1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 IntermediateVT.isVector() 419 ? EVT::getVectorVT( 420 *DAG.getContext(), IntermediateVT.getScalarType(), 421 IntermediateVT.getVectorElementCount() * NumParts) 422 : EVT::getVectorVT(*DAG.getContext(), 423 IntermediateVT.getScalarType(), 424 NumIntermediates); 425 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 426 : ISD::BUILD_VECTOR, 427 DL, BuiltVectorTy, Ops); 428 } 429 430 // There is now one part, held in Val. Correct it to match ValueVT. 431 EVT PartEVT = Val.getValueType(); 432 433 if (PartEVT == ValueVT) 434 return Val; 435 436 if (PartEVT.isVector()) { 437 // If the element type of the source/dest vectors are the same, but the 438 // parts vector has more elements than the value vector, then we have a 439 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 440 // elements we want. 441 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 442 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 443 "Cannot narrow, it would be a lossy transformation"); 444 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 445 DAG.getVectorIdxConstant(0, DL)); 446 } 447 448 // Vector/Vector bitcast. 449 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 453 "Cannot handle this kind of promotion"); 454 // Promoted vector extract 455 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 456 457 } 458 459 // Trivial bitcast if the types are the same size and the destination 460 // vector type is legal. 461 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 462 TLI.isTypeLegal(ValueVT)) 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 465 if (ValueVT.getVectorNumElements() != 1) { 466 // Certain ABIs require that vectors are passed as integers. For vectors 467 // are the same size, this is an obvious bitcast. 468 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 469 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 470 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 471 // Bitcast Val back the original type and extract the corresponding 472 // vector we want. 473 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 474 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 475 ValueVT.getVectorElementType(), Elts); 476 Val = DAG.getBitcast(WiderVecType, Val); 477 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 478 DAG.getVectorIdxConstant(0, DL)); 479 } 480 481 diagnosePossiblyInvalidConstraint( 482 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 483 return DAG.getUNDEF(ValueVT); 484 } 485 486 // Handle cases such as i8 -> <1 x i1> 487 EVT ValueSVT = ValueVT.getVectorElementType(); 488 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 489 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 490 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 491 else 492 Val = ValueVT.isFloatingPoint() 493 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 494 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 495 } 496 497 return DAG.getBuildVector(ValueVT, DL, Val); 498 } 499 500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 501 SDValue Val, SDValue *Parts, unsigned NumParts, 502 MVT PartVT, const Value *V, 503 Optional<CallingConv::ID> CallConv); 504 505 /// getCopyToParts - Create a series of nodes that contain the specified value 506 /// split into legal parts. If the parts contain more bits than Val, then, for 507 /// integers, ExtendKind can be used to specify how to generate the extra bits. 508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 509 SDValue *Parts, unsigned NumParts, MVT PartVT, 510 const Value *V, 511 Optional<CallingConv::ID> CallConv = None, 512 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 513 EVT ValueVT = Val.getValueType(); 514 515 // Handle the vector case separately. 516 if (ValueVT.isVector()) 517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 518 CallConv); 519 520 unsigned PartBits = PartVT.getSizeInBits(); 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 537 // If the parts cover more bits than the value has, promote the value. 538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 539 assert(NumParts == 1 && "Do not know what to promote to!"); 540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 541 } else { 542 if (ValueVT.isFloatingPoint()) { 543 // FP values need to be bitcast, then extended if they are being put 544 // into a larger container. 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 547 } 548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 549 ValueVT.isInteger() && 550 "Unknown mismatch!"); 551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 553 if (PartVT == MVT::x86mmx) 554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 555 } 556 } else if (PartBits == ValueVT.getSizeInBits()) { 557 // Different types of the same size. 558 assert(NumParts == 1 && PartEVT != ValueVT); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 561 // If the parts cover less bits than value has, truncate the value. 562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 563 ValueVT.isInteger() && 564 "Unknown mismatch!"); 565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 567 if (PartVT == MVT::x86mmx) 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } 570 571 // The value may have changed - recompute ValueVT. 572 ValueVT = Val.getValueType(); 573 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 574 "Failed to tile the value with PartVT!"); 575 576 if (NumParts == 1) { 577 if (PartEVT != ValueVT) { 578 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 579 "scalar-to-vector conversion failed"); 580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 581 } 582 583 Parts[0] = Val; 584 return; 585 } 586 587 // Expand the value into multiple parts. 588 if (NumParts & (NumParts - 1)) { 589 // The number of parts is not a power of 2. Split off and copy the tail. 590 assert(PartVT.isInteger() && ValueVT.isInteger() && 591 "Do not know what to expand to!"); 592 unsigned RoundParts = 1 << Log2_32(NumParts); 593 unsigned RoundBits = RoundParts * PartBits; 594 unsigned OddParts = NumParts - RoundParts; 595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 597 598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 599 CallConv); 600 601 if (DAG.getDataLayout().isBigEndian()) 602 // The odd parts were reversed by getCopyToParts - unreverse them. 603 std::reverse(Parts + RoundParts, Parts + NumParts); 604 605 NumParts = RoundParts; 606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 608 } 609 610 // The number of parts is a power of 2. Repeatedly bisect the value using 611 // EXTRACT_ELEMENT. 612 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 613 EVT::getIntegerVT(*DAG.getContext(), 614 ValueVT.getSizeInBits()), 615 Val); 616 617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 618 for (unsigned i = 0; i < NumParts; i += StepSize) { 619 unsigned ThisBits = StepSize * PartBits / 2; 620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 621 SDValue &Part0 = Parts[i]; 622 SDValue &Part1 = Parts[i+StepSize/2]; 623 624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 628 629 if (ThisBits == PartBits && ThisVT != PartVT) { 630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 632 } 633 } 634 } 635 636 if (DAG.getDataLayout().isBigEndian()) 637 std::reverse(Parts, Parts + OrigNumParts); 638 } 639 640 static SDValue widenVectorToPartType(SelectionDAG &DAG, 641 SDValue Val, const SDLoc &DL, EVT PartVT) { 642 if (!PartVT.isVector()) 643 return SDValue(); 644 645 EVT ValueVT = Val.getValueType(); 646 unsigned PartNumElts = PartVT.getVectorNumElements(); 647 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 648 if (PartNumElts > ValueNumElts && 649 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 650 EVT ElementVT = PartVT.getVectorElementType(); 651 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 652 // undef elements. 653 SmallVector<SDValue, 16> Ops; 654 DAG.ExtractVectorElements(Val, Ops); 655 SDValue EltUndef = DAG.getUNDEF(ElementVT); 656 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 657 Ops.push_back(EltUndef); 658 659 // FIXME: Use CONCAT for 2x -> 4x. 660 return DAG.getBuildVector(PartVT, DL, Ops); 661 } 662 663 return SDValue(); 664 } 665 666 /// getCopyToPartsVector - Create a series of nodes that contain the specified 667 /// value split into legal parts. 668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 669 SDValue Val, SDValue *Parts, unsigned NumParts, 670 MVT PartVT, const Value *V, 671 Optional<CallingConv::ID> CallConv) { 672 EVT ValueVT = Val.getValueType(); 673 assert(ValueVT.isVector() && "Not a vector"); 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 const bool IsABIRegCopy = CallConv.hasValue(); 676 677 if (NumParts == 1) { 678 EVT PartEVT = PartVT; 679 if (PartEVT == ValueVT) { 680 // Nothing to do. 681 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 682 // Bitconvert vector->vector case. 683 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 684 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 685 Val = Widened; 686 } else if (PartVT.isVector() && 687 PartEVT.getVectorElementType().bitsGE( 688 ValueVT.getVectorElementType()) && 689 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 690 691 // Promoted vector extract 692 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 693 } else { 694 if (ValueVT.getVectorNumElements() == 1) { 695 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 696 DAG.getVectorIdxConstant(0, DL)); 697 } else { 698 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 699 "lossy conversion of vector to scalar type"); 700 EVT IntermediateType = 701 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 702 Val = DAG.getBitcast(IntermediateType, Val); 703 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 704 } 705 } 706 707 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 708 Parts[0] = Val; 709 return; 710 } 711 712 // Handle a multi-element vector. 713 EVT IntermediateVT; 714 MVT RegisterVT; 715 unsigned NumIntermediates; 716 unsigned NumRegs; 717 if (IsABIRegCopy) { 718 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 719 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 720 NumIntermediates, RegisterVT); 721 } else { 722 NumRegs = 723 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 724 NumIntermediates, RegisterVT); 725 } 726 727 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 728 NumParts = NumRegs; // Silence a compiler warning. 729 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 730 731 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 732 IntermediateVT.getVectorNumElements() : 1; 733 734 // Convert the vector to the appropriate type if necessary. 735 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 736 737 EVT BuiltVectorTy = EVT::getVectorVT( 738 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 739 if (ValueVT != BuiltVectorTy) { 740 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 741 Val = Widened; 742 743 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 744 } 745 746 // Split the vector into intermediate operands. 747 SmallVector<SDValue, 8> Ops(NumIntermediates); 748 for (unsigned i = 0; i != NumIntermediates; ++i) { 749 if (IntermediateVT.isVector()) { 750 Ops[i] = 751 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 753 } else { 754 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 755 DAG.getVectorIdxConstant(i, DL)); 756 } 757 } 758 759 // Split the intermediate operands into legal parts. 760 if (NumParts == NumIntermediates) { 761 // If the register was not expanded, promote or copy the value, 762 // as appropriate. 763 for (unsigned i = 0; i != NumParts; ++i) 764 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 765 } else if (NumParts > 0) { 766 // If the intermediate type was expanded, split each the value into 767 // legal parts. 768 assert(NumIntermediates != 0 && "division by zero"); 769 assert(NumParts % NumIntermediates == 0 && 770 "Must expand into a divisible number of parts!"); 771 unsigned Factor = NumParts / NumIntermediates; 772 for (unsigned i = 0; i != NumIntermediates; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 774 CallConv); 775 } 776 } 777 778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 779 EVT valuevt, Optional<CallingConv::ID> CC) 780 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 781 RegCount(1, regs.size()), CallConv(CC) {} 782 783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 784 const DataLayout &DL, unsigned Reg, Type *Ty, 785 Optional<CallingConv::ID> CC) { 786 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 787 788 CallConv = CC; 789 790 for (EVT ValueVT : ValueVTs) { 791 unsigned NumRegs = 792 isABIMangled() 793 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getNumRegisters(Context, ValueVT); 795 MVT RegisterVT = 796 isABIMangled() 797 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 798 : TLI.getRegisterType(Context, ValueVT); 799 for (unsigned i = 0; i != NumRegs; ++i) 800 Regs.push_back(Reg + i); 801 RegVTs.push_back(RegisterVT); 802 RegCount.push_back(NumRegs); 803 Reg += NumRegs; 804 } 805 } 806 807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 808 FunctionLoweringInfo &FuncInfo, 809 const SDLoc &dl, SDValue &Chain, 810 SDValue *Flag, const Value *V) const { 811 // A Value with type {} or [0 x %t] needs no registers. 812 if (ValueVTs.empty()) 813 return SDValue(); 814 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 // Assemble the legal parts into the final values. 818 SmallVector<SDValue, 4> Values(ValueVTs.size()); 819 SmallVector<SDValue, 8> Parts; 820 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 821 // Copy the legal parts from the registers. 822 EVT ValueVT = ValueVTs[Value]; 823 unsigned NumRegs = RegCount[Value]; 824 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 825 *DAG.getContext(), 826 CallConv.getValue(), RegVTs[Value]) 827 : RegVTs[Value]; 828 829 Parts.resize(NumRegs); 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 SDValue P; 832 if (!Flag) { 833 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 834 } else { 835 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 836 *Flag = P.getValue(2); 837 } 838 839 Chain = P.getValue(1); 840 Parts[i] = P; 841 842 // If the source register was virtual and if we know something about it, 843 // add an assert node. 844 if (!Register::isVirtualRegister(Regs[Part + i]) || 845 !RegisterVT.isInteger()) 846 continue; 847 848 const FunctionLoweringInfo::LiveOutInfo *LOI = 849 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 850 if (!LOI) 851 continue; 852 853 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 854 unsigned NumSignBits = LOI->NumSignBits; 855 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 856 857 if (NumZeroBits == RegSize) { 858 // The current value is a zero. 859 // Explicitly express that as it would be easier for 860 // optimizations to kick in. 861 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 862 continue; 863 } 864 865 // FIXME: We capture more information than the dag can represent. For 866 // now, just use the tightest assertzext/assertsext possible. 867 bool isSExt; 868 EVT FromVT(MVT::Other); 869 if (NumZeroBits) { 870 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 871 isSExt = false; 872 } else if (NumSignBits > 1) { 873 FromVT = 874 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 875 isSExt = true; 876 } else { 877 continue; 878 } 879 // Add an assertion node. 880 assert(FromVT != MVT::Other); 881 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 882 RegisterVT, P, DAG.getValueType(FromVT)); 883 } 884 885 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 886 RegisterVT, ValueVT, V, CallConv); 887 Part += NumRegs; 888 Parts.clear(); 889 } 890 891 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 892 } 893 894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 895 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 896 const Value *V, 897 ISD::NodeType PreferredExtendType) const { 898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 899 ISD::NodeType ExtendKind = PreferredExtendType; 900 901 // Get the list of the values's legal parts. 902 unsigned NumRegs = Regs.size(); 903 SmallVector<SDValue, 8> Parts(NumRegs); 904 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 905 unsigned NumParts = RegCount[Value]; 906 907 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 908 *DAG.getContext(), 909 CallConv.getValue(), RegVTs[Value]) 910 : RegVTs[Value]; 911 912 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 913 ExtendKind = ISD::ZERO_EXTEND; 914 915 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 916 NumParts, RegisterVT, V, CallConv, ExtendKind); 917 Part += NumParts; 918 } 919 920 // Copy the parts into the registers. 921 SmallVector<SDValue, 8> Chains(NumRegs); 922 for (unsigned i = 0; i != NumRegs; ++i) { 923 SDValue Part; 924 if (!Flag) { 925 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 926 } else { 927 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 928 *Flag = Part.getValue(1); 929 } 930 931 Chains[i] = Part.getValue(0); 932 } 933 934 if (NumRegs == 1 || Flag) 935 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 936 // flagged to it. That is the CopyToReg nodes and the user are considered 937 // a single scheduling unit. If we create a TokenFactor and return it as 938 // chain, then the TokenFactor is both a predecessor (operand) of the 939 // user as well as a successor (the TF operands are flagged to the user). 940 // c1, f1 = CopyToReg 941 // c2, f2 = CopyToReg 942 // c3 = TokenFactor c1, c2 943 // ... 944 // = op c3, ..., f2 945 Chain = Chains[NumRegs-1]; 946 else 947 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 948 } 949 950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 951 unsigned MatchingIdx, const SDLoc &dl, 952 SelectionDAG &DAG, 953 std::vector<SDValue> &Ops) const { 954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 955 956 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 957 if (HasMatching) 958 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 959 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 960 // Put the register class of the virtual registers in the flag word. That 961 // way, later passes can recompute register class constraints for inline 962 // assembly as well as normal instructions. 963 // Don't do this for tied operands that can use the regclass information 964 // from the def. 965 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 966 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 967 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 968 } 969 970 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 971 Ops.push_back(Res); 972 973 if (Code == InlineAsm::Kind_Clobber) { 974 // Clobbers should always have a 1:1 mapping with registers, and may 975 // reference registers that have illegal (e.g. vector) types. Hence, we 976 // shouldn't try to apply any sort of splitting logic to them. 977 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 978 "No 1:1 mapping from clobbers to regs?"); 979 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 980 (void)SP; 981 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 982 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 983 assert( 984 (Regs[I] != SP || 985 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 986 "If we clobbered the stack pointer, MFI should know about it."); 987 } 988 return; 989 } 990 991 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 992 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 993 MVT RegisterVT = RegVTs[Value]; 994 for (unsigned i = 0; i != NumRegs; ++i) { 995 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 996 unsigned TheReg = Regs[Reg++]; 997 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 998 } 999 } 1000 } 1001 1002 SmallVector<std::pair<unsigned, unsigned>, 4> 1003 RegsForValue::getRegsAndSizes() const { 1004 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1005 unsigned I = 0; 1006 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1007 unsigned RegCount = std::get<0>(CountAndVT); 1008 MVT RegisterVT = std::get<1>(CountAndVT); 1009 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1010 for (unsigned E = I + RegCount; I != E; ++I) 1011 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1012 } 1013 return OutVec; 1014 } 1015 1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1017 const TargetLibraryInfo *li) { 1018 AA = aa; 1019 GFI = gfi; 1020 LibInfo = li; 1021 DL = &DAG.getDataLayout(); 1022 Context = DAG.getContext(); 1023 LPadToCallSiteMap.clear(); 1024 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1025 } 1026 1027 void SelectionDAGBuilder::clear() { 1028 NodeMap.clear(); 1029 UnusedArgNodeMap.clear(); 1030 PendingLoads.clear(); 1031 PendingExports.clear(); 1032 PendingConstrainedFP.clear(); 1033 PendingConstrainedFPStrict.clear(); 1034 CurInst = nullptr; 1035 HasTailCall = false; 1036 SDNodeOrder = LowestSDNodeOrder; 1037 StatepointLowering.clear(); 1038 } 1039 1040 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1041 DanglingDebugInfoMap.clear(); 1042 } 1043 1044 // Update DAG root to include dependencies on Pending chains. 1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1046 SDValue Root = DAG.getRoot(); 1047 1048 if (Pending.empty()) 1049 return Root; 1050 1051 // Add current root to PendingChains, unless we already indirectly 1052 // depend on it. 1053 if (Root.getOpcode() != ISD::EntryToken) { 1054 unsigned i = 0, e = Pending.size(); 1055 for (; i != e; ++i) { 1056 assert(Pending[i].getNode()->getNumOperands() > 1); 1057 if (Pending[i].getNode()->getOperand(0) == Root) 1058 break; // Don't add the root if we already indirectly depend on it. 1059 } 1060 1061 if (i == e) 1062 Pending.push_back(Root); 1063 } 1064 1065 if (Pending.size() == 1) 1066 Root = Pending[0]; 1067 else 1068 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1069 1070 DAG.setRoot(Root); 1071 Pending.clear(); 1072 return Root; 1073 } 1074 1075 SDValue SelectionDAGBuilder::getMemoryRoot() { 1076 return updateRoot(PendingLoads); 1077 } 1078 1079 SDValue SelectionDAGBuilder::getRoot() { 1080 // Chain up all pending constrained intrinsics together with all 1081 // pending loads, by simply appending them to PendingLoads and 1082 // then calling getMemoryRoot(). 1083 PendingLoads.reserve(PendingLoads.size() + 1084 PendingConstrainedFP.size() + 1085 PendingConstrainedFPStrict.size()); 1086 PendingLoads.append(PendingConstrainedFP.begin(), 1087 PendingConstrainedFP.end()); 1088 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFP.clear(); 1091 PendingConstrainedFPStrict.clear(); 1092 return getMemoryRoot(); 1093 } 1094 1095 SDValue SelectionDAGBuilder::getControlRoot() { 1096 // We need to emit pending fpexcept.strict constrained intrinsics, 1097 // so append them to the PendingExports list. 1098 PendingExports.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFPStrict.clear(); 1101 return updateRoot(PendingExports); 1102 } 1103 1104 void SelectionDAGBuilder::visit(const Instruction &I) { 1105 // Set up outgoing PHI node register values before emitting the terminator. 1106 if (I.isTerminator()) { 1107 HandlePHINodesInSuccessorBlocks(I.getParent()); 1108 } 1109 1110 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1111 if (!isa<DbgInfoIntrinsic>(I)) 1112 ++SDNodeOrder; 1113 1114 CurInst = &I; 1115 1116 visit(I.getOpcode(), I); 1117 1118 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1119 // ConstrainedFPIntrinsics handle their own FMF. 1120 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1121 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1122 // maps to this instruction. 1123 // TODO: We could handle all flags (nsw, etc) here. 1124 // TODO: If an IR instruction maps to >1 node, only the final node will have 1125 // flags set. 1126 if (SDNode *Node = getNodeForIRValue(&I)) { 1127 SDNodeFlags IncomingFlags; 1128 IncomingFlags.copyFMF(*FPMO); 1129 if (!Node->getFlags().isDefined()) 1130 Node->setFlags(IncomingFlags); 1131 else 1132 Node->intersectFlagsWith(IncomingFlags); 1133 } 1134 } 1135 } 1136 1137 if (!I.isTerminator() && !HasTailCall && 1138 !isStatepoint(&I)) // statepoints handle their exports internally 1139 CopyToExportRegsIfNeeded(&I); 1140 1141 CurInst = nullptr; 1142 } 1143 1144 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1145 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1146 } 1147 1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1149 // Note: this doesn't use InstVisitor, because it has to work with 1150 // ConstantExpr's in addition to instructions. 1151 switch (Opcode) { 1152 default: llvm_unreachable("Unknown instruction type encountered!"); 1153 // Build the switch statement using the Instruction.def file. 1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1155 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1156 #include "llvm/IR/Instruction.def" 1157 } 1158 } 1159 1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1161 const DIExpression *Expr) { 1162 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1163 const DbgValueInst *DI = DDI.getDI(); 1164 DIVariable *DanglingVariable = DI->getVariable(); 1165 DIExpression *DanglingExpr = DI->getExpression(); 1166 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1167 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1168 return true; 1169 } 1170 return false; 1171 }; 1172 1173 for (auto &DDIMI : DanglingDebugInfoMap) { 1174 DanglingDebugInfoVector &DDIV = DDIMI.second; 1175 1176 // If debug info is to be dropped, run it through final checks to see 1177 // whether it can be salvaged. 1178 for (auto &DDI : DDIV) 1179 if (isMatchingDbgValue(DDI)) 1180 salvageUnresolvedDbgValue(DDI); 1181 1182 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1183 } 1184 } 1185 1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1187 // generate the debug data structures now that we've seen its definition. 1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1189 SDValue Val) { 1190 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1191 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1192 return; 1193 1194 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1195 for (auto &DDI : DDIV) { 1196 const DbgValueInst *DI = DDI.getDI(); 1197 assert(DI && "Ill-formed DanglingDebugInfo"); 1198 DebugLoc dl = DDI.getdl(); 1199 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1200 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1201 DILocalVariable *Variable = DI->getVariable(); 1202 DIExpression *Expr = DI->getExpression(); 1203 assert(Variable->isValidLocationForIntrinsic(dl) && 1204 "Expected inlined-at fields to agree"); 1205 SDDbgValue *SDV; 1206 if (Val.getNode()) { 1207 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1208 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1209 // we couldn't resolve it directly when examining the DbgValue intrinsic 1210 // in the first place we should not be more successful here). Unless we 1211 // have some test case that prove this to be correct we should avoid 1212 // calling EmitFuncArgumentDbgValue here. 1213 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1214 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1215 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1216 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1217 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1218 // inserted after the definition of Val when emitting the instructions 1219 // after ISel. An alternative could be to teach 1220 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1221 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1222 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1223 << ValSDNodeOrder << "\n"); 1224 SDV = getDbgValue(Val, Variable, Expr, dl, 1225 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1226 DAG.AddDbgValue(SDV, Val.getNode(), false); 1227 } else 1228 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1229 << "in EmitFuncArgumentDbgValue\n"); 1230 } else { 1231 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1232 auto Undef = 1233 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1234 auto SDV = 1235 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1236 DAG.AddDbgValue(SDV, nullptr, false); 1237 } 1238 } 1239 DDIV.clear(); 1240 } 1241 1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1243 Value *V = DDI.getDI()->getValue(); 1244 DILocalVariable *Var = DDI.getDI()->getVariable(); 1245 DIExpression *Expr = DDI.getDI()->getExpression(); 1246 DebugLoc DL = DDI.getdl(); 1247 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1248 unsigned SDOrder = DDI.getSDNodeOrder(); 1249 1250 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1251 // that DW_OP_stack_value is desired. 1252 assert(isa<DbgValueInst>(DDI.getDI())); 1253 bool StackValue = true; 1254 1255 // Can this Value can be encoded without any further work? 1256 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1257 return; 1258 1259 // Attempt to salvage back through as many instructions as possible. Bail if 1260 // a non-instruction is seen, such as a constant expression or global 1261 // variable. FIXME: Further work could recover those too. 1262 while (isa<Instruction>(V)) { 1263 Instruction &VAsInst = *cast<Instruction>(V); 1264 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1265 1266 // If we cannot salvage any further, and haven't yet found a suitable debug 1267 // expression, bail out. 1268 if (!NewExpr) 1269 break; 1270 1271 // New value and expr now represent this debuginfo. 1272 V = VAsInst.getOperand(0); 1273 Expr = NewExpr; 1274 1275 // Some kind of simplification occurred: check whether the operand of the 1276 // salvaged debug expression can be encoded in this DAG. 1277 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1278 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1279 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1280 return; 1281 } 1282 } 1283 1284 // This was the final opportunity to salvage this debug information, and it 1285 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1286 // any earlier variable location. 1287 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1288 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1289 DAG.AddDbgValue(SDV, nullptr, false); 1290 1291 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1292 << "\n"); 1293 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1294 << "\n"); 1295 } 1296 1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1298 DIExpression *Expr, DebugLoc dl, 1299 DebugLoc InstDL, unsigned Order) { 1300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1301 SDDbgValue *SDV; 1302 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1303 isa<ConstantPointerNull>(V)) { 1304 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, nullptr, false); 1306 return true; 1307 } 1308 1309 // If the Value is a frame index, we can create a FrameIndex debug value 1310 // without relying on the DAG at all. 1311 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1312 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1313 if (SI != FuncInfo.StaticAllocaMap.end()) { 1314 auto SDV = 1315 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1316 /*IsIndirect*/ false, dl, SDNodeOrder); 1317 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1318 // is still available even if the SDNode gets optimized out. 1319 DAG.AddDbgValue(SDV, nullptr, false); 1320 return true; 1321 } 1322 } 1323 1324 // Do not use getValue() in here; we don't want to generate code at 1325 // this point if it hasn't been done yet. 1326 SDValue N = NodeMap[V]; 1327 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1328 N = UnusedArgNodeMap[V]; 1329 if (N.getNode()) { 1330 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1331 return true; 1332 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1333 DAG.AddDbgValue(SDV, N.getNode(), false); 1334 return true; 1335 } 1336 1337 // Special rules apply for the first dbg.values of parameter variables in a 1338 // function. Identify them by the fact they reference Argument Values, that 1339 // they're parameters, and they are parameters of the current function. We 1340 // need to let them dangle until they get an SDNode. 1341 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1342 !InstDL.getInlinedAt(); 1343 if (!IsParamOfFunc) { 1344 // The value is not used in this block yet (or it would have an SDNode). 1345 // We still want the value to appear for the user if possible -- if it has 1346 // an associated VReg, we can refer to that instead. 1347 auto VMI = FuncInfo.ValueMap.find(V); 1348 if (VMI != FuncInfo.ValueMap.end()) { 1349 unsigned Reg = VMI->second; 1350 // If this is a PHI node, it may be split up into several MI PHI nodes 1351 // (in FunctionLoweringInfo::set). 1352 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1353 V->getType(), None); 1354 if (RFV.occupiesMultipleRegs()) { 1355 unsigned Offset = 0; 1356 unsigned BitsToDescribe = 0; 1357 if (auto VarSize = Var->getSizeInBits()) 1358 BitsToDescribe = *VarSize; 1359 if (auto Fragment = Expr->getFragmentInfo()) 1360 BitsToDescribe = Fragment->SizeInBits; 1361 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1362 unsigned RegisterSize = RegAndSize.second; 1363 // Bail out if all bits are described already. 1364 if (Offset >= BitsToDescribe) 1365 break; 1366 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1367 ? BitsToDescribe - Offset 1368 : RegisterSize; 1369 auto FragmentExpr = DIExpression::createFragmentExpression( 1370 Expr, Offset, FragmentSize); 1371 if (!FragmentExpr) 1372 continue; 1373 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1374 false, dl, SDNodeOrder); 1375 DAG.AddDbgValue(SDV, nullptr, false); 1376 Offset += RegisterSize; 1377 } 1378 } else { 1379 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, nullptr, false); 1381 } 1382 return true; 1383 } 1384 } 1385 1386 return false; 1387 } 1388 1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1390 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1391 for (auto &Pair : DanglingDebugInfoMap) 1392 for (auto &DDI : Pair.second) 1393 salvageUnresolvedDbgValue(DDI); 1394 clearDanglingDebugInfo(); 1395 } 1396 1397 /// getCopyFromRegs - If there was virtual register allocated for the value V 1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1400 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1401 SDValue Result; 1402 1403 if (It != FuncInfo.ValueMap.end()) { 1404 unsigned InReg = It->second; 1405 1406 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1407 DAG.getDataLayout(), InReg, Ty, 1408 None); // This is not an ABI copy. 1409 SDValue Chain = DAG.getEntryNode(); 1410 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1411 V); 1412 resolveDanglingDebugInfo(V, Result); 1413 } 1414 1415 return Result; 1416 } 1417 1418 /// getValue - Return an SDValue for the given Value. 1419 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1420 // If we already have an SDValue for this value, use it. It's important 1421 // to do this first, so that we don't create a CopyFromReg if we already 1422 // have a regular SDValue. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) return N; 1425 1426 // If there's a virtual register allocated and initialized for this 1427 // value, use it. 1428 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1429 return copyFromReg; 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 // Return true if SDValue exists for the given Value 1439 bool SelectionDAGBuilder::findValue(const Value *V) const { 1440 return (NodeMap.find(V) != NodeMap.end()) || 1441 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1442 } 1443 1444 /// getNonRegisterValue - Return an SDValue for the given Value, but 1445 /// don't look in FuncInfo.ValueMap for a virtual register. 1446 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1447 // If we already have an SDValue for this value, use it. 1448 SDValue &N = NodeMap[V]; 1449 if (N.getNode()) { 1450 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1451 // Remove the debug location from the node as the node is about to be used 1452 // in a location which may differ from the original debug location. This 1453 // is relevant to Constant and ConstantFP nodes because they can appear 1454 // as constant expressions inside PHI nodes. 1455 N->setDebugLoc(DebugLoc()); 1456 } 1457 return N; 1458 } 1459 1460 // Otherwise create a new SDValue and remember it. 1461 SDValue Val = getValueImpl(V); 1462 NodeMap[V] = Val; 1463 resolveDanglingDebugInfo(V, Val); 1464 return Val; 1465 } 1466 1467 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1468 /// Create an SDValue for the given value. 1469 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1471 1472 if (const Constant *C = dyn_cast<Constant>(V)) { 1473 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1474 1475 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1476 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1477 1478 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1479 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1480 1481 if (isa<ConstantPointerNull>(C)) { 1482 unsigned AS = V->getType()->getPointerAddressSpace(); 1483 return DAG.getConstant(0, getCurSDLoc(), 1484 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1485 } 1486 1487 if (match(C, m_VScale(DAG.getDataLayout()))) 1488 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1489 1490 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1491 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1492 1493 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1494 return DAG.getUNDEF(VT); 1495 1496 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1497 visit(CE->getOpcode(), *CE); 1498 SDValue N1 = NodeMap[V]; 1499 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1500 return N1; 1501 } 1502 1503 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1504 SmallVector<SDValue, 4> Constants; 1505 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1506 OI != OE; ++OI) { 1507 SDNode *Val = getValue(*OI).getNode(); 1508 // If the operand is an empty aggregate, there are no values. 1509 if (!Val) continue; 1510 // Add each leaf value from the operand to the Constants list 1511 // to form a flattened list of all the values. 1512 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1513 Constants.push_back(SDValue(Val, i)); 1514 } 1515 1516 return DAG.getMergeValues(Constants, getCurSDLoc()); 1517 } 1518 1519 if (const ConstantDataSequential *CDS = 1520 dyn_cast<ConstantDataSequential>(C)) { 1521 SmallVector<SDValue, 4> Ops; 1522 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1523 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1524 // Add each leaf value from the operand to the Constants list 1525 // to form a flattened list of all the values. 1526 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1527 Ops.push_back(SDValue(Val, i)); 1528 } 1529 1530 if (isa<ArrayType>(CDS->getType())) 1531 return DAG.getMergeValues(Ops, getCurSDLoc()); 1532 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1533 } 1534 1535 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1536 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1537 "Unknown struct or array constant!"); 1538 1539 SmallVector<EVT, 4> ValueVTs; 1540 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1541 unsigned NumElts = ValueVTs.size(); 1542 if (NumElts == 0) 1543 return SDValue(); // empty struct 1544 SmallVector<SDValue, 4> Constants(NumElts); 1545 for (unsigned i = 0; i != NumElts; ++i) { 1546 EVT EltVT = ValueVTs[i]; 1547 if (isa<UndefValue>(C)) 1548 Constants[i] = DAG.getUNDEF(EltVT); 1549 else if (EltVT.isFloatingPoint()) 1550 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1551 else 1552 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1553 } 1554 1555 return DAG.getMergeValues(Constants, getCurSDLoc()); 1556 } 1557 1558 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1559 return DAG.getBlockAddress(BA, VT); 1560 1561 VectorType *VecTy = cast<VectorType>(V->getType()); 1562 unsigned NumElements = VecTy->getNumElements(); 1563 1564 // Now that we know the number and type of the elements, get that number of 1565 // elements into the Ops array based on what kind of constant it is. 1566 SmallVector<SDValue, 16> Ops; 1567 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1568 for (unsigned i = 0; i != NumElements; ++i) 1569 Ops.push_back(getValue(CV->getOperand(i))); 1570 } else { 1571 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1572 EVT EltVT = 1573 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1574 1575 SDValue Op; 1576 if (EltVT.isFloatingPoint()) 1577 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1578 else 1579 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1580 Ops.assign(NumElements, Op); 1581 } 1582 1583 // Create a BUILD_VECTOR node. 1584 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1585 } 1586 1587 // If this is a static alloca, generate it as the frameindex instead of 1588 // computation. 1589 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1590 DenseMap<const AllocaInst*, int>::iterator SI = 1591 FuncInfo.StaticAllocaMap.find(AI); 1592 if (SI != FuncInfo.StaticAllocaMap.end()) 1593 return DAG.getFrameIndex(SI->second, 1594 TLI.getFrameIndexTy(DAG.getDataLayout())); 1595 } 1596 1597 // If this is an instruction which fast-isel has deferred, select it now. 1598 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1599 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1600 1601 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1602 Inst->getType(), getABIRegCopyCC(V)); 1603 SDValue Chain = DAG.getEntryNode(); 1604 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1605 } 1606 1607 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1608 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1609 } 1610 llvm_unreachable("Can't get register for value!"); 1611 } 1612 1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1616 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1617 bool IsSEH = isAsynchronousEHPersonality(Pers); 1618 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1619 if (!IsSEH) 1620 CatchPadMBB->setIsEHScopeEntry(); 1621 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1622 if (IsMSVCCXX || IsCoreCLR) 1623 CatchPadMBB->setIsEHFuncletEntry(); 1624 } 1625 1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1627 // Update machine-CFG edge. 1628 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1629 FuncInfo.MBB->addSuccessor(TargetMBB); 1630 1631 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1632 bool IsSEH = isAsynchronousEHPersonality(Pers); 1633 if (IsSEH) { 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1637 TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1639 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1640 return; 1641 } 1642 1643 // Figure out the funclet membership for the catchret's successor. 1644 // This will be used by the FuncletLayout pass to determine how to order the 1645 // BB's. 1646 // A 'catchret' returns to the outer scope's color. 1647 Value *ParentPad = I.getCatchSwitchParentPad(); 1648 const BasicBlock *SuccessorColor; 1649 if (isa<ConstantTokenNone>(ParentPad)) 1650 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1651 else 1652 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1653 assert(SuccessorColor && "No parent funclet for catchret!"); 1654 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1655 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1656 1657 // Create the terminator node. 1658 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1659 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1660 DAG.getBasicBlock(SuccessorColorMBB)); 1661 DAG.setRoot(Ret); 1662 } 1663 1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1665 // Don't emit any special code for the cleanuppad instruction. It just marks 1666 // the start of an EH scope/funclet. 1667 FuncInfo.MBB->setIsEHScopeEntry(); 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 if (Pers != EHPersonality::Wasm_CXX) { 1670 FuncInfo.MBB->setIsEHFuncletEntry(); 1671 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1672 } 1673 } 1674 1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1676 // the control flow always stops at the single catch pad, as it does for a 1677 // cleanup pad. In case the exception caught is not of the types the catch pad 1678 // catches, it will be rethrown by a rethrow. 1679 static void findWasmUnwindDestinations( 1680 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1681 BranchProbability Prob, 1682 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1683 &UnwindDests) { 1684 while (EHPadBB) { 1685 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1686 if (isa<CleanupPadInst>(Pad)) { 1687 // Stop on cleanup pads. 1688 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1689 UnwindDests.back().first->setIsEHScopeEntry(); 1690 break; 1691 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1692 // Add the catchpad handlers to the possible destinations. We don't 1693 // continue to the unwind destination of the catchswitch for wasm. 1694 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 } 1698 break; 1699 } else { 1700 continue; 1701 } 1702 } 1703 } 1704 1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1706 /// many places it could ultimately go. In the IR, we have a single unwind 1707 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1708 /// This function skips over imaginary basic blocks that hold catchswitch 1709 /// instructions, and finds all the "real" machine 1710 /// basic block destinations. As those destinations may not be successors of 1711 /// EHPadBB, here we also calculate the edge probability to those destinations. 1712 /// The passed-in Prob is the edge probability to EHPadBB. 1713 static void findUnwindDestinations( 1714 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1715 BranchProbability Prob, 1716 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1717 &UnwindDests) { 1718 EHPersonality Personality = 1719 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1720 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1721 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1722 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1723 bool IsSEH = isAsynchronousEHPersonality(Personality); 1724 1725 if (IsWasmCXX) { 1726 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1727 assert(UnwindDests.size() <= 1 && 1728 "There should be at most one unwind destination for wasm"); 1729 return; 1730 } 1731 1732 while (EHPadBB) { 1733 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1734 BasicBlock *NewEHPadBB = nullptr; 1735 if (isa<LandingPadInst>(Pad)) { 1736 // Stop on landingpads. They are not funclets. 1737 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1738 break; 1739 } else if (isa<CleanupPadInst>(Pad)) { 1740 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1741 // personalities. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 UnwindDests.back().first->setIsEHScopeEntry(); 1744 UnwindDests.back().first->setIsEHFuncletEntry(); 1745 break; 1746 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1747 // Add the catchpad handlers to the possible destinations. 1748 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1750 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1751 if (IsMSVCCXX || IsCoreCLR) 1752 UnwindDests.back().first->setIsEHFuncletEntry(); 1753 if (!IsSEH) 1754 UnwindDests.back().first->setIsEHScopeEntry(); 1755 } 1756 NewEHPadBB = CatchSwitch->getUnwindDest(); 1757 } else { 1758 continue; 1759 } 1760 1761 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1762 if (BPI && NewEHPadBB) 1763 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1764 EHPadBB = NewEHPadBB; 1765 } 1766 } 1767 1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1769 // Update successor info. 1770 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1771 auto UnwindDest = I.getUnwindDest(); 1772 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1773 BranchProbability UnwindDestProb = 1774 (BPI && UnwindDest) 1775 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1776 : BranchProbability::getZero(); 1777 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1778 for (auto &UnwindDest : UnwindDests) { 1779 UnwindDest.first->setIsEHPad(); 1780 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1781 } 1782 FuncInfo.MBB->normalizeSuccProbs(); 1783 1784 // Create the terminator node. 1785 SDValue Ret = 1786 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1787 DAG.setRoot(Ret); 1788 } 1789 1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1791 report_fatal_error("visitCatchSwitch not yet implemented!"); 1792 } 1793 1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 auto &DL = DAG.getDataLayout(); 1797 SDValue Chain = getControlRoot(); 1798 SmallVector<ISD::OutputArg, 8> Outs; 1799 SmallVector<SDValue, 8> OutVals; 1800 1801 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1802 // lower 1803 // 1804 // %val = call <ty> @llvm.experimental.deoptimize() 1805 // ret <ty> %val 1806 // 1807 // differently. 1808 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1809 LowerDeoptimizingReturn(); 1810 return; 1811 } 1812 1813 if (!FuncInfo.CanLowerReturn) { 1814 unsigned DemoteReg = FuncInfo.DemoteRegister; 1815 const Function *F = I.getParent()->getParent(); 1816 1817 // Emit a store of the return value through the virtual register. 1818 // Leave Outs empty so that LowerReturn won't try to load return 1819 // registers the usual way. 1820 SmallVector<EVT, 1> PtrValueVTs; 1821 ComputeValueVTs(TLI, DL, 1822 F->getReturnType()->getPointerTo( 1823 DAG.getDataLayout().getAllocaAddrSpace()), 1824 PtrValueVTs); 1825 1826 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1827 DemoteReg, PtrValueVTs[0]); 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 SmallVector<EVT, 4> ValueVTs, MemVTs; 1831 SmallVector<uint64_t, 4> Offsets; 1832 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1833 &Offsets); 1834 unsigned NumValues = ValueVTs.size(); 1835 1836 SmallVector<SDValue, 4> Chains(NumValues); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1846 // FIXME: better loc info would be nice. 1847 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1848 } 1849 1850 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1851 MVT::Other, Chains); 1852 } else if (I.getNumOperands() != 0) { 1853 SmallVector<EVT, 4> ValueVTs; 1854 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1855 unsigned NumValues = ValueVTs.size(); 1856 if (NumValues) { 1857 SDValue RetOp = getValue(I.getOperand(0)); 1858 1859 const Function *F = I.getParent()->getParent(); 1860 1861 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1862 I.getOperand(0)->getType(), F->getCallingConv(), 1863 /*IsVarArg*/ false); 1864 1865 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1866 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1867 Attribute::SExt)) 1868 ExtendKind = ISD::SIGN_EXTEND; 1869 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1870 Attribute::ZExt)) 1871 ExtendKind = ISD::ZERO_EXTEND; 1872 1873 LLVMContext &Context = F->getContext(); 1874 bool RetInReg = F->getAttributes().hasAttribute( 1875 AttributeList::ReturnIndex, Attribute::InReg); 1876 1877 for (unsigned j = 0; j != NumValues; ++j) { 1878 EVT VT = ValueVTs[j]; 1879 1880 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1881 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1882 1883 CallingConv::ID CC = F->getCallingConv(); 1884 1885 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1886 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1887 SmallVector<SDValue, 4> Parts(NumParts); 1888 getCopyToParts(DAG, getCurSDLoc(), 1889 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1890 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1891 1892 // 'inreg' on function refers to return value 1893 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1894 if (RetInReg) 1895 Flags.setInReg(); 1896 1897 if (I.getOperand(0)->getType()->isPointerTy()) { 1898 Flags.setPointer(); 1899 Flags.setPointerAddrSpace( 1900 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1901 } 1902 1903 if (NeedsRegBlock) { 1904 Flags.setInConsecutiveRegs(); 1905 if (j == NumValues - 1) 1906 Flags.setInConsecutiveRegsLast(); 1907 } 1908 1909 // Propagate extension type if any 1910 if (ExtendKind == ISD::SIGN_EXTEND) 1911 Flags.setSExt(); 1912 else if (ExtendKind == ISD::ZERO_EXTEND) 1913 Flags.setZExt(); 1914 1915 for (unsigned i = 0; i < NumParts; ++i) { 1916 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1917 VT, /*isfixed=*/true, 0, 0)); 1918 OutVals.push_back(Parts[i]); 1919 } 1920 } 1921 } 1922 } 1923 1924 // Push in swifterror virtual register as the last element of Outs. This makes 1925 // sure swifterror virtual register will be returned in the swifterror 1926 // physical register. 1927 const Function *F = I.getParent()->getParent(); 1928 if (TLI.supportSwiftError() && 1929 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1930 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1931 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1932 Flags.setSwiftError(); 1933 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1934 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1935 true /*isfixed*/, 1 /*origidx*/, 1936 0 /*partOffs*/)); 1937 // Create SDNode for the swifterror virtual register. 1938 OutVals.push_back( 1939 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1940 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1941 EVT(TLI.getPointerTy(DL)))); 1942 } 1943 1944 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1945 CallingConv::ID CallConv = 1946 DAG.getMachineFunction().getFunction().getCallingConv(); 1947 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1948 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1949 1950 // Verify that the target's LowerReturn behaved as expected. 1951 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1952 "LowerReturn didn't return a valid chain!"); 1953 1954 // Update the DAG with the new chain value resulting from return lowering. 1955 DAG.setRoot(Chain); 1956 } 1957 1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1959 /// created for it, emit nodes to copy the value into the virtual 1960 /// registers. 1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1962 // Skip empty types 1963 if (V->getType()->isEmptyTy()) 1964 return; 1965 1966 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1967 if (VMI != FuncInfo.ValueMap.end()) { 1968 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1969 CopyValueToVirtualRegister(V, VMI->second); 1970 } 1971 } 1972 1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1974 /// the current basic block, add it to ValueMap now so that we'll get a 1975 /// CopyTo/FromReg. 1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1977 // No need to export constants. 1978 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1979 1980 // Already exported? 1981 if (FuncInfo.isExportedInst(V)) return; 1982 1983 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1984 CopyValueToVirtualRegister(V, Reg); 1985 } 1986 1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1988 const BasicBlock *FromBB) { 1989 // The operands of the setcc have to be in this block. We don't know 1990 // how to export them from some other block. 1991 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1992 // Can export from current BB. 1993 if (VI->getParent() == FromBB) 1994 return true; 1995 1996 // Is already exported, noop. 1997 return FuncInfo.isExportedInst(V); 1998 } 1999 2000 // If this is an argument, we can export it if the BB is the entry block or 2001 // if it is already exported. 2002 if (isa<Argument>(V)) { 2003 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2004 return true; 2005 2006 // Otherwise, can only export this if it is already exported. 2007 return FuncInfo.isExportedInst(V); 2008 } 2009 2010 // Otherwise, constants can always be exported. 2011 return true; 2012 } 2013 2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2015 BranchProbability 2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2017 const MachineBasicBlock *Dst) const { 2018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2019 const BasicBlock *SrcBB = Src->getBasicBlock(); 2020 const BasicBlock *DstBB = Dst->getBasicBlock(); 2021 if (!BPI) { 2022 // If BPI is not available, set the default probability as 1 / N, where N is 2023 // the number of successors. 2024 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2025 return BranchProbability(1, SuccSize); 2026 } 2027 return BPI->getEdgeProbability(SrcBB, DstBB); 2028 } 2029 2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2031 MachineBasicBlock *Dst, 2032 BranchProbability Prob) { 2033 if (!FuncInfo.BPI) 2034 Src->addSuccessorWithoutProb(Dst); 2035 else { 2036 if (Prob.isUnknown()) 2037 Prob = getEdgeProbability(Src, Dst); 2038 Src->addSuccessor(Dst, Prob); 2039 } 2040 } 2041 2042 static bool InBlock(const Value *V, const BasicBlock *BB) { 2043 if (const Instruction *I = dyn_cast<Instruction>(V)) 2044 return I->getParent() == BB; 2045 return true; 2046 } 2047 2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2049 /// This function emits a branch and is used at the leaves of an OR or an 2050 /// AND operator tree. 2051 void 2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2053 MachineBasicBlock *TBB, 2054 MachineBasicBlock *FBB, 2055 MachineBasicBlock *CurBB, 2056 MachineBasicBlock *SwitchBB, 2057 BranchProbability TProb, 2058 BranchProbability FProb, 2059 bool InvertCond) { 2060 const BasicBlock *BB = CurBB->getBasicBlock(); 2061 2062 // If the leaf of the tree is a comparison, merge the condition into 2063 // the caseblock. 2064 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2065 // The operands of the cmp have to be in this block. We don't know 2066 // how to export them from some other block. If this is the first block 2067 // of the sequence, no exporting is needed. 2068 if (CurBB == SwitchBB || 2069 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2070 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2071 ISD::CondCode Condition; 2072 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2073 ICmpInst::Predicate Pred = 2074 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2075 Condition = getICmpCondCode(Pred); 2076 } else { 2077 const FCmpInst *FC = cast<FCmpInst>(Cond); 2078 FCmpInst::Predicate Pred = 2079 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2080 Condition = getFCmpCondCode(Pred); 2081 if (TM.Options.NoNaNsFPMath) 2082 Condition = getFCmpCodeWithoutNaN(Condition); 2083 } 2084 2085 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2086 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2087 SL->SwitchCases.push_back(CB); 2088 return; 2089 } 2090 } 2091 2092 // Create a CaseBlock record representing this branch. 2093 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2094 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2095 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2096 SL->SwitchCases.push_back(CB); 2097 } 2098 2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2100 MachineBasicBlock *TBB, 2101 MachineBasicBlock *FBB, 2102 MachineBasicBlock *CurBB, 2103 MachineBasicBlock *SwitchBB, 2104 Instruction::BinaryOps Opc, 2105 BranchProbability TProb, 2106 BranchProbability FProb, 2107 bool InvertCond) { 2108 // Skip over not part of the tree and remember to invert op and operands at 2109 // next level. 2110 Value *NotCond; 2111 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2112 InBlock(NotCond, CurBB->getBasicBlock())) { 2113 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2114 !InvertCond); 2115 return; 2116 } 2117 2118 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2119 // Compute the effective opcode for Cond, taking into account whether it needs 2120 // to be inverted, e.g. 2121 // and (not (or A, B)), C 2122 // gets lowered as 2123 // and (and (not A, not B), C) 2124 unsigned BOpc = 0; 2125 if (BOp) { 2126 BOpc = BOp->getOpcode(); 2127 if (InvertCond) { 2128 if (BOpc == Instruction::And) 2129 BOpc = Instruction::Or; 2130 else if (BOpc == Instruction::Or) 2131 BOpc = Instruction::And; 2132 } 2133 } 2134 2135 // If this node is not part of the or/and tree, emit it as a branch. 2136 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2137 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2138 BOp->getParent() != CurBB->getBasicBlock() || 2139 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2140 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2141 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2142 TProb, FProb, InvertCond); 2143 return; 2144 } 2145 2146 // Create TmpBB after CurBB. 2147 MachineFunction::iterator BBI(CurBB); 2148 MachineFunction &MF = DAG.getMachineFunction(); 2149 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2150 CurBB->getParent()->insert(++BBI, TmpBB); 2151 2152 if (Opc == Instruction::Or) { 2153 // Codegen X | Y as: 2154 // BB1: 2155 // jmp_if_X TBB 2156 // jmp TmpBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 2162 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2163 // The requirement is that 2164 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2165 // = TrueProb for original BB. 2166 // Assuming the original probabilities are A and B, one choice is to set 2167 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2168 // A/(1+B) and 2B/(1+B). This choice assumes that 2169 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2170 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2171 // TmpBB, but the math is more complicated. 2172 2173 auto NewTrueProb = TProb / 2; 2174 auto NewFalseProb = TProb / 2 + FProb; 2175 // Emit the LHS condition. 2176 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2177 NewTrueProb, NewFalseProb, InvertCond); 2178 2179 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2180 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2181 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2182 // Emit the RHS condition into TmpBB. 2183 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2184 Probs[0], Probs[1], InvertCond); 2185 } else { 2186 assert(Opc == Instruction::And && "Unknown merge op!"); 2187 // Codegen X & Y as: 2188 // BB1: 2189 // jmp_if_X TmpBB 2190 // jmp FBB 2191 // TmpBB: 2192 // jmp_if_Y TBB 2193 // jmp FBB 2194 // 2195 // This requires creation of TmpBB after CurBB. 2196 2197 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2198 // The requirement is that 2199 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2200 // = FalseProb for original BB. 2201 // Assuming the original probabilities are A and B, one choice is to set 2202 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2203 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2204 // TrueProb for BB1 * FalseProb for TmpBB. 2205 2206 auto NewTrueProb = TProb + FProb / 2; 2207 auto NewFalseProb = FProb / 2; 2208 // Emit the LHS condition. 2209 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2210 NewTrueProb, NewFalseProb, InvertCond); 2211 2212 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2213 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2214 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2215 // Emit the RHS condition into TmpBB. 2216 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2217 Probs[0], Probs[1], InvertCond); 2218 } 2219 } 2220 2221 /// If the set of cases should be emitted as a series of branches, return true. 2222 /// If we should emit this as a bunch of and/or'd together conditions, return 2223 /// false. 2224 bool 2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2226 if (Cases.size() != 2) return true; 2227 2228 // If this is two comparisons of the same values or'd or and'd together, they 2229 // will get folded into a single comparison, so don't emit two blocks. 2230 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2231 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2232 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2233 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2234 return false; 2235 } 2236 2237 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2238 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2239 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2240 Cases[0].CC == Cases[1].CC && 2241 isa<Constant>(Cases[0].CmpRHS) && 2242 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2243 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2244 return false; 2245 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2246 return false; 2247 } 2248 2249 return true; 2250 } 2251 2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2253 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2254 2255 // Update machine-CFG edges. 2256 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 2258 if (I.isUnconditional()) { 2259 // Update machine-CFG edges. 2260 BrMBB->addSuccessor(Succ0MBB); 2261 2262 // If this is not a fall-through branch or optimizations are switched off, 2263 // emit the branch. 2264 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2266 MVT::Other, getControlRoot(), 2267 DAG.getBasicBlock(Succ0MBB))); 2268 2269 return; 2270 } 2271 2272 // If this condition is one of the special cases we handle, do special stuff 2273 // now. 2274 const Value *CondVal = I.getCondition(); 2275 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2276 2277 // If this is a series of conditions that are or'd or and'd together, emit 2278 // this as a sequence of branches instead of setcc's with and/or operations. 2279 // As long as jumps are not expensive, this should improve performance. 2280 // For example, instead of something like: 2281 // cmp A, B 2282 // C = seteq 2283 // cmp D, E 2284 // F = setle 2285 // or C, F 2286 // jnz foo 2287 // Emit: 2288 // cmp A, B 2289 // je foo 2290 // cmp D, E 2291 // jle foo 2292 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2293 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2294 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2295 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2296 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2297 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2298 Opcode, 2299 getEdgeProbability(BrMBB, Succ0MBB), 2300 getEdgeProbability(BrMBB, Succ1MBB), 2301 /*InvertCond=*/false); 2302 // If the compares in later blocks need to use values not currently 2303 // exported from this block, export them now. This block should always 2304 // be the first entry. 2305 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2306 2307 // Allow some cases to be rejected. 2308 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2309 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2310 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2311 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2312 } 2313 2314 // Emit the branch for this block. 2315 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2316 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2317 return; 2318 } 2319 2320 // Okay, we decided not to do this, remove any inserted MBB's and clear 2321 // SwitchCases. 2322 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2323 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2324 2325 SL->SwitchCases.clear(); 2326 } 2327 } 2328 2329 // Create a CaseBlock record representing this branch. 2330 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2331 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2332 2333 // Use visitSwitchCase to actually insert the fast branch sequence for this 2334 // cond branch. 2335 visitSwitchCase(CB, BrMBB); 2336 } 2337 2338 /// visitSwitchCase - Emits the necessary code to represent a single node in 2339 /// the binary search tree resulting from lowering a switch instruction. 2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2341 MachineBasicBlock *SwitchBB) { 2342 SDValue Cond; 2343 SDValue CondLHS = getValue(CB.CmpLHS); 2344 SDLoc dl = CB.DL; 2345 2346 if (CB.CC == ISD::SETTRUE) { 2347 // Branch or fall through to TrueBB. 2348 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2349 SwitchBB->normalizeSuccProbs(); 2350 if (CB.TrueBB != NextBlock(SwitchBB)) { 2351 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2352 DAG.getBasicBlock(CB.TrueBB))); 2353 } 2354 return; 2355 } 2356 2357 auto &TLI = DAG.getTargetLoweringInfo(); 2358 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2359 2360 // Build the setcc now. 2361 if (!CB.CmpMHS) { 2362 // Fold "(X == true)" to X and "(X == false)" to !X to 2363 // handle common cases produced by branch lowering. 2364 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2365 CB.CC == ISD::SETEQ) 2366 Cond = CondLHS; 2367 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2368 CB.CC == ISD::SETEQ) { 2369 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2370 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2371 } else { 2372 SDValue CondRHS = getValue(CB.CmpRHS); 2373 2374 // If a pointer's DAG type is larger than its memory type then the DAG 2375 // values are zero-extended. This breaks signed comparisons so truncate 2376 // back to the underlying type before doing the compare. 2377 if (CondLHS.getValueType() != MemVT) { 2378 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2379 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2380 } 2381 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2382 } 2383 } else { 2384 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2385 2386 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2387 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2388 2389 SDValue CmpOp = getValue(CB.CmpMHS); 2390 EVT VT = CmpOp.getValueType(); 2391 2392 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2393 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2394 ISD::SETLE); 2395 } else { 2396 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2397 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2398 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2399 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2400 } 2401 } 2402 2403 // Update successor info 2404 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2405 // TrueBB and FalseBB are always different unless the incoming IR is 2406 // degenerate. This only happens when running llc on weird IR. 2407 if (CB.TrueBB != CB.FalseBB) 2408 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2409 SwitchBB->normalizeSuccProbs(); 2410 2411 // If the lhs block is the next block, invert the condition so that we can 2412 // fall through to the lhs instead of the rhs block. 2413 if (CB.TrueBB == NextBlock(SwitchBB)) { 2414 std::swap(CB.TrueBB, CB.FalseBB); 2415 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2416 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2417 } 2418 2419 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2420 MVT::Other, getControlRoot(), Cond, 2421 DAG.getBasicBlock(CB.TrueBB)); 2422 2423 // Insert the false branch. Do this even if it's a fall through branch, 2424 // this makes it easier to do DAG optimizations which require inverting 2425 // the branch condition. 2426 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2427 DAG.getBasicBlock(CB.FalseBB)); 2428 2429 DAG.setRoot(BrCond); 2430 } 2431 2432 /// visitJumpTable - Emit JumpTable node in the current MBB 2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2434 // Emit the code for the jump table 2435 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2436 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2437 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2438 JT.Reg, PTy); 2439 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2440 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2441 MVT::Other, Index.getValue(1), 2442 Table, Index); 2443 DAG.setRoot(BrJumpTable); 2444 } 2445 2446 /// visitJumpTableHeader - This function emits necessary code to produce index 2447 /// in the JumpTable from switch case. 2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2449 JumpTableHeader &JTH, 2450 MachineBasicBlock *SwitchBB) { 2451 SDLoc dl = getCurSDLoc(); 2452 2453 // Subtract the lowest switch case value from the value being switched on. 2454 SDValue SwitchOp = getValue(JTH.SValue); 2455 EVT VT = SwitchOp.getValueType(); 2456 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2457 DAG.getConstant(JTH.First, dl, VT)); 2458 2459 // The SDNode we just created, which holds the value being switched on minus 2460 // the smallest case value, needs to be copied to a virtual register so it 2461 // can be used as an index into the jump table in a subsequent basic block. 2462 // This value may be smaller or larger than the target's pointer type, and 2463 // therefore require extension or truncating. 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2466 2467 unsigned JumpTableReg = 2468 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2469 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2470 JumpTableReg, SwitchOp); 2471 JT.Reg = JumpTableReg; 2472 2473 if (!JTH.OmitRangeCheck) { 2474 // Emit the range check for the jump table, and branch to the default block 2475 // for the switch statement if the value being switched on exceeds the 2476 // largest case in the switch. 2477 SDValue CMP = DAG.getSetCC( 2478 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2479 Sub.getValueType()), 2480 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2481 2482 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2483 MVT::Other, CopyTo, CMP, 2484 DAG.getBasicBlock(JT.Default)); 2485 2486 // Avoid emitting unnecessary branches to the next block. 2487 if (JT.MBB != NextBlock(SwitchBB)) 2488 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2489 DAG.getBasicBlock(JT.MBB)); 2490 2491 DAG.setRoot(BrCond); 2492 } else { 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2496 DAG.getBasicBlock(JT.MBB))); 2497 else 2498 DAG.setRoot(CopyTo); 2499 } 2500 } 2501 2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2503 /// variable if there exists one. 2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2505 SDValue &Chain) { 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 MachineFunction &MF = DAG.getMachineFunction(); 2510 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2511 MachineSDNode *Node = 2512 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2513 if (Global) { 2514 MachinePointerInfo MPInfo(Global); 2515 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2516 MachineMemOperand::MODereferenceable; 2517 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2518 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2519 DAG.setNodeMemRefs(Node, {MemRef}); 2520 } 2521 if (PtrTy != PtrMemTy) 2522 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2523 return SDValue(Node, 0); 2524 } 2525 2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2527 /// tail spliced into a stack protector check success bb. 2528 /// 2529 /// For a high level explanation of how this fits into the stack protector 2530 /// generation see the comment on the declaration of class 2531 /// StackProtectorDescriptor. 2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2533 MachineBasicBlock *ParentBB) { 2534 2535 // First create the loads to the guard/stack slot for the comparison. 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2538 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2539 2540 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2541 int FI = MFI.getStackProtectorIndex(); 2542 2543 SDValue Guard; 2544 SDLoc dl = getCurSDLoc(); 2545 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2546 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2547 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2548 2549 // Generate code to load the content of the guard slot. 2550 SDValue GuardVal = DAG.getLoad( 2551 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2553 MachineMemOperand::MOVolatile); 2554 2555 if (TLI.useStackGuardXorFP()) 2556 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2557 2558 // Retrieve guard check function, nullptr if instrumentation is inlined. 2559 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2560 // The target provides a guard check function to validate the guard value. 2561 // Generate a call to that function with the content of the guard slot as 2562 // argument. 2563 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2564 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2565 2566 TargetLowering::ArgListTy Args; 2567 TargetLowering::ArgListEntry Entry; 2568 Entry.Node = GuardVal; 2569 Entry.Ty = FnTy->getParamType(0); 2570 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2571 Entry.IsInReg = true; 2572 Args.push_back(Entry); 2573 2574 TargetLowering::CallLoweringInfo CLI(DAG); 2575 CLI.setDebugLoc(getCurSDLoc()) 2576 .setChain(DAG.getEntryNode()) 2577 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2578 getValue(GuardCheckFn), std::move(Args)); 2579 2580 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2581 DAG.setRoot(Result.second); 2582 return; 2583 } 2584 2585 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2586 // Otherwise, emit a volatile load to retrieve the stack guard value. 2587 SDValue Chain = DAG.getEntryNode(); 2588 if (TLI.useLoadStackGuardNode()) { 2589 Guard = getLoadStackGuard(DAG, dl, Chain); 2590 } else { 2591 const Value *IRGuard = TLI.getSDagStackGuard(M); 2592 SDValue GuardPtr = getValue(IRGuard); 2593 2594 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2595 MachinePointerInfo(IRGuard, 0), Align, 2596 MachineMemOperand::MOVolatile); 2597 } 2598 2599 // Perform the comparison via a getsetcc. 2600 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2601 *DAG.getContext(), 2602 Guard.getValueType()), 2603 Guard, GuardVal, ISD::SETNE); 2604 2605 // If the guard/stackslot do not equal, branch to failure MBB. 2606 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2607 MVT::Other, GuardVal.getOperand(0), 2608 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2609 // Otherwise branch to success MBB. 2610 SDValue Br = DAG.getNode(ISD::BR, dl, 2611 MVT::Other, BrCond, 2612 DAG.getBasicBlock(SPD.getSuccessMBB())); 2613 2614 DAG.setRoot(Br); 2615 } 2616 2617 /// Codegen the failure basic block for a stack protector check. 2618 /// 2619 /// A failure stack protector machine basic block consists simply of a call to 2620 /// __stack_chk_fail(). 2621 /// 2622 /// For a high level explanation of how this fits into the stack protector 2623 /// generation see the comment on the declaration of class 2624 /// StackProtectorDescriptor. 2625 void 2626 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2628 TargetLowering::MakeLibCallOptions CallOptions; 2629 CallOptions.setDiscardResult(true); 2630 SDValue Chain = 2631 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2632 None, CallOptions, getCurSDLoc()).second; 2633 // On PS4, the "return address" must still be within the calling function, 2634 // even if it's at the very end, so emit an explicit TRAP here. 2635 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2636 if (TM.getTargetTriple().isPS4CPU()) 2637 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2638 2639 DAG.setRoot(Chain); 2640 } 2641 2642 /// visitBitTestHeader - This function emits necessary code to produce value 2643 /// suitable for "bit tests" 2644 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2645 MachineBasicBlock *SwitchBB) { 2646 SDLoc dl = getCurSDLoc(); 2647 2648 // Subtract the minimum value. 2649 SDValue SwitchOp = getValue(B.SValue); 2650 EVT VT = SwitchOp.getValueType(); 2651 SDValue RangeSub = 2652 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2653 2654 // Determine the type of the test operands. 2655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2656 bool UsePtrType = false; 2657 if (!TLI.isTypeLegal(VT)) { 2658 UsePtrType = true; 2659 } else { 2660 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2661 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2662 // Switch table case range are encoded into series of masks. 2663 // Just use pointer type, it's guaranteed to fit. 2664 UsePtrType = true; 2665 break; 2666 } 2667 } 2668 SDValue Sub = RangeSub; 2669 if (UsePtrType) { 2670 VT = TLI.getPointerTy(DAG.getDataLayout()); 2671 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2672 } 2673 2674 B.RegVT = VT.getSimpleVT(); 2675 B.Reg = FuncInfo.CreateReg(B.RegVT); 2676 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2677 2678 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2679 2680 if (!B.OmitRangeCheck) 2681 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2682 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2683 SwitchBB->normalizeSuccProbs(); 2684 2685 SDValue Root = CopyTo; 2686 if (!B.OmitRangeCheck) { 2687 // Conditional branch to the default block. 2688 SDValue RangeCmp = DAG.getSetCC(dl, 2689 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2690 RangeSub.getValueType()), 2691 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2692 ISD::SETUGT); 2693 2694 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2695 DAG.getBasicBlock(B.Default)); 2696 } 2697 2698 // Avoid emitting unnecessary branches to the next block. 2699 if (MBB != NextBlock(SwitchBB)) 2700 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2701 2702 DAG.setRoot(Root); 2703 } 2704 2705 /// visitBitTestCase - this function produces one "bit test" 2706 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2707 MachineBasicBlock* NextMBB, 2708 BranchProbability BranchProbToNext, 2709 unsigned Reg, 2710 BitTestCase &B, 2711 MachineBasicBlock *SwitchBB) { 2712 SDLoc dl = getCurSDLoc(); 2713 MVT VT = BB.RegVT; 2714 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2715 SDValue Cmp; 2716 unsigned PopCount = countPopulation(B.Mask); 2717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2718 if (PopCount == 1) { 2719 // Testing for a single bit; just compare the shift count with what it 2720 // would need to be to shift a 1 bit in that position. 2721 Cmp = DAG.getSetCC( 2722 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2723 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2724 ISD::SETEQ); 2725 } else if (PopCount == BB.Range) { 2726 // There is only one zero bit in the range, test for it directly. 2727 Cmp = DAG.getSetCC( 2728 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2729 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2730 ISD::SETNE); 2731 } else { 2732 // Make desired shift 2733 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2734 DAG.getConstant(1, dl, VT), ShiftOp); 2735 2736 // Emit bit tests and jumps 2737 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2738 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2739 Cmp = DAG.getSetCC( 2740 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2741 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2742 } 2743 2744 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2745 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2746 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2747 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2748 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2749 // one as they are relative probabilities (and thus work more like weights), 2750 // and hence we need to normalize them to let the sum of them become one. 2751 SwitchBB->normalizeSuccProbs(); 2752 2753 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2754 MVT::Other, getControlRoot(), 2755 Cmp, DAG.getBasicBlock(B.TargetBB)); 2756 2757 // Avoid emitting unnecessary branches to the next block. 2758 if (NextMBB != NextBlock(SwitchBB)) 2759 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2760 DAG.getBasicBlock(NextMBB)); 2761 2762 DAG.setRoot(BrAnd); 2763 } 2764 2765 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2766 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2767 2768 // Retrieve successors. Look through artificial IR level blocks like 2769 // catchswitch for successors. 2770 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2771 const BasicBlock *EHPadBB = I.getSuccessor(1); 2772 2773 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2774 // have to do anything here to lower funclet bundles. 2775 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2776 LLVMContext::OB_funclet, 2777 LLVMContext::OB_cfguardtarget}) && 2778 "Cannot lower invokes with arbitrary operand bundles yet!"); 2779 2780 const Value *Callee(I.getCalledValue()); 2781 const Function *Fn = dyn_cast<Function>(Callee); 2782 if (isa<InlineAsm>(Callee)) 2783 visitInlineAsm(&I); 2784 else if (Fn && Fn->isIntrinsic()) { 2785 switch (Fn->getIntrinsicID()) { 2786 default: 2787 llvm_unreachable("Cannot invoke this intrinsic"); 2788 case Intrinsic::donothing: 2789 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2790 break; 2791 case Intrinsic::experimental_patchpoint_void: 2792 case Intrinsic::experimental_patchpoint_i64: 2793 visitPatchpoint(&I, EHPadBB); 2794 break; 2795 case Intrinsic::experimental_gc_statepoint: 2796 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2797 break; 2798 case Intrinsic::wasm_rethrow_in_catch: { 2799 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2800 // special because it can be invoked, so we manually lower it to a DAG 2801 // node here. 2802 SmallVector<SDValue, 8> Ops; 2803 Ops.push_back(getRoot()); // inchain 2804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2805 Ops.push_back( 2806 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2807 TLI.getPointerTy(DAG.getDataLayout()))); 2808 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2809 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2810 break; 2811 } 2812 } 2813 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2814 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2815 // Eventually we will support lowering the @llvm.experimental.deoptimize 2816 // intrinsic, and right now there are no plans to support other intrinsics 2817 // with deopt state. 2818 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2819 } else { 2820 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2821 } 2822 2823 // If the value of the invoke is used outside of its defining block, make it 2824 // available as a virtual register. 2825 // We already took care of the exported value for the statepoint instruction 2826 // during call to the LowerStatepoint. 2827 if (!isStatepoint(I)) { 2828 CopyToExportRegsIfNeeded(&I); 2829 } 2830 2831 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2832 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2833 BranchProbability EHPadBBProb = 2834 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2835 : BranchProbability::getZero(); 2836 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2837 2838 // Update successor info. 2839 addSuccessorWithProb(InvokeMBB, Return); 2840 for (auto &UnwindDest : UnwindDests) { 2841 UnwindDest.first->setIsEHPad(); 2842 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2843 } 2844 InvokeMBB->normalizeSuccProbs(); 2845 2846 // Drop into normal successor. 2847 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2848 DAG.getBasicBlock(Return))); 2849 } 2850 2851 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2852 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2853 2854 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2855 // have to do anything here to lower funclet bundles. 2856 assert(!I.hasOperandBundlesOtherThan( 2857 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2858 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2859 2860 assert(isa<InlineAsm>(I.getCalledValue()) && 2861 "Only know how to handle inlineasm callbr"); 2862 visitInlineAsm(&I); 2863 CopyToExportRegsIfNeeded(&I); 2864 2865 // Retrieve successors. 2866 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2867 Return->setInlineAsmBrDefaultTarget(); 2868 2869 // Update successor info. 2870 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2871 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2872 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2873 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2874 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2875 } 2876 CallBrMBB->normalizeSuccProbs(); 2877 2878 // Drop into default successor. 2879 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2880 MVT::Other, getControlRoot(), 2881 DAG.getBasicBlock(Return))); 2882 } 2883 2884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2885 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2886 } 2887 2888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2889 assert(FuncInfo.MBB->isEHPad() && 2890 "Call to landingpad not in landing pad!"); 2891 2892 // If there aren't registers to copy the values into (e.g., during SjLj 2893 // exceptions), then don't bother to create these DAG nodes. 2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2895 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2896 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2897 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2898 return; 2899 2900 // If landingpad's return type is token type, we don't create DAG nodes 2901 // for its exception pointer and selector value. The extraction of exception 2902 // pointer or selector value from token type landingpads is not currently 2903 // supported. 2904 if (LP.getType()->isTokenTy()) 2905 return; 2906 2907 SmallVector<EVT, 2> ValueVTs; 2908 SDLoc dl = getCurSDLoc(); 2909 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2910 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2911 2912 // Get the two live-in registers as SDValues. The physregs have already been 2913 // copied into virtual registers. 2914 SDValue Ops[2]; 2915 if (FuncInfo.ExceptionPointerVirtReg) { 2916 Ops[0] = DAG.getZExtOrTrunc( 2917 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2918 FuncInfo.ExceptionPointerVirtReg, 2919 TLI.getPointerTy(DAG.getDataLayout())), 2920 dl, ValueVTs[0]); 2921 } else { 2922 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2923 } 2924 Ops[1] = DAG.getZExtOrTrunc( 2925 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2926 FuncInfo.ExceptionSelectorVirtReg, 2927 TLI.getPointerTy(DAG.getDataLayout())), 2928 dl, ValueVTs[1]); 2929 2930 // Merge into one. 2931 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2932 DAG.getVTList(ValueVTs), Ops); 2933 setValue(&LP, Res); 2934 } 2935 2936 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2937 MachineBasicBlock *Last) { 2938 // Update JTCases. 2939 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2940 if (SL->JTCases[i].first.HeaderBB == First) 2941 SL->JTCases[i].first.HeaderBB = Last; 2942 2943 // Update BitTestCases. 2944 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2945 if (SL->BitTestCases[i].Parent == First) 2946 SL->BitTestCases[i].Parent = Last; 2947 } 2948 2949 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2950 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2951 2952 // Update machine-CFG edges with unique successors. 2953 SmallSet<BasicBlock*, 32> Done; 2954 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2955 BasicBlock *BB = I.getSuccessor(i); 2956 bool Inserted = Done.insert(BB).second; 2957 if (!Inserted) 2958 continue; 2959 2960 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2961 addSuccessorWithProb(IndirectBrMBB, Succ); 2962 } 2963 IndirectBrMBB->normalizeSuccProbs(); 2964 2965 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2966 MVT::Other, getControlRoot(), 2967 getValue(I.getAddress()))); 2968 } 2969 2970 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2971 if (!DAG.getTarget().Options.TrapUnreachable) 2972 return; 2973 2974 // We may be able to ignore unreachable behind a noreturn call. 2975 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2976 const BasicBlock &BB = *I.getParent(); 2977 if (&I != &BB.front()) { 2978 BasicBlock::const_iterator PredI = 2979 std::prev(BasicBlock::const_iterator(&I)); 2980 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2981 if (Call->doesNotReturn()) 2982 return; 2983 } 2984 } 2985 } 2986 2987 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2988 } 2989 2990 void SelectionDAGBuilder::visitFSub(const User &I) { 2991 // -0.0 - X --> fneg 2992 Type *Ty = I.getType(); 2993 if (isa<Constant>(I.getOperand(0)) && 2994 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2995 SDValue Op2 = getValue(I.getOperand(1)); 2996 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2997 Op2.getValueType(), Op2)); 2998 return; 2999 } 3000 3001 visitBinary(I, ISD::FSUB); 3002 } 3003 3004 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3005 SDNodeFlags Flags; 3006 3007 SDValue Op = getValue(I.getOperand(0)); 3008 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3009 Op, Flags); 3010 setValue(&I, UnNodeValue); 3011 } 3012 3013 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3014 SDNodeFlags Flags; 3015 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3016 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3017 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3018 } 3019 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3020 Flags.setExact(ExactOp->isExact()); 3021 } 3022 3023 SDValue Op1 = getValue(I.getOperand(0)); 3024 SDValue Op2 = getValue(I.getOperand(1)); 3025 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3026 Op1, Op2, Flags); 3027 setValue(&I, BinNodeValue); 3028 } 3029 3030 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3031 SDValue Op1 = getValue(I.getOperand(0)); 3032 SDValue Op2 = getValue(I.getOperand(1)); 3033 3034 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3035 Op1.getValueType(), DAG.getDataLayout()); 3036 3037 // Coerce the shift amount to the right type if we can. 3038 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3039 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3040 unsigned Op2Size = Op2.getValueSizeInBits(); 3041 SDLoc DL = getCurSDLoc(); 3042 3043 // If the operand is smaller than the shift count type, promote it. 3044 if (ShiftSize > Op2Size) 3045 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3046 3047 // If the operand is larger than the shift count type but the shift 3048 // count type has enough bits to represent any shift value, truncate 3049 // it now. This is a common case and it exposes the truncate to 3050 // optimization early. 3051 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3052 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3053 // Otherwise we'll need to temporarily settle for some other convenient 3054 // type. Type legalization will make adjustments once the shiftee is split. 3055 else 3056 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3057 } 3058 3059 bool nuw = false; 3060 bool nsw = false; 3061 bool exact = false; 3062 3063 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3064 3065 if (const OverflowingBinaryOperator *OFBinOp = 3066 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3067 nuw = OFBinOp->hasNoUnsignedWrap(); 3068 nsw = OFBinOp->hasNoSignedWrap(); 3069 } 3070 if (const PossiblyExactOperator *ExactOp = 3071 dyn_cast<const PossiblyExactOperator>(&I)) 3072 exact = ExactOp->isExact(); 3073 } 3074 SDNodeFlags Flags; 3075 Flags.setExact(exact); 3076 Flags.setNoSignedWrap(nsw); 3077 Flags.setNoUnsignedWrap(nuw); 3078 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3079 Flags); 3080 setValue(&I, Res); 3081 } 3082 3083 void SelectionDAGBuilder::visitSDiv(const User &I) { 3084 SDValue Op1 = getValue(I.getOperand(0)); 3085 SDValue Op2 = getValue(I.getOperand(1)); 3086 3087 SDNodeFlags Flags; 3088 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3089 cast<PossiblyExactOperator>(&I)->isExact()); 3090 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3091 Op2, Flags)); 3092 } 3093 3094 void SelectionDAGBuilder::visitICmp(const User &I) { 3095 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3096 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3097 predicate = IC->getPredicate(); 3098 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3099 predicate = ICmpInst::Predicate(IC->getPredicate()); 3100 SDValue Op1 = getValue(I.getOperand(0)); 3101 SDValue Op2 = getValue(I.getOperand(1)); 3102 ISD::CondCode Opcode = getICmpCondCode(predicate); 3103 3104 auto &TLI = DAG.getTargetLoweringInfo(); 3105 EVT MemVT = 3106 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3107 3108 // If a pointer's DAG type is larger than its memory type then the DAG values 3109 // are zero-extended. This breaks signed comparisons so truncate back to the 3110 // underlying type before doing the compare. 3111 if (Op1.getValueType() != MemVT) { 3112 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3113 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3114 } 3115 3116 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3117 I.getType()); 3118 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3119 } 3120 3121 void SelectionDAGBuilder::visitFCmp(const User &I) { 3122 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3123 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3124 predicate = FC->getPredicate(); 3125 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3126 predicate = FCmpInst::Predicate(FC->getPredicate()); 3127 SDValue Op1 = getValue(I.getOperand(0)); 3128 SDValue Op2 = getValue(I.getOperand(1)); 3129 3130 ISD::CondCode Condition = getFCmpCondCode(predicate); 3131 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3132 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3133 Condition = getFCmpCodeWithoutNaN(Condition); 3134 3135 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3136 I.getType()); 3137 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3138 } 3139 3140 // Check if the condition of the select has one use or two users that are both 3141 // selects with the same condition. 3142 static bool hasOnlySelectUsers(const Value *Cond) { 3143 return llvm::all_of(Cond->users(), [](const Value *V) { 3144 return isa<SelectInst>(V); 3145 }); 3146 } 3147 3148 void SelectionDAGBuilder::visitSelect(const User &I) { 3149 SmallVector<EVT, 4> ValueVTs; 3150 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3151 ValueVTs); 3152 unsigned NumValues = ValueVTs.size(); 3153 if (NumValues == 0) return; 3154 3155 SmallVector<SDValue, 4> Values(NumValues); 3156 SDValue Cond = getValue(I.getOperand(0)); 3157 SDValue LHSVal = getValue(I.getOperand(1)); 3158 SDValue RHSVal = getValue(I.getOperand(2)); 3159 SmallVector<SDValue, 1> BaseOps(1, Cond); 3160 ISD::NodeType OpCode = 3161 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3162 3163 bool IsUnaryAbs = false; 3164 3165 // Min/max matching is only viable if all output VTs are the same. 3166 if (is_splat(ValueVTs)) { 3167 EVT VT = ValueVTs[0]; 3168 LLVMContext &Ctx = *DAG.getContext(); 3169 auto &TLI = DAG.getTargetLoweringInfo(); 3170 3171 // We care about the legality of the operation after it has been type 3172 // legalized. 3173 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3174 VT = TLI.getTypeToTransformTo(Ctx, VT); 3175 3176 // If the vselect is legal, assume we want to leave this as a vector setcc + 3177 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3178 // min/max is legal on the scalar type. 3179 bool UseScalarMinMax = VT.isVector() && 3180 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3181 3182 Value *LHS, *RHS; 3183 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3184 ISD::NodeType Opc = ISD::DELETED_NODE; 3185 switch (SPR.Flavor) { 3186 case SPF_UMAX: Opc = ISD::UMAX; break; 3187 case SPF_UMIN: Opc = ISD::UMIN; break; 3188 case SPF_SMAX: Opc = ISD::SMAX; break; 3189 case SPF_SMIN: Opc = ISD::SMIN; break; 3190 case SPF_FMINNUM: 3191 switch (SPR.NaNBehavior) { 3192 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3193 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3194 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3195 case SPNB_RETURNS_ANY: { 3196 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3197 Opc = ISD::FMINNUM; 3198 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3199 Opc = ISD::FMINIMUM; 3200 else if (UseScalarMinMax) 3201 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3202 ISD::FMINNUM : ISD::FMINIMUM; 3203 break; 3204 } 3205 } 3206 break; 3207 case SPF_FMAXNUM: 3208 switch (SPR.NaNBehavior) { 3209 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3210 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3211 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3212 case SPNB_RETURNS_ANY: 3213 3214 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3215 Opc = ISD::FMAXNUM; 3216 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3217 Opc = ISD::FMAXIMUM; 3218 else if (UseScalarMinMax) 3219 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3220 ISD::FMAXNUM : ISD::FMAXIMUM; 3221 break; 3222 } 3223 break; 3224 case SPF_ABS: 3225 IsUnaryAbs = true; 3226 Opc = ISD::ABS; 3227 break; 3228 case SPF_NABS: 3229 // TODO: we need to produce sub(0, abs(X)). 3230 default: break; 3231 } 3232 3233 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3234 (TLI.isOperationLegalOrCustom(Opc, VT) || 3235 (UseScalarMinMax && 3236 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3237 // If the underlying comparison instruction is used by any other 3238 // instruction, the consumed instructions won't be destroyed, so it is 3239 // not profitable to convert to a min/max. 3240 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3241 OpCode = Opc; 3242 LHSVal = getValue(LHS); 3243 RHSVal = getValue(RHS); 3244 BaseOps.clear(); 3245 } 3246 3247 if (IsUnaryAbs) { 3248 OpCode = Opc; 3249 LHSVal = getValue(LHS); 3250 BaseOps.clear(); 3251 } 3252 } 3253 3254 if (IsUnaryAbs) { 3255 for (unsigned i = 0; i != NumValues; ++i) { 3256 Values[i] = 3257 DAG.getNode(OpCode, getCurSDLoc(), 3258 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3259 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3260 } 3261 } else { 3262 for (unsigned i = 0; i != NumValues; ++i) { 3263 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3264 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3265 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3266 Values[i] = DAG.getNode( 3267 OpCode, getCurSDLoc(), 3268 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3269 } 3270 } 3271 3272 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3273 DAG.getVTList(ValueVTs), Values)); 3274 } 3275 3276 void SelectionDAGBuilder::visitTrunc(const User &I) { 3277 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3278 SDValue N = getValue(I.getOperand(0)); 3279 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3280 I.getType()); 3281 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3282 } 3283 3284 void SelectionDAGBuilder::visitZExt(const User &I) { 3285 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3286 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3287 SDValue N = getValue(I.getOperand(0)); 3288 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3289 I.getType()); 3290 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3291 } 3292 3293 void SelectionDAGBuilder::visitSExt(const User &I) { 3294 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3295 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3296 SDValue N = getValue(I.getOperand(0)); 3297 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3298 I.getType()); 3299 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3300 } 3301 3302 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3303 // FPTrunc is never a no-op cast, no need to check 3304 SDValue N = getValue(I.getOperand(0)); 3305 SDLoc dl = getCurSDLoc(); 3306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3307 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3308 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3309 DAG.getTargetConstant( 3310 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3311 } 3312 3313 void SelectionDAGBuilder::visitFPExt(const User &I) { 3314 // FPExt is never a no-op cast, no need to check 3315 SDValue N = getValue(I.getOperand(0)); 3316 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3317 I.getType()); 3318 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3319 } 3320 3321 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3322 // FPToUI is never a no-op cast, no need to check 3323 SDValue N = getValue(I.getOperand(0)); 3324 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3325 I.getType()); 3326 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3327 } 3328 3329 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3330 // FPToSI is never a no-op cast, no need to check 3331 SDValue N = getValue(I.getOperand(0)); 3332 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3333 I.getType()); 3334 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3335 } 3336 3337 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3338 // UIToFP is never a no-op cast, no need to check 3339 SDValue N = getValue(I.getOperand(0)); 3340 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3341 I.getType()); 3342 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3343 } 3344 3345 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3346 // SIToFP is never a no-op cast, no need to check 3347 SDValue N = getValue(I.getOperand(0)); 3348 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3349 I.getType()); 3350 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3351 } 3352 3353 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3354 // What to do depends on the size of the integer and the size of the pointer. 3355 // We can either truncate, zero extend, or no-op, accordingly. 3356 SDValue N = getValue(I.getOperand(0)); 3357 auto &TLI = DAG.getTargetLoweringInfo(); 3358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3359 I.getType()); 3360 EVT PtrMemVT = 3361 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3362 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3363 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3364 setValue(&I, N); 3365 } 3366 3367 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3368 // What to do depends on the size of the integer and the size of the pointer. 3369 // We can either truncate, zero extend, or no-op, accordingly. 3370 SDValue N = getValue(I.getOperand(0)); 3371 auto &TLI = DAG.getTargetLoweringInfo(); 3372 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3373 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3374 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3375 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3376 setValue(&I, N); 3377 } 3378 3379 void SelectionDAGBuilder::visitBitCast(const User &I) { 3380 SDValue N = getValue(I.getOperand(0)); 3381 SDLoc dl = getCurSDLoc(); 3382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3383 I.getType()); 3384 3385 // BitCast assures us that source and destination are the same size so this is 3386 // either a BITCAST or a no-op. 3387 if (DestVT != N.getValueType()) 3388 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3389 DestVT, N)); // convert types. 3390 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3391 // might fold any kind of constant expression to an integer constant and that 3392 // is not what we are looking for. Only recognize a bitcast of a genuine 3393 // constant integer as an opaque constant. 3394 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3395 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3396 /*isOpaque*/true)); 3397 else 3398 setValue(&I, N); // noop cast. 3399 } 3400 3401 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3403 const Value *SV = I.getOperand(0); 3404 SDValue N = getValue(SV); 3405 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3406 3407 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3408 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3409 3410 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3411 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3412 3413 setValue(&I, N); 3414 } 3415 3416 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 SDValue InVec = getValue(I.getOperand(0)); 3419 SDValue InVal = getValue(I.getOperand(1)); 3420 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3421 TLI.getVectorIdxTy(DAG.getDataLayout())); 3422 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3423 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3424 InVec, InVal, InIdx)); 3425 } 3426 3427 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 SDValue InVec = getValue(I.getOperand(0)); 3430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3431 TLI.getVectorIdxTy(DAG.getDataLayout())); 3432 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3433 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3434 InVec, InIdx)); 3435 } 3436 3437 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3438 SDValue Src1 = getValue(I.getOperand(0)); 3439 SDValue Src2 = getValue(I.getOperand(1)); 3440 ArrayRef<int> Mask; 3441 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3442 Mask = SVI->getShuffleMask(); 3443 else 3444 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3445 SDLoc DL = getCurSDLoc(); 3446 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3447 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3448 EVT SrcVT = Src1.getValueType(); 3449 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3450 3451 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3452 VT.isScalableVector()) { 3453 // Canonical splat form of first element of first input vector. 3454 SDValue FirstElt = 3455 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3456 DAG.getVectorIdxConstant(0, DL)); 3457 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3458 return; 3459 } 3460 3461 // For now, we only handle splats for scalable vectors. 3462 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3463 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3464 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3465 3466 unsigned MaskNumElts = Mask.size(); 3467 3468 if (SrcNumElts == MaskNumElts) { 3469 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3470 return; 3471 } 3472 3473 // Normalize the shuffle vector since mask and vector length don't match. 3474 if (SrcNumElts < MaskNumElts) { 3475 // Mask is longer than the source vectors. We can use concatenate vector to 3476 // make the mask and vectors lengths match. 3477 3478 if (MaskNumElts % SrcNumElts == 0) { 3479 // Mask length is a multiple of the source vector length. 3480 // Check if the shuffle is some kind of concatenation of the input 3481 // vectors. 3482 unsigned NumConcat = MaskNumElts / SrcNumElts; 3483 bool IsConcat = true; 3484 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3485 for (unsigned i = 0; i != MaskNumElts; ++i) { 3486 int Idx = Mask[i]; 3487 if (Idx < 0) 3488 continue; 3489 // Ensure the indices in each SrcVT sized piece are sequential and that 3490 // the same source is used for the whole piece. 3491 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3492 (ConcatSrcs[i / SrcNumElts] >= 0 && 3493 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3494 IsConcat = false; 3495 break; 3496 } 3497 // Remember which source this index came from. 3498 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3499 } 3500 3501 // The shuffle is concatenating multiple vectors together. Just emit 3502 // a CONCAT_VECTORS operation. 3503 if (IsConcat) { 3504 SmallVector<SDValue, 8> ConcatOps; 3505 for (auto Src : ConcatSrcs) { 3506 if (Src < 0) 3507 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3508 else if (Src == 0) 3509 ConcatOps.push_back(Src1); 3510 else 3511 ConcatOps.push_back(Src2); 3512 } 3513 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3514 return; 3515 } 3516 } 3517 3518 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3519 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3520 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3521 PaddedMaskNumElts); 3522 3523 // Pad both vectors with undefs to make them the same length as the mask. 3524 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3525 3526 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3527 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3528 MOps1[0] = Src1; 3529 MOps2[0] = Src2; 3530 3531 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3532 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3533 3534 // Readjust mask for new input vector length. 3535 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3536 for (unsigned i = 0; i != MaskNumElts; ++i) { 3537 int Idx = Mask[i]; 3538 if (Idx >= (int)SrcNumElts) 3539 Idx -= SrcNumElts - PaddedMaskNumElts; 3540 MappedOps[i] = Idx; 3541 } 3542 3543 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3544 3545 // If the concatenated vector was padded, extract a subvector with the 3546 // correct number of elements. 3547 if (MaskNumElts != PaddedMaskNumElts) 3548 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3549 DAG.getVectorIdxConstant(0, DL)); 3550 3551 setValue(&I, Result); 3552 return; 3553 } 3554 3555 if (SrcNumElts > MaskNumElts) { 3556 // Analyze the access pattern of the vector to see if we can extract 3557 // two subvectors and do the shuffle. 3558 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3559 bool CanExtract = true; 3560 for (int Idx : Mask) { 3561 unsigned Input = 0; 3562 if (Idx < 0) 3563 continue; 3564 3565 if (Idx >= (int)SrcNumElts) { 3566 Input = 1; 3567 Idx -= SrcNumElts; 3568 } 3569 3570 // If all the indices come from the same MaskNumElts sized portion of 3571 // the sources we can use extract. Also make sure the extract wouldn't 3572 // extract past the end of the source. 3573 int NewStartIdx = alignDown(Idx, MaskNumElts); 3574 if (NewStartIdx + MaskNumElts > SrcNumElts || 3575 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3576 CanExtract = false; 3577 // Make sure we always update StartIdx as we use it to track if all 3578 // elements are undef. 3579 StartIdx[Input] = NewStartIdx; 3580 } 3581 3582 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3583 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3584 return; 3585 } 3586 if (CanExtract) { 3587 // Extract appropriate subvector and generate a vector shuffle 3588 for (unsigned Input = 0; Input < 2; ++Input) { 3589 SDValue &Src = Input == 0 ? Src1 : Src2; 3590 if (StartIdx[Input] < 0) 3591 Src = DAG.getUNDEF(VT); 3592 else { 3593 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3594 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3595 } 3596 } 3597 3598 // Calculate new mask. 3599 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3600 for (int &Idx : MappedOps) { 3601 if (Idx >= (int)SrcNumElts) 3602 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3603 else if (Idx >= 0) 3604 Idx -= StartIdx[0]; 3605 } 3606 3607 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3608 return; 3609 } 3610 } 3611 3612 // We can't use either concat vectors or extract subvectors so fall back to 3613 // replacing the shuffle with extract and build vector. 3614 // to insert and build vector. 3615 EVT EltVT = VT.getVectorElementType(); 3616 SmallVector<SDValue,8> Ops; 3617 for (int Idx : Mask) { 3618 SDValue Res; 3619 3620 if (Idx < 0) { 3621 Res = DAG.getUNDEF(EltVT); 3622 } else { 3623 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3624 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3625 3626 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3627 DAG.getVectorIdxConstant(Idx, DL)); 3628 } 3629 3630 Ops.push_back(Res); 3631 } 3632 3633 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3634 } 3635 3636 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3637 ArrayRef<unsigned> Indices; 3638 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3639 Indices = IV->getIndices(); 3640 else 3641 Indices = cast<ConstantExpr>(&I)->getIndices(); 3642 3643 const Value *Op0 = I.getOperand(0); 3644 const Value *Op1 = I.getOperand(1); 3645 Type *AggTy = I.getType(); 3646 Type *ValTy = Op1->getType(); 3647 bool IntoUndef = isa<UndefValue>(Op0); 3648 bool FromUndef = isa<UndefValue>(Op1); 3649 3650 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3651 3652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3653 SmallVector<EVT, 4> AggValueVTs; 3654 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3655 SmallVector<EVT, 4> ValValueVTs; 3656 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3657 3658 unsigned NumAggValues = AggValueVTs.size(); 3659 unsigned NumValValues = ValValueVTs.size(); 3660 SmallVector<SDValue, 4> Values(NumAggValues); 3661 3662 // Ignore an insertvalue that produces an empty object 3663 if (!NumAggValues) { 3664 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3665 return; 3666 } 3667 3668 SDValue Agg = getValue(Op0); 3669 unsigned i = 0; 3670 // Copy the beginning value(s) from the original aggregate. 3671 for (; i != LinearIndex; ++i) 3672 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3673 SDValue(Agg.getNode(), Agg.getResNo() + i); 3674 // Copy values from the inserted value(s). 3675 if (NumValValues) { 3676 SDValue Val = getValue(Op1); 3677 for (; i != LinearIndex + NumValValues; ++i) 3678 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3679 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3680 } 3681 // Copy remaining value(s) from the original aggregate. 3682 for (; i != NumAggValues; ++i) 3683 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3684 SDValue(Agg.getNode(), Agg.getResNo() + i); 3685 3686 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3687 DAG.getVTList(AggValueVTs), Values)); 3688 } 3689 3690 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3691 ArrayRef<unsigned> Indices; 3692 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3693 Indices = EV->getIndices(); 3694 else 3695 Indices = cast<ConstantExpr>(&I)->getIndices(); 3696 3697 const Value *Op0 = I.getOperand(0); 3698 Type *AggTy = Op0->getType(); 3699 Type *ValTy = I.getType(); 3700 bool OutOfUndef = isa<UndefValue>(Op0); 3701 3702 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3703 3704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3705 SmallVector<EVT, 4> ValValueVTs; 3706 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3707 3708 unsigned NumValValues = ValValueVTs.size(); 3709 3710 // Ignore a extractvalue that produces an empty object 3711 if (!NumValValues) { 3712 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3713 return; 3714 } 3715 3716 SmallVector<SDValue, 4> Values(NumValValues); 3717 3718 SDValue Agg = getValue(Op0); 3719 // Copy out the selected value(s). 3720 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3721 Values[i - LinearIndex] = 3722 OutOfUndef ? 3723 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3724 SDValue(Agg.getNode(), Agg.getResNo() + i); 3725 3726 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3727 DAG.getVTList(ValValueVTs), Values)); 3728 } 3729 3730 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3731 Value *Op0 = I.getOperand(0); 3732 // Note that the pointer operand may be a vector of pointers. Take the scalar 3733 // element which holds a pointer. 3734 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3735 SDValue N = getValue(Op0); 3736 SDLoc dl = getCurSDLoc(); 3737 auto &TLI = DAG.getTargetLoweringInfo(); 3738 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3739 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3740 3741 // Normalize Vector GEP - all scalar operands should be converted to the 3742 // splat vector. 3743 bool IsVectorGEP = I.getType()->isVectorTy(); 3744 ElementCount VectorElementCount = IsVectorGEP ? 3745 I.getType()->getVectorElementCount() : ElementCount(0, false); 3746 3747 if (IsVectorGEP && !N.getValueType().isVector()) { 3748 LLVMContext &Context = *DAG.getContext(); 3749 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3750 if (VectorElementCount.Scalable) 3751 N = DAG.getSplatVector(VT, dl, N); 3752 else 3753 N = DAG.getSplatBuildVector(VT, dl, N); 3754 } 3755 3756 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3757 GTI != E; ++GTI) { 3758 const Value *Idx = GTI.getOperand(); 3759 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3760 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3761 if (Field) { 3762 // N = N + Offset 3763 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3764 3765 // In an inbounds GEP with an offset that is nonnegative even when 3766 // interpreted as signed, assume there is no unsigned overflow. 3767 SDNodeFlags Flags; 3768 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3769 Flags.setNoUnsignedWrap(true); 3770 3771 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3772 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3773 } 3774 } else { 3775 // IdxSize is the width of the arithmetic according to IR semantics. 3776 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3777 // (and fix up the result later). 3778 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3779 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3780 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3781 // We intentionally mask away the high bits here; ElementSize may not 3782 // fit in IdxTy. 3783 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3784 bool ElementScalable = ElementSize.isScalable(); 3785 3786 // If this is a scalar constant or a splat vector of constants, 3787 // handle it quickly. 3788 const auto *C = dyn_cast<Constant>(Idx); 3789 if (C && isa<VectorType>(C->getType())) 3790 C = C->getSplatValue(); 3791 3792 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3793 if (CI && CI->isZero()) 3794 continue; 3795 if (CI && !ElementScalable) { 3796 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3797 LLVMContext &Context = *DAG.getContext(); 3798 SDValue OffsVal; 3799 if (IsVectorGEP) 3800 OffsVal = DAG.getConstant( 3801 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3802 else 3803 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3804 3805 // In an inbounds GEP with an offset that is nonnegative even when 3806 // interpreted as signed, assume there is no unsigned overflow. 3807 SDNodeFlags Flags; 3808 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3809 Flags.setNoUnsignedWrap(true); 3810 3811 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3812 3813 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3814 continue; 3815 } 3816 3817 // N = N + Idx * ElementMul; 3818 SDValue IdxN = getValue(Idx); 3819 3820 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3821 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3822 VectorElementCount); 3823 if (VectorElementCount.Scalable) 3824 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3825 else 3826 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3827 } 3828 3829 // If the index is smaller or larger than intptr_t, truncate or extend 3830 // it. 3831 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3832 3833 if (ElementScalable) { 3834 EVT VScaleTy = N.getValueType().getScalarType(); 3835 SDValue VScale = DAG.getNode( 3836 ISD::VSCALE, dl, VScaleTy, 3837 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3838 if (IsVectorGEP) 3839 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3840 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3841 } else { 3842 // If this is a multiply by a power of two, turn it into a shl 3843 // immediately. This is a very common case. 3844 if (ElementMul != 1) { 3845 if (ElementMul.isPowerOf2()) { 3846 unsigned Amt = ElementMul.logBase2(); 3847 IdxN = DAG.getNode(ISD::SHL, dl, 3848 N.getValueType(), IdxN, 3849 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3850 } else { 3851 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3852 IdxN.getValueType()); 3853 IdxN = DAG.getNode(ISD::MUL, dl, 3854 N.getValueType(), IdxN, Scale); 3855 } 3856 } 3857 } 3858 3859 N = DAG.getNode(ISD::ADD, dl, 3860 N.getValueType(), N, IdxN); 3861 } 3862 } 3863 3864 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3865 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3866 3867 setValue(&I, N); 3868 } 3869 3870 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3871 // If this is a fixed sized alloca in the entry block of the function, 3872 // allocate it statically on the stack. 3873 if (FuncInfo.StaticAllocaMap.count(&I)) 3874 return; // getValue will auto-populate this. 3875 3876 SDLoc dl = getCurSDLoc(); 3877 Type *Ty = I.getAllocatedType(); 3878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3879 auto &DL = DAG.getDataLayout(); 3880 uint64_t TySize = DL.getTypeAllocSize(Ty); 3881 MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3882 3883 SDValue AllocSize = getValue(I.getArraySize()); 3884 3885 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3886 if (AllocSize.getValueType() != IntPtr) 3887 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3888 3889 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3890 AllocSize, 3891 DAG.getConstant(TySize, dl, IntPtr)); 3892 3893 // Handle alignment. If the requested alignment is less than or equal to 3894 // the stack alignment, ignore it. If the size is greater than or equal to 3895 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3896 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3897 if (Alignment <= StackAlign) 3898 Alignment = None; 3899 3900 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3901 // Round the size of the allocation up to the stack alignment size 3902 // by add SA-1 to the size. This doesn't overflow because we're computing 3903 // an address inside an alloca. 3904 SDNodeFlags Flags; 3905 Flags.setNoUnsignedWrap(true); 3906 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3907 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3908 3909 // Mask out the low bits for alignment purposes. 3910 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3911 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3912 3913 SDValue Ops[] = { 3914 getRoot(), AllocSize, 3915 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3916 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3917 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3918 setValue(&I, DSA); 3919 DAG.setRoot(DSA.getValue(1)); 3920 3921 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3922 } 3923 3924 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3925 if (I.isAtomic()) 3926 return visitAtomicLoad(I); 3927 3928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3929 const Value *SV = I.getOperand(0); 3930 if (TLI.supportSwiftError()) { 3931 // Swifterror values can come from either a function parameter with 3932 // swifterror attribute or an alloca with swifterror attribute. 3933 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3934 if (Arg->hasSwiftErrorAttr()) 3935 return visitLoadFromSwiftError(I); 3936 } 3937 3938 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3939 if (Alloca->isSwiftError()) 3940 return visitLoadFromSwiftError(I); 3941 } 3942 } 3943 3944 SDValue Ptr = getValue(SV); 3945 3946 Type *Ty = I.getType(); 3947 unsigned Alignment = I.getAlignment(); 3948 3949 AAMDNodes AAInfo; 3950 I.getAAMetadata(AAInfo); 3951 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3952 3953 SmallVector<EVT, 4> ValueVTs, MemVTs; 3954 SmallVector<uint64_t, 4> Offsets; 3955 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3956 unsigned NumValues = ValueVTs.size(); 3957 if (NumValues == 0) 3958 return; 3959 3960 bool isVolatile = I.isVolatile(); 3961 3962 SDValue Root; 3963 bool ConstantMemory = false; 3964 if (isVolatile) 3965 // Serialize volatile loads with other side effects. 3966 Root = getRoot(); 3967 else if (NumValues > MaxParallelChains) 3968 Root = getMemoryRoot(); 3969 else if (AA && 3970 AA->pointsToConstantMemory(MemoryLocation( 3971 SV, 3972 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3973 AAInfo))) { 3974 // Do not serialize (non-volatile) loads of constant memory with anything. 3975 Root = DAG.getEntryNode(); 3976 ConstantMemory = true; 3977 } else { 3978 // Do not serialize non-volatile loads against each other. 3979 Root = DAG.getRoot(); 3980 } 3981 3982 SDLoc dl = getCurSDLoc(); 3983 3984 if (isVolatile) 3985 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3986 3987 // An aggregate load cannot wrap around the address space, so offsets to its 3988 // parts don't wrap either. 3989 SDNodeFlags Flags; 3990 Flags.setNoUnsignedWrap(true); 3991 3992 SmallVector<SDValue, 4> Values(NumValues); 3993 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3994 EVT PtrVT = Ptr.getValueType(); 3995 3996 MachineMemOperand::Flags MMOFlags 3997 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 3998 3999 unsigned ChainI = 0; 4000 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4001 // Serializing loads here may result in excessive register pressure, and 4002 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4003 // could recover a bit by hoisting nodes upward in the chain by recognizing 4004 // they are side-effect free or do not alias. The optimizer should really 4005 // avoid this case by converting large object/array copies to llvm.memcpy 4006 // (MaxParallelChains should always remain as failsafe). 4007 if (ChainI == MaxParallelChains) { 4008 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4009 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4010 makeArrayRef(Chains.data(), ChainI)); 4011 Root = Chain; 4012 ChainI = 0; 4013 } 4014 SDValue A = DAG.getNode(ISD::ADD, dl, 4015 PtrVT, Ptr, 4016 DAG.getConstant(Offsets[i], dl, PtrVT), 4017 Flags); 4018 4019 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4020 MachinePointerInfo(SV, Offsets[i]), Alignment, 4021 MMOFlags, AAInfo, Ranges); 4022 Chains[ChainI] = L.getValue(1); 4023 4024 if (MemVTs[i] != ValueVTs[i]) 4025 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4026 4027 Values[i] = L; 4028 } 4029 4030 if (!ConstantMemory) { 4031 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4032 makeArrayRef(Chains.data(), ChainI)); 4033 if (isVolatile) 4034 DAG.setRoot(Chain); 4035 else 4036 PendingLoads.push_back(Chain); 4037 } 4038 4039 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4040 DAG.getVTList(ValueVTs), Values)); 4041 } 4042 4043 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4044 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4045 "call visitStoreToSwiftError when backend supports swifterror"); 4046 4047 SmallVector<EVT, 4> ValueVTs; 4048 SmallVector<uint64_t, 4> Offsets; 4049 const Value *SrcV = I.getOperand(0); 4050 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4051 SrcV->getType(), ValueVTs, &Offsets); 4052 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4053 "expect a single EVT for swifterror"); 4054 4055 SDValue Src = getValue(SrcV); 4056 // Create a virtual register, then update the virtual register. 4057 Register VReg = 4058 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4059 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4060 // Chain can be getRoot or getControlRoot. 4061 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4062 SDValue(Src.getNode(), Src.getResNo())); 4063 DAG.setRoot(CopyNode); 4064 } 4065 4066 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4067 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4068 "call visitLoadFromSwiftError when backend supports swifterror"); 4069 4070 assert(!I.isVolatile() && 4071 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4072 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4073 "Support volatile, non temporal, invariant for load_from_swift_error"); 4074 4075 const Value *SV = I.getOperand(0); 4076 Type *Ty = I.getType(); 4077 AAMDNodes AAInfo; 4078 I.getAAMetadata(AAInfo); 4079 assert( 4080 (!AA || 4081 !AA->pointsToConstantMemory(MemoryLocation( 4082 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4083 AAInfo))) && 4084 "load_from_swift_error should not be constant memory"); 4085 4086 SmallVector<EVT, 4> ValueVTs; 4087 SmallVector<uint64_t, 4> Offsets; 4088 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4089 ValueVTs, &Offsets); 4090 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4091 "expect a single EVT for swifterror"); 4092 4093 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4094 SDValue L = DAG.getCopyFromReg( 4095 getRoot(), getCurSDLoc(), 4096 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4097 4098 setValue(&I, L); 4099 } 4100 4101 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4102 if (I.isAtomic()) 4103 return visitAtomicStore(I); 4104 4105 const Value *SrcV = I.getOperand(0); 4106 const Value *PtrV = I.getOperand(1); 4107 4108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4109 if (TLI.supportSwiftError()) { 4110 // Swifterror values can come from either a function parameter with 4111 // swifterror attribute or an alloca with swifterror attribute. 4112 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4113 if (Arg->hasSwiftErrorAttr()) 4114 return visitStoreToSwiftError(I); 4115 } 4116 4117 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4118 if (Alloca->isSwiftError()) 4119 return visitStoreToSwiftError(I); 4120 } 4121 } 4122 4123 SmallVector<EVT, 4> ValueVTs, MemVTs; 4124 SmallVector<uint64_t, 4> Offsets; 4125 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4126 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4127 unsigned NumValues = ValueVTs.size(); 4128 if (NumValues == 0) 4129 return; 4130 4131 // Get the lowered operands. Note that we do this after 4132 // checking if NumResults is zero, because with zero results 4133 // the operands won't have values in the map. 4134 SDValue Src = getValue(SrcV); 4135 SDValue Ptr = getValue(PtrV); 4136 4137 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4138 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4139 SDLoc dl = getCurSDLoc(); 4140 unsigned Alignment = I.getAlignment(); 4141 AAMDNodes AAInfo; 4142 I.getAAMetadata(AAInfo); 4143 4144 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4145 4146 // An aggregate load cannot wrap around the address space, so offsets to its 4147 // parts don't wrap either. 4148 SDNodeFlags Flags; 4149 Flags.setNoUnsignedWrap(true); 4150 4151 unsigned ChainI = 0; 4152 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4153 // See visitLoad comments. 4154 if (ChainI == MaxParallelChains) { 4155 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4156 makeArrayRef(Chains.data(), ChainI)); 4157 Root = Chain; 4158 ChainI = 0; 4159 } 4160 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4161 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4162 if (MemVTs[i] != ValueVTs[i]) 4163 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4164 SDValue St = 4165 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4166 Alignment, MMOFlags, AAInfo); 4167 Chains[ChainI] = St; 4168 } 4169 4170 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4171 makeArrayRef(Chains.data(), ChainI)); 4172 DAG.setRoot(StoreNode); 4173 } 4174 4175 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4176 bool IsCompressing) { 4177 SDLoc sdl = getCurSDLoc(); 4178 4179 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4180 MaybeAlign &Alignment) { 4181 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4182 Src0 = I.getArgOperand(0); 4183 Ptr = I.getArgOperand(1); 4184 Alignment = 4185 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4186 Mask = I.getArgOperand(3); 4187 }; 4188 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4189 MaybeAlign &Alignment) { 4190 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4191 Src0 = I.getArgOperand(0); 4192 Ptr = I.getArgOperand(1); 4193 Mask = I.getArgOperand(2); 4194 Alignment = None; 4195 }; 4196 4197 Value *PtrOperand, *MaskOperand, *Src0Operand; 4198 MaybeAlign Alignment; 4199 if (IsCompressing) 4200 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4201 else 4202 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4203 4204 SDValue Ptr = getValue(PtrOperand); 4205 SDValue Src0 = getValue(Src0Operand); 4206 SDValue Mask = getValue(MaskOperand); 4207 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4208 4209 EVT VT = Src0.getValueType(); 4210 if (!Alignment) 4211 Alignment = DAG.getEVTAlign(VT); 4212 4213 AAMDNodes AAInfo; 4214 I.getAAMetadata(AAInfo); 4215 4216 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4217 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4218 // TODO: Make MachineMemOperands aware of scalable 4219 // vectors. 4220 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4221 SDValue StoreNode = 4222 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4223 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4224 DAG.setRoot(StoreNode); 4225 setValue(&I, StoreNode); 4226 } 4227 4228 // Get a uniform base for the Gather/Scatter intrinsic. 4229 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4230 // We try to represent it as a base pointer + vector of indices. 4231 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4232 // The first operand of the GEP may be a single pointer or a vector of pointers 4233 // Example: 4234 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4235 // or 4236 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4237 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4238 // 4239 // When the first GEP operand is a single pointer - it is the uniform base we 4240 // are looking for. If first operand of the GEP is a splat vector - we 4241 // extract the splat value and use it as a uniform base. 4242 // In all other cases the function returns 'false'. 4243 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4244 ISD::MemIndexType &IndexType, SDValue &Scale, 4245 SelectionDAGBuilder *SDB) { 4246 SelectionDAG& DAG = SDB->DAG; 4247 LLVMContext &Context = *DAG.getContext(); 4248 4249 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4250 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4251 if (!GEP) 4252 return false; 4253 4254 const Value *BasePtr = GEP->getPointerOperand(); 4255 if (BasePtr->getType()->isVectorTy()) { 4256 BasePtr = getSplatValue(BasePtr); 4257 if (!BasePtr) 4258 return false; 4259 } 4260 4261 unsigned FinalIndex = GEP->getNumOperands() - 1; 4262 Value *IndexVal = GEP->getOperand(FinalIndex); 4263 gep_type_iterator GTI = gep_type_begin(*GEP); 4264 4265 // Ensure all the other indices are 0. 4266 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4267 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4268 if (!C) 4269 return false; 4270 if (isa<VectorType>(C->getType())) 4271 C = C->getSplatValue(); 4272 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4273 if (!CI || !CI->isZero()) 4274 return false; 4275 } 4276 4277 // The operands of the GEP may be defined in another basic block. 4278 // In this case we'll not find nodes for the operands. 4279 if (!SDB->findValue(BasePtr)) 4280 return false; 4281 Constant *C = dyn_cast<Constant>(IndexVal); 4282 if (!C && !SDB->findValue(IndexVal)) 4283 return false; 4284 4285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4286 const DataLayout &DL = DAG.getDataLayout(); 4287 StructType *STy = GTI.getStructTypeOrNull(); 4288 4289 if (STy) { 4290 const StructLayout *SL = DL.getStructLayout(STy); 4291 unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue(); 4292 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4293 Index = DAG.getConstant(SL->getElementOffset(Field), 4294 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4295 } else { 4296 Scale = DAG.getTargetConstant( 4297 DL.getTypeAllocSize(GEP->getResultElementType()), 4298 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4299 Index = SDB->getValue(IndexVal); 4300 } 4301 Base = SDB->getValue(BasePtr); 4302 IndexType = ISD::SIGNED_SCALED; 4303 4304 if (STy || !Index.getValueType().isVector()) { 4305 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4306 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4307 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4308 } 4309 return true; 4310 } 4311 4312 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4313 SDLoc sdl = getCurSDLoc(); 4314 4315 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4316 const Value *Ptr = I.getArgOperand(1); 4317 SDValue Src0 = getValue(I.getArgOperand(0)); 4318 SDValue Mask = getValue(I.getArgOperand(3)); 4319 EVT VT = Src0.getValueType(); 4320 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4321 if (!Alignment) 4322 Alignment = DAG.getEVTAlign(VT); 4323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4324 4325 AAMDNodes AAInfo; 4326 I.getAAMetadata(AAInfo); 4327 4328 SDValue Base; 4329 SDValue Index; 4330 ISD::MemIndexType IndexType; 4331 SDValue Scale; 4332 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4333 4334 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4335 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4336 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4337 // TODO: Make MachineMemOperands aware of scalable 4338 // vectors. 4339 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4340 if (!UniformBase) { 4341 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4342 Index = getValue(Ptr); 4343 IndexType = ISD::SIGNED_SCALED; 4344 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4345 } 4346 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4347 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4348 Ops, MMO, IndexType); 4349 DAG.setRoot(Scatter); 4350 setValue(&I, Scatter); 4351 } 4352 4353 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4354 SDLoc sdl = getCurSDLoc(); 4355 4356 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4357 MaybeAlign &Alignment) { 4358 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4359 Ptr = I.getArgOperand(0); 4360 Alignment = 4361 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4362 Mask = I.getArgOperand(2); 4363 Src0 = I.getArgOperand(3); 4364 }; 4365 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4366 MaybeAlign &Alignment) { 4367 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4368 Ptr = I.getArgOperand(0); 4369 Alignment = None; 4370 Mask = I.getArgOperand(1); 4371 Src0 = I.getArgOperand(2); 4372 }; 4373 4374 Value *PtrOperand, *MaskOperand, *Src0Operand; 4375 MaybeAlign Alignment; 4376 if (IsExpanding) 4377 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4378 else 4379 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4380 4381 SDValue Ptr = getValue(PtrOperand); 4382 SDValue Src0 = getValue(Src0Operand); 4383 SDValue Mask = getValue(MaskOperand); 4384 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4385 4386 EVT VT = Src0.getValueType(); 4387 if (!Alignment) 4388 Alignment = DAG.getEVTAlign(VT); 4389 4390 AAMDNodes AAInfo; 4391 I.getAAMetadata(AAInfo); 4392 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4393 4394 // Do not serialize masked loads of constant memory with anything. 4395 MemoryLocation ML; 4396 if (VT.isScalableVector()) 4397 ML = MemoryLocation(PtrOperand); 4398 else 4399 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4400 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4401 AAInfo); 4402 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4403 4404 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4405 4406 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4407 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4408 // TODO: Make MachineMemOperands aware of scalable 4409 // vectors. 4410 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4411 4412 SDValue Load = 4413 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4414 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4415 if (AddToChain) 4416 PendingLoads.push_back(Load.getValue(1)); 4417 setValue(&I, Load); 4418 } 4419 4420 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4421 SDLoc sdl = getCurSDLoc(); 4422 4423 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4424 const Value *Ptr = I.getArgOperand(0); 4425 SDValue Src0 = getValue(I.getArgOperand(3)); 4426 SDValue Mask = getValue(I.getArgOperand(2)); 4427 4428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4429 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4430 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4431 if (!Alignment) 4432 Alignment = DAG.getEVTAlign(VT); 4433 4434 AAMDNodes AAInfo; 4435 I.getAAMetadata(AAInfo); 4436 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4437 4438 SDValue Root = DAG.getRoot(); 4439 SDValue Base; 4440 SDValue Index; 4441 ISD::MemIndexType IndexType; 4442 SDValue Scale; 4443 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4444 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4445 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4446 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4447 // TODO: Make MachineMemOperands aware of scalable 4448 // vectors. 4449 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4450 4451 if (!UniformBase) { 4452 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4453 Index = getValue(Ptr); 4454 IndexType = ISD::SIGNED_SCALED; 4455 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4456 } 4457 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4458 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4459 Ops, MMO, IndexType); 4460 4461 PendingLoads.push_back(Gather.getValue(1)); 4462 setValue(&I, Gather); 4463 } 4464 4465 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4466 SDLoc dl = getCurSDLoc(); 4467 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4468 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4469 SyncScope::ID SSID = I.getSyncScopeID(); 4470 4471 SDValue InChain = getRoot(); 4472 4473 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4474 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4475 4476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4477 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4478 4479 MachineFunction &MF = DAG.getMachineFunction(); 4480 MachineMemOperand *MMO = MF.getMachineMemOperand( 4481 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4482 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4483 FailureOrdering); 4484 4485 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4486 dl, MemVT, VTs, InChain, 4487 getValue(I.getPointerOperand()), 4488 getValue(I.getCompareOperand()), 4489 getValue(I.getNewValOperand()), MMO); 4490 4491 SDValue OutChain = L.getValue(2); 4492 4493 setValue(&I, L); 4494 DAG.setRoot(OutChain); 4495 } 4496 4497 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4498 SDLoc dl = getCurSDLoc(); 4499 ISD::NodeType NT; 4500 switch (I.getOperation()) { 4501 default: llvm_unreachable("Unknown atomicrmw operation"); 4502 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4503 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4504 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4505 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4506 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4507 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4508 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4509 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4510 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4511 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4512 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4513 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4514 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4515 } 4516 AtomicOrdering Ordering = I.getOrdering(); 4517 SyncScope::ID SSID = I.getSyncScopeID(); 4518 4519 SDValue InChain = getRoot(); 4520 4521 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4523 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4524 4525 MachineFunction &MF = DAG.getMachineFunction(); 4526 MachineMemOperand *MMO = MF.getMachineMemOperand( 4527 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4528 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4529 4530 SDValue L = 4531 DAG.getAtomic(NT, dl, MemVT, InChain, 4532 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4533 MMO); 4534 4535 SDValue OutChain = L.getValue(1); 4536 4537 setValue(&I, L); 4538 DAG.setRoot(OutChain); 4539 } 4540 4541 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4542 SDLoc dl = getCurSDLoc(); 4543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4544 SDValue Ops[3]; 4545 Ops[0] = getRoot(); 4546 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4547 TLI.getFenceOperandTy(DAG.getDataLayout())); 4548 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4549 TLI.getFenceOperandTy(DAG.getDataLayout())); 4550 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4551 } 4552 4553 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4554 SDLoc dl = getCurSDLoc(); 4555 AtomicOrdering Order = I.getOrdering(); 4556 SyncScope::ID SSID = I.getSyncScopeID(); 4557 4558 SDValue InChain = getRoot(); 4559 4560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4561 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4562 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4563 4564 if (!TLI.supportsUnalignedAtomics() && 4565 I.getAlignment() < MemVT.getSizeInBits() / 8) 4566 report_fatal_error("Cannot generate unaligned atomic load"); 4567 4568 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4569 4570 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4571 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4572 I.getAlign().getValueOr(DAG.getEVTAlign(MemVT)), AAMDNodes(), nullptr, 4573 SSID, Order); 4574 4575 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4576 4577 SDValue Ptr = getValue(I.getPointerOperand()); 4578 4579 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4580 // TODO: Once this is better exercised by tests, it should be merged with 4581 // the normal path for loads to prevent future divergence. 4582 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4583 if (MemVT != VT) 4584 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4585 4586 setValue(&I, L); 4587 SDValue OutChain = L.getValue(1); 4588 if (!I.isUnordered()) 4589 DAG.setRoot(OutChain); 4590 else 4591 PendingLoads.push_back(OutChain); 4592 return; 4593 } 4594 4595 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4596 Ptr, MMO); 4597 4598 SDValue OutChain = L.getValue(1); 4599 if (MemVT != VT) 4600 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4601 4602 setValue(&I, L); 4603 DAG.setRoot(OutChain); 4604 } 4605 4606 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4607 SDLoc dl = getCurSDLoc(); 4608 4609 AtomicOrdering Ordering = I.getOrdering(); 4610 SyncScope::ID SSID = I.getSyncScopeID(); 4611 4612 SDValue InChain = getRoot(); 4613 4614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4615 EVT MemVT = 4616 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4617 4618 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4619 report_fatal_error("Cannot generate unaligned atomic store"); 4620 4621 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4622 4623 MachineFunction &MF = DAG.getMachineFunction(); 4624 MachineMemOperand *MMO = MF.getMachineMemOperand( 4625 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4626 *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4627 4628 SDValue Val = getValue(I.getValueOperand()); 4629 if (Val.getValueType() != MemVT) 4630 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4631 SDValue Ptr = getValue(I.getPointerOperand()); 4632 4633 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4634 // TODO: Once this is better exercised by tests, it should be merged with 4635 // the normal path for stores to prevent future divergence. 4636 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4637 DAG.setRoot(S); 4638 return; 4639 } 4640 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4641 Ptr, Val, MMO); 4642 4643 4644 DAG.setRoot(OutChain); 4645 } 4646 4647 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4648 /// node. 4649 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4650 unsigned Intrinsic) { 4651 // Ignore the callsite's attributes. A specific call site may be marked with 4652 // readnone, but the lowering code will expect the chain based on the 4653 // definition. 4654 const Function *F = I.getCalledFunction(); 4655 bool HasChain = !F->doesNotAccessMemory(); 4656 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4657 4658 // Build the operand list. 4659 SmallVector<SDValue, 8> Ops; 4660 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4661 if (OnlyLoad) { 4662 // We don't need to serialize loads against other loads. 4663 Ops.push_back(DAG.getRoot()); 4664 } else { 4665 Ops.push_back(getRoot()); 4666 } 4667 } 4668 4669 // Info is set by getTgtMemInstrinsic 4670 TargetLowering::IntrinsicInfo Info; 4671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4672 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4673 DAG.getMachineFunction(), 4674 Intrinsic); 4675 4676 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4677 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4678 Info.opc == ISD::INTRINSIC_W_CHAIN) 4679 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4680 TLI.getPointerTy(DAG.getDataLayout()))); 4681 4682 // Add all operands of the call to the operand list. 4683 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4684 const Value *Arg = I.getArgOperand(i); 4685 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4686 Ops.push_back(getValue(Arg)); 4687 continue; 4688 } 4689 4690 // Use TargetConstant instead of a regular constant for immarg. 4691 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4692 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4693 assert(CI->getBitWidth() <= 64 && 4694 "large intrinsic immediates not handled"); 4695 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4696 } else { 4697 Ops.push_back( 4698 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4699 } 4700 } 4701 4702 SmallVector<EVT, 4> ValueVTs; 4703 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4704 4705 if (HasChain) 4706 ValueVTs.push_back(MVT::Other); 4707 4708 SDVTList VTs = DAG.getVTList(ValueVTs); 4709 4710 // Create the node. 4711 SDValue Result; 4712 if (IsTgtIntrinsic) { 4713 // This is target intrinsic that touches memory 4714 AAMDNodes AAInfo; 4715 I.getAAMetadata(AAInfo); 4716 Result = DAG.getMemIntrinsicNode( 4717 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4718 MachinePointerInfo(Info.ptrVal, Info.offset), 4719 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4720 } else if (!HasChain) { 4721 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4722 } else if (!I.getType()->isVoidTy()) { 4723 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4724 } else { 4725 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4726 } 4727 4728 if (HasChain) { 4729 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4730 if (OnlyLoad) 4731 PendingLoads.push_back(Chain); 4732 else 4733 DAG.setRoot(Chain); 4734 } 4735 4736 if (!I.getType()->isVoidTy()) { 4737 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4738 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4739 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4740 } else 4741 Result = lowerRangeToAssertZExt(DAG, I, Result); 4742 4743 setValue(&I, Result); 4744 } 4745 } 4746 4747 /// GetSignificand - Get the significand and build it into a floating-point 4748 /// number with exponent of 1: 4749 /// 4750 /// Op = (Op & 0x007fffff) | 0x3f800000; 4751 /// 4752 /// where Op is the hexadecimal representation of floating point value. 4753 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4754 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4755 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4756 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4757 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4758 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4759 } 4760 4761 /// GetExponent - Get the exponent: 4762 /// 4763 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4764 /// 4765 /// where Op is the hexadecimal representation of floating point value. 4766 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4767 const TargetLowering &TLI, const SDLoc &dl) { 4768 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4769 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4770 SDValue t1 = DAG.getNode( 4771 ISD::SRL, dl, MVT::i32, t0, 4772 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4773 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4774 DAG.getConstant(127, dl, MVT::i32)); 4775 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4776 } 4777 4778 /// getF32Constant - Get 32-bit floating point constant. 4779 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4780 const SDLoc &dl) { 4781 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4782 MVT::f32); 4783 } 4784 4785 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4786 SelectionDAG &DAG) { 4787 // TODO: What fast-math-flags should be set on the floating-point nodes? 4788 4789 // IntegerPartOfX = ((int32_t)(t0); 4790 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4791 4792 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4793 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4794 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4795 4796 // IntegerPartOfX <<= 23; 4797 IntegerPartOfX = DAG.getNode( 4798 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4799 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4800 DAG.getDataLayout()))); 4801 4802 SDValue TwoToFractionalPartOfX; 4803 if (LimitFloatPrecision <= 6) { 4804 // For floating-point precision of 6: 4805 // 4806 // TwoToFractionalPartOfX = 4807 // 0.997535578f + 4808 // (0.735607626f + 0.252464424f * x) * x; 4809 // 4810 // error 0.0144103317, which is 6 bits 4811 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4812 getF32Constant(DAG, 0x3e814304, dl)); 4813 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4814 getF32Constant(DAG, 0x3f3c50c8, dl)); 4815 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4816 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4817 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4818 } else if (LimitFloatPrecision <= 12) { 4819 // For floating-point precision of 12: 4820 // 4821 // TwoToFractionalPartOfX = 4822 // 0.999892986f + 4823 // (0.696457318f + 4824 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4825 // 4826 // error 0.000107046256, which is 13 to 14 bits 4827 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4828 getF32Constant(DAG, 0x3da235e3, dl)); 4829 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4830 getF32Constant(DAG, 0x3e65b8f3, dl)); 4831 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4832 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4833 getF32Constant(DAG, 0x3f324b07, dl)); 4834 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4835 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4836 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4837 } else { // LimitFloatPrecision <= 18 4838 // For floating-point precision of 18: 4839 // 4840 // TwoToFractionalPartOfX = 4841 // 0.999999982f + 4842 // (0.693148872f + 4843 // (0.240227044f + 4844 // (0.554906021e-1f + 4845 // (0.961591928e-2f + 4846 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4847 // error 2.47208000*10^(-7), which is better than 18 bits 4848 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4849 getF32Constant(DAG, 0x3924b03e, dl)); 4850 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4851 getF32Constant(DAG, 0x3ab24b87, dl)); 4852 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4853 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4854 getF32Constant(DAG, 0x3c1d8c17, dl)); 4855 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4856 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4857 getF32Constant(DAG, 0x3d634a1d, dl)); 4858 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4859 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4860 getF32Constant(DAG, 0x3e75fe14, dl)); 4861 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4862 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4863 getF32Constant(DAG, 0x3f317234, dl)); 4864 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4865 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4866 getF32Constant(DAG, 0x3f800000, dl)); 4867 } 4868 4869 // Add the exponent into the result in integer domain. 4870 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4871 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4872 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4873 } 4874 4875 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4876 /// limited-precision mode. 4877 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4878 const TargetLowering &TLI) { 4879 if (Op.getValueType() == MVT::f32 && 4880 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4881 4882 // Put the exponent in the right bit position for later addition to the 4883 // final result: 4884 // 4885 // t0 = Op * log2(e) 4886 4887 // TODO: What fast-math-flags should be set here? 4888 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4889 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4890 return getLimitedPrecisionExp2(t0, dl, DAG); 4891 } 4892 4893 // No special expansion. 4894 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4895 } 4896 4897 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4898 /// limited-precision mode. 4899 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4900 const TargetLowering &TLI) { 4901 // TODO: What fast-math-flags should be set on the floating-point nodes? 4902 4903 if (Op.getValueType() == MVT::f32 && 4904 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4905 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4906 4907 // Scale the exponent by log(2). 4908 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4909 SDValue LogOfExponent = 4910 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4911 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4912 4913 // Get the significand and build it into a floating-point number with 4914 // exponent of 1. 4915 SDValue X = GetSignificand(DAG, Op1, dl); 4916 4917 SDValue LogOfMantissa; 4918 if (LimitFloatPrecision <= 6) { 4919 // For floating-point precision of 6: 4920 // 4921 // LogofMantissa = 4922 // -1.1609546f + 4923 // (1.4034025f - 0.23903021f * x) * x; 4924 // 4925 // error 0.0034276066, which is better than 8 bits 4926 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4927 getF32Constant(DAG, 0xbe74c456, dl)); 4928 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4929 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4930 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4931 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4932 getF32Constant(DAG, 0x3f949a29, dl)); 4933 } else if (LimitFloatPrecision <= 12) { 4934 // For floating-point precision of 12: 4935 // 4936 // LogOfMantissa = 4937 // -1.7417939f + 4938 // (2.8212026f + 4939 // (-1.4699568f + 4940 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4941 // 4942 // error 0.000061011436, which is 14 bits 4943 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4944 getF32Constant(DAG, 0xbd67b6d6, dl)); 4945 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4946 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4947 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4948 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4949 getF32Constant(DAG, 0x3fbc278b, dl)); 4950 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4951 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4952 getF32Constant(DAG, 0x40348e95, dl)); 4953 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4954 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4955 getF32Constant(DAG, 0x3fdef31a, dl)); 4956 } else { // LimitFloatPrecision <= 18 4957 // For floating-point precision of 18: 4958 // 4959 // LogOfMantissa = 4960 // -2.1072184f + 4961 // (4.2372794f + 4962 // (-3.7029485f + 4963 // (2.2781945f + 4964 // (-0.87823314f + 4965 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4966 // 4967 // error 0.0000023660568, which is better than 18 bits 4968 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4969 getF32Constant(DAG, 0xbc91e5ac, dl)); 4970 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4971 getF32Constant(DAG, 0x3e4350aa, dl)); 4972 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4973 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4974 getF32Constant(DAG, 0x3f60d3e3, dl)); 4975 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4976 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4977 getF32Constant(DAG, 0x4011cdf0, dl)); 4978 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4979 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4980 getF32Constant(DAG, 0x406cfd1c, dl)); 4981 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4982 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4983 getF32Constant(DAG, 0x408797cb, dl)); 4984 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4985 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4986 getF32Constant(DAG, 0x4006dcab, dl)); 4987 } 4988 4989 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4990 } 4991 4992 // No special expansion. 4993 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4994 } 4995 4996 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4997 /// limited-precision mode. 4998 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4999 const TargetLowering &TLI) { 5000 // TODO: What fast-math-flags should be set on the floating-point nodes? 5001 5002 if (Op.getValueType() == MVT::f32 && 5003 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5004 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5005 5006 // Get the exponent. 5007 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5008 5009 // Get the significand and build it into a floating-point number with 5010 // exponent of 1. 5011 SDValue X = GetSignificand(DAG, Op1, dl); 5012 5013 // Different possible minimax approximations of significand in 5014 // floating-point for various degrees of accuracy over [1,2]. 5015 SDValue Log2ofMantissa; 5016 if (LimitFloatPrecision <= 6) { 5017 // For floating-point precision of 6: 5018 // 5019 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5020 // 5021 // error 0.0049451742, which is more than 7 bits 5022 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5023 getF32Constant(DAG, 0xbeb08fe0, dl)); 5024 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5025 getF32Constant(DAG, 0x40019463, dl)); 5026 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5027 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5028 getF32Constant(DAG, 0x3fd6633d, dl)); 5029 } else if (LimitFloatPrecision <= 12) { 5030 // For floating-point precision of 12: 5031 // 5032 // Log2ofMantissa = 5033 // -2.51285454f + 5034 // (4.07009056f + 5035 // (-2.12067489f + 5036 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5037 // 5038 // error 0.0000876136000, which is better than 13 bits 5039 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5040 getF32Constant(DAG, 0xbda7262e, dl)); 5041 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5042 getF32Constant(DAG, 0x3f25280b, dl)); 5043 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5044 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5045 getF32Constant(DAG, 0x4007b923, dl)); 5046 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5047 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5048 getF32Constant(DAG, 0x40823e2f, dl)); 5049 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5050 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5051 getF32Constant(DAG, 0x4020d29c, dl)); 5052 } else { // LimitFloatPrecision <= 18 5053 // For floating-point precision of 18: 5054 // 5055 // Log2ofMantissa = 5056 // -3.0400495f + 5057 // (6.1129976f + 5058 // (-5.3420409f + 5059 // (3.2865683f + 5060 // (-1.2669343f + 5061 // (0.27515199f - 5062 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5063 // 5064 // error 0.0000018516, which is better than 18 bits 5065 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5066 getF32Constant(DAG, 0xbcd2769e, dl)); 5067 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5068 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5069 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5070 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5071 getF32Constant(DAG, 0x3fa22ae7, dl)); 5072 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5073 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5074 getF32Constant(DAG, 0x40525723, dl)); 5075 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5076 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5077 getF32Constant(DAG, 0x40aaf200, dl)); 5078 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5079 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5080 getF32Constant(DAG, 0x40c39dad, dl)); 5081 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5082 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5083 getF32Constant(DAG, 0x4042902c, dl)); 5084 } 5085 5086 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5087 } 5088 5089 // No special expansion. 5090 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5091 } 5092 5093 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5094 /// limited-precision mode. 5095 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5096 const TargetLowering &TLI) { 5097 // TODO: What fast-math-flags should be set on the floating-point nodes? 5098 5099 if (Op.getValueType() == MVT::f32 && 5100 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5101 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5102 5103 // Scale the exponent by log10(2) [0.30102999f]. 5104 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5105 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5106 getF32Constant(DAG, 0x3e9a209a, dl)); 5107 5108 // Get the significand and build it into a floating-point number with 5109 // exponent of 1. 5110 SDValue X = GetSignificand(DAG, Op1, dl); 5111 5112 SDValue Log10ofMantissa; 5113 if (LimitFloatPrecision <= 6) { 5114 // For floating-point precision of 6: 5115 // 5116 // Log10ofMantissa = 5117 // -0.50419619f + 5118 // (0.60948995f - 0.10380950f * x) * x; 5119 // 5120 // error 0.0014886165, which is 6 bits 5121 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5122 getF32Constant(DAG, 0xbdd49a13, dl)); 5123 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5124 getF32Constant(DAG, 0x3f1c0789, dl)); 5125 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5126 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5127 getF32Constant(DAG, 0x3f011300, dl)); 5128 } else if (LimitFloatPrecision <= 12) { 5129 // For floating-point precision of 12: 5130 // 5131 // Log10ofMantissa = 5132 // -0.64831180f + 5133 // (0.91751397f + 5134 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5135 // 5136 // error 0.00019228036, which is better than 12 bits 5137 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5138 getF32Constant(DAG, 0x3d431f31, dl)); 5139 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5140 getF32Constant(DAG, 0x3ea21fb2, dl)); 5141 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5142 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5143 getF32Constant(DAG, 0x3f6ae232, dl)); 5144 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5145 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5146 getF32Constant(DAG, 0x3f25f7c3, dl)); 5147 } else { // LimitFloatPrecision <= 18 5148 // For floating-point precision of 18: 5149 // 5150 // Log10ofMantissa = 5151 // -0.84299375f + 5152 // (1.5327582f + 5153 // (-1.0688956f + 5154 // (0.49102474f + 5155 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5156 // 5157 // error 0.0000037995730, which is better than 18 bits 5158 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5159 getF32Constant(DAG, 0x3c5d51ce, dl)); 5160 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5161 getF32Constant(DAG, 0x3e00685a, dl)); 5162 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5163 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5164 getF32Constant(DAG, 0x3efb6798, dl)); 5165 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5166 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5167 getF32Constant(DAG, 0x3f88d192, dl)); 5168 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5169 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5170 getF32Constant(DAG, 0x3fc4316c, dl)); 5171 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5172 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5173 getF32Constant(DAG, 0x3f57ce70, dl)); 5174 } 5175 5176 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5177 } 5178 5179 // No special expansion. 5180 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5181 } 5182 5183 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5184 /// limited-precision mode. 5185 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5186 const TargetLowering &TLI) { 5187 if (Op.getValueType() == MVT::f32 && 5188 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5189 return getLimitedPrecisionExp2(Op, dl, DAG); 5190 5191 // No special expansion. 5192 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5193 } 5194 5195 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5196 /// limited-precision mode with x == 10.0f. 5197 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5198 SelectionDAG &DAG, const TargetLowering &TLI) { 5199 bool IsExp10 = false; 5200 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5201 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5202 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5203 APFloat Ten(10.0f); 5204 IsExp10 = LHSC->isExactlyValue(Ten); 5205 } 5206 } 5207 5208 // TODO: What fast-math-flags should be set on the FMUL node? 5209 if (IsExp10) { 5210 // Put the exponent in the right bit position for later addition to the 5211 // final result: 5212 // 5213 // #define LOG2OF10 3.3219281f 5214 // t0 = Op * LOG2OF10; 5215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5216 getF32Constant(DAG, 0x40549a78, dl)); 5217 return getLimitedPrecisionExp2(t0, dl, DAG); 5218 } 5219 5220 // No special expansion. 5221 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5222 } 5223 5224 /// ExpandPowI - Expand a llvm.powi intrinsic. 5225 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5226 SelectionDAG &DAG) { 5227 // If RHS is a constant, we can expand this out to a multiplication tree, 5228 // otherwise we end up lowering to a call to __powidf2 (for example). When 5229 // optimizing for size, we only want to do this if the expansion would produce 5230 // a small number of multiplies, otherwise we do the full expansion. 5231 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5232 // Get the exponent as a positive value. 5233 unsigned Val = RHSC->getSExtValue(); 5234 if ((int)Val < 0) Val = -Val; 5235 5236 // powi(x, 0) -> 1.0 5237 if (Val == 0) 5238 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5239 5240 bool OptForSize = DAG.shouldOptForSize(); 5241 if (!OptForSize || 5242 // If optimizing for size, don't insert too many multiplies. 5243 // This inserts up to 5 multiplies. 5244 countPopulation(Val) + Log2_32(Val) < 7) { 5245 // We use the simple binary decomposition method to generate the multiply 5246 // sequence. There are more optimal ways to do this (for example, 5247 // powi(x,15) generates one more multiply than it should), but this has 5248 // the benefit of being both really simple and much better than a libcall. 5249 SDValue Res; // Logically starts equal to 1.0 5250 SDValue CurSquare = LHS; 5251 // TODO: Intrinsics should have fast-math-flags that propagate to these 5252 // nodes. 5253 while (Val) { 5254 if (Val & 1) { 5255 if (Res.getNode()) 5256 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5257 else 5258 Res = CurSquare; // 1.0*CurSquare. 5259 } 5260 5261 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5262 CurSquare, CurSquare); 5263 Val >>= 1; 5264 } 5265 5266 // If the original was negative, invert the result, producing 1/(x*x*x). 5267 if (RHSC->getSExtValue() < 0) 5268 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5269 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5270 return Res; 5271 } 5272 } 5273 5274 // Otherwise, expand to a libcall. 5275 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5276 } 5277 5278 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5279 SDValue LHS, SDValue RHS, SDValue Scale, 5280 SelectionDAG &DAG, const TargetLowering &TLI) { 5281 EVT VT = LHS.getValueType(); 5282 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5283 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5284 LLVMContext &Ctx = *DAG.getContext(); 5285 5286 // If the type is legal but the operation isn't, this node might survive all 5287 // the way to operation legalization. If we end up there and we do not have 5288 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5289 // node. 5290 5291 // Coax the legalizer into expanding the node during type legalization instead 5292 // by bumping the size by one bit. This will force it to Promote, enabling the 5293 // early expansion and avoiding the need to expand later. 5294 5295 // We don't have to do this if Scale is 0; that can always be expanded, unless 5296 // it's a saturating signed operation. Those can experience true integer 5297 // division overflow, a case which we must avoid. 5298 5299 // FIXME: We wouldn't have to do this (or any of the early 5300 // expansion/promotion) if it was possible to expand a libcall of an 5301 // illegal type during operation legalization. But it's not, so things 5302 // get a bit hacky. 5303 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5304 if ((ScaleInt > 0 || (Saturating && Signed)) && 5305 (TLI.isTypeLegal(VT) || 5306 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5307 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5308 Opcode, VT, ScaleInt); 5309 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5310 EVT PromVT; 5311 if (VT.isScalarInteger()) 5312 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5313 else if (VT.isVector()) { 5314 PromVT = VT.getVectorElementType(); 5315 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5316 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5317 } else 5318 llvm_unreachable("Wrong VT for DIVFIX?"); 5319 if (Signed) { 5320 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5321 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5322 } else { 5323 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5324 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5325 } 5326 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5327 // For saturating operations, we need to shift up the LHS to get the 5328 // proper saturation width, and then shift down again afterwards. 5329 if (Saturating) 5330 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5331 DAG.getConstant(1, DL, ShiftTy)); 5332 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5333 if (Saturating) 5334 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5335 DAG.getConstant(1, DL, ShiftTy)); 5336 return DAG.getZExtOrTrunc(Res, DL, VT); 5337 } 5338 } 5339 5340 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5341 } 5342 5343 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5344 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5345 static void 5346 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5347 const SDValue &N) { 5348 switch (N.getOpcode()) { 5349 case ISD::CopyFromReg: { 5350 SDValue Op = N.getOperand(1); 5351 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5352 Op.getValueType().getSizeInBits()); 5353 return; 5354 } 5355 case ISD::BITCAST: 5356 case ISD::AssertZext: 5357 case ISD::AssertSext: 5358 case ISD::TRUNCATE: 5359 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5360 return; 5361 case ISD::BUILD_PAIR: 5362 case ISD::BUILD_VECTOR: 5363 case ISD::CONCAT_VECTORS: 5364 for (SDValue Op : N->op_values()) 5365 getUnderlyingArgRegs(Regs, Op); 5366 return; 5367 default: 5368 return; 5369 } 5370 } 5371 5372 /// If the DbgValueInst is a dbg_value of a function argument, create the 5373 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5374 /// instruction selection, they will be inserted to the entry BB. 5375 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5376 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5377 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5378 const Argument *Arg = dyn_cast<Argument>(V); 5379 if (!Arg) 5380 return false; 5381 5382 if (!IsDbgDeclare) { 5383 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5384 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5385 // the entry block. 5386 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5387 if (!IsInEntryBlock) 5388 return false; 5389 5390 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5391 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5392 // variable that also is a param. 5393 // 5394 // Although, if we are at the top of the entry block already, we can still 5395 // emit using ArgDbgValue. This might catch some situations when the 5396 // dbg.value refers to an argument that isn't used in the entry block, so 5397 // any CopyToReg node would be optimized out and the only way to express 5398 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5399 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5400 // we should only emit as ArgDbgValue if the Variable is an argument to the 5401 // current function, and the dbg.value intrinsic is found in the entry 5402 // block. 5403 bool VariableIsFunctionInputArg = Variable->isParameter() && 5404 !DL->getInlinedAt(); 5405 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5406 if (!IsInPrologue && !VariableIsFunctionInputArg) 5407 return false; 5408 5409 // Here we assume that a function argument on IR level only can be used to 5410 // describe one input parameter on source level. If we for example have 5411 // source code like this 5412 // 5413 // struct A { long x, y; }; 5414 // void foo(struct A a, long b) { 5415 // ... 5416 // b = a.x; 5417 // ... 5418 // } 5419 // 5420 // and IR like this 5421 // 5422 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5423 // entry: 5424 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5425 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5426 // call void @llvm.dbg.value(metadata i32 %b, "b", 5427 // ... 5428 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5429 // ... 5430 // 5431 // then the last dbg.value is describing a parameter "b" using a value that 5432 // is an argument. But since we already has used %a1 to describe a parameter 5433 // we should not handle that last dbg.value here (that would result in an 5434 // incorrect hoisting of the DBG_VALUE to the function entry). 5435 // Notice that we allow one dbg.value per IR level argument, to accommodate 5436 // for the situation with fragments above. 5437 if (VariableIsFunctionInputArg) { 5438 unsigned ArgNo = Arg->getArgNo(); 5439 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5440 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5441 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5442 return false; 5443 FuncInfo.DescribedArgs.set(ArgNo); 5444 } 5445 } 5446 5447 MachineFunction &MF = DAG.getMachineFunction(); 5448 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5449 5450 bool IsIndirect = false; 5451 Optional<MachineOperand> Op; 5452 // Some arguments' frame index is recorded during argument lowering. 5453 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5454 if (FI != std::numeric_limits<int>::max()) 5455 Op = MachineOperand::CreateFI(FI); 5456 5457 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5458 if (!Op && N.getNode()) { 5459 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5460 Register Reg; 5461 if (ArgRegsAndSizes.size() == 1) 5462 Reg = ArgRegsAndSizes.front().first; 5463 5464 if (Reg && Reg.isVirtual()) { 5465 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5466 Register PR = RegInfo.getLiveInPhysReg(Reg); 5467 if (PR) 5468 Reg = PR; 5469 } 5470 if (Reg) { 5471 Op = MachineOperand::CreateReg(Reg, false); 5472 IsIndirect = IsDbgDeclare; 5473 } 5474 } 5475 5476 if (!Op && N.getNode()) { 5477 // Check if frame index is available. 5478 SDValue LCandidate = peekThroughBitcasts(N); 5479 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5480 if (FrameIndexSDNode *FINode = 5481 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5482 Op = MachineOperand::CreateFI(FINode->getIndex()); 5483 } 5484 5485 if (!Op) { 5486 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5487 auto splitMultiRegDbgValue 5488 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5489 unsigned Offset = 0; 5490 for (auto RegAndSize : SplitRegs) { 5491 // If the expression is already a fragment, the current register 5492 // offset+size might extend beyond the fragment. In this case, only 5493 // the register bits that are inside the fragment are relevant. 5494 int RegFragmentSizeInBits = RegAndSize.second; 5495 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5496 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5497 // The register is entirely outside the expression fragment, 5498 // so is irrelevant for debug info. 5499 if (Offset >= ExprFragmentSizeInBits) 5500 break; 5501 // The register is partially outside the expression fragment, only 5502 // the low bits within the fragment are relevant for debug info. 5503 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5504 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5505 } 5506 } 5507 5508 auto FragmentExpr = DIExpression::createFragmentExpression( 5509 Expr, Offset, RegFragmentSizeInBits); 5510 Offset += RegAndSize.second; 5511 // If a valid fragment expression cannot be created, the variable's 5512 // correct value cannot be determined and so it is set as Undef. 5513 if (!FragmentExpr) { 5514 SDDbgValue *SDV = DAG.getConstantDbgValue( 5515 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5516 DAG.AddDbgValue(SDV, nullptr, false); 5517 continue; 5518 } 5519 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5520 FuncInfo.ArgDbgValues.push_back( 5521 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5522 RegAndSize.first, Variable, *FragmentExpr)); 5523 } 5524 }; 5525 5526 // Check if ValueMap has reg number. 5527 DenseMap<const Value *, unsigned>::const_iterator 5528 VMI = FuncInfo.ValueMap.find(V); 5529 if (VMI != FuncInfo.ValueMap.end()) { 5530 const auto &TLI = DAG.getTargetLoweringInfo(); 5531 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5532 V->getType(), getABIRegCopyCC(V)); 5533 if (RFV.occupiesMultipleRegs()) { 5534 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5535 return true; 5536 } 5537 5538 Op = MachineOperand::CreateReg(VMI->second, false); 5539 IsIndirect = IsDbgDeclare; 5540 } else if (ArgRegsAndSizes.size() > 1) { 5541 // This was split due to the calling convention, and no virtual register 5542 // mapping exists for the value. 5543 splitMultiRegDbgValue(ArgRegsAndSizes); 5544 return true; 5545 } 5546 } 5547 5548 if (!Op) 5549 return false; 5550 5551 assert(Variable->isValidLocationForIntrinsic(DL) && 5552 "Expected inlined-at fields to agree"); 5553 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5554 FuncInfo.ArgDbgValues.push_back( 5555 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5556 *Op, Variable, Expr)); 5557 5558 return true; 5559 } 5560 5561 /// Return the appropriate SDDbgValue based on N. 5562 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5563 DILocalVariable *Variable, 5564 DIExpression *Expr, 5565 const DebugLoc &dl, 5566 unsigned DbgSDNodeOrder) { 5567 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5568 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5569 // stack slot locations. 5570 // 5571 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5572 // debug values here after optimization: 5573 // 5574 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5575 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5576 // 5577 // Both describe the direct values of their associated variables. 5578 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5579 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5580 } 5581 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5582 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5583 } 5584 5585 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5586 switch (Intrinsic) { 5587 case Intrinsic::smul_fix: 5588 return ISD::SMULFIX; 5589 case Intrinsic::umul_fix: 5590 return ISD::UMULFIX; 5591 case Intrinsic::smul_fix_sat: 5592 return ISD::SMULFIXSAT; 5593 case Intrinsic::umul_fix_sat: 5594 return ISD::UMULFIXSAT; 5595 case Intrinsic::sdiv_fix: 5596 return ISD::SDIVFIX; 5597 case Intrinsic::udiv_fix: 5598 return ISD::UDIVFIX; 5599 case Intrinsic::sdiv_fix_sat: 5600 return ISD::SDIVFIXSAT; 5601 case Intrinsic::udiv_fix_sat: 5602 return ISD::UDIVFIXSAT; 5603 default: 5604 llvm_unreachable("Unhandled fixed point intrinsic"); 5605 } 5606 } 5607 5608 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5609 const char *FunctionName) { 5610 assert(FunctionName && "FunctionName must not be nullptr"); 5611 SDValue Callee = DAG.getExternalSymbol( 5612 FunctionName, 5613 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5614 LowerCallTo(&I, Callee, I.isTailCall()); 5615 } 5616 5617 /// Lower the call to the specified intrinsic function. 5618 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5619 unsigned Intrinsic) { 5620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5621 SDLoc sdl = getCurSDLoc(); 5622 DebugLoc dl = getCurDebugLoc(); 5623 SDValue Res; 5624 5625 switch (Intrinsic) { 5626 default: 5627 // By default, turn this into a target intrinsic node. 5628 visitTargetIntrinsic(I, Intrinsic); 5629 return; 5630 case Intrinsic::vscale: { 5631 match(&I, m_VScale(DAG.getDataLayout())); 5632 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5633 setValue(&I, 5634 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5635 return; 5636 } 5637 case Intrinsic::vastart: visitVAStart(I); return; 5638 case Intrinsic::vaend: visitVAEnd(I); return; 5639 case Intrinsic::vacopy: visitVACopy(I); return; 5640 case Intrinsic::returnaddress: 5641 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5642 TLI.getPointerTy(DAG.getDataLayout()), 5643 getValue(I.getArgOperand(0)))); 5644 return; 5645 case Intrinsic::addressofreturnaddress: 5646 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5647 TLI.getPointerTy(DAG.getDataLayout()))); 5648 return; 5649 case Intrinsic::sponentry: 5650 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5651 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5652 return; 5653 case Intrinsic::frameaddress: 5654 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5655 TLI.getFrameIndexTy(DAG.getDataLayout()), 5656 getValue(I.getArgOperand(0)))); 5657 return; 5658 case Intrinsic::read_register: { 5659 Value *Reg = I.getArgOperand(0); 5660 SDValue Chain = getRoot(); 5661 SDValue RegName = 5662 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5663 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5664 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5665 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5666 setValue(&I, Res); 5667 DAG.setRoot(Res.getValue(1)); 5668 return; 5669 } 5670 case Intrinsic::write_register: { 5671 Value *Reg = I.getArgOperand(0); 5672 Value *RegValue = I.getArgOperand(1); 5673 SDValue Chain = getRoot(); 5674 SDValue RegName = 5675 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5676 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5677 RegName, getValue(RegValue))); 5678 return; 5679 } 5680 case Intrinsic::memcpy: { 5681 const auto &MCI = cast<MemCpyInst>(I); 5682 SDValue Op1 = getValue(I.getArgOperand(0)); 5683 SDValue Op2 = getValue(I.getArgOperand(1)); 5684 SDValue Op3 = getValue(I.getArgOperand(2)); 5685 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5686 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5687 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5688 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5689 bool isVol = MCI.isVolatile(); 5690 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5691 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5692 // node. 5693 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5694 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5695 /* AlwaysInline */ false, isTC, 5696 MachinePointerInfo(I.getArgOperand(0)), 5697 MachinePointerInfo(I.getArgOperand(1))); 5698 updateDAGForMaybeTailCall(MC); 5699 return; 5700 } 5701 case Intrinsic::memcpy_inline: { 5702 const auto &MCI = cast<MemCpyInlineInst>(I); 5703 SDValue Dst = getValue(I.getArgOperand(0)); 5704 SDValue Src = getValue(I.getArgOperand(1)); 5705 SDValue Size = getValue(I.getArgOperand(2)); 5706 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5707 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5708 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5709 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5710 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5711 bool isVol = MCI.isVolatile(); 5712 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5713 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5714 // node. 5715 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5716 /* AlwaysInline */ true, isTC, 5717 MachinePointerInfo(I.getArgOperand(0)), 5718 MachinePointerInfo(I.getArgOperand(1))); 5719 updateDAGForMaybeTailCall(MC); 5720 return; 5721 } 5722 case Intrinsic::memset: { 5723 const auto &MSI = cast<MemSetInst>(I); 5724 SDValue Op1 = getValue(I.getArgOperand(0)); 5725 SDValue Op2 = getValue(I.getArgOperand(1)); 5726 SDValue Op3 = getValue(I.getArgOperand(2)); 5727 // @llvm.memset defines 0 and 1 to both mean no alignment. 5728 Align Alignment = MSI.getDestAlign().valueOrOne(); 5729 bool isVol = MSI.isVolatile(); 5730 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5731 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5732 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5733 MachinePointerInfo(I.getArgOperand(0))); 5734 updateDAGForMaybeTailCall(MS); 5735 return; 5736 } 5737 case Intrinsic::memmove: { 5738 const auto &MMI = cast<MemMoveInst>(I); 5739 SDValue Op1 = getValue(I.getArgOperand(0)); 5740 SDValue Op2 = getValue(I.getArgOperand(1)); 5741 SDValue Op3 = getValue(I.getArgOperand(2)); 5742 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5743 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5744 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5745 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5746 bool isVol = MMI.isVolatile(); 5747 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5748 // FIXME: Support passing different dest/src alignments to the memmove DAG 5749 // node. 5750 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5751 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5752 isTC, MachinePointerInfo(I.getArgOperand(0)), 5753 MachinePointerInfo(I.getArgOperand(1))); 5754 updateDAGForMaybeTailCall(MM); 5755 return; 5756 } 5757 case Intrinsic::memcpy_element_unordered_atomic: { 5758 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5759 SDValue Dst = getValue(MI.getRawDest()); 5760 SDValue Src = getValue(MI.getRawSource()); 5761 SDValue Length = getValue(MI.getLength()); 5762 5763 unsigned DstAlign = MI.getDestAlignment(); 5764 unsigned SrcAlign = MI.getSourceAlignment(); 5765 Type *LengthTy = MI.getLength()->getType(); 5766 unsigned ElemSz = MI.getElementSizeInBytes(); 5767 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5768 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5769 SrcAlign, Length, LengthTy, ElemSz, isTC, 5770 MachinePointerInfo(MI.getRawDest()), 5771 MachinePointerInfo(MI.getRawSource())); 5772 updateDAGForMaybeTailCall(MC); 5773 return; 5774 } 5775 case Intrinsic::memmove_element_unordered_atomic: { 5776 auto &MI = cast<AtomicMemMoveInst>(I); 5777 SDValue Dst = getValue(MI.getRawDest()); 5778 SDValue Src = getValue(MI.getRawSource()); 5779 SDValue Length = getValue(MI.getLength()); 5780 5781 unsigned DstAlign = MI.getDestAlignment(); 5782 unsigned SrcAlign = MI.getSourceAlignment(); 5783 Type *LengthTy = MI.getLength()->getType(); 5784 unsigned ElemSz = MI.getElementSizeInBytes(); 5785 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5786 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5787 SrcAlign, Length, LengthTy, ElemSz, isTC, 5788 MachinePointerInfo(MI.getRawDest()), 5789 MachinePointerInfo(MI.getRawSource())); 5790 updateDAGForMaybeTailCall(MC); 5791 return; 5792 } 5793 case Intrinsic::memset_element_unordered_atomic: { 5794 auto &MI = cast<AtomicMemSetInst>(I); 5795 SDValue Dst = getValue(MI.getRawDest()); 5796 SDValue Val = getValue(MI.getValue()); 5797 SDValue Length = getValue(MI.getLength()); 5798 5799 unsigned DstAlign = MI.getDestAlignment(); 5800 Type *LengthTy = MI.getLength()->getType(); 5801 unsigned ElemSz = MI.getElementSizeInBytes(); 5802 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5803 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5804 LengthTy, ElemSz, isTC, 5805 MachinePointerInfo(MI.getRawDest())); 5806 updateDAGForMaybeTailCall(MC); 5807 return; 5808 } 5809 case Intrinsic::dbg_addr: 5810 case Intrinsic::dbg_declare: { 5811 const auto &DI = cast<DbgVariableIntrinsic>(I); 5812 DILocalVariable *Variable = DI.getVariable(); 5813 DIExpression *Expression = DI.getExpression(); 5814 dropDanglingDebugInfo(Variable, Expression); 5815 assert(Variable && "Missing variable"); 5816 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5817 << "\n"); 5818 // Check if address has undef value. 5819 const Value *Address = DI.getVariableLocation(); 5820 if (!Address || isa<UndefValue>(Address) || 5821 (Address->use_empty() && !isa<Argument>(Address))) { 5822 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5823 << " (bad/undef/unused-arg address)\n"); 5824 return; 5825 } 5826 5827 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5828 5829 // Check if this variable can be described by a frame index, typically 5830 // either as a static alloca or a byval parameter. 5831 int FI = std::numeric_limits<int>::max(); 5832 if (const auto *AI = 5833 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5834 if (AI->isStaticAlloca()) { 5835 auto I = FuncInfo.StaticAllocaMap.find(AI); 5836 if (I != FuncInfo.StaticAllocaMap.end()) 5837 FI = I->second; 5838 } 5839 } else if (const auto *Arg = dyn_cast<Argument>( 5840 Address->stripInBoundsConstantOffsets())) { 5841 FI = FuncInfo.getArgumentFrameIndex(Arg); 5842 } 5843 5844 // llvm.dbg.addr is control dependent and always generates indirect 5845 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5846 // the MachineFunction variable table. 5847 if (FI != std::numeric_limits<int>::max()) { 5848 if (Intrinsic == Intrinsic::dbg_addr) { 5849 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5850 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5851 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5852 } else { 5853 LLVM_DEBUG(dbgs() << "Skipping " << DI 5854 << " (variable info stashed in MF side table)\n"); 5855 } 5856 return; 5857 } 5858 5859 SDValue &N = NodeMap[Address]; 5860 if (!N.getNode() && isa<Argument>(Address)) 5861 // Check unused arguments map. 5862 N = UnusedArgNodeMap[Address]; 5863 SDDbgValue *SDV; 5864 if (N.getNode()) { 5865 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5866 Address = BCI->getOperand(0); 5867 // Parameters are handled specially. 5868 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5869 if (isParameter && FINode) { 5870 // Byval parameter. We have a frame index at this point. 5871 SDV = 5872 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5873 /*IsIndirect*/ true, dl, SDNodeOrder); 5874 } else if (isa<Argument>(Address)) { 5875 // Address is an argument, so try to emit its dbg value using 5876 // virtual register info from the FuncInfo.ValueMap. 5877 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5878 return; 5879 } else { 5880 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5881 true, dl, SDNodeOrder); 5882 } 5883 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5884 } else { 5885 // If Address is an argument then try to emit its dbg value using 5886 // virtual register info from the FuncInfo.ValueMap. 5887 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5888 N)) { 5889 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5890 << " (could not emit func-arg dbg_value)\n"); 5891 } 5892 } 5893 return; 5894 } 5895 case Intrinsic::dbg_label: { 5896 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5897 DILabel *Label = DI.getLabel(); 5898 assert(Label && "Missing label"); 5899 5900 SDDbgLabel *SDV; 5901 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5902 DAG.AddDbgLabel(SDV); 5903 return; 5904 } 5905 case Intrinsic::dbg_value: { 5906 const DbgValueInst &DI = cast<DbgValueInst>(I); 5907 assert(DI.getVariable() && "Missing variable"); 5908 5909 DILocalVariable *Variable = DI.getVariable(); 5910 DIExpression *Expression = DI.getExpression(); 5911 dropDanglingDebugInfo(Variable, Expression); 5912 const Value *V = DI.getValue(); 5913 if (!V) 5914 return; 5915 5916 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5917 SDNodeOrder)) 5918 return; 5919 5920 // TODO: Dangling debug info will eventually either be resolved or produce 5921 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5922 // between the original dbg.value location and its resolved DBG_VALUE, which 5923 // we should ideally fill with an extra Undef DBG_VALUE. 5924 5925 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5926 return; 5927 } 5928 5929 case Intrinsic::eh_typeid_for: { 5930 // Find the type id for the given typeinfo. 5931 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5932 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5933 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5934 setValue(&I, Res); 5935 return; 5936 } 5937 5938 case Intrinsic::eh_return_i32: 5939 case Intrinsic::eh_return_i64: 5940 DAG.getMachineFunction().setCallsEHReturn(true); 5941 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5942 MVT::Other, 5943 getControlRoot(), 5944 getValue(I.getArgOperand(0)), 5945 getValue(I.getArgOperand(1)))); 5946 return; 5947 case Intrinsic::eh_unwind_init: 5948 DAG.getMachineFunction().setCallsUnwindInit(true); 5949 return; 5950 case Intrinsic::eh_dwarf_cfa: 5951 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5952 TLI.getPointerTy(DAG.getDataLayout()), 5953 getValue(I.getArgOperand(0)))); 5954 return; 5955 case Intrinsic::eh_sjlj_callsite: { 5956 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5957 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5958 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5959 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5960 5961 MMI.setCurrentCallSite(CI->getZExtValue()); 5962 return; 5963 } 5964 case Intrinsic::eh_sjlj_functioncontext: { 5965 // Get and store the index of the function context. 5966 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5967 AllocaInst *FnCtx = 5968 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5969 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5970 MFI.setFunctionContextIndex(FI); 5971 return; 5972 } 5973 case Intrinsic::eh_sjlj_setjmp: { 5974 SDValue Ops[2]; 5975 Ops[0] = getRoot(); 5976 Ops[1] = getValue(I.getArgOperand(0)); 5977 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5978 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5979 setValue(&I, Op.getValue(0)); 5980 DAG.setRoot(Op.getValue(1)); 5981 return; 5982 } 5983 case Intrinsic::eh_sjlj_longjmp: 5984 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5985 getRoot(), getValue(I.getArgOperand(0)))); 5986 return; 5987 case Intrinsic::eh_sjlj_setup_dispatch: 5988 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5989 getRoot())); 5990 return; 5991 case Intrinsic::masked_gather: 5992 visitMaskedGather(I); 5993 return; 5994 case Intrinsic::masked_load: 5995 visitMaskedLoad(I); 5996 return; 5997 case Intrinsic::masked_scatter: 5998 visitMaskedScatter(I); 5999 return; 6000 case Intrinsic::masked_store: 6001 visitMaskedStore(I); 6002 return; 6003 case Intrinsic::masked_expandload: 6004 visitMaskedLoad(I, true /* IsExpanding */); 6005 return; 6006 case Intrinsic::masked_compressstore: 6007 visitMaskedStore(I, true /* IsCompressing */); 6008 return; 6009 case Intrinsic::powi: 6010 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6011 getValue(I.getArgOperand(1)), DAG)); 6012 return; 6013 case Intrinsic::log: 6014 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6015 return; 6016 case Intrinsic::log2: 6017 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6018 return; 6019 case Intrinsic::log10: 6020 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6021 return; 6022 case Intrinsic::exp: 6023 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6024 return; 6025 case Intrinsic::exp2: 6026 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6027 return; 6028 case Intrinsic::pow: 6029 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6030 getValue(I.getArgOperand(1)), DAG, TLI)); 6031 return; 6032 case Intrinsic::sqrt: 6033 case Intrinsic::fabs: 6034 case Intrinsic::sin: 6035 case Intrinsic::cos: 6036 case Intrinsic::floor: 6037 case Intrinsic::ceil: 6038 case Intrinsic::trunc: 6039 case Intrinsic::rint: 6040 case Intrinsic::nearbyint: 6041 case Intrinsic::round: 6042 case Intrinsic::canonicalize: { 6043 unsigned Opcode; 6044 switch (Intrinsic) { 6045 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6046 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6047 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6048 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6049 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6050 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6051 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6052 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6053 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6054 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6055 case Intrinsic::round: Opcode = ISD::FROUND; break; 6056 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6057 } 6058 6059 setValue(&I, DAG.getNode(Opcode, sdl, 6060 getValue(I.getArgOperand(0)).getValueType(), 6061 getValue(I.getArgOperand(0)))); 6062 return; 6063 } 6064 case Intrinsic::lround: 6065 case Intrinsic::llround: 6066 case Intrinsic::lrint: 6067 case Intrinsic::llrint: { 6068 unsigned Opcode; 6069 switch (Intrinsic) { 6070 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6071 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6072 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6073 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6074 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6075 } 6076 6077 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6078 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6079 getValue(I.getArgOperand(0)))); 6080 return; 6081 } 6082 case Intrinsic::minnum: 6083 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6084 getValue(I.getArgOperand(0)).getValueType(), 6085 getValue(I.getArgOperand(0)), 6086 getValue(I.getArgOperand(1)))); 6087 return; 6088 case Intrinsic::maxnum: 6089 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6090 getValue(I.getArgOperand(0)).getValueType(), 6091 getValue(I.getArgOperand(0)), 6092 getValue(I.getArgOperand(1)))); 6093 return; 6094 case Intrinsic::minimum: 6095 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6096 getValue(I.getArgOperand(0)).getValueType(), 6097 getValue(I.getArgOperand(0)), 6098 getValue(I.getArgOperand(1)))); 6099 return; 6100 case Intrinsic::maximum: 6101 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6102 getValue(I.getArgOperand(0)).getValueType(), 6103 getValue(I.getArgOperand(0)), 6104 getValue(I.getArgOperand(1)))); 6105 return; 6106 case Intrinsic::copysign: 6107 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6108 getValue(I.getArgOperand(0)).getValueType(), 6109 getValue(I.getArgOperand(0)), 6110 getValue(I.getArgOperand(1)))); 6111 return; 6112 case Intrinsic::fma: 6113 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6114 getValue(I.getArgOperand(0)).getValueType(), 6115 getValue(I.getArgOperand(0)), 6116 getValue(I.getArgOperand(1)), 6117 getValue(I.getArgOperand(2)))); 6118 return; 6119 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6120 case Intrinsic::INTRINSIC: 6121 #include "llvm/IR/ConstrainedOps.def" 6122 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6123 return; 6124 case Intrinsic::fmuladd: { 6125 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6126 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6127 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6128 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6129 getValue(I.getArgOperand(0)).getValueType(), 6130 getValue(I.getArgOperand(0)), 6131 getValue(I.getArgOperand(1)), 6132 getValue(I.getArgOperand(2)))); 6133 } else { 6134 // TODO: Intrinsic calls should have fast-math-flags. 6135 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6136 getValue(I.getArgOperand(0)).getValueType(), 6137 getValue(I.getArgOperand(0)), 6138 getValue(I.getArgOperand(1))); 6139 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6140 getValue(I.getArgOperand(0)).getValueType(), 6141 Mul, 6142 getValue(I.getArgOperand(2))); 6143 setValue(&I, Add); 6144 } 6145 return; 6146 } 6147 case Intrinsic::convert_to_fp16: 6148 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6149 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6150 getValue(I.getArgOperand(0)), 6151 DAG.getTargetConstant(0, sdl, 6152 MVT::i32)))); 6153 return; 6154 case Intrinsic::convert_from_fp16: 6155 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6156 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6157 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6158 getValue(I.getArgOperand(0))))); 6159 return; 6160 case Intrinsic::pcmarker: { 6161 SDValue Tmp = getValue(I.getArgOperand(0)); 6162 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6163 return; 6164 } 6165 case Intrinsic::readcyclecounter: { 6166 SDValue Op = getRoot(); 6167 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6168 DAG.getVTList(MVT::i64, MVT::Other), Op); 6169 setValue(&I, Res); 6170 DAG.setRoot(Res.getValue(1)); 6171 return; 6172 } 6173 case Intrinsic::bitreverse: 6174 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6175 getValue(I.getArgOperand(0)).getValueType(), 6176 getValue(I.getArgOperand(0)))); 6177 return; 6178 case Intrinsic::bswap: 6179 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6180 getValue(I.getArgOperand(0)).getValueType(), 6181 getValue(I.getArgOperand(0)))); 6182 return; 6183 case Intrinsic::cttz: { 6184 SDValue Arg = getValue(I.getArgOperand(0)); 6185 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6186 EVT Ty = Arg.getValueType(); 6187 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6188 sdl, Ty, Arg)); 6189 return; 6190 } 6191 case Intrinsic::ctlz: { 6192 SDValue Arg = getValue(I.getArgOperand(0)); 6193 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6194 EVT Ty = Arg.getValueType(); 6195 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6196 sdl, Ty, Arg)); 6197 return; 6198 } 6199 case Intrinsic::ctpop: { 6200 SDValue Arg = getValue(I.getArgOperand(0)); 6201 EVT Ty = Arg.getValueType(); 6202 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6203 return; 6204 } 6205 case Intrinsic::fshl: 6206 case Intrinsic::fshr: { 6207 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6208 SDValue X = getValue(I.getArgOperand(0)); 6209 SDValue Y = getValue(I.getArgOperand(1)); 6210 SDValue Z = getValue(I.getArgOperand(2)); 6211 EVT VT = X.getValueType(); 6212 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6213 SDValue Zero = DAG.getConstant(0, sdl, VT); 6214 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6215 6216 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6217 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6218 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6219 return; 6220 } 6221 6222 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6223 // avoid the select that is necessary in the general case to filter out 6224 // the 0-shift possibility that leads to UB. 6225 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6226 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6227 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6228 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6229 return; 6230 } 6231 6232 // Some targets only rotate one way. Try the opposite direction. 6233 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6234 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6235 // Negate the shift amount because it is safe to ignore the high bits. 6236 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6237 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6238 return; 6239 } 6240 6241 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6242 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6243 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6244 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6245 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6246 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6247 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6248 return; 6249 } 6250 6251 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6252 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6253 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6254 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6255 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6256 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6257 6258 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6259 // and that is undefined. We must compare and select to avoid UB. 6260 EVT CCVT = MVT::i1; 6261 if (VT.isVector()) 6262 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6263 6264 // For fshl, 0-shift returns the 1st arg (X). 6265 // For fshr, 0-shift returns the 2nd arg (Y). 6266 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6267 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6268 return; 6269 } 6270 case Intrinsic::sadd_sat: { 6271 SDValue Op1 = getValue(I.getArgOperand(0)); 6272 SDValue Op2 = getValue(I.getArgOperand(1)); 6273 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6274 return; 6275 } 6276 case Intrinsic::uadd_sat: { 6277 SDValue Op1 = getValue(I.getArgOperand(0)); 6278 SDValue Op2 = getValue(I.getArgOperand(1)); 6279 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6280 return; 6281 } 6282 case Intrinsic::ssub_sat: { 6283 SDValue Op1 = getValue(I.getArgOperand(0)); 6284 SDValue Op2 = getValue(I.getArgOperand(1)); 6285 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6286 return; 6287 } 6288 case Intrinsic::usub_sat: { 6289 SDValue Op1 = getValue(I.getArgOperand(0)); 6290 SDValue Op2 = getValue(I.getArgOperand(1)); 6291 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6292 return; 6293 } 6294 case Intrinsic::smul_fix: 6295 case Intrinsic::umul_fix: 6296 case Intrinsic::smul_fix_sat: 6297 case Intrinsic::umul_fix_sat: { 6298 SDValue Op1 = getValue(I.getArgOperand(0)); 6299 SDValue Op2 = getValue(I.getArgOperand(1)); 6300 SDValue Op3 = getValue(I.getArgOperand(2)); 6301 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6302 Op1.getValueType(), Op1, Op2, Op3)); 6303 return; 6304 } 6305 case Intrinsic::sdiv_fix: 6306 case Intrinsic::udiv_fix: 6307 case Intrinsic::sdiv_fix_sat: 6308 case Intrinsic::udiv_fix_sat: { 6309 SDValue Op1 = getValue(I.getArgOperand(0)); 6310 SDValue Op2 = getValue(I.getArgOperand(1)); 6311 SDValue Op3 = getValue(I.getArgOperand(2)); 6312 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6313 Op1, Op2, Op3, DAG, TLI)); 6314 return; 6315 } 6316 case Intrinsic::stacksave: { 6317 SDValue Op = getRoot(); 6318 Res = DAG.getNode( 6319 ISD::STACKSAVE, sdl, 6320 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6321 setValue(&I, Res); 6322 DAG.setRoot(Res.getValue(1)); 6323 return; 6324 } 6325 case Intrinsic::stackrestore: 6326 Res = getValue(I.getArgOperand(0)); 6327 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6328 return; 6329 case Intrinsic::get_dynamic_area_offset: { 6330 SDValue Op = getRoot(); 6331 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6332 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6333 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6334 // target. 6335 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6336 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6337 " intrinsic!"); 6338 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6339 Op); 6340 DAG.setRoot(Op); 6341 setValue(&I, Res); 6342 return; 6343 } 6344 case Intrinsic::stackguard: { 6345 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6346 MachineFunction &MF = DAG.getMachineFunction(); 6347 const Module &M = *MF.getFunction().getParent(); 6348 SDValue Chain = getRoot(); 6349 if (TLI.useLoadStackGuardNode()) { 6350 Res = getLoadStackGuard(DAG, sdl, Chain); 6351 } else { 6352 const Value *Global = TLI.getSDagStackGuard(M); 6353 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6354 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6355 MachinePointerInfo(Global, 0), Align, 6356 MachineMemOperand::MOVolatile); 6357 } 6358 if (TLI.useStackGuardXorFP()) 6359 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6360 DAG.setRoot(Chain); 6361 setValue(&I, Res); 6362 return; 6363 } 6364 case Intrinsic::stackprotector: { 6365 // Emit code into the DAG to store the stack guard onto the stack. 6366 MachineFunction &MF = DAG.getMachineFunction(); 6367 MachineFrameInfo &MFI = MF.getFrameInfo(); 6368 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6369 SDValue Src, Chain = getRoot(); 6370 6371 if (TLI.useLoadStackGuardNode()) 6372 Src = getLoadStackGuard(DAG, sdl, Chain); 6373 else 6374 Src = getValue(I.getArgOperand(0)); // The guard's value. 6375 6376 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6377 6378 int FI = FuncInfo.StaticAllocaMap[Slot]; 6379 MFI.setStackProtectorIndex(FI); 6380 6381 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6382 6383 // Store the stack protector onto the stack. 6384 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6385 DAG.getMachineFunction(), FI), 6386 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6387 setValue(&I, Res); 6388 DAG.setRoot(Res); 6389 return; 6390 } 6391 case Intrinsic::objectsize: 6392 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6393 6394 case Intrinsic::is_constant: 6395 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6396 6397 case Intrinsic::annotation: 6398 case Intrinsic::ptr_annotation: 6399 case Intrinsic::launder_invariant_group: 6400 case Intrinsic::strip_invariant_group: 6401 // Drop the intrinsic, but forward the value 6402 setValue(&I, getValue(I.getOperand(0))); 6403 return; 6404 case Intrinsic::assume: 6405 case Intrinsic::var_annotation: 6406 case Intrinsic::sideeffect: 6407 // Discard annotate attributes, assumptions, and artificial side-effects. 6408 return; 6409 6410 case Intrinsic::codeview_annotation: { 6411 // Emit a label associated with this metadata. 6412 MachineFunction &MF = DAG.getMachineFunction(); 6413 MCSymbol *Label = 6414 MF.getMMI().getContext().createTempSymbol("annotation", true); 6415 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6416 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6417 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6418 DAG.setRoot(Res); 6419 return; 6420 } 6421 6422 case Intrinsic::init_trampoline: { 6423 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6424 6425 SDValue Ops[6]; 6426 Ops[0] = getRoot(); 6427 Ops[1] = getValue(I.getArgOperand(0)); 6428 Ops[2] = getValue(I.getArgOperand(1)); 6429 Ops[3] = getValue(I.getArgOperand(2)); 6430 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6431 Ops[5] = DAG.getSrcValue(F); 6432 6433 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6434 6435 DAG.setRoot(Res); 6436 return; 6437 } 6438 case Intrinsic::adjust_trampoline: 6439 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6440 TLI.getPointerTy(DAG.getDataLayout()), 6441 getValue(I.getArgOperand(0)))); 6442 return; 6443 case Intrinsic::gcroot: { 6444 assert(DAG.getMachineFunction().getFunction().hasGC() && 6445 "only valid in functions with gc specified, enforced by Verifier"); 6446 assert(GFI && "implied by previous"); 6447 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6448 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6449 6450 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6451 GFI->addStackRoot(FI->getIndex(), TypeMap); 6452 return; 6453 } 6454 case Intrinsic::gcread: 6455 case Intrinsic::gcwrite: 6456 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6457 case Intrinsic::flt_rounds: 6458 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6459 setValue(&I, Res); 6460 DAG.setRoot(Res.getValue(1)); 6461 return; 6462 6463 case Intrinsic::expect: 6464 // Just replace __builtin_expect(exp, c) with EXP. 6465 setValue(&I, getValue(I.getArgOperand(0))); 6466 return; 6467 6468 case Intrinsic::debugtrap: 6469 case Intrinsic::trap: { 6470 StringRef TrapFuncName = 6471 I.getAttributes() 6472 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6473 .getValueAsString(); 6474 if (TrapFuncName.empty()) { 6475 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6476 ISD::TRAP : ISD::DEBUGTRAP; 6477 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6478 return; 6479 } 6480 TargetLowering::ArgListTy Args; 6481 6482 TargetLowering::CallLoweringInfo CLI(DAG); 6483 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6484 CallingConv::C, I.getType(), 6485 DAG.getExternalSymbol(TrapFuncName.data(), 6486 TLI.getPointerTy(DAG.getDataLayout())), 6487 std::move(Args)); 6488 6489 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6490 DAG.setRoot(Result.second); 6491 return; 6492 } 6493 6494 case Intrinsic::uadd_with_overflow: 6495 case Intrinsic::sadd_with_overflow: 6496 case Intrinsic::usub_with_overflow: 6497 case Intrinsic::ssub_with_overflow: 6498 case Intrinsic::umul_with_overflow: 6499 case Intrinsic::smul_with_overflow: { 6500 ISD::NodeType Op; 6501 switch (Intrinsic) { 6502 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6503 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6504 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6505 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6506 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6507 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6508 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6509 } 6510 SDValue Op1 = getValue(I.getArgOperand(0)); 6511 SDValue Op2 = getValue(I.getArgOperand(1)); 6512 6513 EVT ResultVT = Op1.getValueType(); 6514 EVT OverflowVT = MVT::i1; 6515 if (ResultVT.isVector()) 6516 OverflowVT = EVT::getVectorVT( 6517 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6518 6519 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6520 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6521 return; 6522 } 6523 case Intrinsic::prefetch: { 6524 SDValue Ops[5]; 6525 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6526 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6527 Ops[0] = DAG.getRoot(); 6528 Ops[1] = getValue(I.getArgOperand(0)); 6529 Ops[2] = getValue(I.getArgOperand(1)); 6530 Ops[3] = getValue(I.getArgOperand(2)); 6531 Ops[4] = getValue(I.getArgOperand(3)); 6532 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6533 DAG.getVTList(MVT::Other), Ops, 6534 EVT::getIntegerVT(*Context, 8), 6535 MachinePointerInfo(I.getArgOperand(0)), 6536 0, /* align */ 6537 Flags); 6538 6539 // Chain the prefetch in parallell with any pending loads, to stay out of 6540 // the way of later optimizations. 6541 PendingLoads.push_back(Result); 6542 Result = getRoot(); 6543 DAG.setRoot(Result); 6544 return; 6545 } 6546 case Intrinsic::lifetime_start: 6547 case Intrinsic::lifetime_end: { 6548 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6549 // Stack coloring is not enabled in O0, discard region information. 6550 if (TM.getOptLevel() == CodeGenOpt::None) 6551 return; 6552 6553 const int64_t ObjectSize = 6554 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6555 Value *const ObjectPtr = I.getArgOperand(1); 6556 SmallVector<const Value *, 4> Allocas; 6557 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6558 6559 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6560 E = Allocas.end(); Object != E; ++Object) { 6561 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6562 6563 // Could not find an Alloca. 6564 if (!LifetimeObject) 6565 continue; 6566 6567 // First check that the Alloca is static, otherwise it won't have a 6568 // valid frame index. 6569 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6570 if (SI == FuncInfo.StaticAllocaMap.end()) 6571 return; 6572 6573 const int FrameIndex = SI->second; 6574 int64_t Offset; 6575 if (GetPointerBaseWithConstantOffset( 6576 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6577 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6578 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6579 Offset); 6580 DAG.setRoot(Res); 6581 } 6582 return; 6583 } 6584 case Intrinsic::invariant_start: 6585 // Discard region information. 6586 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6587 return; 6588 case Intrinsic::invariant_end: 6589 // Discard region information. 6590 return; 6591 case Intrinsic::clear_cache: 6592 /// FunctionName may be null. 6593 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6594 lowerCallToExternalSymbol(I, FunctionName); 6595 return; 6596 case Intrinsic::donothing: 6597 // ignore 6598 return; 6599 case Intrinsic::experimental_stackmap: 6600 visitStackmap(I); 6601 return; 6602 case Intrinsic::experimental_patchpoint_void: 6603 case Intrinsic::experimental_patchpoint_i64: 6604 visitPatchpoint(&I); 6605 return; 6606 case Intrinsic::experimental_gc_statepoint: 6607 LowerStatepoint(ImmutableStatepoint(&I)); 6608 return; 6609 case Intrinsic::experimental_gc_result: 6610 visitGCResult(cast<GCResultInst>(I)); 6611 return; 6612 case Intrinsic::experimental_gc_relocate: 6613 visitGCRelocate(cast<GCRelocateInst>(I)); 6614 return; 6615 case Intrinsic::instrprof_increment: 6616 llvm_unreachable("instrprof failed to lower an increment"); 6617 case Intrinsic::instrprof_value_profile: 6618 llvm_unreachable("instrprof failed to lower a value profiling call"); 6619 case Intrinsic::localescape: { 6620 MachineFunction &MF = DAG.getMachineFunction(); 6621 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6622 6623 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6624 // is the same on all targets. 6625 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6626 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6627 if (isa<ConstantPointerNull>(Arg)) 6628 continue; // Skip null pointers. They represent a hole in index space. 6629 AllocaInst *Slot = cast<AllocaInst>(Arg); 6630 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6631 "can only escape static allocas"); 6632 int FI = FuncInfo.StaticAllocaMap[Slot]; 6633 MCSymbol *FrameAllocSym = 6634 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6635 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6636 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6637 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6638 .addSym(FrameAllocSym) 6639 .addFrameIndex(FI); 6640 } 6641 6642 return; 6643 } 6644 6645 case Intrinsic::localrecover: { 6646 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6647 MachineFunction &MF = DAG.getMachineFunction(); 6648 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6649 6650 // Get the symbol that defines the frame offset. 6651 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6652 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6653 unsigned IdxVal = 6654 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6655 MCSymbol *FrameAllocSym = 6656 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6657 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6658 6659 // Create a MCSymbol for the label to avoid any target lowering 6660 // that would make this PC relative. 6661 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6662 SDValue OffsetVal = 6663 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6664 6665 // Add the offset to the FP. 6666 Value *FP = I.getArgOperand(1); 6667 SDValue FPVal = getValue(FP); 6668 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6669 setValue(&I, Add); 6670 6671 return; 6672 } 6673 6674 case Intrinsic::eh_exceptionpointer: 6675 case Intrinsic::eh_exceptioncode: { 6676 // Get the exception pointer vreg, copy from it, and resize it to fit. 6677 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6678 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6679 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6680 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6681 SDValue N = 6682 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6683 if (Intrinsic == Intrinsic::eh_exceptioncode) 6684 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6685 setValue(&I, N); 6686 return; 6687 } 6688 case Intrinsic::xray_customevent: { 6689 // Here we want to make sure that the intrinsic behaves as if it has a 6690 // specific calling convention, and only for x86_64. 6691 // FIXME: Support other platforms later. 6692 const auto &Triple = DAG.getTarget().getTargetTriple(); 6693 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6694 return; 6695 6696 SDLoc DL = getCurSDLoc(); 6697 SmallVector<SDValue, 8> Ops; 6698 6699 // We want to say that we always want the arguments in registers. 6700 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6701 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6702 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6703 SDValue Chain = getRoot(); 6704 Ops.push_back(LogEntryVal); 6705 Ops.push_back(StrSizeVal); 6706 Ops.push_back(Chain); 6707 6708 // We need to enforce the calling convention for the callsite, so that 6709 // argument ordering is enforced correctly, and that register allocation can 6710 // see that some registers may be assumed clobbered and have to preserve 6711 // them across calls to the intrinsic. 6712 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6713 DL, NodeTys, Ops); 6714 SDValue patchableNode = SDValue(MN, 0); 6715 DAG.setRoot(patchableNode); 6716 setValue(&I, patchableNode); 6717 return; 6718 } 6719 case Intrinsic::xray_typedevent: { 6720 // Here we want to make sure that the intrinsic behaves as if it has a 6721 // specific calling convention, and only for x86_64. 6722 // FIXME: Support other platforms later. 6723 const auto &Triple = DAG.getTarget().getTargetTriple(); 6724 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6725 return; 6726 6727 SDLoc DL = getCurSDLoc(); 6728 SmallVector<SDValue, 8> Ops; 6729 6730 // We want to say that we always want the arguments in registers. 6731 // It's unclear to me how manipulating the selection DAG here forces callers 6732 // to provide arguments in registers instead of on the stack. 6733 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6734 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6735 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6736 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6737 SDValue Chain = getRoot(); 6738 Ops.push_back(LogTypeId); 6739 Ops.push_back(LogEntryVal); 6740 Ops.push_back(StrSizeVal); 6741 Ops.push_back(Chain); 6742 6743 // We need to enforce the calling convention for the callsite, so that 6744 // argument ordering is enforced correctly, and that register allocation can 6745 // see that some registers may be assumed clobbered and have to preserve 6746 // them across calls to the intrinsic. 6747 MachineSDNode *MN = DAG.getMachineNode( 6748 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6749 SDValue patchableNode = SDValue(MN, 0); 6750 DAG.setRoot(patchableNode); 6751 setValue(&I, patchableNode); 6752 return; 6753 } 6754 case Intrinsic::experimental_deoptimize: 6755 LowerDeoptimizeCall(&I); 6756 return; 6757 6758 case Intrinsic::experimental_vector_reduce_v2_fadd: 6759 case Intrinsic::experimental_vector_reduce_v2_fmul: 6760 case Intrinsic::experimental_vector_reduce_add: 6761 case Intrinsic::experimental_vector_reduce_mul: 6762 case Intrinsic::experimental_vector_reduce_and: 6763 case Intrinsic::experimental_vector_reduce_or: 6764 case Intrinsic::experimental_vector_reduce_xor: 6765 case Intrinsic::experimental_vector_reduce_smax: 6766 case Intrinsic::experimental_vector_reduce_smin: 6767 case Intrinsic::experimental_vector_reduce_umax: 6768 case Intrinsic::experimental_vector_reduce_umin: 6769 case Intrinsic::experimental_vector_reduce_fmax: 6770 case Intrinsic::experimental_vector_reduce_fmin: 6771 visitVectorReduce(I, Intrinsic); 6772 return; 6773 6774 case Intrinsic::icall_branch_funnel: { 6775 SmallVector<SDValue, 16> Ops; 6776 Ops.push_back(getValue(I.getArgOperand(0))); 6777 6778 int64_t Offset; 6779 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6780 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6781 if (!Base) 6782 report_fatal_error( 6783 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6784 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6785 6786 struct BranchFunnelTarget { 6787 int64_t Offset; 6788 SDValue Target; 6789 }; 6790 SmallVector<BranchFunnelTarget, 8> Targets; 6791 6792 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6793 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6794 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6795 if (ElemBase != Base) 6796 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6797 "to the same GlobalValue"); 6798 6799 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6800 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6801 if (!GA) 6802 report_fatal_error( 6803 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6804 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6805 GA->getGlobal(), getCurSDLoc(), 6806 Val.getValueType(), GA->getOffset())}); 6807 } 6808 llvm::sort(Targets, 6809 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6810 return T1.Offset < T2.Offset; 6811 }); 6812 6813 for (auto &T : Targets) { 6814 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6815 Ops.push_back(T.Target); 6816 } 6817 6818 Ops.push_back(DAG.getRoot()); // Chain 6819 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6820 getCurSDLoc(), MVT::Other, Ops), 6821 0); 6822 DAG.setRoot(N); 6823 setValue(&I, N); 6824 HasTailCall = true; 6825 return; 6826 } 6827 6828 case Intrinsic::wasm_landingpad_index: 6829 // Information this intrinsic contained has been transferred to 6830 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6831 // delete it now. 6832 return; 6833 6834 case Intrinsic::aarch64_settag: 6835 case Intrinsic::aarch64_settag_zero: { 6836 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6837 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6838 SDValue Val = TSI.EmitTargetCodeForSetTag( 6839 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6840 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6841 ZeroMemory); 6842 DAG.setRoot(Val); 6843 setValue(&I, Val); 6844 return; 6845 } 6846 case Intrinsic::ptrmask: { 6847 SDValue Ptr = getValue(I.getOperand(0)); 6848 SDValue Const = getValue(I.getOperand(1)); 6849 6850 EVT DestVT = 6851 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6852 6853 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6854 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6855 return; 6856 } 6857 } 6858 } 6859 6860 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6861 const ConstrainedFPIntrinsic &FPI) { 6862 SDLoc sdl = getCurSDLoc(); 6863 6864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6865 SmallVector<EVT, 4> ValueVTs; 6866 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6867 ValueVTs.push_back(MVT::Other); // Out chain 6868 6869 // We do not need to serialize constrained FP intrinsics against 6870 // each other or against (nonvolatile) loads, so they can be 6871 // chained like loads. 6872 SDValue Chain = DAG.getRoot(); 6873 SmallVector<SDValue, 4> Opers; 6874 Opers.push_back(Chain); 6875 if (FPI.isUnaryOp()) { 6876 Opers.push_back(getValue(FPI.getArgOperand(0))); 6877 } else if (FPI.isTernaryOp()) { 6878 Opers.push_back(getValue(FPI.getArgOperand(0))); 6879 Opers.push_back(getValue(FPI.getArgOperand(1))); 6880 Opers.push_back(getValue(FPI.getArgOperand(2))); 6881 } else { 6882 Opers.push_back(getValue(FPI.getArgOperand(0))); 6883 Opers.push_back(getValue(FPI.getArgOperand(1))); 6884 } 6885 6886 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6887 assert(Result.getNode()->getNumValues() == 2); 6888 6889 // Push node to the appropriate list so that future instructions can be 6890 // chained up correctly. 6891 SDValue OutChain = Result.getValue(1); 6892 switch (EB) { 6893 case fp::ExceptionBehavior::ebIgnore: 6894 // The only reason why ebIgnore nodes still need to be chained is that 6895 // they might depend on the current rounding mode, and therefore must 6896 // not be moved across instruction that may change that mode. 6897 LLVM_FALLTHROUGH; 6898 case fp::ExceptionBehavior::ebMayTrap: 6899 // These must not be moved across calls or instructions that may change 6900 // floating-point exception masks. 6901 PendingConstrainedFP.push_back(OutChain); 6902 break; 6903 case fp::ExceptionBehavior::ebStrict: 6904 // These must not be moved across calls or instructions that may change 6905 // floating-point exception masks or read floating-point exception flags. 6906 // In addition, they cannot be optimized out even if unused. 6907 PendingConstrainedFPStrict.push_back(OutChain); 6908 break; 6909 } 6910 }; 6911 6912 SDVTList VTs = DAG.getVTList(ValueVTs); 6913 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6914 6915 SDNodeFlags Flags; 6916 if (EB == fp::ExceptionBehavior::ebIgnore) 6917 Flags.setNoFPExcept(true); 6918 6919 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6920 Flags.copyFMF(*FPOp); 6921 6922 unsigned Opcode; 6923 switch (FPI.getIntrinsicID()) { 6924 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6925 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6926 case Intrinsic::INTRINSIC: \ 6927 Opcode = ISD::STRICT_##DAGN; \ 6928 break; 6929 #include "llvm/IR/ConstrainedOps.def" 6930 case Intrinsic::experimental_constrained_fmuladd: { 6931 Opcode = ISD::STRICT_FMA; 6932 // Break fmuladd into fmul and fadd. 6933 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6934 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6935 ValueVTs[0])) { 6936 Opers.pop_back(); 6937 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6938 pushOutChain(Mul, EB); 6939 Opcode = ISD::STRICT_FADD; 6940 Opers.clear(); 6941 Opers.push_back(Mul.getValue(1)); 6942 Opers.push_back(Mul.getValue(0)); 6943 Opers.push_back(getValue(FPI.getArgOperand(2))); 6944 } 6945 break; 6946 } 6947 } 6948 6949 // A few strict DAG nodes carry additional operands that are not 6950 // set up by the default code above. 6951 switch (Opcode) { 6952 default: break; 6953 case ISD::STRICT_FP_ROUND: 6954 Opers.push_back( 6955 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6956 break; 6957 case ISD::STRICT_FSETCC: 6958 case ISD::STRICT_FSETCCS: { 6959 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6960 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6961 break; 6962 } 6963 } 6964 6965 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6966 pushOutChain(Result, EB); 6967 6968 SDValue FPResult = Result.getValue(0); 6969 setValue(&FPI, FPResult); 6970 } 6971 6972 std::pair<SDValue, SDValue> 6973 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6974 const BasicBlock *EHPadBB) { 6975 MachineFunction &MF = DAG.getMachineFunction(); 6976 MachineModuleInfo &MMI = MF.getMMI(); 6977 MCSymbol *BeginLabel = nullptr; 6978 6979 if (EHPadBB) { 6980 // Insert a label before the invoke call to mark the try range. This can be 6981 // used to detect deletion of the invoke via the MachineModuleInfo. 6982 BeginLabel = MMI.getContext().createTempSymbol(); 6983 6984 // For SjLj, keep track of which landing pads go with which invokes 6985 // so as to maintain the ordering of pads in the LSDA. 6986 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6987 if (CallSiteIndex) { 6988 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6989 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6990 6991 // Now that the call site is handled, stop tracking it. 6992 MMI.setCurrentCallSite(0); 6993 } 6994 6995 // Both PendingLoads and PendingExports must be flushed here; 6996 // this call might not return. 6997 (void)getRoot(); 6998 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6999 7000 CLI.setChain(getRoot()); 7001 } 7002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7003 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7004 7005 assert((CLI.IsTailCall || Result.second.getNode()) && 7006 "Non-null chain expected with non-tail call!"); 7007 assert((Result.second.getNode() || !Result.first.getNode()) && 7008 "Null value expected with tail call!"); 7009 7010 if (!Result.second.getNode()) { 7011 // As a special case, a null chain means that a tail call has been emitted 7012 // and the DAG root is already updated. 7013 HasTailCall = true; 7014 7015 // Since there's no actual continuation from this block, nothing can be 7016 // relying on us setting vregs for them. 7017 PendingExports.clear(); 7018 } else { 7019 DAG.setRoot(Result.second); 7020 } 7021 7022 if (EHPadBB) { 7023 // Insert a label at the end of the invoke call to mark the try range. This 7024 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7025 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7026 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7027 7028 // Inform MachineModuleInfo of range. 7029 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7030 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7031 // actually use outlined funclets and their LSDA info style. 7032 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7033 assert(CLI.CS); 7034 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7035 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7036 BeginLabel, EndLabel); 7037 } else if (!isScopedEHPersonality(Pers)) { 7038 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7039 } 7040 } 7041 7042 return Result; 7043 } 7044 7045 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7046 bool isTailCall, 7047 const BasicBlock *EHPadBB) { 7048 auto &DL = DAG.getDataLayout(); 7049 FunctionType *FTy = CS.getFunctionType(); 7050 Type *RetTy = CS.getType(); 7051 7052 TargetLowering::ArgListTy Args; 7053 Args.reserve(CS.arg_size()); 7054 7055 const Value *SwiftErrorVal = nullptr; 7056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7057 7058 if (isTailCall) { 7059 // Avoid emitting tail calls in functions with the disable-tail-calls 7060 // attribute. 7061 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7062 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7063 "true") 7064 isTailCall = false; 7065 7066 // We can't tail call inside a function with a swifterror argument. Lowering 7067 // does not support this yet. It would have to move into the swifterror 7068 // register before the call. 7069 if (TLI.supportSwiftError() && 7070 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7071 isTailCall = false; 7072 } 7073 7074 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7075 i != e; ++i) { 7076 TargetLowering::ArgListEntry Entry; 7077 const Value *V = *i; 7078 7079 // Skip empty types 7080 if (V->getType()->isEmptyTy()) 7081 continue; 7082 7083 SDValue ArgNode = getValue(V); 7084 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7085 7086 Entry.setAttributes(&CS, i - CS.arg_begin()); 7087 7088 // Use swifterror virtual register as input to the call. 7089 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7090 SwiftErrorVal = V; 7091 // We find the virtual register for the actual swifterror argument. 7092 // Instead of using the Value, we use the virtual register instead. 7093 Entry.Node = DAG.getRegister( 7094 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7095 EVT(TLI.getPointerTy(DL))); 7096 } 7097 7098 Args.push_back(Entry); 7099 7100 // If we have an explicit sret argument that is an Instruction, (i.e., it 7101 // might point to function-local memory), we can't meaningfully tail-call. 7102 if (Entry.IsSRet && isa<Instruction>(V)) 7103 isTailCall = false; 7104 } 7105 7106 // If call site has a cfguardtarget operand bundle, create and add an 7107 // additional ArgListEntry. 7108 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7109 TargetLowering::ArgListEntry Entry; 7110 Value *V = Bundle->Inputs[0]; 7111 SDValue ArgNode = getValue(V); 7112 Entry.Node = ArgNode; 7113 Entry.Ty = V->getType(); 7114 Entry.IsCFGuardTarget = true; 7115 Args.push_back(Entry); 7116 } 7117 7118 // Check if target-independent constraints permit a tail call here. 7119 // Target-dependent constraints are checked within TLI->LowerCallTo. 7120 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7121 isTailCall = false; 7122 7123 // Disable tail calls if there is an swifterror argument. Targets have not 7124 // been updated to support tail calls. 7125 if (TLI.supportSwiftError() && SwiftErrorVal) 7126 isTailCall = false; 7127 7128 TargetLowering::CallLoweringInfo CLI(DAG); 7129 CLI.setDebugLoc(getCurSDLoc()) 7130 .setChain(getRoot()) 7131 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7132 .setTailCall(isTailCall) 7133 .setConvergent(CS.isConvergent()); 7134 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7135 7136 if (Result.first.getNode()) { 7137 const Instruction *Inst = CS.getInstruction(); 7138 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7139 setValue(Inst, Result.first); 7140 } 7141 7142 // The last element of CLI.InVals has the SDValue for swifterror return. 7143 // Here we copy it to a virtual register and update SwiftErrorMap for 7144 // book-keeping. 7145 if (SwiftErrorVal && TLI.supportSwiftError()) { 7146 // Get the last element of InVals. 7147 SDValue Src = CLI.InVals.back(); 7148 Register VReg = SwiftError.getOrCreateVRegDefAt( 7149 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7150 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7151 DAG.setRoot(CopyNode); 7152 } 7153 } 7154 7155 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7156 SelectionDAGBuilder &Builder) { 7157 // Check to see if this load can be trivially constant folded, e.g. if the 7158 // input is from a string literal. 7159 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7160 // Cast pointer to the type we really want to load. 7161 Type *LoadTy = 7162 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7163 if (LoadVT.isVector()) 7164 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7165 7166 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7167 PointerType::getUnqual(LoadTy)); 7168 7169 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7170 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7171 return Builder.getValue(LoadCst); 7172 } 7173 7174 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7175 // still constant memory, the input chain can be the entry node. 7176 SDValue Root; 7177 bool ConstantMemory = false; 7178 7179 // Do not serialize (non-volatile) loads of constant memory with anything. 7180 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7181 Root = Builder.DAG.getEntryNode(); 7182 ConstantMemory = true; 7183 } else { 7184 // Do not serialize non-volatile loads against each other. 7185 Root = Builder.DAG.getRoot(); 7186 } 7187 7188 SDValue Ptr = Builder.getValue(PtrVal); 7189 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7190 Ptr, MachinePointerInfo(PtrVal), 7191 /* Alignment = */ 1); 7192 7193 if (!ConstantMemory) 7194 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7195 return LoadVal; 7196 } 7197 7198 /// Record the value for an instruction that produces an integer result, 7199 /// converting the type where necessary. 7200 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7201 SDValue Value, 7202 bool IsSigned) { 7203 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7204 I.getType(), true); 7205 if (IsSigned) 7206 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7207 else 7208 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7209 setValue(&I, Value); 7210 } 7211 7212 /// See if we can lower a memcmp call into an optimized form. If so, return 7213 /// true and lower it. Otherwise return false, and it will be lowered like a 7214 /// normal call. 7215 /// The caller already checked that \p I calls the appropriate LibFunc with a 7216 /// correct prototype. 7217 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7218 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7219 const Value *Size = I.getArgOperand(2); 7220 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7221 if (CSize && CSize->getZExtValue() == 0) { 7222 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7223 I.getType(), true); 7224 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7225 return true; 7226 } 7227 7228 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7229 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7230 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7231 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7232 if (Res.first.getNode()) { 7233 processIntegerCallValue(I, Res.first, true); 7234 PendingLoads.push_back(Res.second); 7235 return true; 7236 } 7237 7238 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7239 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7240 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7241 return false; 7242 7243 // If the target has a fast compare for the given size, it will return a 7244 // preferred load type for that size. Require that the load VT is legal and 7245 // that the target supports unaligned loads of that type. Otherwise, return 7246 // INVALID. 7247 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7249 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7250 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7251 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7252 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7253 // TODO: Check alignment of src and dest ptrs. 7254 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7255 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7256 if (!TLI.isTypeLegal(LVT) || 7257 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7258 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7259 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7260 } 7261 7262 return LVT; 7263 }; 7264 7265 // This turns into unaligned loads. We only do this if the target natively 7266 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7267 // we'll only produce a small number of byte loads. 7268 MVT LoadVT; 7269 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7270 switch (NumBitsToCompare) { 7271 default: 7272 return false; 7273 case 16: 7274 LoadVT = MVT::i16; 7275 break; 7276 case 32: 7277 LoadVT = MVT::i32; 7278 break; 7279 case 64: 7280 case 128: 7281 case 256: 7282 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7283 break; 7284 } 7285 7286 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7287 return false; 7288 7289 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7290 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7291 7292 // Bitcast to a wide integer type if the loads are vectors. 7293 if (LoadVT.isVector()) { 7294 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7295 LoadL = DAG.getBitcast(CmpVT, LoadL); 7296 LoadR = DAG.getBitcast(CmpVT, LoadR); 7297 } 7298 7299 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7300 processIntegerCallValue(I, Cmp, false); 7301 return true; 7302 } 7303 7304 /// See if we can lower a memchr call into an optimized form. If so, return 7305 /// true and lower it. Otherwise return false, and it will be lowered like a 7306 /// normal call. 7307 /// The caller already checked that \p I calls the appropriate LibFunc with a 7308 /// correct prototype. 7309 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7310 const Value *Src = I.getArgOperand(0); 7311 const Value *Char = I.getArgOperand(1); 7312 const Value *Length = I.getArgOperand(2); 7313 7314 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7315 std::pair<SDValue, SDValue> Res = 7316 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7317 getValue(Src), getValue(Char), getValue(Length), 7318 MachinePointerInfo(Src)); 7319 if (Res.first.getNode()) { 7320 setValue(&I, Res.first); 7321 PendingLoads.push_back(Res.second); 7322 return true; 7323 } 7324 7325 return false; 7326 } 7327 7328 /// See if we can lower a mempcpy call into an optimized form. If so, return 7329 /// true and lower it. Otherwise return false, and it will be lowered like a 7330 /// normal call. 7331 /// The caller already checked that \p I calls the appropriate LibFunc with a 7332 /// correct prototype. 7333 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7334 SDValue Dst = getValue(I.getArgOperand(0)); 7335 SDValue Src = getValue(I.getArgOperand(1)); 7336 SDValue Size = getValue(I.getArgOperand(2)); 7337 7338 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7339 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7340 // DAG::getMemcpy needs Alignment to be defined. 7341 Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign)); 7342 7343 bool isVol = false; 7344 SDLoc sdl = getCurSDLoc(); 7345 7346 // In the mempcpy context we need to pass in a false value for isTailCall 7347 // because the return pointer needs to be adjusted by the size of 7348 // the copied memory. 7349 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7350 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7351 /*isTailCall=*/false, 7352 MachinePointerInfo(I.getArgOperand(0)), 7353 MachinePointerInfo(I.getArgOperand(1))); 7354 assert(MC.getNode() != nullptr && 7355 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7356 DAG.setRoot(MC); 7357 7358 // Check if Size needs to be truncated or extended. 7359 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7360 7361 // Adjust return pointer to point just past the last dst byte. 7362 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7363 Dst, Size); 7364 setValue(&I, DstPlusSize); 7365 return true; 7366 } 7367 7368 /// See if we can lower a strcpy call into an optimized form. If so, return 7369 /// true and lower it, otherwise return false and it will be lowered like a 7370 /// normal call. 7371 /// The caller already checked that \p I calls the appropriate LibFunc with a 7372 /// correct prototype. 7373 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7374 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7375 7376 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7377 std::pair<SDValue, SDValue> Res = 7378 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7379 getValue(Arg0), getValue(Arg1), 7380 MachinePointerInfo(Arg0), 7381 MachinePointerInfo(Arg1), isStpcpy); 7382 if (Res.first.getNode()) { 7383 setValue(&I, Res.first); 7384 DAG.setRoot(Res.second); 7385 return true; 7386 } 7387 7388 return false; 7389 } 7390 7391 /// See if we can lower a strcmp call into an optimized form. If so, return 7392 /// true and lower it, otherwise return false and it will be lowered like a 7393 /// normal call. 7394 /// The caller already checked that \p I calls the appropriate LibFunc with a 7395 /// correct prototype. 7396 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7397 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7398 7399 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7400 std::pair<SDValue, SDValue> Res = 7401 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7402 getValue(Arg0), getValue(Arg1), 7403 MachinePointerInfo(Arg0), 7404 MachinePointerInfo(Arg1)); 7405 if (Res.first.getNode()) { 7406 processIntegerCallValue(I, Res.first, true); 7407 PendingLoads.push_back(Res.second); 7408 return true; 7409 } 7410 7411 return false; 7412 } 7413 7414 /// See if we can lower a strlen call into an optimized form. If so, return 7415 /// true and lower it, otherwise return false and it will be lowered like a 7416 /// normal call. 7417 /// The caller already checked that \p I calls the appropriate LibFunc with a 7418 /// correct prototype. 7419 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7420 const Value *Arg0 = I.getArgOperand(0); 7421 7422 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7423 std::pair<SDValue, SDValue> Res = 7424 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7425 getValue(Arg0), MachinePointerInfo(Arg0)); 7426 if (Res.first.getNode()) { 7427 processIntegerCallValue(I, Res.first, false); 7428 PendingLoads.push_back(Res.second); 7429 return true; 7430 } 7431 7432 return false; 7433 } 7434 7435 /// See if we can lower a strnlen call into an optimized form. If so, return 7436 /// true and lower it, otherwise return false and it will be lowered like a 7437 /// normal call. 7438 /// The caller already checked that \p I calls the appropriate LibFunc with a 7439 /// correct prototype. 7440 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7441 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7442 7443 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7444 std::pair<SDValue, SDValue> Res = 7445 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7446 getValue(Arg0), getValue(Arg1), 7447 MachinePointerInfo(Arg0)); 7448 if (Res.first.getNode()) { 7449 processIntegerCallValue(I, Res.first, false); 7450 PendingLoads.push_back(Res.second); 7451 return true; 7452 } 7453 7454 return false; 7455 } 7456 7457 /// See if we can lower a unary floating-point operation into an SDNode with 7458 /// the specified Opcode. If so, return true and lower it, otherwise return 7459 /// false and it will be lowered like a normal call. 7460 /// The caller already checked that \p I calls the appropriate LibFunc with a 7461 /// correct prototype. 7462 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7463 unsigned Opcode) { 7464 // We already checked this call's prototype; verify it doesn't modify errno. 7465 if (!I.onlyReadsMemory()) 7466 return false; 7467 7468 SDValue Tmp = getValue(I.getArgOperand(0)); 7469 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7470 return true; 7471 } 7472 7473 /// See if we can lower a binary floating-point operation into an SDNode with 7474 /// the specified Opcode. If so, return true and lower it. Otherwise return 7475 /// false, and it will be lowered like a normal call. 7476 /// The caller already checked that \p I calls the appropriate LibFunc with a 7477 /// correct prototype. 7478 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7479 unsigned Opcode) { 7480 // We already checked this call's prototype; verify it doesn't modify errno. 7481 if (!I.onlyReadsMemory()) 7482 return false; 7483 7484 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7485 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7486 EVT VT = Tmp0.getValueType(); 7487 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7488 return true; 7489 } 7490 7491 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7492 // Handle inline assembly differently. 7493 if (isa<InlineAsm>(I.getCalledValue())) { 7494 visitInlineAsm(&I); 7495 return; 7496 } 7497 7498 if (Function *F = I.getCalledFunction()) { 7499 if (F->isDeclaration()) { 7500 // Is this an LLVM intrinsic or a target-specific intrinsic? 7501 unsigned IID = F->getIntrinsicID(); 7502 if (!IID) 7503 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7504 IID = II->getIntrinsicID(F); 7505 7506 if (IID) { 7507 visitIntrinsicCall(I, IID); 7508 return; 7509 } 7510 } 7511 7512 // Check for well-known libc/libm calls. If the function is internal, it 7513 // can't be a library call. Don't do the check if marked as nobuiltin for 7514 // some reason or the call site requires strict floating point semantics. 7515 LibFunc Func; 7516 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7517 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7518 LibInfo->hasOptimizedCodeGen(Func)) { 7519 switch (Func) { 7520 default: break; 7521 case LibFunc_copysign: 7522 case LibFunc_copysignf: 7523 case LibFunc_copysignl: 7524 // We already checked this call's prototype; verify it doesn't modify 7525 // errno. 7526 if (I.onlyReadsMemory()) { 7527 SDValue LHS = getValue(I.getArgOperand(0)); 7528 SDValue RHS = getValue(I.getArgOperand(1)); 7529 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7530 LHS.getValueType(), LHS, RHS)); 7531 return; 7532 } 7533 break; 7534 case LibFunc_fabs: 7535 case LibFunc_fabsf: 7536 case LibFunc_fabsl: 7537 if (visitUnaryFloatCall(I, ISD::FABS)) 7538 return; 7539 break; 7540 case LibFunc_fmin: 7541 case LibFunc_fminf: 7542 case LibFunc_fminl: 7543 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7544 return; 7545 break; 7546 case LibFunc_fmax: 7547 case LibFunc_fmaxf: 7548 case LibFunc_fmaxl: 7549 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7550 return; 7551 break; 7552 case LibFunc_sin: 7553 case LibFunc_sinf: 7554 case LibFunc_sinl: 7555 if (visitUnaryFloatCall(I, ISD::FSIN)) 7556 return; 7557 break; 7558 case LibFunc_cos: 7559 case LibFunc_cosf: 7560 case LibFunc_cosl: 7561 if (visitUnaryFloatCall(I, ISD::FCOS)) 7562 return; 7563 break; 7564 case LibFunc_sqrt: 7565 case LibFunc_sqrtf: 7566 case LibFunc_sqrtl: 7567 case LibFunc_sqrt_finite: 7568 case LibFunc_sqrtf_finite: 7569 case LibFunc_sqrtl_finite: 7570 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7571 return; 7572 break; 7573 case LibFunc_floor: 7574 case LibFunc_floorf: 7575 case LibFunc_floorl: 7576 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7577 return; 7578 break; 7579 case LibFunc_nearbyint: 7580 case LibFunc_nearbyintf: 7581 case LibFunc_nearbyintl: 7582 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7583 return; 7584 break; 7585 case LibFunc_ceil: 7586 case LibFunc_ceilf: 7587 case LibFunc_ceill: 7588 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7589 return; 7590 break; 7591 case LibFunc_rint: 7592 case LibFunc_rintf: 7593 case LibFunc_rintl: 7594 if (visitUnaryFloatCall(I, ISD::FRINT)) 7595 return; 7596 break; 7597 case LibFunc_round: 7598 case LibFunc_roundf: 7599 case LibFunc_roundl: 7600 if (visitUnaryFloatCall(I, ISD::FROUND)) 7601 return; 7602 break; 7603 case LibFunc_trunc: 7604 case LibFunc_truncf: 7605 case LibFunc_truncl: 7606 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7607 return; 7608 break; 7609 case LibFunc_log2: 7610 case LibFunc_log2f: 7611 case LibFunc_log2l: 7612 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7613 return; 7614 break; 7615 case LibFunc_exp2: 7616 case LibFunc_exp2f: 7617 case LibFunc_exp2l: 7618 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7619 return; 7620 break; 7621 case LibFunc_memcmp: 7622 if (visitMemCmpCall(I)) 7623 return; 7624 break; 7625 case LibFunc_mempcpy: 7626 if (visitMemPCpyCall(I)) 7627 return; 7628 break; 7629 case LibFunc_memchr: 7630 if (visitMemChrCall(I)) 7631 return; 7632 break; 7633 case LibFunc_strcpy: 7634 if (visitStrCpyCall(I, false)) 7635 return; 7636 break; 7637 case LibFunc_stpcpy: 7638 if (visitStrCpyCall(I, true)) 7639 return; 7640 break; 7641 case LibFunc_strcmp: 7642 if (visitStrCmpCall(I)) 7643 return; 7644 break; 7645 case LibFunc_strlen: 7646 if (visitStrLenCall(I)) 7647 return; 7648 break; 7649 case LibFunc_strnlen: 7650 if (visitStrNLenCall(I)) 7651 return; 7652 break; 7653 } 7654 } 7655 } 7656 7657 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7658 // have to do anything here to lower funclet bundles. 7659 // CFGuardTarget bundles are lowered in LowerCallTo. 7660 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7661 LLVMContext::OB_funclet, 7662 LLVMContext::OB_cfguardtarget}) && 7663 "Cannot lower calls with arbitrary operand bundles!"); 7664 7665 SDValue Callee = getValue(I.getCalledValue()); 7666 7667 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7668 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7669 else 7670 // Check if we can potentially perform a tail call. More detailed checking 7671 // is be done within LowerCallTo, after more information about the call is 7672 // known. 7673 LowerCallTo(&I, Callee, I.isTailCall()); 7674 } 7675 7676 namespace { 7677 7678 /// AsmOperandInfo - This contains information for each constraint that we are 7679 /// lowering. 7680 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7681 public: 7682 /// CallOperand - If this is the result output operand or a clobber 7683 /// this is null, otherwise it is the incoming operand to the CallInst. 7684 /// This gets modified as the asm is processed. 7685 SDValue CallOperand; 7686 7687 /// AssignedRegs - If this is a register or register class operand, this 7688 /// contains the set of register corresponding to the operand. 7689 RegsForValue AssignedRegs; 7690 7691 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7692 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7693 } 7694 7695 /// Whether or not this operand accesses memory 7696 bool hasMemory(const TargetLowering &TLI) const { 7697 // Indirect operand accesses access memory. 7698 if (isIndirect) 7699 return true; 7700 7701 for (const auto &Code : Codes) 7702 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7703 return true; 7704 7705 return false; 7706 } 7707 7708 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7709 /// corresponds to. If there is no Value* for this operand, it returns 7710 /// MVT::Other. 7711 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7712 const DataLayout &DL) const { 7713 if (!CallOperandVal) return MVT::Other; 7714 7715 if (isa<BasicBlock>(CallOperandVal)) 7716 return TLI.getPointerTy(DL); 7717 7718 llvm::Type *OpTy = CallOperandVal->getType(); 7719 7720 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7721 // If this is an indirect operand, the operand is a pointer to the 7722 // accessed type. 7723 if (isIndirect) { 7724 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7725 if (!PtrTy) 7726 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7727 OpTy = PtrTy->getElementType(); 7728 } 7729 7730 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7731 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7732 if (STy->getNumElements() == 1) 7733 OpTy = STy->getElementType(0); 7734 7735 // If OpTy is not a single value, it may be a struct/union that we 7736 // can tile with integers. 7737 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7738 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7739 switch (BitSize) { 7740 default: break; 7741 case 1: 7742 case 8: 7743 case 16: 7744 case 32: 7745 case 64: 7746 case 128: 7747 OpTy = IntegerType::get(Context, BitSize); 7748 break; 7749 } 7750 } 7751 7752 return TLI.getValueType(DL, OpTy, true); 7753 } 7754 }; 7755 7756 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7757 7758 } // end anonymous namespace 7759 7760 /// Make sure that the output operand \p OpInfo and its corresponding input 7761 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7762 /// out). 7763 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7764 SDISelAsmOperandInfo &MatchingOpInfo, 7765 SelectionDAG &DAG) { 7766 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7767 return; 7768 7769 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7770 const auto &TLI = DAG.getTargetLoweringInfo(); 7771 7772 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7773 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7774 OpInfo.ConstraintVT); 7775 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7776 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7777 MatchingOpInfo.ConstraintVT); 7778 if ((OpInfo.ConstraintVT.isInteger() != 7779 MatchingOpInfo.ConstraintVT.isInteger()) || 7780 (MatchRC.second != InputRC.second)) { 7781 // FIXME: error out in a more elegant fashion 7782 report_fatal_error("Unsupported asm: input constraint" 7783 " with a matching output constraint of" 7784 " incompatible type!"); 7785 } 7786 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7787 } 7788 7789 /// Get a direct memory input to behave well as an indirect operand. 7790 /// This may introduce stores, hence the need for a \p Chain. 7791 /// \return The (possibly updated) chain. 7792 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7793 SDISelAsmOperandInfo &OpInfo, 7794 SelectionDAG &DAG) { 7795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7796 7797 // If we don't have an indirect input, put it in the constpool if we can, 7798 // otherwise spill it to a stack slot. 7799 // TODO: This isn't quite right. We need to handle these according to 7800 // the addressing mode that the constraint wants. Also, this may take 7801 // an additional register for the computation and we don't want that 7802 // either. 7803 7804 // If the operand is a float, integer, or vector constant, spill to a 7805 // constant pool entry to get its address. 7806 const Value *OpVal = OpInfo.CallOperandVal; 7807 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7808 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7809 OpInfo.CallOperand = DAG.getConstantPool( 7810 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7811 return Chain; 7812 } 7813 7814 // Otherwise, create a stack slot and emit a store to it before the asm. 7815 Type *Ty = OpVal->getType(); 7816 auto &DL = DAG.getDataLayout(); 7817 uint64_t TySize = DL.getTypeAllocSize(Ty); 7818 unsigned Align = DL.getPrefTypeAlignment(Ty); 7819 MachineFunction &MF = DAG.getMachineFunction(); 7820 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7821 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7822 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7823 MachinePointerInfo::getFixedStack(MF, SSFI), 7824 TLI.getMemValueType(DL, Ty)); 7825 OpInfo.CallOperand = StackSlot; 7826 7827 return Chain; 7828 } 7829 7830 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7831 /// specified operand. We prefer to assign virtual registers, to allow the 7832 /// register allocator to handle the assignment process. However, if the asm 7833 /// uses features that we can't model on machineinstrs, we have SDISel do the 7834 /// allocation. This produces generally horrible, but correct, code. 7835 /// 7836 /// OpInfo describes the operand 7837 /// RefOpInfo describes the matching operand if any, the operand otherwise 7838 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7839 SDISelAsmOperandInfo &OpInfo, 7840 SDISelAsmOperandInfo &RefOpInfo) { 7841 LLVMContext &Context = *DAG.getContext(); 7842 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7843 7844 MachineFunction &MF = DAG.getMachineFunction(); 7845 SmallVector<unsigned, 4> Regs; 7846 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7847 7848 // No work to do for memory operations. 7849 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7850 return; 7851 7852 // If this is a constraint for a single physreg, or a constraint for a 7853 // register class, find it. 7854 unsigned AssignedReg; 7855 const TargetRegisterClass *RC; 7856 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7857 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7858 // RC is unset only on failure. Return immediately. 7859 if (!RC) 7860 return; 7861 7862 // Get the actual register value type. This is important, because the user 7863 // may have asked for (e.g.) the AX register in i32 type. We need to 7864 // remember that AX is actually i16 to get the right extension. 7865 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7866 7867 if (OpInfo.ConstraintVT != MVT::Other) { 7868 // If this is an FP operand in an integer register (or visa versa), or more 7869 // generally if the operand value disagrees with the register class we plan 7870 // to stick it in, fix the operand type. 7871 // 7872 // If this is an input value, the bitcast to the new type is done now. 7873 // Bitcast for output value is done at the end of visitInlineAsm(). 7874 if ((OpInfo.Type == InlineAsm::isOutput || 7875 OpInfo.Type == InlineAsm::isInput) && 7876 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7877 // Try to convert to the first EVT that the reg class contains. If the 7878 // types are identical size, use a bitcast to convert (e.g. two differing 7879 // vector types). Note: output bitcast is done at the end of 7880 // visitInlineAsm(). 7881 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7882 // Exclude indirect inputs while they are unsupported because the code 7883 // to perform the load is missing and thus OpInfo.CallOperand still 7884 // refers to the input address rather than the pointed-to value. 7885 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7886 OpInfo.CallOperand = 7887 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7888 OpInfo.ConstraintVT = RegVT; 7889 // If the operand is an FP value and we want it in integer registers, 7890 // use the corresponding integer type. This turns an f64 value into 7891 // i64, which can be passed with two i32 values on a 32-bit machine. 7892 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7893 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7894 if (OpInfo.Type == InlineAsm::isInput) 7895 OpInfo.CallOperand = 7896 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7897 OpInfo.ConstraintVT = VT; 7898 } 7899 } 7900 } 7901 7902 // No need to allocate a matching input constraint since the constraint it's 7903 // matching to has already been allocated. 7904 if (OpInfo.isMatchingInputConstraint()) 7905 return; 7906 7907 EVT ValueVT = OpInfo.ConstraintVT; 7908 if (OpInfo.ConstraintVT == MVT::Other) 7909 ValueVT = RegVT; 7910 7911 // Initialize NumRegs. 7912 unsigned NumRegs = 1; 7913 if (OpInfo.ConstraintVT != MVT::Other) 7914 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7915 7916 // If this is a constraint for a specific physical register, like {r17}, 7917 // assign it now. 7918 7919 // If this associated to a specific register, initialize iterator to correct 7920 // place. If virtual, make sure we have enough registers 7921 7922 // Initialize iterator if necessary 7923 TargetRegisterClass::iterator I = RC->begin(); 7924 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7925 7926 // Do not check for single registers. 7927 if (AssignedReg) { 7928 for (; *I != AssignedReg; ++I) 7929 assert(I != RC->end() && "AssignedReg should be member of RC"); 7930 } 7931 7932 for (; NumRegs; --NumRegs, ++I) { 7933 assert(I != RC->end() && "Ran out of registers to allocate!"); 7934 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7935 Regs.push_back(R); 7936 } 7937 7938 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7939 } 7940 7941 static unsigned 7942 findMatchingInlineAsmOperand(unsigned OperandNo, 7943 const std::vector<SDValue> &AsmNodeOperands) { 7944 // Scan until we find the definition we already emitted of this operand. 7945 unsigned CurOp = InlineAsm::Op_FirstOperand; 7946 for (; OperandNo; --OperandNo) { 7947 // Advance to the next operand. 7948 unsigned OpFlag = 7949 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7950 assert((InlineAsm::isRegDefKind(OpFlag) || 7951 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7952 InlineAsm::isMemKind(OpFlag)) && 7953 "Skipped past definitions?"); 7954 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7955 } 7956 return CurOp; 7957 } 7958 7959 namespace { 7960 7961 class ExtraFlags { 7962 unsigned Flags = 0; 7963 7964 public: 7965 explicit ExtraFlags(ImmutableCallSite CS) { 7966 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7967 if (IA->hasSideEffects()) 7968 Flags |= InlineAsm::Extra_HasSideEffects; 7969 if (IA->isAlignStack()) 7970 Flags |= InlineAsm::Extra_IsAlignStack; 7971 if (CS.isConvergent()) 7972 Flags |= InlineAsm::Extra_IsConvergent; 7973 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7974 } 7975 7976 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7977 // Ideally, we would only check against memory constraints. However, the 7978 // meaning of an Other constraint can be target-specific and we can't easily 7979 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7980 // for Other constraints as well. 7981 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7982 OpInfo.ConstraintType == TargetLowering::C_Other) { 7983 if (OpInfo.Type == InlineAsm::isInput) 7984 Flags |= InlineAsm::Extra_MayLoad; 7985 else if (OpInfo.Type == InlineAsm::isOutput) 7986 Flags |= InlineAsm::Extra_MayStore; 7987 else if (OpInfo.Type == InlineAsm::isClobber) 7988 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7989 } 7990 } 7991 7992 unsigned get() const { return Flags; } 7993 }; 7994 7995 } // end anonymous namespace 7996 7997 /// visitInlineAsm - Handle a call to an InlineAsm object. 7998 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7999 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8000 8001 /// ConstraintOperands - Information about all of the constraints. 8002 SDISelAsmOperandInfoVector ConstraintOperands; 8003 8004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8005 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8006 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8007 8008 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8009 // AsmDialect, MayLoad, MayStore). 8010 bool HasSideEffect = IA->hasSideEffects(); 8011 ExtraFlags ExtraInfo(CS); 8012 8013 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8014 unsigned ResNo = 0; // ResNo - The result number of the next output. 8015 unsigned NumMatchingOps = 0; 8016 for (auto &T : TargetConstraints) { 8017 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8018 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8019 8020 // Compute the value type for each operand. 8021 if (OpInfo.Type == InlineAsm::isInput || 8022 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8023 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8024 8025 // Process the call argument. BasicBlocks are labels, currently appearing 8026 // only in asm's. 8027 const Instruction *I = CS.getInstruction(); 8028 if (isa<CallBrInst>(I) && 8029 ArgNo - 1 >= (cast<CallBrInst>(I)->getNumArgOperands() - 8030 cast<CallBrInst>(I)->getNumIndirectDests() - 8031 NumMatchingOps) && 8032 (NumMatchingOps == 0 || 8033 ArgNo - 1 < (cast<CallBrInst>(I)->getNumArgOperands() - 8034 NumMatchingOps))) { 8035 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8036 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8037 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8038 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8039 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8040 } else { 8041 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8042 } 8043 8044 OpInfo.ConstraintVT = 8045 OpInfo 8046 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8047 .getSimpleVT(); 8048 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8049 // The return value of the call is this value. As such, there is no 8050 // corresponding argument. 8051 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8052 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8053 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8054 DAG.getDataLayout(), STy->getElementType(ResNo)); 8055 } else { 8056 assert(ResNo == 0 && "Asm only has one result!"); 8057 OpInfo.ConstraintVT = 8058 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8059 } 8060 ++ResNo; 8061 } else { 8062 OpInfo.ConstraintVT = MVT::Other; 8063 } 8064 8065 if (OpInfo.hasMatchingInput()) 8066 ++NumMatchingOps; 8067 8068 if (!HasSideEffect) 8069 HasSideEffect = OpInfo.hasMemory(TLI); 8070 8071 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8072 // FIXME: Could we compute this on OpInfo rather than T? 8073 8074 // Compute the constraint code and ConstraintType to use. 8075 TLI.ComputeConstraintToUse(T, SDValue()); 8076 8077 if (T.ConstraintType == TargetLowering::C_Immediate && 8078 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8079 // We've delayed emitting a diagnostic like the "n" constraint because 8080 // inlining could cause an integer showing up. 8081 return emitInlineAsmError( 8082 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8083 "integer constant expression"); 8084 8085 ExtraInfo.update(T); 8086 } 8087 8088 8089 // We won't need to flush pending loads if this asm doesn't touch 8090 // memory and is nonvolatile. 8091 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8092 8093 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8094 if (IsCallBr) { 8095 // If this is a callbr we need to flush pending exports since inlineasm_br 8096 // is a terminator. We need to do this before nodes are glued to 8097 // the inlineasm_br node. 8098 Chain = getControlRoot(); 8099 } 8100 8101 // Second pass over the constraints: compute which constraint option to use. 8102 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8103 // If this is an output operand with a matching input operand, look up the 8104 // matching input. If their types mismatch, e.g. one is an integer, the 8105 // other is floating point, or their sizes are different, flag it as an 8106 // error. 8107 if (OpInfo.hasMatchingInput()) { 8108 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8109 patchMatchingInput(OpInfo, Input, DAG); 8110 } 8111 8112 // Compute the constraint code and ConstraintType to use. 8113 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8114 8115 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8116 OpInfo.Type == InlineAsm::isClobber) 8117 continue; 8118 8119 // If this is a memory input, and if the operand is not indirect, do what we 8120 // need to provide an address for the memory input. 8121 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8122 !OpInfo.isIndirect) { 8123 assert((OpInfo.isMultipleAlternative || 8124 (OpInfo.Type == InlineAsm::isInput)) && 8125 "Can only indirectify direct input operands!"); 8126 8127 // Memory operands really want the address of the value. 8128 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8129 8130 // There is no longer a Value* corresponding to this operand. 8131 OpInfo.CallOperandVal = nullptr; 8132 8133 // It is now an indirect operand. 8134 OpInfo.isIndirect = true; 8135 } 8136 8137 } 8138 8139 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8140 std::vector<SDValue> AsmNodeOperands; 8141 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8142 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8143 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8144 8145 // If we have a !srcloc metadata node associated with it, we want to attach 8146 // this to the ultimately generated inline asm machineinstr. To do this, we 8147 // pass in the third operand as this (potentially null) inline asm MDNode. 8148 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8149 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8150 8151 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8152 // bits as operand 3. 8153 AsmNodeOperands.push_back(DAG.getTargetConstant( 8154 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8155 8156 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8157 // this, assign virtual and physical registers for inputs and otput. 8158 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8159 // Assign Registers. 8160 SDISelAsmOperandInfo &RefOpInfo = 8161 OpInfo.isMatchingInputConstraint() 8162 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8163 : OpInfo; 8164 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8165 8166 switch (OpInfo.Type) { 8167 case InlineAsm::isOutput: 8168 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8169 unsigned ConstraintID = 8170 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8171 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8172 "Failed to convert memory constraint code to constraint id."); 8173 8174 // Add information to the INLINEASM node to know about this output. 8175 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8176 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8177 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8178 MVT::i32)); 8179 AsmNodeOperands.push_back(OpInfo.CallOperand); 8180 } else { 8181 // Otherwise, this outputs to a register (directly for C_Register / 8182 // C_RegisterClass, and a target-defined fashion for 8183 // C_Immediate/C_Other). Find a register that we can use. 8184 if (OpInfo.AssignedRegs.Regs.empty()) { 8185 emitInlineAsmError( 8186 CS, "couldn't allocate output register for constraint '" + 8187 Twine(OpInfo.ConstraintCode) + "'"); 8188 return; 8189 } 8190 8191 // Add information to the INLINEASM node to know that this register is 8192 // set. 8193 OpInfo.AssignedRegs.AddInlineAsmOperands( 8194 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8195 : InlineAsm::Kind_RegDef, 8196 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8197 } 8198 break; 8199 8200 case InlineAsm::isInput: { 8201 SDValue InOperandVal = OpInfo.CallOperand; 8202 8203 if (OpInfo.isMatchingInputConstraint()) { 8204 // If this is required to match an output register we have already set, 8205 // just use its register. 8206 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8207 AsmNodeOperands); 8208 unsigned OpFlag = 8209 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8210 if (InlineAsm::isRegDefKind(OpFlag) || 8211 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8212 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8213 if (OpInfo.isIndirect) { 8214 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8215 emitInlineAsmError(CS, "inline asm not supported yet:" 8216 " don't know how to handle tied " 8217 "indirect register inputs"); 8218 return; 8219 } 8220 8221 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8222 SmallVector<unsigned, 4> Regs; 8223 8224 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8225 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8226 MachineRegisterInfo &RegInfo = 8227 DAG.getMachineFunction().getRegInfo(); 8228 for (unsigned i = 0; i != NumRegs; ++i) 8229 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8230 } else { 8231 emitInlineAsmError(CS, "inline asm error: This value type register " 8232 "class is not natively supported!"); 8233 return; 8234 } 8235 8236 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8237 8238 SDLoc dl = getCurSDLoc(); 8239 // Use the produced MatchedRegs object to 8240 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8241 CS.getInstruction()); 8242 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8243 true, OpInfo.getMatchedOperand(), dl, 8244 DAG, AsmNodeOperands); 8245 break; 8246 } 8247 8248 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8249 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8250 "Unexpected number of operands"); 8251 // Add information to the INLINEASM node to know about this input. 8252 // See InlineAsm.h isUseOperandTiedToDef. 8253 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8254 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8255 OpInfo.getMatchedOperand()); 8256 AsmNodeOperands.push_back(DAG.getTargetConstant( 8257 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8258 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8259 break; 8260 } 8261 8262 // Treat indirect 'X' constraint as memory. 8263 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8264 OpInfo.isIndirect) 8265 OpInfo.ConstraintType = TargetLowering::C_Memory; 8266 8267 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8268 OpInfo.ConstraintType == TargetLowering::C_Other) { 8269 std::vector<SDValue> Ops; 8270 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8271 Ops, DAG); 8272 if (Ops.empty()) { 8273 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8274 if (isa<ConstantSDNode>(InOperandVal)) { 8275 emitInlineAsmError(CS, "value out of range for constraint '" + 8276 Twine(OpInfo.ConstraintCode) + "'"); 8277 return; 8278 } 8279 8280 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8281 Twine(OpInfo.ConstraintCode) + "'"); 8282 return; 8283 } 8284 8285 // Add information to the INLINEASM node to know about this input. 8286 unsigned ResOpType = 8287 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8288 AsmNodeOperands.push_back(DAG.getTargetConstant( 8289 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8290 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8291 break; 8292 } 8293 8294 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8295 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8296 assert(InOperandVal.getValueType() == 8297 TLI.getPointerTy(DAG.getDataLayout()) && 8298 "Memory operands expect pointer values"); 8299 8300 unsigned ConstraintID = 8301 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8302 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8303 "Failed to convert memory constraint code to constraint id."); 8304 8305 // Add information to the INLINEASM node to know about this input. 8306 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8307 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8308 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8309 getCurSDLoc(), 8310 MVT::i32)); 8311 AsmNodeOperands.push_back(InOperandVal); 8312 break; 8313 } 8314 8315 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8316 OpInfo.ConstraintType == TargetLowering::C_Register) && 8317 "Unknown constraint type!"); 8318 8319 // TODO: Support this. 8320 if (OpInfo.isIndirect) { 8321 emitInlineAsmError( 8322 CS, "Don't know how to handle indirect register inputs yet " 8323 "for constraint '" + 8324 Twine(OpInfo.ConstraintCode) + "'"); 8325 return; 8326 } 8327 8328 // Copy the input into the appropriate registers. 8329 if (OpInfo.AssignedRegs.Regs.empty()) { 8330 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8331 Twine(OpInfo.ConstraintCode) + "'"); 8332 return; 8333 } 8334 8335 SDLoc dl = getCurSDLoc(); 8336 8337 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8338 Chain, &Flag, CS.getInstruction()); 8339 8340 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8341 dl, DAG, AsmNodeOperands); 8342 break; 8343 } 8344 case InlineAsm::isClobber: 8345 // Add the clobbered value to the operand list, so that the register 8346 // allocator is aware that the physreg got clobbered. 8347 if (!OpInfo.AssignedRegs.Regs.empty()) 8348 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8349 false, 0, getCurSDLoc(), DAG, 8350 AsmNodeOperands); 8351 break; 8352 } 8353 } 8354 8355 // Finish up input operands. Set the input chain and add the flag last. 8356 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8357 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8358 8359 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8360 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8361 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8362 Flag = Chain.getValue(1); 8363 8364 // Do additional work to generate outputs. 8365 8366 SmallVector<EVT, 1> ResultVTs; 8367 SmallVector<SDValue, 1> ResultValues; 8368 SmallVector<SDValue, 8> OutChains; 8369 8370 llvm::Type *CSResultType = CS.getType(); 8371 ArrayRef<Type *> ResultTypes; 8372 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8373 ResultTypes = StructResult->elements(); 8374 else if (!CSResultType->isVoidTy()) 8375 ResultTypes = makeArrayRef(CSResultType); 8376 8377 auto CurResultType = ResultTypes.begin(); 8378 auto handleRegAssign = [&](SDValue V) { 8379 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8380 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8381 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8382 ++CurResultType; 8383 // If the type of the inline asm call site return value is different but has 8384 // same size as the type of the asm output bitcast it. One example of this 8385 // is for vectors with different width / number of elements. This can 8386 // happen for register classes that can contain multiple different value 8387 // types. The preg or vreg allocated may not have the same VT as was 8388 // expected. 8389 // 8390 // This can also happen for a return value that disagrees with the register 8391 // class it is put in, eg. a double in a general-purpose register on a 8392 // 32-bit machine. 8393 if (ResultVT != V.getValueType() && 8394 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8395 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8396 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8397 V.getValueType().isInteger()) { 8398 // If a result value was tied to an input value, the computed result 8399 // may have a wider width than the expected result. Extract the 8400 // relevant portion. 8401 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8402 } 8403 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8404 ResultVTs.push_back(ResultVT); 8405 ResultValues.push_back(V); 8406 }; 8407 8408 // Deal with output operands. 8409 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8410 if (OpInfo.Type == InlineAsm::isOutput) { 8411 SDValue Val; 8412 // Skip trivial output operands. 8413 if (OpInfo.AssignedRegs.Regs.empty()) 8414 continue; 8415 8416 switch (OpInfo.ConstraintType) { 8417 case TargetLowering::C_Register: 8418 case TargetLowering::C_RegisterClass: 8419 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8420 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8421 break; 8422 case TargetLowering::C_Immediate: 8423 case TargetLowering::C_Other: 8424 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8425 OpInfo, DAG); 8426 break; 8427 case TargetLowering::C_Memory: 8428 break; // Already handled. 8429 case TargetLowering::C_Unknown: 8430 assert(false && "Unexpected unknown constraint"); 8431 } 8432 8433 // Indirect output manifest as stores. Record output chains. 8434 if (OpInfo.isIndirect) { 8435 const Value *Ptr = OpInfo.CallOperandVal; 8436 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8437 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8438 MachinePointerInfo(Ptr)); 8439 OutChains.push_back(Store); 8440 } else { 8441 // generate CopyFromRegs to associated registers. 8442 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8443 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8444 for (const SDValue &V : Val->op_values()) 8445 handleRegAssign(V); 8446 } else 8447 handleRegAssign(Val); 8448 } 8449 } 8450 } 8451 8452 // Set results. 8453 if (!ResultValues.empty()) { 8454 assert(CurResultType == ResultTypes.end() && 8455 "Mismatch in number of ResultTypes"); 8456 assert(ResultValues.size() == ResultTypes.size() && 8457 "Mismatch in number of output operands in asm result"); 8458 8459 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8460 DAG.getVTList(ResultVTs), ResultValues); 8461 setValue(CS.getInstruction(), V); 8462 } 8463 8464 // Collect store chains. 8465 if (!OutChains.empty()) 8466 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8467 8468 // Only Update Root if inline assembly has a memory effect. 8469 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8470 DAG.setRoot(Chain); 8471 } 8472 8473 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8474 const Twine &Message) { 8475 LLVMContext &Ctx = *DAG.getContext(); 8476 Ctx.emitError(CS.getInstruction(), Message); 8477 8478 // Make sure we leave the DAG in a valid state 8479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8480 SmallVector<EVT, 1> ValueVTs; 8481 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8482 8483 if (ValueVTs.empty()) 8484 return; 8485 8486 SmallVector<SDValue, 1> Ops; 8487 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8488 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8489 8490 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8491 } 8492 8493 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8494 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8495 MVT::Other, getRoot(), 8496 getValue(I.getArgOperand(0)), 8497 DAG.getSrcValue(I.getArgOperand(0)))); 8498 } 8499 8500 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8502 const DataLayout &DL = DAG.getDataLayout(); 8503 SDValue V = DAG.getVAArg( 8504 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8505 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8506 DL.getABITypeAlignment(I.getType())); 8507 DAG.setRoot(V.getValue(1)); 8508 8509 if (I.getType()->isPointerTy()) 8510 V = DAG.getPtrExtOrTrunc( 8511 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8512 setValue(&I, V); 8513 } 8514 8515 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8516 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8517 MVT::Other, getRoot(), 8518 getValue(I.getArgOperand(0)), 8519 DAG.getSrcValue(I.getArgOperand(0)))); 8520 } 8521 8522 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8523 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8524 MVT::Other, getRoot(), 8525 getValue(I.getArgOperand(0)), 8526 getValue(I.getArgOperand(1)), 8527 DAG.getSrcValue(I.getArgOperand(0)), 8528 DAG.getSrcValue(I.getArgOperand(1)))); 8529 } 8530 8531 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8532 const Instruction &I, 8533 SDValue Op) { 8534 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8535 if (!Range) 8536 return Op; 8537 8538 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8539 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8540 return Op; 8541 8542 APInt Lo = CR.getUnsignedMin(); 8543 if (!Lo.isMinValue()) 8544 return Op; 8545 8546 APInt Hi = CR.getUnsignedMax(); 8547 unsigned Bits = std::max(Hi.getActiveBits(), 8548 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8549 8550 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8551 8552 SDLoc SL = getCurSDLoc(); 8553 8554 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8555 DAG.getValueType(SmallVT)); 8556 unsigned NumVals = Op.getNode()->getNumValues(); 8557 if (NumVals == 1) 8558 return ZExt; 8559 8560 SmallVector<SDValue, 4> Ops; 8561 8562 Ops.push_back(ZExt); 8563 for (unsigned I = 1; I != NumVals; ++I) 8564 Ops.push_back(Op.getValue(I)); 8565 8566 return DAG.getMergeValues(Ops, SL); 8567 } 8568 8569 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8570 /// the call being lowered. 8571 /// 8572 /// This is a helper for lowering intrinsics that follow a target calling 8573 /// convention or require stack pointer adjustment. Only a subset of the 8574 /// intrinsic's operands need to participate in the calling convention. 8575 void SelectionDAGBuilder::populateCallLoweringInfo( 8576 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8577 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8578 bool IsPatchPoint) { 8579 TargetLowering::ArgListTy Args; 8580 Args.reserve(NumArgs); 8581 8582 // Populate the argument list. 8583 // Attributes for args start at offset 1, after the return attribute. 8584 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8585 ArgI != ArgE; ++ArgI) { 8586 const Value *V = Call->getOperand(ArgI); 8587 8588 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8589 8590 TargetLowering::ArgListEntry Entry; 8591 Entry.Node = getValue(V); 8592 Entry.Ty = V->getType(); 8593 Entry.setAttributes(Call, ArgI); 8594 Args.push_back(Entry); 8595 } 8596 8597 CLI.setDebugLoc(getCurSDLoc()) 8598 .setChain(getRoot()) 8599 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8600 .setDiscardResult(Call->use_empty()) 8601 .setIsPatchPoint(IsPatchPoint); 8602 } 8603 8604 /// Add a stack map intrinsic call's live variable operands to a stackmap 8605 /// or patchpoint target node's operand list. 8606 /// 8607 /// Constants are converted to TargetConstants purely as an optimization to 8608 /// avoid constant materialization and register allocation. 8609 /// 8610 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8611 /// generate addess computation nodes, and so FinalizeISel can convert the 8612 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8613 /// address materialization and register allocation, but may also be required 8614 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8615 /// alloca in the entry block, then the runtime may assume that the alloca's 8616 /// StackMap location can be read immediately after compilation and that the 8617 /// location is valid at any point during execution (this is similar to the 8618 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8619 /// only available in a register, then the runtime would need to trap when 8620 /// execution reaches the StackMap in order to read the alloca's location. 8621 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8622 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8623 SelectionDAGBuilder &Builder) { 8624 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8625 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8626 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8627 Ops.push_back( 8628 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8629 Ops.push_back( 8630 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8631 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8632 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8633 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8634 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8635 } else 8636 Ops.push_back(OpVal); 8637 } 8638 } 8639 8640 /// Lower llvm.experimental.stackmap directly to its target opcode. 8641 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8642 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8643 // [live variables...]) 8644 8645 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8646 8647 SDValue Chain, InFlag, Callee, NullPtr; 8648 SmallVector<SDValue, 32> Ops; 8649 8650 SDLoc DL = getCurSDLoc(); 8651 Callee = getValue(CI.getCalledValue()); 8652 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8653 8654 // The stackmap intrinsic only records the live variables (the arguments 8655 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8656 // intrinsic, this won't be lowered to a function call. This means we don't 8657 // have to worry about calling conventions and target specific lowering code. 8658 // Instead we perform the call lowering right here. 8659 // 8660 // chain, flag = CALLSEQ_START(chain, 0, 0) 8661 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8662 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8663 // 8664 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8665 InFlag = Chain.getValue(1); 8666 8667 // Add the <id> and <numBytes> constants. 8668 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8669 Ops.push_back(DAG.getTargetConstant( 8670 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8671 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8672 Ops.push_back(DAG.getTargetConstant( 8673 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8674 MVT::i32)); 8675 8676 // Push live variables for the stack map. 8677 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8678 8679 // We are not pushing any register mask info here on the operands list, 8680 // because the stackmap doesn't clobber anything. 8681 8682 // Push the chain and the glue flag. 8683 Ops.push_back(Chain); 8684 Ops.push_back(InFlag); 8685 8686 // Create the STACKMAP node. 8687 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8688 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8689 Chain = SDValue(SM, 0); 8690 InFlag = Chain.getValue(1); 8691 8692 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8693 8694 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8695 8696 // Set the root to the target-lowered call chain. 8697 DAG.setRoot(Chain); 8698 8699 // Inform the Frame Information that we have a stackmap in this function. 8700 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8701 } 8702 8703 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8704 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8705 const BasicBlock *EHPadBB) { 8706 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8707 // i32 <numBytes>, 8708 // i8* <target>, 8709 // i32 <numArgs>, 8710 // [Args...], 8711 // [live variables...]) 8712 8713 CallingConv::ID CC = CS.getCallingConv(); 8714 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8715 bool HasDef = !CS->getType()->isVoidTy(); 8716 SDLoc dl = getCurSDLoc(); 8717 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8718 8719 // Handle immediate and symbolic callees. 8720 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8721 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8722 /*isTarget=*/true); 8723 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8724 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8725 SDLoc(SymbolicCallee), 8726 SymbolicCallee->getValueType(0)); 8727 8728 // Get the real number of arguments participating in the call <numArgs> 8729 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8730 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8731 8732 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8733 // Intrinsics include all meta-operands up to but not including CC. 8734 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8735 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8736 "Not enough arguments provided to the patchpoint intrinsic"); 8737 8738 // For AnyRegCC the arguments are lowered later on manually. 8739 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8740 Type *ReturnTy = 8741 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8742 8743 TargetLowering::CallLoweringInfo CLI(DAG); 8744 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8745 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8746 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8747 8748 SDNode *CallEnd = Result.second.getNode(); 8749 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8750 CallEnd = CallEnd->getOperand(0).getNode(); 8751 8752 /// Get a call instruction from the call sequence chain. 8753 /// Tail calls are not allowed. 8754 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8755 "Expected a callseq node."); 8756 SDNode *Call = CallEnd->getOperand(0).getNode(); 8757 bool HasGlue = Call->getGluedNode(); 8758 8759 // Replace the target specific call node with the patchable intrinsic. 8760 SmallVector<SDValue, 8> Ops; 8761 8762 // Add the <id> and <numBytes> constants. 8763 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8764 Ops.push_back(DAG.getTargetConstant( 8765 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8766 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8767 Ops.push_back(DAG.getTargetConstant( 8768 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8769 MVT::i32)); 8770 8771 // Add the callee. 8772 Ops.push_back(Callee); 8773 8774 // Adjust <numArgs> to account for any arguments that have been passed on the 8775 // stack instead. 8776 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8777 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8778 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8779 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8780 8781 // Add the calling convention 8782 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8783 8784 // Add the arguments we omitted previously. The register allocator should 8785 // place these in any free register. 8786 if (IsAnyRegCC) 8787 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8788 Ops.push_back(getValue(CS.getArgument(i))); 8789 8790 // Push the arguments from the call instruction up to the register mask. 8791 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8792 Ops.append(Call->op_begin() + 2, e); 8793 8794 // Push live variables for the stack map. 8795 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8796 8797 // Push the register mask info. 8798 if (HasGlue) 8799 Ops.push_back(*(Call->op_end()-2)); 8800 else 8801 Ops.push_back(*(Call->op_end()-1)); 8802 8803 // Push the chain (this is originally the first operand of the call, but 8804 // becomes now the last or second to last operand). 8805 Ops.push_back(*(Call->op_begin())); 8806 8807 // Push the glue flag (last operand). 8808 if (HasGlue) 8809 Ops.push_back(*(Call->op_end()-1)); 8810 8811 SDVTList NodeTys; 8812 if (IsAnyRegCC && HasDef) { 8813 // Create the return types based on the intrinsic definition 8814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8815 SmallVector<EVT, 3> ValueVTs; 8816 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8817 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8818 8819 // There is always a chain and a glue type at the end 8820 ValueVTs.push_back(MVT::Other); 8821 ValueVTs.push_back(MVT::Glue); 8822 NodeTys = DAG.getVTList(ValueVTs); 8823 } else 8824 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8825 8826 // Replace the target specific call node with a PATCHPOINT node. 8827 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8828 dl, NodeTys, Ops); 8829 8830 // Update the NodeMap. 8831 if (HasDef) { 8832 if (IsAnyRegCC) 8833 setValue(CS.getInstruction(), SDValue(MN, 0)); 8834 else 8835 setValue(CS.getInstruction(), Result.first); 8836 } 8837 8838 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8839 // call sequence. Furthermore the location of the chain and glue can change 8840 // when the AnyReg calling convention is used and the intrinsic returns a 8841 // value. 8842 if (IsAnyRegCC && HasDef) { 8843 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8844 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8845 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8846 } else 8847 DAG.ReplaceAllUsesWith(Call, MN); 8848 DAG.DeleteNode(Call); 8849 8850 // Inform the Frame Information that we have a patchpoint in this function. 8851 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8852 } 8853 8854 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8855 unsigned Intrinsic) { 8856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8857 SDValue Op1 = getValue(I.getArgOperand(0)); 8858 SDValue Op2; 8859 if (I.getNumArgOperands() > 1) 8860 Op2 = getValue(I.getArgOperand(1)); 8861 SDLoc dl = getCurSDLoc(); 8862 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8863 SDValue Res; 8864 FastMathFlags FMF; 8865 if (isa<FPMathOperator>(I)) 8866 FMF = I.getFastMathFlags(); 8867 8868 switch (Intrinsic) { 8869 case Intrinsic::experimental_vector_reduce_v2_fadd: 8870 if (FMF.allowReassoc()) 8871 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8872 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8873 else 8874 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8875 break; 8876 case Intrinsic::experimental_vector_reduce_v2_fmul: 8877 if (FMF.allowReassoc()) 8878 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8879 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8880 else 8881 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8882 break; 8883 case Intrinsic::experimental_vector_reduce_add: 8884 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8885 break; 8886 case Intrinsic::experimental_vector_reduce_mul: 8887 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8888 break; 8889 case Intrinsic::experimental_vector_reduce_and: 8890 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8891 break; 8892 case Intrinsic::experimental_vector_reduce_or: 8893 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8894 break; 8895 case Intrinsic::experimental_vector_reduce_xor: 8896 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8897 break; 8898 case Intrinsic::experimental_vector_reduce_smax: 8899 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8900 break; 8901 case Intrinsic::experimental_vector_reduce_smin: 8902 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8903 break; 8904 case Intrinsic::experimental_vector_reduce_umax: 8905 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8906 break; 8907 case Intrinsic::experimental_vector_reduce_umin: 8908 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8909 break; 8910 case Intrinsic::experimental_vector_reduce_fmax: 8911 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8912 break; 8913 case Intrinsic::experimental_vector_reduce_fmin: 8914 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8915 break; 8916 default: 8917 llvm_unreachable("Unhandled vector reduce intrinsic"); 8918 } 8919 setValue(&I, Res); 8920 } 8921 8922 /// Returns an AttributeList representing the attributes applied to the return 8923 /// value of the given call. 8924 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8925 SmallVector<Attribute::AttrKind, 2> Attrs; 8926 if (CLI.RetSExt) 8927 Attrs.push_back(Attribute::SExt); 8928 if (CLI.RetZExt) 8929 Attrs.push_back(Attribute::ZExt); 8930 if (CLI.IsInReg) 8931 Attrs.push_back(Attribute::InReg); 8932 8933 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8934 Attrs); 8935 } 8936 8937 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8938 /// implementation, which just calls LowerCall. 8939 /// FIXME: When all targets are 8940 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8941 std::pair<SDValue, SDValue> 8942 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8943 // Handle the incoming return values from the call. 8944 CLI.Ins.clear(); 8945 Type *OrigRetTy = CLI.RetTy; 8946 SmallVector<EVT, 4> RetTys; 8947 SmallVector<uint64_t, 4> Offsets; 8948 auto &DL = CLI.DAG.getDataLayout(); 8949 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8950 8951 if (CLI.IsPostTypeLegalization) { 8952 // If we are lowering a libcall after legalization, split the return type. 8953 SmallVector<EVT, 4> OldRetTys; 8954 SmallVector<uint64_t, 4> OldOffsets; 8955 RetTys.swap(OldRetTys); 8956 Offsets.swap(OldOffsets); 8957 8958 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8959 EVT RetVT = OldRetTys[i]; 8960 uint64_t Offset = OldOffsets[i]; 8961 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8962 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8963 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8964 RetTys.append(NumRegs, RegisterVT); 8965 for (unsigned j = 0; j != NumRegs; ++j) 8966 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8967 } 8968 } 8969 8970 SmallVector<ISD::OutputArg, 4> Outs; 8971 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8972 8973 bool CanLowerReturn = 8974 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8975 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8976 8977 SDValue DemoteStackSlot; 8978 int DemoteStackIdx = -100; 8979 if (!CanLowerReturn) { 8980 // FIXME: equivalent assert? 8981 // assert(!CS.hasInAllocaArgument() && 8982 // "sret demotion is incompatible with inalloca"); 8983 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8984 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8985 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8986 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8987 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8988 DL.getAllocaAddrSpace()); 8989 8990 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8991 ArgListEntry Entry; 8992 Entry.Node = DemoteStackSlot; 8993 Entry.Ty = StackSlotPtrType; 8994 Entry.IsSExt = false; 8995 Entry.IsZExt = false; 8996 Entry.IsInReg = false; 8997 Entry.IsSRet = true; 8998 Entry.IsNest = false; 8999 Entry.IsByVal = false; 9000 Entry.IsReturned = false; 9001 Entry.IsSwiftSelf = false; 9002 Entry.IsSwiftError = false; 9003 Entry.IsCFGuardTarget = false; 9004 Entry.Alignment = Align; 9005 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9006 CLI.NumFixedArgs += 1; 9007 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9008 9009 // sret demotion isn't compatible with tail-calls, since the sret argument 9010 // points into the callers stack frame. 9011 CLI.IsTailCall = false; 9012 } else { 9013 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9014 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9015 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9016 ISD::ArgFlagsTy Flags; 9017 if (NeedsRegBlock) { 9018 Flags.setInConsecutiveRegs(); 9019 if (I == RetTys.size() - 1) 9020 Flags.setInConsecutiveRegsLast(); 9021 } 9022 EVT VT = RetTys[I]; 9023 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9024 CLI.CallConv, VT); 9025 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9026 CLI.CallConv, VT); 9027 for (unsigned i = 0; i != NumRegs; ++i) { 9028 ISD::InputArg MyFlags; 9029 MyFlags.Flags = Flags; 9030 MyFlags.VT = RegisterVT; 9031 MyFlags.ArgVT = VT; 9032 MyFlags.Used = CLI.IsReturnValueUsed; 9033 if (CLI.RetTy->isPointerTy()) { 9034 MyFlags.Flags.setPointer(); 9035 MyFlags.Flags.setPointerAddrSpace( 9036 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9037 } 9038 if (CLI.RetSExt) 9039 MyFlags.Flags.setSExt(); 9040 if (CLI.RetZExt) 9041 MyFlags.Flags.setZExt(); 9042 if (CLI.IsInReg) 9043 MyFlags.Flags.setInReg(); 9044 CLI.Ins.push_back(MyFlags); 9045 } 9046 } 9047 } 9048 9049 // We push in swifterror return as the last element of CLI.Ins. 9050 ArgListTy &Args = CLI.getArgs(); 9051 if (supportSwiftError()) { 9052 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9053 if (Args[i].IsSwiftError) { 9054 ISD::InputArg MyFlags; 9055 MyFlags.VT = getPointerTy(DL); 9056 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9057 MyFlags.Flags.setSwiftError(); 9058 CLI.Ins.push_back(MyFlags); 9059 } 9060 } 9061 } 9062 9063 // Handle all of the outgoing arguments. 9064 CLI.Outs.clear(); 9065 CLI.OutVals.clear(); 9066 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9067 SmallVector<EVT, 4> ValueVTs; 9068 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9069 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9070 Type *FinalType = Args[i].Ty; 9071 if (Args[i].IsByVal) 9072 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9073 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9074 FinalType, CLI.CallConv, CLI.IsVarArg); 9075 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9076 ++Value) { 9077 EVT VT = ValueVTs[Value]; 9078 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9079 SDValue Op = SDValue(Args[i].Node.getNode(), 9080 Args[i].Node.getResNo() + Value); 9081 ISD::ArgFlagsTy Flags; 9082 9083 // Certain targets (such as MIPS), may have a different ABI alignment 9084 // for a type depending on the context. Give the target a chance to 9085 // specify the alignment it wants. 9086 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9087 9088 if (Args[i].Ty->isPointerTy()) { 9089 Flags.setPointer(); 9090 Flags.setPointerAddrSpace( 9091 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9092 } 9093 if (Args[i].IsZExt) 9094 Flags.setZExt(); 9095 if (Args[i].IsSExt) 9096 Flags.setSExt(); 9097 if (Args[i].IsInReg) { 9098 // If we are using vectorcall calling convention, a structure that is 9099 // passed InReg - is surely an HVA 9100 if (CLI.CallConv == CallingConv::X86_VectorCall && 9101 isa<StructType>(FinalType)) { 9102 // The first value of a structure is marked 9103 if (0 == Value) 9104 Flags.setHvaStart(); 9105 Flags.setHva(); 9106 } 9107 // Set InReg Flag 9108 Flags.setInReg(); 9109 } 9110 if (Args[i].IsSRet) 9111 Flags.setSRet(); 9112 if (Args[i].IsSwiftSelf) 9113 Flags.setSwiftSelf(); 9114 if (Args[i].IsSwiftError) 9115 Flags.setSwiftError(); 9116 if (Args[i].IsCFGuardTarget) 9117 Flags.setCFGuardTarget(); 9118 if (Args[i].IsByVal) 9119 Flags.setByVal(); 9120 if (Args[i].IsInAlloca) { 9121 Flags.setInAlloca(); 9122 // Set the byval flag for CCAssignFn callbacks that don't know about 9123 // inalloca. This way we can know how many bytes we should've allocated 9124 // and how many bytes a callee cleanup function will pop. If we port 9125 // inalloca to more targets, we'll have to add custom inalloca handling 9126 // in the various CC lowering callbacks. 9127 Flags.setByVal(); 9128 } 9129 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9130 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9131 Type *ElementTy = Ty->getElementType(); 9132 9133 unsigned FrameSize = DL.getTypeAllocSize( 9134 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9135 Flags.setByValSize(FrameSize); 9136 9137 // info is not there but there are cases it cannot get right. 9138 unsigned FrameAlign; 9139 if (Args[i].Alignment) 9140 FrameAlign = Args[i].Alignment; 9141 else 9142 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9143 Flags.setByValAlign(Align(FrameAlign)); 9144 } 9145 if (Args[i].IsNest) 9146 Flags.setNest(); 9147 if (NeedsRegBlock) 9148 Flags.setInConsecutiveRegs(); 9149 Flags.setOrigAlign(OriginalAlignment); 9150 9151 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9152 CLI.CallConv, VT); 9153 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9154 CLI.CallConv, VT); 9155 SmallVector<SDValue, 4> Parts(NumParts); 9156 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9157 9158 if (Args[i].IsSExt) 9159 ExtendKind = ISD::SIGN_EXTEND; 9160 else if (Args[i].IsZExt) 9161 ExtendKind = ISD::ZERO_EXTEND; 9162 9163 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9164 // for now. 9165 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9166 CanLowerReturn) { 9167 assert((CLI.RetTy == Args[i].Ty || 9168 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9169 CLI.RetTy->getPointerAddressSpace() == 9170 Args[i].Ty->getPointerAddressSpace())) && 9171 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9172 // Before passing 'returned' to the target lowering code, ensure that 9173 // either the register MVT and the actual EVT are the same size or that 9174 // the return value and argument are extended in the same way; in these 9175 // cases it's safe to pass the argument register value unchanged as the 9176 // return register value (although it's at the target's option whether 9177 // to do so) 9178 // TODO: allow code generation to take advantage of partially preserved 9179 // registers rather than clobbering the entire register when the 9180 // parameter extension method is not compatible with the return 9181 // extension method 9182 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9183 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9184 CLI.RetZExt == Args[i].IsZExt)) 9185 Flags.setReturned(); 9186 } 9187 9188 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9189 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9190 9191 for (unsigned j = 0; j != NumParts; ++j) { 9192 // if it isn't first piece, alignment must be 1 9193 // For scalable vectors the scalable part is currently handled 9194 // by individual targets, so we just use the known minimum size here. 9195 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9196 i < CLI.NumFixedArgs, i, 9197 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9198 if (NumParts > 1 && j == 0) 9199 MyFlags.Flags.setSplit(); 9200 else if (j != 0) { 9201 MyFlags.Flags.setOrigAlign(Align(1)); 9202 if (j == NumParts - 1) 9203 MyFlags.Flags.setSplitEnd(); 9204 } 9205 9206 CLI.Outs.push_back(MyFlags); 9207 CLI.OutVals.push_back(Parts[j]); 9208 } 9209 9210 if (NeedsRegBlock && Value == NumValues - 1) 9211 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9212 } 9213 } 9214 9215 SmallVector<SDValue, 4> InVals; 9216 CLI.Chain = LowerCall(CLI, InVals); 9217 9218 // Update CLI.InVals to use outside of this function. 9219 CLI.InVals = InVals; 9220 9221 // Verify that the target's LowerCall behaved as expected. 9222 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9223 "LowerCall didn't return a valid chain!"); 9224 assert((!CLI.IsTailCall || InVals.empty()) && 9225 "LowerCall emitted a return value for a tail call!"); 9226 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9227 "LowerCall didn't emit the correct number of values!"); 9228 9229 // For a tail call, the return value is merely live-out and there aren't 9230 // any nodes in the DAG representing it. Return a special value to 9231 // indicate that a tail call has been emitted and no more Instructions 9232 // should be processed in the current block. 9233 if (CLI.IsTailCall) { 9234 CLI.DAG.setRoot(CLI.Chain); 9235 return std::make_pair(SDValue(), SDValue()); 9236 } 9237 9238 #ifndef NDEBUG 9239 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9240 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9241 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9242 "LowerCall emitted a value with the wrong type!"); 9243 } 9244 #endif 9245 9246 SmallVector<SDValue, 4> ReturnValues; 9247 if (!CanLowerReturn) { 9248 // The instruction result is the result of loading from the 9249 // hidden sret parameter. 9250 SmallVector<EVT, 1> PVTs; 9251 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9252 9253 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9254 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9255 EVT PtrVT = PVTs[0]; 9256 9257 unsigned NumValues = RetTys.size(); 9258 ReturnValues.resize(NumValues); 9259 SmallVector<SDValue, 4> Chains(NumValues); 9260 9261 // An aggregate return value cannot wrap around the address space, so 9262 // offsets to its parts don't wrap either. 9263 SDNodeFlags Flags; 9264 Flags.setNoUnsignedWrap(true); 9265 9266 for (unsigned i = 0; i < NumValues; ++i) { 9267 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9268 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9269 PtrVT), Flags); 9270 SDValue L = CLI.DAG.getLoad( 9271 RetTys[i], CLI.DL, CLI.Chain, Add, 9272 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9273 DemoteStackIdx, Offsets[i]), 9274 /* Alignment = */ 1); 9275 ReturnValues[i] = L; 9276 Chains[i] = L.getValue(1); 9277 } 9278 9279 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9280 } else { 9281 // Collect the legal value parts into potentially illegal values 9282 // that correspond to the original function's return values. 9283 Optional<ISD::NodeType> AssertOp; 9284 if (CLI.RetSExt) 9285 AssertOp = ISD::AssertSext; 9286 else if (CLI.RetZExt) 9287 AssertOp = ISD::AssertZext; 9288 unsigned CurReg = 0; 9289 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9290 EVT VT = RetTys[I]; 9291 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9292 CLI.CallConv, VT); 9293 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9294 CLI.CallConv, VT); 9295 9296 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9297 NumRegs, RegisterVT, VT, nullptr, 9298 CLI.CallConv, AssertOp)); 9299 CurReg += NumRegs; 9300 } 9301 9302 // For a function returning void, there is no return value. We can't create 9303 // such a node, so we just return a null return value in that case. In 9304 // that case, nothing will actually look at the value. 9305 if (ReturnValues.empty()) 9306 return std::make_pair(SDValue(), CLI.Chain); 9307 } 9308 9309 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9310 CLI.DAG.getVTList(RetTys), ReturnValues); 9311 return std::make_pair(Res, CLI.Chain); 9312 } 9313 9314 void TargetLowering::LowerOperationWrapper(SDNode *N, 9315 SmallVectorImpl<SDValue> &Results, 9316 SelectionDAG &DAG) const { 9317 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9318 Results.push_back(Res); 9319 } 9320 9321 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9322 llvm_unreachable("LowerOperation not implemented for this target!"); 9323 } 9324 9325 void 9326 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9327 SDValue Op = getNonRegisterValue(V); 9328 assert((Op.getOpcode() != ISD::CopyFromReg || 9329 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9330 "Copy from a reg to the same reg!"); 9331 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9332 9333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9334 // If this is an InlineAsm we have to match the registers required, not the 9335 // notional registers required by the type. 9336 9337 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9338 None); // This is not an ABI copy. 9339 SDValue Chain = DAG.getEntryNode(); 9340 9341 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9342 FuncInfo.PreferredExtendType.end()) 9343 ? ISD::ANY_EXTEND 9344 : FuncInfo.PreferredExtendType[V]; 9345 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9346 PendingExports.push_back(Chain); 9347 } 9348 9349 #include "llvm/CodeGen/SelectionDAGISel.h" 9350 9351 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9352 /// entry block, return true. This includes arguments used by switches, since 9353 /// the switch may expand into multiple basic blocks. 9354 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9355 // With FastISel active, we may be splitting blocks, so force creation 9356 // of virtual registers for all non-dead arguments. 9357 if (FastISel) 9358 return A->use_empty(); 9359 9360 const BasicBlock &Entry = A->getParent()->front(); 9361 for (const User *U : A->users()) 9362 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9363 return false; // Use not in entry block. 9364 9365 return true; 9366 } 9367 9368 using ArgCopyElisionMapTy = 9369 DenseMap<const Argument *, 9370 std::pair<const AllocaInst *, const StoreInst *>>; 9371 9372 /// Scan the entry block of the function in FuncInfo for arguments that look 9373 /// like copies into a local alloca. Record any copied arguments in 9374 /// ArgCopyElisionCandidates. 9375 static void 9376 findArgumentCopyElisionCandidates(const DataLayout &DL, 9377 FunctionLoweringInfo *FuncInfo, 9378 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9379 // Record the state of every static alloca used in the entry block. Argument 9380 // allocas are all used in the entry block, so we need approximately as many 9381 // entries as we have arguments. 9382 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9383 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9384 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9385 StaticAllocas.reserve(NumArgs * 2); 9386 9387 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9388 if (!V) 9389 return nullptr; 9390 V = V->stripPointerCasts(); 9391 const auto *AI = dyn_cast<AllocaInst>(V); 9392 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9393 return nullptr; 9394 auto Iter = StaticAllocas.insert({AI, Unknown}); 9395 return &Iter.first->second; 9396 }; 9397 9398 // Look for stores of arguments to static allocas. Look through bitcasts and 9399 // GEPs to handle type coercions, as long as the alloca is fully initialized 9400 // by the store. Any non-store use of an alloca escapes it and any subsequent 9401 // unanalyzed store might write it. 9402 // FIXME: Handle structs initialized with multiple stores. 9403 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9404 // Look for stores, and handle non-store uses conservatively. 9405 const auto *SI = dyn_cast<StoreInst>(&I); 9406 if (!SI) { 9407 // We will look through cast uses, so ignore them completely. 9408 if (I.isCast()) 9409 continue; 9410 // Ignore debug info intrinsics, they don't escape or store to allocas. 9411 if (isa<DbgInfoIntrinsic>(I)) 9412 continue; 9413 // This is an unknown instruction. Assume it escapes or writes to all 9414 // static alloca operands. 9415 for (const Use &U : I.operands()) { 9416 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9417 *Info = StaticAllocaInfo::Clobbered; 9418 } 9419 continue; 9420 } 9421 9422 // If the stored value is a static alloca, mark it as escaped. 9423 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9424 *Info = StaticAllocaInfo::Clobbered; 9425 9426 // Check if the destination is a static alloca. 9427 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9428 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9429 if (!Info) 9430 continue; 9431 const AllocaInst *AI = cast<AllocaInst>(Dst); 9432 9433 // Skip allocas that have been initialized or clobbered. 9434 if (*Info != StaticAllocaInfo::Unknown) 9435 continue; 9436 9437 // Check if the stored value is an argument, and that this store fully 9438 // initializes the alloca. Don't elide copies from the same argument twice. 9439 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9440 const auto *Arg = dyn_cast<Argument>(Val); 9441 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9442 Arg->getType()->isEmptyTy() || 9443 DL.getTypeStoreSize(Arg->getType()) != 9444 DL.getTypeAllocSize(AI->getAllocatedType()) || 9445 ArgCopyElisionCandidates.count(Arg)) { 9446 *Info = StaticAllocaInfo::Clobbered; 9447 continue; 9448 } 9449 9450 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9451 << '\n'); 9452 9453 // Mark this alloca and store for argument copy elision. 9454 *Info = StaticAllocaInfo::Elidable; 9455 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9456 9457 // Stop scanning if we've seen all arguments. This will happen early in -O0 9458 // builds, which is useful, because -O0 builds have large entry blocks and 9459 // many allocas. 9460 if (ArgCopyElisionCandidates.size() == NumArgs) 9461 break; 9462 } 9463 } 9464 9465 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9466 /// ArgVal is a load from a suitable fixed stack object. 9467 static void tryToElideArgumentCopy( 9468 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9469 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9470 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9471 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9472 SDValue ArgVal, bool &ArgHasUses) { 9473 // Check if this is a load from a fixed stack object. 9474 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9475 if (!LNode) 9476 return; 9477 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9478 if (!FINode) 9479 return; 9480 9481 // Check that the fixed stack object is the right size and alignment. 9482 // Look at the alignment that the user wrote on the alloca instead of looking 9483 // at the stack object. 9484 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9485 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9486 const AllocaInst *AI = ArgCopyIter->second.first; 9487 int FixedIndex = FINode->getIndex(); 9488 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9489 int OldIndex = AllocaIndex; 9490 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9491 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9492 LLVM_DEBUG( 9493 dbgs() << " argument copy elision failed due to bad fixed stack " 9494 "object size\n"); 9495 return; 9496 } 9497 unsigned RequiredAlignment = AI->getAlignment(); 9498 if (!RequiredAlignment) { 9499 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9500 AI->getAllocatedType()); 9501 } 9502 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9503 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9504 "greater than stack argument alignment (" 9505 << RequiredAlignment << " vs " 9506 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9507 return; 9508 } 9509 9510 // Perform the elision. Delete the old stack object and replace its only use 9511 // in the variable info map. Mark the stack object as mutable. 9512 LLVM_DEBUG({ 9513 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9514 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9515 << '\n'; 9516 }); 9517 MFI.RemoveStackObject(OldIndex); 9518 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9519 AllocaIndex = FixedIndex; 9520 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9521 Chains.push_back(ArgVal.getValue(1)); 9522 9523 // Avoid emitting code for the store implementing the copy. 9524 const StoreInst *SI = ArgCopyIter->second.second; 9525 ElidedArgCopyInstrs.insert(SI); 9526 9527 // Check for uses of the argument again so that we can avoid exporting ArgVal 9528 // if it is't used by anything other than the store. 9529 for (const Value *U : Arg.users()) { 9530 if (U != SI) { 9531 ArgHasUses = true; 9532 break; 9533 } 9534 } 9535 } 9536 9537 void SelectionDAGISel::LowerArguments(const Function &F) { 9538 SelectionDAG &DAG = SDB->DAG; 9539 SDLoc dl = SDB->getCurSDLoc(); 9540 const DataLayout &DL = DAG.getDataLayout(); 9541 SmallVector<ISD::InputArg, 16> Ins; 9542 9543 if (!FuncInfo->CanLowerReturn) { 9544 // Put in an sret pointer parameter before all the other parameters. 9545 SmallVector<EVT, 1> ValueVTs; 9546 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9547 F.getReturnType()->getPointerTo( 9548 DAG.getDataLayout().getAllocaAddrSpace()), 9549 ValueVTs); 9550 9551 // NOTE: Assuming that a pointer will never break down to more than one VT 9552 // or one register. 9553 ISD::ArgFlagsTy Flags; 9554 Flags.setSRet(); 9555 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9556 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9557 ISD::InputArg::NoArgIndex, 0); 9558 Ins.push_back(RetArg); 9559 } 9560 9561 // Look for stores of arguments to static allocas. Mark such arguments with a 9562 // flag to ask the target to give us the memory location of that argument if 9563 // available. 9564 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9565 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9566 ArgCopyElisionCandidates); 9567 9568 // Set up the incoming argument description vector. 9569 for (const Argument &Arg : F.args()) { 9570 unsigned ArgNo = Arg.getArgNo(); 9571 SmallVector<EVT, 4> ValueVTs; 9572 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9573 bool isArgValueUsed = !Arg.use_empty(); 9574 unsigned PartBase = 0; 9575 Type *FinalType = Arg.getType(); 9576 if (Arg.hasAttribute(Attribute::ByVal)) 9577 FinalType = Arg.getParamByValType(); 9578 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9579 FinalType, F.getCallingConv(), F.isVarArg()); 9580 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9581 Value != NumValues; ++Value) { 9582 EVT VT = ValueVTs[Value]; 9583 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9584 ISD::ArgFlagsTy Flags; 9585 9586 // Certain targets (such as MIPS), may have a different ABI alignment 9587 // for a type depending on the context. Give the target a chance to 9588 // specify the alignment it wants. 9589 const Align OriginalAlignment( 9590 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9591 9592 if (Arg.getType()->isPointerTy()) { 9593 Flags.setPointer(); 9594 Flags.setPointerAddrSpace( 9595 cast<PointerType>(Arg.getType())->getAddressSpace()); 9596 } 9597 if (Arg.hasAttribute(Attribute::ZExt)) 9598 Flags.setZExt(); 9599 if (Arg.hasAttribute(Attribute::SExt)) 9600 Flags.setSExt(); 9601 if (Arg.hasAttribute(Attribute::InReg)) { 9602 // If we are using vectorcall calling convention, a structure that is 9603 // passed InReg - is surely an HVA 9604 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9605 isa<StructType>(Arg.getType())) { 9606 // The first value of a structure is marked 9607 if (0 == Value) 9608 Flags.setHvaStart(); 9609 Flags.setHva(); 9610 } 9611 // Set InReg Flag 9612 Flags.setInReg(); 9613 } 9614 if (Arg.hasAttribute(Attribute::StructRet)) 9615 Flags.setSRet(); 9616 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9617 Flags.setSwiftSelf(); 9618 if (Arg.hasAttribute(Attribute::SwiftError)) 9619 Flags.setSwiftError(); 9620 if (Arg.hasAttribute(Attribute::ByVal)) 9621 Flags.setByVal(); 9622 if (Arg.hasAttribute(Attribute::InAlloca)) { 9623 Flags.setInAlloca(); 9624 // Set the byval flag for CCAssignFn callbacks that don't know about 9625 // inalloca. This way we can know how many bytes we should've allocated 9626 // and how many bytes a callee cleanup function will pop. If we port 9627 // inalloca to more targets, we'll have to add custom inalloca handling 9628 // in the various CC lowering callbacks. 9629 Flags.setByVal(); 9630 } 9631 if (F.getCallingConv() == CallingConv::X86_INTR) { 9632 // IA Interrupt passes frame (1st parameter) by value in the stack. 9633 if (ArgNo == 0) 9634 Flags.setByVal(); 9635 } 9636 if (Flags.isByVal() || Flags.isInAlloca()) { 9637 Type *ElementTy = Arg.getParamByValType(); 9638 9639 // For ByVal, size and alignment should be passed from FE. BE will 9640 // guess if this info is not there but there are cases it cannot get 9641 // right. 9642 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9643 Flags.setByValSize(FrameSize); 9644 9645 unsigned FrameAlign; 9646 if (Arg.getParamAlignment()) 9647 FrameAlign = Arg.getParamAlignment(); 9648 else 9649 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9650 Flags.setByValAlign(Align(FrameAlign)); 9651 } 9652 if (Arg.hasAttribute(Attribute::Nest)) 9653 Flags.setNest(); 9654 if (NeedsRegBlock) 9655 Flags.setInConsecutiveRegs(); 9656 Flags.setOrigAlign(OriginalAlignment); 9657 if (ArgCopyElisionCandidates.count(&Arg)) 9658 Flags.setCopyElisionCandidate(); 9659 if (Arg.hasAttribute(Attribute::Returned)) 9660 Flags.setReturned(); 9661 9662 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9663 *CurDAG->getContext(), F.getCallingConv(), VT); 9664 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9665 *CurDAG->getContext(), F.getCallingConv(), VT); 9666 for (unsigned i = 0; i != NumRegs; ++i) { 9667 // For scalable vectors, use the minimum size; individual targets 9668 // are responsible for handling scalable vector arguments and 9669 // return values. 9670 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9671 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9672 if (NumRegs > 1 && i == 0) 9673 MyFlags.Flags.setSplit(); 9674 // if it isn't first piece, alignment must be 1 9675 else if (i > 0) { 9676 MyFlags.Flags.setOrigAlign(Align(1)); 9677 if (i == NumRegs - 1) 9678 MyFlags.Flags.setSplitEnd(); 9679 } 9680 Ins.push_back(MyFlags); 9681 } 9682 if (NeedsRegBlock && Value == NumValues - 1) 9683 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9684 PartBase += VT.getStoreSize().getKnownMinSize(); 9685 } 9686 } 9687 9688 // Call the target to set up the argument values. 9689 SmallVector<SDValue, 8> InVals; 9690 SDValue NewRoot = TLI->LowerFormalArguments( 9691 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9692 9693 // Verify that the target's LowerFormalArguments behaved as expected. 9694 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9695 "LowerFormalArguments didn't return a valid chain!"); 9696 assert(InVals.size() == Ins.size() && 9697 "LowerFormalArguments didn't emit the correct number of values!"); 9698 LLVM_DEBUG({ 9699 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9700 assert(InVals[i].getNode() && 9701 "LowerFormalArguments emitted a null value!"); 9702 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9703 "LowerFormalArguments emitted a value with the wrong type!"); 9704 } 9705 }); 9706 9707 // Update the DAG with the new chain value resulting from argument lowering. 9708 DAG.setRoot(NewRoot); 9709 9710 // Set up the argument values. 9711 unsigned i = 0; 9712 if (!FuncInfo->CanLowerReturn) { 9713 // Create a virtual register for the sret pointer, and put in a copy 9714 // from the sret argument into it. 9715 SmallVector<EVT, 1> ValueVTs; 9716 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9717 F.getReturnType()->getPointerTo( 9718 DAG.getDataLayout().getAllocaAddrSpace()), 9719 ValueVTs); 9720 MVT VT = ValueVTs[0].getSimpleVT(); 9721 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9722 Optional<ISD::NodeType> AssertOp = None; 9723 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9724 nullptr, F.getCallingConv(), AssertOp); 9725 9726 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9727 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9728 Register SRetReg = 9729 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9730 FuncInfo->DemoteRegister = SRetReg; 9731 NewRoot = 9732 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9733 DAG.setRoot(NewRoot); 9734 9735 // i indexes lowered arguments. Bump it past the hidden sret argument. 9736 ++i; 9737 } 9738 9739 SmallVector<SDValue, 4> Chains; 9740 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9741 for (const Argument &Arg : F.args()) { 9742 SmallVector<SDValue, 4> ArgValues; 9743 SmallVector<EVT, 4> ValueVTs; 9744 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9745 unsigned NumValues = ValueVTs.size(); 9746 if (NumValues == 0) 9747 continue; 9748 9749 bool ArgHasUses = !Arg.use_empty(); 9750 9751 // Elide the copying store if the target loaded this argument from a 9752 // suitable fixed stack object. 9753 if (Ins[i].Flags.isCopyElisionCandidate()) { 9754 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9755 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9756 InVals[i], ArgHasUses); 9757 } 9758 9759 // If this argument is unused then remember its value. It is used to generate 9760 // debugging information. 9761 bool isSwiftErrorArg = 9762 TLI->supportSwiftError() && 9763 Arg.hasAttribute(Attribute::SwiftError); 9764 if (!ArgHasUses && !isSwiftErrorArg) { 9765 SDB->setUnusedArgValue(&Arg, InVals[i]); 9766 9767 // Also remember any frame index for use in FastISel. 9768 if (FrameIndexSDNode *FI = 9769 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9770 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9771 } 9772 9773 for (unsigned Val = 0; Val != NumValues; ++Val) { 9774 EVT VT = ValueVTs[Val]; 9775 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9776 F.getCallingConv(), VT); 9777 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9778 *CurDAG->getContext(), F.getCallingConv(), VT); 9779 9780 // Even an apparent 'unused' swifterror argument needs to be returned. So 9781 // we do generate a copy for it that can be used on return from the 9782 // function. 9783 if (ArgHasUses || isSwiftErrorArg) { 9784 Optional<ISD::NodeType> AssertOp; 9785 if (Arg.hasAttribute(Attribute::SExt)) 9786 AssertOp = ISD::AssertSext; 9787 else if (Arg.hasAttribute(Attribute::ZExt)) 9788 AssertOp = ISD::AssertZext; 9789 9790 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9791 PartVT, VT, nullptr, 9792 F.getCallingConv(), AssertOp)); 9793 } 9794 9795 i += NumParts; 9796 } 9797 9798 // We don't need to do anything else for unused arguments. 9799 if (ArgValues.empty()) 9800 continue; 9801 9802 // Note down frame index. 9803 if (FrameIndexSDNode *FI = 9804 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9805 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9806 9807 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9808 SDB->getCurSDLoc()); 9809 9810 SDB->setValue(&Arg, Res); 9811 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9812 // We want to associate the argument with the frame index, among 9813 // involved operands, that correspond to the lowest address. The 9814 // getCopyFromParts function, called earlier, is swapping the order of 9815 // the operands to BUILD_PAIR depending on endianness. The result of 9816 // that swapping is that the least significant bits of the argument will 9817 // be in the first operand of the BUILD_PAIR node, and the most 9818 // significant bits will be in the second operand. 9819 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9820 if (LoadSDNode *LNode = 9821 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9822 if (FrameIndexSDNode *FI = 9823 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9824 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9825 } 9826 9827 // Analyses past this point are naive and don't expect an assertion. 9828 if (Res.getOpcode() == ISD::AssertZext) 9829 Res = Res.getOperand(0); 9830 9831 // Update the SwiftErrorVRegDefMap. 9832 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9833 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9834 if (Register::isVirtualRegister(Reg)) 9835 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9836 Reg); 9837 } 9838 9839 // If this argument is live outside of the entry block, insert a copy from 9840 // wherever we got it to the vreg that other BB's will reference it as. 9841 if (Res.getOpcode() == ISD::CopyFromReg) { 9842 // If we can, though, try to skip creating an unnecessary vreg. 9843 // FIXME: This isn't very clean... it would be nice to make this more 9844 // general. 9845 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9846 if (Register::isVirtualRegister(Reg)) { 9847 FuncInfo->ValueMap[&Arg] = Reg; 9848 continue; 9849 } 9850 } 9851 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9852 FuncInfo->InitializeRegForValue(&Arg); 9853 SDB->CopyToExportRegsIfNeeded(&Arg); 9854 } 9855 } 9856 9857 if (!Chains.empty()) { 9858 Chains.push_back(NewRoot); 9859 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9860 } 9861 9862 DAG.setRoot(NewRoot); 9863 9864 assert(i == InVals.size() && "Argument register count mismatch!"); 9865 9866 // If any argument copy elisions occurred and we have debug info, update the 9867 // stale frame indices used in the dbg.declare variable info table. 9868 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9869 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9870 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9871 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9872 if (I != ArgCopyElisionFrameIndexMap.end()) 9873 VI.Slot = I->second; 9874 } 9875 } 9876 9877 // Finally, if the target has anything special to do, allow it to do so. 9878 emitFunctionEntryCode(); 9879 } 9880 9881 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9882 /// ensure constants are generated when needed. Remember the virtual registers 9883 /// that need to be added to the Machine PHI nodes as input. We cannot just 9884 /// directly add them, because expansion might result in multiple MBB's for one 9885 /// BB. As such, the start of the BB might correspond to a different MBB than 9886 /// the end. 9887 void 9888 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9889 const Instruction *TI = LLVMBB->getTerminator(); 9890 9891 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9892 9893 // Check PHI nodes in successors that expect a value to be available from this 9894 // block. 9895 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9896 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9897 if (!isa<PHINode>(SuccBB->begin())) continue; 9898 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9899 9900 // If this terminator has multiple identical successors (common for 9901 // switches), only handle each succ once. 9902 if (!SuccsHandled.insert(SuccMBB).second) 9903 continue; 9904 9905 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9906 9907 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9908 // nodes and Machine PHI nodes, but the incoming operands have not been 9909 // emitted yet. 9910 for (const PHINode &PN : SuccBB->phis()) { 9911 // Ignore dead phi's. 9912 if (PN.use_empty()) 9913 continue; 9914 9915 // Skip empty types 9916 if (PN.getType()->isEmptyTy()) 9917 continue; 9918 9919 unsigned Reg; 9920 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9921 9922 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9923 unsigned &RegOut = ConstantsOut[C]; 9924 if (RegOut == 0) { 9925 RegOut = FuncInfo.CreateRegs(C); 9926 CopyValueToVirtualRegister(C, RegOut); 9927 } 9928 Reg = RegOut; 9929 } else { 9930 DenseMap<const Value *, unsigned>::iterator I = 9931 FuncInfo.ValueMap.find(PHIOp); 9932 if (I != FuncInfo.ValueMap.end()) 9933 Reg = I->second; 9934 else { 9935 assert(isa<AllocaInst>(PHIOp) && 9936 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9937 "Didn't codegen value into a register!??"); 9938 Reg = FuncInfo.CreateRegs(PHIOp); 9939 CopyValueToVirtualRegister(PHIOp, Reg); 9940 } 9941 } 9942 9943 // Remember that this register needs to added to the machine PHI node as 9944 // the input for this MBB. 9945 SmallVector<EVT, 4> ValueVTs; 9946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9947 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9948 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9949 EVT VT = ValueVTs[vti]; 9950 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9951 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9952 FuncInfo.PHINodesToUpdate.push_back( 9953 std::make_pair(&*MBBI++, Reg + i)); 9954 Reg += NumRegisters; 9955 } 9956 } 9957 } 9958 9959 ConstantsOut.clear(); 9960 } 9961 9962 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9963 /// is 0. 9964 MachineBasicBlock * 9965 SelectionDAGBuilder::StackProtectorDescriptor:: 9966 AddSuccessorMBB(const BasicBlock *BB, 9967 MachineBasicBlock *ParentMBB, 9968 bool IsLikely, 9969 MachineBasicBlock *SuccMBB) { 9970 // If SuccBB has not been created yet, create it. 9971 if (!SuccMBB) { 9972 MachineFunction *MF = ParentMBB->getParent(); 9973 MachineFunction::iterator BBI(ParentMBB); 9974 SuccMBB = MF->CreateMachineBasicBlock(BB); 9975 MF->insert(++BBI, SuccMBB); 9976 } 9977 // Add it as a successor of ParentMBB. 9978 ParentMBB->addSuccessor( 9979 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9980 return SuccMBB; 9981 } 9982 9983 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9984 MachineFunction::iterator I(MBB); 9985 if (++I == FuncInfo.MF->end()) 9986 return nullptr; 9987 return &*I; 9988 } 9989 9990 /// During lowering new call nodes can be created (such as memset, etc.). 9991 /// Those will become new roots of the current DAG, but complications arise 9992 /// when they are tail calls. In such cases, the call lowering will update 9993 /// the root, but the builder still needs to know that a tail call has been 9994 /// lowered in order to avoid generating an additional return. 9995 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9996 // If the node is null, we do have a tail call. 9997 if (MaybeTC.getNode() != nullptr) 9998 DAG.setRoot(MaybeTC); 9999 else 10000 HasTailCall = true; 10001 } 10002 10003 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10004 MachineBasicBlock *SwitchMBB, 10005 MachineBasicBlock *DefaultMBB) { 10006 MachineFunction *CurMF = FuncInfo.MF; 10007 MachineBasicBlock *NextMBB = nullptr; 10008 MachineFunction::iterator BBI(W.MBB); 10009 if (++BBI != FuncInfo.MF->end()) 10010 NextMBB = &*BBI; 10011 10012 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10013 10014 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10015 10016 if (Size == 2 && W.MBB == SwitchMBB) { 10017 // If any two of the cases has the same destination, and if one value 10018 // is the same as the other, but has one bit unset that the other has set, 10019 // use bit manipulation to do two compares at once. For example: 10020 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10021 // TODO: This could be extended to merge any 2 cases in switches with 3 10022 // cases. 10023 // TODO: Handle cases where W.CaseBB != SwitchBB. 10024 CaseCluster &Small = *W.FirstCluster; 10025 CaseCluster &Big = *W.LastCluster; 10026 10027 if (Small.Low == Small.High && Big.Low == Big.High && 10028 Small.MBB == Big.MBB) { 10029 const APInt &SmallValue = Small.Low->getValue(); 10030 const APInt &BigValue = Big.Low->getValue(); 10031 10032 // Check that there is only one bit different. 10033 APInt CommonBit = BigValue ^ SmallValue; 10034 if (CommonBit.isPowerOf2()) { 10035 SDValue CondLHS = getValue(Cond); 10036 EVT VT = CondLHS.getValueType(); 10037 SDLoc DL = getCurSDLoc(); 10038 10039 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10040 DAG.getConstant(CommonBit, DL, VT)); 10041 SDValue Cond = DAG.getSetCC( 10042 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10043 ISD::SETEQ); 10044 10045 // Update successor info. 10046 // Both Small and Big will jump to Small.BB, so we sum up the 10047 // probabilities. 10048 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10049 if (BPI) 10050 addSuccessorWithProb( 10051 SwitchMBB, DefaultMBB, 10052 // The default destination is the first successor in IR. 10053 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10054 else 10055 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10056 10057 // Insert the true branch. 10058 SDValue BrCond = 10059 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10060 DAG.getBasicBlock(Small.MBB)); 10061 // Insert the false branch. 10062 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10063 DAG.getBasicBlock(DefaultMBB)); 10064 10065 DAG.setRoot(BrCond); 10066 return; 10067 } 10068 } 10069 } 10070 10071 if (TM.getOptLevel() != CodeGenOpt::None) { 10072 // Here, we order cases by probability so the most likely case will be 10073 // checked first. However, two clusters can have the same probability in 10074 // which case their relative ordering is non-deterministic. So we use Low 10075 // as a tie-breaker as clusters are guaranteed to never overlap. 10076 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10077 [](const CaseCluster &a, const CaseCluster &b) { 10078 return a.Prob != b.Prob ? 10079 a.Prob > b.Prob : 10080 a.Low->getValue().slt(b.Low->getValue()); 10081 }); 10082 10083 // Rearrange the case blocks so that the last one falls through if possible 10084 // without changing the order of probabilities. 10085 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10086 --I; 10087 if (I->Prob > W.LastCluster->Prob) 10088 break; 10089 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10090 std::swap(*I, *W.LastCluster); 10091 break; 10092 } 10093 } 10094 } 10095 10096 // Compute total probability. 10097 BranchProbability DefaultProb = W.DefaultProb; 10098 BranchProbability UnhandledProbs = DefaultProb; 10099 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10100 UnhandledProbs += I->Prob; 10101 10102 MachineBasicBlock *CurMBB = W.MBB; 10103 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10104 bool FallthroughUnreachable = false; 10105 MachineBasicBlock *Fallthrough; 10106 if (I == W.LastCluster) { 10107 // For the last cluster, fall through to the default destination. 10108 Fallthrough = DefaultMBB; 10109 FallthroughUnreachable = isa<UnreachableInst>( 10110 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10111 } else { 10112 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10113 CurMF->insert(BBI, Fallthrough); 10114 // Put Cond in a virtual register to make it available from the new blocks. 10115 ExportFromCurrentBlock(Cond); 10116 } 10117 UnhandledProbs -= I->Prob; 10118 10119 switch (I->Kind) { 10120 case CC_JumpTable: { 10121 // FIXME: Optimize away range check based on pivot comparisons. 10122 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10123 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10124 10125 // The jump block hasn't been inserted yet; insert it here. 10126 MachineBasicBlock *JumpMBB = JT->MBB; 10127 CurMF->insert(BBI, JumpMBB); 10128 10129 auto JumpProb = I->Prob; 10130 auto FallthroughProb = UnhandledProbs; 10131 10132 // If the default statement is a target of the jump table, we evenly 10133 // distribute the default probability to successors of CurMBB. Also 10134 // update the probability on the edge from JumpMBB to Fallthrough. 10135 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10136 SE = JumpMBB->succ_end(); 10137 SI != SE; ++SI) { 10138 if (*SI == DefaultMBB) { 10139 JumpProb += DefaultProb / 2; 10140 FallthroughProb -= DefaultProb / 2; 10141 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10142 JumpMBB->normalizeSuccProbs(); 10143 break; 10144 } 10145 } 10146 10147 if (FallthroughUnreachable) { 10148 // Skip the range check if the fallthrough block is unreachable. 10149 JTH->OmitRangeCheck = true; 10150 } 10151 10152 if (!JTH->OmitRangeCheck) 10153 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10154 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10155 CurMBB->normalizeSuccProbs(); 10156 10157 // The jump table header will be inserted in our current block, do the 10158 // range check, and fall through to our fallthrough block. 10159 JTH->HeaderBB = CurMBB; 10160 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10161 10162 // If we're in the right place, emit the jump table header right now. 10163 if (CurMBB == SwitchMBB) { 10164 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10165 JTH->Emitted = true; 10166 } 10167 break; 10168 } 10169 case CC_BitTests: { 10170 // FIXME: Optimize away range check based on pivot comparisons. 10171 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10172 10173 // The bit test blocks haven't been inserted yet; insert them here. 10174 for (BitTestCase &BTC : BTB->Cases) 10175 CurMF->insert(BBI, BTC.ThisBB); 10176 10177 // Fill in fields of the BitTestBlock. 10178 BTB->Parent = CurMBB; 10179 BTB->Default = Fallthrough; 10180 10181 BTB->DefaultProb = UnhandledProbs; 10182 // If the cases in bit test don't form a contiguous range, we evenly 10183 // distribute the probability on the edge to Fallthrough to two 10184 // successors of CurMBB. 10185 if (!BTB->ContiguousRange) { 10186 BTB->Prob += DefaultProb / 2; 10187 BTB->DefaultProb -= DefaultProb / 2; 10188 } 10189 10190 if (FallthroughUnreachable) { 10191 // Skip the range check if the fallthrough block is unreachable. 10192 BTB->OmitRangeCheck = true; 10193 } 10194 10195 // If we're in the right place, emit the bit test header right now. 10196 if (CurMBB == SwitchMBB) { 10197 visitBitTestHeader(*BTB, SwitchMBB); 10198 BTB->Emitted = true; 10199 } 10200 break; 10201 } 10202 case CC_Range: { 10203 const Value *RHS, *LHS, *MHS; 10204 ISD::CondCode CC; 10205 if (I->Low == I->High) { 10206 // Check Cond == I->Low. 10207 CC = ISD::SETEQ; 10208 LHS = Cond; 10209 RHS=I->Low; 10210 MHS = nullptr; 10211 } else { 10212 // Check I->Low <= Cond <= I->High. 10213 CC = ISD::SETLE; 10214 LHS = I->Low; 10215 MHS = Cond; 10216 RHS = I->High; 10217 } 10218 10219 // If Fallthrough is unreachable, fold away the comparison. 10220 if (FallthroughUnreachable) 10221 CC = ISD::SETTRUE; 10222 10223 // The false probability is the sum of all unhandled cases. 10224 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10225 getCurSDLoc(), I->Prob, UnhandledProbs); 10226 10227 if (CurMBB == SwitchMBB) 10228 visitSwitchCase(CB, SwitchMBB); 10229 else 10230 SL->SwitchCases.push_back(CB); 10231 10232 break; 10233 } 10234 } 10235 CurMBB = Fallthrough; 10236 } 10237 } 10238 10239 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10240 CaseClusterIt First, 10241 CaseClusterIt Last) { 10242 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10243 if (X.Prob != CC.Prob) 10244 return X.Prob > CC.Prob; 10245 10246 // Ties are broken by comparing the case value. 10247 return X.Low->getValue().slt(CC.Low->getValue()); 10248 }); 10249 } 10250 10251 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10252 const SwitchWorkListItem &W, 10253 Value *Cond, 10254 MachineBasicBlock *SwitchMBB) { 10255 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10256 "Clusters not sorted?"); 10257 10258 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10259 10260 // Balance the tree based on branch probabilities to create a near-optimal (in 10261 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10262 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10263 CaseClusterIt LastLeft = W.FirstCluster; 10264 CaseClusterIt FirstRight = W.LastCluster; 10265 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10266 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10267 10268 // Move LastLeft and FirstRight towards each other from opposite directions to 10269 // find a partitioning of the clusters which balances the probability on both 10270 // sides. If LeftProb and RightProb are equal, alternate which side is 10271 // taken to ensure 0-probability nodes are distributed evenly. 10272 unsigned I = 0; 10273 while (LastLeft + 1 < FirstRight) { 10274 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10275 LeftProb += (++LastLeft)->Prob; 10276 else 10277 RightProb += (--FirstRight)->Prob; 10278 I++; 10279 } 10280 10281 while (true) { 10282 // Our binary search tree differs from a typical BST in that ours can have up 10283 // to three values in each leaf. The pivot selection above doesn't take that 10284 // into account, which means the tree might require more nodes and be less 10285 // efficient. We compensate for this here. 10286 10287 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10288 unsigned NumRight = W.LastCluster - FirstRight + 1; 10289 10290 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10291 // If one side has less than 3 clusters, and the other has more than 3, 10292 // consider taking a cluster from the other side. 10293 10294 if (NumLeft < NumRight) { 10295 // Consider moving the first cluster on the right to the left side. 10296 CaseCluster &CC = *FirstRight; 10297 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10298 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10299 if (LeftSideRank <= RightSideRank) { 10300 // Moving the cluster to the left does not demote it. 10301 ++LastLeft; 10302 ++FirstRight; 10303 continue; 10304 } 10305 } else { 10306 assert(NumRight < NumLeft); 10307 // Consider moving the last element on the left to the right side. 10308 CaseCluster &CC = *LastLeft; 10309 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10310 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10311 if (RightSideRank <= LeftSideRank) { 10312 // Moving the cluster to the right does not demot it. 10313 --LastLeft; 10314 --FirstRight; 10315 continue; 10316 } 10317 } 10318 } 10319 break; 10320 } 10321 10322 assert(LastLeft + 1 == FirstRight); 10323 assert(LastLeft >= W.FirstCluster); 10324 assert(FirstRight <= W.LastCluster); 10325 10326 // Use the first element on the right as pivot since we will make less-than 10327 // comparisons against it. 10328 CaseClusterIt PivotCluster = FirstRight; 10329 assert(PivotCluster > W.FirstCluster); 10330 assert(PivotCluster <= W.LastCluster); 10331 10332 CaseClusterIt FirstLeft = W.FirstCluster; 10333 CaseClusterIt LastRight = W.LastCluster; 10334 10335 const ConstantInt *Pivot = PivotCluster->Low; 10336 10337 // New blocks will be inserted immediately after the current one. 10338 MachineFunction::iterator BBI(W.MBB); 10339 ++BBI; 10340 10341 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10342 // we can branch to its destination directly if it's squeezed exactly in 10343 // between the known lower bound and Pivot - 1. 10344 MachineBasicBlock *LeftMBB; 10345 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10346 FirstLeft->Low == W.GE && 10347 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10348 LeftMBB = FirstLeft->MBB; 10349 } else { 10350 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10351 FuncInfo.MF->insert(BBI, LeftMBB); 10352 WorkList.push_back( 10353 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10354 // Put Cond in a virtual register to make it available from the new blocks. 10355 ExportFromCurrentBlock(Cond); 10356 } 10357 10358 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10359 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10360 // directly if RHS.High equals the current upper bound. 10361 MachineBasicBlock *RightMBB; 10362 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10363 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10364 RightMBB = FirstRight->MBB; 10365 } else { 10366 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10367 FuncInfo.MF->insert(BBI, RightMBB); 10368 WorkList.push_back( 10369 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10370 // Put Cond in a virtual register to make it available from the new blocks. 10371 ExportFromCurrentBlock(Cond); 10372 } 10373 10374 // Create the CaseBlock record that will be used to lower the branch. 10375 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10376 getCurSDLoc(), LeftProb, RightProb); 10377 10378 if (W.MBB == SwitchMBB) 10379 visitSwitchCase(CB, SwitchMBB); 10380 else 10381 SL->SwitchCases.push_back(CB); 10382 } 10383 10384 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10385 // from the swith statement. 10386 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10387 BranchProbability PeeledCaseProb) { 10388 if (PeeledCaseProb == BranchProbability::getOne()) 10389 return BranchProbability::getZero(); 10390 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10391 10392 uint32_t Numerator = CaseProb.getNumerator(); 10393 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10394 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10395 } 10396 10397 // Try to peel the top probability case if it exceeds the threshold. 10398 // Return current MachineBasicBlock for the switch statement if the peeling 10399 // does not occur. 10400 // If the peeling is performed, return the newly created MachineBasicBlock 10401 // for the peeled switch statement. Also update Clusters to remove the peeled 10402 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10403 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10404 const SwitchInst &SI, CaseClusterVector &Clusters, 10405 BranchProbability &PeeledCaseProb) { 10406 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10407 // Don't perform if there is only one cluster or optimizing for size. 10408 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10409 TM.getOptLevel() == CodeGenOpt::None || 10410 SwitchMBB->getParent()->getFunction().hasMinSize()) 10411 return SwitchMBB; 10412 10413 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10414 unsigned PeeledCaseIndex = 0; 10415 bool SwitchPeeled = false; 10416 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10417 CaseCluster &CC = Clusters[Index]; 10418 if (CC.Prob < TopCaseProb) 10419 continue; 10420 TopCaseProb = CC.Prob; 10421 PeeledCaseIndex = Index; 10422 SwitchPeeled = true; 10423 } 10424 if (!SwitchPeeled) 10425 return SwitchMBB; 10426 10427 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10428 << TopCaseProb << "\n"); 10429 10430 // Record the MBB for the peeled switch statement. 10431 MachineFunction::iterator BBI(SwitchMBB); 10432 ++BBI; 10433 MachineBasicBlock *PeeledSwitchMBB = 10434 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10435 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10436 10437 ExportFromCurrentBlock(SI.getCondition()); 10438 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10439 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10440 nullptr, nullptr, TopCaseProb.getCompl()}; 10441 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10442 10443 Clusters.erase(PeeledCaseIt); 10444 for (CaseCluster &CC : Clusters) { 10445 LLVM_DEBUG( 10446 dbgs() << "Scale the probablity for one cluster, before scaling: " 10447 << CC.Prob << "\n"); 10448 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10449 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10450 } 10451 PeeledCaseProb = TopCaseProb; 10452 return PeeledSwitchMBB; 10453 } 10454 10455 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10456 // Extract cases from the switch. 10457 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10458 CaseClusterVector Clusters; 10459 Clusters.reserve(SI.getNumCases()); 10460 for (auto I : SI.cases()) { 10461 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10462 const ConstantInt *CaseVal = I.getCaseValue(); 10463 BranchProbability Prob = 10464 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10465 : BranchProbability(1, SI.getNumCases() + 1); 10466 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10467 } 10468 10469 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10470 10471 // Cluster adjacent cases with the same destination. We do this at all 10472 // optimization levels because it's cheap to do and will make codegen faster 10473 // if there are many clusters. 10474 sortAndRangeify(Clusters); 10475 10476 // The branch probablity of the peeled case. 10477 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10478 MachineBasicBlock *PeeledSwitchMBB = 10479 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10480 10481 // If there is only the default destination, jump there directly. 10482 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10483 if (Clusters.empty()) { 10484 assert(PeeledSwitchMBB == SwitchMBB); 10485 SwitchMBB->addSuccessor(DefaultMBB); 10486 if (DefaultMBB != NextBlock(SwitchMBB)) { 10487 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10488 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10489 } 10490 return; 10491 } 10492 10493 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10494 SL->findBitTestClusters(Clusters, &SI); 10495 10496 LLVM_DEBUG({ 10497 dbgs() << "Case clusters: "; 10498 for (const CaseCluster &C : Clusters) { 10499 if (C.Kind == CC_JumpTable) 10500 dbgs() << "JT:"; 10501 if (C.Kind == CC_BitTests) 10502 dbgs() << "BT:"; 10503 10504 C.Low->getValue().print(dbgs(), true); 10505 if (C.Low != C.High) { 10506 dbgs() << '-'; 10507 C.High->getValue().print(dbgs(), true); 10508 } 10509 dbgs() << ' '; 10510 } 10511 dbgs() << '\n'; 10512 }); 10513 10514 assert(!Clusters.empty()); 10515 SwitchWorkList WorkList; 10516 CaseClusterIt First = Clusters.begin(); 10517 CaseClusterIt Last = Clusters.end() - 1; 10518 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10519 // Scale the branchprobability for DefaultMBB if the peel occurs and 10520 // DefaultMBB is not replaced. 10521 if (PeeledCaseProb != BranchProbability::getZero() && 10522 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10523 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10524 WorkList.push_back( 10525 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10526 10527 while (!WorkList.empty()) { 10528 SwitchWorkListItem W = WorkList.back(); 10529 WorkList.pop_back(); 10530 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10531 10532 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10533 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10534 // For optimized builds, lower large range as a balanced binary tree. 10535 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10536 continue; 10537 } 10538 10539 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10540 } 10541 } 10542 10543 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10544 SDNodeFlags Flags; 10545 10546 SDValue Op = getValue(I.getOperand(0)); 10547 if (I.getOperand(0)->getType()->isAggregateType()) { 10548 EVT VT = Op.getValueType(); 10549 SmallVector<SDValue, 1> Values; 10550 for (unsigned i = 0; i < Op.getNumOperands(); ++i) { 10551 SDValue Arg(Op.getNode(), i); 10552 SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), VT, Arg, Flags); 10553 Values.push_back(UnNodeValue); 10554 } 10555 SDValue MergedValue = DAG.getMergeValues(Values, getCurSDLoc()); 10556 setValue(&I, MergedValue); 10557 } else { 10558 SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), Op.getValueType(), 10559 Op, Flags); 10560 setValue(&I, UnNodeValue); 10561 } 10562 } 10563