAG.getSrcValue(I.getArgOperand(0))));
8963 }
8964 
8965 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8966   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8967   const DataLayout &DL = DAG.getDataLayout();
8968   SDValue V = DAG.getVAArg(
8969       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8970       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8971       DL.getABITypeAlign(I.getType()).value());
8972   DAG.setRoot(V.getValue(1));
8973 
8974   if (I.getType()->isPointerTy())
8975     V = DAG.getPtrExtOrTrunc(
8976         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8977   setValue(&I, V);
8978 }
8979 
8980 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8981   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8982                           MVT::Other, getRoot(),
8983                           getValue(I.getArgOperand(0)),
8984                           DAG.getSrcValue(I.getArgOperand(0))));
8985 }
8986 
8987 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8988   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8989                           MVT::Other, getRoot(),
8990                           getValue(I.getArgOperand(0)),
8991                           getValue(I.getArgOperand(1)),
8992                           DAG.getSrcValue(I.getArgOperand(0)),
8993                           DAG.getSrcValue(I.getArgOperand(1))));
8994 }
8995 
8996 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8997                                                     const Instruction &I,
8998                                                     SDValue Op) {
8999   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9000   if (!Range)
9001     return Op;
9002 
9003   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9004   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9005     return Op;
9006 
9007   APInt Lo = CR.getUnsignedMin();
9008   if (!Lo.isMinValue())
9009     return Op;
9010 
9011   APInt Hi = CR.getUnsignedMax();
9012   unsigned Bits = std::max(Hi.getActiveBits(),
9013                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9014 
9015   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9016 
9017   SDLoc SL = getCurSDLoc();
9018 
9019   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9020                              DAG.getValueType(SmallVT));
9021   unsigned NumVals = Op.getNode()->getNumValues();
9022   if (NumVals == 1)
9023     return ZExt;
9024 
9025   SmallVector<SDValue, 4> Ops;
9026 
9027   Ops.push_back(ZExt);
9028   for (unsigned I = 1; I != NumVals; ++I)
9029     Ops.push_back(Op.getValue(I));
9030 
9031   return DAG.getMergeValues(Ops, SL);
9032 }
9033 
9034 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9035 /// the call being lowered.
9036 ///
9037 /// This is a helper for lowering intrinsics that follow a target calling
9038 /// convention or require stack pointer adjustment. Only a subset of the
9039 /// intrinsic's operands need to participate in the calling convention.
9040 void SelectionDAGBuilder::populateCallLoweringInfo(
9041     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9042     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9043     bool IsPatchPoint) {
9044   TargetLowering::ArgListTy Args;
9045   Args.reserve(NumArgs);
9046 
9047   // Populate the argument list.
9048   // Attributes for args start at offset 1, after the return attribute.
9049   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9050        ArgI != ArgE; ++ArgI) {
9051     const Value *V = Call->getOperand(ArgI);
9052 
9053     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9054 
9055     TargetLowering::ArgListEntry Entry;
9056     Entry.Node = getValue(V);
9057     Entry.Ty = V->getType();
9058     Entry.setAttributes(Call, ArgI);
9059     Args.push_back(Entry);
9060   }
9061 
9062   CLI.setDebugLoc(getCurSDLoc())
9063       .setChain(getRoot())
9064       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9065       .setDiscardResult(Call->use_empty())
9066       .setIsPatchPoint(IsPatchPoint)
9067       .setIsPreallocated(
9068           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9069 }
9070 
9071 /// Add a stack map intrinsic call's live variable operands to a stackmap
9072 /// or patchpoint target node's operand list.
9073 ///
9074 /// Constants are converted to TargetConstants purely as an optimization to
9075 /// avoid constant materialization and register allocation.
9076 ///
9077 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9078 /// generate addess computation nodes, and so FinalizeISel can convert the
9079 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9080 /// address materialization and register allocation, but may also be required
9081 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9082 /// alloca in the entry block, then the runtime may assume that the alloca's
9083 /// StackMap location can be read immediately after compilation and that the
9084 /// location is valid at any point during execution (this is similar to the
9085 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9086 /// only available in a register, then the runtime would need to trap when
9087 /// execution reaches the StackMap in order to read the alloca's location.
9088 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9089                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9090                                 SelectionDAGBuilder &Builder) {
9091   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9092     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9093     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9094       Ops.push_back(
9095         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9096       Ops.push_back(
9097         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9098     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9099       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9100       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9101           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9102     } else
9103       Ops.push_back(OpVal);
9104   }
9105 }
9106 
9107 /// Lower llvm.experimental.stackmap directly to its target opcode.
9108 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9109   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9110   //                                  [live variables...])
9111 
9112   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9113 
9114   SDValue Chain, InFlag, Callee, NullPtr;
9115   SmallVector<SDValue, 32> Ops;
9116 
9117   SDLoc DL = getCurSDLoc();
9118   Callee = getValue(CI.getCalledOperand());
9119   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9120 
9121   // The stackmap intrinsic only records the live variables (the arguments
9122   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9123   // intrinsic, this won't be lowered to a function call. This means we don't
9124   // have to worry about calling conventions and target specific lowering code.
9125   // Instead we perform the call lowering right here.
9126   //
9127   // chain, flag = CALLSEQ_START(chain, 0, 0)
9128   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9129   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9130   //
9131   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9132   InFlag = Chain.getValue(1);
9133 
9134   // Add the <id> and <numBytes> constants.
9135   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9136   Ops.push_back(DAG.getTargetConstant(
9137                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9138   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9139   Ops.push_back(DAG.getTargetConstant(
9140                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9141                   MVT::i32));
9142 
9143   // Push live variables for the stack map.
9144   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9145 
9146   // We are not pushing any register mask info here on the operands list,
9147   // because the stackmap doesn't clobber anything.
9148 
9149   // Push the chain and the glue flag.
9150   Ops.push_back(Chain);
9151   Ops.push_back(InFlag);
9152 
9153   // Create the STACKMAP node.
9154   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9155   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9156   Chain = SDValue(SM, 0);
9157   InFlag = Chain.getValue(1);
9158 
9159   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9160 
9161   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9162 
9163   // Set the root to the target-lowered call chain.
9164   DAG.setRoot(Chain);
9165 
9166   // Inform the Frame Information that we have a stackmap in this function.
9167   FuncInfo.MF->getFrameInfo().setHasStackMap();
9168 }
9169 
9170 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9171 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9172                                           const BasicBlock *EHPadBB) {
9173   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9174   //                                                 i32 <numBytes>,
9175   //                                                 i8* <target>,
9176   //                                                 i32 <numArgs>,
9177   //                                                 [Args...],
9178   //                                                 [live variables...])
9179 
9180   CallingConv::ID CC = CB.getCallingConv();
9181   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9182   bool HasDef = !CB.getType()->isVoidTy();
9183   SDLoc dl = getCurSDLoc();
9184   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9185 
9186   // Handle immediate and symbolic callees.
9187   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9188     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9189                                    /*isTarget=*/true);
9190   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9191     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9192                                          SDLoc(SymbolicCallee),
9193                                          SymbolicCallee->getValueType(0));
9194 
9195   // Get the real number of arguments participating in the call <numArgs>
9196   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9197   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9198 
9199   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9200   // Intrinsics include all meta-operands up to but not including CC.
9201   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9202   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9203          "Not enough arguments provided to the patchpoint intrinsic");
9204 
9205   // For AnyRegCC the arguments are lowered later on manually.
9206   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9207   Type *ReturnTy =
9208       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9209 
9210   TargetLowering::CallLoweringInfo CLI(DAG);
9211   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9212                            ReturnTy, true);
9213   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9214 
9215   SDNode *CallEnd = Result.second.getNode();
9216   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9217     CallEnd = CallEnd->getOperand(0).getNode();
9218 
9219   /// Get a call instruction from the call sequence chain.
9220   /// Tail calls are not allowed.
9221   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9222          "Expected a callseq node.");
9223   SDNode *Call = CallEnd->getOperand(0).getNode();
9224   bool HasGlue = Call->getGluedNode();
9225 
9226   // Replace the target specific call node with the patchable intrinsic.
9227   SmallVector<SDValue, 8> Ops;
9228 
9229   // Add the <id> and <numBytes> constants.
9230   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9231   Ops.push_back(DAG.getTargetConstant(
9232                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9233   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9234   Ops.push_back(DAG.getTargetConstant(
9235                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9236                   MVT::i32));
9237 
9238   // Add the callee.
9239   Ops.push_back(Callee);
9240 
9241   // Adjust <numArgs> to account for any arguments that have been passed on the
9242   // stack instead.
9243   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9244   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9245   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9246   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9247 
9248   // Add the calling convention
9249   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9250 
9251   // Add the arguments we omitted previously. The register allocator should
9252   // place these in any free register.
9253   if (IsAnyRegCC)
9254     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9255       Ops.push_back(getValue(CB.getArgOperand(i)));
9256 
9257   // Push the arguments from the call instruction up to the register mask.
9258   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9259   Ops.append(Call->op_begin() + 2, e);
9260 
9261   // Push live variables for the stack map.
9262   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9263 
9264   // Push the register mask info.
9265   if (HasGlue)
9266     Ops.push_back(*(Call->op_end()-2));
9267   else
9268     Ops.push_back(*(Call->op_end()-1));
9269 
9270   // Push the chain (this is originally the first operand of the call, but
9271   // becomes now the last or second to last operand).
9272   Ops.push_back(*(Call->op_begin()));
9273 
9274   // Push the glue flag (last operand).
9275   if (HasGlue)
9276     Ops.push_back(*(Call->op_end()-1));
9277 
9278   SDVTList NodeTys;
9279   if (IsAnyRegCC && HasDef) {
9280     // Create the return types based on the intrinsic definition
9281     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9282     SmallVector<EVT, 3> ValueVTs;
9283     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9284     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9285 
9286     // There is always a chain and a glue type at the end
9287     ValueVTs.push_back(MVT::Other);
9288     ValueVTs.push_back(MVT::Glue);
9289     NodeTys = DAG.getVTList(ValueVTs);
9290   } else
9291     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9292 
9293   // Replace the target specific call node with a PATCHPOINT node.
9294   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9295                                          dl, NodeTys, Ops);
9296 
9297   // Update the NodeMap.
9298   if (HasDef) {
9299     if (IsAnyRegCC)
9300       setValue(&CB, SDValue(MN, 0));
9301     else
9302       setValue(&CB, Result.first);
9303   }
9304 
9305   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9306   // call sequence. Furthermore the location of the chain and glue can change
9307   // when the AnyReg calling convention is used and the intrinsic returns a
9308   // value.
9309   if (IsAnyRegCC && HasDef) {
9310     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9311     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9312     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9313   } else
9314     DAG.ReplaceAllUsesWith(Call, MN);
9315   DAG.DeleteNode(Call);
9316 
9317   // Inform the Frame Information that we have a patchpoint in this function.
9318   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9319 }
9320 
9321 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9322                                             unsigned Intrinsic) {
9323   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9324   SDValue Op1 = getValue(I.getArgOperand(0));
9325   SDValue Op2;
9326   if (I.getNumArgOperands() > 1)
9327     Op2 = getValue(I.getArgOperand(1));
9328   SDLoc dl = getCurSDLoc();
9329   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9330   SDValue Res;
9331   SDNodeFlags SDFlags;
9332   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9333     SDFlags.copyFMF(*FPMO);
9334 
9335   switch (Intrinsic) {
9336   case Intrinsic::vector_reduce_fadd:
9337     if (SDFlags.hasAllowReassociation())
9338       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9339                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9340                         SDFlags);
9341     else
9342       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9343     break;
9344   case Intrinsic::vector_reduce_fmul:
9345     if (SDFlags.hasAllowReassociation())
9346       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9347                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9348                         SDFlags);
9349     else
9350       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9351     break;
9352   case Intrinsic::vector_reduce_add:
9353     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9354     break;
9355   case Intrinsic::vector_reduce_mul:
9356     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9357     break;
9358   case Intrinsic::vector_reduce_and:
9359     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9360     break;
9361   case Intrinsic::vector_reduce_or:
9362     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9363     break;
9364   case Intrinsic::vector_reduce_xor:
9365     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9366     break;
9367   case Intrinsic::vector_reduce_smax:
9368     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9369     break;
9370   case Intrinsic::vector_reduce_smin:
9371     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9372     break;
9373   case Intrinsic::vector_reduce_umax:
9374     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9375     break;
9376   case Intrinsic::vector_reduce_umin:
9377     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9378     break;
9379   case Intrinsic::vector_reduce_fmax:
9380     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9381     break;
9382   case Intrinsic::vector_reduce_fmin:
9383     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9384     break;
9385   default:
9386     llvm_unreachable("Unhandled vector reduce intrinsic");
9387   }
9388   setValue(&I, Res);
9389 }
9390 
9391 /// Returns an AttributeList representing the attributes applied to the return
9392 /// value of the given call.
9393 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9394   SmallVector<Attribute::AttrKind, 2> Attrs;
9395   if (CLI.RetSExt)
9396     Attrs.push_back(Attribute::SExt);
9397   if (CLI.RetZExt)
9398     Attrs.push_back(Attribute::ZExt);
9399   if (CLI.IsInReg)
9400     Attrs.push_back(Attribute::InReg);
9401 
9402   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9403                             Attrs);
9404 }
9405 
9406 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9407 /// implementation, which just calls LowerCall.
9408 /// FIXME: When all targets are
9409 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9410 std::pair<SDValue, SDValue>
9411 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9412   // Handle the incoming return values from the call.
9413   CLI.Ins.clear();
9414   Type *OrigRetTy = CLI.RetTy;
9415   SmallVector<EVT, 4> RetTys;
9416   SmallVector<uint64_t, 4> Offsets;
9417   auto &DL = CLI.DAG.getDataLayout();
9418   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9419 
9420   if (CLI.IsPostTypeLegalization) {
9421     // If we are lowering a libcall after legalization, split the return type.
9422     SmallVector<EVT, 4> OldRetTys;
9423     SmallVector<uint64_t, 4> OldOffsets;
9424     RetTys.swap(OldRetTys);
9425     Offsets.swap(OldOffsets);
9426 
9427     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9428       EVT RetVT = OldRetTys[i];
9429       uint64_t Offset = OldOffsets[i];
9430       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9431       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9432       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9433       RetTys.append(NumRegs, RegisterVT);
9434       for (unsigned j = 0; j != NumRegs; ++j)
9435         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9436     }
9437   }
9438 
9439   SmallVector<ISD::OutputArg, 4> Outs;
9440   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9441 
9442   bool CanLowerReturn =
9443       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9444                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9445 
9446   SDValue DemoteStackSlot;
9447   int DemoteStackIdx = -100;
9448   if (!CanLowerReturn) {
9449     // FIXME: equivalent assert?
9450     // assert(!CS.hasInAllocaArgument() &&
9451     //        "sret demotion is incompatible with inalloca");
9452     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9453     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9454     MachineFunction &MF = CLI.DAG.getMachineFunction();
9455     DemoteStackIdx =
9456         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9457     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9458                                               DL.getAllocaAddrSpace());
9459 
9460     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9461     ArgListEntry Entry;
9462     Entry.Node = DemoteStackSlot;
9463     Entry.Ty = StackSlotPtrType;
9464     Entry.IsSExt = false;
9465     Entry.IsZExt = false;
9466     Entry.IsInReg = false;
9467     Entry.IsSRet = true;
9468     Entry.IsNest = false;
9469     Entry.IsByVal = false;
9470     Entry.IsByRef = false;
9471     Entry.IsReturned = false;
9472     Entry.IsSwiftSelf = false;
9473     Entry.IsSwiftAsync = false;
9474     Entry.IsSwiftError = false;
9475     Entry.IsCFGuardTarget = false;
9476     Entry.Alignment = Alignment;
9477     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9478     CLI.NumFixedArgs += 1;
9479     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9480 
9481     // sret demotion isn't compatible with tail-calls, since the sret argument
9482     // points into the callers stack frame.
9483     CLI.IsTailCall = false;
9484   } else {
9485     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9486         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9487     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9488       ISD::ArgFlagsTy Flags;
9489       if (NeedsRegBlock) {
9490         Flags.setInConsecutiveRegs();
9491         if (I == RetTys.size() - 1)
9492           Flags.setInConsecutiveRegsLast();
9493       }
9494       EVT VT = RetTys[I];
9495       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9496                                                      CLI.CallConv, VT);
9497       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9498                                                        CLI.CallConv, VT);
9499       for (unsigned i = 0; i != NumRegs; ++i) {
9500         ISD::InputArg MyFlags;
9501         MyFlags.Flags = Flags;
9502         MyFlags.VT = RegisterVT;
9503         MyFlags.ArgVT = VT;
9504         MyFlags.Used = CLI.IsReturnValueUsed;
9505         if (CLI.RetTy->isPointerTy()) {
9506           MyFlags.Flags.setPointer();
9507           MyFlags.Flags.setPointerAddrSpace(
9508               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9509         }
9510         if (CLI.RetSExt)
9511           MyFlags.Flags.setSExt();
9512         if (CLI.RetZExt)
9513           MyFlags.Flags.setZExt();
9514         if (CLI.IsInReg)
9515           MyFlags.Flags.setInReg();
9516         CLI.Ins.push_back(MyFlags);
9517       }
9518     }
9519   }
9520 
9521   // We push in swifterror return as the last element of CLI.Ins.
9522   ArgListTy &Args = CLI.getArgs();
9523   if (supportSwiftError()) {
9524     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9525       if (Args[i].IsSwiftError) {
9526         ISD::InputArg MyFlags;
9527         MyFlags.VT = getPointerTy(DL);
9528         MyFlags.ArgVT = EVT(getPointerTy(DL));
9529         MyFlags.Flags.setSwiftError();
9530         CLI.Ins.push_back(MyFlags);
9531       }
9532     }
9533   }
9534 
9535   // Handle all of the outgoing arguments.
9536   CLI.Outs.clear();
9537   CLI.OutVals.clear();
9538   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9539     SmallVector<EVT, 4> ValueVTs;
9540     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9541     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9542     Type *FinalType = Args[i].Ty;
9543     if (Args[i].IsByVal)
9544       FinalType = Args[i].IndirectType;
9545     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9546         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9547     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9548          ++Value) {
9549       EVT VT = ValueVTs[Value];
9550       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9551       SDValue Op = SDValue(Args[i].Node.getNode(),
9552                            Args[i].Node.getResNo() + Value);
9553       ISD::ArgFlagsTy Flags;
9554 
9555       // Certain targets (such as MIPS), may have a different ABI alignment
9556       // for a type depending on the context. Give the target a chance to
9557       // specify the alignment it wants.
9558       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9559       Flags.setOrigAlign(OriginalAlignment);
9560 
9561       if (Args[i].Ty->isPointerTy()) {
9562         Flags.setPointer();
9563         Flags.setPointerAddrSpace(
9564             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9565       }
9566       if (Args[i].IsZExt)
9567         Flags.setZExt();
9568       if (Args[i].IsSExt)
9569         Flags.setSExt();
9570       if (Args[i].IsInReg) {
9571         // If we are using vectorcall calling convention, a structure that is
9572         // passed InReg - is surely an HVA
9573         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9574             isa<StructType>(FinalType)) {
9575           // The first value of a structure is marked
9576           if (0 == Value)
9577             Flags.setHvaStart();
9578           Flags.setHva();
9579         }
9580         // Set InReg Flag
9581         Flags.setInReg();
9582       }
9583       if (Args[i].IsSRet)
9584         Flags.setSRet();
9585       if (Args[i].IsSwiftSelf)
9586         Flags.setSwiftSelf();
9587       if (Args[i].IsSwiftAsync)
9588         Flags.setSwiftAsync();
9589       if (Args[i].IsSwiftError)
9590         Flags.setSwiftError();
9591       if (Args[i].IsCFGuardTarget)
9592         Flags.setCFGuardTarget();
9593       if (Args[i].IsByVal)
9594         Flags.setByVal();
9595       if (Args[i].IsByRef)
9596         Flags.setByRef();
9597       if (Args[i].IsPreallocated) {
9598         Flags.setPreallocated();
9599         // Set the byval flag for CCAssignFn callbacks that don't know about
9600         // preallocated.  This way we can know how many bytes we should've
9601         // allocated and how many bytes a callee cleanup function will pop.  If
9602         // we port preallocated to more targets, we'll have to add custom
9603         // preallocated handling in the various CC lowering callbacks.
9604         Flags.setByVal();
9605       }
9606       if (Args[i].IsInAlloca) {
9607         Flags.setInAlloca();
9608         // Set the byval flag for CCAssignFn callbacks that don't know about
9609         // inalloca.  This way we can know how many bytes we should've allocated
9610         // and how many bytes a callee cleanup function will pop.  If we port
9611         // inalloca to more targets, we'll have to add custom inalloca handling
9612         // in the various CC lowering callbacks.
9613         Flags.setByVal();
9614       }
9615       Align MemAlign;
9616       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9617         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9618         Flags.setByValSize(FrameSize);
9619 
9620         // info is not there but there are cases it cannot get right.
9621         if (auto MA = Args[i].Alignment)
9622           MemAlign = *MA;
9623         else
9624           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9625       } else if (auto MA = Args[i].Alignment) {
9626         MemAlign = *MA;
9627       } else {
9628         MemAlign = OriginalAlignment;
9629       }
9630       Flags.setMemAlign(MemAlign);
9631       if (Args[i].IsNest)
9632         Flags.setNest();
9633       if (NeedsRegBlock)
9634         Flags.setInConsecutiveRegs();
9635 
9636       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9637                                                  CLI.CallConv, VT);
9638       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9639                                                         CLI.CallConv, VT);
9640       SmallVector<SDValue, 4> Parts(NumParts);
9641       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9642 
9643       if (Args[i].IsSExt)
9644         ExtendKind = ISD::SIGN_EXTEND;
9645       else if (Args[i].IsZExt)
9646         ExtendKind = ISD::ZERO_EXTEND;
9647 
9648       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9649       // for now.
9650       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9651           CanLowerReturn) {
9652         assert((CLI.RetTy == Args[i].Ty ||
9653                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9654                  CLI.RetTy->getPointerAddressSpace() ==
9655                      Args[i].Ty->getPointerAddressSpace())) &&
9656                RetTys.size() == NumValues && "unexpected use of 'returned'");
9657         // Before passing 'returned' to the target lowering code, ensure that
9658         // either the register MVT and the actual EVT are the same size or that
9659         // the return value and argument are extended in the same way; in these
9660         // cases it's safe to pass the argument register value unchanged as the
9661         // return register value (although it's at the target's option whether
9662         // to do so)
9663         // TODO: allow code generation to take advantage of partially preserved
9664         // registers rather than clobbering the entire register when the
9665         // parameter extension method is not compatible with the return
9666         // extension method
9667         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9668             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9669              CLI.RetZExt == Args[i].IsZExt))
9670           Flags.setReturned();
9671       }
9672 
9673       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9674                      CLI.CallConv, ExtendKind);
9675 
9676       for (unsigned j = 0; j != NumParts; ++j) {
9677         // if it isn't first piece, alignment must be 1
9678         // For scalable vectors the scalable part is currently handled
9679         // by individual targets, so we just use the known minimum size here.
9680         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9681                     i < CLI.NumFixedArgs, i,
9682                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9683         if (NumParts > 1 && j == 0)
9684           MyFlags.Flags.setSplit();
9685         else if (j != 0) {
9686           MyFlags.Flags.setOrigAlign(Align(1));
9687           if (j == NumParts - 1)
9688             MyFlags.Flags.setSplitEnd();
9689         }
9690 
9691         CLI.Outs.push_back(MyFlags);
9692         CLI.OutVals.push_back(Parts[j]);
9693       }
9694 
9695       if (NeedsRegBlock && Value == NumValues - 1)
9696         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9697     }
9698   }
9699 
9700   SmallVector<SDValue, 4> InVals;
9701   CLI.Chain = LowerCall(CLI, InVals);
9702 
9703   // Update CLI.InVals to use outside of this function.
9704   CLI.InVals = InVals;
9705 
9706   // Verify that the target's LowerCall behaved as expected.
9707   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9708          "LowerCall didn't return a valid chain!");
9709   assert((!CLI.IsTailCall || InVals.empty()) &&
9710          "LowerCall emitted a return value for a tail call!");
9711   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9712          "LowerCall didn't emit the correct number of values!");
9713 
9714   // For a tail call, the return value is merely live-out and there aren't
9715   // any nodes in the DAG representing it. Return a special value to
9716   // indicate that a tail call has been emitted and no more Instructions
9717   // should be processed in the current block.
9718   if (CLI.IsTailCall) {
9719     CLI.DAG.setRoot(CLI.Chain);
9720     return std::make_pair(SDValue(), SDValue());
9721   }
9722 
9723 #ifndef NDEBUG
9724   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9725     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9726     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9727            "LowerCall emitted a value with the wrong type!");
9728   }
9729 #endif
9730 
9731   SmallVector<SDValue, 4> ReturnValues;
9732   if (!CanLowerReturn) {
9733     // The instruction result is the result of loading from the
9734     // hidden sret parameter.
9735     SmallVector<EVT, 1> PVTs;
9736     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9737 
9738     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9739     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9740     EVT PtrVT = PVTs[0];
9741 
9742     unsigned NumValues = RetTys.size();
9743     ReturnValues.resize(NumValues);
9744     SmallVector<SDValue, 4> Chains(NumValues);
9745 
9746     // An aggregate return value cannot wrap around the address space, so
9747     // offsets to its parts don't wrap either.
9748     SDNodeFlags Flags;
9749     Flags.setNoUnsignedWrap(true);
9750 
9751     MachineFunction &MF = CLI.DAG.getMachineFunction();
9752     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9753     for (unsigned i = 0; i < NumValues; ++i) {
9754       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9755                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9756                                                         PtrVT), Flags);
9757       SDValue L = CLI.DAG.getLoad(
9758           RetTys[i], CLI.DL, CLI.Chain, Add,
9759           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9760                                             DemoteStackIdx, Offsets[i]),
9761           HiddenSRetAlign);
9762       ReturnValues[i] = L;
9763       Chains[i] = L.getValue(1);
9764     }
9765 
9766     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9767   } else {
9768     // Collect the legal value parts into potentially illegal values
9769     // that correspond to the original function's return values.
9770     Optional<ISD::NodeType> AssertOp;
9771     if (CLI.RetSExt)
9772       AssertOp = ISD::AssertSext;
9773     else if (CLI.RetZExt)
9774       AssertOp = ISD::AssertZext;
9775     unsigned CurReg = 0;
9776     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9777       EVT VT = RetTys[I];
9778       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9779                                                      CLI.CallConv, VT);
9780       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9781                                                        CLI.CallConv, VT);
9782 
9783       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9784                                               NumRegs, RegisterVT, VT, nullptr,
9785                                               CLI.CallConv, AssertOp));
9786       CurReg += NumRegs;
9787     }
9788 
9789     // For a function returning void, there is no return value. We can't create
9790     // such a node, so we just return a null return value in that case. In
9791     // that case, nothing will actually look at the value.
9792     if (ReturnValues.empty())
9793       return std::make_pair(SDValue(), CLI.Chain);
9794   }
9795 
9796   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9797                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9798   return std::make_pair(Res, CLI.Chain);
9799 }
9800 
9801 /// Places new result values for the node in Results (their number
9802 /// and types must exactly match those of the original return values of
9803 /// the node), or leaves Results empty, which indicates that the node is not
9804 /// to be custom lowered after all.
9805 void TargetLowering::LowerOperationWrapper(SDNode *N,
9806                                            SmallVectorImpl<SDValue> &Results,
9807                                            SelectionDAG &DAG) const {
9808   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9809 
9810   if (!Res.getNode())
9811     return;
9812 
9813   // If the original node has one result, take the return value from
9814   // LowerOperation as is. It might not be result number 0.
9815   if (N->getNumValues() == 1) {
9816     Results.push_back(Res);
9817     return;
9818   }
9819 
9820   // If the original node has multiple results, then the return node should
9821   // have the same number of results.
9822   assert((N->getNumValues() == Res->getNumValues()) &&
9823       "Lowering returned the wrong number of results!");
9824 
9825   // Places new result values base on N result number.
9826   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9827     Results.push_back(Res.getValue(I));
9828 }
9829 
9830 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9831   llvm_unreachable("LowerOperation not implemented for this target!");
9832 }
9833 
9834 void
9835 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9836   SDValue Op = getNonRegisterValue(V);
9837   assert((Op.getOpcode() != ISD::CopyFromReg ||
9838           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9839          "Copy from a reg to the same reg!");
9840   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9841 
9842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9843   // If this is an InlineAsm we have to match the registers required, not the
9844   // notional registers required by the type.
9845 
9846   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9847                    None); // This is not an ABI copy.
9848   SDValue Chain = DAG.getEntryNode();
9849 
9850   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9851                               FuncInfo.PreferredExtendType.end())
9852                                  ? ISD::ANY_EXTEND
9853                                  : FuncInfo.PreferredExtendType[V];
9854   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9855   PendingExports.push_back(Chain);
9856 }
9857 
9858 #include "llvm/CodeGen/SelectionDAGISel.h"
9859 
9860 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9861 /// entry block, return true.  This includes arguments used by switches, since
9862 /// the switch may expand into multiple basic blocks.
9863 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9864   // With FastISel active, we may be splitting blocks, so force creation
9865   // of virtual registers for all non-dead arguments.
9866   if (FastISel)
9867     return A->use_empty();
9868 
9869   const BasicBlock &Entry = A->getParent()->front();
9870   for (const User *U : A->users())
9871     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9872       return false;  // Use not in entry block.
9873 
9874   return true;
9875 }
9876 
9877 using ArgCopyElisionMapTy =
9878     DenseMap<const Argument *,
9879              std::pair<const AllocaInst *, const StoreInst *>>;
9880 
9881 /// Scan the entry block of the function in FuncInfo for arguments that look
9882 /// like copies into a local alloca. Record any copied arguments in
9883 /// ArgCopyElisionCandidates.
9884 static void
9885 findArgumentCopyElisionCandidates(const DataLayout &DL,
9886                                   FunctionLoweringInfo *FuncInfo,
9887                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9888   // Record the state of every static alloca used in the entry block. Argument
9889   // allocas are all used in the entry block, so we need approximately as many
9890   // entries as we have arguments.
9891   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9892   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9893   unsigned NumArgs = FuncInfo->Fn->arg_size();
9894   StaticAllocas.reserve(NumArgs * 2);
9895 
9896   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9897     if (!V)
9898       return nullptr;
9899     V = V->stripPointerCasts();
9900     const auto *AI = dyn_cast<AllocaInst>(V);
9901     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9902       return nullptr;
9903     auto Iter = StaticAllocas.insert({AI, Unknown});
9904     return &Iter.first->second;
9905   };
9906 
9907   // Look for stores of arguments to static allocas. Look through bitcasts and
9908   // GEPs to handle type coercions, as long as the alloca is fully initialized
9909   // by the store. Any non-store use of an alloca escapes it and any subsequent
9910   // unanalyzed store might write it.
9911   // FIXME: Handle structs initialized with multiple stores.
9912   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9913     // Look for stores, and handle non-store uses conservatively.
9914     const auto *SI = dyn_cast<StoreInst>(&I);
9915     if (!SI) {
9916       // We will look through cast uses, so ignore them completely.
9917       if (I.isCast())
9918         continue;
9919       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9920       // to allocas.
9921       if (I.isDebugOrPseudoInst())
9922         continue;
9923       // This is an unknown instruction. Assume it escapes or writes to all
9924       // static alloca operands.
9925       for (const Use &U : I.operands()) {
9926         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9927           *Info = StaticAllocaInfo::Clobbered;
9928       }
9929       continue;
9930     }
9931 
9932     // If the stored value is a static alloca, mark it as escaped.
9933     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9934       *Info = StaticAllocaInfo::Clobbered;
9935 
9936     // Check if the destination is a static alloca.
9937     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9938     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9939     if (!Info)
9940       continue;
9941     const AllocaInst *AI = cast<AllocaInst>(Dst);
9942 
9943     // Skip allocas that have been initialized or clobbered.
9944     if (*Info != StaticAllocaInfo::Unknown)
9945       continue;
9946 
9947     // Check if the stored value is an argument, and that this store fully
9948     // initializes the alloca.
9949     // If the argument type has padding bits we can't directly forward a pointer
9950     // as the upper bits may contain garbage.
9951     // Don't elide copies from the same argument twice.
9952     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9953     const auto *Arg = dyn_cast<Argument>(Val);
9954     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9955         Arg->getType()->isEmptyTy() ||
9956         DL.getTypeStoreSize(Arg->getType()) !=
9957             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9958         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
9959         ArgCopyElisionCandidates.count(Arg)) {
9960       *Info = StaticAllocaInfo::Clobbered;
9961       continue;
9962     }
9963 
9964     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9965                       << '\n');
9966 
9967     // Mark this alloca and store for argument copy elision.
9968     *Info = StaticAllocaInfo::Elidable;
9969     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9970 
9971     // Stop scanning if we've seen all arguments. This will happen early in -O0
9972     // builds, which is useful, because -O0 builds have large entry blocks and
9973     // many allocas.
9974     if (ArgCopyElisionCandidates.size() == NumArgs)
9975       break;
9976   }
9977 }
9978 
9979 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9980 /// ArgVal is a load from a suitable fixed stack object.
9981 static void tryToElideArgumentCopy(
9982     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9983     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9984     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9985     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9986     SDValue ArgVal, bool &ArgHasUses) {
9987   // Check if this is a load from a fixed stack object.
9988   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9989   if (!LNode)
9990     return;
9991   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9992   if (!FINode)
9993     return;
9994 
9995   // Check that the fixed stack object is the right size and alignment.
9996   // Look at the alignment that the user wrote on the alloca instead of looking
9997   // at the stack object.
9998   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9999   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10000   const AllocaInst *AI = ArgCopyIter->second.first;
10001   int FixedIndex = FINode->getIndex();
10002   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10003   int OldIndex = AllocaIndex;
10004   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10005   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10006     LLVM_DEBUG(
10007         dbgs() << "  argument copy elision failed due to bad fixed stack "
10008                   "object size\n");
10009     return;
10010   }
10011   Align RequiredAlignment = AI->getAlign();
10012   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10013     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10014                          "greater than stack argument alignment ("
10015                       << DebugStr(RequiredAlignment) << " vs "
10016                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10017     return;
10018   }
10019 
10020   // Perform the elision. Delete the old stack object and replace its only use
10021   // in the variable info map. Mark the stack object as mutable.
10022   LLVM_DEBUG({
10023     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10024            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10025            << '\n';
10026   });
10027   MFI.RemoveStackObject(OldIndex);
10028   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10029   AllocaIndex = FixedIndex;
10030   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10031   Chains.push_back(ArgVal.getValue(1));
10032 
10033   // Avoid emitting code for the store implementing the copy.
10034   const StoreInst *SI = ArgCopyIter->second.second;
10035   ElidedArgCopyInstrs.insert(SI);
10036 
10037   // Check for uses of the argument again so that we can avoid exporting ArgVal
10038   // if it is't used by anything other than the store.
10039   for (const Value *U : Arg.users()) {
10040     if (U != SI) {
10041       ArgHasUses = true;
10042       break;
10043     }
10044   }
10045 }
10046 
10047 void SelectionDAGISel::LowerArguments(const Function &F) {
10048   SelectionDAG &DAG = SDB->DAG;
10049   SDLoc dl = SDB->getCurSDLoc();
10050   const DataLayout &DL = DAG.getDataLayout();
10051   SmallVector<ISD::InputArg, 16> Ins;
10052 
10053   // In Naked functions we aren't going to save any registers.
10054   if (F.hasFnAttribute(Attribute::Naked))
10055     return;
10056 
10057   if (!FuncInfo->CanLowerReturn) {
10058     // Put in an sret pointer parameter before all the other parameters.
10059     SmallVector<EVT, 1> ValueVTs;
10060     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10061                     F.getReturnType()->getPointerTo(
10062                         DAG.getDataLayout().getAllocaAddrSpace()),
10063                     ValueVTs);
10064 
10065     // NOTE: Assuming that a pointer will never break down to more than one VT
10066     // or one register.
10067     ISD::ArgFlagsTy Flags;
10068     Flags.setSRet();
10069     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10070     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10071                          ISD::InputArg::NoArgIndex, 0);
10072     Ins.push_back(RetArg);
10073   }
10074 
10075   // Look for stores of arguments to static allocas. Mark such arguments with a
10076   // flag to ask the target to give us the memory location of that argument if
10077   // available.
10078   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10079   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10080                                     ArgCopyElisionCandidates);
10081 
10082   // Set up the incoming argument description vector.
10083   for (const Argument &Arg : F.args()) {
10084     unsigned ArgNo = Arg.getArgNo();
10085     SmallVector<EVT, 4> ValueVTs;
10086     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10087     bool isArgValueUsed = !Arg.use_empty();
10088     unsigned PartBase = 0;
10089     Type *FinalType = Arg.getType();
10090     if (Arg.hasAttribute(Attribute::ByVal))
10091       FinalType = Arg.getParamByValType();
10092     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10093         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10094     for (unsigned Value = 0, NumValues = ValueVTs.size();
10095          Value != NumValues; ++Value) {
10096       EVT VT = ValueVTs[Value];
10097       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10098       ISD::ArgFlagsTy Flags;
10099 
10100 
10101       if (Arg.getType()->isPointerTy()) {
10102         Flags.setPointer();
10103         Flags.setPointerAddrSpace(
10104             cast<PointerType>(Arg.getType())->getAddressSpace());
10105       }
10106       if (Arg.hasAttribute(Attribute::ZExt))
10107         Flags.setZExt();
10108       if (Arg.hasAttribute(Attribute::SExt))
10109         Flags.setSExt();
10110       if (Arg.hasAttribute(Attribute::InReg)) {
10111         // If we are using vectorcall calling convention, a structure that is
10112         // passed InReg - is surely an HVA
10113         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10114             isa<StructType>(Arg.getType())) {
10115           // The first value of a structure is marked
10116           if (0 == Value)
10117             Flags.setHvaStart();
10118           Flags.setHva();
10119         }
10120         // Set InReg Flag
10121         Flags.setInReg();
10122       }
10123       if (Arg.hasAttribute(Attribute::StructRet))
10124         Flags.setSRet();
10125       if (Arg.hasAttribute(Attribute::SwiftSelf))
10126         Flags.setSwiftSelf();
10127       if (Arg.hasAttribute(Attribute::SwiftAsync))
10128         Flags.setSwiftAsync();
10129       if (Arg.hasAttribute(Attribute::SwiftError))
10130         Flags.setSwiftError();
10131       if (Arg.hasAttribute(Attribute::ByVal))
10132         Flags.setByVal();
10133       if (Arg.hasAttribute(Attribute::ByRef))
10134         Flags.setByRef();
10135       if (Arg.hasAttribute(Attribute::InAlloca)) {
10136         Flags.setInAlloca();
10137         // Set the byval flag for CCAssignFn callbacks that don't know about
10138         // inalloca.  This way we can know how many bytes we should've allocated
10139         // and how many bytes a callee cleanup function will pop.  If we port
10140         // inalloca to more targets, we'll have to add custom inalloca handling
10141         // in the various CC lowering callbacks.
10142         Flags.setByVal();
10143       }
10144       if (Arg.hasAttribute(Attribute::Preallocated)) {
10145         Flags.setPreallocated();
10146         // Set the byval flag for CCAssignFn callbacks that don't know about
10147         // preallocated.  This way we can know how many bytes we should've
10148         // allocated and how many bytes a callee cleanup function will pop.  If
10149         // we port preallocated to more targets, we'll have to add custom
10150         // preallocated handling in the various CC lowering callbacks.
10151         Flags.setByVal();
10152       }
10153 
10154       // Certain targets (such as MIPS), may have a different ABI alignment
10155       // for a type depending on the context. Give the target a chance to
10156       // specify the alignment it wants.
10157       const Align OriginalAlignment(
10158           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10159       Flags.setOrigAlign(OriginalAlignment);
10160 
10161       Align MemAlign;
10162       Type *ArgMemTy = nullptr;
10163       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10164           Flags.isByRef()) {
10165         if (!ArgMemTy)
10166           ArgMemTy = Arg.getPointeeInMemoryValueType();
10167 
10168         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10169 
10170         // For in-memory arguments, size and alignment should be passed from FE.
10171         // BE will guess if this info is not there but there are cases it cannot
10172         // get right.
10173         if (auto ParamAlign = Arg.getParamStackAlign())
10174           MemAlign = *ParamAlign;
10175         else if ((ParamAlign = Arg.getParamAlign()))
10176           MemAlign = *ParamAlign;
10177         else
10178           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10179         if (Flags.isByRef())
10180           Flags.setByRefSize(MemSize);
10181         else
10182           Flags.setByValSize(MemSize);
10183       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10184         MemAlign = *ParamAlign;
10185       } else {
10186         MemAlign = OriginalAlignment;
10187       }
10188       Flags.setMemAlign(MemAlign);
10189 
10190       if (Arg.hasAttribute(Attribute::Nest))
10191         Flags.setNest();
10192       if (NeedsRegBlock)
10193         Flags.setInConsecutiveRegs();
10194       if (ArgCopyElisionCandidates.count(&Arg))
10195         Flags.setCopyElisionCandidate();
10196       if (Arg.hasAttribute(Attribute::Returned))
10197         Flags.setReturned();
10198 
10199       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10200           *CurDAG->getContext(), F.getCallingConv(), VT);
10201       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10202           *CurDAG->getContext(), F.getCallingConv(), VT);
10203       for (unsigned i = 0; i != NumRegs; ++i) {
10204         // For scalable vectors, use the minimum size; individual targets
10205         // are responsible for handling scalable vector arguments and
10206         // return values.
10207         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10208                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10209         if (NumRegs > 1 && i == 0)
10210           MyFlags.Flags.setSplit();
10211         // if it isn't first piece, alignment must be 1
10212         else if (i > 0) {
10213           MyFlags.Flags.setOrigAlign(Align(1));
10214           if (i == NumRegs - 1)
10215             MyFlags.Flags.setSplitEnd();
10216         }
10217         Ins.push_back(MyFlags);
10218       }
10219       if (NeedsRegBlock && Value == NumValues - 1)
10220         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10221       PartBase += VT.getStoreSize().getKnownMinSize();
10222     }
10223   }
10224 
10225   // Call the target to set up the argument values.
10226   SmallVector<SDValue, 8> InVals;
10227   SDValue NewRoot = TLI->LowerFormalArguments(
10228       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10229 
10230   // Verify that the target's LowerFormalArguments behaved as expected.
10231   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10232          "LowerFormalArguments didn't return a valid chain!");
10233   assert(InVals.size() == Ins.size() &&
10234          "LowerFormalArguments didn't emit the correct number of values!");
10235   LLVM_DEBUG({
10236     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10237       assert(InVals[i].getNode() &&
10238              "LowerFormalArguments emitted a null value!");
10239       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10240              "LowerFormalArguments emitted a value with the wrong type!");
10241     }
10242   });
10243 
10244   // Update the DAG with the new chain value resulting from argument lowering.
10245   DAG.setRoot(NewRoot);
10246 
10247   // Set up the argument values.
10248   unsigned i = 0;
10249   if (!FuncInfo->CanLowerReturn) {
10250     // Create a virtual register for the sret pointer, and put in a copy
10251     // from the sret argument into it.
10252     SmallVector<EVT, 1> ValueVTs;
10253     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10254                     F.getReturnType()->getPointerTo(
10255                         DAG.getDataLayout().getAllocaAddrSpace()),
10256                     ValueVTs);
10257     MVT VT = ValueVTs[0].getSimpleVT();
10258     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10259     Optional<ISD::NodeType> AssertOp = None;
10260     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10261                                         nullptr, F.getCallingConv(), AssertOp);
10262 
10263     MachineFunction& MF = SDB->DAG.getMachineFunction();
10264     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10265     Register SRetReg =
10266         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10267     FuncInfo->DemoteRegister = SRetReg;
10268     NewRoot =
10269         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10270     DAG.setRoot(NewRoot);
10271 
10272     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10273     ++i;
10274   }
10275 
10276   SmallVector<SDValue, 4> Chains;
10277   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10278   for (const Argument &Arg : F.args()) {
10279     SmallVector<SDValue, 4> ArgValues;
10280     SmallVector<EVT, 4> ValueVTs;
10281     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10282     unsigned NumValues = ValueVTs.size();
10283     if (NumValues == 0)
10284       continue;
10285 
10286     bool ArgHasUses = !Arg.use_empty();
10287 
10288     // Elide the copying store if the target loaded this argument from a
10289     // suitable fixed stack object.
10290     if (Ins[i].Flags.isCopyElisionCandidate()) {
10291       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10292                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10293                              InVals[i], ArgHasUses);
10294     }
10295 
10296     // If this argument is unused then remember its value. It is used to generate
10297     // debugging information.
10298     bool isSwiftErrorArg =
10299         TLI->supportSwiftError() &&
10300         Arg.hasAttribute(Attribute::SwiftError);
10301     if (!ArgHasUses && !isSwiftErrorArg) {
10302       SDB->setUnusedArgValue(&Arg, InVals[i]);
10303 
10304       // Also remember any frame index for use in FastISel.
10305       if (FrameIndexSDNode *FI =
10306           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10307         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10308     }
10309 
10310     for (unsigned Val = 0; Val != NumValues; ++Val) {
10311       EVT VT = ValueVTs[Val];
10312       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10313                                                       F.getCallingConv(), VT);
10314       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10315           *CurDAG->getContext(), F.getCallingConv(), VT);
10316 
10317       // Even an apparent 'unused' swifterror argument needs to be returned. So
10318       // we do generate a copy for it that can be used on return from the
10319       // function.
10320       if (ArgHasUses || isSwiftErrorArg) {
10321         Optional<ISD::NodeType> AssertOp;
10322         if (Arg.hasAttribute(Attribute::SExt))
10323           AssertOp = ISD::AssertSext;
10324         else if (Arg.hasAttribute(Attribute::ZExt))
10325           AssertOp = ISD::AssertZext;
10326 
10327         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10328                                              PartVT, VT, nullptr,
10329                                              F.getCallingConv(), AssertOp));
10330       }
10331 
10332       i += NumParts;
10333     }
10334 
10335     // We don't need to do anything else for unused arguments.
10336     if (ArgValues.empty())
10337       continue;
10338 
10339     // Note down frame index.
10340     if (FrameIndexSDNode *FI =
10341         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10342       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10343 
10344     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10345                                      SDB->getCurSDLoc());
10346 
10347     SDB->setValue(&Arg, Res);
10348     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10349       // We want to associate the argument with the frame index, among
10350       // involved operands, that correspond to the lowest address. The
10351       // getCopyFromParts function, called earlier, is swapping the order of
10352       // the operands to BUILD_PAIR depending on endianness. The result of
10353       // that swapping is that the least significant bits of the argument will
10354       // be in the first operand of the BUILD_PAIR node, and the most
10355       // significant bits will be in the second operand.
10356       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10357       if (LoadSDNode *LNode =
10358           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10359         if (FrameIndexSDNode *FI =
10360             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10361           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10362     }
10363 
10364     // Analyses past this point are naive and don't expect an assertion.
10365     if (Res.getOpcode() == ISD::AssertZext)
10366       Res = Res.getOperand(0);
10367 
10368     // Update the SwiftErrorVRegDefMap.
10369     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10370       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10371       if (Register::isVirtualRegister(Reg))
10372         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10373                                    Reg);
10374     }
10375 
10376     // If this argument is live outside of the entry block, insert a copy from
10377     // wherever we got it to the vreg that other BB's will reference it as.
10378     if (Res.getOpcode() == ISD::CopyFromReg) {
10379       // If we can, though, try to skip creating an unnecessary vreg.
10380       // FIXME: This isn't very clean... it would be nice to make this more
10381       // general.
10382       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10383       if (Register::isVirtualRegister(Reg)) {
10384         FuncInfo->ValueMap[&Arg] = Reg;
10385         continue;
10386       }
10387     }
10388     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10389       FuncInfo->InitializeRegForValue(&Arg);
10390       SDB->CopyToExportRegsIfNeeded(&Arg);
10391     }
10392   }
10393 
10394   if (!Chains.empty()) {
10395     Chains.push_back(NewRoot);
10396     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10397   }
10398 
10399   DAG.setRoot(NewRoot);
10400 
10401   assert(i == InVals.size() && "Argument register count mismatch!");
10402 
10403   // If any argument copy elisions occurred and we have debug info, update the
10404   // stale frame indices used in the dbg.declare variable info table.
10405   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10406   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10407     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10408       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10409       if (I != ArgCopyElisionFrameIndexMap.end())
10410         VI.Slot = I->second;
10411     }
10412   }
10413 
10414   // Finally, if the target has anything special to do, allow it to do so.
10415   emitFunctionEntryCode();
10416 }
10417 
10418 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10419 /// ensure constants are generated when needed.  Remember the virtual registers
10420 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10421 /// directly add them, because expansion might result in multiple MBB's for one
10422 /// BB.  As such, the start of the BB might correspond to a different MBB than
10423 /// the end.
10424 void
10425 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10426   const Instruction *TI = LLVMBB->getTerminator();
10427 
10428   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10429 
10430   // Check PHI nodes in successors that expect a value to be available from this
10431   // block.
10432   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10433     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10434     if (!isa<PHINode>(SuccBB->begin())) continue;
10435     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10436 
10437     // If this terminator has multiple identical successors (common for
10438     // switches), only handle each succ once.
10439     if (!SuccsHandled.insert(SuccMBB).second)
10440       continue;
10441 
10442     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10443 
10444     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10445     // nodes and Machine PHI nodes, but the incoming operands have not been
10446     // emitted yet.
10447     for (const PHINode &PN : SuccBB->phis()) {
10448       // Ignore dead phi's.
10449       if (PN.use_empty())
10450         continue;
10451 
10452       // Skip empty types
10453       if (PN.getType()->isEmptyTy())
10454         continue;
10455 
10456       unsigned Reg;
10457       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10458 
10459       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10460         unsigned &RegOut = ConstantsOut[C];
10461         if (RegOut == 0) {
10462           RegOut = FuncInfo.CreateRegs(C);
10463           CopyValueToVirtualRegister(C, RegOut);
10464         }
10465         Reg = RegOut;
10466       } else {
10467         DenseMap<const Value *, Register>::iterator I =
10468           FuncInfo.ValueMap.find(PHIOp);
10469         if (I != FuncInfo.ValueMap.end())
10470           Reg = I->second;
10471         else {
10472           assert(isa<AllocaInst>(PHIOp) &&
10473                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10474                  "Didn't codegen value into a register!??");
10475           Reg = FuncInfo.CreateRegs(PHIOp);
10476           CopyValueToVirtualRegister(PHIOp, Reg);
10477         }
10478       }
10479 
10480       // Remember that this register needs to added to the machine PHI node as
10481       // the input for this MBB.
10482       SmallVector<EVT, 4> ValueVTs;
10483       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10484       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10485       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10486         EVT VT = ValueVTs[vti];
10487         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10488         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10489           FuncInfo.PHINodesToUpdate.push_back(
10490               std::make_pair(&*MBBI++, Reg + i));
10491         Reg += NumRegisters;
10492       }
10493     }
10494   }
10495 
10496   ConstantsOut.clear();
10497 }
10498 
10499 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10500 /// is 0.
10501 MachineBasicBlock *
10502 SelectionDAGBuilder::StackProtectorDescriptor::
10503 AddSuccessorMBB(const BasicBlock *BB,
10504                 MachineBasicBlock *ParentMBB,
10505                 bool IsLikely,
10506                 MachineBasicBlock *SuccMBB) {
10507   // If SuccBB has not been created yet, create it.
10508   if (!SuccMBB) {
10509     MachineFunction *MF = ParentMBB->getParent();
10510     MachineFunction::iterator BBI(ParentMBB);
10511     SuccMBB = MF->CreateMachineBasicBlock(BB);
10512     MF->insert(++BBI, SuccMBB);
10513   }
10514   // Add it as a successor of ParentMBB.
10515   ParentMBB->addSuccessor(
10516       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10517   return SuccMBB;
10518 }
10519 
10520 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10521   MachineFunction::iterator I(MBB);
10522   if (++I == FuncInfo.MF->end())
10523     return nullptr;
10524   return &*I;
10525 }
10526 
10527 /// During lowering new call nodes can be created (such as memset, etc.).
10528 /// Those will become new roots of the current DAG, but complications arise
10529 /// when they are tail calls. In such cases, the call lowering will update
10530 /// the root, but the builder still needs to know that a tail call has been
10531 /// lowered in order to avoid generating an additional return.
10532 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10533   // If the node is null, we do have a tail call.
10534   if (MaybeTC.getNode() != nullptr)
10535     DAG.setRoot(MaybeTC);
10536   else
10537     HasTailCall = true;
10538 }
10539 
10540 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10541                                         MachineBasicBlock *SwitchMBB,
10542                                         MachineBasicBlock *DefaultMBB) {
10543   MachineFunction *CurMF = FuncInfo.MF;
10544   MachineBasicBlock *NextMBB = nullptr;
10545   MachineFunction::iterator BBI(W.MBB);
10546   if (++BBI != FuncInfo.MF->end())
10547     NextMBB = &*BBI;
10548 
10549   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10550 
10551   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10552 
10553   if (Size == 2 && W.MBB == SwitchMBB) {
10554     // If any two of the cases has the same destination, and if one value
10555     // is the same as the other, but has one bit unset that the other has set,
10556     // use bit manipulation to do two compares at once.  For example:
10557     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10558     // TODO: This could be extended to merge any 2 cases in switches with 3
10559     // cases.
10560     // TODO: Handle cases where W.CaseBB != SwitchBB.
10561     CaseCluster &Small = *W.FirstCluster;
10562     CaseCluster &Big = *W.LastCluster;
10563 
10564     if (Small.Low == Small.High && Big.Low == Big.High &&
10565         Small.MBB == Big.MBB) {
10566       const APInt &SmallValue = Small.Low->getValue();
10567       const APInt &BigValue = Big.Low->getValue();
10568 
10569       // Check that there is only one bit different.
10570       APInt CommonBit = BigValue ^ SmallValue;
10571       if (CommonBit.isPowerOf2()) {
10572         SDValue CondLHS = getValue(Cond);
10573         EVT VT = CondLHS.getValueType();
10574         SDLoc DL = getCurSDLoc();
10575 
10576         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10577                                  DAG.getConstant(CommonBit, DL, VT));
10578         SDValue Cond = DAG.getSetCC(
10579             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10580             ISD::SETEQ);
10581 
10582         // Update successor info.
10583         // Both Small and Big will jump to Small.BB, so we sum up the
10584         // probabilities.
10585         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10586         if (BPI)
10587           addSuccessorWithProb(
10588               SwitchMBB, DefaultMBB,
10589               // The default destination is the first successor in IR.
10590               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10591         else
10592           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10593 
10594         // Insert the true branch.
10595         SDValue BrCond =
10596             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10597                         DAG.getBasicBlock(Small.MBB));
10598         // Insert the false branch.
10599         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10600                              DAG.getBasicBlock(DefaultMBB));
10601 
10602         DAG.setRoot(BrCond);
10603         return;
10604       }
10605     }
10606   }
10607 
10608   if (TM.getOptLevel() != CodeGenOpt::None) {
10609     // Here, we order cases by probability so the most likely case will be
10610     // checked first. However, two clusters can have the same probability in
10611     // which case their relative ordering is non-deterministic. So we use Low
10612     // as a tie-breaker as clusters are guaranteed to never overlap.
10613     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10614                [](const CaseCluster &a, const CaseCluster &b) {
10615       return a.Prob != b.Prob ?
10616              a.Prob > b.Prob :
10617              a.Low->getValue().slt(b.Low->getValue());
10618     });
10619 
10620     // Rearrange the case blocks so that the last one falls through if possible
10621     // without changing the order of probabilities.
10622     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10623       --I;
10624       if (I->Prob > W.LastCluster->Prob)
10625         break;
10626       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10627         std::swap(*I, *W.LastCluster);
10628         break;
10629       }
10630     }
10631   }
10632 
10633   // Compute total probability.
10634   BranchProbability DefaultProb = W.DefaultProb;
10635   BranchProbability UnhandledProbs = DefaultProb;
10636   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10637     UnhandledProbs += I->Prob;
10638 
10639   MachineBasicBlock *CurMBB = W.MBB;
10640   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10641     bool FallthroughUnreachable = false;
10642     MachineBasicBlock *Fallthrough;
10643     if (I == W.LastCluster) {
10644       // For the last cluster, fall through to the default destination.
10645       Fallthrough = DefaultMBB;
10646       FallthroughUnreachable = isa<UnreachableInst>(
10647           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10648     } else {
10649       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10650       CurMF->insert(BBI, Fallthrough);
10651       // Put Cond in a virtual register to make it available from the new blocks.
10652       ExportFromCurrentBlock(Cond);
10653     }
10654     UnhandledProbs -= I->Prob;
10655 
10656     switch (I->Kind) {
10657       case CC_JumpTable: {
10658         // FIXME: Optimize away range check based on pivot comparisons.
10659         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10660         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10661 
10662         // The jump block hasn't been inserted yet; insert it here.
10663         MachineBasicBlock *JumpMBB = JT->MBB;
10664         CurMF->insert(BBI, JumpMBB);
10665 
10666         auto JumpProb = I->Prob;
10667         auto FallthroughProb = UnhandledProbs;
10668 
10669         // If the default statement is a target of the jump table, we evenly
10670         // distribute the default probability to successors of CurMBB. Also
10671         // update the probability on the edge from JumpMBB to Fallthrough.
10672         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10673                                               SE = JumpMBB->succ_end();
10674              SI != SE; ++SI) {
10675           if (*SI == DefaultMBB) {
10676             JumpProb += DefaultProb / 2;
10677             FallthroughProb -= DefaultProb / 2;
10678             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10679             JumpMBB->normalizeSuccProbs();
10680             break;
10681           }
10682         }
10683 
10684         if (FallthroughUnreachable) {
10685           // Skip the range check if the fallthrough block is unreachable.
10686           JTH->OmitRangeCheck = true;
10687         }
10688 
10689         if (!JTH->OmitRangeCheck)
10690           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10691         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10692         CurMBB->normalizeSuccProbs();
10693 
10694         // The jump table header will be inserted in our current block, do the
10695         // range check, and fall through to our fallthrough block.
10696         JTH->HeaderBB = CurMBB;
10697         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10698 
10699         // If we're in the right place, emit the jump table header right now.
10700         if (CurMBB == SwitchMBB) {
10701           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10702           JTH->Emitted = true;
10703         }
10704         break;
10705       }
10706       case CC_BitTests: {
10707         // FIXME: Optimize away range check based on pivot comparisons.
10708         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10709 
10710         // The bit test blocks haven't been inserted yet; insert them here.
10711         for (BitTestCase &BTC : BTB->Cases)
10712           CurMF->insert(BBI, BTC.ThisBB);
10713 
10714         // Fill in fields of the BitTestBlock.
10715         BTB->Parent = CurMBB;
10716         BTB->Default = Fallthrough;
10717 
10718         BTB->DefaultProb = UnhandledProbs;
10719         // If the cases in bit test don't form a contiguous range, we evenly
10720         // distribute the probability on the edge to Fallthrough to two
10721         // successors of CurMBB.
10722         if (!BTB->ContiguousRange) {
10723           BTB->Prob += DefaultProb / 2;
10724           BTB->DefaultProb -= DefaultProb / 2;
10725         }
10726 
10727         if (FallthroughUnreachable) {
10728           // Skip the range check if the fallthrough block is unreachable.
10729           BTB->OmitRangeCheck = true;
10730         }
10731 
10732         // If we're in the right place, emit the bit test header right now.
10733         if (CurMBB == SwitchMBB) {
10734           visitBitTestHeader(*BTB, SwitchMBB);
10735           BTB->Emitted = true;
10736         }
10737         break;
10738       }
10739       case CC_Range: {
10740         const Value *RHS, *LHS, *MHS;
10741         ISD::CondCode CC;
10742         if (I->Low == I->High) {
10743           // Check Cond == I->Low.
10744           CC = ISD::SETEQ;
10745           LHS = Cond;
10746           RHS=I->Low;
10747           MHS = nullptr;
10748         } else {
10749           // Check I->Low <= Cond <= I->High.
10750           CC = ISD::SETLE;
10751           LHS = I->Low;
10752           MHS = Cond;
10753           RHS = I->High;
10754         }
10755 
10756         // If Fallthrough is unreachable, fold away the comparison.
10757         if (FallthroughUnreachable)
10758           CC = ISD::SETTRUE;
10759 
10760         // The false probability is the sum of all unhandled cases.
10761         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10762                      getCurSDLoc(), I->Prob, UnhandledProbs);
10763 
10764         if (CurMBB == SwitchMBB)
10765           visitSwitchCase(CB, SwitchMBB);
10766         else
10767           SL->SwitchCases.push_back(CB);
10768 
10769         break;
10770       }
10771     }
10772     CurMBB = Fallthrough;
10773   }
10774 }
10775 
10776 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10777                                               CaseClusterIt First,
10778                                               CaseClusterIt Last) {
10779   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10780     if (X.Prob != CC.Prob)
10781       return X.Prob > CC.Prob;
10782 
10783     // Ties are broken by comparing the case value.
10784     return X.Low->getValue().slt(CC.Low->getValue());
10785   });
10786 }
10787 
10788 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10789                                         const SwitchWorkListItem &W,
10790                                         Value *Cond,
10791                                         MachineBasicBlock *SwitchMBB) {
10792   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10793          "Clusters not sorted?");
10794 
10795   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10796 
10797   // Balance the tree based on branch probabilities to create a near-optimal (in
10798   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10799   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10800   CaseClusterIt LastLeft = W.FirstCluster;
10801   CaseClusterIt FirstRight = W.LastCluster;
10802   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10803   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10804 
10805   // Move LastLeft and FirstRight towards each other from opposite directions to
10806   // find a partitioning of the clusters which balances the probability on both
10807   // sides. If LeftProb and RightProb are equal, alternate which side is
10808   // taken to ensure 0-probability nodes are distributed evenly.
10809   unsigned I = 0;
10810   while (LastLeft + 1 < FirstRight) {
10811     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10812       LeftProb += (++LastLeft)->Prob;
10813     else
10814       RightProb += (--FirstRight)->Prob;
10815     I++;
10816   }
10817 
10818   while (true) {
10819     // Our binary search tree differs from a typical BST in that ours can have up
10820     // to three values in each leaf. The pivot selection above doesn't take that
10821     // into account, which means the tree might require more nodes and be less
10822     // efficient. We compensate for this here.
10823 
10824     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10825     unsigned NumRight = W.LastCluster - FirstRight + 1;
10826 
10827     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10828       // If one side has less than 3 clusters, and the other has more than 3,
10829       // consider taking a cluster from the other side.
10830 
10831       if (NumLeft < NumRight) {
10832         // Consider moving the first cluster on the right to the left side.
10833         CaseCluster &CC = *FirstRight;
10834         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10835         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10836         if (LeftSideRank <= RightSideRank) {
10837           // Moving the cluster to the left does not demote it.
10838           ++LastLeft;
10839           ++FirstRight;
10840           continue;
10841         }
10842       } else {
10843         assert(NumRight < NumLeft);
10844         // Consider moving the last element on the left to the right side.
10845         CaseCluster &CC = *LastLeft;
10846         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10847         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10848         if (RightSideRank <= LeftSideRank) {
10849           // Moving the cluster to the right does not demot it.
10850           --LastLeft;
10851           --FirstRight;
10852           continue;
10853         }
10854       }
10855     }
10856     break;
10857   }
10858 
10859   assert(LastLeft + 1 == FirstRight);
10860   assert(LastLeft >= W.FirstCluster);
10861   assert(FirstRight <= W.LastCluster);
10862 
10863   // Use the first element on the right as pivot since we will make less-than
10864   // comparisons against it.
10865   CaseClusterIt PivotCluster = FirstRight;
10866   assert(PivotCluster > W.FirstCluster);
10867   assert(PivotCluster <= W.LastCluster);
10868 
10869   CaseClusterIt FirstLeft = W.FirstCluster;
10870   CaseClusterIt LastRight = W.LastCluster;
10871 
10872   const ConstantInt *Pivot = PivotCluster->Low;
10873 
10874   // New blocks will be inserted immediately after the current one.
10875   MachineFunction::iterator BBI(W.MBB);
10876   ++BBI;
10877 
10878   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10879   // we can branch to its destination directly if it's squeezed exactly in
10880   // between the known lower bound and Pivot - 1.
10881   MachineBasicBlock *LeftMBB;
10882   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10883       FirstLeft->Low == W.GE &&
10884       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10885     LeftMBB = FirstLeft->MBB;
10886   } else {
10887     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10888     FuncInfo.MF->insert(BBI, LeftMBB);
10889     WorkList.push_back(
10890         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10891     // Put Cond in a virtual register to make it available from the new blocks.
10892     ExportFromCurrentBlock(Cond);
10893   }
10894 
10895   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10896   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10897   // directly if RHS.High equals the current upper bound.
10898   MachineBasicBlock *RightMBB;
10899   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10900       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10901     RightMBB = FirstRight->MBB;
10902   } else {
10903     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10904     FuncInfo.MF->insert(BBI, RightMBB);
10905     WorkList.push_back(
10906         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10907     // Put Cond in a virtual register to make it available from the new blocks.
10908     ExportFromCurrentBlock(Cond);
10909   }
10910 
10911   // Create the CaseBlock record that will be used to lower the branch.
10912   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10913                getCurSDLoc(), LeftProb, RightProb);
10914 
10915   if (W.MBB == SwitchMBB)
10916     visitSwitchCase(CB, SwitchMBB);
10917   else
10918     SL->SwitchCases.push_back(CB);
10919 }
10920 
10921 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10922 // from the swith statement.
10923 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10924                                             BranchProbability PeeledCaseProb) {
10925   if (PeeledCaseProb == BranchProbability::getOne())
10926     return BranchProbability::getZero();
10927   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10928 
10929   uint32_t Numerator = CaseProb.getNumerator();
10930   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10931   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10932 }
10933 
10934 // Try to peel the top probability case if it exceeds the threshold.
10935 // Return current MachineBasicBlock for the switch statement if the peeling
10936 // does not occur.
10937 // If the peeling is performed, return the newly created MachineBasicBlock
10938 // for the peeled switch statement. Also update Clusters to remove the peeled
10939 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10940 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10941     const SwitchInst &SI, CaseClusterVector &Clusters,
10942     BranchProbability &PeeledCaseProb) {
10943   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10944   // Don't perform if there is only one cluster or optimizing for size.
10945   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10946       TM.getOptLevel() == CodeGenOpt::None ||
10947       SwitchMBB->getParent()->getFunction().hasMinSize())
10948     return SwitchMBB;
10949 
10950   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10951   unsigned PeeledCaseIndex = 0;
10952   bool SwitchPeeled = false;
10953   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10954     CaseCluster &CC = Clusters[Index];
10955     if (CC.Prob < TopCaseProb)
10956       continue;
10957     TopCaseProb = CC.Prob;
10958     PeeledCaseIndex = Index;
10959     SwitchPeeled = true;
10960   }
10961   if (!SwitchPeeled)
10962     return SwitchMBB;
10963 
10964   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10965                     << TopCaseProb << "\n");
10966 
10967   // Record the MBB for the peeled switch statement.
10968   MachineFunction::iterator BBI(SwitchMBB);
10969   ++BBI;
10970   MachineBasicBlock *PeeledSwitchMBB =
10971       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10972   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10973 
10974   ExportFromCurrentBlock(SI.getCondition());
10975   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10976   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10977                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10978   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10979 
10980   Clusters.erase(PeeledCaseIt);
10981   for (CaseCluster &CC : Clusters) {
10982     LLVM_DEBUG(
10983         dbgs() << "Scale the probablity for one cluster, before scaling: "
10984                << CC.Prob << "\n");
10985     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10986     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10987   }
10988   PeeledCaseProb = TopCaseProb;
10989   return PeeledSwitchMBB;
10990 }
10991 
10992 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10993   // Extract cases from the switch.
10994   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10995   CaseClusterVector Clusters;
10996   Clusters.reserve(SI.getNumCases());
10997   for (auto I : SI.cases()) {
10998     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10999     const ConstantInt *CaseVal = I.getCaseValue();
11000     BranchProbability Prob =
11001         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11002             : BranchProbability(1, SI.getNumCases() + 1);
11003     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11004   }
11005 
11006   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11007 
11008   // Cluster adjacent cases with the same destination. We do this at all
11009   // optimization levels because it's cheap to do and will make codegen faster
11010   // if there are many clusters.
11011   sortAndRangeify(Clusters);
11012 
11013   // The branch probablity of the peeled case.
11014   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11015   MachineBasicBlock *PeeledSwitchMBB =
11016       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11017 
11018   // If there is only the default destination, jump there directly.
11019   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11020   if (Clusters.empty()) {
11021     assert(PeeledSwitchMBB == SwitchMBB);
11022     SwitchMBB->addSuccessor(DefaultMBB);
11023     if (DefaultMBB != NextBlock(SwitchMBB)) {
11024       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11025                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11026     }
11027     return;
11028   }
11029 
11030   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11031   SL->findBitTestClusters(Clusters, &SI);
11032 
11033   LLVM_DEBUG({
11034     dbgs() << "Case clusters: ";
11035     for (const CaseCluster &C : Clusters) {
11036       if (C.Kind == CC_JumpTable)
11037         dbgs() << "JT:";
11038       if (C.Kind == CC_BitTests)
11039         dbgs() << "BT:";
11040 
11041       C.Low->getValue().print(dbgs(), true);
11042       if (C.Low != C.High) {
11043         dbgs() << '-';
11044         C.High->getValue().print(dbgs(), true);
11045       }
11046       dbgs() << ' ';
11047     }
11048     dbgs() << '\n';
11049   });
11050 
11051   assert(!Clusters.empty());
11052   SwitchWorkList WorkList;
11053   CaseClusterIt First = Clusters.begin();
11054   CaseClusterIt Last = Clusters.end() - 1;
11055   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11056   // Scale the branchprobability for DefaultMBB if the peel occurs and
11057   // DefaultMBB is not replaced.
11058   if (PeeledCaseProb != BranchProbability::getZero() &&
11059       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11060     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11061   WorkList.push_back(
11062       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11063 
11064   while (!WorkList.empty()) {
11065     SwitchWorkListItem W = WorkList.pop_back_val();
11066     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11067 
11068     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11069         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11070       // For optimized builds, lower large range as a balanced binary tree.
11071       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11072       continue;
11073     }
11074 
11075     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11076   }
11077 }
11078 
11079 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11081   auto DL = getCurSDLoc();
11082   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11083   setValue(&I, DAG.getStepVector(DL, ResultVT));
11084 }
11085 
11086 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11088   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11089 
11090   SDLoc DL = getCurSDLoc();
11091   SDValue V = getValue(I.getOperand(0));
11092   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11093 
11094   if (VT.isScalableVector()) {
11095     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11096     return;
11097   }
11098 
11099   // Use VECTOR_SHUFFLE for the fixed-length vector
11100   // to maintain existing behavior.
11101   SmallVector<int, 8> Mask;
11102   unsigned NumElts = VT.getVectorMinNumElements();
11103   for (unsigned i = 0; i != NumElts; ++i)
11104     Mask.push_back(NumElts - 1 - i);
11105 
11106   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11107 }
11108 
11109 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11110   SmallVector<EVT, 4> ValueVTs;
11111   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11112                   ValueVTs);
11113   unsigned NumValues = ValueVTs.size();
11114   if (NumValues == 0) return;
11115 
11116   SmallVector<SDValue, 4> Values(NumValues);
11117   SDValue Op = getValue(I.getOperand(0));
11118 
11119   for (unsigned i = 0; i != NumValues; ++i)
11120     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11121                             SDValue(Op.getNode(), Op.getResNo() + i));
11122 
11123   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11124                            DAG.getVTList(ValueVTs), Values));
11125 }
11126 
11127 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11128   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11129   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11130 
11131   SDLoc DL = getCurSDLoc();
11132   SDValue V1 = getValue(I.getOperand(0));
11133   SDValue V2 = getValue(I.getOperand(1));
11134   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11135 
11136   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11137   if (VT.isScalableVector()) {
11138     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11139     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11140                              DAG.getConstant(Imm, DL, IdxVT)));
11141     return;
11142   }
11143 
11144   unsigned NumElts = VT.getVectorNumElements();
11145 
11146   if ((-Imm > NumElts) || (Imm >= NumElts)) {
11147     // Result is undefined if immediate is out-of-bounds.
11148     setValue(&I, DAG.getUNDEF(VT));
11149     return;
11150   }
11151 
11152   uint64_t Idx = (NumElts + Imm) % NumElts;
11153 
11154   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11155   SmallVector<int, 8> Mask;
11156   for (unsigned i = 0; i < NumElts; ++i)
11157     Mask.push_back(Idx + i);
11158   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11159 }
11160