1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1169 FuncInfo.MBB->addSuccessor(TargetMBB); 1170 1171 // Create the terminator node. 1172 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1173 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1174 DAG.setRoot(Ret); 1175 } 1176 1177 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1178 llvm_unreachable("should never codegen catchendpads"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 // Don't emit any special code for the cleanuppad instruction. It just marks 1183 // the start of a funclet. 1184 FuncInfo.MBB->setIsEHFuncletEntry(); 1185 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1186 } 1187 1188 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1189 /// many places it could ultimately go. In the IR, we have a single unwind 1190 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1191 /// This function skips over imaginary basic blocks that hold catchpad, 1192 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1193 /// basic block destinations. 1194 static void 1195 findUnwindDestinations(FunctionLoweringInfo &FuncInfo, 1196 const BasicBlock *EHPadBB, 1197 SmallVectorImpl<MachineBasicBlock *> &UnwindDests) { 1198 bool IsMSVCCXX = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()) == 1199 EHPersonality::MSVC_CXX; 1200 while (EHPadBB) { 1201 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1202 if (isa<LandingPadInst>(Pad)) { 1203 // Stop on landingpads. They are not funclets. 1204 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1205 break; 1206 } else if (isa<CleanupPadInst>(Pad) || isa<LandingPadInst>(Pad)) { 1207 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1208 // personalities. 1209 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1210 UnwindDests.back()->setIsEHFuncletEntry(); 1211 break; 1212 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1213 // Add the catchpad handler to the possible destinations. 1214 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 1215 // In MSVC C++, catchblocks are funclets and need prologues. 1216 if (IsMSVCCXX) 1217 UnwindDests.back()->setIsEHFuncletEntry(); 1218 EHPadBB = CPI->getUnwindDest(); 1219 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 1220 EHPadBB = CEPI->getUnwindDest(); 1221 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 1222 EHPadBB = CEPI->getUnwindDest(); 1223 } 1224 } 1225 } 1226 1227 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1228 // Update successor info. 1229 // FIXME: The weights for catchpads will be wrong. 1230 SmallVector<MachineBasicBlock *, 1> UnwindDests; 1231 findUnwindDestinations(FuncInfo, I.getUnwindDest(), UnwindDests); 1232 for (MachineBasicBlock *UnwindDest : UnwindDests) { 1233 UnwindDest->setIsEHPad(); 1234 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest); 1235 } 1236 1237 // Create the terminator node. 1238 SDValue Ret = 1239 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1240 DAG.setRoot(Ret); 1241 } 1242 1243 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1244 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1245 } 1246 1247 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1248 report_fatal_error("visitTerminatePad not yet implemented!"); 1249 } 1250 1251 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1253 auto &DL = DAG.getDataLayout(); 1254 SDValue Chain = getControlRoot(); 1255 SmallVector<ISD::OutputArg, 8> Outs; 1256 SmallVector<SDValue, 8> OutVals; 1257 1258 if (!FuncInfo.CanLowerReturn) { 1259 unsigned DemoteReg = FuncInfo.DemoteRegister; 1260 const Function *F = I.getParent()->getParent(); 1261 1262 // Emit a store of the return value through the virtual register. 1263 // Leave Outs empty so that LowerReturn won't try to load return 1264 // registers the usual way. 1265 SmallVector<EVT, 1> PtrValueVTs; 1266 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1267 PtrValueVTs); 1268 1269 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1270 SDValue RetOp = getValue(I.getOperand(0)); 1271 1272 SmallVector<EVT, 4> ValueVTs; 1273 SmallVector<uint64_t, 4> Offsets; 1274 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1275 unsigned NumValues = ValueVTs.size(); 1276 1277 SmallVector<SDValue, 4> Chains(NumValues); 1278 for (unsigned i = 0; i != NumValues; ++i) { 1279 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1280 RetPtr.getValueType(), RetPtr, 1281 DAG.getIntPtrConstant(Offsets[i], 1282 getCurSDLoc())); 1283 Chains[i] = 1284 DAG.getStore(Chain, getCurSDLoc(), 1285 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1286 // FIXME: better loc info would be nice. 1287 Add, MachinePointerInfo(), false, false, 0); 1288 } 1289 1290 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1291 MVT::Other, Chains); 1292 } else if (I.getNumOperands() != 0) { 1293 SmallVector<EVT, 4> ValueVTs; 1294 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1295 unsigned NumValues = ValueVTs.size(); 1296 if (NumValues) { 1297 SDValue RetOp = getValue(I.getOperand(0)); 1298 1299 const Function *F = I.getParent()->getParent(); 1300 1301 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1302 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1303 Attribute::SExt)) 1304 ExtendKind = ISD::SIGN_EXTEND; 1305 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1306 Attribute::ZExt)) 1307 ExtendKind = ISD::ZERO_EXTEND; 1308 1309 LLVMContext &Context = F->getContext(); 1310 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1311 Attribute::InReg); 1312 1313 for (unsigned j = 0; j != NumValues; ++j) { 1314 EVT VT = ValueVTs[j]; 1315 1316 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1317 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1318 1319 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1320 MVT PartVT = TLI.getRegisterType(Context, VT); 1321 SmallVector<SDValue, 4> Parts(NumParts); 1322 getCopyToParts(DAG, getCurSDLoc(), 1323 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1324 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1325 1326 // 'inreg' on function refers to return value 1327 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1328 if (RetInReg) 1329 Flags.setInReg(); 1330 1331 // Propagate extension type if any 1332 if (ExtendKind == ISD::SIGN_EXTEND) 1333 Flags.setSExt(); 1334 else if (ExtendKind == ISD::ZERO_EXTEND) 1335 Flags.setZExt(); 1336 1337 for (unsigned i = 0; i < NumParts; ++i) { 1338 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1339 VT, /*isfixed=*/true, 0, 0)); 1340 OutVals.push_back(Parts[i]); 1341 } 1342 } 1343 } 1344 } 1345 1346 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1347 CallingConv::ID CallConv = 1348 DAG.getMachineFunction().getFunction()->getCallingConv(); 1349 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1350 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1351 1352 // Verify that the target's LowerReturn behaved as expected. 1353 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1354 "LowerReturn didn't return a valid chain!"); 1355 1356 // Update the DAG with the new chain value resulting from return lowering. 1357 DAG.setRoot(Chain); 1358 } 1359 1360 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1361 /// created for it, emit nodes to copy the value into the virtual 1362 /// registers. 1363 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1364 // Skip empty types 1365 if (V->getType()->isEmptyTy()) 1366 return; 1367 1368 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1369 if (VMI != FuncInfo.ValueMap.end()) { 1370 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1371 CopyValueToVirtualRegister(V, VMI->second); 1372 } 1373 } 1374 1375 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1376 /// the current basic block, add it to ValueMap now so that we'll get a 1377 /// CopyTo/FromReg. 1378 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1379 // No need to export constants. 1380 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1381 1382 // Already exported? 1383 if (FuncInfo.isExportedInst(V)) return; 1384 1385 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1386 CopyValueToVirtualRegister(V, Reg); 1387 } 1388 1389 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1390 const BasicBlock *FromBB) { 1391 // The operands of the setcc have to be in this block. We don't know 1392 // how to export them from some other block. 1393 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1394 // Can export from current BB. 1395 if (VI->getParent() == FromBB) 1396 return true; 1397 1398 // Is already exported, noop. 1399 return FuncInfo.isExportedInst(V); 1400 } 1401 1402 // If this is an argument, we can export it if the BB is the entry block or 1403 // if it is already exported. 1404 if (isa<Argument>(V)) { 1405 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1406 return true; 1407 1408 // Otherwise, can only export this if it is already exported. 1409 return FuncInfo.isExportedInst(V); 1410 } 1411 1412 // Otherwise, constants can always be exported. 1413 return true; 1414 } 1415 1416 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1417 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1418 const MachineBasicBlock *Dst) const { 1419 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1420 if (!BPI) 1421 return 0; 1422 const BasicBlock *SrcBB = Src->getBasicBlock(); 1423 const BasicBlock *DstBB = Dst->getBasicBlock(); 1424 return BPI->getEdgeWeight(SrcBB, DstBB); 1425 } 1426 1427 void SelectionDAGBuilder:: 1428 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1429 uint32_t Weight /* = 0 */) { 1430 if (!Weight) 1431 Weight = getEdgeWeight(Src, Dst); 1432 Src->addSuccessor(Dst, Weight); 1433 } 1434 1435 1436 static bool InBlock(const Value *V, const BasicBlock *BB) { 1437 if (const Instruction *I = dyn_cast<Instruction>(V)) 1438 return I->getParent() == BB; 1439 return true; 1440 } 1441 1442 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1443 /// This function emits a branch and is used at the leaves of an OR or an 1444 /// AND operator tree. 1445 /// 1446 void 1447 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1448 MachineBasicBlock *TBB, 1449 MachineBasicBlock *FBB, 1450 MachineBasicBlock *CurBB, 1451 MachineBasicBlock *SwitchBB, 1452 uint32_t TWeight, 1453 uint32_t FWeight) { 1454 const BasicBlock *BB = CurBB->getBasicBlock(); 1455 1456 // If the leaf of the tree is a comparison, merge the condition into 1457 // the caseblock. 1458 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1459 // The operands of the cmp have to be in this block. We don't know 1460 // how to export them from some other block. If this is the first block 1461 // of the sequence, no exporting is needed. 1462 if (CurBB == SwitchBB || 1463 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1464 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1465 ISD::CondCode Condition; 1466 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1467 Condition = getICmpCondCode(IC->getPredicate()); 1468 } else { 1469 const FCmpInst *FC = cast<FCmpInst>(Cond); 1470 Condition = getFCmpCondCode(FC->getPredicate()); 1471 if (TM.Options.NoNaNsFPMath) 1472 Condition = getFCmpCodeWithoutNaN(Condition); 1473 } 1474 1475 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1476 TBB, FBB, CurBB, TWeight, FWeight); 1477 SwitchCases.push_back(CB); 1478 return; 1479 } 1480 } 1481 1482 // Create a CaseBlock record representing this branch. 1483 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1484 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1485 SwitchCases.push_back(CB); 1486 } 1487 1488 /// Scale down both weights to fit into uint32_t. 1489 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1490 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1491 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1492 NewTrue = NewTrue / Scale; 1493 NewFalse = NewFalse / Scale; 1494 } 1495 1496 /// FindMergedConditions - If Cond is an expression like 1497 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1498 MachineBasicBlock *TBB, 1499 MachineBasicBlock *FBB, 1500 MachineBasicBlock *CurBB, 1501 MachineBasicBlock *SwitchBB, 1502 Instruction::BinaryOps Opc, 1503 uint32_t TWeight, 1504 uint32_t FWeight) { 1505 // If this node is not part of the or/and tree, emit it as a branch. 1506 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1507 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1508 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1509 BOp->getParent() != CurBB->getBasicBlock() || 1510 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1511 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1512 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1513 TWeight, FWeight); 1514 return; 1515 } 1516 1517 // Create TmpBB after CurBB. 1518 MachineFunction::iterator BBI = CurBB; 1519 MachineFunction &MF = DAG.getMachineFunction(); 1520 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1521 CurBB->getParent()->insert(++BBI, TmpBB); 1522 1523 if (Opc == Instruction::Or) { 1524 // Codegen X | Y as: 1525 // BB1: 1526 // jmp_if_X TBB 1527 // jmp TmpBB 1528 // TmpBB: 1529 // jmp_if_Y TBB 1530 // jmp FBB 1531 // 1532 1533 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1534 // The requirement is that 1535 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1536 // = TrueProb for original BB. 1537 // Assuming the original weights are A and B, one choice is to set BB1's 1538 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1539 // assumes that 1540 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1541 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1542 // TmpBB, but the math is more complicated. 1543 1544 uint64_t NewTrueWeight = TWeight; 1545 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1546 ScaleWeights(NewTrueWeight, NewFalseWeight); 1547 // Emit the LHS condition. 1548 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1549 NewTrueWeight, NewFalseWeight); 1550 1551 NewTrueWeight = TWeight; 1552 NewFalseWeight = 2 * (uint64_t)FWeight; 1553 ScaleWeights(NewTrueWeight, NewFalseWeight); 1554 // Emit the RHS condition into TmpBB. 1555 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1556 NewTrueWeight, NewFalseWeight); 1557 } else { 1558 assert(Opc == Instruction::And && "Unknown merge op!"); 1559 // Codegen X & Y as: 1560 // BB1: 1561 // jmp_if_X TmpBB 1562 // jmp FBB 1563 // TmpBB: 1564 // jmp_if_Y TBB 1565 // jmp FBB 1566 // 1567 // This requires creation of TmpBB after CurBB. 1568 1569 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1570 // The requirement is that 1571 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1572 // = FalseProb for original BB. 1573 // Assuming the original weights are A and B, one choice is to set BB1's 1574 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1575 // assumes that 1576 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1577 1578 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1579 uint64_t NewFalseWeight = FWeight; 1580 ScaleWeights(NewTrueWeight, NewFalseWeight); 1581 // Emit the LHS condition. 1582 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1583 NewTrueWeight, NewFalseWeight); 1584 1585 NewTrueWeight = 2 * (uint64_t)TWeight; 1586 NewFalseWeight = FWeight; 1587 ScaleWeights(NewTrueWeight, NewFalseWeight); 1588 // Emit the RHS condition into TmpBB. 1589 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1590 NewTrueWeight, NewFalseWeight); 1591 } 1592 } 1593 1594 /// If the set of cases should be emitted as a series of branches, return true. 1595 /// If we should emit this as a bunch of and/or'd together conditions, return 1596 /// false. 1597 bool 1598 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1599 if (Cases.size() != 2) return true; 1600 1601 // If this is two comparisons of the same values or'd or and'd together, they 1602 // will get folded into a single comparison, so don't emit two blocks. 1603 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1604 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1605 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1606 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1607 return false; 1608 } 1609 1610 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1611 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1612 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1613 Cases[0].CC == Cases[1].CC && 1614 isa<Constant>(Cases[0].CmpRHS) && 1615 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1616 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1617 return false; 1618 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 1625 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1626 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1627 1628 // Update machine-CFG edges. 1629 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1630 1631 if (I.isUnconditional()) { 1632 // Update machine-CFG edges. 1633 BrMBB->addSuccessor(Succ0MBB); 1634 1635 // If this is not a fall-through branch or optimizations are switched off, 1636 // emit the branch. 1637 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1639 MVT::Other, getControlRoot(), 1640 DAG.getBasicBlock(Succ0MBB))); 1641 1642 return; 1643 } 1644 1645 // If this condition is one of the special cases we handle, do special stuff 1646 // now. 1647 const Value *CondVal = I.getCondition(); 1648 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1649 1650 // If this is a series of conditions that are or'd or and'd together, emit 1651 // this as a sequence of branches instead of setcc's with and/or operations. 1652 // As long as jumps are not expensive, this should improve performance. 1653 // For example, instead of something like: 1654 // cmp A, B 1655 // C = seteq 1656 // cmp D, E 1657 // F = setle 1658 // or C, F 1659 // jnz foo 1660 // Emit: 1661 // cmp A, B 1662 // je foo 1663 // cmp D, E 1664 // jle foo 1665 // 1666 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1667 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1668 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1669 !I.getMetadata(LLVMContext::MD_unpredictable) && 1670 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1671 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1672 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1673 getEdgeWeight(BrMBB, Succ1MBB)); 1674 // If the compares in later blocks need to use values not currently 1675 // exported from this block, export them now. This block should always 1676 // be the first entry. 1677 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1678 1679 // Allow some cases to be rejected. 1680 if (ShouldEmitAsBranches(SwitchCases)) { 1681 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1682 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1683 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1684 } 1685 1686 // Emit the branch for this block. 1687 visitSwitchCase(SwitchCases[0], BrMBB); 1688 SwitchCases.erase(SwitchCases.begin()); 1689 return; 1690 } 1691 1692 // Okay, we decided not to do this, remove any inserted MBB's and clear 1693 // SwitchCases. 1694 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1695 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1696 1697 SwitchCases.clear(); 1698 } 1699 } 1700 1701 // Create a CaseBlock record representing this branch. 1702 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1703 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1704 1705 // Use visitSwitchCase to actually insert the fast branch sequence for this 1706 // cond branch. 1707 visitSwitchCase(CB, BrMBB); 1708 } 1709 1710 /// visitSwitchCase - Emits the necessary code to represent a single node in 1711 /// the binary search tree resulting from lowering a switch instruction. 1712 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1713 MachineBasicBlock *SwitchBB) { 1714 SDValue Cond; 1715 SDValue CondLHS = getValue(CB.CmpLHS); 1716 SDLoc dl = getCurSDLoc(); 1717 1718 // Build the setcc now. 1719 if (!CB.CmpMHS) { 1720 // Fold "(X == true)" to X and "(X == false)" to !X to 1721 // handle common cases produced by branch lowering. 1722 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1723 CB.CC == ISD::SETEQ) 1724 Cond = CondLHS; 1725 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1726 CB.CC == ISD::SETEQ) { 1727 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1728 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1729 } else 1730 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1731 } else { 1732 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1733 1734 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1735 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1736 1737 SDValue CmpOp = getValue(CB.CmpMHS); 1738 EVT VT = CmpOp.getValueType(); 1739 1740 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1741 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1742 ISD::SETLE); 1743 } else { 1744 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1745 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1746 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1747 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1748 } 1749 } 1750 1751 // Update successor info 1752 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1753 // TrueBB and FalseBB are always different unless the incoming IR is 1754 // degenerate. This only happens when running llc on weird IR. 1755 if (CB.TrueBB != CB.FalseBB) 1756 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1757 1758 // If the lhs block is the next block, invert the condition so that we can 1759 // fall through to the lhs instead of the rhs block. 1760 if (CB.TrueBB == NextBlock(SwitchBB)) { 1761 std::swap(CB.TrueBB, CB.FalseBB); 1762 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1763 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1764 } 1765 1766 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1767 MVT::Other, getControlRoot(), Cond, 1768 DAG.getBasicBlock(CB.TrueBB)); 1769 1770 // Insert the false branch. Do this even if it's a fall through branch, 1771 // this makes it easier to do DAG optimizations which require inverting 1772 // the branch condition. 1773 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1774 DAG.getBasicBlock(CB.FalseBB)); 1775 1776 DAG.setRoot(BrCond); 1777 } 1778 1779 /// visitJumpTable - Emit JumpTable node in the current MBB 1780 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1781 // Emit the code for the jump table 1782 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1783 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1784 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1785 JT.Reg, PTy); 1786 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1787 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1788 MVT::Other, Index.getValue(1), 1789 Table, Index); 1790 DAG.setRoot(BrJumpTable); 1791 } 1792 1793 /// visitJumpTableHeader - This function emits necessary code to produce index 1794 /// in the JumpTable from switch case. 1795 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1796 JumpTableHeader &JTH, 1797 MachineBasicBlock *SwitchBB) { 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // Subtract the lowest switch case value from the value being switched on and 1801 // conditional branch to default mbb if the result is greater than the 1802 // difference between smallest and largest cases. 1803 SDValue SwitchOp = getValue(JTH.SValue); 1804 EVT VT = SwitchOp.getValueType(); 1805 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1806 DAG.getConstant(JTH.First, dl, VT)); 1807 1808 // The SDNode we just created, which holds the value being switched on minus 1809 // the smallest case value, needs to be copied to a virtual register so it 1810 // can be used as an index into the jump table in a subsequent basic block. 1811 // This value may be smaller or larger than the target's pointer type, and 1812 // therefore require extension or truncating. 1813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1814 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1815 1816 unsigned JumpTableReg = 1817 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1818 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1819 JumpTableReg, SwitchOp); 1820 JT.Reg = JumpTableReg; 1821 1822 // Emit the range check for the jump table, and branch to the default block 1823 // for the switch statement if the value being switched on exceeds the largest 1824 // case in the switch. 1825 SDValue CMP = DAG.getSetCC( 1826 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1827 Sub.getValueType()), 1828 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1829 1830 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1831 MVT::Other, CopyTo, CMP, 1832 DAG.getBasicBlock(JT.Default)); 1833 1834 // Avoid emitting unnecessary branches to the next block. 1835 if (JT.MBB != NextBlock(SwitchBB)) 1836 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1837 DAG.getBasicBlock(JT.MBB)); 1838 1839 DAG.setRoot(BrCond); 1840 } 1841 1842 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1843 /// tail spliced into a stack protector check success bb. 1844 /// 1845 /// For a high level explanation of how this fits into the stack protector 1846 /// generation see the comment on the declaration of class 1847 /// StackProtectorDescriptor. 1848 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1849 MachineBasicBlock *ParentBB) { 1850 1851 // First create the loads to the guard/stack slot for the comparison. 1852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1853 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1854 1855 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1856 int FI = MFI->getStackProtectorIndex(); 1857 1858 const Value *IRGuard = SPD.getGuard(); 1859 SDValue GuardPtr = getValue(IRGuard); 1860 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1861 1862 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1863 1864 SDValue Guard; 1865 SDLoc dl = getCurSDLoc(); 1866 1867 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1868 // guard value from the virtual register holding the value. Otherwise, emit a 1869 // volatile load to retrieve the stack guard value. 1870 unsigned GuardReg = SPD.getGuardReg(); 1871 1872 if (GuardReg && TLI.useLoadStackGuardNode()) 1873 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1874 PtrTy); 1875 else 1876 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1877 GuardPtr, MachinePointerInfo(IRGuard, 0), 1878 true, false, false, Align); 1879 1880 SDValue StackSlot = DAG.getLoad( 1881 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1882 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1883 false, false, Align); 1884 1885 // Perform the comparison via a subtract/getsetcc. 1886 EVT VT = Guard.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1888 1889 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1890 *DAG.getContext(), 1891 Sub.getValueType()), 1892 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1893 1894 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1895 // branch to failure MBB. 1896 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1897 MVT::Other, StackSlot.getOperand(0), 1898 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1899 // Otherwise branch to success MBB. 1900 SDValue Br = DAG.getNode(ISD::BR, dl, 1901 MVT::Other, BrCond, 1902 DAG.getBasicBlock(SPD.getSuccessMBB())); 1903 1904 DAG.setRoot(Br); 1905 } 1906 1907 /// Codegen the failure basic block for a stack protector check. 1908 /// 1909 /// A failure stack protector machine basic block consists simply of a call to 1910 /// __stack_chk_fail(). 1911 /// 1912 /// For a high level explanation of how this fits into the stack protector 1913 /// generation see the comment on the declaration of class 1914 /// StackProtectorDescriptor. 1915 void 1916 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1918 SDValue Chain = 1919 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1920 nullptr, 0, false, getCurSDLoc(), false, false).second; 1921 DAG.setRoot(Chain); 1922 } 1923 1924 /// visitBitTestHeader - This function emits necessary code to produce value 1925 /// suitable for "bit tests" 1926 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1927 MachineBasicBlock *SwitchBB) { 1928 SDLoc dl = getCurSDLoc(); 1929 1930 // Subtract the minimum value 1931 SDValue SwitchOp = getValue(B.SValue); 1932 EVT VT = SwitchOp.getValueType(); 1933 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1934 DAG.getConstant(B.First, dl, VT)); 1935 1936 // Check range 1937 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1938 SDValue RangeCmp = DAG.getSetCC( 1939 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1940 Sub.getValueType()), 1941 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1942 1943 // Determine the type of the test operands. 1944 bool UsePtrType = false; 1945 if (!TLI.isTypeLegal(VT)) 1946 UsePtrType = true; 1947 else { 1948 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1949 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1950 // Switch table case range are encoded into series of masks. 1951 // Just use pointer type, it's guaranteed to fit. 1952 UsePtrType = true; 1953 break; 1954 } 1955 } 1956 if (UsePtrType) { 1957 VT = TLI.getPointerTy(DAG.getDataLayout()); 1958 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1959 } 1960 1961 B.RegVT = VT.getSimpleVT(); 1962 B.Reg = FuncInfo.CreateReg(B.RegVT); 1963 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1964 1965 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1966 1967 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1968 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1969 1970 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1971 MVT::Other, CopyTo, RangeCmp, 1972 DAG.getBasicBlock(B.Default)); 1973 1974 // Avoid emitting unnecessary branches to the next block. 1975 if (MBB != NextBlock(SwitchBB)) 1976 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1977 DAG.getBasicBlock(MBB)); 1978 1979 DAG.setRoot(BrRange); 1980 } 1981 1982 /// visitBitTestCase - this function produces one "bit test" 1983 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1984 MachineBasicBlock* NextMBB, 1985 uint32_t BranchWeightToNext, 1986 unsigned Reg, 1987 BitTestCase &B, 1988 MachineBasicBlock *SwitchBB) { 1989 SDLoc dl = getCurSDLoc(); 1990 MVT VT = BB.RegVT; 1991 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1992 SDValue Cmp; 1993 unsigned PopCount = countPopulation(B.Mask); 1994 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1995 if (PopCount == 1) { 1996 // Testing for a single bit; just compare the shift count with what it 1997 // would need to be to shift a 1 bit in that position. 1998 Cmp = DAG.getSetCC( 1999 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2000 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2001 ISD::SETEQ); 2002 } else if (PopCount == BB.Range) { 2003 // There is only one zero bit in the range, test for it directly. 2004 Cmp = DAG.getSetCC( 2005 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2006 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2007 ISD::SETNE); 2008 } else { 2009 // Make desired shift 2010 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2011 DAG.getConstant(1, dl, VT), ShiftOp); 2012 2013 // Emit bit tests and jumps 2014 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2015 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2016 Cmp = DAG.getSetCC( 2017 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2018 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2019 } 2020 2021 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2022 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2023 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2024 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2025 2026 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2027 MVT::Other, getControlRoot(), 2028 Cmp, DAG.getBasicBlock(B.TargetBB)); 2029 2030 // Avoid emitting unnecessary branches to the next block. 2031 if (NextMBB != NextBlock(SwitchBB)) 2032 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2033 DAG.getBasicBlock(NextMBB)); 2034 2035 DAG.setRoot(BrAnd); 2036 } 2037 2038 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2039 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2040 2041 // Retrieve successors. Look through artificial IR level blocks like catchpads 2042 // and catchendpads for successors. 2043 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2044 const BasicBlock *EHPadBB = I.getSuccessor(1); 2045 2046 const Value *Callee(I.getCalledValue()); 2047 const Function *Fn = dyn_cast<Function>(Callee); 2048 if (isa<InlineAsm>(Callee)) 2049 visitInlineAsm(&I); 2050 else if (Fn && Fn->isIntrinsic()) { 2051 switch (Fn->getIntrinsicID()) { 2052 default: 2053 llvm_unreachable("Cannot invoke this intrinsic"); 2054 case Intrinsic::donothing: 2055 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2056 break; 2057 case Intrinsic::experimental_patchpoint_void: 2058 case Intrinsic::experimental_patchpoint_i64: 2059 visitPatchpoint(&I, EHPadBB); 2060 break; 2061 case Intrinsic::experimental_gc_statepoint: 2062 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2063 break; 2064 } 2065 } else 2066 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2067 2068 // If the value of the invoke is used outside of its defining block, make it 2069 // available as a virtual register. 2070 // We already took care of the exported value for the statepoint instruction 2071 // during call to the LowerStatepoint. 2072 if (!isStatepoint(I)) { 2073 CopyToExportRegsIfNeeded(&I); 2074 } 2075 2076 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2077 findUnwindDestinations(FuncInfo, EHPadBB, UnwindDests); 2078 2079 // Update successor info. 2080 // FIXME: The weights for catchpads will be wrong. 2081 addSuccessorWithWeight(InvokeMBB, Return); 2082 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2083 UnwindDest->setIsEHPad(); 2084 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2085 } 2086 2087 // Drop into normal successor. 2088 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2089 MVT::Other, getControlRoot(), 2090 DAG.getBasicBlock(Return))); 2091 } 2092 2093 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2094 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2095 } 2096 2097 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2098 assert(FuncInfo.MBB->isEHPad() && 2099 "Call to landingpad not in landing pad!"); 2100 2101 MachineBasicBlock *MBB = FuncInfo.MBB; 2102 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2103 AddLandingPadInfo(LP, MMI, MBB); 2104 2105 // If there aren't registers to copy the values into (e.g., during SjLj 2106 // exceptions), then don't bother to create these DAG nodes. 2107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2108 if (TLI.getExceptionPointerRegister() == 0 && 2109 TLI.getExceptionSelectorRegister() == 0) 2110 return; 2111 2112 SmallVector<EVT, 2> ValueVTs; 2113 SDLoc dl = getCurSDLoc(); 2114 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2115 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2116 2117 // Get the two live-in registers as SDValues. The physregs have already been 2118 // copied into virtual registers. 2119 SDValue Ops[2]; 2120 if (FuncInfo.ExceptionPointerVirtReg) { 2121 Ops[0] = DAG.getZExtOrTrunc( 2122 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2123 FuncInfo.ExceptionPointerVirtReg, 2124 TLI.getPointerTy(DAG.getDataLayout())), 2125 dl, ValueVTs[0]); 2126 } else { 2127 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2128 } 2129 Ops[1] = DAG.getZExtOrTrunc( 2130 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2131 FuncInfo.ExceptionSelectorVirtReg, 2132 TLI.getPointerTy(DAG.getDataLayout())), 2133 dl, ValueVTs[1]); 2134 2135 // Merge into one. 2136 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2137 DAG.getVTList(ValueVTs), Ops); 2138 setValue(&LP, Res); 2139 } 2140 2141 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2142 #ifndef NDEBUG 2143 for (const CaseCluster &CC : Clusters) 2144 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2145 #endif 2146 2147 std::sort(Clusters.begin(), Clusters.end(), 2148 [](const CaseCluster &a, const CaseCluster &b) { 2149 return a.Low->getValue().slt(b.Low->getValue()); 2150 }); 2151 2152 // Merge adjacent clusters with the same destination. 2153 const unsigned N = Clusters.size(); 2154 unsigned DstIndex = 0; 2155 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2156 CaseCluster &CC = Clusters[SrcIndex]; 2157 const ConstantInt *CaseVal = CC.Low; 2158 MachineBasicBlock *Succ = CC.MBB; 2159 2160 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2161 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2162 // If this case has the same successor and is a neighbour, merge it into 2163 // the previous cluster. 2164 Clusters[DstIndex - 1].High = CaseVal; 2165 Clusters[DstIndex - 1].Weight += CC.Weight; 2166 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2167 } else { 2168 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2169 sizeof(Clusters[SrcIndex])); 2170 } 2171 } 2172 Clusters.resize(DstIndex); 2173 } 2174 2175 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2176 MachineBasicBlock *Last) { 2177 // Update JTCases. 2178 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2179 if (JTCases[i].first.HeaderBB == First) 2180 JTCases[i].first.HeaderBB = Last; 2181 2182 // Update BitTestCases. 2183 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2184 if (BitTestCases[i].Parent == First) 2185 BitTestCases[i].Parent = Last; 2186 } 2187 2188 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2189 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2190 2191 // Update machine-CFG edges with unique successors. 2192 SmallSet<BasicBlock*, 32> Done; 2193 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2194 BasicBlock *BB = I.getSuccessor(i); 2195 bool Inserted = Done.insert(BB).second; 2196 if (!Inserted) 2197 continue; 2198 2199 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2200 addSuccessorWithWeight(IndirectBrMBB, Succ); 2201 } 2202 2203 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2204 MVT::Other, getControlRoot(), 2205 getValue(I.getAddress()))); 2206 } 2207 2208 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2209 if (DAG.getTarget().Options.TrapUnreachable) 2210 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2211 } 2212 2213 void SelectionDAGBuilder::visitFSub(const User &I) { 2214 // -0.0 - X --> fneg 2215 Type *Ty = I.getType(); 2216 if (isa<Constant>(I.getOperand(0)) && 2217 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2218 SDValue Op2 = getValue(I.getOperand(1)); 2219 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2220 Op2.getValueType(), Op2)); 2221 return; 2222 } 2223 2224 visitBinary(I, ISD::FSUB); 2225 } 2226 2227 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2228 SDValue Op1 = getValue(I.getOperand(0)); 2229 SDValue Op2 = getValue(I.getOperand(1)); 2230 2231 bool nuw = false; 2232 bool nsw = false; 2233 bool exact = false; 2234 FastMathFlags FMF; 2235 2236 if (const OverflowingBinaryOperator *OFBinOp = 2237 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2238 nuw = OFBinOp->hasNoUnsignedWrap(); 2239 nsw = OFBinOp->hasNoSignedWrap(); 2240 } 2241 if (const PossiblyExactOperator *ExactOp = 2242 dyn_cast<const PossiblyExactOperator>(&I)) 2243 exact = ExactOp->isExact(); 2244 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2245 FMF = FPOp->getFastMathFlags(); 2246 2247 SDNodeFlags Flags; 2248 Flags.setExact(exact); 2249 Flags.setNoSignedWrap(nsw); 2250 Flags.setNoUnsignedWrap(nuw); 2251 if (EnableFMFInDAG) { 2252 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2253 Flags.setNoInfs(FMF.noInfs()); 2254 Flags.setNoNaNs(FMF.noNaNs()); 2255 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2256 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2257 } 2258 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2259 Op1, Op2, &Flags); 2260 setValue(&I, BinNodeValue); 2261 } 2262 2263 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2264 SDValue Op1 = getValue(I.getOperand(0)); 2265 SDValue Op2 = getValue(I.getOperand(1)); 2266 2267 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2268 Op2.getValueType(), DAG.getDataLayout()); 2269 2270 // Coerce the shift amount to the right type if we can. 2271 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2272 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2273 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2274 SDLoc DL = getCurSDLoc(); 2275 2276 // If the operand is smaller than the shift count type, promote it. 2277 if (ShiftSize > Op2Size) 2278 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2279 2280 // If the operand is larger than the shift count type but the shift 2281 // count type has enough bits to represent any shift value, truncate 2282 // it now. This is a common case and it exposes the truncate to 2283 // optimization early. 2284 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2285 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2286 // Otherwise we'll need to temporarily settle for some other convenient 2287 // type. Type legalization will make adjustments once the shiftee is split. 2288 else 2289 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2290 } 2291 2292 bool nuw = false; 2293 bool nsw = false; 2294 bool exact = false; 2295 2296 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2297 2298 if (const OverflowingBinaryOperator *OFBinOp = 2299 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2300 nuw = OFBinOp->hasNoUnsignedWrap(); 2301 nsw = OFBinOp->hasNoSignedWrap(); 2302 } 2303 if (const PossiblyExactOperator *ExactOp = 2304 dyn_cast<const PossiblyExactOperator>(&I)) 2305 exact = ExactOp->isExact(); 2306 } 2307 SDNodeFlags Flags; 2308 Flags.setExact(exact); 2309 Flags.setNoSignedWrap(nsw); 2310 Flags.setNoUnsignedWrap(nuw); 2311 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2312 &Flags); 2313 setValue(&I, Res); 2314 } 2315 2316 void SelectionDAGBuilder::visitSDiv(const User &I) { 2317 SDValue Op1 = getValue(I.getOperand(0)); 2318 SDValue Op2 = getValue(I.getOperand(1)); 2319 2320 SDNodeFlags Flags; 2321 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2322 cast<PossiblyExactOperator>(&I)->isExact()); 2323 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2324 Op2, &Flags)); 2325 } 2326 2327 void SelectionDAGBuilder::visitICmp(const User &I) { 2328 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2329 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2330 predicate = IC->getPredicate(); 2331 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2332 predicate = ICmpInst::Predicate(IC->getPredicate()); 2333 SDValue Op1 = getValue(I.getOperand(0)); 2334 SDValue Op2 = getValue(I.getOperand(1)); 2335 ISD::CondCode Opcode = getICmpCondCode(predicate); 2336 2337 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2338 I.getType()); 2339 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2340 } 2341 2342 void SelectionDAGBuilder::visitFCmp(const User &I) { 2343 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2344 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2345 predicate = FC->getPredicate(); 2346 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2347 predicate = FCmpInst::Predicate(FC->getPredicate()); 2348 SDValue Op1 = getValue(I.getOperand(0)); 2349 SDValue Op2 = getValue(I.getOperand(1)); 2350 ISD::CondCode Condition = getFCmpCondCode(predicate); 2351 2352 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2353 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2354 // further optimization, but currently FMF is only applicable to binary nodes. 2355 if (TM.Options.NoNaNsFPMath) 2356 Condition = getFCmpCodeWithoutNaN(Condition); 2357 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2358 I.getType()); 2359 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2360 } 2361 2362 void SelectionDAGBuilder::visitSelect(const User &I) { 2363 SmallVector<EVT, 4> ValueVTs; 2364 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2365 ValueVTs); 2366 unsigned NumValues = ValueVTs.size(); 2367 if (NumValues == 0) return; 2368 2369 SmallVector<SDValue, 4> Values(NumValues); 2370 SDValue Cond = getValue(I.getOperand(0)); 2371 SDValue LHSVal = getValue(I.getOperand(1)); 2372 SDValue RHSVal = getValue(I.getOperand(2)); 2373 auto BaseOps = {Cond}; 2374 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2375 ISD::VSELECT : ISD::SELECT; 2376 2377 // Min/max matching is only viable if all output VTs are the same. 2378 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2379 EVT VT = ValueVTs[0]; 2380 LLVMContext &Ctx = *DAG.getContext(); 2381 auto &TLI = DAG.getTargetLoweringInfo(); 2382 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2383 VT = TLI.getTypeToTransformTo(Ctx, VT); 2384 2385 Value *LHS, *RHS; 2386 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2387 ISD::NodeType Opc = ISD::DELETED_NODE; 2388 switch (SPR.Flavor) { 2389 case SPF_UMAX: Opc = ISD::UMAX; break; 2390 case SPF_UMIN: Opc = ISD::UMIN; break; 2391 case SPF_SMAX: Opc = ISD::SMAX; break; 2392 case SPF_SMIN: Opc = ISD::SMIN; break; 2393 case SPF_FMINNUM: 2394 switch (SPR.NaNBehavior) { 2395 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2396 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2397 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2398 case SPNB_RETURNS_ANY: 2399 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2400 : ISD::FMINNAN; 2401 break; 2402 } 2403 break; 2404 case SPF_FMAXNUM: 2405 switch (SPR.NaNBehavior) { 2406 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2407 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2408 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2409 case SPNB_RETURNS_ANY: 2410 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2411 : ISD::FMAXNAN; 2412 break; 2413 } 2414 break; 2415 default: break; 2416 } 2417 2418 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2419 // If the underlying comparison instruction is used by any other instruction, 2420 // the consumed instructions won't be destroyed, so it is not profitable 2421 // to convert to a min/max. 2422 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2423 OpCode = Opc; 2424 LHSVal = getValue(LHS); 2425 RHSVal = getValue(RHS); 2426 BaseOps = {}; 2427 } 2428 } 2429 2430 for (unsigned i = 0; i != NumValues; ++i) { 2431 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2432 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2433 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2434 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2435 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2436 Ops); 2437 } 2438 2439 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2440 DAG.getVTList(ValueVTs), Values)); 2441 } 2442 2443 void SelectionDAGBuilder::visitTrunc(const User &I) { 2444 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2445 SDValue N = getValue(I.getOperand(0)); 2446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2447 I.getType()); 2448 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2449 } 2450 2451 void SelectionDAGBuilder::visitZExt(const User &I) { 2452 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2453 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2454 SDValue N = getValue(I.getOperand(0)); 2455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2456 I.getType()); 2457 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2458 } 2459 2460 void SelectionDAGBuilder::visitSExt(const User &I) { 2461 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2462 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2463 SDValue N = getValue(I.getOperand(0)); 2464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2465 I.getType()); 2466 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2467 } 2468 2469 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2470 // FPTrunc is never a no-op cast, no need to check 2471 SDValue N = getValue(I.getOperand(0)); 2472 SDLoc dl = getCurSDLoc(); 2473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2474 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2475 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2476 DAG.getTargetConstant( 2477 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2478 } 2479 2480 void SelectionDAGBuilder::visitFPExt(const User &I) { 2481 // FPExt is never a no-op cast, no need to check 2482 SDValue N = getValue(I.getOperand(0)); 2483 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2484 I.getType()); 2485 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2486 } 2487 2488 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2489 // FPToUI is never a no-op cast, no need to check 2490 SDValue N = getValue(I.getOperand(0)); 2491 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2492 I.getType()); 2493 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2494 } 2495 2496 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2497 // FPToSI is never a no-op cast, no need to check 2498 SDValue N = getValue(I.getOperand(0)); 2499 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2500 I.getType()); 2501 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2502 } 2503 2504 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2505 // UIToFP is never a no-op cast, no need to check 2506 SDValue N = getValue(I.getOperand(0)); 2507 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2508 I.getType()); 2509 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2510 } 2511 2512 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2513 // SIToFP is never a no-op cast, no need to check 2514 SDValue N = getValue(I.getOperand(0)); 2515 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2516 I.getType()); 2517 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2518 } 2519 2520 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2521 // What to do depends on the size of the integer and the size of the pointer. 2522 // We can either truncate, zero extend, or no-op, accordingly. 2523 SDValue N = getValue(I.getOperand(0)); 2524 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2525 I.getType()); 2526 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2527 } 2528 2529 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2530 // What to do depends on the size of the integer and the size of the pointer. 2531 // We can either truncate, zero extend, or no-op, accordingly. 2532 SDValue N = getValue(I.getOperand(0)); 2533 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2534 I.getType()); 2535 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2536 } 2537 2538 void SelectionDAGBuilder::visitBitCast(const User &I) { 2539 SDValue N = getValue(I.getOperand(0)); 2540 SDLoc dl = getCurSDLoc(); 2541 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2542 I.getType()); 2543 2544 // BitCast assures us that source and destination are the same size so this is 2545 // either a BITCAST or a no-op. 2546 if (DestVT != N.getValueType()) 2547 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2548 DestVT, N)); // convert types. 2549 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2550 // might fold any kind of constant expression to an integer constant and that 2551 // is not what we are looking for. Only regcognize a bitcast of a genuine 2552 // constant integer as an opaque constant. 2553 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2554 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2555 /*isOpaque*/true)); 2556 else 2557 setValue(&I, N); // noop cast. 2558 } 2559 2560 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2562 const Value *SV = I.getOperand(0); 2563 SDValue N = getValue(SV); 2564 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2565 2566 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2567 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2568 2569 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2570 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2571 2572 setValue(&I, N); 2573 } 2574 2575 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2577 SDValue InVec = getValue(I.getOperand(0)); 2578 SDValue InVal = getValue(I.getOperand(1)); 2579 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2580 TLI.getVectorIdxTy(DAG.getDataLayout())); 2581 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2582 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2583 InVec, InVal, InIdx)); 2584 } 2585 2586 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2588 SDValue InVec = getValue(I.getOperand(0)); 2589 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2590 TLI.getVectorIdxTy(DAG.getDataLayout())); 2591 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2592 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2593 InVec, InIdx)); 2594 } 2595 2596 // Utility for visitShuffleVector - Return true if every element in Mask, 2597 // beginning from position Pos and ending in Pos+Size, falls within the 2598 // specified sequential range [L, L+Pos). or is undef. 2599 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2600 unsigned Pos, unsigned Size, int Low) { 2601 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2602 if (Mask[i] >= 0 && Mask[i] != Low) 2603 return false; 2604 return true; 2605 } 2606 2607 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2608 SDValue Src1 = getValue(I.getOperand(0)); 2609 SDValue Src2 = getValue(I.getOperand(1)); 2610 2611 SmallVector<int, 8> Mask; 2612 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2613 unsigned MaskNumElts = Mask.size(); 2614 2615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2616 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2617 EVT SrcVT = Src1.getValueType(); 2618 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2619 2620 if (SrcNumElts == MaskNumElts) { 2621 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2622 &Mask[0])); 2623 return; 2624 } 2625 2626 // Normalize the shuffle vector since mask and vector length don't match. 2627 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2628 // Mask is longer than the source vectors and is a multiple of the source 2629 // vectors. We can use concatenate vector to make the mask and vectors 2630 // lengths match. 2631 if (SrcNumElts*2 == MaskNumElts) { 2632 // First check for Src1 in low and Src2 in high 2633 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2634 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2635 // The shuffle is concatenating two vectors together. 2636 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2637 VT, Src1, Src2)); 2638 return; 2639 } 2640 // Then check for Src2 in low and Src1 in high 2641 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2642 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2643 // The shuffle is concatenating two vectors together. 2644 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2645 VT, Src2, Src1)); 2646 return; 2647 } 2648 } 2649 2650 // Pad both vectors with undefs to make them the same length as the mask. 2651 unsigned NumConcat = MaskNumElts / SrcNumElts; 2652 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2653 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2654 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2655 2656 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2657 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2658 MOps1[0] = Src1; 2659 MOps2[0] = Src2; 2660 2661 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2662 getCurSDLoc(), VT, MOps1); 2663 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2664 getCurSDLoc(), VT, MOps2); 2665 2666 // Readjust mask for new input vector length. 2667 SmallVector<int, 8> MappedOps; 2668 for (unsigned i = 0; i != MaskNumElts; ++i) { 2669 int Idx = Mask[i]; 2670 if (Idx >= (int)SrcNumElts) 2671 Idx -= SrcNumElts - MaskNumElts; 2672 MappedOps.push_back(Idx); 2673 } 2674 2675 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2676 &MappedOps[0])); 2677 return; 2678 } 2679 2680 if (SrcNumElts > MaskNumElts) { 2681 // Analyze the access pattern of the vector to see if we can extract 2682 // two subvectors and do the shuffle. The analysis is done by calculating 2683 // the range of elements the mask access on both vectors. 2684 int MinRange[2] = { static_cast<int>(SrcNumElts), 2685 static_cast<int>(SrcNumElts)}; 2686 int MaxRange[2] = {-1, -1}; 2687 2688 for (unsigned i = 0; i != MaskNumElts; ++i) { 2689 int Idx = Mask[i]; 2690 unsigned Input = 0; 2691 if (Idx < 0) 2692 continue; 2693 2694 if (Idx >= (int)SrcNumElts) { 2695 Input = 1; 2696 Idx -= SrcNumElts; 2697 } 2698 if (Idx > MaxRange[Input]) 2699 MaxRange[Input] = Idx; 2700 if (Idx < MinRange[Input]) 2701 MinRange[Input] = Idx; 2702 } 2703 2704 // Check if the access is smaller than the vector size and can we find 2705 // a reasonable extract index. 2706 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2707 // Extract. 2708 int StartIdx[2]; // StartIdx to extract from 2709 for (unsigned Input = 0; Input < 2; ++Input) { 2710 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2711 RangeUse[Input] = 0; // Unused 2712 StartIdx[Input] = 0; 2713 continue; 2714 } 2715 2716 // Find a good start index that is a multiple of the mask length. Then 2717 // see if the rest of the elements are in range. 2718 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2719 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2720 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2721 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2722 } 2723 2724 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2725 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2726 return; 2727 } 2728 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2729 // Extract appropriate subvector and generate a vector shuffle 2730 for (unsigned Input = 0; Input < 2; ++Input) { 2731 SDValue &Src = Input == 0 ? Src1 : Src2; 2732 if (RangeUse[Input] == 0) 2733 Src = DAG.getUNDEF(VT); 2734 else { 2735 SDLoc dl = getCurSDLoc(); 2736 Src = DAG.getNode( 2737 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2738 DAG.getConstant(StartIdx[Input], dl, 2739 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2740 } 2741 } 2742 2743 // Calculate new mask. 2744 SmallVector<int, 8> MappedOps; 2745 for (unsigned i = 0; i != MaskNumElts; ++i) { 2746 int Idx = Mask[i]; 2747 if (Idx >= 0) { 2748 if (Idx < (int)SrcNumElts) 2749 Idx -= StartIdx[0]; 2750 else 2751 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2752 } 2753 MappedOps.push_back(Idx); 2754 } 2755 2756 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2757 &MappedOps[0])); 2758 return; 2759 } 2760 } 2761 2762 // We can't use either concat vectors or extract subvectors so fall back to 2763 // replacing the shuffle with extract and build vector. 2764 // to insert and build vector. 2765 EVT EltVT = VT.getVectorElementType(); 2766 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2767 SDLoc dl = getCurSDLoc(); 2768 SmallVector<SDValue,8> Ops; 2769 for (unsigned i = 0; i != MaskNumElts; ++i) { 2770 int Idx = Mask[i]; 2771 SDValue Res; 2772 2773 if (Idx < 0) { 2774 Res = DAG.getUNDEF(EltVT); 2775 } else { 2776 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2777 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2778 2779 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2780 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2781 } 2782 2783 Ops.push_back(Res); 2784 } 2785 2786 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2787 } 2788 2789 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2790 const Value *Op0 = I.getOperand(0); 2791 const Value *Op1 = I.getOperand(1); 2792 Type *AggTy = I.getType(); 2793 Type *ValTy = Op1->getType(); 2794 bool IntoUndef = isa<UndefValue>(Op0); 2795 bool FromUndef = isa<UndefValue>(Op1); 2796 2797 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2798 2799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2800 SmallVector<EVT, 4> AggValueVTs; 2801 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2802 SmallVector<EVT, 4> ValValueVTs; 2803 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2804 2805 unsigned NumAggValues = AggValueVTs.size(); 2806 unsigned NumValValues = ValValueVTs.size(); 2807 SmallVector<SDValue, 4> Values(NumAggValues); 2808 2809 // Ignore an insertvalue that produces an empty object 2810 if (!NumAggValues) { 2811 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2812 return; 2813 } 2814 2815 SDValue Agg = getValue(Op0); 2816 unsigned i = 0; 2817 // Copy the beginning value(s) from the original aggregate. 2818 for (; i != LinearIndex; ++i) 2819 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2820 SDValue(Agg.getNode(), Agg.getResNo() + i); 2821 // Copy values from the inserted value(s). 2822 if (NumValValues) { 2823 SDValue Val = getValue(Op1); 2824 for (; i != LinearIndex + NumValValues; ++i) 2825 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2826 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2827 } 2828 // Copy remaining value(s) from the original aggregate. 2829 for (; i != NumAggValues; ++i) 2830 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2831 SDValue(Agg.getNode(), Agg.getResNo() + i); 2832 2833 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2834 DAG.getVTList(AggValueVTs), Values)); 2835 } 2836 2837 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2838 const Value *Op0 = I.getOperand(0); 2839 Type *AggTy = Op0->getType(); 2840 Type *ValTy = I.getType(); 2841 bool OutOfUndef = isa<UndefValue>(Op0); 2842 2843 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2844 2845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2846 SmallVector<EVT, 4> ValValueVTs; 2847 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2848 2849 unsigned NumValValues = ValValueVTs.size(); 2850 2851 // Ignore a extractvalue that produces an empty object 2852 if (!NumValValues) { 2853 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2854 return; 2855 } 2856 2857 SmallVector<SDValue, 4> Values(NumValValues); 2858 2859 SDValue Agg = getValue(Op0); 2860 // Copy out the selected value(s). 2861 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2862 Values[i - LinearIndex] = 2863 OutOfUndef ? 2864 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2865 SDValue(Agg.getNode(), Agg.getResNo() + i); 2866 2867 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2868 DAG.getVTList(ValValueVTs), Values)); 2869 } 2870 2871 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2872 Value *Op0 = I.getOperand(0); 2873 // Note that the pointer operand may be a vector of pointers. Take the scalar 2874 // element which holds a pointer. 2875 Type *Ty = Op0->getType()->getScalarType(); 2876 unsigned AS = Ty->getPointerAddressSpace(); 2877 SDValue N = getValue(Op0); 2878 SDLoc dl = getCurSDLoc(); 2879 2880 // Normalize Vector GEP - all scalar operands should be converted to the 2881 // splat vector. 2882 unsigned VectorWidth = I.getType()->isVectorTy() ? 2883 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2884 2885 if (VectorWidth && !N.getValueType().isVector()) { 2886 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2887 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2888 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2889 } 2890 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2891 OI != E; ++OI) { 2892 const Value *Idx = *OI; 2893 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2894 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2895 if (Field) { 2896 // N = N + Offset 2897 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2898 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2899 DAG.getConstant(Offset, dl, N.getValueType())); 2900 } 2901 2902 Ty = StTy->getElementType(Field); 2903 } else { 2904 Ty = cast<SequentialType>(Ty)->getElementType(); 2905 MVT PtrTy = 2906 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2907 unsigned PtrSize = PtrTy.getSizeInBits(); 2908 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2909 2910 // If this is a scalar constant or a splat vector of constants, 2911 // handle it quickly. 2912 const auto *CI = dyn_cast<ConstantInt>(Idx); 2913 if (!CI && isa<ConstantDataVector>(Idx) && 2914 cast<ConstantDataVector>(Idx)->getSplatValue()) 2915 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2916 2917 if (CI) { 2918 if (CI->isZero()) 2919 continue; 2920 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2921 SDValue OffsVal = VectorWidth ? 2922 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2923 DAG.getConstant(Offs, dl, PtrTy); 2924 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2925 continue; 2926 } 2927 2928 // N = N + Idx * ElementSize; 2929 SDValue IdxN = getValue(Idx); 2930 2931 if (!IdxN.getValueType().isVector() && VectorWidth) { 2932 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2933 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2934 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2935 } 2936 // If the index is smaller or larger than intptr_t, truncate or extend 2937 // it. 2938 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2939 2940 // If this is a multiply by a power of two, turn it into a shl 2941 // immediately. This is a very common case. 2942 if (ElementSize != 1) { 2943 if (ElementSize.isPowerOf2()) { 2944 unsigned Amt = ElementSize.logBase2(); 2945 IdxN = DAG.getNode(ISD::SHL, dl, 2946 N.getValueType(), IdxN, 2947 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2948 } else { 2949 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2950 IdxN = DAG.getNode(ISD::MUL, dl, 2951 N.getValueType(), IdxN, Scale); 2952 } 2953 } 2954 2955 N = DAG.getNode(ISD::ADD, dl, 2956 N.getValueType(), N, IdxN); 2957 } 2958 } 2959 2960 setValue(&I, N); 2961 } 2962 2963 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2964 // If this is a fixed sized alloca in the entry block of the function, 2965 // allocate it statically on the stack. 2966 if (FuncInfo.StaticAllocaMap.count(&I)) 2967 return; // getValue will auto-populate this. 2968 2969 SDLoc dl = getCurSDLoc(); 2970 Type *Ty = I.getAllocatedType(); 2971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2972 auto &DL = DAG.getDataLayout(); 2973 uint64_t TySize = DL.getTypeAllocSize(Ty); 2974 unsigned Align = 2975 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2976 2977 SDValue AllocSize = getValue(I.getArraySize()); 2978 2979 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2980 if (AllocSize.getValueType() != IntPtr) 2981 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2982 2983 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2984 AllocSize, 2985 DAG.getConstant(TySize, dl, IntPtr)); 2986 2987 // Handle alignment. If the requested alignment is less than or equal to 2988 // the stack alignment, ignore it. If the size is greater than or equal to 2989 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2990 unsigned StackAlign = 2991 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2992 if (Align <= StackAlign) 2993 Align = 0; 2994 2995 // Round the size of the allocation up to the stack alignment size 2996 // by add SA-1 to the size. 2997 AllocSize = DAG.getNode(ISD::ADD, dl, 2998 AllocSize.getValueType(), AllocSize, 2999 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3000 3001 // Mask out the low bits for alignment purposes. 3002 AllocSize = DAG.getNode(ISD::AND, dl, 3003 AllocSize.getValueType(), AllocSize, 3004 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3005 dl)); 3006 3007 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3008 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3009 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3010 setValue(&I, DSA); 3011 DAG.setRoot(DSA.getValue(1)); 3012 3013 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3014 } 3015 3016 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3017 if (I.isAtomic()) 3018 return visitAtomicLoad(I); 3019 3020 const Value *SV = I.getOperand(0); 3021 SDValue Ptr = getValue(SV); 3022 3023 Type *Ty = I.getType(); 3024 3025 bool isVolatile = I.isVolatile(); 3026 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3027 3028 // The IR notion of invariant_load only guarantees that all *non-faulting* 3029 // invariant loads result in the same value. The MI notion of invariant load 3030 // guarantees that the load can be legally moved to any location within its 3031 // containing function. The MI notion of invariant_load is stronger than the 3032 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3033 // with a guarantee that the location being loaded from is dereferenceable 3034 // throughout the function's lifetime. 3035 3036 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3037 isDereferenceablePointer(SV, DAG.getDataLayout()); 3038 unsigned Alignment = I.getAlignment(); 3039 3040 AAMDNodes AAInfo; 3041 I.getAAMetadata(AAInfo); 3042 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3043 3044 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3045 SmallVector<EVT, 4> ValueVTs; 3046 SmallVector<uint64_t, 4> Offsets; 3047 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3048 unsigned NumValues = ValueVTs.size(); 3049 if (NumValues == 0) 3050 return; 3051 3052 SDValue Root; 3053 bool ConstantMemory = false; 3054 if (isVolatile || NumValues > MaxParallelChains) 3055 // Serialize volatile loads with other side effects. 3056 Root = getRoot(); 3057 else if (AA->pointsToConstantMemory(MemoryLocation( 3058 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3059 // Do not serialize (non-volatile) loads of constant memory with anything. 3060 Root = DAG.getEntryNode(); 3061 ConstantMemory = true; 3062 } else { 3063 // Do not serialize non-volatile loads against each other. 3064 Root = DAG.getRoot(); 3065 } 3066 3067 SDLoc dl = getCurSDLoc(); 3068 3069 if (isVolatile) 3070 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3071 3072 SmallVector<SDValue, 4> Values(NumValues); 3073 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3074 EVT PtrVT = Ptr.getValueType(); 3075 unsigned ChainI = 0; 3076 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3077 // Serializing loads here may result in excessive register pressure, and 3078 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3079 // could recover a bit by hoisting nodes upward in the chain by recognizing 3080 // they are side-effect free or do not alias. The optimizer should really 3081 // avoid this case by converting large object/array copies to llvm.memcpy 3082 // (MaxParallelChains should always remain as failsafe). 3083 if (ChainI == MaxParallelChains) { 3084 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3085 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3086 makeArrayRef(Chains.data(), ChainI)); 3087 Root = Chain; 3088 ChainI = 0; 3089 } 3090 SDValue A = DAG.getNode(ISD::ADD, dl, 3091 PtrVT, Ptr, 3092 DAG.getConstant(Offsets[i], dl, PtrVT)); 3093 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3094 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3095 isNonTemporal, isInvariant, Alignment, AAInfo, 3096 Ranges); 3097 3098 Values[i] = L; 3099 Chains[ChainI] = L.getValue(1); 3100 } 3101 3102 if (!ConstantMemory) { 3103 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3104 makeArrayRef(Chains.data(), ChainI)); 3105 if (isVolatile) 3106 DAG.setRoot(Chain); 3107 else 3108 PendingLoads.push_back(Chain); 3109 } 3110 3111 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3112 DAG.getVTList(ValueVTs), Values)); 3113 } 3114 3115 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3116 if (I.isAtomic()) 3117 return visitAtomicStore(I); 3118 3119 const Value *SrcV = I.getOperand(0); 3120 const Value *PtrV = I.getOperand(1); 3121 3122 SmallVector<EVT, 4> ValueVTs; 3123 SmallVector<uint64_t, 4> Offsets; 3124 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3125 SrcV->getType(), ValueVTs, &Offsets); 3126 unsigned NumValues = ValueVTs.size(); 3127 if (NumValues == 0) 3128 return; 3129 3130 // Get the lowered operands. Note that we do this after 3131 // checking if NumResults is zero, because with zero results 3132 // the operands won't have values in the map. 3133 SDValue Src = getValue(SrcV); 3134 SDValue Ptr = getValue(PtrV); 3135 3136 SDValue Root = getRoot(); 3137 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3138 EVT PtrVT = Ptr.getValueType(); 3139 bool isVolatile = I.isVolatile(); 3140 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3141 unsigned Alignment = I.getAlignment(); 3142 SDLoc dl = getCurSDLoc(); 3143 3144 AAMDNodes AAInfo; 3145 I.getAAMetadata(AAInfo); 3146 3147 unsigned ChainI = 0; 3148 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3149 // See visitLoad comments. 3150 if (ChainI == MaxParallelChains) { 3151 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3152 makeArrayRef(Chains.data(), ChainI)); 3153 Root = Chain; 3154 ChainI = 0; 3155 } 3156 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3157 DAG.getConstant(Offsets[i], dl, PtrVT)); 3158 SDValue St = DAG.getStore(Root, dl, 3159 SDValue(Src.getNode(), Src.getResNo() + i), 3160 Add, MachinePointerInfo(PtrV, Offsets[i]), 3161 isVolatile, isNonTemporal, Alignment, AAInfo); 3162 Chains[ChainI] = St; 3163 } 3164 3165 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3166 makeArrayRef(Chains.data(), ChainI)); 3167 DAG.setRoot(StoreNode); 3168 } 3169 3170 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3171 SDLoc sdl = getCurSDLoc(); 3172 3173 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3174 Value *PtrOperand = I.getArgOperand(1); 3175 SDValue Ptr = getValue(PtrOperand); 3176 SDValue Src0 = getValue(I.getArgOperand(0)); 3177 SDValue Mask = getValue(I.getArgOperand(3)); 3178 EVT VT = Src0.getValueType(); 3179 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3180 if (!Alignment) 3181 Alignment = DAG.getEVTAlignment(VT); 3182 3183 AAMDNodes AAInfo; 3184 I.getAAMetadata(AAInfo); 3185 3186 MachineMemOperand *MMO = 3187 DAG.getMachineFunction(). 3188 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3189 MachineMemOperand::MOStore, VT.getStoreSize(), 3190 Alignment, AAInfo); 3191 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3192 MMO, false); 3193 DAG.setRoot(StoreNode); 3194 setValue(&I, StoreNode); 3195 } 3196 3197 // Get a uniform base for the Gather/Scatter intrinsic. 3198 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3199 // We try to represent it as a base pointer + vector of indices. 3200 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3201 // The first operand of the GEP may be a single pointer or a vector of pointers 3202 // Example: 3203 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3204 // or 3205 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3206 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3207 // 3208 // When the first GEP operand is a single pointer - it is the uniform base we 3209 // are looking for. If first operand of the GEP is a splat vector - we 3210 // extract the spalt value and use it as a uniform base. 3211 // In all other cases the function returns 'false'. 3212 // 3213 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3214 SelectionDAGBuilder* SDB) { 3215 3216 SelectionDAG& DAG = SDB->DAG; 3217 LLVMContext &Context = *DAG.getContext(); 3218 3219 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3220 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3221 if (!GEP || GEP->getNumOperands() > 2) 3222 return false; 3223 3224 Value *GEPPtr = GEP->getPointerOperand(); 3225 if (!GEPPtr->getType()->isVectorTy()) 3226 Ptr = GEPPtr; 3227 else if (!(Ptr = getSplatValue(GEPPtr))) 3228 return false; 3229 3230 Value *IndexVal = GEP->getOperand(1); 3231 3232 // The operands of the GEP may be defined in another basic block. 3233 // In this case we'll not find nodes for the operands. 3234 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3235 return false; 3236 3237 Base = SDB->getValue(Ptr); 3238 Index = SDB->getValue(IndexVal); 3239 3240 // Suppress sign extension. 3241 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3242 if (SDB->findValue(Sext->getOperand(0))) { 3243 IndexVal = Sext->getOperand(0); 3244 Index = SDB->getValue(IndexVal); 3245 } 3246 } 3247 if (!Index.getValueType().isVector()) { 3248 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3249 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3250 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3251 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3252 } 3253 return true; 3254 } 3255 3256 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3257 SDLoc sdl = getCurSDLoc(); 3258 3259 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3260 Value *Ptr = I.getArgOperand(1); 3261 SDValue Src0 = getValue(I.getArgOperand(0)); 3262 SDValue Mask = getValue(I.getArgOperand(3)); 3263 EVT VT = Src0.getValueType(); 3264 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3265 if (!Alignment) 3266 Alignment = DAG.getEVTAlignment(VT); 3267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3268 3269 AAMDNodes AAInfo; 3270 I.getAAMetadata(AAInfo); 3271 3272 SDValue Base; 3273 SDValue Index; 3274 Value *BasePtr = Ptr; 3275 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3276 3277 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3278 MachineMemOperand *MMO = DAG.getMachineFunction(). 3279 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3280 MachineMemOperand::MOStore, VT.getStoreSize(), 3281 Alignment, AAInfo); 3282 if (!UniformBase) { 3283 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3284 Index = getValue(Ptr); 3285 } 3286 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3287 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3288 Ops, MMO); 3289 DAG.setRoot(Scatter); 3290 setValue(&I, Scatter); 3291 } 3292 3293 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3294 SDLoc sdl = getCurSDLoc(); 3295 3296 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3297 Value *PtrOperand = I.getArgOperand(0); 3298 SDValue Ptr = getValue(PtrOperand); 3299 SDValue Src0 = getValue(I.getArgOperand(3)); 3300 SDValue Mask = getValue(I.getArgOperand(2)); 3301 3302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3303 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3304 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3305 if (!Alignment) 3306 Alignment = DAG.getEVTAlignment(VT); 3307 3308 AAMDNodes AAInfo; 3309 I.getAAMetadata(AAInfo); 3310 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3311 3312 SDValue InChain = DAG.getRoot(); 3313 if (AA->pointsToConstantMemory(MemoryLocation( 3314 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3315 AAInfo))) { 3316 // Do not serialize (non-volatile) loads of constant memory with anything. 3317 InChain = DAG.getEntryNode(); 3318 } 3319 3320 MachineMemOperand *MMO = 3321 DAG.getMachineFunction(). 3322 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3323 MachineMemOperand::MOLoad, VT.getStoreSize(), 3324 Alignment, AAInfo, Ranges); 3325 3326 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3327 ISD::NON_EXTLOAD); 3328 SDValue OutChain = Load.getValue(1); 3329 DAG.setRoot(OutChain); 3330 setValue(&I, Load); 3331 } 3332 3333 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3334 SDLoc sdl = getCurSDLoc(); 3335 3336 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3337 Value *Ptr = I.getArgOperand(0); 3338 SDValue Src0 = getValue(I.getArgOperand(3)); 3339 SDValue Mask = getValue(I.getArgOperand(2)); 3340 3341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3342 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3343 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3344 if (!Alignment) 3345 Alignment = DAG.getEVTAlignment(VT); 3346 3347 AAMDNodes AAInfo; 3348 I.getAAMetadata(AAInfo); 3349 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3350 3351 SDValue Root = DAG.getRoot(); 3352 SDValue Base; 3353 SDValue Index; 3354 Value *BasePtr = Ptr; 3355 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3356 bool ConstantMemory = false; 3357 if (UniformBase && 3358 AA->pointsToConstantMemory(MemoryLocation( 3359 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3360 AAInfo))) { 3361 // Do not serialize (non-volatile) loads of constant memory with anything. 3362 Root = DAG.getEntryNode(); 3363 ConstantMemory = true; 3364 } 3365 3366 MachineMemOperand *MMO = 3367 DAG.getMachineFunction(). 3368 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3369 MachineMemOperand::MOLoad, VT.getStoreSize(), 3370 Alignment, AAInfo, Ranges); 3371 3372 if (!UniformBase) { 3373 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3374 Index = getValue(Ptr); 3375 } 3376 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3377 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3378 Ops, MMO); 3379 3380 SDValue OutChain = Gather.getValue(1); 3381 if (!ConstantMemory) 3382 PendingLoads.push_back(OutChain); 3383 setValue(&I, Gather); 3384 } 3385 3386 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3387 SDLoc dl = getCurSDLoc(); 3388 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3389 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3390 SynchronizationScope Scope = I.getSynchScope(); 3391 3392 SDValue InChain = getRoot(); 3393 3394 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3395 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3396 SDValue L = DAG.getAtomicCmpSwap( 3397 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3398 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3399 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3400 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3401 3402 SDValue OutChain = L.getValue(2); 3403 3404 setValue(&I, L); 3405 DAG.setRoot(OutChain); 3406 } 3407 3408 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3409 SDLoc dl = getCurSDLoc(); 3410 ISD::NodeType NT; 3411 switch (I.getOperation()) { 3412 default: llvm_unreachable("Unknown atomicrmw operation"); 3413 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3414 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3415 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3416 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3417 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3418 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3419 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3420 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3421 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3422 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3423 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3424 } 3425 AtomicOrdering Order = I.getOrdering(); 3426 SynchronizationScope Scope = I.getSynchScope(); 3427 3428 SDValue InChain = getRoot(); 3429 3430 SDValue L = 3431 DAG.getAtomic(NT, dl, 3432 getValue(I.getValOperand()).getSimpleValueType(), 3433 InChain, 3434 getValue(I.getPointerOperand()), 3435 getValue(I.getValOperand()), 3436 I.getPointerOperand(), 3437 /* Alignment=*/ 0, Order, Scope); 3438 3439 SDValue OutChain = L.getValue(1); 3440 3441 setValue(&I, L); 3442 DAG.setRoot(OutChain); 3443 } 3444 3445 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3446 SDLoc dl = getCurSDLoc(); 3447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3448 SDValue Ops[3]; 3449 Ops[0] = getRoot(); 3450 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3451 TLI.getPointerTy(DAG.getDataLayout())); 3452 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3453 TLI.getPointerTy(DAG.getDataLayout())); 3454 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3455 } 3456 3457 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3458 SDLoc dl = getCurSDLoc(); 3459 AtomicOrdering Order = I.getOrdering(); 3460 SynchronizationScope Scope = I.getSynchScope(); 3461 3462 SDValue InChain = getRoot(); 3463 3464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3465 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3466 3467 if (I.getAlignment() < VT.getSizeInBits() / 8) 3468 report_fatal_error("Cannot generate unaligned atomic load"); 3469 3470 MachineMemOperand *MMO = 3471 DAG.getMachineFunction(). 3472 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3473 MachineMemOperand::MOVolatile | 3474 MachineMemOperand::MOLoad, 3475 VT.getStoreSize(), 3476 I.getAlignment() ? I.getAlignment() : 3477 DAG.getEVTAlignment(VT)); 3478 3479 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3480 SDValue L = 3481 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3482 getValue(I.getPointerOperand()), MMO, 3483 Order, Scope); 3484 3485 SDValue OutChain = L.getValue(1); 3486 3487 setValue(&I, L); 3488 DAG.setRoot(OutChain); 3489 } 3490 3491 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3492 SDLoc dl = getCurSDLoc(); 3493 3494 AtomicOrdering Order = I.getOrdering(); 3495 SynchronizationScope Scope = I.getSynchScope(); 3496 3497 SDValue InChain = getRoot(); 3498 3499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3500 EVT VT = 3501 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3502 3503 if (I.getAlignment() < VT.getSizeInBits() / 8) 3504 report_fatal_error("Cannot generate unaligned atomic store"); 3505 3506 SDValue OutChain = 3507 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3508 InChain, 3509 getValue(I.getPointerOperand()), 3510 getValue(I.getValueOperand()), 3511 I.getPointerOperand(), I.getAlignment(), 3512 Order, Scope); 3513 3514 DAG.setRoot(OutChain); 3515 } 3516 3517 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3518 /// node. 3519 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3520 unsigned Intrinsic) { 3521 bool HasChain = !I.doesNotAccessMemory(); 3522 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3523 3524 // Build the operand list. 3525 SmallVector<SDValue, 8> Ops; 3526 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3527 if (OnlyLoad) { 3528 // We don't need to serialize loads against other loads. 3529 Ops.push_back(DAG.getRoot()); 3530 } else { 3531 Ops.push_back(getRoot()); 3532 } 3533 } 3534 3535 // Info is set by getTgtMemInstrinsic 3536 TargetLowering::IntrinsicInfo Info; 3537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3538 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3539 3540 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3541 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3542 Info.opc == ISD::INTRINSIC_W_CHAIN) 3543 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3544 TLI.getPointerTy(DAG.getDataLayout()))); 3545 3546 // Add all operands of the call to the operand list. 3547 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3548 SDValue Op = getValue(I.getArgOperand(i)); 3549 Ops.push_back(Op); 3550 } 3551 3552 SmallVector<EVT, 4> ValueVTs; 3553 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3554 3555 if (HasChain) 3556 ValueVTs.push_back(MVT::Other); 3557 3558 SDVTList VTs = DAG.getVTList(ValueVTs); 3559 3560 // Create the node. 3561 SDValue Result; 3562 if (IsTgtIntrinsic) { 3563 // This is target intrinsic that touches memory 3564 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3565 VTs, Ops, Info.memVT, 3566 MachinePointerInfo(Info.ptrVal, Info.offset), 3567 Info.align, Info.vol, 3568 Info.readMem, Info.writeMem, Info.size); 3569 } else if (!HasChain) { 3570 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3571 } else if (!I.getType()->isVoidTy()) { 3572 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3573 } else { 3574 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3575 } 3576 3577 if (HasChain) { 3578 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3579 if (OnlyLoad) 3580 PendingLoads.push_back(Chain); 3581 else 3582 DAG.setRoot(Chain); 3583 } 3584 3585 if (!I.getType()->isVoidTy()) { 3586 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3587 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3588 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3589 } 3590 3591 setValue(&I, Result); 3592 } 3593 } 3594 3595 /// GetSignificand - Get the significand and build it into a floating-point 3596 /// number with exponent of 1: 3597 /// 3598 /// Op = (Op & 0x007fffff) | 0x3f800000; 3599 /// 3600 /// where Op is the hexadecimal representation of floating point value. 3601 static SDValue 3602 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3603 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3604 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3605 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3606 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3607 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3608 } 3609 3610 /// GetExponent - Get the exponent: 3611 /// 3612 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3613 /// 3614 /// where Op is the hexadecimal representation of floating point value. 3615 static SDValue 3616 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3617 SDLoc dl) { 3618 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3619 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3620 SDValue t1 = DAG.getNode( 3621 ISD::SRL, dl, MVT::i32, t0, 3622 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3623 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3624 DAG.getConstant(127, dl, MVT::i32)); 3625 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3626 } 3627 3628 /// getF32Constant - Get 32-bit floating point constant. 3629 static SDValue 3630 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3631 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3632 MVT::f32); 3633 } 3634 3635 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3636 SelectionDAG &DAG) { 3637 // TODO: What fast-math-flags should be set on the floating-point nodes? 3638 3639 // IntegerPartOfX = ((int32_t)(t0); 3640 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3641 3642 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3643 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3644 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3645 3646 // IntegerPartOfX <<= 23; 3647 IntegerPartOfX = DAG.getNode( 3648 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3649 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3650 DAG.getDataLayout()))); 3651 3652 SDValue TwoToFractionalPartOfX; 3653 if (LimitFloatPrecision <= 6) { 3654 // For floating-point precision of 6: 3655 // 3656 // TwoToFractionalPartOfX = 3657 // 0.997535578f + 3658 // (0.735607626f + 0.252464424f * x) * x; 3659 // 3660 // error 0.0144103317, which is 6 bits 3661 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3662 getF32Constant(DAG, 0x3e814304, dl)); 3663 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3664 getF32Constant(DAG, 0x3f3c50c8, dl)); 3665 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3666 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3667 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3668 } else if (LimitFloatPrecision <= 12) { 3669 // For floating-point precision of 12: 3670 // 3671 // TwoToFractionalPartOfX = 3672 // 0.999892986f + 3673 // (0.696457318f + 3674 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3675 // 3676 // error 0.000107046256, which is 13 to 14 bits 3677 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3678 getF32Constant(DAG, 0x3da235e3, dl)); 3679 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3680 getF32Constant(DAG, 0x3e65b8f3, dl)); 3681 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3682 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3683 getF32Constant(DAG, 0x3f324b07, dl)); 3684 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3685 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3686 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3687 } else { // LimitFloatPrecision <= 18 3688 // For floating-point precision of 18: 3689 // 3690 // TwoToFractionalPartOfX = 3691 // 0.999999982f + 3692 // (0.693148872f + 3693 // (0.240227044f + 3694 // (0.554906021e-1f + 3695 // (0.961591928e-2f + 3696 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3697 // error 2.47208000*10^(-7), which is better than 18 bits 3698 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3699 getF32Constant(DAG, 0x3924b03e, dl)); 3700 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3701 getF32Constant(DAG, 0x3ab24b87, dl)); 3702 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3703 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3704 getF32Constant(DAG, 0x3c1d8c17, dl)); 3705 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3706 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3707 getF32Constant(DAG, 0x3d634a1d, dl)); 3708 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3709 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3710 getF32Constant(DAG, 0x3e75fe14, dl)); 3711 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3712 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3713 getF32Constant(DAG, 0x3f317234, dl)); 3714 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3715 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3716 getF32Constant(DAG, 0x3f800000, dl)); 3717 } 3718 3719 // Add the exponent into the result in integer domain. 3720 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3721 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3722 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3723 } 3724 3725 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3726 /// limited-precision mode. 3727 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3728 const TargetLowering &TLI) { 3729 if (Op.getValueType() == MVT::f32 && 3730 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3731 3732 // Put the exponent in the right bit position for later addition to the 3733 // final result: 3734 // 3735 // #define LOG2OFe 1.4426950f 3736 // t0 = Op * LOG2OFe 3737 3738 // TODO: What fast-math-flags should be set here? 3739 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3740 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3741 return getLimitedPrecisionExp2(t0, dl, DAG); 3742 } 3743 3744 // No special expansion. 3745 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3746 } 3747 3748 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3749 /// limited-precision mode. 3750 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3751 const TargetLowering &TLI) { 3752 3753 // TODO: What fast-math-flags should be set on the floating-point nodes? 3754 3755 if (Op.getValueType() == MVT::f32 && 3756 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3757 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3758 3759 // Scale the exponent by log(2) [0.69314718f]. 3760 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3761 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3762 getF32Constant(DAG, 0x3f317218, dl)); 3763 3764 // Get the significand and build it into a floating-point number with 3765 // exponent of 1. 3766 SDValue X = GetSignificand(DAG, Op1, dl); 3767 3768 SDValue LogOfMantissa; 3769 if (LimitFloatPrecision <= 6) { 3770 // For floating-point precision of 6: 3771 // 3772 // LogofMantissa = 3773 // -1.1609546f + 3774 // (1.4034025f - 0.23903021f * x) * x; 3775 // 3776 // error 0.0034276066, which is better than 8 bits 3777 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3778 getF32Constant(DAG, 0xbe74c456, dl)); 3779 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3780 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3781 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3782 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3783 getF32Constant(DAG, 0x3f949a29, dl)); 3784 } else if (LimitFloatPrecision <= 12) { 3785 // For floating-point precision of 12: 3786 // 3787 // LogOfMantissa = 3788 // -1.7417939f + 3789 // (2.8212026f + 3790 // (-1.4699568f + 3791 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3792 // 3793 // error 0.000061011436, which is 14 bits 3794 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3795 getF32Constant(DAG, 0xbd67b6d6, dl)); 3796 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3797 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3798 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3799 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3800 getF32Constant(DAG, 0x3fbc278b, dl)); 3801 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3802 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3803 getF32Constant(DAG, 0x40348e95, dl)); 3804 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3805 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3806 getF32Constant(DAG, 0x3fdef31a, dl)); 3807 } else { // LimitFloatPrecision <= 18 3808 // For floating-point precision of 18: 3809 // 3810 // LogOfMantissa = 3811 // -2.1072184f + 3812 // (4.2372794f + 3813 // (-3.7029485f + 3814 // (2.2781945f + 3815 // (-0.87823314f + 3816 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3817 // 3818 // error 0.0000023660568, which is better than 18 bits 3819 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3820 getF32Constant(DAG, 0xbc91e5ac, dl)); 3821 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3822 getF32Constant(DAG, 0x3e4350aa, dl)); 3823 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3824 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3825 getF32Constant(DAG, 0x3f60d3e3, dl)); 3826 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3827 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3828 getF32Constant(DAG, 0x4011cdf0, dl)); 3829 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3830 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3831 getF32Constant(DAG, 0x406cfd1c, dl)); 3832 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3833 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3834 getF32Constant(DAG, 0x408797cb, dl)); 3835 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3836 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3837 getF32Constant(DAG, 0x4006dcab, dl)); 3838 } 3839 3840 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3841 } 3842 3843 // No special expansion. 3844 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3845 } 3846 3847 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3848 /// limited-precision mode. 3849 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3850 const TargetLowering &TLI) { 3851 3852 // TODO: What fast-math-flags should be set on the floating-point nodes? 3853 3854 if (Op.getValueType() == MVT::f32 && 3855 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3856 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3857 3858 // Get the exponent. 3859 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3860 3861 // Get the significand and build it into a floating-point number with 3862 // exponent of 1. 3863 SDValue X = GetSignificand(DAG, Op1, dl); 3864 3865 // Different possible minimax approximations of significand in 3866 // floating-point for various degrees of accuracy over [1,2]. 3867 SDValue Log2ofMantissa; 3868 if (LimitFloatPrecision <= 6) { 3869 // For floating-point precision of 6: 3870 // 3871 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3872 // 3873 // error 0.0049451742, which is more than 7 bits 3874 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3875 getF32Constant(DAG, 0xbeb08fe0, dl)); 3876 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3877 getF32Constant(DAG, 0x40019463, dl)); 3878 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3879 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3880 getF32Constant(DAG, 0x3fd6633d, dl)); 3881 } else if (LimitFloatPrecision <= 12) { 3882 // For floating-point precision of 12: 3883 // 3884 // Log2ofMantissa = 3885 // -2.51285454f + 3886 // (4.07009056f + 3887 // (-2.12067489f + 3888 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3889 // 3890 // error 0.0000876136000, which is better than 13 bits 3891 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3892 getF32Constant(DAG, 0xbda7262e, dl)); 3893 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3894 getF32Constant(DAG, 0x3f25280b, dl)); 3895 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3896 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3897 getF32Constant(DAG, 0x4007b923, dl)); 3898 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3899 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3900 getF32Constant(DAG, 0x40823e2f, dl)); 3901 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3902 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3903 getF32Constant(DAG, 0x4020d29c, dl)); 3904 } else { // LimitFloatPrecision <= 18 3905 // For floating-point precision of 18: 3906 // 3907 // Log2ofMantissa = 3908 // -3.0400495f + 3909 // (6.1129976f + 3910 // (-5.3420409f + 3911 // (3.2865683f + 3912 // (-1.2669343f + 3913 // (0.27515199f - 3914 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3915 // 3916 // error 0.0000018516, which is better than 18 bits 3917 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3918 getF32Constant(DAG, 0xbcd2769e, dl)); 3919 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3920 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3921 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3922 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3923 getF32Constant(DAG, 0x3fa22ae7, dl)); 3924 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3925 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3926 getF32Constant(DAG, 0x40525723, dl)); 3927 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3928 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3929 getF32Constant(DAG, 0x40aaf200, dl)); 3930 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3931 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3932 getF32Constant(DAG, 0x40c39dad, dl)); 3933 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3934 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3935 getF32Constant(DAG, 0x4042902c, dl)); 3936 } 3937 3938 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3939 } 3940 3941 // No special expansion. 3942 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3943 } 3944 3945 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3946 /// limited-precision mode. 3947 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3948 const TargetLowering &TLI) { 3949 3950 // TODO: What fast-math-flags should be set on the floating-point nodes? 3951 3952 if (Op.getValueType() == MVT::f32 && 3953 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3954 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3955 3956 // Scale the exponent by log10(2) [0.30102999f]. 3957 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3958 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3959 getF32Constant(DAG, 0x3e9a209a, dl)); 3960 3961 // Get the significand and build it into a floating-point number with 3962 // exponent of 1. 3963 SDValue X = GetSignificand(DAG, Op1, dl); 3964 3965 SDValue Log10ofMantissa; 3966 if (LimitFloatPrecision <= 6) { 3967 // For floating-point precision of 6: 3968 // 3969 // Log10ofMantissa = 3970 // -0.50419619f + 3971 // (0.60948995f - 0.10380950f * x) * x; 3972 // 3973 // error 0.0014886165, which is 6 bits 3974 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3975 getF32Constant(DAG, 0xbdd49a13, dl)); 3976 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3977 getF32Constant(DAG, 0x3f1c0789, dl)); 3978 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3979 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3980 getF32Constant(DAG, 0x3f011300, dl)); 3981 } else if (LimitFloatPrecision <= 12) { 3982 // For floating-point precision of 12: 3983 // 3984 // Log10ofMantissa = 3985 // -0.64831180f + 3986 // (0.91751397f + 3987 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3988 // 3989 // error 0.00019228036, which is better than 12 bits 3990 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3991 getF32Constant(DAG, 0x3d431f31, dl)); 3992 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3993 getF32Constant(DAG, 0x3ea21fb2, dl)); 3994 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3995 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3996 getF32Constant(DAG, 0x3f6ae232, dl)); 3997 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3998 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3999 getF32Constant(DAG, 0x3f25f7c3, dl)); 4000 } else { // LimitFloatPrecision <= 18 4001 // For floating-point precision of 18: 4002 // 4003 // Log10ofMantissa = 4004 // -0.84299375f + 4005 // (1.5327582f + 4006 // (-1.0688956f + 4007 // (0.49102474f + 4008 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4009 // 4010 // error 0.0000037995730, which is better than 18 bits 4011 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4012 getF32Constant(DAG, 0x3c5d51ce, dl)); 4013 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4014 getF32Constant(DAG, 0x3e00685a, dl)); 4015 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4016 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4017 getF32Constant(DAG, 0x3efb6798, dl)); 4018 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4019 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4020 getF32Constant(DAG, 0x3f88d192, dl)); 4021 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4022 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4023 getF32Constant(DAG, 0x3fc4316c, dl)); 4024 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4025 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4026 getF32Constant(DAG, 0x3f57ce70, dl)); 4027 } 4028 4029 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4030 } 4031 4032 // No special expansion. 4033 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4034 } 4035 4036 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4037 /// limited-precision mode. 4038 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4039 const TargetLowering &TLI) { 4040 if (Op.getValueType() == MVT::f32 && 4041 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4042 return getLimitedPrecisionExp2(Op, dl, DAG); 4043 4044 // No special expansion. 4045 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4046 } 4047 4048 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4049 /// limited-precision mode with x == 10.0f. 4050 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4051 SelectionDAG &DAG, const TargetLowering &TLI) { 4052 bool IsExp10 = false; 4053 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4054 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4055 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4056 APFloat Ten(10.0f); 4057 IsExp10 = LHSC->isExactlyValue(Ten); 4058 } 4059 } 4060 4061 // TODO: What fast-math-flags should be set on the FMUL node? 4062 if (IsExp10) { 4063 // Put the exponent in the right bit position for later addition to the 4064 // final result: 4065 // 4066 // #define LOG2OF10 3.3219281f 4067 // t0 = Op * LOG2OF10; 4068 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4069 getF32Constant(DAG, 0x40549a78, dl)); 4070 return getLimitedPrecisionExp2(t0, dl, DAG); 4071 } 4072 4073 // No special expansion. 4074 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4075 } 4076 4077 4078 /// ExpandPowI - Expand a llvm.powi intrinsic. 4079 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4080 SelectionDAG &DAG) { 4081 // If RHS is a constant, we can expand this out to a multiplication tree, 4082 // otherwise we end up lowering to a call to __powidf2 (for example). When 4083 // optimizing for size, we only want to do this if the expansion would produce 4084 // a small number of multiplies, otherwise we do the full expansion. 4085 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4086 // Get the exponent as a positive value. 4087 unsigned Val = RHSC->getSExtValue(); 4088 if ((int)Val < 0) Val = -Val; 4089 4090 // powi(x, 0) -> 1.0 4091 if (Val == 0) 4092 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4093 4094 const Function *F = DAG.getMachineFunction().getFunction(); 4095 if (!F->optForSize() || 4096 // If optimizing for size, don't insert too many multiplies. 4097 // This inserts up to 5 multiplies. 4098 countPopulation(Val) + Log2_32(Val) < 7) { 4099 // We use the simple binary decomposition method to generate the multiply 4100 // sequence. There are more optimal ways to do this (for example, 4101 // powi(x,15) generates one more multiply than it should), but this has 4102 // the benefit of being both really simple and much better than a libcall. 4103 SDValue Res; // Logically starts equal to 1.0 4104 SDValue CurSquare = LHS; 4105 // TODO: Intrinsics should have fast-math-flags that propagate to these 4106 // nodes. 4107 while (Val) { 4108 if (Val & 1) { 4109 if (Res.getNode()) 4110 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4111 else 4112 Res = CurSquare; // 1.0*CurSquare. 4113 } 4114 4115 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4116 CurSquare, CurSquare); 4117 Val >>= 1; 4118 } 4119 4120 // If the original was negative, invert the result, producing 1/(x*x*x). 4121 if (RHSC->getSExtValue() < 0) 4122 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4123 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4124 return Res; 4125 } 4126 } 4127 4128 // Otherwise, expand to a libcall. 4129 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4130 } 4131 4132 // getTruncatedArgReg - Find underlying register used for an truncated 4133 // argument. 4134 static unsigned getTruncatedArgReg(const SDValue &N) { 4135 if (N.getOpcode() != ISD::TRUNCATE) 4136 return 0; 4137 4138 const SDValue &Ext = N.getOperand(0); 4139 if (Ext.getOpcode() == ISD::AssertZext || 4140 Ext.getOpcode() == ISD::AssertSext) { 4141 const SDValue &CFR = Ext.getOperand(0); 4142 if (CFR.getOpcode() == ISD::CopyFromReg) 4143 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4144 if (CFR.getOpcode() == ISD::TRUNCATE) 4145 return getTruncatedArgReg(CFR); 4146 } 4147 return 0; 4148 } 4149 4150 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4151 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4152 /// At the end of instruction selection, they will be inserted to the entry BB. 4153 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4154 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4155 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4156 const Argument *Arg = dyn_cast<Argument>(V); 4157 if (!Arg) 4158 return false; 4159 4160 MachineFunction &MF = DAG.getMachineFunction(); 4161 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4162 4163 // Ignore inlined function arguments here. 4164 // 4165 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4166 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4167 return false; 4168 4169 Optional<MachineOperand> Op; 4170 // Some arguments' frame index is recorded during argument lowering. 4171 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4172 Op = MachineOperand::CreateFI(FI); 4173 4174 if (!Op && N.getNode()) { 4175 unsigned Reg; 4176 if (N.getOpcode() == ISD::CopyFromReg) 4177 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4178 else 4179 Reg = getTruncatedArgReg(N); 4180 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4181 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4182 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4183 if (PR) 4184 Reg = PR; 4185 } 4186 if (Reg) 4187 Op = MachineOperand::CreateReg(Reg, false); 4188 } 4189 4190 if (!Op) { 4191 // Check if ValueMap has reg number. 4192 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4193 if (VMI != FuncInfo.ValueMap.end()) 4194 Op = MachineOperand::CreateReg(VMI->second, false); 4195 } 4196 4197 if (!Op && N.getNode()) 4198 // Check if frame index is available. 4199 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4200 if (FrameIndexSDNode *FINode = 4201 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4202 Op = MachineOperand::CreateFI(FINode->getIndex()); 4203 4204 if (!Op) 4205 return false; 4206 4207 assert(Variable->isValidLocationForIntrinsic(DL) && 4208 "Expected inlined-at fields to agree"); 4209 if (Op->isReg()) 4210 FuncInfo.ArgDbgValues.push_back( 4211 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4212 Op->getReg(), Offset, Variable, Expr)); 4213 else 4214 FuncInfo.ArgDbgValues.push_back( 4215 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4216 .addOperand(*Op) 4217 .addImm(Offset) 4218 .addMetadata(Variable) 4219 .addMetadata(Expr)); 4220 4221 return true; 4222 } 4223 4224 // VisualStudio defines setjmp as _setjmp 4225 #if defined(_MSC_VER) && defined(setjmp) && \ 4226 !defined(setjmp_undefined_for_msvc) 4227 # pragma push_macro("setjmp") 4228 # undef setjmp 4229 # define setjmp_undefined_for_msvc 4230 #endif 4231 4232 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4233 /// we want to emit this as a call to a named external function, return the name 4234 /// otherwise lower it and return null. 4235 const char * 4236 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4238 SDLoc sdl = getCurSDLoc(); 4239 DebugLoc dl = getCurDebugLoc(); 4240 SDValue Res; 4241 4242 switch (Intrinsic) { 4243 default: 4244 // By default, turn this into a target intrinsic node. 4245 visitTargetIntrinsic(I, Intrinsic); 4246 return nullptr; 4247 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4248 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4249 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4250 case Intrinsic::returnaddress: 4251 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4252 TLI.getPointerTy(DAG.getDataLayout()), 4253 getValue(I.getArgOperand(0)))); 4254 return nullptr; 4255 case Intrinsic::frameaddress: 4256 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4257 TLI.getPointerTy(DAG.getDataLayout()), 4258 getValue(I.getArgOperand(0)))); 4259 return nullptr; 4260 case Intrinsic::read_register: { 4261 Value *Reg = I.getArgOperand(0); 4262 SDValue Chain = getRoot(); 4263 SDValue RegName = 4264 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4265 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4266 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4267 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4268 setValue(&I, Res); 4269 DAG.setRoot(Res.getValue(1)); 4270 return nullptr; 4271 } 4272 case Intrinsic::write_register: { 4273 Value *Reg = I.getArgOperand(0); 4274 Value *RegValue = I.getArgOperand(1); 4275 SDValue Chain = getRoot(); 4276 SDValue RegName = 4277 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4278 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4279 RegName, getValue(RegValue))); 4280 return nullptr; 4281 } 4282 case Intrinsic::setjmp: 4283 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4284 case Intrinsic::longjmp: 4285 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4286 case Intrinsic::memcpy: { 4287 // FIXME: this definition of "user defined address space" is x86-specific 4288 // Assert for address < 256 since we support only user defined address 4289 // spaces. 4290 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4291 < 256 && 4292 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4293 < 256 && 4294 "Unknown address space"); 4295 SDValue Op1 = getValue(I.getArgOperand(0)); 4296 SDValue Op2 = getValue(I.getArgOperand(1)); 4297 SDValue Op3 = getValue(I.getArgOperand(2)); 4298 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4299 if (!Align) 4300 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4301 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4302 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4303 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4304 false, isTC, 4305 MachinePointerInfo(I.getArgOperand(0)), 4306 MachinePointerInfo(I.getArgOperand(1))); 4307 updateDAGForMaybeTailCall(MC); 4308 return nullptr; 4309 } 4310 case Intrinsic::memset: { 4311 // FIXME: this definition of "user defined address space" is x86-specific 4312 // Assert for address < 256 since we support only user defined address 4313 // spaces. 4314 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4315 < 256 && 4316 "Unknown address space"); 4317 SDValue Op1 = getValue(I.getArgOperand(0)); 4318 SDValue Op2 = getValue(I.getArgOperand(1)); 4319 SDValue Op3 = getValue(I.getArgOperand(2)); 4320 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4321 if (!Align) 4322 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4323 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4324 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4325 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4326 isTC, MachinePointerInfo(I.getArgOperand(0))); 4327 updateDAGForMaybeTailCall(MS); 4328 return nullptr; 4329 } 4330 case Intrinsic::memmove: { 4331 // FIXME: this definition of "user defined address space" is x86-specific 4332 // Assert for address < 256 since we support only user defined address 4333 // spaces. 4334 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4335 < 256 && 4336 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4337 < 256 && 4338 "Unknown address space"); 4339 SDValue Op1 = getValue(I.getArgOperand(0)); 4340 SDValue Op2 = getValue(I.getArgOperand(1)); 4341 SDValue Op3 = getValue(I.getArgOperand(2)); 4342 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4343 if (!Align) 4344 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4345 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4346 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4347 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4348 isTC, MachinePointerInfo(I.getArgOperand(0)), 4349 MachinePointerInfo(I.getArgOperand(1))); 4350 updateDAGForMaybeTailCall(MM); 4351 return nullptr; 4352 } 4353 case Intrinsic::dbg_declare: { 4354 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4355 DILocalVariable *Variable = DI.getVariable(); 4356 DIExpression *Expression = DI.getExpression(); 4357 const Value *Address = DI.getAddress(); 4358 assert(Variable && "Missing variable"); 4359 if (!Address) { 4360 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4361 return nullptr; 4362 } 4363 4364 // Check if address has undef value. 4365 if (isa<UndefValue>(Address) || 4366 (Address->use_empty() && !isa<Argument>(Address))) { 4367 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4368 return nullptr; 4369 } 4370 4371 SDValue &N = NodeMap[Address]; 4372 if (!N.getNode() && isa<Argument>(Address)) 4373 // Check unused arguments map. 4374 N = UnusedArgNodeMap[Address]; 4375 SDDbgValue *SDV; 4376 if (N.getNode()) { 4377 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4378 Address = BCI->getOperand(0); 4379 // Parameters are handled specially. 4380 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4381 4382 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4383 4384 if (isParameter && !AI) { 4385 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4386 if (FINode) 4387 // Byval parameter. We have a frame index at this point. 4388 SDV = DAG.getFrameIndexDbgValue( 4389 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4390 else { 4391 // Address is an argument, so try to emit its dbg value using 4392 // virtual register info from the FuncInfo.ValueMap. 4393 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4394 N); 4395 return nullptr; 4396 } 4397 } else { 4398 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4399 true, 0, dl, SDNodeOrder); 4400 } 4401 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4402 } else { 4403 // If Address is an argument then try to emit its dbg value using 4404 // virtual register info from the FuncInfo.ValueMap. 4405 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4406 N)) { 4407 // If variable is pinned by a alloca in dominating bb then 4408 // use StaticAllocaMap. 4409 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4410 if (AI->getParent() != DI.getParent()) { 4411 DenseMap<const AllocaInst*, int>::iterator SI = 4412 FuncInfo.StaticAllocaMap.find(AI); 4413 if (SI != FuncInfo.StaticAllocaMap.end()) { 4414 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4415 0, dl, SDNodeOrder); 4416 DAG.AddDbgValue(SDV, nullptr, false); 4417 return nullptr; 4418 } 4419 } 4420 } 4421 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4422 } 4423 } 4424 return nullptr; 4425 } 4426 case Intrinsic::dbg_value: { 4427 const DbgValueInst &DI = cast<DbgValueInst>(I); 4428 assert(DI.getVariable() && "Missing variable"); 4429 4430 DILocalVariable *Variable = DI.getVariable(); 4431 DIExpression *Expression = DI.getExpression(); 4432 uint64_t Offset = DI.getOffset(); 4433 const Value *V = DI.getValue(); 4434 if (!V) 4435 return nullptr; 4436 4437 SDDbgValue *SDV; 4438 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4439 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4440 SDNodeOrder); 4441 DAG.AddDbgValue(SDV, nullptr, false); 4442 } else { 4443 // Do not use getValue() in here; we don't want to generate code at 4444 // this point if it hasn't been done yet. 4445 SDValue N = NodeMap[V]; 4446 if (!N.getNode() && isa<Argument>(V)) 4447 // Check unused arguments map. 4448 N = UnusedArgNodeMap[V]; 4449 if (N.getNode()) { 4450 // A dbg.value for an alloca is always indirect. 4451 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4452 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4453 IsIndirect, N)) { 4454 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4455 IsIndirect, Offset, dl, SDNodeOrder); 4456 DAG.AddDbgValue(SDV, N.getNode(), false); 4457 } 4458 } else if (!V->use_empty() ) { 4459 // Do not call getValue(V) yet, as we don't want to generate code. 4460 // Remember it for later. 4461 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4462 DanglingDebugInfoMap[V] = DDI; 4463 } else { 4464 // We may expand this to cover more cases. One case where we have no 4465 // data available is an unreferenced parameter. 4466 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4467 } 4468 } 4469 4470 // Build a debug info table entry. 4471 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4472 V = BCI->getOperand(0); 4473 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4474 // Don't handle byval struct arguments or VLAs, for example. 4475 if (!AI) { 4476 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4477 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4478 return nullptr; 4479 } 4480 DenseMap<const AllocaInst*, int>::iterator SI = 4481 FuncInfo.StaticAllocaMap.find(AI); 4482 if (SI == FuncInfo.StaticAllocaMap.end()) 4483 return nullptr; // VLAs. 4484 return nullptr; 4485 } 4486 4487 case Intrinsic::eh_typeid_for: { 4488 // Find the type id for the given typeinfo. 4489 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4490 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4491 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4492 setValue(&I, Res); 4493 return nullptr; 4494 } 4495 4496 case Intrinsic::eh_return_i32: 4497 case Intrinsic::eh_return_i64: 4498 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4499 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4500 MVT::Other, 4501 getControlRoot(), 4502 getValue(I.getArgOperand(0)), 4503 getValue(I.getArgOperand(1)))); 4504 return nullptr; 4505 case Intrinsic::eh_unwind_init: 4506 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4507 return nullptr; 4508 case Intrinsic::eh_dwarf_cfa: { 4509 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4510 TLI.getPointerTy(DAG.getDataLayout())); 4511 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4512 CfaArg.getValueType(), 4513 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4514 CfaArg.getValueType()), 4515 CfaArg); 4516 SDValue FA = DAG.getNode( 4517 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4518 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4519 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4520 FA, Offset)); 4521 return nullptr; 4522 } 4523 case Intrinsic::eh_sjlj_callsite: { 4524 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4525 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4526 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4527 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4528 4529 MMI.setCurrentCallSite(CI->getZExtValue()); 4530 return nullptr; 4531 } 4532 case Intrinsic::eh_sjlj_functioncontext: { 4533 // Get and store the index of the function context. 4534 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4535 AllocaInst *FnCtx = 4536 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4537 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4538 MFI->setFunctionContextIndex(FI); 4539 return nullptr; 4540 } 4541 case Intrinsic::eh_sjlj_setjmp: { 4542 SDValue Ops[2]; 4543 Ops[0] = getRoot(); 4544 Ops[1] = getValue(I.getArgOperand(0)); 4545 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4546 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4547 setValue(&I, Op.getValue(0)); 4548 DAG.setRoot(Op.getValue(1)); 4549 return nullptr; 4550 } 4551 case Intrinsic::eh_sjlj_longjmp: { 4552 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4553 getRoot(), getValue(I.getArgOperand(0)))); 4554 return nullptr; 4555 } 4556 case Intrinsic::eh_sjlj_setup_dispatch: { 4557 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4558 getRoot())); 4559 return nullptr; 4560 } 4561 4562 case Intrinsic::masked_gather: 4563 visitMaskedGather(I); 4564 return nullptr; 4565 case Intrinsic::masked_load: 4566 visitMaskedLoad(I); 4567 return nullptr; 4568 case Intrinsic::masked_scatter: 4569 visitMaskedScatter(I); 4570 return nullptr; 4571 case Intrinsic::masked_store: 4572 visitMaskedStore(I); 4573 return nullptr; 4574 case Intrinsic::x86_mmx_pslli_w: 4575 case Intrinsic::x86_mmx_pslli_d: 4576 case Intrinsic::x86_mmx_pslli_q: 4577 case Intrinsic::x86_mmx_psrli_w: 4578 case Intrinsic::x86_mmx_psrli_d: 4579 case Intrinsic::x86_mmx_psrli_q: 4580 case Intrinsic::x86_mmx_psrai_w: 4581 case Intrinsic::x86_mmx_psrai_d: { 4582 SDValue ShAmt = getValue(I.getArgOperand(1)); 4583 if (isa<ConstantSDNode>(ShAmt)) { 4584 visitTargetIntrinsic(I, Intrinsic); 4585 return nullptr; 4586 } 4587 unsigned NewIntrinsic = 0; 4588 EVT ShAmtVT = MVT::v2i32; 4589 switch (Intrinsic) { 4590 case Intrinsic::x86_mmx_pslli_w: 4591 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4592 break; 4593 case Intrinsic::x86_mmx_pslli_d: 4594 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4595 break; 4596 case Intrinsic::x86_mmx_pslli_q: 4597 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4598 break; 4599 case Intrinsic::x86_mmx_psrli_w: 4600 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4601 break; 4602 case Intrinsic::x86_mmx_psrli_d: 4603 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4604 break; 4605 case Intrinsic::x86_mmx_psrli_q: 4606 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4607 break; 4608 case Intrinsic::x86_mmx_psrai_w: 4609 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4610 break; 4611 case Intrinsic::x86_mmx_psrai_d: 4612 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4613 break; 4614 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4615 } 4616 4617 // The vector shift intrinsics with scalars uses 32b shift amounts but 4618 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4619 // to be zero. 4620 // We must do this early because v2i32 is not a legal type. 4621 SDValue ShOps[2]; 4622 ShOps[0] = ShAmt; 4623 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4624 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4625 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4626 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4627 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4628 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4629 getValue(I.getArgOperand(0)), ShAmt); 4630 setValue(&I, Res); 4631 return nullptr; 4632 } 4633 case Intrinsic::convertff: 4634 case Intrinsic::convertfsi: 4635 case Intrinsic::convertfui: 4636 case Intrinsic::convertsif: 4637 case Intrinsic::convertuif: 4638 case Intrinsic::convertss: 4639 case Intrinsic::convertsu: 4640 case Intrinsic::convertus: 4641 case Intrinsic::convertuu: { 4642 ISD::CvtCode Code = ISD::CVT_INVALID; 4643 switch (Intrinsic) { 4644 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4645 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4646 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4647 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4648 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4649 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4650 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4651 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4652 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4653 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4654 } 4655 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4656 const Value *Op1 = I.getArgOperand(0); 4657 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4658 DAG.getValueType(DestVT), 4659 DAG.getValueType(getValue(Op1).getValueType()), 4660 getValue(I.getArgOperand(1)), 4661 getValue(I.getArgOperand(2)), 4662 Code); 4663 setValue(&I, Res); 4664 return nullptr; 4665 } 4666 case Intrinsic::powi: 4667 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4668 getValue(I.getArgOperand(1)), DAG)); 4669 return nullptr; 4670 case Intrinsic::log: 4671 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4672 return nullptr; 4673 case Intrinsic::log2: 4674 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4675 return nullptr; 4676 case Intrinsic::log10: 4677 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4678 return nullptr; 4679 case Intrinsic::exp: 4680 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4681 return nullptr; 4682 case Intrinsic::exp2: 4683 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4684 return nullptr; 4685 case Intrinsic::pow: 4686 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4687 getValue(I.getArgOperand(1)), DAG, TLI)); 4688 return nullptr; 4689 case Intrinsic::sqrt: 4690 case Intrinsic::fabs: 4691 case Intrinsic::sin: 4692 case Intrinsic::cos: 4693 case Intrinsic::floor: 4694 case Intrinsic::ceil: 4695 case Intrinsic::trunc: 4696 case Intrinsic::rint: 4697 case Intrinsic::nearbyint: 4698 case Intrinsic::round: { 4699 unsigned Opcode; 4700 switch (Intrinsic) { 4701 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4702 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4703 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4704 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4705 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4706 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4707 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4708 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4709 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4710 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4711 case Intrinsic::round: Opcode = ISD::FROUND; break; 4712 } 4713 4714 setValue(&I, DAG.getNode(Opcode, sdl, 4715 getValue(I.getArgOperand(0)).getValueType(), 4716 getValue(I.getArgOperand(0)))); 4717 return nullptr; 4718 } 4719 case Intrinsic::minnum: 4720 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4721 getValue(I.getArgOperand(0)).getValueType(), 4722 getValue(I.getArgOperand(0)), 4723 getValue(I.getArgOperand(1)))); 4724 return nullptr; 4725 case Intrinsic::maxnum: 4726 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4727 getValue(I.getArgOperand(0)).getValueType(), 4728 getValue(I.getArgOperand(0)), 4729 getValue(I.getArgOperand(1)))); 4730 return nullptr; 4731 case Intrinsic::copysign: 4732 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4733 getValue(I.getArgOperand(0)).getValueType(), 4734 getValue(I.getArgOperand(0)), 4735 getValue(I.getArgOperand(1)))); 4736 return nullptr; 4737 case Intrinsic::fma: 4738 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4739 getValue(I.getArgOperand(0)).getValueType(), 4740 getValue(I.getArgOperand(0)), 4741 getValue(I.getArgOperand(1)), 4742 getValue(I.getArgOperand(2)))); 4743 return nullptr; 4744 case Intrinsic::fmuladd: { 4745 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4746 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4747 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4748 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4749 getValue(I.getArgOperand(0)).getValueType(), 4750 getValue(I.getArgOperand(0)), 4751 getValue(I.getArgOperand(1)), 4752 getValue(I.getArgOperand(2)))); 4753 } else { 4754 // TODO: Intrinsic calls should have fast-math-flags. 4755 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4756 getValue(I.getArgOperand(0)).getValueType(), 4757 getValue(I.getArgOperand(0)), 4758 getValue(I.getArgOperand(1))); 4759 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4760 getValue(I.getArgOperand(0)).getValueType(), 4761 Mul, 4762 getValue(I.getArgOperand(2))); 4763 setValue(&I, Add); 4764 } 4765 return nullptr; 4766 } 4767 case Intrinsic::convert_to_fp16: 4768 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4769 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4770 getValue(I.getArgOperand(0)), 4771 DAG.getTargetConstant(0, sdl, 4772 MVT::i32)))); 4773 return nullptr; 4774 case Intrinsic::convert_from_fp16: 4775 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4776 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4777 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4778 getValue(I.getArgOperand(0))))); 4779 return nullptr; 4780 case Intrinsic::pcmarker: { 4781 SDValue Tmp = getValue(I.getArgOperand(0)); 4782 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4783 return nullptr; 4784 } 4785 case Intrinsic::readcyclecounter: { 4786 SDValue Op = getRoot(); 4787 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4788 DAG.getVTList(MVT::i64, MVT::Other), Op); 4789 setValue(&I, Res); 4790 DAG.setRoot(Res.getValue(1)); 4791 return nullptr; 4792 } 4793 case Intrinsic::bswap: 4794 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4795 getValue(I.getArgOperand(0)).getValueType(), 4796 getValue(I.getArgOperand(0)))); 4797 return nullptr; 4798 case Intrinsic::uabsdiff: 4799 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4800 getValue(I.getArgOperand(0)).getValueType(), 4801 getValue(I.getArgOperand(0)), 4802 getValue(I.getArgOperand(1)))); 4803 return nullptr; 4804 case Intrinsic::sabsdiff: 4805 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4806 getValue(I.getArgOperand(0)).getValueType(), 4807 getValue(I.getArgOperand(0)), 4808 getValue(I.getArgOperand(1)))); 4809 return nullptr; 4810 case Intrinsic::cttz: { 4811 SDValue Arg = getValue(I.getArgOperand(0)); 4812 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4813 EVT Ty = Arg.getValueType(); 4814 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4815 sdl, Ty, Arg)); 4816 return nullptr; 4817 } 4818 case Intrinsic::ctlz: { 4819 SDValue Arg = getValue(I.getArgOperand(0)); 4820 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4821 EVT Ty = Arg.getValueType(); 4822 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4823 sdl, Ty, Arg)); 4824 return nullptr; 4825 } 4826 case Intrinsic::ctpop: { 4827 SDValue Arg = getValue(I.getArgOperand(0)); 4828 EVT Ty = Arg.getValueType(); 4829 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4830 return nullptr; 4831 } 4832 case Intrinsic::stacksave: { 4833 SDValue Op = getRoot(); 4834 Res = DAG.getNode( 4835 ISD::STACKSAVE, sdl, 4836 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4837 setValue(&I, Res); 4838 DAG.setRoot(Res.getValue(1)); 4839 return nullptr; 4840 } 4841 case Intrinsic::stackrestore: { 4842 Res = getValue(I.getArgOperand(0)); 4843 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4844 return nullptr; 4845 } 4846 case Intrinsic::stackprotector: { 4847 // Emit code into the DAG to store the stack guard onto the stack. 4848 MachineFunction &MF = DAG.getMachineFunction(); 4849 MachineFrameInfo *MFI = MF.getFrameInfo(); 4850 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4851 SDValue Src, Chain = getRoot(); 4852 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4853 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4854 4855 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4856 // global variable __stack_chk_guard. 4857 if (!GV) 4858 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4859 if (BC->getOpcode() == Instruction::BitCast) 4860 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4861 4862 if (GV && TLI.useLoadStackGuardNode()) { 4863 // Emit a LOAD_STACK_GUARD node. 4864 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4865 sdl, PtrTy, Chain); 4866 MachinePointerInfo MPInfo(GV); 4867 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4868 unsigned Flags = MachineMemOperand::MOLoad | 4869 MachineMemOperand::MOInvariant; 4870 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4871 PtrTy.getSizeInBits() / 8, 4872 DAG.getEVTAlignment(PtrTy)); 4873 Node->setMemRefs(MemRefs, MemRefs + 1); 4874 4875 // Copy the guard value to a virtual register so that it can be 4876 // retrieved in the epilogue. 4877 Src = SDValue(Node, 0); 4878 const TargetRegisterClass *RC = 4879 TLI.getRegClassFor(Src.getSimpleValueType()); 4880 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4881 4882 SPDescriptor.setGuardReg(Reg); 4883 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4884 } else { 4885 Src = getValue(I.getArgOperand(0)); // The guard's value. 4886 } 4887 4888 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4889 4890 int FI = FuncInfo.StaticAllocaMap[Slot]; 4891 MFI->setStackProtectorIndex(FI); 4892 4893 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4894 4895 // Store the stack protector onto the stack. 4896 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4897 DAG.getMachineFunction(), FI), 4898 true, false, 0); 4899 setValue(&I, Res); 4900 DAG.setRoot(Res); 4901 return nullptr; 4902 } 4903 case Intrinsic::objectsize: { 4904 // If we don't know by now, we're never going to know. 4905 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4906 4907 assert(CI && "Non-constant type in __builtin_object_size?"); 4908 4909 SDValue Arg = getValue(I.getCalledValue()); 4910 EVT Ty = Arg.getValueType(); 4911 4912 if (CI->isZero()) 4913 Res = DAG.getConstant(-1ULL, sdl, Ty); 4914 else 4915 Res = DAG.getConstant(0, sdl, Ty); 4916 4917 setValue(&I, Res); 4918 return nullptr; 4919 } 4920 case Intrinsic::annotation: 4921 case Intrinsic::ptr_annotation: 4922 // Drop the intrinsic, but forward the value 4923 setValue(&I, getValue(I.getOperand(0))); 4924 return nullptr; 4925 case Intrinsic::assume: 4926 case Intrinsic::var_annotation: 4927 // Discard annotate attributes and assumptions 4928 return nullptr; 4929 4930 case Intrinsic::init_trampoline: { 4931 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4932 4933 SDValue Ops[6]; 4934 Ops[0] = getRoot(); 4935 Ops[1] = getValue(I.getArgOperand(0)); 4936 Ops[2] = getValue(I.getArgOperand(1)); 4937 Ops[3] = getValue(I.getArgOperand(2)); 4938 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4939 Ops[5] = DAG.getSrcValue(F); 4940 4941 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4942 4943 DAG.setRoot(Res); 4944 return nullptr; 4945 } 4946 case Intrinsic::adjust_trampoline: { 4947 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4948 TLI.getPointerTy(DAG.getDataLayout()), 4949 getValue(I.getArgOperand(0)))); 4950 return nullptr; 4951 } 4952 case Intrinsic::gcroot: 4953 if (GFI) { 4954 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4955 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4956 4957 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4958 GFI->addStackRoot(FI->getIndex(), TypeMap); 4959 } 4960 return nullptr; 4961 case Intrinsic::gcread: 4962 case Intrinsic::gcwrite: 4963 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4964 case Intrinsic::flt_rounds: 4965 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4966 return nullptr; 4967 4968 case Intrinsic::expect: { 4969 // Just replace __builtin_expect(exp, c) with EXP. 4970 setValue(&I, getValue(I.getArgOperand(0))); 4971 return nullptr; 4972 } 4973 4974 case Intrinsic::debugtrap: 4975 case Intrinsic::trap: { 4976 StringRef TrapFuncName = 4977 I.getAttributes() 4978 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4979 .getValueAsString(); 4980 if (TrapFuncName.empty()) { 4981 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4982 ISD::TRAP : ISD::DEBUGTRAP; 4983 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4984 return nullptr; 4985 } 4986 TargetLowering::ArgListTy Args; 4987 4988 TargetLowering::CallLoweringInfo CLI(DAG); 4989 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4990 CallingConv::C, I.getType(), 4991 DAG.getExternalSymbol(TrapFuncName.data(), 4992 TLI.getPointerTy(DAG.getDataLayout())), 4993 std::move(Args), 0); 4994 4995 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4996 DAG.setRoot(Result.second); 4997 return nullptr; 4998 } 4999 5000 case Intrinsic::uadd_with_overflow: 5001 case Intrinsic::sadd_with_overflow: 5002 case Intrinsic::usub_with_overflow: 5003 case Intrinsic::ssub_with_overflow: 5004 case Intrinsic::umul_with_overflow: 5005 case Intrinsic::smul_with_overflow: { 5006 ISD::NodeType Op; 5007 switch (Intrinsic) { 5008 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5009 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5010 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5011 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5012 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5013 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5014 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5015 } 5016 SDValue Op1 = getValue(I.getArgOperand(0)); 5017 SDValue Op2 = getValue(I.getArgOperand(1)); 5018 5019 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5020 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5021 return nullptr; 5022 } 5023 case Intrinsic::prefetch: { 5024 SDValue Ops[5]; 5025 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5026 Ops[0] = getRoot(); 5027 Ops[1] = getValue(I.getArgOperand(0)); 5028 Ops[2] = getValue(I.getArgOperand(1)); 5029 Ops[3] = getValue(I.getArgOperand(2)); 5030 Ops[4] = getValue(I.getArgOperand(3)); 5031 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5032 DAG.getVTList(MVT::Other), Ops, 5033 EVT::getIntegerVT(*Context, 8), 5034 MachinePointerInfo(I.getArgOperand(0)), 5035 0, /* align */ 5036 false, /* volatile */ 5037 rw==0, /* read */ 5038 rw==1)); /* write */ 5039 return nullptr; 5040 } 5041 case Intrinsic::lifetime_start: 5042 case Intrinsic::lifetime_end: { 5043 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5044 // Stack coloring is not enabled in O0, discard region information. 5045 if (TM.getOptLevel() == CodeGenOpt::None) 5046 return nullptr; 5047 5048 SmallVector<Value *, 4> Allocas; 5049 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5050 5051 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5052 E = Allocas.end(); Object != E; ++Object) { 5053 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5054 5055 // Could not find an Alloca. 5056 if (!LifetimeObject) 5057 continue; 5058 5059 // First check that the Alloca is static, otherwise it won't have a 5060 // valid frame index. 5061 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5062 if (SI == FuncInfo.StaticAllocaMap.end()) 5063 return nullptr; 5064 5065 int FI = SI->second; 5066 5067 SDValue Ops[2]; 5068 Ops[0] = getRoot(); 5069 Ops[1] = 5070 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5071 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5072 5073 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5074 DAG.setRoot(Res); 5075 } 5076 return nullptr; 5077 } 5078 case Intrinsic::invariant_start: 5079 // Discard region information. 5080 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5081 return nullptr; 5082 case Intrinsic::invariant_end: 5083 // Discard region information. 5084 return nullptr; 5085 case Intrinsic::stackprotectorcheck: { 5086 // Do not actually emit anything for this basic block. Instead we initialize 5087 // the stack protector descriptor and export the guard variable so we can 5088 // access it in FinishBasicBlock. 5089 const BasicBlock *BB = I.getParent(); 5090 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5091 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5092 5093 // Flush our exports since we are going to process a terminator. 5094 (void)getControlRoot(); 5095 return nullptr; 5096 } 5097 case Intrinsic::clear_cache: 5098 return TLI.getClearCacheBuiltinName(); 5099 case Intrinsic::eh_actions: 5100 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5101 return nullptr; 5102 case Intrinsic::donothing: 5103 // ignore 5104 return nullptr; 5105 case Intrinsic::experimental_stackmap: { 5106 visitStackmap(I); 5107 return nullptr; 5108 } 5109 case Intrinsic::experimental_patchpoint_void: 5110 case Intrinsic::experimental_patchpoint_i64: { 5111 visitPatchpoint(&I); 5112 return nullptr; 5113 } 5114 case Intrinsic::experimental_gc_statepoint: { 5115 visitStatepoint(I); 5116 return nullptr; 5117 } 5118 case Intrinsic::experimental_gc_result_int: 5119 case Intrinsic::experimental_gc_result_float: 5120 case Intrinsic::experimental_gc_result_ptr: 5121 case Intrinsic::experimental_gc_result: { 5122 visitGCResult(I); 5123 return nullptr; 5124 } 5125 case Intrinsic::experimental_gc_relocate: { 5126 visitGCRelocate(I); 5127 return nullptr; 5128 } 5129 case Intrinsic::instrprof_increment: 5130 llvm_unreachable("instrprof failed to lower an increment"); 5131 5132 case Intrinsic::localescape: { 5133 MachineFunction &MF = DAG.getMachineFunction(); 5134 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5135 5136 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5137 // is the same on all targets. 5138 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5139 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5140 if (isa<ConstantPointerNull>(Arg)) 5141 continue; // Skip null pointers. They represent a hole in index space. 5142 AllocaInst *Slot = cast<AllocaInst>(Arg); 5143 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5144 "can only escape static allocas"); 5145 int FI = FuncInfo.StaticAllocaMap[Slot]; 5146 MCSymbol *FrameAllocSym = 5147 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5148 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5150 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5151 .addSym(FrameAllocSym) 5152 .addFrameIndex(FI); 5153 } 5154 5155 return nullptr; 5156 } 5157 5158 case Intrinsic::localrecover: { 5159 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5160 MachineFunction &MF = DAG.getMachineFunction(); 5161 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5162 5163 // Get the symbol that defines the frame offset. 5164 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5165 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5166 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5167 MCSymbol *FrameAllocSym = 5168 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5169 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5170 5171 // Create a MCSymbol for the label to avoid any target lowering 5172 // that would make this PC relative. 5173 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5174 SDValue OffsetVal = 5175 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5176 5177 // Add the offset to the FP. 5178 Value *FP = I.getArgOperand(1); 5179 SDValue FPVal = getValue(FP); 5180 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5181 setValue(&I, Add); 5182 5183 return nullptr; 5184 } 5185 case Intrinsic::eh_begincatch: 5186 case Intrinsic::eh_endcatch: 5187 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5188 case Intrinsic::eh_exceptioncode: { 5189 unsigned Reg = TLI.getExceptionPointerRegister(); 5190 assert(Reg && "cannot get exception code on this platform"); 5191 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5192 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5193 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5194 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5195 SDValue N = 5196 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5197 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5198 setValue(&I, N); 5199 return nullptr; 5200 } 5201 } 5202 } 5203 5204 std::pair<SDValue, SDValue> 5205 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5206 const BasicBlock *EHPadBB) { 5207 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5208 MCSymbol *BeginLabel = nullptr; 5209 5210 if (EHPadBB) { 5211 // Insert a label before the invoke call to mark the try range. This can be 5212 // used to detect deletion of the invoke via the MachineModuleInfo. 5213 BeginLabel = MMI.getContext().createTempSymbol(); 5214 5215 // For SjLj, keep track of which landing pads go with which invokes 5216 // so as to maintain the ordering of pads in the LSDA. 5217 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5218 if (CallSiteIndex) { 5219 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5220 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5221 5222 // Now that the call site is handled, stop tracking it. 5223 MMI.setCurrentCallSite(0); 5224 } 5225 5226 // Both PendingLoads and PendingExports must be flushed here; 5227 // this call might not return. 5228 (void)getRoot(); 5229 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5230 5231 CLI.setChain(getRoot()); 5232 } 5233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5234 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5235 5236 assert((CLI.IsTailCall || Result.second.getNode()) && 5237 "Non-null chain expected with non-tail call!"); 5238 assert((Result.second.getNode() || !Result.first.getNode()) && 5239 "Null value expected with tail call!"); 5240 5241 if (!Result.second.getNode()) { 5242 // As a special case, a null chain means that a tail call has been emitted 5243 // and the DAG root is already updated. 5244 HasTailCall = true; 5245 5246 // Since there's no actual continuation from this block, nothing can be 5247 // relying on us setting vregs for them. 5248 PendingExports.clear(); 5249 } else { 5250 DAG.setRoot(Result.second); 5251 } 5252 5253 if (EHPadBB) { 5254 // Insert a label at the end of the invoke call to mark the try range. This 5255 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5256 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5257 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5258 5259 // Inform MachineModuleInfo of range. 5260 if (MMI.hasEHFunclets()) { 5261 WinEHFuncInfo &EHInfo = 5262 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5263 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5264 } else { 5265 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5266 } 5267 } 5268 5269 return Result; 5270 } 5271 5272 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5273 bool isTailCall, 5274 const BasicBlock *EHPadBB) { 5275 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5276 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5277 Type *RetTy = FTy->getReturnType(); 5278 5279 TargetLowering::ArgListTy Args; 5280 TargetLowering::ArgListEntry Entry; 5281 Args.reserve(CS.arg_size()); 5282 5283 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5284 i != e; ++i) { 5285 const Value *V = *i; 5286 5287 // Skip empty types 5288 if (V->getType()->isEmptyTy()) 5289 continue; 5290 5291 SDValue ArgNode = getValue(V); 5292 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5293 5294 // Skip the first return-type Attribute to get to params. 5295 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5296 Args.push_back(Entry); 5297 5298 // If we have an explicit sret argument that is an Instruction, (i.e., it 5299 // might point to function-local memory), we can't meaningfully tail-call. 5300 if (Entry.isSRet && isa<Instruction>(V)) 5301 isTailCall = false; 5302 } 5303 5304 // Check if target-independent constraints permit a tail call here. 5305 // Target-dependent constraints are checked within TLI->LowerCallTo. 5306 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5307 isTailCall = false; 5308 5309 TargetLowering::CallLoweringInfo CLI(DAG); 5310 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5311 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5312 .setTailCall(isTailCall); 5313 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5314 5315 if (Result.first.getNode()) 5316 setValue(CS.getInstruction(), Result.first); 5317 } 5318 5319 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5320 /// value is equal or not-equal to zero. 5321 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5322 for (const User *U : V->users()) { 5323 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5324 if (IC->isEquality()) 5325 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5326 if (C->isNullValue()) 5327 continue; 5328 // Unknown instruction. 5329 return false; 5330 } 5331 return true; 5332 } 5333 5334 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5335 Type *LoadTy, 5336 SelectionDAGBuilder &Builder) { 5337 5338 // Check to see if this load can be trivially constant folded, e.g. if the 5339 // input is from a string literal. 5340 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5341 // Cast pointer to the type we really want to load. 5342 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5343 PointerType::getUnqual(LoadTy)); 5344 5345 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5346 const_cast<Constant *>(LoadInput), *Builder.DL)) 5347 return Builder.getValue(LoadCst); 5348 } 5349 5350 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5351 // still constant memory, the input chain can be the entry node. 5352 SDValue Root; 5353 bool ConstantMemory = false; 5354 5355 // Do not serialize (non-volatile) loads of constant memory with anything. 5356 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5357 Root = Builder.DAG.getEntryNode(); 5358 ConstantMemory = true; 5359 } else { 5360 // Do not serialize non-volatile loads against each other. 5361 Root = Builder.DAG.getRoot(); 5362 } 5363 5364 SDValue Ptr = Builder.getValue(PtrVal); 5365 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5366 Ptr, MachinePointerInfo(PtrVal), 5367 false /*volatile*/, 5368 false /*nontemporal*/, 5369 false /*isinvariant*/, 1 /* align=1 */); 5370 5371 if (!ConstantMemory) 5372 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5373 return LoadVal; 5374 } 5375 5376 /// processIntegerCallValue - Record the value for an instruction that 5377 /// produces an integer result, converting the type where necessary. 5378 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5379 SDValue Value, 5380 bool IsSigned) { 5381 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5382 I.getType(), true); 5383 if (IsSigned) 5384 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5385 else 5386 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5387 setValue(&I, Value); 5388 } 5389 5390 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5391 /// If so, return true and lower it, otherwise return false and it will be 5392 /// lowered like a normal call. 5393 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5394 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5395 if (I.getNumArgOperands() != 3) 5396 return false; 5397 5398 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5399 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5400 !I.getArgOperand(2)->getType()->isIntegerTy() || 5401 !I.getType()->isIntegerTy()) 5402 return false; 5403 5404 const Value *Size = I.getArgOperand(2); 5405 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5406 if (CSize && CSize->getZExtValue() == 0) { 5407 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5408 I.getType(), true); 5409 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5410 return true; 5411 } 5412 5413 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5414 std::pair<SDValue, SDValue> Res = 5415 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5416 getValue(LHS), getValue(RHS), getValue(Size), 5417 MachinePointerInfo(LHS), 5418 MachinePointerInfo(RHS)); 5419 if (Res.first.getNode()) { 5420 processIntegerCallValue(I, Res.first, true); 5421 PendingLoads.push_back(Res.second); 5422 return true; 5423 } 5424 5425 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5426 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5427 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5428 bool ActuallyDoIt = true; 5429 MVT LoadVT; 5430 Type *LoadTy; 5431 switch (CSize->getZExtValue()) { 5432 default: 5433 LoadVT = MVT::Other; 5434 LoadTy = nullptr; 5435 ActuallyDoIt = false; 5436 break; 5437 case 2: 5438 LoadVT = MVT::i16; 5439 LoadTy = Type::getInt16Ty(CSize->getContext()); 5440 break; 5441 case 4: 5442 LoadVT = MVT::i32; 5443 LoadTy = Type::getInt32Ty(CSize->getContext()); 5444 break; 5445 case 8: 5446 LoadVT = MVT::i64; 5447 LoadTy = Type::getInt64Ty(CSize->getContext()); 5448 break; 5449 /* 5450 case 16: 5451 LoadVT = MVT::v4i32; 5452 LoadTy = Type::getInt32Ty(CSize->getContext()); 5453 LoadTy = VectorType::get(LoadTy, 4); 5454 break; 5455 */ 5456 } 5457 5458 // This turns into unaligned loads. We only do this if the target natively 5459 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5460 // we'll only produce a small number of byte loads. 5461 5462 // Require that we can find a legal MVT, and only do this if the target 5463 // supports unaligned loads of that type. Expanding into byte loads would 5464 // bloat the code. 5465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5466 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5467 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5468 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5469 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5470 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5471 // TODO: Check alignment of src and dest ptrs. 5472 if (!TLI.isTypeLegal(LoadVT) || 5473 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5474 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5475 ActuallyDoIt = false; 5476 } 5477 5478 if (ActuallyDoIt) { 5479 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5480 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5481 5482 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5483 ISD::SETNE); 5484 processIntegerCallValue(I, Res, false); 5485 return true; 5486 } 5487 } 5488 5489 5490 return false; 5491 } 5492 5493 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5494 /// form. If so, return true and lower it, otherwise return false and it 5495 /// will be lowered like a normal call. 5496 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5497 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5498 if (I.getNumArgOperands() != 3) 5499 return false; 5500 5501 const Value *Src = I.getArgOperand(0); 5502 const Value *Char = I.getArgOperand(1); 5503 const Value *Length = I.getArgOperand(2); 5504 if (!Src->getType()->isPointerTy() || 5505 !Char->getType()->isIntegerTy() || 5506 !Length->getType()->isIntegerTy() || 5507 !I.getType()->isPointerTy()) 5508 return false; 5509 5510 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5511 std::pair<SDValue, SDValue> Res = 5512 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5513 getValue(Src), getValue(Char), getValue(Length), 5514 MachinePointerInfo(Src)); 5515 if (Res.first.getNode()) { 5516 setValue(&I, Res.first); 5517 PendingLoads.push_back(Res.second); 5518 return true; 5519 } 5520 5521 return false; 5522 } 5523 5524 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5525 /// optimized form. If so, return true and lower it, otherwise return false 5526 /// and it will be lowered like a normal call. 5527 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5528 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5529 if (I.getNumArgOperands() != 2) 5530 return false; 5531 5532 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5533 if (!Arg0->getType()->isPointerTy() || 5534 !Arg1->getType()->isPointerTy() || 5535 !I.getType()->isPointerTy()) 5536 return false; 5537 5538 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5539 std::pair<SDValue, SDValue> Res = 5540 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5541 getValue(Arg0), getValue(Arg1), 5542 MachinePointerInfo(Arg0), 5543 MachinePointerInfo(Arg1), isStpcpy); 5544 if (Res.first.getNode()) { 5545 setValue(&I, Res.first); 5546 DAG.setRoot(Res.second); 5547 return true; 5548 } 5549 5550 return false; 5551 } 5552 5553 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5554 /// If so, return true and lower it, otherwise return false and it will be 5555 /// lowered like a normal call. 5556 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5557 // Verify that the prototype makes sense. int strcmp(void*,void*) 5558 if (I.getNumArgOperands() != 2) 5559 return false; 5560 5561 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5562 if (!Arg0->getType()->isPointerTy() || 5563 !Arg1->getType()->isPointerTy() || 5564 !I.getType()->isIntegerTy()) 5565 return false; 5566 5567 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5568 std::pair<SDValue, SDValue> Res = 5569 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5570 getValue(Arg0), getValue(Arg1), 5571 MachinePointerInfo(Arg0), 5572 MachinePointerInfo(Arg1)); 5573 if (Res.first.getNode()) { 5574 processIntegerCallValue(I, Res.first, true); 5575 PendingLoads.push_back(Res.second); 5576 return true; 5577 } 5578 5579 return false; 5580 } 5581 5582 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5583 /// form. If so, return true and lower it, otherwise return false and it 5584 /// will be lowered like a normal call. 5585 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5586 // Verify that the prototype makes sense. size_t strlen(char *) 5587 if (I.getNumArgOperands() != 1) 5588 return false; 5589 5590 const Value *Arg0 = I.getArgOperand(0); 5591 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5592 return false; 5593 5594 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5595 std::pair<SDValue, SDValue> Res = 5596 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5597 getValue(Arg0), MachinePointerInfo(Arg0)); 5598 if (Res.first.getNode()) { 5599 processIntegerCallValue(I, Res.first, false); 5600 PendingLoads.push_back(Res.second); 5601 return true; 5602 } 5603 5604 return false; 5605 } 5606 5607 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5608 /// form. If so, return true and lower it, otherwise return false and it 5609 /// will be lowered like a normal call. 5610 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5611 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5612 if (I.getNumArgOperands() != 2) 5613 return false; 5614 5615 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5616 if (!Arg0->getType()->isPointerTy() || 5617 !Arg1->getType()->isIntegerTy() || 5618 !I.getType()->isIntegerTy()) 5619 return false; 5620 5621 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5622 std::pair<SDValue, SDValue> Res = 5623 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5624 getValue(Arg0), getValue(Arg1), 5625 MachinePointerInfo(Arg0)); 5626 if (Res.first.getNode()) { 5627 processIntegerCallValue(I, Res.first, false); 5628 PendingLoads.push_back(Res.second); 5629 return true; 5630 } 5631 5632 return false; 5633 } 5634 5635 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5636 /// operation (as expected), translate it to an SDNode with the specified opcode 5637 /// and return true. 5638 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5639 unsigned Opcode) { 5640 // Sanity check that it really is a unary floating-point call. 5641 if (I.getNumArgOperands() != 1 || 5642 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5643 I.getType() != I.getArgOperand(0)->getType() || 5644 !I.onlyReadsMemory()) 5645 return false; 5646 5647 SDValue Tmp = getValue(I.getArgOperand(0)); 5648 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5649 return true; 5650 } 5651 5652 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5653 /// operation (as expected), translate it to an SDNode with the specified opcode 5654 /// and return true. 5655 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5656 unsigned Opcode) { 5657 // Sanity check that it really is a binary floating-point call. 5658 if (I.getNumArgOperands() != 2 || 5659 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5660 I.getType() != I.getArgOperand(0)->getType() || 5661 I.getType() != I.getArgOperand(1)->getType() || 5662 !I.onlyReadsMemory()) 5663 return false; 5664 5665 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5666 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5667 EVT VT = Tmp0.getValueType(); 5668 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5669 return true; 5670 } 5671 5672 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5673 // Handle inline assembly differently. 5674 if (isa<InlineAsm>(I.getCalledValue())) { 5675 visitInlineAsm(&I); 5676 return; 5677 } 5678 5679 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5680 ComputeUsesVAFloatArgument(I, &MMI); 5681 5682 const char *RenameFn = nullptr; 5683 if (Function *F = I.getCalledFunction()) { 5684 if (F->isDeclaration()) { 5685 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5686 if (unsigned IID = II->getIntrinsicID(F)) { 5687 RenameFn = visitIntrinsicCall(I, IID); 5688 if (!RenameFn) 5689 return; 5690 } 5691 } 5692 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5693 RenameFn = visitIntrinsicCall(I, IID); 5694 if (!RenameFn) 5695 return; 5696 } 5697 } 5698 5699 // Check for well-known libc/libm calls. If the function is internal, it 5700 // can't be a library call. 5701 LibFunc::Func Func; 5702 if (!F->hasLocalLinkage() && F->hasName() && 5703 LibInfo->getLibFunc(F->getName(), Func) && 5704 LibInfo->hasOptimizedCodeGen(Func)) { 5705 switch (Func) { 5706 default: break; 5707 case LibFunc::copysign: 5708 case LibFunc::copysignf: 5709 case LibFunc::copysignl: 5710 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5711 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5712 I.getType() == I.getArgOperand(0)->getType() && 5713 I.getType() == I.getArgOperand(1)->getType() && 5714 I.onlyReadsMemory()) { 5715 SDValue LHS = getValue(I.getArgOperand(0)); 5716 SDValue RHS = getValue(I.getArgOperand(1)); 5717 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5718 LHS.getValueType(), LHS, RHS)); 5719 return; 5720 } 5721 break; 5722 case LibFunc::fabs: 5723 case LibFunc::fabsf: 5724 case LibFunc::fabsl: 5725 if (visitUnaryFloatCall(I, ISD::FABS)) 5726 return; 5727 break; 5728 case LibFunc::fmin: 5729 case LibFunc::fminf: 5730 case LibFunc::fminl: 5731 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5732 return; 5733 break; 5734 case LibFunc::fmax: 5735 case LibFunc::fmaxf: 5736 case LibFunc::fmaxl: 5737 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5738 return; 5739 break; 5740 case LibFunc::sin: 5741 case LibFunc::sinf: 5742 case LibFunc::sinl: 5743 if (visitUnaryFloatCall(I, ISD::FSIN)) 5744 return; 5745 break; 5746 case LibFunc::cos: 5747 case LibFunc::cosf: 5748 case LibFunc::cosl: 5749 if (visitUnaryFloatCall(I, ISD::FCOS)) 5750 return; 5751 break; 5752 case LibFunc::sqrt: 5753 case LibFunc::sqrtf: 5754 case LibFunc::sqrtl: 5755 case LibFunc::sqrt_finite: 5756 case LibFunc::sqrtf_finite: 5757 case LibFunc::sqrtl_finite: 5758 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5759 return; 5760 break; 5761 case LibFunc::floor: 5762 case LibFunc::floorf: 5763 case LibFunc::floorl: 5764 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5765 return; 5766 break; 5767 case LibFunc::nearbyint: 5768 case LibFunc::nearbyintf: 5769 case LibFunc::nearbyintl: 5770 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5771 return; 5772 break; 5773 case LibFunc::ceil: 5774 case LibFunc::ceilf: 5775 case LibFunc::ceill: 5776 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5777 return; 5778 break; 5779 case LibFunc::rint: 5780 case LibFunc::rintf: 5781 case LibFunc::rintl: 5782 if (visitUnaryFloatCall(I, ISD::FRINT)) 5783 return; 5784 break; 5785 case LibFunc::round: 5786 case LibFunc::roundf: 5787 case LibFunc::roundl: 5788 if (visitUnaryFloatCall(I, ISD::FROUND)) 5789 return; 5790 break; 5791 case LibFunc::trunc: 5792 case LibFunc::truncf: 5793 case LibFunc::truncl: 5794 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5795 return; 5796 break; 5797 case LibFunc::log2: 5798 case LibFunc::log2f: 5799 case LibFunc::log2l: 5800 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5801 return; 5802 break; 5803 case LibFunc::exp2: 5804 case LibFunc::exp2f: 5805 case LibFunc::exp2l: 5806 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5807 return; 5808 break; 5809 case LibFunc::memcmp: 5810 if (visitMemCmpCall(I)) 5811 return; 5812 break; 5813 case LibFunc::memchr: 5814 if (visitMemChrCall(I)) 5815 return; 5816 break; 5817 case LibFunc::strcpy: 5818 if (visitStrCpyCall(I, false)) 5819 return; 5820 break; 5821 case LibFunc::stpcpy: 5822 if (visitStrCpyCall(I, true)) 5823 return; 5824 break; 5825 case LibFunc::strcmp: 5826 if (visitStrCmpCall(I)) 5827 return; 5828 break; 5829 case LibFunc::strlen: 5830 if (visitStrLenCall(I)) 5831 return; 5832 break; 5833 case LibFunc::strnlen: 5834 if (visitStrNLenCall(I)) 5835 return; 5836 break; 5837 } 5838 } 5839 } 5840 5841 SDValue Callee; 5842 if (!RenameFn) 5843 Callee = getValue(I.getCalledValue()); 5844 else 5845 Callee = DAG.getExternalSymbol( 5846 RenameFn, 5847 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5848 5849 // Check if we can potentially perform a tail call. More detailed checking is 5850 // be done within LowerCallTo, after more information about the call is known. 5851 LowerCallTo(&I, Callee, I.isTailCall()); 5852 } 5853 5854 namespace { 5855 5856 /// AsmOperandInfo - This contains information for each constraint that we are 5857 /// lowering. 5858 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5859 public: 5860 /// CallOperand - If this is the result output operand or a clobber 5861 /// this is null, otherwise it is the incoming operand to the CallInst. 5862 /// This gets modified as the asm is processed. 5863 SDValue CallOperand; 5864 5865 /// AssignedRegs - If this is a register or register class operand, this 5866 /// contains the set of register corresponding to the operand. 5867 RegsForValue AssignedRegs; 5868 5869 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5870 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5871 } 5872 5873 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5874 /// corresponds to. If there is no Value* for this operand, it returns 5875 /// MVT::Other. 5876 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5877 const DataLayout &DL) const { 5878 if (!CallOperandVal) return MVT::Other; 5879 5880 if (isa<BasicBlock>(CallOperandVal)) 5881 return TLI.getPointerTy(DL); 5882 5883 llvm::Type *OpTy = CallOperandVal->getType(); 5884 5885 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5886 // If this is an indirect operand, the operand is a pointer to the 5887 // accessed type. 5888 if (isIndirect) { 5889 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5890 if (!PtrTy) 5891 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5892 OpTy = PtrTy->getElementType(); 5893 } 5894 5895 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5896 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5897 if (STy->getNumElements() == 1) 5898 OpTy = STy->getElementType(0); 5899 5900 // If OpTy is not a single value, it may be a struct/union that we 5901 // can tile with integers. 5902 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5903 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5904 switch (BitSize) { 5905 default: break; 5906 case 1: 5907 case 8: 5908 case 16: 5909 case 32: 5910 case 64: 5911 case 128: 5912 OpTy = IntegerType::get(Context, BitSize); 5913 break; 5914 } 5915 } 5916 5917 return TLI.getValueType(DL, OpTy, true); 5918 } 5919 }; 5920 5921 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5922 5923 } // end anonymous namespace 5924 5925 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5926 /// specified operand. We prefer to assign virtual registers, to allow the 5927 /// register allocator to handle the assignment process. However, if the asm 5928 /// uses features that we can't model on machineinstrs, we have SDISel do the 5929 /// allocation. This produces generally horrible, but correct, code. 5930 /// 5931 /// OpInfo describes the operand. 5932 /// 5933 static void GetRegistersForValue(SelectionDAG &DAG, 5934 const TargetLowering &TLI, 5935 SDLoc DL, 5936 SDISelAsmOperandInfo &OpInfo) { 5937 LLVMContext &Context = *DAG.getContext(); 5938 5939 MachineFunction &MF = DAG.getMachineFunction(); 5940 SmallVector<unsigned, 4> Regs; 5941 5942 // If this is a constraint for a single physreg, or a constraint for a 5943 // register class, find it. 5944 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5945 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5946 OpInfo.ConstraintCode, 5947 OpInfo.ConstraintVT); 5948 5949 unsigned NumRegs = 1; 5950 if (OpInfo.ConstraintVT != MVT::Other) { 5951 // If this is a FP input in an integer register (or visa versa) insert a bit 5952 // cast of the input value. More generally, handle any case where the input 5953 // value disagrees with the register class we plan to stick this in. 5954 if (OpInfo.Type == InlineAsm::isInput && 5955 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5956 // Try to convert to the first EVT that the reg class contains. If the 5957 // types are identical size, use a bitcast to convert (e.g. two differing 5958 // vector types). 5959 MVT RegVT = *PhysReg.second->vt_begin(); 5960 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5961 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5962 RegVT, OpInfo.CallOperand); 5963 OpInfo.ConstraintVT = RegVT; 5964 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5965 // If the input is a FP value and we want it in FP registers, do a 5966 // bitcast to the corresponding integer type. This turns an f64 value 5967 // into i64, which can be passed with two i32 values on a 32-bit 5968 // machine. 5969 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5970 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5971 RegVT, OpInfo.CallOperand); 5972 OpInfo.ConstraintVT = RegVT; 5973 } 5974 } 5975 5976 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5977 } 5978 5979 MVT RegVT; 5980 EVT ValueVT = OpInfo.ConstraintVT; 5981 5982 // If this is a constraint for a specific physical register, like {r17}, 5983 // assign it now. 5984 if (unsigned AssignedReg = PhysReg.first) { 5985 const TargetRegisterClass *RC = PhysReg.second; 5986 if (OpInfo.ConstraintVT == MVT::Other) 5987 ValueVT = *RC->vt_begin(); 5988 5989 // Get the actual register value type. This is important, because the user 5990 // may have asked for (e.g.) the AX register in i32 type. We need to 5991 // remember that AX is actually i16 to get the right extension. 5992 RegVT = *RC->vt_begin(); 5993 5994 // This is a explicit reference to a physical register. 5995 Regs.push_back(AssignedReg); 5996 5997 // If this is an expanded reference, add the rest of the regs to Regs. 5998 if (NumRegs != 1) { 5999 TargetRegisterClass::iterator I = RC->begin(); 6000 for (; *I != AssignedReg; ++I) 6001 assert(I != RC->end() && "Didn't find reg!"); 6002 6003 // Already added the first reg. 6004 --NumRegs; ++I; 6005 for (; NumRegs; --NumRegs, ++I) { 6006 assert(I != RC->end() && "Ran out of registers to allocate!"); 6007 Regs.push_back(*I); 6008 } 6009 } 6010 6011 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6012 return; 6013 } 6014 6015 // Otherwise, if this was a reference to an LLVM register class, create vregs 6016 // for this reference. 6017 if (const TargetRegisterClass *RC = PhysReg.second) { 6018 RegVT = *RC->vt_begin(); 6019 if (OpInfo.ConstraintVT == MVT::Other) 6020 ValueVT = RegVT; 6021 6022 // Create the appropriate number of virtual registers. 6023 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6024 for (; NumRegs; --NumRegs) 6025 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6026 6027 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6028 return; 6029 } 6030 6031 // Otherwise, we couldn't allocate enough registers for this. 6032 } 6033 6034 /// visitInlineAsm - Handle a call to an InlineAsm object. 6035 /// 6036 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6037 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6038 6039 /// ConstraintOperands - Information about all of the constraints. 6040 SDISelAsmOperandInfoVector ConstraintOperands; 6041 6042 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6043 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6044 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6045 6046 bool hasMemory = false; 6047 6048 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6049 unsigned ResNo = 0; // ResNo - The result number of the next output. 6050 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6051 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6052 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6053 6054 MVT OpVT = MVT::Other; 6055 6056 // Compute the value type for each operand. 6057 switch (OpInfo.Type) { 6058 case InlineAsm::isOutput: 6059 // Indirect outputs just consume an argument. 6060 if (OpInfo.isIndirect) { 6061 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6062 break; 6063 } 6064 6065 // The return value of the call is this value. As such, there is no 6066 // corresponding argument. 6067 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6068 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6069 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6070 STy->getElementType(ResNo)); 6071 } else { 6072 assert(ResNo == 0 && "Asm only has one result!"); 6073 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6074 } 6075 ++ResNo; 6076 break; 6077 case InlineAsm::isInput: 6078 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6079 break; 6080 case InlineAsm::isClobber: 6081 // Nothing to do. 6082 break; 6083 } 6084 6085 // If this is an input or an indirect output, process the call argument. 6086 // BasicBlocks are labels, currently appearing only in asm's. 6087 if (OpInfo.CallOperandVal) { 6088 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6089 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6090 } else { 6091 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6092 } 6093 6094 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6095 DAG.getDataLayout()).getSimpleVT(); 6096 } 6097 6098 OpInfo.ConstraintVT = OpVT; 6099 6100 // Indirect operand accesses access memory. 6101 if (OpInfo.isIndirect) 6102 hasMemory = true; 6103 else { 6104 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6105 TargetLowering::ConstraintType 6106 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6107 if (CType == TargetLowering::C_Memory) { 6108 hasMemory = true; 6109 break; 6110 } 6111 } 6112 } 6113 } 6114 6115 SDValue Chain, Flag; 6116 6117 // We won't need to flush pending loads if this asm doesn't touch 6118 // memory and is nonvolatile. 6119 if (hasMemory || IA->hasSideEffects()) 6120 Chain = getRoot(); 6121 else 6122 Chain = DAG.getRoot(); 6123 6124 // Second pass over the constraints: compute which constraint option to use 6125 // and assign registers to constraints that want a specific physreg. 6126 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6127 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6128 6129 // If this is an output operand with a matching input operand, look up the 6130 // matching input. If their types mismatch, e.g. one is an integer, the 6131 // other is floating point, or their sizes are different, flag it as an 6132 // error. 6133 if (OpInfo.hasMatchingInput()) { 6134 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6135 6136 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6137 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6138 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6139 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6140 OpInfo.ConstraintVT); 6141 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6142 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6143 Input.ConstraintVT); 6144 if ((OpInfo.ConstraintVT.isInteger() != 6145 Input.ConstraintVT.isInteger()) || 6146 (MatchRC.second != InputRC.second)) { 6147 report_fatal_error("Unsupported asm: input constraint" 6148 " with a matching output constraint of" 6149 " incompatible type!"); 6150 } 6151 Input.ConstraintVT = OpInfo.ConstraintVT; 6152 } 6153 } 6154 6155 // Compute the constraint code and ConstraintType to use. 6156 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6157 6158 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6159 OpInfo.Type == InlineAsm::isClobber) 6160 continue; 6161 6162 // If this is a memory input, and if the operand is not indirect, do what we 6163 // need to to provide an address for the memory input. 6164 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6165 !OpInfo.isIndirect) { 6166 assert((OpInfo.isMultipleAlternative || 6167 (OpInfo.Type == InlineAsm::isInput)) && 6168 "Can only indirectify direct input operands!"); 6169 6170 // Memory operands really want the address of the value. If we don't have 6171 // an indirect input, put it in the constpool if we can, otherwise spill 6172 // it to a stack slot. 6173 // TODO: This isn't quite right. We need to handle these according to 6174 // the addressing mode that the constraint wants. Also, this may take 6175 // an additional register for the computation and we don't want that 6176 // either. 6177 6178 // If the operand is a float, integer, or vector constant, spill to a 6179 // constant pool entry to get its address. 6180 const Value *OpVal = OpInfo.CallOperandVal; 6181 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6182 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6183 OpInfo.CallOperand = DAG.getConstantPool( 6184 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6185 } else { 6186 // Otherwise, create a stack slot and emit a store to it before the 6187 // asm. 6188 Type *Ty = OpVal->getType(); 6189 auto &DL = DAG.getDataLayout(); 6190 uint64_t TySize = DL.getTypeAllocSize(Ty); 6191 unsigned Align = DL.getPrefTypeAlignment(Ty); 6192 MachineFunction &MF = DAG.getMachineFunction(); 6193 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6194 SDValue StackSlot = 6195 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6196 Chain = DAG.getStore( 6197 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6198 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6199 false, false, 0); 6200 OpInfo.CallOperand = StackSlot; 6201 } 6202 6203 // There is no longer a Value* corresponding to this operand. 6204 OpInfo.CallOperandVal = nullptr; 6205 6206 // It is now an indirect operand. 6207 OpInfo.isIndirect = true; 6208 } 6209 6210 // If this constraint is for a specific register, allocate it before 6211 // anything else. 6212 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6213 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6214 } 6215 6216 // Second pass - Loop over all of the operands, assigning virtual or physregs 6217 // to register class operands. 6218 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6219 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6220 6221 // C_Register operands have already been allocated, Other/Memory don't need 6222 // to be. 6223 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6224 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6225 } 6226 6227 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6228 std::vector<SDValue> AsmNodeOperands; 6229 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6230 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6231 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6232 6233 // If we have a !srcloc metadata node associated with it, we want to attach 6234 // this to the ultimately generated inline asm machineinstr. To do this, we 6235 // pass in the third operand as this (potentially null) inline asm MDNode. 6236 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6237 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6238 6239 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6240 // bits as operand 3. 6241 unsigned ExtraInfo = 0; 6242 if (IA->hasSideEffects()) 6243 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6244 if (IA->isAlignStack()) 6245 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6246 // Set the asm dialect. 6247 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6248 6249 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6250 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6251 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6252 6253 // Compute the constraint code and ConstraintType to use. 6254 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6255 6256 // Ideally, we would only check against memory constraints. However, the 6257 // meaning of an other constraint can be target-specific and we can't easily 6258 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6259 // for other constriants as well. 6260 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6261 OpInfo.ConstraintType == TargetLowering::C_Other) { 6262 if (OpInfo.Type == InlineAsm::isInput) 6263 ExtraInfo |= InlineAsm::Extra_MayLoad; 6264 else if (OpInfo.Type == InlineAsm::isOutput) 6265 ExtraInfo |= InlineAsm::Extra_MayStore; 6266 else if (OpInfo.Type == InlineAsm::isClobber) 6267 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6268 } 6269 } 6270 6271 AsmNodeOperands.push_back(DAG.getTargetConstant( 6272 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6273 6274 // Loop over all of the inputs, copying the operand values into the 6275 // appropriate registers and processing the output regs. 6276 RegsForValue RetValRegs; 6277 6278 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6279 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6280 6281 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6282 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6283 6284 switch (OpInfo.Type) { 6285 case InlineAsm::isOutput: { 6286 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6287 OpInfo.ConstraintType != TargetLowering::C_Register) { 6288 // Memory output, or 'other' output (e.g. 'X' constraint). 6289 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6290 6291 unsigned ConstraintID = 6292 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6293 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6294 "Failed to convert memory constraint code to constraint id."); 6295 6296 // Add information to the INLINEASM node to know about this output. 6297 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6298 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6299 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6300 MVT::i32)); 6301 AsmNodeOperands.push_back(OpInfo.CallOperand); 6302 break; 6303 } 6304 6305 // Otherwise, this is a register or register class output. 6306 6307 // Copy the output from the appropriate register. Find a register that 6308 // we can use. 6309 if (OpInfo.AssignedRegs.Regs.empty()) { 6310 LLVMContext &Ctx = *DAG.getContext(); 6311 Ctx.emitError(CS.getInstruction(), 6312 "couldn't allocate output register for constraint '" + 6313 Twine(OpInfo.ConstraintCode) + "'"); 6314 return; 6315 } 6316 6317 // If this is an indirect operand, store through the pointer after the 6318 // asm. 6319 if (OpInfo.isIndirect) { 6320 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6321 OpInfo.CallOperandVal)); 6322 } else { 6323 // This is the result value of the call. 6324 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6325 // Concatenate this output onto the outputs list. 6326 RetValRegs.append(OpInfo.AssignedRegs); 6327 } 6328 6329 // Add information to the INLINEASM node to know that this register is 6330 // set. 6331 OpInfo.AssignedRegs 6332 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6333 ? InlineAsm::Kind_RegDefEarlyClobber 6334 : InlineAsm::Kind_RegDef, 6335 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6336 break; 6337 } 6338 case InlineAsm::isInput: { 6339 SDValue InOperandVal = OpInfo.CallOperand; 6340 6341 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6342 // If this is required to match an output register we have already set, 6343 // just use its register. 6344 unsigned OperandNo = OpInfo.getMatchedOperand(); 6345 6346 // Scan until we find the definition we already emitted of this operand. 6347 // When we find it, create a RegsForValue operand. 6348 unsigned CurOp = InlineAsm::Op_FirstOperand; 6349 for (; OperandNo; --OperandNo) { 6350 // Advance to the next operand. 6351 unsigned OpFlag = 6352 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6353 assert((InlineAsm::isRegDefKind(OpFlag) || 6354 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6355 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6356 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6357 } 6358 6359 unsigned OpFlag = 6360 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6361 if (InlineAsm::isRegDefKind(OpFlag) || 6362 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6363 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6364 if (OpInfo.isIndirect) { 6365 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6366 LLVMContext &Ctx = *DAG.getContext(); 6367 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6368 " don't know how to handle tied " 6369 "indirect register inputs"); 6370 return; 6371 } 6372 6373 RegsForValue MatchedRegs; 6374 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6375 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6376 MatchedRegs.RegVTs.push_back(RegVT); 6377 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6378 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6379 i != e; ++i) { 6380 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6381 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6382 else { 6383 LLVMContext &Ctx = *DAG.getContext(); 6384 Ctx.emitError(CS.getInstruction(), 6385 "inline asm error: This value" 6386 " type register class is not natively supported!"); 6387 return; 6388 } 6389 } 6390 SDLoc dl = getCurSDLoc(); 6391 // Use the produced MatchedRegs object to 6392 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6393 Chain, &Flag, CS.getInstruction()); 6394 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6395 true, OpInfo.getMatchedOperand(), dl, 6396 DAG, AsmNodeOperands); 6397 break; 6398 } 6399 6400 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6401 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6402 "Unexpected number of operands"); 6403 // Add information to the INLINEASM node to know about this input. 6404 // See InlineAsm.h isUseOperandTiedToDef. 6405 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6406 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6407 OpInfo.getMatchedOperand()); 6408 AsmNodeOperands.push_back(DAG.getTargetConstant( 6409 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6410 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6411 break; 6412 } 6413 6414 // Treat indirect 'X' constraint as memory. 6415 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6416 OpInfo.isIndirect) 6417 OpInfo.ConstraintType = TargetLowering::C_Memory; 6418 6419 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6420 std::vector<SDValue> Ops; 6421 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6422 Ops, DAG); 6423 if (Ops.empty()) { 6424 LLVMContext &Ctx = *DAG.getContext(); 6425 Ctx.emitError(CS.getInstruction(), 6426 "invalid operand for inline asm constraint '" + 6427 Twine(OpInfo.ConstraintCode) + "'"); 6428 return; 6429 } 6430 6431 // Add information to the INLINEASM node to know about this input. 6432 unsigned ResOpType = 6433 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6434 AsmNodeOperands.push_back(DAG.getTargetConstant( 6435 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6436 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6437 break; 6438 } 6439 6440 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6441 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6442 assert(InOperandVal.getValueType() == 6443 TLI.getPointerTy(DAG.getDataLayout()) && 6444 "Memory operands expect pointer values"); 6445 6446 unsigned ConstraintID = 6447 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6448 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6449 "Failed to convert memory constraint code to constraint id."); 6450 6451 // Add information to the INLINEASM node to know about this input. 6452 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6453 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6454 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6455 getCurSDLoc(), 6456 MVT::i32)); 6457 AsmNodeOperands.push_back(InOperandVal); 6458 break; 6459 } 6460 6461 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6462 OpInfo.ConstraintType == TargetLowering::C_Register) && 6463 "Unknown constraint type!"); 6464 6465 // TODO: Support this. 6466 if (OpInfo.isIndirect) { 6467 LLVMContext &Ctx = *DAG.getContext(); 6468 Ctx.emitError(CS.getInstruction(), 6469 "Don't know how to handle indirect register inputs yet " 6470 "for constraint '" + 6471 Twine(OpInfo.ConstraintCode) + "'"); 6472 return; 6473 } 6474 6475 // Copy the input into the appropriate registers. 6476 if (OpInfo.AssignedRegs.Regs.empty()) { 6477 LLVMContext &Ctx = *DAG.getContext(); 6478 Ctx.emitError(CS.getInstruction(), 6479 "couldn't allocate input reg for constraint '" + 6480 Twine(OpInfo.ConstraintCode) + "'"); 6481 return; 6482 } 6483 6484 SDLoc dl = getCurSDLoc(); 6485 6486 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6487 Chain, &Flag, CS.getInstruction()); 6488 6489 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6490 dl, DAG, AsmNodeOperands); 6491 break; 6492 } 6493 case InlineAsm::isClobber: { 6494 // Add the clobbered value to the operand list, so that the register 6495 // allocator is aware that the physreg got clobbered. 6496 if (!OpInfo.AssignedRegs.Regs.empty()) 6497 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6498 false, 0, getCurSDLoc(), DAG, 6499 AsmNodeOperands); 6500 break; 6501 } 6502 } 6503 } 6504 6505 // Finish up input operands. Set the input chain and add the flag last. 6506 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6507 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6508 6509 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6510 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6511 Flag = Chain.getValue(1); 6512 6513 // If this asm returns a register value, copy the result from that register 6514 // and set it as the value of the call. 6515 if (!RetValRegs.Regs.empty()) { 6516 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6517 Chain, &Flag, CS.getInstruction()); 6518 6519 // FIXME: Why don't we do this for inline asms with MRVs? 6520 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6521 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6522 6523 // If any of the results of the inline asm is a vector, it may have the 6524 // wrong width/num elts. This can happen for register classes that can 6525 // contain multiple different value types. The preg or vreg allocated may 6526 // not have the same VT as was expected. Convert it to the right type 6527 // with bit_convert. 6528 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6529 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6530 ResultType, Val); 6531 6532 } else if (ResultType != Val.getValueType() && 6533 ResultType.isInteger() && Val.getValueType().isInteger()) { 6534 // If a result value was tied to an input value, the computed result may 6535 // have a wider width than the expected result. Extract the relevant 6536 // portion. 6537 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6538 } 6539 6540 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6541 } 6542 6543 setValue(CS.getInstruction(), Val); 6544 // Don't need to use this as a chain in this case. 6545 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6546 return; 6547 } 6548 6549 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6550 6551 // Process indirect outputs, first output all of the flagged copies out of 6552 // physregs. 6553 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6554 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6555 const Value *Ptr = IndirectStoresToEmit[i].second; 6556 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6557 Chain, &Flag, IA); 6558 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6559 } 6560 6561 // Emit the non-flagged stores from the physregs. 6562 SmallVector<SDValue, 8> OutChains; 6563 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6564 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6565 StoresToEmit[i].first, 6566 getValue(StoresToEmit[i].second), 6567 MachinePointerInfo(StoresToEmit[i].second), 6568 false, false, 0); 6569 OutChains.push_back(Val); 6570 } 6571 6572 if (!OutChains.empty()) 6573 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6574 6575 DAG.setRoot(Chain); 6576 } 6577 6578 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6579 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6580 MVT::Other, getRoot(), 6581 getValue(I.getArgOperand(0)), 6582 DAG.getSrcValue(I.getArgOperand(0)))); 6583 } 6584 6585 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6587 const DataLayout &DL = DAG.getDataLayout(); 6588 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6589 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6590 DAG.getSrcValue(I.getOperand(0)), 6591 DL.getABITypeAlignment(I.getType())); 6592 setValue(&I, V); 6593 DAG.setRoot(V.getValue(1)); 6594 } 6595 6596 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6597 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6598 MVT::Other, getRoot(), 6599 getValue(I.getArgOperand(0)), 6600 DAG.getSrcValue(I.getArgOperand(0)))); 6601 } 6602 6603 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6604 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6605 MVT::Other, getRoot(), 6606 getValue(I.getArgOperand(0)), 6607 getValue(I.getArgOperand(1)), 6608 DAG.getSrcValue(I.getArgOperand(0)), 6609 DAG.getSrcValue(I.getArgOperand(1)))); 6610 } 6611 6612 /// \brief Lower an argument list according to the target calling convention. 6613 /// 6614 /// \return A tuple of <return-value, token-chain> 6615 /// 6616 /// This is a helper for lowering intrinsics that follow a target calling 6617 /// convention or require stack pointer adjustment. Only a subset of the 6618 /// intrinsic's operands need to participate in the calling convention. 6619 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6620 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6621 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6622 TargetLowering::ArgListTy Args; 6623 Args.reserve(NumArgs); 6624 6625 // Populate the argument list. 6626 // Attributes for args start at offset 1, after the return attribute. 6627 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6628 ArgI != ArgE; ++ArgI) { 6629 const Value *V = CS->getOperand(ArgI); 6630 6631 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6632 6633 TargetLowering::ArgListEntry Entry; 6634 Entry.Node = getValue(V); 6635 Entry.Ty = V->getType(); 6636 Entry.setAttributes(&CS, AttrI); 6637 Args.push_back(Entry); 6638 } 6639 6640 TargetLowering::CallLoweringInfo CLI(DAG); 6641 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6642 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6643 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6644 6645 return lowerInvokable(CLI, EHPadBB); 6646 } 6647 6648 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6649 /// or patchpoint target node's operand list. 6650 /// 6651 /// Constants are converted to TargetConstants purely as an optimization to 6652 /// avoid constant materialization and register allocation. 6653 /// 6654 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6655 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6656 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6657 /// address materialization and register allocation, but may also be required 6658 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6659 /// alloca in the entry block, then the runtime may assume that the alloca's 6660 /// StackMap location can be read immediately after compilation and that the 6661 /// location is valid at any point during execution (this is similar to the 6662 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6663 /// only available in a register, then the runtime would need to trap when 6664 /// execution reaches the StackMap in order to read the alloca's location. 6665 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6666 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6667 SelectionDAGBuilder &Builder) { 6668 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6669 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6670 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6671 Ops.push_back( 6672 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6673 Ops.push_back( 6674 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6675 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6676 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6677 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6678 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6679 } else 6680 Ops.push_back(OpVal); 6681 } 6682 } 6683 6684 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6685 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6686 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6687 // [live variables...]) 6688 6689 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6690 6691 SDValue Chain, InFlag, Callee, NullPtr; 6692 SmallVector<SDValue, 32> Ops; 6693 6694 SDLoc DL = getCurSDLoc(); 6695 Callee = getValue(CI.getCalledValue()); 6696 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6697 6698 // The stackmap intrinsic only records the live variables (the arguemnts 6699 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6700 // intrinsic, this won't be lowered to a function call. This means we don't 6701 // have to worry about calling conventions and target specific lowering code. 6702 // Instead we perform the call lowering right here. 6703 // 6704 // chain, flag = CALLSEQ_START(chain, 0) 6705 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6706 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6707 // 6708 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6709 InFlag = Chain.getValue(1); 6710 6711 // Add the <id> and <numBytes> constants. 6712 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6713 Ops.push_back(DAG.getTargetConstant( 6714 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6715 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6716 Ops.push_back(DAG.getTargetConstant( 6717 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6718 MVT::i32)); 6719 6720 // Push live variables for the stack map. 6721 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6722 6723 // We are not pushing any register mask info here on the operands list, 6724 // because the stackmap doesn't clobber anything. 6725 6726 // Push the chain and the glue flag. 6727 Ops.push_back(Chain); 6728 Ops.push_back(InFlag); 6729 6730 // Create the STACKMAP node. 6731 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6732 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6733 Chain = SDValue(SM, 0); 6734 InFlag = Chain.getValue(1); 6735 6736 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6737 6738 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6739 6740 // Set the root to the target-lowered call chain. 6741 DAG.setRoot(Chain); 6742 6743 // Inform the Frame Information that we have a stackmap in this function. 6744 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6745 } 6746 6747 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6748 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6749 const BasicBlock *EHPadBB) { 6750 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6751 // i32 <numBytes>, 6752 // i8* <target>, 6753 // i32 <numArgs>, 6754 // [Args...], 6755 // [live variables...]) 6756 6757 CallingConv::ID CC = CS.getCallingConv(); 6758 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6759 bool HasDef = !CS->getType()->isVoidTy(); 6760 SDLoc dl = getCurSDLoc(); 6761 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6762 6763 // Handle immediate and symbolic callees. 6764 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6765 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6766 /*isTarget=*/true); 6767 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6768 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6769 SDLoc(SymbolicCallee), 6770 SymbolicCallee->getValueType(0)); 6771 6772 // Get the real number of arguments participating in the call <numArgs> 6773 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6774 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6775 6776 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6777 // Intrinsics include all meta-operands up to but not including CC. 6778 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6779 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6780 "Not enough arguments provided to the patchpoint intrinsic"); 6781 6782 // For AnyRegCC the arguments are lowered later on manually. 6783 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6784 Type *ReturnTy = 6785 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6786 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6787 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6788 6789 SDNode *CallEnd = Result.second.getNode(); 6790 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6791 CallEnd = CallEnd->getOperand(0).getNode(); 6792 6793 /// Get a call instruction from the call sequence chain. 6794 /// Tail calls are not allowed. 6795 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6796 "Expected a callseq node."); 6797 SDNode *Call = CallEnd->getOperand(0).getNode(); 6798 bool HasGlue = Call->getGluedNode(); 6799 6800 // Replace the target specific call node with the patchable intrinsic. 6801 SmallVector<SDValue, 8> Ops; 6802 6803 // Add the <id> and <numBytes> constants. 6804 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6805 Ops.push_back(DAG.getTargetConstant( 6806 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6807 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6808 Ops.push_back(DAG.getTargetConstant( 6809 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6810 MVT::i32)); 6811 6812 // Add the callee. 6813 Ops.push_back(Callee); 6814 6815 // Adjust <numArgs> to account for any arguments that have been passed on the 6816 // stack instead. 6817 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6818 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6819 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6820 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6821 6822 // Add the calling convention 6823 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6824 6825 // Add the arguments we omitted previously. The register allocator should 6826 // place these in any free register. 6827 if (IsAnyRegCC) 6828 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6829 Ops.push_back(getValue(CS.getArgument(i))); 6830 6831 // Push the arguments from the call instruction up to the register mask. 6832 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6833 Ops.append(Call->op_begin() + 2, e); 6834 6835 // Push live variables for the stack map. 6836 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6837 6838 // Push the register mask info. 6839 if (HasGlue) 6840 Ops.push_back(*(Call->op_end()-2)); 6841 else 6842 Ops.push_back(*(Call->op_end()-1)); 6843 6844 // Push the chain (this is originally the first operand of the call, but 6845 // becomes now the last or second to last operand). 6846 Ops.push_back(*(Call->op_begin())); 6847 6848 // Push the glue flag (last operand). 6849 if (HasGlue) 6850 Ops.push_back(*(Call->op_end()-1)); 6851 6852 SDVTList NodeTys; 6853 if (IsAnyRegCC && HasDef) { 6854 // Create the return types based on the intrinsic definition 6855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6856 SmallVector<EVT, 3> ValueVTs; 6857 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6858 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6859 6860 // There is always a chain and a glue type at the end 6861 ValueVTs.push_back(MVT::Other); 6862 ValueVTs.push_back(MVT::Glue); 6863 NodeTys = DAG.getVTList(ValueVTs); 6864 } else 6865 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6866 6867 // Replace the target specific call node with a PATCHPOINT node. 6868 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6869 dl, NodeTys, Ops); 6870 6871 // Update the NodeMap. 6872 if (HasDef) { 6873 if (IsAnyRegCC) 6874 setValue(CS.getInstruction(), SDValue(MN, 0)); 6875 else 6876 setValue(CS.getInstruction(), Result.first); 6877 } 6878 6879 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6880 // call sequence. Furthermore the location of the chain and glue can change 6881 // when the AnyReg calling convention is used and the intrinsic returns a 6882 // value. 6883 if (IsAnyRegCC && HasDef) { 6884 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6885 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6886 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6887 } else 6888 DAG.ReplaceAllUsesWith(Call, MN); 6889 DAG.DeleteNode(Call); 6890 6891 // Inform the Frame Information that we have a patchpoint in this function. 6892 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6893 } 6894 6895 /// Returns an AttributeSet representing the attributes applied to the return 6896 /// value of the given call. 6897 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6898 SmallVector<Attribute::AttrKind, 2> Attrs; 6899 if (CLI.RetSExt) 6900 Attrs.push_back(Attribute::SExt); 6901 if (CLI.RetZExt) 6902 Attrs.push_back(Attribute::ZExt); 6903 if (CLI.IsInReg) 6904 Attrs.push_back(Attribute::InReg); 6905 6906 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6907 Attrs); 6908 } 6909 6910 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6911 /// implementation, which just calls LowerCall. 6912 /// FIXME: When all targets are 6913 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6914 std::pair<SDValue, SDValue> 6915 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6916 // Handle the incoming return values from the call. 6917 CLI.Ins.clear(); 6918 Type *OrigRetTy = CLI.RetTy; 6919 SmallVector<EVT, 4> RetTys; 6920 SmallVector<uint64_t, 4> Offsets; 6921 auto &DL = CLI.DAG.getDataLayout(); 6922 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6923 6924 SmallVector<ISD::OutputArg, 4> Outs; 6925 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6926 6927 bool CanLowerReturn = 6928 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6929 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6930 6931 SDValue DemoteStackSlot; 6932 int DemoteStackIdx = -100; 6933 if (!CanLowerReturn) { 6934 // FIXME: equivalent assert? 6935 // assert(!CS.hasInAllocaArgument() && 6936 // "sret demotion is incompatible with inalloca"); 6937 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6938 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6939 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6940 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6941 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6942 6943 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6944 ArgListEntry Entry; 6945 Entry.Node = DemoteStackSlot; 6946 Entry.Ty = StackSlotPtrType; 6947 Entry.isSExt = false; 6948 Entry.isZExt = false; 6949 Entry.isInReg = false; 6950 Entry.isSRet = true; 6951 Entry.isNest = false; 6952 Entry.isByVal = false; 6953 Entry.isReturned = false; 6954 Entry.Alignment = Align; 6955 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6956 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6957 6958 // sret demotion isn't compatible with tail-calls, since the sret argument 6959 // points into the callers stack frame. 6960 CLI.IsTailCall = false; 6961 } else { 6962 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6963 EVT VT = RetTys[I]; 6964 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6965 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6966 for (unsigned i = 0; i != NumRegs; ++i) { 6967 ISD::InputArg MyFlags; 6968 MyFlags.VT = RegisterVT; 6969 MyFlags.ArgVT = VT; 6970 MyFlags.Used = CLI.IsReturnValueUsed; 6971 if (CLI.RetSExt) 6972 MyFlags.Flags.setSExt(); 6973 if (CLI.RetZExt) 6974 MyFlags.Flags.setZExt(); 6975 if (CLI.IsInReg) 6976 MyFlags.Flags.setInReg(); 6977 CLI.Ins.push_back(MyFlags); 6978 } 6979 } 6980 } 6981 6982 // Handle all of the outgoing arguments. 6983 CLI.Outs.clear(); 6984 CLI.OutVals.clear(); 6985 ArgListTy &Args = CLI.getArgs(); 6986 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6987 SmallVector<EVT, 4> ValueVTs; 6988 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6989 Type *FinalType = Args[i].Ty; 6990 if (Args[i].isByVal) 6991 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6992 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6993 FinalType, CLI.CallConv, CLI.IsVarArg); 6994 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6995 ++Value) { 6996 EVT VT = ValueVTs[Value]; 6997 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6998 SDValue Op = SDValue(Args[i].Node.getNode(), 6999 Args[i].Node.getResNo() + Value); 7000 ISD::ArgFlagsTy Flags; 7001 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7002 7003 if (Args[i].isZExt) 7004 Flags.setZExt(); 7005 if (Args[i].isSExt) 7006 Flags.setSExt(); 7007 if (Args[i].isInReg) 7008 Flags.setInReg(); 7009 if (Args[i].isSRet) 7010 Flags.setSRet(); 7011 if (Args[i].isByVal) 7012 Flags.setByVal(); 7013 if (Args[i].isInAlloca) { 7014 Flags.setInAlloca(); 7015 // Set the byval flag for CCAssignFn callbacks that don't know about 7016 // inalloca. This way we can know how many bytes we should've allocated 7017 // and how many bytes a callee cleanup function will pop. If we port 7018 // inalloca to more targets, we'll have to add custom inalloca handling 7019 // in the various CC lowering callbacks. 7020 Flags.setByVal(); 7021 } 7022 if (Args[i].isByVal || Args[i].isInAlloca) { 7023 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7024 Type *ElementTy = Ty->getElementType(); 7025 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7026 // For ByVal, alignment should come from FE. BE will guess if this 7027 // info is not there but there are cases it cannot get right. 7028 unsigned FrameAlign; 7029 if (Args[i].Alignment) 7030 FrameAlign = Args[i].Alignment; 7031 else 7032 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7033 Flags.setByValAlign(FrameAlign); 7034 } 7035 if (Args[i].isNest) 7036 Flags.setNest(); 7037 if (NeedsRegBlock) 7038 Flags.setInConsecutiveRegs(); 7039 Flags.setOrigAlign(OriginalAlignment); 7040 7041 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7042 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7043 SmallVector<SDValue, 4> Parts(NumParts); 7044 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7045 7046 if (Args[i].isSExt) 7047 ExtendKind = ISD::SIGN_EXTEND; 7048 else if (Args[i].isZExt) 7049 ExtendKind = ISD::ZERO_EXTEND; 7050 7051 // Conservatively only handle 'returned' on non-vectors for now 7052 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7053 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7054 "unexpected use of 'returned'"); 7055 // Before passing 'returned' to the target lowering code, ensure that 7056 // either the register MVT and the actual EVT are the same size or that 7057 // the return value and argument are extended in the same way; in these 7058 // cases it's safe to pass the argument register value unchanged as the 7059 // return register value (although it's at the target's option whether 7060 // to do so) 7061 // TODO: allow code generation to take advantage of partially preserved 7062 // registers rather than clobbering the entire register when the 7063 // parameter extension method is not compatible with the return 7064 // extension method 7065 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7066 (ExtendKind != ISD::ANY_EXTEND && 7067 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7068 Flags.setReturned(); 7069 } 7070 7071 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7072 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7073 7074 for (unsigned j = 0; j != NumParts; ++j) { 7075 // if it isn't first piece, alignment must be 1 7076 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7077 i < CLI.NumFixedArgs, 7078 i, j*Parts[j].getValueType().getStoreSize()); 7079 if (NumParts > 1 && j == 0) 7080 MyFlags.Flags.setSplit(); 7081 else if (j != 0) 7082 MyFlags.Flags.setOrigAlign(1); 7083 7084 CLI.Outs.push_back(MyFlags); 7085 CLI.OutVals.push_back(Parts[j]); 7086 } 7087 7088 if (NeedsRegBlock && Value == NumValues - 1) 7089 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7090 } 7091 } 7092 7093 SmallVector<SDValue, 4> InVals; 7094 CLI.Chain = LowerCall(CLI, InVals); 7095 7096 // Verify that the target's LowerCall behaved as expected. 7097 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7098 "LowerCall didn't return a valid chain!"); 7099 assert((!CLI.IsTailCall || InVals.empty()) && 7100 "LowerCall emitted a return value for a tail call!"); 7101 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7102 "LowerCall didn't emit the correct number of values!"); 7103 7104 // For a tail call, the return value is merely live-out and there aren't 7105 // any nodes in the DAG representing it. Return a special value to 7106 // indicate that a tail call has been emitted and no more Instructions 7107 // should be processed in the current block. 7108 if (CLI.IsTailCall) { 7109 CLI.DAG.setRoot(CLI.Chain); 7110 return std::make_pair(SDValue(), SDValue()); 7111 } 7112 7113 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7114 assert(InVals[i].getNode() && 7115 "LowerCall emitted a null value!"); 7116 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7117 "LowerCall emitted a value with the wrong type!"); 7118 }); 7119 7120 SmallVector<SDValue, 4> ReturnValues; 7121 if (!CanLowerReturn) { 7122 // The instruction result is the result of loading from the 7123 // hidden sret parameter. 7124 SmallVector<EVT, 1> PVTs; 7125 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7126 7127 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7128 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7129 EVT PtrVT = PVTs[0]; 7130 7131 unsigned NumValues = RetTys.size(); 7132 ReturnValues.resize(NumValues); 7133 SmallVector<SDValue, 4> Chains(NumValues); 7134 7135 for (unsigned i = 0; i < NumValues; ++i) { 7136 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7137 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7138 PtrVT)); 7139 SDValue L = CLI.DAG.getLoad( 7140 RetTys[i], CLI.DL, CLI.Chain, Add, 7141 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7142 DemoteStackIdx, Offsets[i]), 7143 false, false, false, 1); 7144 ReturnValues[i] = L; 7145 Chains[i] = L.getValue(1); 7146 } 7147 7148 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7149 } else { 7150 // Collect the legal value parts into potentially illegal values 7151 // that correspond to the original function's return values. 7152 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7153 if (CLI.RetSExt) 7154 AssertOp = ISD::AssertSext; 7155 else if (CLI.RetZExt) 7156 AssertOp = ISD::AssertZext; 7157 unsigned CurReg = 0; 7158 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7159 EVT VT = RetTys[I]; 7160 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7161 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7162 7163 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7164 NumRegs, RegisterVT, VT, nullptr, 7165 AssertOp)); 7166 CurReg += NumRegs; 7167 } 7168 7169 // For a function returning void, there is no return value. We can't create 7170 // such a node, so we just return a null return value in that case. In 7171 // that case, nothing will actually look at the value. 7172 if (ReturnValues.empty()) 7173 return std::make_pair(SDValue(), CLI.Chain); 7174 } 7175 7176 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7177 CLI.DAG.getVTList(RetTys), ReturnValues); 7178 return std::make_pair(Res, CLI.Chain); 7179 } 7180 7181 void TargetLowering::LowerOperationWrapper(SDNode *N, 7182 SmallVectorImpl<SDValue> &Results, 7183 SelectionDAG &DAG) const { 7184 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7185 if (Res.getNode()) 7186 Results.push_back(Res); 7187 } 7188 7189 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7190 llvm_unreachable("LowerOperation not implemented for this target!"); 7191 } 7192 7193 void 7194 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7195 SDValue Op = getNonRegisterValue(V); 7196 assert((Op.getOpcode() != ISD::CopyFromReg || 7197 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7198 "Copy from a reg to the same reg!"); 7199 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7200 7201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7202 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7203 V->getType()); 7204 SDValue Chain = DAG.getEntryNode(); 7205 7206 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7207 FuncInfo.PreferredExtendType.end()) 7208 ? ISD::ANY_EXTEND 7209 : FuncInfo.PreferredExtendType[V]; 7210 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7211 PendingExports.push_back(Chain); 7212 } 7213 7214 #include "llvm/CodeGen/SelectionDAGISel.h" 7215 7216 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7217 /// entry block, return true. This includes arguments used by switches, since 7218 /// the switch may expand into multiple basic blocks. 7219 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7220 // With FastISel active, we may be splitting blocks, so force creation 7221 // of virtual registers for all non-dead arguments. 7222 if (FastISel) 7223 return A->use_empty(); 7224 7225 const BasicBlock *Entry = A->getParent()->begin(); 7226 for (const User *U : A->users()) 7227 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7228 return false; // Use not in entry block. 7229 7230 return true; 7231 } 7232 7233 void SelectionDAGISel::LowerArguments(const Function &F) { 7234 SelectionDAG &DAG = SDB->DAG; 7235 SDLoc dl = SDB->getCurSDLoc(); 7236 const DataLayout &DL = DAG.getDataLayout(); 7237 SmallVector<ISD::InputArg, 16> Ins; 7238 7239 if (!FuncInfo->CanLowerReturn) { 7240 // Put in an sret pointer parameter before all the other parameters. 7241 SmallVector<EVT, 1> ValueVTs; 7242 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7243 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7244 7245 // NOTE: Assuming that a pointer will never break down to more than one VT 7246 // or one register. 7247 ISD::ArgFlagsTy Flags; 7248 Flags.setSRet(); 7249 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7250 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7251 ISD::InputArg::NoArgIndex, 0); 7252 Ins.push_back(RetArg); 7253 } 7254 7255 // Set up the incoming argument description vector. 7256 unsigned Idx = 1; 7257 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7258 I != E; ++I, ++Idx) { 7259 SmallVector<EVT, 4> ValueVTs; 7260 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7261 bool isArgValueUsed = !I->use_empty(); 7262 unsigned PartBase = 0; 7263 Type *FinalType = I->getType(); 7264 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7265 FinalType = cast<PointerType>(FinalType)->getElementType(); 7266 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7267 FinalType, F.getCallingConv(), F.isVarArg()); 7268 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7269 Value != NumValues; ++Value) { 7270 EVT VT = ValueVTs[Value]; 7271 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7272 ISD::ArgFlagsTy Flags; 7273 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7274 7275 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7276 Flags.setZExt(); 7277 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7278 Flags.setSExt(); 7279 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7280 Flags.setInReg(); 7281 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7282 Flags.setSRet(); 7283 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7284 Flags.setByVal(); 7285 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7286 Flags.setInAlloca(); 7287 // Set the byval flag for CCAssignFn callbacks that don't know about 7288 // inalloca. This way we can know how many bytes we should've allocated 7289 // and how many bytes a callee cleanup function will pop. If we port 7290 // inalloca to more targets, we'll have to add custom inalloca handling 7291 // in the various CC lowering callbacks. 7292 Flags.setByVal(); 7293 } 7294 if (Flags.isByVal() || Flags.isInAlloca()) { 7295 PointerType *Ty = cast<PointerType>(I->getType()); 7296 Type *ElementTy = Ty->getElementType(); 7297 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7298 // For ByVal, alignment should be passed from FE. BE will guess if 7299 // this info is not there but there are cases it cannot get right. 7300 unsigned FrameAlign; 7301 if (F.getParamAlignment(Idx)) 7302 FrameAlign = F.getParamAlignment(Idx); 7303 else 7304 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7305 Flags.setByValAlign(FrameAlign); 7306 } 7307 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7308 Flags.setNest(); 7309 if (NeedsRegBlock) 7310 Flags.setInConsecutiveRegs(); 7311 Flags.setOrigAlign(OriginalAlignment); 7312 7313 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7314 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7315 for (unsigned i = 0; i != NumRegs; ++i) { 7316 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7317 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7318 if (NumRegs > 1 && i == 0) 7319 MyFlags.Flags.setSplit(); 7320 // if it isn't first piece, alignment must be 1 7321 else if (i > 0) 7322 MyFlags.Flags.setOrigAlign(1); 7323 Ins.push_back(MyFlags); 7324 } 7325 if (NeedsRegBlock && Value == NumValues - 1) 7326 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7327 PartBase += VT.getStoreSize(); 7328 } 7329 } 7330 7331 // Call the target to set up the argument values. 7332 SmallVector<SDValue, 8> InVals; 7333 SDValue NewRoot = TLI->LowerFormalArguments( 7334 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7335 7336 // Verify that the target's LowerFormalArguments behaved as expected. 7337 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7338 "LowerFormalArguments didn't return a valid chain!"); 7339 assert(InVals.size() == Ins.size() && 7340 "LowerFormalArguments didn't emit the correct number of values!"); 7341 DEBUG({ 7342 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7343 assert(InVals[i].getNode() && 7344 "LowerFormalArguments emitted a null value!"); 7345 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7346 "LowerFormalArguments emitted a value with the wrong type!"); 7347 } 7348 }); 7349 7350 // Update the DAG with the new chain value resulting from argument lowering. 7351 DAG.setRoot(NewRoot); 7352 7353 // Set up the argument values. 7354 unsigned i = 0; 7355 Idx = 1; 7356 if (!FuncInfo->CanLowerReturn) { 7357 // Create a virtual register for the sret pointer, and put in a copy 7358 // from the sret argument into it. 7359 SmallVector<EVT, 1> ValueVTs; 7360 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7361 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7362 MVT VT = ValueVTs[0].getSimpleVT(); 7363 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7364 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7365 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7366 RegVT, VT, nullptr, AssertOp); 7367 7368 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7369 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7370 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7371 FuncInfo->DemoteRegister = SRetReg; 7372 NewRoot = 7373 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7374 DAG.setRoot(NewRoot); 7375 7376 // i indexes lowered arguments. Bump it past the hidden sret argument. 7377 // Idx indexes LLVM arguments. Don't touch it. 7378 ++i; 7379 } 7380 7381 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7382 ++I, ++Idx) { 7383 SmallVector<SDValue, 4> ArgValues; 7384 SmallVector<EVT, 4> ValueVTs; 7385 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7386 unsigned NumValues = ValueVTs.size(); 7387 7388 // If this argument is unused then remember its value. It is used to generate 7389 // debugging information. 7390 if (I->use_empty() && NumValues) { 7391 SDB->setUnusedArgValue(I, InVals[i]); 7392 7393 // Also remember any frame index for use in FastISel. 7394 if (FrameIndexSDNode *FI = 7395 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7396 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7397 } 7398 7399 for (unsigned Val = 0; Val != NumValues; ++Val) { 7400 EVT VT = ValueVTs[Val]; 7401 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7402 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7403 7404 if (!I->use_empty()) { 7405 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7406 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7407 AssertOp = ISD::AssertSext; 7408 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7409 AssertOp = ISD::AssertZext; 7410 7411 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7412 NumParts, PartVT, VT, 7413 nullptr, AssertOp)); 7414 } 7415 7416 i += NumParts; 7417 } 7418 7419 // We don't need to do anything else for unused arguments. 7420 if (ArgValues.empty()) 7421 continue; 7422 7423 // Note down frame index. 7424 if (FrameIndexSDNode *FI = 7425 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7426 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7427 7428 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7429 SDB->getCurSDLoc()); 7430 7431 SDB->setValue(I, Res); 7432 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7433 if (LoadSDNode *LNode = 7434 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7435 if (FrameIndexSDNode *FI = 7436 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7437 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7438 } 7439 7440 // If this argument is live outside of the entry block, insert a copy from 7441 // wherever we got it to the vreg that other BB's will reference it as. 7442 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7443 // If we can, though, try to skip creating an unnecessary vreg. 7444 // FIXME: This isn't very clean... it would be nice to make this more 7445 // general. It's also subtly incompatible with the hacks FastISel 7446 // uses with vregs. 7447 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7448 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7449 FuncInfo->ValueMap[I] = Reg; 7450 continue; 7451 } 7452 } 7453 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7454 FuncInfo->InitializeRegForValue(I); 7455 SDB->CopyToExportRegsIfNeeded(I); 7456 } 7457 } 7458 7459 assert(i == InVals.size() && "Argument register count mismatch!"); 7460 7461 // Finally, if the target has anything special to do, allow it to do so. 7462 EmitFunctionEntryCode(); 7463 } 7464 7465 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7466 /// ensure constants are generated when needed. Remember the virtual registers 7467 /// that need to be added to the Machine PHI nodes as input. We cannot just 7468 /// directly add them, because expansion might result in multiple MBB's for one 7469 /// BB. As such, the start of the BB might correspond to a different MBB than 7470 /// the end. 7471 /// 7472 void 7473 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7474 const TerminatorInst *TI = LLVMBB->getTerminator(); 7475 7476 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7477 7478 // Check PHI nodes in successors that expect a value to be available from this 7479 // block. 7480 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7481 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7482 if (!isa<PHINode>(SuccBB->begin())) continue; 7483 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7484 7485 // If this terminator has multiple identical successors (common for 7486 // switches), only handle each succ once. 7487 if (!SuccsHandled.insert(SuccMBB).second) 7488 continue; 7489 7490 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7491 7492 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7493 // nodes and Machine PHI nodes, but the incoming operands have not been 7494 // emitted yet. 7495 for (BasicBlock::const_iterator I = SuccBB->begin(); 7496 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7497 // Ignore dead phi's. 7498 if (PN->use_empty()) continue; 7499 7500 // Skip empty types 7501 if (PN->getType()->isEmptyTy()) 7502 continue; 7503 7504 unsigned Reg; 7505 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7506 7507 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7508 unsigned &RegOut = ConstantsOut[C]; 7509 if (RegOut == 0) { 7510 RegOut = FuncInfo.CreateRegs(C->getType()); 7511 CopyValueToVirtualRegister(C, RegOut); 7512 } 7513 Reg = RegOut; 7514 } else { 7515 DenseMap<const Value *, unsigned>::iterator I = 7516 FuncInfo.ValueMap.find(PHIOp); 7517 if (I != FuncInfo.ValueMap.end()) 7518 Reg = I->second; 7519 else { 7520 assert(isa<AllocaInst>(PHIOp) && 7521 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7522 "Didn't codegen value into a register!??"); 7523 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7524 CopyValueToVirtualRegister(PHIOp, Reg); 7525 } 7526 } 7527 7528 // Remember that this register needs to added to the machine PHI node as 7529 // the input for this MBB. 7530 SmallVector<EVT, 4> ValueVTs; 7531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7532 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7533 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7534 EVT VT = ValueVTs[vti]; 7535 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7536 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7537 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7538 Reg += NumRegisters; 7539 } 7540 } 7541 } 7542 7543 ConstantsOut.clear(); 7544 } 7545 7546 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7547 /// is 0. 7548 MachineBasicBlock * 7549 SelectionDAGBuilder::StackProtectorDescriptor:: 7550 AddSuccessorMBB(const BasicBlock *BB, 7551 MachineBasicBlock *ParentMBB, 7552 bool IsLikely, 7553 MachineBasicBlock *SuccMBB) { 7554 // If SuccBB has not been created yet, create it. 7555 if (!SuccMBB) { 7556 MachineFunction *MF = ParentMBB->getParent(); 7557 MachineFunction::iterator BBI = ParentMBB; 7558 SuccMBB = MF->CreateMachineBasicBlock(BB); 7559 MF->insert(++BBI, SuccMBB); 7560 } 7561 // Add it as a successor of ParentMBB. 7562 ParentMBB->addSuccessor( 7563 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7564 return SuccMBB; 7565 } 7566 7567 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7568 MachineFunction::iterator I = MBB; 7569 if (++I == FuncInfo.MF->end()) 7570 return nullptr; 7571 return I; 7572 } 7573 7574 /// During lowering new call nodes can be created (such as memset, etc.). 7575 /// Those will become new roots of the current DAG, but complications arise 7576 /// when they are tail calls. In such cases, the call lowering will update 7577 /// the root, but the builder still needs to know that a tail call has been 7578 /// lowered in order to avoid generating an additional return. 7579 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7580 // If the node is null, we do have a tail call. 7581 if (MaybeTC.getNode() != nullptr) 7582 DAG.setRoot(MaybeTC); 7583 else 7584 HasTailCall = true; 7585 } 7586 7587 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7588 unsigned *TotalCases, unsigned First, 7589 unsigned Last) { 7590 assert(Last >= First); 7591 assert(TotalCases[Last] >= TotalCases[First]); 7592 7593 APInt LowCase = Clusters[First].Low->getValue(); 7594 APInt HighCase = Clusters[Last].High->getValue(); 7595 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7596 7597 // FIXME: A range of consecutive cases has 100% density, but only requires one 7598 // comparison to lower. We should discriminate against such consecutive ranges 7599 // in jump tables. 7600 7601 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7602 uint64_t Range = Diff + 1; 7603 7604 uint64_t NumCases = 7605 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7606 7607 assert(NumCases < UINT64_MAX / 100); 7608 assert(Range >= NumCases); 7609 7610 return NumCases * 100 >= Range * MinJumpTableDensity; 7611 } 7612 7613 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7614 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7615 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7616 } 7617 7618 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7619 unsigned First, unsigned Last, 7620 const SwitchInst *SI, 7621 MachineBasicBlock *DefaultMBB, 7622 CaseCluster &JTCluster) { 7623 assert(First <= Last); 7624 7625 uint32_t Weight = 0; 7626 unsigned NumCmps = 0; 7627 std::vector<MachineBasicBlock*> Table; 7628 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7629 for (unsigned I = First; I <= Last; ++I) { 7630 assert(Clusters[I].Kind == CC_Range); 7631 Weight += Clusters[I].Weight; 7632 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7633 APInt Low = Clusters[I].Low->getValue(); 7634 APInt High = Clusters[I].High->getValue(); 7635 NumCmps += (Low == High) ? 1 : 2; 7636 if (I != First) { 7637 // Fill the gap between this and the previous cluster. 7638 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7639 assert(PreviousHigh.slt(Low)); 7640 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7641 for (uint64_t J = 0; J < Gap; J++) 7642 Table.push_back(DefaultMBB); 7643 } 7644 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7645 for (uint64_t J = 0; J < ClusterSize; ++J) 7646 Table.push_back(Clusters[I].MBB); 7647 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7648 } 7649 7650 unsigned NumDests = JTWeights.size(); 7651 if (isSuitableForBitTests(NumDests, NumCmps, 7652 Clusters[First].Low->getValue(), 7653 Clusters[Last].High->getValue())) { 7654 // Clusters[First..Last] should be lowered as bit tests instead. 7655 return false; 7656 } 7657 7658 // Create the MBB that will load from and jump through the table. 7659 // Note: We create it here, but it's not inserted into the function yet. 7660 MachineFunction *CurMF = FuncInfo.MF; 7661 MachineBasicBlock *JumpTableMBB = 7662 CurMF->CreateMachineBasicBlock(SI->getParent()); 7663 7664 // Add successors. Note: use table order for determinism. 7665 SmallPtrSet<MachineBasicBlock *, 8> Done; 7666 for (MachineBasicBlock *Succ : Table) { 7667 if (Done.count(Succ)) 7668 continue; 7669 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7670 Done.insert(Succ); 7671 } 7672 7673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7674 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7675 ->createJumpTableIndex(Table); 7676 7677 // Set up the jump table info. 7678 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7679 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7680 Clusters[Last].High->getValue(), SI->getCondition(), 7681 nullptr, false); 7682 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7683 7684 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7685 JTCases.size() - 1, Weight); 7686 return true; 7687 } 7688 7689 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7690 const SwitchInst *SI, 7691 MachineBasicBlock *DefaultMBB) { 7692 #ifndef NDEBUG 7693 // Clusters must be non-empty, sorted, and only contain Range clusters. 7694 assert(!Clusters.empty()); 7695 for (CaseCluster &C : Clusters) 7696 assert(C.Kind == CC_Range); 7697 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7698 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7699 #endif 7700 7701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7702 if (!areJTsAllowed(TLI)) 7703 return; 7704 7705 const int64_t N = Clusters.size(); 7706 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7707 7708 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7709 SmallVector<unsigned, 8> TotalCases(N); 7710 7711 for (unsigned i = 0; i < N; ++i) { 7712 APInt Hi = Clusters[i].High->getValue(); 7713 APInt Lo = Clusters[i].Low->getValue(); 7714 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7715 if (i != 0) 7716 TotalCases[i] += TotalCases[i - 1]; 7717 } 7718 7719 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7720 // Cheap case: the whole range might be suitable for jump table. 7721 CaseCluster JTCluster; 7722 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7723 Clusters[0] = JTCluster; 7724 Clusters.resize(1); 7725 return; 7726 } 7727 } 7728 7729 // The algorithm below is not suitable for -O0. 7730 if (TM.getOptLevel() == CodeGenOpt::None) 7731 return; 7732 7733 // Split Clusters into minimum number of dense partitions. The algorithm uses 7734 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7735 // for the Case Statement'" (1994), but builds the MinPartitions array in 7736 // reverse order to make it easier to reconstruct the partitions in ascending 7737 // order. In the choice between two optimal partitionings, it picks the one 7738 // which yields more jump tables. 7739 7740 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7741 SmallVector<unsigned, 8> MinPartitions(N); 7742 // LastElement[i] is the last element of the partition starting at i. 7743 SmallVector<unsigned, 8> LastElement(N); 7744 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7745 SmallVector<unsigned, 8> NumTables(N); 7746 7747 // Base case: There is only one way to partition Clusters[N-1]. 7748 MinPartitions[N - 1] = 1; 7749 LastElement[N - 1] = N - 1; 7750 assert(MinJumpTableSize > 1); 7751 NumTables[N - 1] = 0; 7752 7753 // Note: loop indexes are signed to avoid underflow. 7754 for (int64_t i = N - 2; i >= 0; i--) { 7755 // Find optimal partitioning of Clusters[i..N-1]. 7756 // Baseline: Put Clusters[i] into a partition on its own. 7757 MinPartitions[i] = MinPartitions[i + 1] + 1; 7758 LastElement[i] = i; 7759 NumTables[i] = NumTables[i + 1]; 7760 7761 // Search for a solution that results in fewer partitions. 7762 for (int64_t j = N - 1; j > i; j--) { 7763 // Try building a partition from Clusters[i..j]. 7764 if (isDense(Clusters, &TotalCases[0], i, j)) { 7765 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7766 bool IsTable = j - i + 1 >= MinJumpTableSize; 7767 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7768 7769 // If this j leads to fewer partitions, or same number of partitions 7770 // with more lookup tables, it is a better partitioning. 7771 if (NumPartitions < MinPartitions[i] || 7772 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7773 MinPartitions[i] = NumPartitions; 7774 LastElement[i] = j; 7775 NumTables[i] = Tables; 7776 } 7777 } 7778 } 7779 } 7780 7781 // Iterate over the partitions, replacing some with jump tables in-place. 7782 unsigned DstIndex = 0; 7783 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7784 Last = LastElement[First]; 7785 assert(Last >= First); 7786 assert(DstIndex <= First); 7787 unsigned NumClusters = Last - First + 1; 7788 7789 CaseCluster JTCluster; 7790 if (NumClusters >= MinJumpTableSize && 7791 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7792 Clusters[DstIndex++] = JTCluster; 7793 } else { 7794 for (unsigned I = First; I <= Last; ++I) 7795 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7796 } 7797 } 7798 Clusters.resize(DstIndex); 7799 } 7800 7801 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7802 // FIXME: Using the pointer type doesn't seem ideal. 7803 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7804 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7805 return Range <= BW; 7806 } 7807 7808 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7809 unsigned NumCmps, 7810 const APInt &Low, 7811 const APInt &High) { 7812 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7813 // range of cases both require only one branch to lower. Just looking at the 7814 // number of clusters and destinations should be enough to decide whether to 7815 // build bit tests. 7816 7817 // To lower a range with bit tests, the range must fit the bitwidth of a 7818 // machine word. 7819 if (!rangeFitsInWord(Low, High)) 7820 return false; 7821 7822 // Decide whether it's profitable to lower this range with bit tests. Each 7823 // destination requires a bit test and branch, and there is an overall range 7824 // check branch. For a small number of clusters, separate comparisons might be 7825 // cheaper, and for many destinations, splitting the range might be better. 7826 return (NumDests == 1 && NumCmps >= 3) || 7827 (NumDests == 2 && NumCmps >= 5) || 7828 (NumDests == 3 && NumCmps >= 6); 7829 } 7830 7831 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7832 unsigned First, unsigned Last, 7833 const SwitchInst *SI, 7834 CaseCluster &BTCluster) { 7835 assert(First <= Last); 7836 if (First == Last) 7837 return false; 7838 7839 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7840 unsigned NumCmps = 0; 7841 for (int64_t I = First; I <= Last; ++I) { 7842 assert(Clusters[I].Kind == CC_Range); 7843 Dests.set(Clusters[I].MBB->getNumber()); 7844 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7845 } 7846 unsigned NumDests = Dests.count(); 7847 7848 APInt Low = Clusters[First].Low->getValue(); 7849 APInt High = Clusters[Last].High->getValue(); 7850 assert(Low.slt(High)); 7851 7852 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7853 return false; 7854 7855 APInt LowBound; 7856 APInt CmpRange; 7857 7858 const int BitWidth = DAG.getTargetLoweringInfo() 7859 .getPointerTy(DAG.getDataLayout()) 7860 .getSizeInBits(); 7861 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7862 7863 // Check if the clusters cover a contiguous range such that no value in the 7864 // range will jump to the default statement. 7865 bool ContiguousRange = true; 7866 for (int64_t I = First + 1; I <= Last; ++I) { 7867 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7868 ContiguousRange = false; 7869 break; 7870 } 7871 } 7872 7873 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7874 // Optimize the case where all the case values fit in a word without having 7875 // to subtract minValue. In this case, we can optimize away the subtraction. 7876 LowBound = APInt::getNullValue(Low.getBitWidth()); 7877 CmpRange = High; 7878 ContiguousRange = false; 7879 } else { 7880 LowBound = Low; 7881 CmpRange = High - Low; 7882 } 7883 7884 CaseBitsVector CBV; 7885 uint32_t TotalWeight = 0; 7886 for (unsigned i = First; i <= Last; ++i) { 7887 // Find the CaseBits for this destination. 7888 unsigned j; 7889 for (j = 0; j < CBV.size(); ++j) 7890 if (CBV[j].BB == Clusters[i].MBB) 7891 break; 7892 if (j == CBV.size()) 7893 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7894 CaseBits *CB = &CBV[j]; 7895 7896 // Update Mask, Bits and ExtraWeight. 7897 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7898 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7899 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7900 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7901 CB->Bits += Hi - Lo + 1; 7902 CB->ExtraWeight += Clusters[i].Weight; 7903 TotalWeight += Clusters[i].Weight; 7904 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7905 } 7906 7907 BitTestInfo BTI; 7908 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7909 // Sort by weight first, number of bits second. 7910 if (a.ExtraWeight != b.ExtraWeight) 7911 return a.ExtraWeight > b.ExtraWeight; 7912 return a.Bits > b.Bits; 7913 }); 7914 7915 for (auto &CB : CBV) { 7916 MachineBasicBlock *BitTestBB = 7917 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7918 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7919 } 7920 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7921 SI->getCondition(), -1U, MVT::Other, false, 7922 ContiguousRange, nullptr, nullptr, std::move(BTI), 7923 TotalWeight); 7924 7925 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7926 BitTestCases.size() - 1, TotalWeight); 7927 return true; 7928 } 7929 7930 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7931 const SwitchInst *SI) { 7932 // Partition Clusters into as few subsets as possible, where each subset has a 7933 // range that fits in a machine word and has <= 3 unique destinations. 7934 7935 #ifndef NDEBUG 7936 // Clusters must be sorted and contain Range or JumpTable clusters. 7937 assert(!Clusters.empty()); 7938 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7939 for (const CaseCluster &C : Clusters) 7940 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7941 for (unsigned i = 1; i < Clusters.size(); ++i) 7942 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7943 #endif 7944 7945 // The algorithm below is not suitable for -O0. 7946 if (TM.getOptLevel() == CodeGenOpt::None) 7947 return; 7948 7949 // If target does not have legal shift left, do not emit bit tests at all. 7950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7951 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7952 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7953 return; 7954 7955 int BitWidth = PTy.getSizeInBits(); 7956 const int64_t N = Clusters.size(); 7957 7958 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7959 SmallVector<unsigned, 8> MinPartitions(N); 7960 // LastElement[i] is the last element of the partition starting at i. 7961 SmallVector<unsigned, 8> LastElement(N); 7962 7963 // FIXME: This might not be the best algorithm for finding bit test clusters. 7964 7965 // Base case: There is only one way to partition Clusters[N-1]. 7966 MinPartitions[N - 1] = 1; 7967 LastElement[N - 1] = N - 1; 7968 7969 // Note: loop indexes are signed to avoid underflow. 7970 for (int64_t i = N - 2; i >= 0; --i) { 7971 // Find optimal partitioning of Clusters[i..N-1]. 7972 // Baseline: Put Clusters[i] into a partition on its own. 7973 MinPartitions[i] = MinPartitions[i + 1] + 1; 7974 LastElement[i] = i; 7975 7976 // Search for a solution that results in fewer partitions. 7977 // Note: the search is limited by BitWidth, reducing time complexity. 7978 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7979 // Try building a partition from Clusters[i..j]. 7980 7981 // Check the range. 7982 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7983 Clusters[j].High->getValue())) 7984 continue; 7985 7986 // Check nbr of destinations and cluster types. 7987 // FIXME: This works, but doesn't seem very efficient. 7988 bool RangesOnly = true; 7989 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7990 for (int64_t k = i; k <= j; k++) { 7991 if (Clusters[k].Kind != CC_Range) { 7992 RangesOnly = false; 7993 break; 7994 } 7995 Dests.set(Clusters[k].MBB->getNumber()); 7996 } 7997 if (!RangesOnly || Dests.count() > 3) 7998 break; 7999 8000 // Check if it's a better partition. 8001 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8002 if (NumPartitions < MinPartitions[i]) { 8003 // Found a better partition. 8004 MinPartitions[i] = NumPartitions; 8005 LastElement[i] = j; 8006 } 8007 } 8008 } 8009 8010 // Iterate over the partitions, replacing with bit-test clusters in-place. 8011 unsigned DstIndex = 0; 8012 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8013 Last = LastElement[First]; 8014 assert(First <= Last); 8015 assert(DstIndex <= First); 8016 8017 CaseCluster BitTestCluster; 8018 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8019 Clusters[DstIndex++] = BitTestCluster; 8020 } else { 8021 size_t NumClusters = Last - First + 1; 8022 std::memmove(&Clusters[DstIndex], &Clusters[First], 8023 sizeof(Clusters[0]) * NumClusters); 8024 DstIndex += NumClusters; 8025 } 8026 } 8027 Clusters.resize(DstIndex); 8028 } 8029 8030 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8031 MachineBasicBlock *SwitchMBB, 8032 MachineBasicBlock *DefaultMBB) { 8033 MachineFunction *CurMF = FuncInfo.MF; 8034 MachineBasicBlock *NextMBB = nullptr; 8035 MachineFunction::iterator BBI = W.MBB; 8036 if (++BBI != FuncInfo.MF->end()) 8037 NextMBB = BBI; 8038 8039 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8040 8041 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8042 8043 if (Size == 2 && W.MBB == SwitchMBB) { 8044 // If any two of the cases has the same destination, and if one value 8045 // is the same as the other, but has one bit unset that the other has set, 8046 // use bit manipulation to do two compares at once. For example: 8047 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8048 // TODO: This could be extended to merge any 2 cases in switches with 3 8049 // cases. 8050 // TODO: Handle cases where W.CaseBB != SwitchBB. 8051 CaseCluster &Small = *W.FirstCluster; 8052 CaseCluster &Big = *W.LastCluster; 8053 8054 if (Small.Low == Small.High && Big.Low == Big.High && 8055 Small.MBB == Big.MBB) { 8056 const APInt &SmallValue = Small.Low->getValue(); 8057 const APInt &BigValue = Big.Low->getValue(); 8058 8059 // Check that there is only one bit different. 8060 APInt CommonBit = BigValue ^ SmallValue; 8061 if (CommonBit.isPowerOf2()) { 8062 SDValue CondLHS = getValue(Cond); 8063 EVT VT = CondLHS.getValueType(); 8064 SDLoc DL = getCurSDLoc(); 8065 8066 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8067 DAG.getConstant(CommonBit, DL, VT)); 8068 SDValue Cond = DAG.getSetCC( 8069 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8070 ISD::SETEQ); 8071 8072 // Update successor info. 8073 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8074 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8075 addSuccessorWithWeight( 8076 SwitchMBB, DefaultMBB, 8077 // The default destination is the first successor in IR. 8078 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8079 : 0); 8080 8081 // Insert the true branch. 8082 SDValue BrCond = 8083 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8084 DAG.getBasicBlock(Small.MBB)); 8085 // Insert the false branch. 8086 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8087 DAG.getBasicBlock(DefaultMBB)); 8088 8089 DAG.setRoot(BrCond); 8090 return; 8091 } 8092 } 8093 } 8094 8095 if (TM.getOptLevel() != CodeGenOpt::None) { 8096 // Order cases by weight so the most likely case will be checked first. 8097 std::sort(W.FirstCluster, W.LastCluster + 1, 8098 [](const CaseCluster &a, const CaseCluster &b) { 8099 return a.Weight > b.Weight; 8100 }); 8101 8102 // Rearrange the case blocks so that the last one falls through if possible 8103 // without without changing the order of weights. 8104 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8105 --I; 8106 if (I->Weight > W.LastCluster->Weight) 8107 break; 8108 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8109 std::swap(*I, *W.LastCluster); 8110 break; 8111 } 8112 } 8113 } 8114 8115 // Compute total weight. 8116 uint32_t DefaultWeight = W.DefaultWeight; 8117 uint32_t UnhandledWeights = DefaultWeight; 8118 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8119 UnhandledWeights += I->Weight; 8120 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8121 } 8122 8123 MachineBasicBlock *CurMBB = W.MBB; 8124 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8125 MachineBasicBlock *Fallthrough; 8126 if (I == W.LastCluster) { 8127 // For the last cluster, fall through to the default destination. 8128 Fallthrough = DefaultMBB; 8129 } else { 8130 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8131 CurMF->insert(BBI, Fallthrough); 8132 // Put Cond in a virtual register to make it available from the new blocks. 8133 ExportFromCurrentBlock(Cond); 8134 } 8135 UnhandledWeights -= I->Weight; 8136 8137 switch (I->Kind) { 8138 case CC_JumpTable: { 8139 // FIXME: Optimize away range check based on pivot comparisons. 8140 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8141 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8142 8143 // The jump block hasn't been inserted yet; insert it here. 8144 MachineBasicBlock *JumpMBB = JT->MBB; 8145 CurMF->insert(BBI, JumpMBB); 8146 8147 uint32_t JumpWeight = I->Weight; 8148 uint32_t FallthroughWeight = UnhandledWeights; 8149 8150 // If the default statement is a target of the jump table, we evenly 8151 // distribute the default weight to successors of CurMBB. Also update 8152 // the weight on the edge from JumpMBB to Fallthrough. 8153 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8154 SE = JumpMBB->succ_end(); 8155 SI != SE; ++SI) { 8156 if (*SI == DefaultMBB) { 8157 JumpWeight += DefaultWeight / 2; 8158 FallthroughWeight -= DefaultWeight / 2; 8159 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8160 break; 8161 } 8162 } 8163 8164 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8165 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8166 8167 // The jump table header will be inserted in our current block, do the 8168 // range check, and fall through to our fallthrough block. 8169 JTH->HeaderBB = CurMBB; 8170 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8171 8172 // If we're in the right place, emit the jump table header right now. 8173 if (CurMBB == SwitchMBB) { 8174 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8175 JTH->Emitted = true; 8176 } 8177 break; 8178 } 8179 case CC_BitTests: { 8180 // FIXME: Optimize away range check based on pivot comparisons. 8181 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8182 8183 // The bit test blocks haven't been inserted yet; insert them here. 8184 for (BitTestCase &BTC : BTB->Cases) 8185 CurMF->insert(BBI, BTC.ThisBB); 8186 8187 // Fill in fields of the BitTestBlock. 8188 BTB->Parent = CurMBB; 8189 BTB->Default = Fallthrough; 8190 8191 BTB->DefaultWeight = UnhandledWeights; 8192 // If the cases in bit test don't form a contiguous range, we evenly 8193 // distribute the weight on the edge to Fallthrough to two successors 8194 // of CurMBB. 8195 if (!BTB->ContiguousRange) { 8196 BTB->Weight += DefaultWeight / 2; 8197 BTB->DefaultWeight -= DefaultWeight / 2; 8198 } 8199 8200 // If we're in the right place, emit the bit test header right now. 8201 if (CurMBB == SwitchMBB) { 8202 visitBitTestHeader(*BTB, SwitchMBB); 8203 BTB->Emitted = true; 8204 } 8205 break; 8206 } 8207 case CC_Range: { 8208 const Value *RHS, *LHS, *MHS; 8209 ISD::CondCode CC; 8210 if (I->Low == I->High) { 8211 // Check Cond == I->Low. 8212 CC = ISD::SETEQ; 8213 LHS = Cond; 8214 RHS=I->Low; 8215 MHS = nullptr; 8216 } else { 8217 // Check I->Low <= Cond <= I->High. 8218 CC = ISD::SETLE; 8219 LHS = I->Low; 8220 MHS = Cond; 8221 RHS = I->High; 8222 } 8223 8224 // The false weight is the sum of all unhandled cases. 8225 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8226 UnhandledWeights); 8227 8228 if (CurMBB == SwitchMBB) 8229 visitSwitchCase(CB, SwitchMBB); 8230 else 8231 SwitchCases.push_back(CB); 8232 8233 break; 8234 } 8235 } 8236 CurMBB = Fallthrough; 8237 } 8238 } 8239 8240 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8241 CaseClusterIt First, 8242 CaseClusterIt Last) { 8243 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8244 if (X.Weight != CC.Weight) 8245 return X.Weight > CC.Weight; 8246 8247 // Ties are broken by comparing the case value. 8248 return X.Low->getValue().slt(CC.Low->getValue()); 8249 }); 8250 } 8251 8252 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8253 const SwitchWorkListItem &W, 8254 Value *Cond, 8255 MachineBasicBlock *SwitchMBB) { 8256 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8257 "Clusters not sorted?"); 8258 8259 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8260 8261 // Balance the tree based on branch weights to create a near-optimal (in terms 8262 // of search time given key frequency) binary search tree. See e.g. Kurt 8263 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8264 CaseClusterIt LastLeft = W.FirstCluster; 8265 CaseClusterIt FirstRight = W.LastCluster; 8266 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8267 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8268 8269 // Move LastLeft and FirstRight towards each other from opposite directions to 8270 // find a partitioning of the clusters which balances the weight on both 8271 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8272 // taken to ensure 0-weight nodes are distributed evenly. 8273 unsigned I = 0; 8274 while (LastLeft + 1 < FirstRight) { 8275 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8276 LeftWeight += (++LastLeft)->Weight; 8277 else 8278 RightWeight += (--FirstRight)->Weight; 8279 I++; 8280 } 8281 8282 for (;;) { 8283 // Our binary search tree differs from a typical BST in that ours can have up 8284 // to three values in each leaf. The pivot selection above doesn't take that 8285 // into account, which means the tree might require more nodes and be less 8286 // efficient. We compensate for this here. 8287 8288 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8289 unsigned NumRight = W.LastCluster - FirstRight + 1; 8290 8291 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8292 // If one side has less than 3 clusters, and the other has more than 3, 8293 // consider taking a cluster from the other side. 8294 8295 if (NumLeft < NumRight) { 8296 // Consider moving the first cluster on the right to the left side. 8297 CaseCluster &CC = *FirstRight; 8298 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8299 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8300 if (LeftSideRank <= RightSideRank) { 8301 // Moving the cluster to the left does not demote it. 8302 ++LastLeft; 8303 ++FirstRight; 8304 continue; 8305 } 8306 } else { 8307 assert(NumRight < NumLeft); 8308 // Consider moving the last element on the left to the right side. 8309 CaseCluster &CC = *LastLeft; 8310 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8311 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8312 if (RightSideRank <= LeftSideRank) { 8313 // Moving the cluster to the right does not demot it. 8314 --LastLeft; 8315 --FirstRight; 8316 continue; 8317 } 8318 } 8319 } 8320 break; 8321 } 8322 8323 assert(LastLeft + 1 == FirstRight); 8324 assert(LastLeft >= W.FirstCluster); 8325 assert(FirstRight <= W.LastCluster); 8326 8327 // Use the first element on the right as pivot since we will make less-than 8328 // comparisons against it. 8329 CaseClusterIt PivotCluster = FirstRight; 8330 assert(PivotCluster > W.FirstCluster); 8331 assert(PivotCluster <= W.LastCluster); 8332 8333 CaseClusterIt FirstLeft = W.FirstCluster; 8334 CaseClusterIt LastRight = W.LastCluster; 8335 8336 const ConstantInt *Pivot = PivotCluster->Low; 8337 8338 // New blocks will be inserted immediately after the current one. 8339 MachineFunction::iterator BBI = W.MBB; 8340 ++BBI; 8341 8342 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8343 // we can branch to its destination directly if it's squeezed exactly in 8344 // between the known lower bound and Pivot - 1. 8345 MachineBasicBlock *LeftMBB; 8346 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8347 FirstLeft->Low == W.GE && 8348 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8349 LeftMBB = FirstLeft->MBB; 8350 } else { 8351 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8352 FuncInfo.MF->insert(BBI, LeftMBB); 8353 WorkList.push_back( 8354 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8355 // Put Cond in a virtual register to make it available from the new blocks. 8356 ExportFromCurrentBlock(Cond); 8357 } 8358 8359 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8360 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8361 // directly if RHS.High equals the current upper bound. 8362 MachineBasicBlock *RightMBB; 8363 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8364 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8365 RightMBB = FirstRight->MBB; 8366 } else { 8367 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8368 FuncInfo.MF->insert(BBI, RightMBB); 8369 WorkList.push_back( 8370 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8371 // Put Cond in a virtual register to make it available from the new blocks. 8372 ExportFromCurrentBlock(Cond); 8373 } 8374 8375 // Create the CaseBlock record that will be used to lower the branch. 8376 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8377 LeftWeight, RightWeight); 8378 8379 if (W.MBB == SwitchMBB) 8380 visitSwitchCase(CB, SwitchMBB); 8381 else 8382 SwitchCases.push_back(CB); 8383 } 8384 8385 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8386 // Extract cases from the switch. 8387 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8388 CaseClusterVector Clusters; 8389 Clusters.reserve(SI.getNumCases()); 8390 for (auto I : SI.cases()) { 8391 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8392 const ConstantInt *CaseVal = I.getCaseValue(); 8393 uint32_t Weight = 8394 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8395 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8396 } 8397 8398 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8399 8400 // Cluster adjacent cases with the same destination. We do this at all 8401 // optimization levels because it's cheap to do and will make codegen faster 8402 // if there are many clusters. 8403 sortAndRangeify(Clusters); 8404 8405 if (TM.getOptLevel() != CodeGenOpt::None) { 8406 // Replace an unreachable default with the most popular destination. 8407 // FIXME: Exploit unreachable default more aggressively. 8408 bool UnreachableDefault = 8409 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8410 if (UnreachableDefault && !Clusters.empty()) { 8411 DenseMap<const BasicBlock *, unsigned> Popularity; 8412 unsigned MaxPop = 0; 8413 const BasicBlock *MaxBB = nullptr; 8414 for (auto I : SI.cases()) { 8415 const BasicBlock *BB = I.getCaseSuccessor(); 8416 if (++Popularity[BB] > MaxPop) { 8417 MaxPop = Popularity[BB]; 8418 MaxBB = BB; 8419 } 8420 } 8421 // Set new default. 8422 assert(MaxPop > 0 && MaxBB); 8423 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8424 8425 // Remove cases that were pointing to the destination that is now the 8426 // default. 8427 CaseClusterVector New; 8428 New.reserve(Clusters.size()); 8429 for (CaseCluster &CC : Clusters) { 8430 if (CC.MBB != DefaultMBB) 8431 New.push_back(CC); 8432 } 8433 Clusters = std::move(New); 8434 } 8435 } 8436 8437 // If there is only the default destination, jump there directly. 8438 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8439 if (Clusters.empty()) { 8440 SwitchMBB->addSuccessor(DefaultMBB); 8441 if (DefaultMBB != NextBlock(SwitchMBB)) { 8442 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8443 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8444 } 8445 return; 8446 } 8447 8448 findJumpTables(Clusters, &SI, DefaultMBB); 8449 findBitTestClusters(Clusters, &SI); 8450 8451 DEBUG({ 8452 dbgs() << "Case clusters: "; 8453 for (const CaseCluster &C : Clusters) { 8454 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8455 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8456 8457 C.Low->getValue().print(dbgs(), true); 8458 if (C.Low != C.High) { 8459 dbgs() << '-'; 8460 C.High->getValue().print(dbgs(), true); 8461 } 8462 dbgs() << ' '; 8463 } 8464 dbgs() << '\n'; 8465 }); 8466 8467 assert(!Clusters.empty()); 8468 SwitchWorkList WorkList; 8469 CaseClusterIt First = Clusters.begin(); 8470 CaseClusterIt Last = Clusters.end() - 1; 8471 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8472 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8473 8474 while (!WorkList.empty()) { 8475 SwitchWorkListItem W = WorkList.back(); 8476 WorkList.pop_back(); 8477 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8478 8479 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8480 // For optimized builds, lower large range as a balanced binary tree. 8481 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8482 continue; 8483 } 8484 8485 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8486 } 8487 } 8488