1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/FunctionLoweringInfo.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Statepoint.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include <cstddef> 102 #include <iterator> 103 #include <limits> 104 #include <optional> 105 #include <tuple> 106 107 using namespace llvm; 108 using namespace PatternMatch; 109 using namespace SwitchCG; 110 111 #define DEBUG_TYPE "isel" 112 113 /// LimitFloatPrecision - Generate low-precision inline sequences for 114 /// some float libcalls (6, 8 or 12 bits). 115 static unsigned LimitFloatPrecision; 116 117 static cl::opt<bool> 118 InsertAssertAlign("insert-assert-align", cl::init(true), 119 cl::desc("Insert the experimental `assertalign` node."), 120 cl::ReallyHidden); 121 122 static cl::opt<unsigned, true> 123 LimitFPPrecision("limit-float-precision", 124 cl::desc("Generate low-precision inline sequences " 125 "for some float libcalls"), 126 cl::location(LimitFloatPrecision), cl::Hidden, 127 cl::init(0)); 128 129 static cl::opt<unsigned> SwitchPeelThreshold( 130 "switch-peel-threshold", cl::Hidden, cl::init(66), 131 cl::desc("Set the case probability threshold for peeling the case from a " 132 "switch statement. A value greater than 100 will void this " 133 "optimization")); 134 135 // Limit the width of DAG chains. This is important in general to prevent 136 // DAG-based analysis from blowing up. For example, alias analysis and 137 // load clustering may not complete in reasonable time. It is difficult to 138 // recognize and avoid this situation within each individual analysis, and 139 // future analyses are likely to have the same behavior. Limiting DAG width is 140 // the safe approach and will be especially important with global DAGs. 141 // 142 // MaxParallelChains default is arbitrarily high to avoid affecting 143 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 144 // sequence over this should have been converted to llvm.memcpy by the 145 // frontend. It is easy to induce this behavior with .ll code such as: 146 // %buffer = alloca [4096 x i8] 147 // %data = load [4096 x i8]* %argPtr 148 // store [4096 x i8] %data, [4096 x i8]* %buffer 149 static const unsigned MaxParallelChains = 64; 150 151 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 152 const SDValue *Parts, unsigned NumParts, 153 MVT PartVT, EVT ValueVT, const Value *V, 154 std::optional<CallingConv::ID> CC); 155 156 /// getCopyFromParts - Create a value that contains the specified legal parts 157 /// combined into the value they represent. If the parts combine to a type 158 /// larger than ValueVT then AssertOp can be used to specify whether the extra 159 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 160 /// (ISD::AssertSext). 161 static SDValue 162 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 163 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 164 std::optional<CallingConv::ID> CC = std::nullopt, 165 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 166 // Let the target assemble the parts if it wants to 167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 168 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 169 PartVT, ValueVT, CC)) 170 return Val; 171 172 if (ValueVT.isVector()) 173 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 174 CC); 175 176 assert(NumParts > 0 && "No parts to assemble!"); 177 SDValue Val = Parts[0]; 178 179 if (NumParts > 1) { 180 // Assemble the value from multiple parts. 181 if (ValueVT.isInteger()) { 182 unsigned PartBits = PartVT.getSizeInBits(); 183 unsigned ValueBits = ValueVT.getSizeInBits(); 184 185 // Assemble the power of 2 part. 186 unsigned RoundParts = 187 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 197 PartVT, HalfVT, V); 198 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 199 RoundParts / 2, PartVT, HalfVT, V); 200 } else { 201 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 202 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 203 } 204 205 if (DAG.getDataLayout().isBigEndian()) 206 std::swap(Lo, Hi); 207 208 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 209 210 if (RoundParts < NumParts) { 211 // Assemble the trailing non-power-of-2 part. 212 unsigned OddParts = NumParts - RoundParts; 213 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 214 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 215 OddVT, V, CC); 216 217 // Combine the round and odd parts. 218 Lo = Val; 219 if (DAG.getDataLayout().isBigEndian()) 220 std::swap(Lo, Hi); 221 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 222 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 223 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 224 DAG.getConstant(Lo.getValueSizeInBits(), DL, 225 TLI.getShiftAmountTy( 226 TotalVT, DAG.getDataLayout()))); 227 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 228 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 229 } 230 } else if (PartVT.isFloatingPoint()) { 231 // FP split into multiple FP parts (for ppcf128) 232 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 233 "Unexpected split"); 234 SDValue Lo, Hi; 235 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 237 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 238 std::swap(Lo, Hi); 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 240 } else { 241 // FP split into integer parts (soft fp) 242 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 243 !PartVT.isVector() && "Unexpected split"); 244 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 245 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 246 } 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 // PartEVT is the type of the register class that holds the value. 251 // ValueVT is the type of the inline asm operation. 252 EVT PartEVT = Val.getValueType(); 253 254 if (PartEVT == ValueVT) 255 return Val; 256 257 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 258 ValueVT.bitsLT(PartEVT)) { 259 // For an FP value in an integer part, we need to truncate to the right 260 // width first. 261 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 262 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 263 } 264 265 // Handle types that have the same size. 266 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 267 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 268 269 // Handle types with different sizes. 270 if (PartEVT.isInteger() && ValueVT.isInteger()) { 271 if (ValueVT.bitsLT(PartEVT)) { 272 // For a truncate, see if we have any information to 273 // indicate whether the truncated bits will always be 274 // zero or sign-extension. 275 if (AssertOp) 276 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 277 DAG.getValueType(ValueVT)); 278 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 279 } 280 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 281 } 282 283 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 284 // FP_ROUND's are always exact here. 285 if (ValueVT.bitsLT(Val.getValueType())) 286 return DAG.getNode( 287 ISD::FP_ROUND, DL, ValueVT, Val, 288 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 289 290 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 291 } 292 293 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 294 // then truncating. 295 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 296 ValueVT.bitsLT(PartEVT)) { 297 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 298 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 299 } 300 301 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 302 } 303 304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 305 const Twine &ErrMsg) { 306 const Instruction *I = dyn_cast_or_null<Instruction>(V); 307 if (!V) 308 return Ctx.emitError(ErrMsg); 309 310 const char *AsmError = ", possible invalid constraint for vector type"; 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (CI->isInlineAsm()) 313 return Ctx.emitError(I, ErrMsg + AsmError); 314 315 return Ctx.emitError(I, ErrMsg); 316 } 317 318 /// getCopyFromPartsVector - Create a value that contains the specified legal 319 /// parts combined into the value they represent. If the parts combine to a 320 /// type larger than ValueVT then AssertOp can be used to specify whether the 321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 322 /// ValueVT (ISD::AssertSext). 323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 324 const SDValue *Parts, unsigned NumParts, 325 MVT PartVT, EVT ValueVT, const Value *V, 326 std::optional<CallingConv::ID> CallConv) { 327 assert(ValueVT.isVector() && "Not a vector value"); 328 assert(NumParts > 0 && "No parts to assemble!"); 329 const bool IsABIRegCopy = CallConv.has_value(); 330 331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 332 SDValue Val = Parts[0]; 333 334 // Handle a multi-element vector. 335 if (NumParts > 1) { 336 EVT IntermediateVT; 337 MVT RegisterVT; 338 unsigned NumIntermediates; 339 unsigned NumRegs; 340 341 if (IsABIRegCopy) { 342 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 343 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } else { 346 NumRegs = 347 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } 350 351 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 352 NumParts = NumRegs; // Silence a compiler warning. 353 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 354 assert(RegisterVT.getSizeInBits() == 355 Parts[0].getSimpleValueType().getSizeInBits() && 356 "Part type sizes don't match!"); 357 358 // Assemble the parts into intermediate operands. 359 SmallVector<SDValue, 8> Ops(NumIntermediates); 360 if (NumIntermediates == NumParts) { 361 // If the register was not expanded, truncate or copy the value, 362 // as appropriate. 363 for (unsigned i = 0; i != NumParts; ++i) 364 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 365 PartVT, IntermediateVT, V, CallConv); 366 } else if (NumParts > 0) { 367 // If the intermediate type was expanded, build the intermediate 368 // operands from the parts. 369 assert(NumParts % NumIntermediates == 0 && 370 "Must expand into a divisible number of parts!"); 371 unsigned Factor = NumParts / NumIntermediates; 372 for (unsigned i = 0; i != NumIntermediates; ++i) 373 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 374 PartVT, IntermediateVT, V, CallConv); 375 } 376 377 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 378 // intermediate operands. 379 EVT BuiltVectorTy = 380 IntermediateVT.isVector() 381 ? EVT::getVectorVT( 382 *DAG.getContext(), IntermediateVT.getScalarType(), 383 IntermediateVT.getVectorElementCount() * NumParts) 384 : EVT::getVectorVT(*DAG.getContext(), 385 IntermediateVT.getScalarType(), 386 NumIntermediates); 387 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 388 : ISD::BUILD_VECTOR, 389 DL, BuiltVectorTy, Ops); 390 } 391 392 // There is now one part, held in Val. Correct it to match ValueVT. 393 EVT PartEVT = Val.getValueType(); 394 395 if (PartEVT == ValueVT) 396 return Val; 397 398 if (PartEVT.isVector()) { 399 // Vector/Vector bitcast. 400 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 401 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 403 // If the parts vector has more elements than the value vector, then we 404 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 405 // Extract the elements we want. 406 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 PartEVT = 413 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 414 ValueVT.getVectorElementCount()); 415 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 416 DAG.getVectorIdxConstant(0, DL)); 417 if (PartEVT == ValueVT) 418 return Val; 419 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 } 422 423 // Promoted vector extract 424 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 440 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 441 // Drop the extra bits. 442 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 443 return DAG.getBitcast(ValueVT, Val); 444 } 445 446 diagnosePossiblyInvalidConstraint( 447 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 448 return DAG.getUNDEF(ValueVT); 449 } 450 451 // Handle cases such as i8 -> <1 x i1> 452 EVT ValueSVT = ValueVT.getVectorElementType(); 453 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 454 unsigned ValueSize = ValueSVT.getSizeInBits(); 455 if (ValueSize == PartEVT.getSizeInBits()) { 456 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 457 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 458 // It's possible a scalar floating point type gets softened to integer and 459 // then promoted to a larger integer. If PartEVT is the larger integer 460 // we need to truncate it and then bitcast to the FP type. 461 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 462 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 463 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 464 Val = DAG.getBitcast(ValueSVT, Val); 465 } else { 466 Val = ValueVT.isFloatingPoint() 467 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 468 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 469 } 470 } 471 472 return DAG.getBuildVector(ValueVT, DL, Val); 473 } 474 475 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 476 SDValue Val, SDValue *Parts, unsigned NumParts, 477 MVT PartVT, const Value *V, 478 std::optional<CallingConv::ID> CallConv); 479 480 /// getCopyToParts - Create a series of nodes that contain the specified value 481 /// split into legal parts. If the parts contain more bits than Val, then, for 482 /// integers, ExtendKind can be used to specify how to generate the extra bits. 483 static void 484 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 485 unsigned NumParts, MVT PartVT, const Value *V, 486 std::optional<CallingConv::ID> CallConv = std::nullopt, 487 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 488 // Let the target split the parts if it wants to 489 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 490 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 491 CallConv)) 492 return; 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 621 const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 ElementCount PartNumElts = PartVT.getVectorElementCount(); 627 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 628 629 // We only support widening vectors with equivalent element types and 630 // fixed/scalable properties. If a target needs to widen a fixed-length type 631 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 632 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 633 PartNumElts.isScalable() != ValueNumElts.isScalable() || 634 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 635 return SDValue(); 636 637 // Widening a scalable vector to another scalable vector is done by inserting 638 // the vector into a larger undef one. 639 if (PartNumElts.isScalable()) 640 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 641 Val, DAG.getVectorIdxConstant(0, DL)); 642 643 EVT ElementVT = PartVT.getVectorElementType(); 644 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 645 // undef elements. 646 SmallVector<SDValue, 16> Ops; 647 DAG.ExtractVectorElements(Val, Ops); 648 SDValue EltUndef = DAG.getUNDEF(ElementVT); 649 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 650 651 // FIXME: Use CONCAT for 2x -> 4x. 652 return DAG.getBuildVector(PartVT, DL, Ops); 653 } 654 655 /// getCopyToPartsVector - Create a series of nodes that contain the specified 656 /// value split into legal parts. 657 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 658 SDValue Val, SDValue *Parts, unsigned NumParts, 659 MVT PartVT, const Value *V, 660 std::optional<CallingConv::ID> CallConv) { 661 EVT ValueVT = Val.getValueType(); 662 assert(ValueVT.isVector() && "Not a vector"); 663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 664 const bool IsABIRegCopy = CallConv.has_value(); 665 666 if (NumParts == 1) { 667 EVT PartEVT = PartVT; 668 if (PartEVT == ValueVT) { 669 // Nothing to do. 670 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 671 // Bitconvert vector->vector case. 672 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 673 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 674 Val = Widened; 675 } else if (PartVT.isVector() && 676 PartEVT.getVectorElementType().bitsGE( 677 ValueVT.getVectorElementType()) && 678 PartEVT.getVectorElementCount() == 679 ValueVT.getVectorElementCount()) { 680 681 // Promoted vector extract 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } else if (PartEVT.isVector() && 684 PartEVT.getVectorElementType() != 685 ValueVT.getVectorElementType() && 686 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 687 TargetLowering::TypeWidenVector) { 688 // Combination of widening and promotion. 689 EVT WidenVT = 690 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 691 PartVT.getVectorElementCount()); 692 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 693 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 694 } else { 695 // Don't extract an integer from a float vector. This can happen if the 696 // FP type gets softened to integer and then promoted. The promotion 697 // prevents it from being picked up by the earlier bitcast case. 698 if (ValueVT.getVectorElementCount().isScalar() && 699 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 700 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 701 DAG.getVectorIdxConstant(0, DL)); 702 } else { 703 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 704 assert(PartVT.getFixedSizeInBits() > ValueSize && 705 "lossy conversion of vector to scalar type"); 706 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 707 Val = DAG.getBitcast(IntermediateType, Val); 708 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 709 } 710 } 711 712 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 713 Parts[0] = Val; 714 return; 715 } 716 717 // Handle a multi-element vector. 718 EVT IntermediateVT; 719 MVT RegisterVT; 720 unsigned NumIntermediates; 721 unsigned NumRegs; 722 if (IsABIRegCopy) { 723 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 724 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 725 NumIntermediates, RegisterVT); 726 } else { 727 NumRegs = 728 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 729 NumIntermediates, RegisterVT); 730 } 731 732 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 733 NumParts = NumRegs; // Silence a compiler warning. 734 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 735 736 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 737 "Mixing scalable and fixed vectors when copying in parts"); 738 739 std::optional<ElementCount> DestEltCnt; 740 741 if (IntermediateVT.isVector()) 742 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 743 else 744 DestEltCnt = ElementCount::getFixed(NumIntermediates); 745 746 EVT BuiltVectorTy = EVT::getVectorVT( 747 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 748 749 if (ValueVT == BuiltVectorTy) { 750 // Nothing to do. 751 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 752 // Bitconvert vector->vector case. 753 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 754 } else { 755 if (BuiltVectorTy.getVectorElementType().bitsGT( 756 ValueVT.getVectorElementType())) { 757 // Integer promotion. 758 ValueVT = EVT::getVectorVT(*DAG.getContext(), 759 BuiltVectorTy.getVectorElementType(), 760 ValueVT.getVectorElementCount()); 761 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 762 } 763 764 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 765 Val = Widened; 766 } 767 } 768 769 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 770 771 // Split the vector into intermediate operands. 772 SmallVector<SDValue, 8> Ops(NumIntermediates); 773 for (unsigned i = 0; i != NumIntermediates; ++i) { 774 if (IntermediateVT.isVector()) { 775 // This does something sensible for scalable vectors - see the 776 // definition of EXTRACT_SUBVECTOR for further details. 777 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 778 Ops[i] = 779 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 780 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 781 } else { 782 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 783 DAG.getVectorIdxConstant(i, DL)); 784 } 785 } 786 787 // Split the intermediate operands into legal parts. 788 if (NumParts == NumIntermediates) { 789 // If the register was not expanded, promote or copy the value, 790 // as appropriate. 791 for (unsigned i = 0; i != NumParts; ++i) 792 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 793 } else if (NumParts > 0) { 794 // If the intermediate type was expanded, split each the value into 795 // legal parts. 796 assert(NumIntermediates != 0 && "division by zero"); 797 assert(NumParts % NumIntermediates == 0 && 798 "Must expand into a divisible number of parts!"); 799 unsigned Factor = NumParts / NumIntermediates; 800 for (unsigned i = 0; i != NumIntermediates; ++i) 801 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 802 CallConv); 803 } 804 } 805 806 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 807 EVT valuevt, std::optional<CallingConv::ID> CC) 808 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 809 RegCount(1, regs.size()), CallConv(CC) {} 810 811 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 812 const DataLayout &DL, unsigned Reg, Type *Ty, 813 std::optional<CallingConv::ID> CC) { 814 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 815 816 CallConv = CC; 817 818 for (EVT ValueVT : ValueVTs) { 819 unsigned NumRegs = 820 isABIMangled() 821 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 822 : TLI.getNumRegisters(Context, ValueVT); 823 MVT RegisterVT = 824 isABIMangled() 825 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 826 : TLI.getRegisterType(Context, ValueVT); 827 for (unsigned i = 0; i != NumRegs; ++i) 828 Regs.push_back(Reg + i); 829 RegVTs.push_back(RegisterVT); 830 RegCount.push_back(NumRegs); 831 Reg += NumRegs; 832 } 833 } 834 835 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 836 FunctionLoweringInfo &FuncInfo, 837 const SDLoc &dl, SDValue &Chain, 838 SDValue *Flag, const Value *V) const { 839 // A Value with type {} or [0 x %t] needs no registers. 840 if (ValueVTs.empty()) 841 return SDValue(); 842 843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 844 845 // Assemble the legal parts into the final values. 846 SmallVector<SDValue, 4> Values(ValueVTs.size()); 847 SmallVector<SDValue, 8> Parts; 848 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 849 // Copy the legal parts from the registers. 850 EVT ValueVT = ValueVTs[Value]; 851 unsigned NumRegs = RegCount[Value]; 852 MVT RegisterVT = 853 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 854 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 855 : RegVTs[Value]; 856 857 Parts.resize(NumRegs); 858 for (unsigned i = 0; i != NumRegs; ++i) { 859 SDValue P; 860 if (!Flag) { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 862 } else { 863 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 864 *Flag = P.getValue(2); 865 } 866 867 Chain = P.getValue(1); 868 Parts[i] = P; 869 870 // If the source register was virtual and if we know something about it, 871 // add an assert node. 872 if (!Register::isVirtualRegister(Regs[Part + i]) || 873 !RegisterVT.isInteger()) 874 continue; 875 876 const FunctionLoweringInfo::LiveOutInfo *LOI = 877 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 878 if (!LOI) 879 continue; 880 881 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 882 unsigned NumSignBits = LOI->NumSignBits; 883 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 884 885 if (NumZeroBits == RegSize) { 886 // The current value is a zero. 887 // Explicitly express that as it would be easier for 888 // optimizations to kick in. 889 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 890 continue; 891 } 892 893 // FIXME: We capture more information than the dag can represent. For 894 // now, just use the tightest assertzext/assertsext possible. 895 bool isSExt; 896 EVT FromVT(MVT::Other); 897 if (NumZeroBits) { 898 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 899 isSExt = false; 900 } else if (NumSignBits > 1) { 901 FromVT = 902 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 903 isSExt = true; 904 } else { 905 continue; 906 } 907 // Add an assertion node. 908 assert(FromVT != MVT::Other); 909 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 910 RegisterVT, P, DAG.getValueType(FromVT)); 911 } 912 913 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 914 RegisterVT, ValueVT, V, CallConv); 915 Part += NumRegs; 916 Parts.clear(); 917 } 918 919 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 920 } 921 922 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 923 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 924 const Value *V, 925 ISD::NodeType PreferredExtendType) const { 926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 927 ISD::NodeType ExtendKind = PreferredExtendType; 928 929 // Get the list of the values's legal parts. 930 unsigned NumRegs = Regs.size(); 931 SmallVector<SDValue, 8> Parts(NumRegs); 932 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 933 unsigned NumParts = RegCount[Value]; 934 935 MVT RegisterVT = 936 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 937 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 938 : RegVTs[Value]; 939 940 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 941 ExtendKind = ISD::ZERO_EXTEND; 942 943 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 944 NumParts, RegisterVT, V, CallConv, ExtendKind); 945 Part += NumParts; 946 } 947 948 // Copy the parts into the registers. 949 SmallVector<SDValue, 8> Chains(NumRegs); 950 for (unsigned i = 0; i != NumRegs; ++i) { 951 SDValue Part; 952 if (!Flag) { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 954 } else { 955 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 956 *Flag = Part.getValue(1); 957 } 958 959 Chains[i] = Part.getValue(0); 960 } 961 962 if (NumRegs == 1 || Flag) 963 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 964 // flagged to it. That is the CopyToReg nodes and the user are considered 965 // a single scheduling unit. If we create a TokenFactor and return it as 966 // chain, then the TokenFactor is both a predecessor (operand) of the 967 // user as well as a successor (the TF operands are flagged to the user). 968 // c1, f1 = CopyToReg 969 // c2, f2 = CopyToReg 970 // c3 = TokenFactor c1, c2 971 // ... 972 // = op c3, ..., f2 973 Chain = Chains[NumRegs-1]; 974 else 975 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 976 } 977 978 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 979 unsigned MatchingIdx, const SDLoc &dl, 980 SelectionDAG &DAG, 981 std::vector<SDValue> &Ops) const { 982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 983 984 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 985 if (HasMatching) 986 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 987 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 988 // Put the register class of the virtual registers in the flag word. That 989 // way, later passes can recompute register class constraints for inline 990 // assembly as well as normal instructions. 991 // Don't do this for tied operands that can use the regclass information 992 // from the def. 993 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 994 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 995 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 996 } 997 998 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 999 Ops.push_back(Res); 1000 1001 if (Code == InlineAsm::Kind_Clobber) { 1002 // Clobbers should always have a 1:1 mapping with registers, and may 1003 // reference registers that have illegal (e.g. vector) types. Hence, we 1004 // shouldn't try to apply any sort of splitting logic to them. 1005 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1006 "No 1:1 mapping from clobbers to regs?"); 1007 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1008 (void)SP; 1009 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1010 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1011 assert( 1012 (Regs[I] != SP || 1013 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1014 "If we clobbered the stack pointer, MFI should know about it."); 1015 } 1016 return; 1017 } 1018 1019 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1020 MVT RegisterVT = RegVTs[Value]; 1021 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1022 RegisterVT); 1023 for (unsigned i = 0; i != NumRegs; ++i) { 1024 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1025 unsigned TheReg = Regs[Reg++]; 1026 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1027 } 1028 } 1029 } 1030 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> 1032 RegsForValue::getRegsAndSizes() const { 1033 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1034 unsigned I = 0; 1035 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1036 unsigned RegCount = std::get<0>(CountAndVT); 1037 MVT RegisterVT = std::get<1>(CountAndVT); 1038 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1039 for (unsigned E = I + RegCount; I != E; ++I) 1040 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1041 } 1042 return OutVec; 1043 } 1044 1045 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1046 AssumptionCache *ac, 1047 const TargetLibraryInfo *li) { 1048 AA = aa; 1049 AC = ac; 1050 GFI = gfi; 1051 LibInfo = li; 1052 Context = DAG.getContext(); 1053 LPadToCallSiteMap.clear(); 1054 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1055 } 1056 1057 void SelectionDAGBuilder::clear() { 1058 NodeMap.clear(); 1059 UnusedArgNodeMap.clear(); 1060 PendingLoads.clear(); 1061 PendingExports.clear(); 1062 PendingConstrainedFP.clear(); 1063 PendingConstrainedFPStrict.clear(); 1064 CurInst = nullptr; 1065 HasTailCall = false; 1066 SDNodeOrder = LowestSDNodeOrder; 1067 StatepointLowering.clear(); 1068 } 1069 1070 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1071 DanglingDebugInfoMap.clear(); 1072 } 1073 1074 // Update DAG root to include dependencies on Pending chains. 1075 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1076 SDValue Root = DAG.getRoot(); 1077 1078 if (Pending.empty()) 1079 return Root; 1080 1081 // Add current root to PendingChains, unless we already indirectly 1082 // depend on it. 1083 if (Root.getOpcode() != ISD::EntryToken) { 1084 unsigned i = 0, e = Pending.size(); 1085 for (; i != e; ++i) { 1086 assert(Pending[i].getNode()->getNumOperands() > 1); 1087 if (Pending[i].getNode()->getOperand(0) == Root) 1088 break; // Don't add the root if we already indirectly depend on it. 1089 } 1090 1091 if (i == e) 1092 Pending.push_back(Root); 1093 } 1094 1095 if (Pending.size() == 1) 1096 Root = Pending[0]; 1097 else 1098 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1099 1100 DAG.setRoot(Root); 1101 Pending.clear(); 1102 return Root; 1103 } 1104 1105 SDValue SelectionDAGBuilder::getMemoryRoot() { 1106 return updateRoot(PendingLoads); 1107 } 1108 1109 SDValue SelectionDAGBuilder::getRoot() { 1110 // Chain up all pending constrained intrinsics together with all 1111 // pending loads, by simply appending them to PendingLoads and 1112 // then calling getMemoryRoot(). 1113 PendingLoads.reserve(PendingLoads.size() + 1114 PendingConstrainedFP.size() + 1115 PendingConstrainedFPStrict.size()); 1116 PendingLoads.append(PendingConstrainedFP.begin(), 1117 PendingConstrainedFP.end()); 1118 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1119 PendingConstrainedFPStrict.end()); 1120 PendingConstrainedFP.clear(); 1121 PendingConstrainedFPStrict.clear(); 1122 return getMemoryRoot(); 1123 } 1124 1125 SDValue SelectionDAGBuilder::getControlRoot() { 1126 // We need to emit pending fpexcept.strict constrained intrinsics, 1127 // so append them to the PendingExports list. 1128 PendingExports.append(PendingConstrainedFPStrict.begin(), 1129 PendingConstrainedFPStrict.end()); 1130 PendingConstrainedFPStrict.clear(); 1131 return updateRoot(PendingExports); 1132 } 1133 1134 void SelectionDAGBuilder::visit(const Instruction &I) { 1135 // Set up outgoing PHI node register values before emitting the terminator. 1136 if (I.isTerminator()) { 1137 HandlePHINodesInSuccessorBlocks(I.getParent()); 1138 } 1139 1140 // Add SDDbgValue nodes for any var locs here. Do so before updating 1141 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1142 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1143 // Add SDDbgValue nodes for any var locs here. Do so before updating 1144 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1145 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1146 It != End; ++It) { 1147 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1148 dropDanglingDebugInfo(Var, It->Expr); 1149 if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder, 1150 /*IsVariadic=*/false)) 1151 addDanglingDebugInfo(It, SDNodeOrder); 1152 } 1153 } 1154 1155 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1156 if (!isa<DbgInfoIntrinsic>(I)) 1157 ++SDNodeOrder; 1158 1159 CurInst = &I; 1160 1161 // Set inserted listener only if required. 1162 bool NodeInserted = false; 1163 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1164 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1165 if (PCSectionsMD) { 1166 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1167 DAG, [&](SDNode *) { NodeInserted = true; }); 1168 } 1169 1170 visit(I.getOpcode(), I); 1171 1172 if (!I.isTerminator() && !HasTailCall && 1173 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1174 CopyToExportRegsIfNeeded(&I); 1175 1176 // Handle metadata. 1177 if (PCSectionsMD) { 1178 auto It = NodeMap.find(&I); 1179 if (It != NodeMap.end()) { 1180 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1181 } else if (NodeInserted) { 1182 // This should not happen; if it does, don't let it go unnoticed so we can 1183 // fix it. Relevant visit*() function is probably missing a setValue(). 1184 errs() << "warning: loosing !pcsections metadata [" 1185 << I.getModule()->getName() << "]\n"; 1186 LLVM_DEBUG(I.dump()); 1187 assert(false); 1188 } 1189 } 1190 1191 CurInst = nullptr; 1192 } 1193 1194 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1195 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1196 } 1197 1198 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1199 // Note: this doesn't use InstVisitor, because it has to work with 1200 // ConstantExpr's in addition to instructions. 1201 switch (Opcode) { 1202 default: llvm_unreachable("Unknown instruction type encountered!"); 1203 // Build the switch statement using the Instruction.def file. 1204 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1205 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1206 #include "llvm/IR/Instruction.def" 1207 } 1208 } 1209 1210 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1211 unsigned Order) { 1212 DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order); 1213 } 1214 1215 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1216 unsigned Order) { 1217 // We treat variadic dbg_values differently at this stage. 1218 if (DI->hasArgList()) { 1219 // For variadic dbg_values we will now insert an undef. 1220 // FIXME: We can potentially recover these! 1221 SmallVector<SDDbgOperand, 2> Locs; 1222 for (const Value *V : DI->getValues()) { 1223 auto Undef = UndefValue::get(V->getType()); 1224 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1225 } 1226 SDDbgValue *SDV = DAG.getDbgValueList( 1227 DI->getVariable(), DI->getExpression(), Locs, {}, 1228 /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true); 1229 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1230 } else { 1231 // TODO: Dangling debug info will eventually either be resolved or produce 1232 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1233 // between the original dbg.value location and its resolved DBG_VALUE, 1234 // which we should ideally fill with an extra Undef DBG_VALUE. 1235 assert(DI->getNumVariableLocationOps() == 1 && 1236 "DbgValueInst without an ArgList should have a single location " 1237 "operand."); 1238 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1239 } 1240 } 1241 1242 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1243 const DIExpression *Expr) { 1244 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1245 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1246 DIExpression *DanglingExpr = DDI.getExpression(); 1247 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1248 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1249 << "\n"); 1250 return true; 1251 } 1252 return false; 1253 }; 1254 1255 for (auto &DDIMI : DanglingDebugInfoMap) { 1256 DanglingDebugInfoVector &DDIV = DDIMI.second; 1257 1258 // If debug info is to be dropped, run it through final checks to see 1259 // whether it can be salvaged. 1260 for (auto &DDI : DDIV) 1261 if (isMatchingDbgValue(DDI)) 1262 salvageUnresolvedDbgValue(DDI); 1263 1264 erase_if(DDIV, isMatchingDbgValue); 1265 } 1266 } 1267 1268 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1269 // generate the debug data structures now that we've seen its definition. 1270 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1271 SDValue Val) { 1272 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1273 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1274 return; 1275 1276 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1277 for (auto &DDI : DDIV) { 1278 DebugLoc DL = DDI.getDebugLoc(); 1279 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1280 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1281 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1282 DIExpression *Expr = DDI.getExpression(); 1283 assert(Variable->isValidLocationForIntrinsic(DL) && 1284 "Expected inlined-at fields to agree"); 1285 SDDbgValue *SDV; 1286 if (Val.getNode()) { 1287 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1288 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1289 // we couldn't resolve it directly when examining the DbgValue intrinsic 1290 // in the first place we should not be more successful here). Unless we 1291 // have some test case that prove this to be correct we should avoid 1292 // calling EmitFuncArgumentDbgValue here. 1293 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1294 FuncArgumentDbgValueKind::Value, Val)) { 1295 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1296 << "\n"); 1297 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1298 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1299 // inserted after the definition of Val when emitting the instructions 1300 // after ISel. An alternative could be to teach 1301 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1302 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1303 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1304 << ValSDNodeOrder << "\n"); 1305 SDV = getDbgValue(Val, Variable, Expr, DL, 1306 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1307 DAG.AddDbgValue(SDV, false); 1308 } else 1309 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1310 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1311 } else { 1312 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1313 auto Undef = UndefValue::get(V->getType()); 1314 auto SDV = 1315 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1316 DAG.AddDbgValue(SDV, false); 1317 } 1318 } 1319 DDIV.clear(); 1320 } 1321 1322 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1323 // TODO: For the variadic implementation, instead of only checking the fail 1324 // state of `handleDebugValue`, we need know specifically which values were 1325 // invalid, so that we attempt to salvage only those values when processing 1326 // a DIArgList. 1327 Value *V = DDI.getVariableLocationOp(0); 1328 Value *OrigV = V; 1329 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1330 DIExpression *Expr = DDI.getExpression(); 1331 DebugLoc DL = DDI.getDebugLoc(); 1332 unsigned SDOrder = DDI.getSDNodeOrder(); 1333 1334 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1335 // that DW_OP_stack_value is desired. 1336 bool StackValue = true; 1337 1338 // Can this Value can be encoded without any further work? 1339 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1340 return; 1341 1342 // Attempt to salvage back through as many instructions as possible. Bail if 1343 // a non-instruction is seen, such as a constant expression or global 1344 // variable. FIXME: Further work could recover those too. 1345 while (isa<Instruction>(V)) { 1346 Instruction &VAsInst = *cast<Instruction>(V); 1347 // Temporary "0", awaiting real implementation. 1348 SmallVector<uint64_t, 16> Ops; 1349 SmallVector<Value *, 4> AdditionalValues; 1350 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1351 AdditionalValues); 1352 // If we cannot salvage any further, and haven't yet found a suitable debug 1353 // expression, bail out. 1354 if (!V) 1355 break; 1356 1357 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1358 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1359 // here for variadic dbg_values, remove that condition. 1360 if (!AdditionalValues.empty()) 1361 break; 1362 1363 // New value and expr now represent this debuginfo. 1364 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1365 1366 // Some kind of simplification occurred: check whether the operand of the 1367 // salvaged debug expression can be encoded in this DAG. 1368 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1369 LLVM_DEBUG( 1370 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1371 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1372 return; 1373 } 1374 } 1375 1376 // This was the final opportunity to salvage this debug information, and it 1377 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1378 // any earlier variable location. 1379 assert(OrigV && "V shouldn't be null"); 1380 auto *Undef = UndefValue::get(OrigV->getType()); 1381 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1382 DAG.AddDbgValue(SDV, false); 1383 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1384 << "\n"); 1385 } 1386 1387 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1388 DILocalVariable *Var, 1389 DIExpression *Expr, DebugLoc DbgLoc, 1390 unsigned Order, bool IsVariadic) { 1391 if (Values.empty()) 1392 return true; 1393 SmallVector<SDDbgOperand> LocationOps; 1394 SmallVector<SDNode *> Dependencies; 1395 for (const Value *V : Values) { 1396 // Constant value. 1397 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1398 isa<ConstantPointerNull>(V)) { 1399 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1400 continue; 1401 } 1402 1403 // Look through IntToPtr constants. 1404 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1405 if (CE->getOpcode() == Instruction::IntToPtr) { 1406 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1407 continue; 1408 } 1409 1410 // If the Value is a frame index, we can create a FrameIndex debug value 1411 // without relying on the DAG at all. 1412 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1413 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1414 if (SI != FuncInfo.StaticAllocaMap.end()) { 1415 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1416 continue; 1417 } 1418 } 1419 1420 // Do not use getValue() in here; we don't want to generate code at 1421 // this point if it hasn't been done yet. 1422 SDValue N = NodeMap[V]; 1423 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1424 N = UnusedArgNodeMap[V]; 1425 if (N.getNode()) { 1426 // Only emit func arg dbg value for non-variadic dbg.values for now. 1427 if (!IsVariadic && 1428 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1429 FuncArgumentDbgValueKind::Value, N)) 1430 return true; 1431 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1432 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1433 // describe stack slot locations. 1434 // 1435 // Consider "int x = 0; int *px = &x;". There are two kinds of 1436 // interesting debug values here after optimization: 1437 // 1438 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1439 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1440 // 1441 // Both describe the direct values of their associated variables. 1442 Dependencies.push_back(N.getNode()); 1443 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1444 continue; 1445 } 1446 LocationOps.emplace_back( 1447 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1448 continue; 1449 } 1450 1451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1452 // Special rules apply for the first dbg.values of parameter variables in a 1453 // function. Identify them by the fact they reference Argument Values, that 1454 // they're parameters, and they are parameters of the current function. We 1455 // need to let them dangle until they get an SDNode. 1456 bool IsParamOfFunc = 1457 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1458 if (IsParamOfFunc) 1459 return false; 1460 1461 // The value is not used in this block yet (or it would have an SDNode). 1462 // We still want the value to appear for the user if possible -- if it has 1463 // an associated VReg, we can refer to that instead. 1464 auto VMI = FuncInfo.ValueMap.find(V); 1465 if (VMI != FuncInfo.ValueMap.end()) { 1466 unsigned Reg = VMI->second; 1467 // If this is a PHI node, it may be split up into several MI PHI nodes 1468 // (in FunctionLoweringInfo::set). 1469 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1470 V->getType(), std::nullopt); 1471 if (RFV.occupiesMultipleRegs()) { 1472 // FIXME: We could potentially support variadic dbg_values here. 1473 if (IsVariadic) 1474 return false; 1475 unsigned Offset = 0; 1476 unsigned BitsToDescribe = 0; 1477 if (auto VarSize = Var->getSizeInBits()) 1478 BitsToDescribe = *VarSize; 1479 if (auto Fragment = Expr->getFragmentInfo()) 1480 BitsToDescribe = Fragment->SizeInBits; 1481 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1482 // Bail out if all bits are described already. 1483 if (Offset >= BitsToDescribe) 1484 break; 1485 // TODO: handle scalable vectors. 1486 unsigned RegisterSize = RegAndSize.second; 1487 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1488 ? BitsToDescribe - Offset 1489 : RegisterSize; 1490 auto FragmentExpr = DIExpression::createFragmentExpression( 1491 Expr, Offset, FragmentSize); 1492 if (!FragmentExpr) 1493 continue; 1494 SDDbgValue *SDV = DAG.getVRegDbgValue( 1495 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1496 DAG.AddDbgValue(SDV, false); 1497 Offset += RegisterSize; 1498 } 1499 return true; 1500 } 1501 // We can use simple vreg locations for variadic dbg_values as well. 1502 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1503 continue; 1504 } 1505 // We failed to create a SDDbgOperand for V. 1506 return false; 1507 } 1508 1509 // We have created a SDDbgOperand for each Value in Values. 1510 // Should use Order instead of SDNodeOrder? 1511 assert(!LocationOps.empty()); 1512 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1513 /*IsIndirect=*/false, DbgLoc, 1514 SDNodeOrder, IsVariadic); 1515 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1516 return true; 1517 } 1518 1519 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1520 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1521 for (auto &Pair : DanglingDebugInfoMap) 1522 for (auto &DDI : Pair.second) 1523 salvageUnresolvedDbgValue(DDI); 1524 clearDanglingDebugInfo(); 1525 } 1526 1527 /// getCopyFromRegs - If there was virtual register allocated for the value V 1528 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1529 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1530 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1531 SDValue Result; 1532 1533 if (It != FuncInfo.ValueMap.end()) { 1534 Register InReg = It->second; 1535 1536 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1537 DAG.getDataLayout(), InReg, Ty, 1538 std::nullopt); // This is not an ABI copy. 1539 SDValue Chain = DAG.getEntryNode(); 1540 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1541 V); 1542 resolveDanglingDebugInfo(V, Result); 1543 } 1544 1545 return Result; 1546 } 1547 1548 /// getValue - Return an SDValue for the given Value. 1549 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1550 // If we already have an SDValue for this value, use it. It's important 1551 // to do this first, so that we don't create a CopyFromReg if we already 1552 // have a regular SDValue. 1553 SDValue &N = NodeMap[V]; 1554 if (N.getNode()) return N; 1555 1556 // If there's a virtual register allocated and initialized for this 1557 // value, use it. 1558 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1559 return copyFromReg; 1560 1561 // Otherwise create a new SDValue and remember it. 1562 SDValue Val = getValueImpl(V); 1563 NodeMap[V] = Val; 1564 resolveDanglingDebugInfo(V, Val); 1565 return Val; 1566 } 1567 1568 /// getNonRegisterValue - Return an SDValue for the given Value, but 1569 /// don't look in FuncInfo.ValueMap for a virtual register. 1570 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1571 // If we already have an SDValue for this value, use it. 1572 SDValue &N = NodeMap[V]; 1573 if (N.getNode()) { 1574 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1575 // Remove the debug location from the node as the node is about to be used 1576 // in a location which may differ from the original debug location. This 1577 // is relevant to Constant and ConstantFP nodes because they can appear 1578 // as constant expressions inside PHI nodes. 1579 N->setDebugLoc(DebugLoc()); 1580 } 1581 return N; 1582 } 1583 1584 // Otherwise create a new SDValue and remember it. 1585 SDValue Val = getValueImpl(V); 1586 NodeMap[V] = Val; 1587 resolveDanglingDebugInfo(V, Val); 1588 return Val; 1589 } 1590 1591 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1592 /// Create an SDValue for the given value. 1593 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1594 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1595 1596 if (const Constant *C = dyn_cast<Constant>(V)) { 1597 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1598 1599 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1600 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1601 1602 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1603 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1604 1605 if (isa<ConstantPointerNull>(C)) { 1606 unsigned AS = V->getType()->getPointerAddressSpace(); 1607 return DAG.getConstant(0, getCurSDLoc(), 1608 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1609 } 1610 1611 if (match(C, m_VScale(DAG.getDataLayout()))) 1612 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1613 1614 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1615 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1616 1617 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1618 return DAG.getUNDEF(VT); 1619 1620 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1621 visit(CE->getOpcode(), *CE); 1622 SDValue N1 = NodeMap[V]; 1623 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1624 return N1; 1625 } 1626 1627 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1628 SmallVector<SDValue, 4> Constants; 1629 for (const Use &U : C->operands()) { 1630 SDNode *Val = getValue(U).getNode(); 1631 // If the operand is an empty aggregate, there are no values. 1632 if (!Val) continue; 1633 // Add each leaf value from the operand to the Constants list 1634 // to form a flattened list of all the values. 1635 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1636 Constants.push_back(SDValue(Val, i)); 1637 } 1638 1639 return DAG.getMergeValues(Constants, getCurSDLoc()); 1640 } 1641 1642 if (const ConstantDataSequential *CDS = 1643 dyn_cast<ConstantDataSequential>(C)) { 1644 SmallVector<SDValue, 4> Ops; 1645 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1646 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1647 // Add each leaf value from the operand to the Constants list 1648 // to form a flattened list of all the values. 1649 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1650 Ops.push_back(SDValue(Val, i)); 1651 } 1652 1653 if (isa<ArrayType>(CDS->getType())) 1654 return DAG.getMergeValues(Ops, getCurSDLoc()); 1655 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1656 } 1657 1658 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1659 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1660 "Unknown struct or array constant!"); 1661 1662 SmallVector<EVT, 4> ValueVTs; 1663 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1664 unsigned NumElts = ValueVTs.size(); 1665 if (NumElts == 0) 1666 return SDValue(); // empty struct 1667 SmallVector<SDValue, 4> Constants(NumElts); 1668 for (unsigned i = 0; i != NumElts; ++i) { 1669 EVT EltVT = ValueVTs[i]; 1670 if (isa<UndefValue>(C)) 1671 Constants[i] = DAG.getUNDEF(EltVT); 1672 else if (EltVT.isFloatingPoint()) 1673 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1674 else 1675 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1676 } 1677 1678 return DAG.getMergeValues(Constants, getCurSDLoc()); 1679 } 1680 1681 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1682 return DAG.getBlockAddress(BA, VT); 1683 1684 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1685 return getValue(Equiv->getGlobalValue()); 1686 1687 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1688 return getValue(NC->getGlobalValue()); 1689 1690 VectorType *VecTy = cast<VectorType>(V->getType()); 1691 1692 // Now that we know the number and type of the elements, get that number of 1693 // elements into the Ops array based on what kind of constant it is. 1694 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1695 SmallVector<SDValue, 16> Ops; 1696 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1697 for (unsigned i = 0; i != NumElements; ++i) 1698 Ops.push_back(getValue(CV->getOperand(i))); 1699 1700 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1701 } 1702 1703 if (isa<ConstantAggregateZero>(C)) { 1704 EVT EltVT = 1705 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1706 1707 SDValue Op; 1708 if (EltVT.isFloatingPoint()) 1709 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1710 else 1711 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1712 1713 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1714 } 1715 1716 llvm_unreachable("Unknown vector constant"); 1717 } 1718 1719 // If this is a static alloca, generate it as the frameindex instead of 1720 // computation. 1721 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1722 DenseMap<const AllocaInst*, int>::iterator SI = 1723 FuncInfo.StaticAllocaMap.find(AI); 1724 if (SI != FuncInfo.StaticAllocaMap.end()) 1725 return DAG.getFrameIndex( 1726 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1727 } 1728 1729 // If this is an instruction which fast-isel has deferred, select it now. 1730 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1731 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1732 1733 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1734 Inst->getType(), std::nullopt); 1735 SDValue Chain = DAG.getEntryNode(); 1736 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1737 } 1738 1739 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1740 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1741 1742 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1743 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1744 1745 llvm_unreachable("Can't get register for value!"); 1746 } 1747 1748 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1749 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1750 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1751 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1752 bool IsSEH = isAsynchronousEHPersonality(Pers); 1753 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1754 if (!IsSEH) 1755 CatchPadMBB->setIsEHScopeEntry(); 1756 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1757 if (IsMSVCCXX || IsCoreCLR) 1758 CatchPadMBB->setIsEHFuncletEntry(); 1759 } 1760 1761 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1762 // Update machine-CFG edge. 1763 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1764 FuncInfo.MBB->addSuccessor(TargetMBB); 1765 TargetMBB->setIsEHCatchretTarget(true); 1766 DAG.getMachineFunction().setHasEHCatchret(true); 1767 1768 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1769 bool IsSEH = isAsynchronousEHPersonality(Pers); 1770 if (IsSEH) { 1771 // If this is not a fall-through branch or optimizations are switched off, 1772 // emit the branch. 1773 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1774 TM.getOptLevel() == CodeGenOpt::None) 1775 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1776 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1777 return; 1778 } 1779 1780 // Figure out the funclet membership for the catchret's successor. 1781 // This will be used by the FuncletLayout pass to determine how to order the 1782 // BB's. 1783 // A 'catchret' returns to the outer scope's color. 1784 Value *ParentPad = I.getCatchSwitchParentPad(); 1785 const BasicBlock *SuccessorColor; 1786 if (isa<ConstantTokenNone>(ParentPad)) 1787 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1788 else 1789 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1790 assert(SuccessorColor && "No parent funclet for catchret!"); 1791 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1792 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1793 1794 // Create the terminator node. 1795 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1796 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1797 DAG.getBasicBlock(SuccessorColorMBB)); 1798 DAG.setRoot(Ret); 1799 } 1800 1801 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1802 // Don't emit any special code for the cleanuppad instruction. It just marks 1803 // the start of an EH scope/funclet. 1804 FuncInfo.MBB->setIsEHScopeEntry(); 1805 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1806 if (Pers != EHPersonality::Wasm_CXX) { 1807 FuncInfo.MBB->setIsEHFuncletEntry(); 1808 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1809 } 1810 } 1811 1812 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1813 // not match, it is OK to add only the first unwind destination catchpad to the 1814 // successors, because there will be at least one invoke instruction within the 1815 // catch scope that points to the next unwind destination, if one exists, so 1816 // CFGSort cannot mess up with BB sorting order. 1817 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1818 // call within them, and catchpads only consisting of 'catch (...)' have a 1819 // '__cxa_end_catch' call within them, both of which generate invokes in case 1820 // the next unwind destination exists, i.e., the next unwind destination is not 1821 // the caller.) 1822 // 1823 // Having at most one EH pad successor is also simpler and helps later 1824 // transformations. 1825 // 1826 // For example, 1827 // current: 1828 // invoke void @foo to ... unwind label %catch.dispatch 1829 // catch.dispatch: 1830 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1831 // catch.start: 1832 // ... 1833 // ... in this BB or some other child BB dominated by this BB there will be an 1834 // invoke that points to 'next' BB as an unwind destination 1835 // 1836 // next: ; We don't need to add this to 'current' BB's successor 1837 // ... 1838 static void findWasmUnwindDestinations( 1839 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1840 BranchProbability Prob, 1841 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1842 &UnwindDests) { 1843 while (EHPadBB) { 1844 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1845 if (isa<CleanupPadInst>(Pad)) { 1846 // Stop on cleanup pads. 1847 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1848 UnwindDests.back().first->setIsEHScopeEntry(); 1849 break; 1850 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1851 // Add the catchpad handlers to the possible destinations. We don't 1852 // continue to the unwind destination of the catchswitch for wasm. 1853 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1854 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1855 UnwindDests.back().first->setIsEHScopeEntry(); 1856 } 1857 break; 1858 } else { 1859 continue; 1860 } 1861 } 1862 } 1863 1864 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1865 /// many places it could ultimately go. In the IR, we have a single unwind 1866 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1867 /// This function skips over imaginary basic blocks that hold catchswitch 1868 /// instructions, and finds all the "real" machine 1869 /// basic block destinations. As those destinations may not be successors of 1870 /// EHPadBB, here we also calculate the edge probability to those destinations. 1871 /// The passed-in Prob is the edge probability to EHPadBB. 1872 static void findUnwindDestinations( 1873 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1874 BranchProbability Prob, 1875 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1876 &UnwindDests) { 1877 EHPersonality Personality = 1878 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1879 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1880 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1881 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1882 bool IsSEH = isAsynchronousEHPersonality(Personality); 1883 1884 if (IsWasmCXX) { 1885 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1886 assert(UnwindDests.size() <= 1 && 1887 "There should be at most one unwind destination for wasm"); 1888 return; 1889 } 1890 1891 while (EHPadBB) { 1892 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1893 BasicBlock *NewEHPadBB = nullptr; 1894 if (isa<LandingPadInst>(Pad)) { 1895 // Stop on landingpads. They are not funclets. 1896 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1897 break; 1898 } else if (isa<CleanupPadInst>(Pad)) { 1899 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1900 // personalities. 1901 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1902 UnwindDests.back().first->setIsEHScopeEntry(); 1903 UnwindDests.back().first->setIsEHFuncletEntry(); 1904 break; 1905 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1906 // Add the catchpad handlers to the possible destinations. 1907 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1908 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1909 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1910 if (IsMSVCCXX || IsCoreCLR) 1911 UnwindDests.back().first->setIsEHFuncletEntry(); 1912 if (!IsSEH) 1913 UnwindDests.back().first->setIsEHScopeEntry(); 1914 } 1915 NewEHPadBB = CatchSwitch->getUnwindDest(); 1916 } else { 1917 continue; 1918 } 1919 1920 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1921 if (BPI && NewEHPadBB) 1922 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1923 EHPadBB = NewEHPadBB; 1924 } 1925 } 1926 1927 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1928 // Update successor info. 1929 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1930 auto UnwindDest = I.getUnwindDest(); 1931 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1932 BranchProbability UnwindDestProb = 1933 (BPI && UnwindDest) 1934 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1935 : BranchProbability::getZero(); 1936 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1937 for (auto &UnwindDest : UnwindDests) { 1938 UnwindDest.first->setIsEHPad(); 1939 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1940 } 1941 FuncInfo.MBB->normalizeSuccProbs(); 1942 1943 // Create the terminator node. 1944 SDValue Ret = 1945 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1946 DAG.setRoot(Ret); 1947 } 1948 1949 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1950 report_fatal_error("visitCatchSwitch not yet implemented!"); 1951 } 1952 1953 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1955 auto &DL = DAG.getDataLayout(); 1956 SDValue Chain = getControlRoot(); 1957 SmallVector<ISD::OutputArg, 8> Outs; 1958 SmallVector<SDValue, 8> OutVals; 1959 1960 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1961 // lower 1962 // 1963 // %val = call <ty> @llvm.experimental.deoptimize() 1964 // ret <ty> %val 1965 // 1966 // differently. 1967 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1968 LowerDeoptimizingReturn(); 1969 return; 1970 } 1971 1972 if (!FuncInfo.CanLowerReturn) { 1973 unsigned DemoteReg = FuncInfo.DemoteRegister; 1974 const Function *F = I.getParent()->getParent(); 1975 1976 // Emit a store of the return value through the virtual register. 1977 // Leave Outs empty so that LowerReturn won't try to load return 1978 // registers the usual way. 1979 SmallVector<EVT, 1> PtrValueVTs; 1980 ComputeValueVTs(TLI, DL, 1981 F->getReturnType()->getPointerTo( 1982 DAG.getDataLayout().getAllocaAddrSpace()), 1983 PtrValueVTs); 1984 1985 SDValue RetPtr = 1986 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1987 SDValue RetOp = getValue(I.getOperand(0)); 1988 1989 SmallVector<EVT, 4> ValueVTs, MemVTs; 1990 SmallVector<uint64_t, 4> Offsets; 1991 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1992 &Offsets); 1993 unsigned NumValues = ValueVTs.size(); 1994 1995 SmallVector<SDValue, 4> Chains(NumValues); 1996 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1997 for (unsigned i = 0; i != NumValues; ++i) { 1998 // An aggregate return value cannot wrap around the address space, so 1999 // offsets to its parts don't wrap either. 2000 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2001 TypeSize::Fixed(Offsets[i])); 2002 2003 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2004 if (MemVTs[i] != ValueVTs[i]) 2005 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2006 Chains[i] = DAG.getStore( 2007 Chain, getCurSDLoc(), Val, 2008 // FIXME: better loc info would be nice. 2009 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2010 commonAlignment(BaseAlign, Offsets[i])); 2011 } 2012 2013 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2014 MVT::Other, Chains); 2015 } else if (I.getNumOperands() != 0) { 2016 SmallVector<EVT, 4> ValueVTs; 2017 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2018 unsigned NumValues = ValueVTs.size(); 2019 if (NumValues) { 2020 SDValue RetOp = getValue(I.getOperand(0)); 2021 2022 const Function *F = I.getParent()->getParent(); 2023 2024 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2025 I.getOperand(0)->getType(), F->getCallingConv(), 2026 /*IsVarArg*/ false, DL); 2027 2028 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2029 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2030 ExtendKind = ISD::SIGN_EXTEND; 2031 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2032 ExtendKind = ISD::ZERO_EXTEND; 2033 2034 LLVMContext &Context = F->getContext(); 2035 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2036 2037 for (unsigned j = 0; j != NumValues; ++j) { 2038 EVT VT = ValueVTs[j]; 2039 2040 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2041 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2042 2043 CallingConv::ID CC = F->getCallingConv(); 2044 2045 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2046 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2047 SmallVector<SDValue, 4> Parts(NumParts); 2048 getCopyToParts(DAG, getCurSDLoc(), 2049 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2050 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2051 2052 // 'inreg' on function refers to return value 2053 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2054 if (RetInReg) 2055 Flags.setInReg(); 2056 2057 if (I.getOperand(0)->getType()->isPointerTy()) { 2058 Flags.setPointer(); 2059 Flags.setPointerAddrSpace( 2060 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2061 } 2062 2063 if (NeedsRegBlock) { 2064 Flags.setInConsecutiveRegs(); 2065 if (j == NumValues - 1) 2066 Flags.setInConsecutiveRegsLast(); 2067 } 2068 2069 // Propagate extension type if any 2070 if (ExtendKind == ISD::SIGN_EXTEND) 2071 Flags.setSExt(); 2072 else if (ExtendKind == ISD::ZERO_EXTEND) 2073 Flags.setZExt(); 2074 2075 for (unsigned i = 0; i < NumParts; ++i) { 2076 Outs.push_back(ISD::OutputArg(Flags, 2077 Parts[i].getValueType().getSimpleVT(), 2078 VT, /*isfixed=*/true, 0, 0)); 2079 OutVals.push_back(Parts[i]); 2080 } 2081 } 2082 } 2083 } 2084 2085 // Push in swifterror virtual register as the last element of Outs. This makes 2086 // sure swifterror virtual register will be returned in the swifterror 2087 // physical register. 2088 const Function *F = I.getParent()->getParent(); 2089 if (TLI.supportSwiftError() && 2090 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2091 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2092 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2093 Flags.setSwiftError(); 2094 Outs.push_back(ISD::OutputArg( 2095 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2096 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2097 // Create SDNode for the swifterror virtual register. 2098 OutVals.push_back( 2099 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2100 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2101 EVT(TLI.getPointerTy(DL)))); 2102 } 2103 2104 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2105 CallingConv::ID CallConv = 2106 DAG.getMachineFunction().getFunction().getCallingConv(); 2107 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2108 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2109 2110 // Verify that the target's LowerReturn behaved as expected. 2111 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2112 "LowerReturn didn't return a valid chain!"); 2113 2114 // Update the DAG with the new chain value resulting from return lowering. 2115 DAG.setRoot(Chain); 2116 } 2117 2118 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2119 /// created for it, emit nodes to copy the value into the virtual 2120 /// registers. 2121 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2122 // Skip empty types 2123 if (V->getType()->isEmptyTy()) 2124 return; 2125 2126 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2127 if (VMI != FuncInfo.ValueMap.end()) { 2128 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2129 CopyValueToVirtualRegister(V, VMI->second); 2130 } 2131 } 2132 2133 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2134 /// the current basic block, add it to ValueMap now so that we'll get a 2135 /// CopyTo/FromReg. 2136 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2137 // No need to export constants. 2138 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2139 2140 // Already exported? 2141 if (FuncInfo.isExportedInst(V)) return; 2142 2143 Register Reg = FuncInfo.InitializeRegForValue(V); 2144 CopyValueToVirtualRegister(V, Reg); 2145 } 2146 2147 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2148 const BasicBlock *FromBB) { 2149 // The operands of the setcc have to be in this block. We don't know 2150 // how to export them from some other block. 2151 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2152 // Can export from current BB. 2153 if (VI->getParent() == FromBB) 2154 return true; 2155 2156 // Is already exported, noop. 2157 return FuncInfo.isExportedInst(V); 2158 } 2159 2160 // If this is an argument, we can export it if the BB is the entry block or 2161 // if it is already exported. 2162 if (isa<Argument>(V)) { 2163 if (FromBB->isEntryBlock()) 2164 return true; 2165 2166 // Otherwise, can only export this if it is already exported. 2167 return FuncInfo.isExportedInst(V); 2168 } 2169 2170 // Otherwise, constants can always be exported. 2171 return true; 2172 } 2173 2174 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2175 BranchProbability 2176 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2177 const MachineBasicBlock *Dst) const { 2178 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2179 const BasicBlock *SrcBB = Src->getBasicBlock(); 2180 const BasicBlock *DstBB = Dst->getBasicBlock(); 2181 if (!BPI) { 2182 // If BPI is not available, set the default probability as 1 / N, where N is 2183 // the number of successors. 2184 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2185 return BranchProbability(1, SuccSize); 2186 } 2187 return BPI->getEdgeProbability(SrcBB, DstBB); 2188 } 2189 2190 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2191 MachineBasicBlock *Dst, 2192 BranchProbability Prob) { 2193 if (!FuncInfo.BPI) 2194 Src->addSuccessorWithoutProb(Dst); 2195 else { 2196 if (Prob.isUnknown()) 2197 Prob = getEdgeProbability(Src, Dst); 2198 Src->addSuccessor(Dst, Prob); 2199 } 2200 } 2201 2202 static bool InBlock(const Value *V, const BasicBlock *BB) { 2203 if (const Instruction *I = dyn_cast<Instruction>(V)) 2204 return I->getParent() == BB; 2205 return true; 2206 } 2207 2208 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2209 /// This function emits a branch and is used at the leaves of an OR or an 2210 /// AND operator tree. 2211 void 2212 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2213 MachineBasicBlock *TBB, 2214 MachineBasicBlock *FBB, 2215 MachineBasicBlock *CurBB, 2216 MachineBasicBlock *SwitchBB, 2217 BranchProbability TProb, 2218 BranchProbability FProb, 2219 bool InvertCond) { 2220 const BasicBlock *BB = CurBB->getBasicBlock(); 2221 2222 // If the leaf of the tree is a comparison, merge the condition into 2223 // the caseblock. 2224 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2225 // The operands of the cmp have to be in this block. We don't know 2226 // how to export them from some other block. If this is the first block 2227 // of the sequence, no exporting is needed. 2228 if (CurBB == SwitchBB || 2229 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2230 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2231 ISD::CondCode Condition; 2232 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2233 ICmpInst::Predicate Pred = 2234 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2235 Condition = getICmpCondCode(Pred); 2236 } else { 2237 const FCmpInst *FC = cast<FCmpInst>(Cond); 2238 FCmpInst::Predicate Pred = 2239 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2240 Condition = getFCmpCondCode(Pred); 2241 if (TM.Options.NoNaNsFPMath) 2242 Condition = getFCmpCodeWithoutNaN(Condition); 2243 } 2244 2245 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2246 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2247 SL->SwitchCases.push_back(CB); 2248 return; 2249 } 2250 } 2251 2252 // Create a CaseBlock record representing this branch. 2253 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2254 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2255 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2256 SL->SwitchCases.push_back(CB); 2257 } 2258 2259 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2260 MachineBasicBlock *TBB, 2261 MachineBasicBlock *FBB, 2262 MachineBasicBlock *CurBB, 2263 MachineBasicBlock *SwitchBB, 2264 Instruction::BinaryOps Opc, 2265 BranchProbability TProb, 2266 BranchProbability FProb, 2267 bool InvertCond) { 2268 // Skip over not part of the tree and remember to invert op and operands at 2269 // next level. 2270 Value *NotCond; 2271 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2272 InBlock(NotCond, CurBB->getBasicBlock())) { 2273 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2274 !InvertCond); 2275 return; 2276 } 2277 2278 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2279 const Value *BOpOp0, *BOpOp1; 2280 // Compute the effective opcode for Cond, taking into account whether it needs 2281 // to be inverted, e.g. 2282 // and (not (or A, B)), C 2283 // gets lowered as 2284 // and (and (not A, not B), C) 2285 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2286 if (BOp) { 2287 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2288 ? Instruction::And 2289 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2290 ? Instruction::Or 2291 : (Instruction::BinaryOps)0); 2292 if (InvertCond) { 2293 if (BOpc == Instruction::And) 2294 BOpc = Instruction::Or; 2295 else if (BOpc == Instruction::Or) 2296 BOpc = Instruction::And; 2297 } 2298 } 2299 2300 // If this node is not part of the or/and tree, emit it as a branch. 2301 // Note that all nodes in the tree should have same opcode. 2302 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2303 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2304 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2305 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2306 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2307 TProb, FProb, InvertCond); 2308 return; 2309 } 2310 2311 // Create TmpBB after CurBB. 2312 MachineFunction::iterator BBI(CurBB); 2313 MachineFunction &MF = DAG.getMachineFunction(); 2314 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2315 CurBB->getParent()->insert(++BBI, TmpBB); 2316 2317 if (Opc == Instruction::Or) { 2318 // Codegen X | Y as: 2319 // BB1: 2320 // jmp_if_X TBB 2321 // jmp TmpBB 2322 // TmpBB: 2323 // jmp_if_Y TBB 2324 // jmp FBB 2325 // 2326 2327 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2328 // The requirement is that 2329 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2330 // = TrueProb for original BB. 2331 // Assuming the original probabilities are A and B, one choice is to set 2332 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2333 // A/(1+B) and 2B/(1+B). This choice assumes that 2334 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2335 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2336 // TmpBB, but the math is more complicated. 2337 2338 auto NewTrueProb = TProb / 2; 2339 auto NewFalseProb = TProb / 2 + FProb; 2340 // Emit the LHS condition. 2341 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2342 NewFalseProb, InvertCond); 2343 2344 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2345 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2346 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2347 // Emit the RHS condition into TmpBB. 2348 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2349 Probs[1], InvertCond); 2350 } else { 2351 assert(Opc == Instruction::And && "Unknown merge op!"); 2352 // Codegen X & Y as: 2353 // BB1: 2354 // jmp_if_X TmpBB 2355 // jmp FBB 2356 // TmpBB: 2357 // jmp_if_Y TBB 2358 // jmp FBB 2359 // 2360 // This requires creation of TmpBB after CurBB. 2361 2362 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2363 // The requirement is that 2364 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2365 // = FalseProb for original BB. 2366 // Assuming the original probabilities are A and B, one choice is to set 2367 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2368 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2369 // TrueProb for BB1 * FalseProb for TmpBB. 2370 2371 auto NewTrueProb = TProb + FProb / 2; 2372 auto NewFalseProb = FProb / 2; 2373 // Emit the LHS condition. 2374 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2375 NewFalseProb, InvertCond); 2376 2377 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2378 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2379 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2380 // Emit the RHS condition into TmpBB. 2381 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2382 Probs[1], InvertCond); 2383 } 2384 } 2385 2386 /// If the set of cases should be emitted as a series of branches, return true. 2387 /// If we should emit this as a bunch of and/or'd together conditions, return 2388 /// false. 2389 bool 2390 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2391 if (Cases.size() != 2) return true; 2392 2393 // If this is two comparisons of the same values or'd or and'd together, they 2394 // will get folded into a single comparison, so don't emit two blocks. 2395 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2396 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2397 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2398 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2399 return false; 2400 } 2401 2402 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2403 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2404 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2405 Cases[0].CC == Cases[1].CC && 2406 isa<Constant>(Cases[0].CmpRHS) && 2407 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2408 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2409 return false; 2410 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2411 return false; 2412 } 2413 2414 return true; 2415 } 2416 2417 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2418 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2419 2420 // Update machine-CFG edges. 2421 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2422 2423 if (I.isUnconditional()) { 2424 // Update machine-CFG edges. 2425 BrMBB->addSuccessor(Succ0MBB); 2426 2427 // If this is not a fall-through branch or optimizations are switched off, 2428 // emit the branch. 2429 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2430 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2431 MVT::Other, getControlRoot(), 2432 DAG.getBasicBlock(Succ0MBB))); 2433 2434 return; 2435 } 2436 2437 // If this condition is one of the special cases we handle, do special stuff 2438 // now. 2439 const Value *CondVal = I.getCondition(); 2440 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2441 2442 // If this is a series of conditions that are or'd or and'd together, emit 2443 // this as a sequence of branches instead of setcc's with and/or operations. 2444 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2445 // unpredictable branches, and vector extracts because those jumps are likely 2446 // expensive for any target), this should improve performance. 2447 // For example, instead of something like: 2448 // cmp A, B 2449 // C = seteq 2450 // cmp D, E 2451 // F = setle 2452 // or C, F 2453 // jnz foo 2454 // Emit: 2455 // cmp A, B 2456 // je foo 2457 // cmp D, E 2458 // jle foo 2459 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2460 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2461 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2462 Value *Vec; 2463 const Value *BOp0, *BOp1; 2464 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2465 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2466 Opcode = Instruction::And; 2467 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2468 Opcode = Instruction::Or; 2469 2470 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2471 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2472 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2473 getEdgeProbability(BrMBB, Succ0MBB), 2474 getEdgeProbability(BrMBB, Succ1MBB), 2475 /*InvertCond=*/false); 2476 // If the compares in later blocks need to use values not currently 2477 // exported from this block, export them now. This block should always 2478 // be the first entry. 2479 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2480 2481 // Allow some cases to be rejected. 2482 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2483 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2484 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2485 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2486 } 2487 2488 // Emit the branch for this block. 2489 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2490 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2491 return; 2492 } 2493 2494 // Okay, we decided not to do this, remove any inserted MBB's and clear 2495 // SwitchCases. 2496 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2497 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2498 2499 SL->SwitchCases.clear(); 2500 } 2501 } 2502 2503 // Create a CaseBlock record representing this branch. 2504 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2505 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2506 2507 // Use visitSwitchCase to actually insert the fast branch sequence for this 2508 // cond branch. 2509 visitSwitchCase(CB, BrMBB); 2510 } 2511 2512 /// visitSwitchCase - Emits the necessary code to represent a single node in 2513 /// the binary search tree resulting from lowering a switch instruction. 2514 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2515 MachineBasicBlock *SwitchBB) { 2516 SDValue Cond; 2517 SDValue CondLHS = getValue(CB.CmpLHS); 2518 SDLoc dl = CB.DL; 2519 2520 if (CB.CC == ISD::SETTRUE) { 2521 // Branch or fall through to TrueBB. 2522 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2523 SwitchBB->normalizeSuccProbs(); 2524 if (CB.TrueBB != NextBlock(SwitchBB)) { 2525 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2526 DAG.getBasicBlock(CB.TrueBB))); 2527 } 2528 return; 2529 } 2530 2531 auto &TLI = DAG.getTargetLoweringInfo(); 2532 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2533 2534 // Build the setcc now. 2535 if (!CB.CmpMHS) { 2536 // Fold "(X == true)" to X and "(X == false)" to !X to 2537 // handle common cases produced by branch lowering. 2538 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2539 CB.CC == ISD::SETEQ) 2540 Cond = CondLHS; 2541 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2542 CB.CC == ISD::SETEQ) { 2543 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2544 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2545 } else { 2546 SDValue CondRHS = getValue(CB.CmpRHS); 2547 2548 // If a pointer's DAG type is larger than its memory type then the DAG 2549 // values are zero-extended. This breaks signed comparisons so truncate 2550 // back to the underlying type before doing the compare. 2551 if (CondLHS.getValueType() != MemVT) { 2552 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2553 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2554 } 2555 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2556 } 2557 } else { 2558 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2559 2560 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2561 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2562 2563 SDValue CmpOp = getValue(CB.CmpMHS); 2564 EVT VT = CmpOp.getValueType(); 2565 2566 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2567 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2568 ISD::SETLE); 2569 } else { 2570 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2571 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2572 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2573 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2574 } 2575 } 2576 2577 // Update successor info 2578 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2579 // TrueBB and FalseBB are always different unless the incoming IR is 2580 // degenerate. This only happens when running llc on weird IR. 2581 if (CB.TrueBB != CB.FalseBB) 2582 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2583 SwitchBB->normalizeSuccProbs(); 2584 2585 // If the lhs block is the next block, invert the condition so that we can 2586 // fall through to the lhs instead of the rhs block. 2587 if (CB.TrueBB == NextBlock(SwitchBB)) { 2588 std::swap(CB.TrueBB, CB.FalseBB); 2589 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2590 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2591 } 2592 2593 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2594 MVT::Other, getControlRoot(), Cond, 2595 DAG.getBasicBlock(CB.TrueBB)); 2596 2597 setValue(CurInst, BrCond); 2598 2599 // Insert the false branch. Do this even if it's a fall through branch, 2600 // this makes it easier to do DAG optimizations which require inverting 2601 // the branch condition. 2602 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2603 DAG.getBasicBlock(CB.FalseBB)); 2604 2605 DAG.setRoot(BrCond); 2606 } 2607 2608 /// visitJumpTable - Emit JumpTable node in the current MBB 2609 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2610 // Emit the code for the jump table 2611 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2612 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2613 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2614 JT.Reg, PTy); 2615 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2616 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2617 MVT::Other, Index.getValue(1), 2618 Table, Index); 2619 DAG.setRoot(BrJumpTable); 2620 } 2621 2622 /// visitJumpTableHeader - This function emits necessary code to produce index 2623 /// in the JumpTable from switch case. 2624 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2625 JumpTableHeader &JTH, 2626 MachineBasicBlock *SwitchBB) { 2627 SDLoc dl = getCurSDLoc(); 2628 2629 // Subtract the lowest switch case value from the value being switched on. 2630 SDValue SwitchOp = getValue(JTH.SValue); 2631 EVT VT = SwitchOp.getValueType(); 2632 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2633 DAG.getConstant(JTH.First, dl, VT)); 2634 2635 // The SDNode we just created, which holds the value being switched on minus 2636 // the smallest case value, needs to be copied to a virtual register so it 2637 // can be used as an index into the jump table in a subsequent basic block. 2638 // This value may be smaller or larger than the target's pointer type, and 2639 // therefore require extension or truncating. 2640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2641 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2642 2643 unsigned JumpTableReg = 2644 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2645 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2646 JumpTableReg, SwitchOp); 2647 JT.Reg = JumpTableReg; 2648 2649 if (!JTH.FallthroughUnreachable) { 2650 // Emit the range check for the jump table, and branch to the default block 2651 // for the switch statement if the value being switched on exceeds the 2652 // largest case in the switch. 2653 SDValue CMP = DAG.getSetCC( 2654 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2655 Sub.getValueType()), 2656 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2657 2658 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2659 MVT::Other, CopyTo, CMP, 2660 DAG.getBasicBlock(JT.Default)); 2661 2662 // Avoid emitting unnecessary branches to the next block. 2663 if (JT.MBB != NextBlock(SwitchBB)) 2664 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2665 DAG.getBasicBlock(JT.MBB)); 2666 2667 DAG.setRoot(BrCond); 2668 } else { 2669 // Avoid emitting unnecessary branches to the next block. 2670 if (JT.MBB != NextBlock(SwitchBB)) 2671 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2672 DAG.getBasicBlock(JT.MBB))); 2673 else 2674 DAG.setRoot(CopyTo); 2675 } 2676 } 2677 2678 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2679 /// variable if there exists one. 2680 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2681 SDValue &Chain) { 2682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2683 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2684 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2685 MachineFunction &MF = DAG.getMachineFunction(); 2686 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2687 MachineSDNode *Node = 2688 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2689 if (Global) { 2690 MachinePointerInfo MPInfo(Global); 2691 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2692 MachineMemOperand::MODereferenceable; 2693 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2694 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2695 DAG.setNodeMemRefs(Node, {MemRef}); 2696 } 2697 if (PtrTy != PtrMemTy) 2698 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2699 return SDValue(Node, 0); 2700 } 2701 2702 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2703 /// tail spliced into a stack protector check success bb. 2704 /// 2705 /// For a high level explanation of how this fits into the stack protector 2706 /// generation see the comment on the declaration of class 2707 /// StackProtectorDescriptor. 2708 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2709 MachineBasicBlock *ParentBB) { 2710 2711 // First create the loads to the guard/stack slot for the comparison. 2712 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2713 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2714 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2715 2716 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2717 int FI = MFI.getStackProtectorIndex(); 2718 2719 SDValue Guard; 2720 SDLoc dl = getCurSDLoc(); 2721 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2722 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2723 Align Align = 2724 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2725 2726 // Generate code to load the content of the guard slot. 2727 SDValue GuardVal = DAG.getLoad( 2728 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2729 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2730 MachineMemOperand::MOVolatile); 2731 2732 if (TLI.useStackGuardXorFP()) 2733 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2734 2735 // Retrieve guard check function, nullptr if instrumentation is inlined. 2736 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2737 // The target provides a guard check function to validate the guard value. 2738 // Generate a call to that function with the content of the guard slot as 2739 // argument. 2740 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2741 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2742 2743 TargetLowering::ArgListTy Args; 2744 TargetLowering::ArgListEntry Entry; 2745 Entry.Node = GuardVal; 2746 Entry.Ty = FnTy->getParamType(0); 2747 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2748 Entry.IsInReg = true; 2749 Args.push_back(Entry); 2750 2751 TargetLowering::CallLoweringInfo CLI(DAG); 2752 CLI.setDebugLoc(getCurSDLoc()) 2753 .setChain(DAG.getEntryNode()) 2754 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2755 getValue(GuardCheckFn), std::move(Args)); 2756 2757 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2758 DAG.setRoot(Result.second); 2759 return; 2760 } 2761 2762 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2763 // Otherwise, emit a volatile load to retrieve the stack guard value. 2764 SDValue Chain = DAG.getEntryNode(); 2765 if (TLI.useLoadStackGuardNode()) { 2766 Guard = getLoadStackGuard(DAG, dl, Chain); 2767 } else { 2768 const Value *IRGuard = TLI.getSDagStackGuard(M); 2769 SDValue GuardPtr = getValue(IRGuard); 2770 2771 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2772 MachinePointerInfo(IRGuard, 0), Align, 2773 MachineMemOperand::MOVolatile); 2774 } 2775 2776 // Perform the comparison via a getsetcc. 2777 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2778 *DAG.getContext(), 2779 Guard.getValueType()), 2780 Guard, GuardVal, ISD::SETNE); 2781 2782 // If the guard/stackslot do not equal, branch to failure MBB. 2783 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2784 MVT::Other, GuardVal.getOperand(0), 2785 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2786 // Otherwise branch to success MBB. 2787 SDValue Br = DAG.getNode(ISD::BR, dl, 2788 MVT::Other, BrCond, 2789 DAG.getBasicBlock(SPD.getSuccessMBB())); 2790 2791 DAG.setRoot(Br); 2792 } 2793 2794 /// Codegen the failure basic block for a stack protector check. 2795 /// 2796 /// A failure stack protector machine basic block consists simply of a call to 2797 /// __stack_chk_fail(). 2798 /// 2799 /// For a high level explanation of how this fits into the stack protector 2800 /// generation see the comment on the declaration of class 2801 /// StackProtectorDescriptor. 2802 void 2803 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2805 TargetLowering::MakeLibCallOptions CallOptions; 2806 CallOptions.setDiscardResult(true); 2807 SDValue Chain = 2808 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2809 std::nullopt, CallOptions, getCurSDLoc()) 2810 .second; 2811 // On PS4/PS5, the "return address" must still be within the calling 2812 // function, even if it's at the very end, so emit an explicit TRAP here. 2813 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2814 if (TM.getTargetTriple().isPS()) 2815 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2816 // WebAssembly needs an unreachable instruction after a non-returning call, 2817 // because the function return type can be different from __stack_chk_fail's 2818 // return type (void). 2819 if (TM.getTargetTriple().isWasm()) 2820 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2821 2822 DAG.setRoot(Chain); 2823 } 2824 2825 /// visitBitTestHeader - This function emits necessary code to produce value 2826 /// suitable for "bit tests" 2827 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2828 MachineBasicBlock *SwitchBB) { 2829 SDLoc dl = getCurSDLoc(); 2830 2831 // Subtract the minimum value. 2832 SDValue SwitchOp = getValue(B.SValue); 2833 EVT VT = SwitchOp.getValueType(); 2834 SDValue RangeSub = 2835 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2836 2837 // Determine the type of the test operands. 2838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2839 bool UsePtrType = false; 2840 if (!TLI.isTypeLegal(VT)) { 2841 UsePtrType = true; 2842 } else { 2843 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2844 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2845 // Switch table case range are encoded into series of masks. 2846 // Just use pointer type, it's guaranteed to fit. 2847 UsePtrType = true; 2848 break; 2849 } 2850 } 2851 SDValue Sub = RangeSub; 2852 if (UsePtrType) { 2853 VT = TLI.getPointerTy(DAG.getDataLayout()); 2854 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2855 } 2856 2857 B.RegVT = VT.getSimpleVT(); 2858 B.Reg = FuncInfo.CreateReg(B.RegVT); 2859 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2860 2861 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2862 2863 if (!B.FallthroughUnreachable) 2864 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2865 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2866 SwitchBB->normalizeSuccProbs(); 2867 2868 SDValue Root = CopyTo; 2869 if (!B.FallthroughUnreachable) { 2870 // Conditional branch to the default block. 2871 SDValue RangeCmp = DAG.getSetCC(dl, 2872 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2873 RangeSub.getValueType()), 2874 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2875 ISD::SETUGT); 2876 2877 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2878 DAG.getBasicBlock(B.Default)); 2879 } 2880 2881 // Avoid emitting unnecessary branches to the next block. 2882 if (MBB != NextBlock(SwitchBB)) 2883 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2884 2885 DAG.setRoot(Root); 2886 } 2887 2888 /// visitBitTestCase - this function produces one "bit test" 2889 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2890 MachineBasicBlock* NextMBB, 2891 BranchProbability BranchProbToNext, 2892 unsigned Reg, 2893 BitTestCase &B, 2894 MachineBasicBlock *SwitchBB) { 2895 SDLoc dl = getCurSDLoc(); 2896 MVT VT = BB.RegVT; 2897 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2898 SDValue Cmp; 2899 unsigned PopCount = countPopulation(B.Mask); 2900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2901 if (PopCount == 1) { 2902 // Testing for a single bit; just compare the shift count with what it 2903 // would need to be to shift a 1 bit in that position. 2904 Cmp = DAG.getSetCC( 2905 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2906 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2907 ISD::SETEQ); 2908 } else if (PopCount == BB.Range) { 2909 // There is only one zero bit in the range, test for it directly. 2910 Cmp = DAG.getSetCC( 2911 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2912 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2913 ISD::SETNE); 2914 } else { 2915 // Make desired shift 2916 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2917 DAG.getConstant(1, dl, VT), ShiftOp); 2918 2919 // Emit bit tests and jumps 2920 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2921 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2922 Cmp = DAG.getSetCC( 2923 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2924 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2925 } 2926 2927 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2928 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2929 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2930 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2931 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2932 // one as they are relative probabilities (and thus work more like weights), 2933 // and hence we need to normalize them to let the sum of them become one. 2934 SwitchBB->normalizeSuccProbs(); 2935 2936 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2937 MVT::Other, getControlRoot(), 2938 Cmp, DAG.getBasicBlock(B.TargetBB)); 2939 2940 // Avoid emitting unnecessary branches to the next block. 2941 if (NextMBB != NextBlock(SwitchBB)) 2942 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2943 DAG.getBasicBlock(NextMBB)); 2944 2945 DAG.setRoot(BrAnd); 2946 } 2947 2948 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2949 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2950 2951 // Retrieve successors. Look through artificial IR level blocks like 2952 // catchswitch for successors. 2953 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2954 const BasicBlock *EHPadBB = I.getSuccessor(1); 2955 2956 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2957 // have to do anything here to lower funclet bundles. 2958 assert(!I.hasOperandBundlesOtherThan( 2959 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2960 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2961 LLVMContext::OB_cfguardtarget, 2962 LLVMContext::OB_clang_arc_attachedcall}) && 2963 "Cannot lower invokes with arbitrary operand bundles yet!"); 2964 2965 const Value *Callee(I.getCalledOperand()); 2966 const Function *Fn = dyn_cast<Function>(Callee); 2967 if (isa<InlineAsm>(Callee)) 2968 visitInlineAsm(I, EHPadBB); 2969 else if (Fn && Fn->isIntrinsic()) { 2970 switch (Fn->getIntrinsicID()) { 2971 default: 2972 llvm_unreachable("Cannot invoke this intrinsic"); 2973 case Intrinsic::donothing: 2974 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2975 case Intrinsic::seh_try_begin: 2976 case Intrinsic::seh_scope_begin: 2977 case Intrinsic::seh_try_end: 2978 case Intrinsic::seh_scope_end: 2979 break; 2980 case Intrinsic::experimental_patchpoint_void: 2981 case Intrinsic::experimental_patchpoint_i64: 2982 visitPatchpoint(I, EHPadBB); 2983 break; 2984 case Intrinsic::experimental_gc_statepoint: 2985 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2986 break; 2987 case Intrinsic::wasm_rethrow: { 2988 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2989 // special because it can be invoked, so we manually lower it to a DAG 2990 // node here. 2991 SmallVector<SDValue, 8> Ops; 2992 Ops.push_back(getRoot()); // inchain 2993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2994 Ops.push_back( 2995 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2996 TLI.getPointerTy(DAG.getDataLayout()))); 2997 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2998 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2999 break; 3000 } 3001 } 3002 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3003 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3004 // Eventually we will support lowering the @llvm.experimental.deoptimize 3005 // intrinsic, and right now there are no plans to support other intrinsics 3006 // with deopt state. 3007 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3008 } else { 3009 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3010 } 3011 3012 // If the value of the invoke is used outside of its defining block, make it 3013 // available as a virtual register. 3014 // We already took care of the exported value for the statepoint instruction 3015 // during call to the LowerStatepoint. 3016 if (!isa<GCStatepointInst>(I)) { 3017 CopyToExportRegsIfNeeded(&I); 3018 } 3019 3020 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3021 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3022 BranchProbability EHPadBBProb = 3023 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3024 : BranchProbability::getZero(); 3025 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3026 3027 // Update successor info. 3028 addSuccessorWithProb(InvokeMBB, Return); 3029 for (auto &UnwindDest : UnwindDests) { 3030 UnwindDest.first->setIsEHPad(); 3031 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3032 } 3033 InvokeMBB->normalizeSuccProbs(); 3034 3035 // Drop into normal successor. 3036 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3037 DAG.getBasicBlock(Return))); 3038 } 3039 3040 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3041 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3042 3043 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3044 // have to do anything here to lower funclet bundles. 3045 assert(!I.hasOperandBundlesOtherThan( 3046 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3047 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3048 3049 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3050 visitInlineAsm(I); 3051 CopyToExportRegsIfNeeded(&I); 3052 3053 // Retrieve successors. 3054 SmallPtrSet<BasicBlock *, 8> Dests; 3055 Dests.insert(I.getDefaultDest()); 3056 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3057 3058 // Update successor info. 3059 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3060 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3061 BasicBlock *Dest = I.getIndirectDest(i); 3062 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3063 Target->setIsInlineAsmBrIndirectTarget(); 3064 Target->setMachineBlockAddressTaken(); 3065 Target->setLabelMustBeEmitted(); 3066 // Don't add duplicate machine successors. 3067 if (Dests.insert(Dest).second) 3068 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3069 } 3070 CallBrMBB->normalizeSuccProbs(); 3071 3072 // Drop into default successor. 3073 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3074 MVT::Other, getControlRoot(), 3075 DAG.getBasicBlock(Return))); 3076 } 3077 3078 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3079 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3080 } 3081 3082 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3083 assert(FuncInfo.MBB->isEHPad() && 3084 "Call to landingpad not in landing pad!"); 3085 3086 // If there aren't registers to copy the values into (e.g., during SjLj 3087 // exceptions), then don't bother to create these DAG nodes. 3088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3089 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3090 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3091 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3092 return; 3093 3094 // If landingpad's return type is token type, we don't create DAG nodes 3095 // for its exception pointer and selector value. The extraction of exception 3096 // pointer or selector value from token type landingpads is not currently 3097 // supported. 3098 if (LP.getType()->isTokenTy()) 3099 return; 3100 3101 SmallVector<EVT, 2> ValueVTs; 3102 SDLoc dl = getCurSDLoc(); 3103 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3104 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3105 3106 // Get the two live-in registers as SDValues. The physregs have already been 3107 // copied into virtual registers. 3108 SDValue Ops[2]; 3109 if (FuncInfo.ExceptionPointerVirtReg) { 3110 Ops[0] = DAG.getZExtOrTrunc( 3111 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3112 FuncInfo.ExceptionPointerVirtReg, 3113 TLI.getPointerTy(DAG.getDataLayout())), 3114 dl, ValueVTs[0]); 3115 } else { 3116 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3117 } 3118 Ops[1] = DAG.getZExtOrTrunc( 3119 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3120 FuncInfo.ExceptionSelectorVirtReg, 3121 TLI.getPointerTy(DAG.getDataLayout())), 3122 dl, ValueVTs[1]); 3123 3124 // Merge into one. 3125 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3126 DAG.getVTList(ValueVTs), Ops); 3127 setValue(&LP, Res); 3128 } 3129 3130 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3131 MachineBasicBlock *Last) { 3132 // Update JTCases. 3133 for (JumpTableBlock &JTB : SL->JTCases) 3134 if (JTB.first.HeaderBB == First) 3135 JTB.first.HeaderBB = Last; 3136 3137 // Update BitTestCases. 3138 for (BitTestBlock &BTB : SL->BitTestCases) 3139 if (BTB.Parent == First) 3140 BTB.Parent = Last; 3141 } 3142 3143 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3144 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3145 3146 // Update machine-CFG edges with unique successors. 3147 SmallSet<BasicBlock*, 32> Done; 3148 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3149 BasicBlock *BB = I.getSuccessor(i); 3150 bool Inserted = Done.insert(BB).second; 3151 if (!Inserted) 3152 continue; 3153 3154 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3155 addSuccessorWithProb(IndirectBrMBB, Succ); 3156 } 3157 IndirectBrMBB->normalizeSuccProbs(); 3158 3159 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3160 MVT::Other, getControlRoot(), 3161 getValue(I.getAddress()))); 3162 } 3163 3164 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3165 if (!DAG.getTarget().Options.TrapUnreachable) 3166 return; 3167 3168 // We may be able to ignore unreachable behind a noreturn call. 3169 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3170 const BasicBlock &BB = *I.getParent(); 3171 if (&I != &BB.front()) { 3172 BasicBlock::const_iterator PredI = 3173 std::prev(BasicBlock::const_iterator(&I)); 3174 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3175 if (Call->doesNotReturn()) 3176 return; 3177 } 3178 } 3179 } 3180 3181 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3182 } 3183 3184 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3185 SDNodeFlags Flags; 3186 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3187 Flags.copyFMF(*FPOp); 3188 3189 SDValue Op = getValue(I.getOperand(0)); 3190 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3191 Op, Flags); 3192 setValue(&I, UnNodeValue); 3193 } 3194 3195 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3196 SDNodeFlags Flags; 3197 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3198 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3199 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3200 } 3201 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3202 Flags.setExact(ExactOp->isExact()); 3203 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3204 Flags.copyFMF(*FPOp); 3205 3206 SDValue Op1 = getValue(I.getOperand(0)); 3207 SDValue Op2 = getValue(I.getOperand(1)); 3208 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3209 Op1, Op2, Flags); 3210 setValue(&I, BinNodeValue); 3211 } 3212 3213 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3214 SDValue Op1 = getValue(I.getOperand(0)); 3215 SDValue Op2 = getValue(I.getOperand(1)); 3216 3217 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3218 Op1.getValueType(), DAG.getDataLayout()); 3219 3220 // Coerce the shift amount to the right type if we can. This exposes the 3221 // truncate or zext to optimization early. 3222 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3223 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3224 "Unexpected shift type"); 3225 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3226 } 3227 3228 bool nuw = false; 3229 bool nsw = false; 3230 bool exact = false; 3231 3232 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3233 3234 if (const OverflowingBinaryOperator *OFBinOp = 3235 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3236 nuw = OFBinOp->hasNoUnsignedWrap(); 3237 nsw = OFBinOp->hasNoSignedWrap(); 3238 } 3239 if (const PossiblyExactOperator *ExactOp = 3240 dyn_cast<const PossiblyExactOperator>(&I)) 3241 exact = ExactOp->isExact(); 3242 } 3243 SDNodeFlags Flags; 3244 Flags.setExact(exact); 3245 Flags.setNoSignedWrap(nsw); 3246 Flags.setNoUnsignedWrap(nuw); 3247 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3248 Flags); 3249 setValue(&I, Res); 3250 } 3251 3252 void SelectionDAGBuilder::visitSDiv(const User &I) { 3253 SDValue Op1 = getValue(I.getOperand(0)); 3254 SDValue Op2 = getValue(I.getOperand(1)); 3255 3256 SDNodeFlags Flags; 3257 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3258 cast<PossiblyExactOperator>(&I)->isExact()); 3259 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3260 Op2, Flags)); 3261 } 3262 3263 void SelectionDAGBuilder::visitICmp(const User &I) { 3264 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3265 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3266 predicate = IC->getPredicate(); 3267 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3268 predicate = ICmpInst::Predicate(IC->getPredicate()); 3269 SDValue Op1 = getValue(I.getOperand(0)); 3270 SDValue Op2 = getValue(I.getOperand(1)); 3271 ISD::CondCode Opcode = getICmpCondCode(predicate); 3272 3273 auto &TLI = DAG.getTargetLoweringInfo(); 3274 EVT MemVT = 3275 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3276 3277 // If a pointer's DAG type is larger than its memory type then the DAG values 3278 // are zero-extended. This breaks signed comparisons so truncate back to the 3279 // underlying type before doing the compare. 3280 if (Op1.getValueType() != MemVT) { 3281 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3282 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3283 } 3284 3285 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3286 I.getType()); 3287 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3288 } 3289 3290 void SelectionDAGBuilder::visitFCmp(const User &I) { 3291 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3292 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3293 predicate = FC->getPredicate(); 3294 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3295 predicate = FCmpInst::Predicate(FC->getPredicate()); 3296 SDValue Op1 = getValue(I.getOperand(0)); 3297 SDValue Op2 = getValue(I.getOperand(1)); 3298 3299 ISD::CondCode Condition = getFCmpCondCode(predicate); 3300 auto *FPMO = cast<FPMathOperator>(&I); 3301 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3302 Condition = getFCmpCodeWithoutNaN(Condition); 3303 3304 SDNodeFlags Flags; 3305 Flags.copyFMF(*FPMO); 3306 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3307 3308 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3309 I.getType()); 3310 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3311 } 3312 3313 // Check if the condition of the select has one use or two users that are both 3314 // selects with the same condition. 3315 static bool hasOnlySelectUsers(const Value *Cond) { 3316 return llvm::all_of(Cond->users(), [](const Value *V) { 3317 return isa<SelectInst>(V); 3318 }); 3319 } 3320 3321 void SelectionDAGBuilder::visitSelect(const User &I) { 3322 SmallVector<EVT, 4> ValueVTs; 3323 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3324 ValueVTs); 3325 unsigned NumValues = ValueVTs.size(); 3326 if (NumValues == 0) return; 3327 3328 SmallVector<SDValue, 4> Values(NumValues); 3329 SDValue Cond = getValue(I.getOperand(0)); 3330 SDValue LHSVal = getValue(I.getOperand(1)); 3331 SDValue RHSVal = getValue(I.getOperand(2)); 3332 SmallVector<SDValue, 1> BaseOps(1, Cond); 3333 ISD::NodeType OpCode = 3334 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3335 3336 bool IsUnaryAbs = false; 3337 bool Negate = false; 3338 3339 SDNodeFlags Flags; 3340 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3341 Flags.copyFMF(*FPOp); 3342 3343 // Min/max matching is only viable if all output VTs are the same. 3344 if (all_equal(ValueVTs)) { 3345 EVT VT = ValueVTs[0]; 3346 LLVMContext &Ctx = *DAG.getContext(); 3347 auto &TLI = DAG.getTargetLoweringInfo(); 3348 3349 // We care about the legality of the operation after it has been type 3350 // legalized. 3351 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3352 VT = TLI.getTypeToTransformTo(Ctx, VT); 3353 3354 // If the vselect is legal, assume we want to leave this as a vector setcc + 3355 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3356 // min/max is legal on the scalar type. 3357 bool UseScalarMinMax = VT.isVector() && 3358 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3359 3360 Value *LHS, *RHS; 3361 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3362 ISD::NodeType Opc = ISD::DELETED_NODE; 3363 switch (SPR.Flavor) { 3364 case SPF_UMAX: Opc = ISD::UMAX; break; 3365 case SPF_UMIN: Opc = ISD::UMIN; break; 3366 case SPF_SMAX: Opc = ISD::SMAX; break; 3367 case SPF_SMIN: Opc = ISD::SMIN; break; 3368 case SPF_FMINNUM: 3369 switch (SPR.NaNBehavior) { 3370 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3371 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3372 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3373 case SPNB_RETURNS_ANY: { 3374 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3375 Opc = ISD::FMINNUM; 3376 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3377 Opc = ISD::FMINIMUM; 3378 else if (UseScalarMinMax) 3379 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3380 ISD::FMINNUM : ISD::FMINIMUM; 3381 break; 3382 } 3383 } 3384 break; 3385 case SPF_FMAXNUM: 3386 switch (SPR.NaNBehavior) { 3387 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3388 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3389 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3390 case SPNB_RETURNS_ANY: 3391 3392 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3393 Opc = ISD::FMAXNUM; 3394 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3395 Opc = ISD::FMAXIMUM; 3396 else if (UseScalarMinMax) 3397 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3398 ISD::FMAXNUM : ISD::FMAXIMUM; 3399 break; 3400 } 3401 break; 3402 case SPF_NABS: 3403 Negate = true; 3404 [[fallthrough]]; 3405 case SPF_ABS: 3406 IsUnaryAbs = true; 3407 Opc = ISD::ABS; 3408 break; 3409 default: break; 3410 } 3411 3412 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3413 (TLI.isOperationLegalOrCustom(Opc, VT) || 3414 (UseScalarMinMax && 3415 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3416 // If the underlying comparison instruction is used by any other 3417 // instruction, the consumed instructions won't be destroyed, so it is 3418 // not profitable to convert to a min/max. 3419 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3420 OpCode = Opc; 3421 LHSVal = getValue(LHS); 3422 RHSVal = getValue(RHS); 3423 BaseOps.clear(); 3424 } 3425 3426 if (IsUnaryAbs) { 3427 OpCode = Opc; 3428 LHSVal = getValue(LHS); 3429 BaseOps.clear(); 3430 } 3431 } 3432 3433 if (IsUnaryAbs) { 3434 for (unsigned i = 0; i != NumValues; ++i) { 3435 SDLoc dl = getCurSDLoc(); 3436 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3437 Values[i] = 3438 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3439 if (Negate) 3440 Values[i] = DAG.getNegative(Values[i], dl, VT); 3441 } 3442 } else { 3443 for (unsigned i = 0; i != NumValues; ++i) { 3444 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3445 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3446 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3447 Values[i] = DAG.getNode( 3448 OpCode, getCurSDLoc(), 3449 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3450 } 3451 } 3452 3453 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3454 DAG.getVTList(ValueVTs), Values)); 3455 } 3456 3457 void SelectionDAGBuilder::visitTrunc(const User &I) { 3458 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3459 SDValue N = getValue(I.getOperand(0)); 3460 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3461 I.getType()); 3462 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3463 } 3464 3465 void SelectionDAGBuilder::visitZExt(const User &I) { 3466 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3467 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3468 SDValue N = getValue(I.getOperand(0)); 3469 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3470 I.getType()); 3471 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3472 } 3473 3474 void SelectionDAGBuilder::visitSExt(const User &I) { 3475 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3476 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3477 SDValue N = getValue(I.getOperand(0)); 3478 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3479 I.getType()); 3480 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3481 } 3482 3483 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3484 // FPTrunc is never a no-op cast, no need to check 3485 SDValue N = getValue(I.getOperand(0)); 3486 SDLoc dl = getCurSDLoc(); 3487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3488 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3489 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3490 DAG.getTargetConstant( 3491 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3492 } 3493 3494 void SelectionDAGBuilder::visitFPExt(const User &I) { 3495 // FPExt is never a no-op cast, no need to check 3496 SDValue N = getValue(I.getOperand(0)); 3497 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3498 I.getType()); 3499 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3500 } 3501 3502 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3503 // FPToUI is never a no-op cast, no need to check 3504 SDValue N = getValue(I.getOperand(0)); 3505 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3506 I.getType()); 3507 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3508 } 3509 3510 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3511 // FPToSI is never a no-op cast, no need to check 3512 SDValue N = getValue(I.getOperand(0)); 3513 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3514 I.getType()); 3515 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3516 } 3517 3518 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3519 // UIToFP is never a no-op cast, no need to check 3520 SDValue N = getValue(I.getOperand(0)); 3521 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3522 I.getType()); 3523 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3524 } 3525 3526 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3527 // SIToFP is never a no-op cast, no need to check 3528 SDValue N = getValue(I.getOperand(0)); 3529 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3530 I.getType()); 3531 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3532 } 3533 3534 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3535 // What to do depends on the size of the integer and the size of the pointer. 3536 // We can either truncate, zero extend, or no-op, accordingly. 3537 SDValue N = getValue(I.getOperand(0)); 3538 auto &TLI = DAG.getTargetLoweringInfo(); 3539 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3540 I.getType()); 3541 EVT PtrMemVT = 3542 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3543 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3544 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3545 setValue(&I, N); 3546 } 3547 3548 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3549 // What to do depends on the size of the integer and the size of the pointer. 3550 // We can either truncate, zero extend, or no-op, accordingly. 3551 SDValue N = getValue(I.getOperand(0)); 3552 auto &TLI = DAG.getTargetLoweringInfo(); 3553 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3554 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3555 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3556 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3557 setValue(&I, N); 3558 } 3559 3560 void SelectionDAGBuilder::visitBitCast(const User &I) { 3561 SDValue N = getValue(I.getOperand(0)); 3562 SDLoc dl = getCurSDLoc(); 3563 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3564 I.getType()); 3565 3566 // BitCast assures us that source and destination are the same size so this is 3567 // either a BITCAST or a no-op. 3568 if (DestVT != N.getValueType()) 3569 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3570 DestVT, N)); // convert types. 3571 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3572 // might fold any kind of constant expression to an integer constant and that 3573 // is not what we are looking for. Only recognize a bitcast of a genuine 3574 // constant integer as an opaque constant. 3575 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3576 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3577 /*isOpaque*/true)); 3578 else 3579 setValue(&I, N); // noop cast. 3580 } 3581 3582 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3584 const Value *SV = I.getOperand(0); 3585 SDValue N = getValue(SV); 3586 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3587 3588 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3589 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3590 3591 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3592 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3593 3594 setValue(&I, N); 3595 } 3596 3597 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3599 SDValue InVec = getValue(I.getOperand(0)); 3600 SDValue InVal = getValue(I.getOperand(1)); 3601 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3602 TLI.getVectorIdxTy(DAG.getDataLayout())); 3603 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3604 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3605 InVec, InVal, InIdx)); 3606 } 3607 3608 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3610 SDValue InVec = getValue(I.getOperand(0)); 3611 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3612 TLI.getVectorIdxTy(DAG.getDataLayout())); 3613 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3614 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3615 InVec, InIdx)); 3616 } 3617 3618 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3619 SDValue Src1 = getValue(I.getOperand(0)); 3620 SDValue Src2 = getValue(I.getOperand(1)); 3621 ArrayRef<int> Mask; 3622 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3623 Mask = SVI->getShuffleMask(); 3624 else 3625 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3626 SDLoc DL = getCurSDLoc(); 3627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3628 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3629 EVT SrcVT = Src1.getValueType(); 3630 3631 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3632 VT.isScalableVector()) { 3633 // Canonical splat form of first element of first input vector. 3634 SDValue FirstElt = 3635 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3636 DAG.getVectorIdxConstant(0, DL)); 3637 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3638 return; 3639 } 3640 3641 // For now, we only handle splats for scalable vectors. 3642 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3643 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3644 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3645 3646 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3647 unsigned MaskNumElts = Mask.size(); 3648 3649 if (SrcNumElts == MaskNumElts) { 3650 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3651 return; 3652 } 3653 3654 // Normalize the shuffle vector since mask and vector length don't match. 3655 if (SrcNumElts < MaskNumElts) { 3656 // Mask is longer than the source vectors. We can use concatenate vector to 3657 // make the mask and vectors lengths match. 3658 3659 if (MaskNumElts % SrcNumElts == 0) { 3660 // Mask length is a multiple of the source vector length. 3661 // Check if the shuffle is some kind of concatenation of the input 3662 // vectors. 3663 unsigned NumConcat = MaskNumElts / SrcNumElts; 3664 bool IsConcat = true; 3665 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3666 for (unsigned i = 0; i != MaskNumElts; ++i) { 3667 int Idx = Mask[i]; 3668 if (Idx < 0) 3669 continue; 3670 // Ensure the indices in each SrcVT sized piece are sequential and that 3671 // the same source is used for the whole piece. 3672 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3673 (ConcatSrcs[i / SrcNumElts] >= 0 && 3674 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3675 IsConcat = false; 3676 break; 3677 } 3678 // Remember which source this index came from. 3679 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3680 } 3681 3682 // The shuffle is concatenating multiple vectors together. Just emit 3683 // a CONCAT_VECTORS operation. 3684 if (IsConcat) { 3685 SmallVector<SDValue, 8> ConcatOps; 3686 for (auto Src : ConcatSrcs) { 3687 if (Src < 0) 3688 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3689 else if (Src == 0) 3690 ConcatOps.push_back(Src1); 3691 else 3692 ConcatOps.push_back(Src2); 3693 } 3694 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3695 return; 3696 } 3697 } 3698 3699 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3700 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3701 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3702 PaddedMaskNumElts); 3703 3704 // Pad both vectors with undefs to make them the same length as the mask. 3705 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3706 3707 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3708 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3709 MOps1[0] = Src1; 3710 MOps2[0] = Src2; 3711 3712 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3713 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3714 3715 // Readjust mask for new input vector length. 3716 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3717 for (unsigned i = 0; i != MaskNumElts; ++i) { 3718 int Idx = Mask[i]; 3719 if (Idx >= (int)SrcNumElts) 3720 Idx -= SrcNumElts - PaddedMaskNumElts; 3721 MappedOps[i] = Idx; 3722 } 3723 3724 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3725 3726 // If the concatenated vector was padded, extract a subvector with the 3727 // correct number of elements. 3728 if (MaskNumElts != PaddedMaskNumElts) 3729 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3730 DAG.getVectorIdxConstant(0, DL)); 3731 3732 setValue(&I, Result); 3733 return; 3734 } 3735 3736 if (SrcNumElts > MaskNumElts) { 3737 // Analyze the access pattern of the vector to see if we can extract 3738 // two subvectors and do the shuffle. 3739 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3740 bool CanExtract = true; 3741 for (int Idx : Mask) { 3742 unsigned Input = 0; 3743 if (Idx < 0) 3744 continue; 3745 3746 if (Idx >= (int)SrcNumElts) { 3747 Input = 1; 3748 Idx -= SrcNumElts; 3749 } 3750 3751 // If all the indices come from the same MaskNumElts sized portion of 3752 // the sources we can use extract. Also make sure the extract wouldn't 3753 // extract past the end of the source. 3754 int NewStartIdx = alignDown(Idx, MaskNumElts); 3755 if (NewStartIdx + MaskNumElts > SrcNumElts || 3756 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3757 CanExtract = false; 3758 // Make sure we always update StartIdx as we use it to track if all 3759 // elements are undef. 3760 StartIdx[Input] = NewStartIdx; 3761 } 3762 3763 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3764 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3765 return; 3766 } 3767 if (CanExtract) { 3768 // Extract appropriate subvector and generate a vector shuffle 3769 for (unsigned Input = 0; Input < 2; ++Input) { 3770 SDValue &Src = Input == 0 ? Src1 : Src2; 3771 if (StartIdx[Input] < 0) 3772 Src = DAG.getUNDEF(VT); 3773 else { 3774 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3775 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3776 } 3777 } 3778 3779 // Calculate new mask. 3780 SmallVector<int, 8> MappedOps(Mask); 3781 for (int &Idx : MappedOps) { 3782 if (Idx >= (int)SrcNumElts) 3783 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3784 else if (Idx >= 0) 3785 Idx -= StartIdx[0]; 3786 } 3787 3788 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3789 return; 3790 } 3791 } 3792 3793 // We can't use either concat vectors or extract subvectors so fall back to 3794 // replacing the shuffle with extract and build vector. 3795 // to insert and build vector. 3796 EVT EltVT = VT.getVectorElementType(); 3797 SmallVector<SDValue,8> Ops; 3798 for (int Idx : Mask) { 3799 SDValue Res; 3800 3801 if (Idx < 0) { 3802 Res = DAG.getUNDEF(EltVT); 3803 } else { 3804 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3805 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3806 3807 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3808 DAG.getVectorIdxConstant(Idx, DL)); 3809 } 3810 3811 Ops.push_back(Res); 3812 } 3813 3814 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3815 } 3816 3817 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3818 ArrayRef<unsigned> Indices = I.getIndices(); 3819 const Value *Op0 = I.getOperand(0); 3820 const Value *Op1 = I.getOperand(1); 3821 Type *AggTy = I.getType(); 3822 Type *ValTy = Op1->getType(); 3823 bool IntoUndef = isa<UndefValue>(Op0); 3824 bool FromUndef = isa<UndefValue>(Op1); 3825 3826 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3827 3828 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3829 SmallVector<EVT, 4> AggValueVTs; 3830 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3831 SmallVector<EVT, 4> ValValueVTs; 3832 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3833 3834 unsigned NumAggValues = AggValueVTs.size(); 3835 unsigned NumValValues = ValValueVTs.size(); 3836 SmallVector<SDValue, 4> Values(NumAggValues); 3837 3838 // Ignore an insertvalue that produces an empty object 3839 if (!NumAggValues) { 3840 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3841 return; 3842 } 3843 3844 SDValue Agg = getValue(Op0); 3845 unsigned i = 0; 3846 // Copy the beginning value(s) from the original aggregate. 3847 for (; i != LinearIndex; ++i) 3848 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3849 SDValue(Agg.getNode(), Agg.getResNo() + i); 3850 // Copy values from the inserted value(s). 3851 if (NumValValues) { 3852 SDValue Val = getValue(Op1); 3853 for (; i != LinearIndex + NumValValues; ++i) 3854 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3855 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3856 } 3857 // Copy remaining value(s) from the original aggregate. 3858 for (; i != NumAggValues; ++i) 3859 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3860 SDValue(Agg.getNode(), Agg.getResNo() + i); 3861 3862 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3863 DAG.getVTList(AggValueVTs), Values)); 3864 } 3865 3866 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3867 ArrayRef<unsigned> Indices = I.getIndices(); 3868 const Value *Op0 = I.getOperand(0); 3869 Type *AggTy = Op0->getType(); 3870 Type *ValTy = I.getType(); 3871 bool OutOfUndef = isa<UndefValue>(Op0); 3872 3873 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3874 3875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3876 SmallVector<EVT, 4> ValValueVTs; 3877 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3878 3879 unsigned NumValValues = ValValueVTs.size(); 3880 3881 // Ignore a extractvalue that produces an empty object 3882 if (!NumValValues) { 3883 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3884 return; 3885 } 3886 3887 SmallVector<SDValue, 4> Values(NumValValues); 3888 3889 SDValue Agg = getValue(Op0); 3890 // Copy out the selected value(s). 3891 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3892 Values[i - LinearIndex] = 3893 OutOfUndef ? 3894 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3895 SDValue(Agg.getNode(), Agg.getResNo() + i); 3896 3897 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3898 DAG.getVTList(ValValueVTs), Values)); 3899 } 3900 3901 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3902 Value *Op0 = I.getOperand(0); 3903 // Note that the pointer operand may be a vector of pointers. Take the scalar 3904 // element which holds a pointer. 3905 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3906 SDValue N = getValue(Op0); 3907 SDLoc dl = getCurSDLoc(); 3908 auto &TLI = DAG.getTargetLoweringInfo(); 3909 3910 // Normalize Vector GEP - all scalar operands should be converted to the 3911 // splat vector. 3912 bool IsVectorGEP = I.getType()->isVectorTy(); 3913 ElementCount VectorElementCount = 3914 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3915 : ElementCount::getFixed(0); 3916 3917 if (IsVectorGEP && !N.getValueType().isVector()) { 3918 LLVMContext &Context = *DAG.getContext(); 3919 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3920 N = DAG.getSplat(VT, dl, N); 3921 } 3922 3923 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3924 GTI != E; ++GTI) { 3925 const Value *Idx = GTI.getOperand(); 3926 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3927 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3928 if (Field) { 3929 // N = N + Offset 3930 uint64_t Offset = 3931 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3932 3933 // In an inbounds GEP with an offset that is nonnegative even when 3934 // interpreted as signed, assume there is no unsigned overflow. 3935 SDNodeFlags Flags; 3936 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3937 Flags.setNoUnsignedWrap(true); 3938 3939 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3940 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3941 } 3942 } else { 3943 // IdxSize is the width of the arithmetic according to IR semantics. 3944 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3945 // (and fix up the result later). 3946 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3947 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3948 TypeSize ElementSize = 3949 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3950 // We intentionally mask away the high bits here; ElementSize may not 3951 // fit in IdxTy. 3952 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3953 bool ElementScalable = ElementSize.isScalable(); 3954 3955 // If this is a scalar constant or a splat vector of constants, 3956 // handle it quickly. 3957 const auto *C = dyn_cast<Constant>(Idx); 3958 if (C && isa<VectorType>(C->getType())) 3959 C = C->getSplatValue(); 3960 3961 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3962 if (CI && CI->isZero()) 3963 continue; 3964 if (CI && !ElementScalable) { 3965 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3966 LLVMContext &Context = *DAG.getContext(); 3967 SDValue OffsVal; 3968 if (IsVectorGEP) 3969 OffsVal = DAG.getConstant( 3970 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3971 else 3972 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3973 3974 // In an inbounds GEP with an offset that is nonnegative even when 3975 // interpreted as signed, assume there is no unsigned overflow. 3976 SDNodeFlags Flags; 3977 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3978 Flags.setNoUnsignedWrap(true); 3979 3980 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3981 3982 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3983 continue; 3984 } 3985 3986 // N = N + Idx * ElementMul; 3987 SDValue IdxN = getValue(Idx); 3988 3989 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3990 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3991 VectorElementCount); 3992 IdxN = DAG.getSplat(VT, dl, IdxN); 3993 } 3994 3995 // If the index is smaller or larger than intptr_t, truncate or extend 3996 // it. 3997 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3998 3999 if (ElementScalable) { 4000 EVT VScaleTy = N.getValueType().getScalarType(); 4001 SDValue VScale = DAG.getNode( 4002 ISD::VSCALE, dl, VScaleTy, 4003 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4004 if (IsVectorGEP) 4005 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4006 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4007 } else { 4008 // If this is a multiply by a power of two, turn it into a shl 4009 // immediately. This is a very common case. 4010 if (ElementMul != 1) { 4011 if (ElementMul.isPowerOf2()) { 4012 unsigned Amt = ElementMul.logBase2(); 4013 IdxN = DAG.getNode(ISD::SHL, dl, 4014 N.getValueType(), IdxN, 4015 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4016 } else { 4017 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4018 IdxN.getValueType()); 4019 IdxN = DAG.getNode(ISD::MUL, dl, 4020 N.getValueType(), IdxN, Scale); 4021 } 4022 } 4023 } 4024 4025 N = DAG.getNode(ISD::ADD, dl, 4026 N.getValueType(), N, IdxN); 4027 } 4028 } 4029 4030 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4031 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4032 if (IsVectorGEP) { 4033 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4034 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4035 } 4036 4037 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4038 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4039 4040 setValue(&I, N); 4041 } 4042 4043 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4044 // If this is a fixed sized alloca in the entry block of the function, 4045 // allocate it statically on the stack. 4046 if (FuncInfo.StaticAllocaMap.count(&I)) 4047 return; // getValue will auto-populate this. 4048 4049 SDLoc dl = getCurSDLoc(); 4050 Type *Ty = I.getAllocatedType(); 4051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4052 auto &DL = DAG.getDataLayout(); 4053 TypeSize TySize = DL.getTypeAllocSize(Ty); 4054 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4055 4056 SDValue AllocSize = getValue(I.getArraySize()); 4057 4058 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4059 if (AllocSize.getValueType() != IntPtr) 4060 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4061 4062 if (TySize.isScalable()) 4063 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4064 DAG.getVScale(dl, IntPtr, 4065 APInt(IntPtr.getScalarSizeInBits(), 4066 TySize.getKnownMinValue()))); 4067 else 4068 AllocSize = 4069 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4070 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4071 4072 // Handle alignment. If the requested alignment is less than or equal to 4073 // the stack alignment, ignore it. If the size is greater than or equal to 4074 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4075 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4076 if (*Alignment <= StackAlign) 4077 Alignment = std::nullopt; 4078 4079 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4080 // Round the size of the allocation up to the stack alignment size 4081 // by add SA-1 to the size. This doesn't overflow because we're computing 4082 // an address inside an alloca. 4083 SDNodeFlags Flags; 4084 Flags.setNoUnsignedWrap(true); 4085 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4086 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4087 4088 // Mask out the low bits for alignment purposes. 4089 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4090 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4091 4092 SDValue Ops[] = { 4093 getRoot(), AllocSize, 4094 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4095 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4096 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4097 setValue(&I, DSA); 4098 DAG.setRoot(DSA.getValue(1)); 4099 4100 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4101 } 4102 4103 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4104 if (I.isAtomic()) 4105 return visitAtomicLoad(I); 4106 4107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4108 const Value *SV = I.getOperand(0); 4109 if (TLI.supportSwiftError()) { 4110 // Swifterror values can come from either a function parameter with 4111 // swifterror attribute or an alloca with swifterror attribute. 4112 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4113 if (Arg->hasSwiftErrorAttr()) 4114 return visitLoadFromSwiftError(I); 4115 } 4116 4117 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4118 if (Alloca->isSwiftError()) 4119 return visitLoadFromSwiftError(I); 4120 } 4121 } 4122 4123 SDValue Ptr = getValue(SV); 4124 4125 Type *Ty = I.getType(); 4126 SmallVector<EVT, 4> ValueVTs, MemVTs; 4127 SmallVector<uint64_t, 4> Offsets; 4128 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4129 unsigned NumValues = ValueVTs.size(); 4130 if (NumValues == 0) 4131 return; 4132 4133 Align Alignment = I.getAlign(); 4134 AAMDNodes AAInfo = I.getAAMetadata(); 4135 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4136 bool isVolatile = I.isVolatile(); 4137 MachineMemOperand::Flags MMOFlags = 4138 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4139 4140 SDValue Root; 4141 bool ConstantMemory = false; 4142 if (isVolatile) 4143 // Serialize volatile loads with other side effects. 4144 Root = getRoot(); 4145 else if (NumValues > MaxParallelChains) 4146 Root = getMemoryRoot(); 4147 else if (AA && 4148 AA->pointsToConstantMemory(MemoryLocation( 4149 SV, 4150 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4151 AAInfo))) { 4152 // Do not serialize (non-volatile) loads of constant memory with anything. 4153 Root = DAG.getEntryNode(); 4154 ConstantMemory = true; 4155 MMOFlags |= MachineMemOperand::MOInvariant; 4156 } else { 4157 // Do not serialize non-volatile loads against each other. 4158 Root = DAG.getRoot(); 4159 } 4160 4161 if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(), 4162 &I, AC, nullptr, LibInfo)) 4163 MMOFlags |= MachineMemOperand::MODereferenceable; 4164 4165 SDLoc dl = getCurSDLoc(); 4166 4167 if (isVolatile) 4168 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4169 4170 // An aggregate load cannot wrap around the address space, so offsets to its 4171 // parts don't wrap either. 4172 SDNodeFlags Flags; 4173 Flags.setNoUnsignedWrap(true); 4174 4175 SmallVector<SDValue, 4> Values(NumValues); 4176 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4177 EVT PtrVT = Ptr.getValueType(); 4178 4179 unsigned ChainI = 0; 4180 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4181 // Serializing loads here may result in excessive register pressure, and 4182 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4183 // could recover a bit by hoisting nodes upward in the chain by recognizing 4184 // they are side-effect free or do not alias. The optimizer should really 4185 // avoid this case by converting large object/array copies to llvm.memcpy 4186 // (MaxParallelChains should always remain as failsafe). 4187 if (ChainI == MaxParallelChains) { 4188 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4189 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4190 makeArrayRef(Chains.data(), ChainI)); 4191 Root = Chain; 4192 ChainI = 0; 4193 } 4194 SDValue A = DAG.getNode(ISD::ADD, dl, 4195 PtrVT, Ptr, 4196 DAG.getConstant(Offsets[i], dl, PtrVT), 4197 Flags); 4198 4199 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4200 MachinePointerInfo(SV, Offsets[i]), Alignment, 4201 MMOFlags, AAInfo, Ranges); 4202 Chains[ChainI] = L.getValue(1); 4203 4204 if (MemVTs[i] != ValueVTs[i]) 4205 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4206 4207 Values[i] = L; 4208 } 4209 4210 if (!ConstantMemory) { 4211 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4212 makeArrayRef(Chains.data(), ChainI)); 4213 if (isVolatile) 4214 DAG.setRoot(Chain); 4215 else 4216 PendingLoads.push_back(Chain); 4217 } 4218 4219 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4220 DAG.getVTList(ValueVTs), Values)); 4221 } 4222 4223 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4224 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4225 "call visitStoreToSwiftError when backend supports swifterror"); 4226 4227 SmallVector<EVT, 4> ValueVTs; 4228 SmallVector<uint64_t, 4> Offsets; 4229 const Value *SrcV = I.getOperand(0); 4230 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4231 SrcV->getType(), ValueVTs, &Offsets); 4232 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4233 "expect a single EVT for swifterror"); 4234 4235 SDValue Src = getValue(SrcV); 4236 // Create a virtual register, then update the virtual register. 4237 Register VReg = 4238 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4239 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4240 // Chain can be getRoot or getControlRoot. 4241 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4242 SDValue(Src.getNode(), Src.getResNo())); 4243 DAG.setRoot(CopyNode); 4244 } 4245 4246 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4247 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4248 "call visitLoadFromSwiftError when backend supports swifterror"); 4249 4250 assert(!I.isVolatile() && 4251 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4252 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4253 "Support volatile, non temporal, invariant for load_from_swift_error"); 4254 4255 const Value *SV = I.getOperand(0); 4256 Type *Ty = I.getType(); 4257 assert( 4258 (!AA || 4259 !AA->pointsToConstantMemory(MemoryLocation( 4260 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4261 I.getAAMetadata()))) && 4262 "load_from_swift_error should not be constant memory"); 4263 4264 SmallVector<EVT, 4> ValueVTs; 4265 SmallVector<uint64_t, 4> Offsets; 4266 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4267 ValueVTs, &Offsets); 4268 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4269 "expect a single EVT for swifterror"); 4270 4271 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4272 SDValue L = DAG.getCopyFromReg( 4273 getRoot(), getCurSDLoc(), 4274 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4275 4276 setValue(&I, L); 4277 } 4278 4279 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4280 if (I.isAtomic()) 4281 return visitAtomicStore(I); 4282 4283 const Value *SrcV = I.getOperand(0); 4284 const Value *PtrV = I.getOperand(1); 4285 4286 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4287 if (TLI.supportSwiftError()) { 4288 // Swifterror values can come from either a function parameter with 4289 // swifterror attribute or an alloca with swifterror attribute. 4290 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4291 if (Arg->hasSwiftErrorAttr()) 4292 return visitStoreToSwiftError(I); 4293 } 4294 4295 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4296 if (Alloca->isSwiftError()) 4297 return visitStoreToSwiftError(I); 4298 } 4299 } 4300 4301 SmallVector<EVT, 4> ValueVTs, MemVTs; 4302 SmallVector<uint64_t, 4> Offsets; 4303 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4304 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4305 unsigned NumValues = ValueVTs.size(); 4306 if (NumValues == 0) 4307 return; 4308 4309 // Get the lowered operands. Note that we do this after 4310 // checking if NumResults is zero, because with zero results 4311 // the operands won't have values in the map. 4312 SDValue Src = getValue(SrcV); 4313 SDValue Ptr = getValue(PtrV); 4314 4315 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4316 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4317 SDLoc dl = getCurSDLoc(); 4318 Align Alignment = I.getAlign(); 4319 AAMDNodes AAInfo = I.getAAMetadata(); 4320 4321 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4322 4323 // An aggregate load cannot wrap around the address space, so offsets to its 4324 // parts don't wrap either. 4325 SDNodeFlags Flags; 4326 Flags.setNoUnsignedWrap(true); 4327 4328 unsigned ChainI = 0; 4329 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4330 // See visitLoad comments. 4331 if (ChainI == MaxParallelChains) { 4332 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4333 makeArrayRef(Chains.data(), ChainI)); 4334 Root = Chain; 4335 ChainI = 0; 4336 } 4337 SDValue Add = 4338 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4339 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4340 if (MemVTs[i] != ValueVTs[i]) 4341 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4342 SDValue St = 4343 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4344 Alignment, MMOFlags, AAInfo); 4345 Chains[ChainI] = St; 4346 } 4347 4348 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4349 makeArrayRef(Chains.data(), ChainI)); 4350 setValue(&I, StoreNode); 4351 DAG.setRoot(StoreNode); 4352 } 4353 4354 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4355 bool IsCompressing) { 4356 SDLoc sdl = getCurSDLoc(); 4357 4358 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4359 MaybeAlign &Alignment) { 4360 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4361 Src0 = I.getArgOperand(0); 4362 Ptr = I.getArgOperand(1); 4363 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4364 Mask = I.getArgOperand(3); 4365 }; 4366 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4367 MaybeAlign &Alignment) { 4368 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4369 Src0 = I.getArgOperand(0); 4370 Ptr = I.getArgOperand(1); 4371 Mask = I.getArgOperand(2); 4372 Alignment = std::nullopt; 4373 }; 4374 4375 Value *PtrOperand, *MaskOperand, *Src0Operand; 4376 MaybeAlign Alignment; 4377 if (IsCompressing) 4378 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4379 else 4380 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4381 4382 SDValue Ptr = getValue(PtrOperand); 4383 SDValue Src0 = getValue(Src0Operand); 4384 SDValue Mask = getValue(MaskOperand); 4385 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4386 4387 EVT VT = Src0.getValueType(); 4388 if (!Alignment) 4389 Alignment = DAG.getEVTAlign(VT); 4390 4391 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4392 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4393 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4394 SDValue StoreNode = 4395 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4396 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4397 DAG.setRoot(StoreNode); 4398 setValue(&I, StoreNode); 4399 } 4400 4401 // Get a uniform base for the Gather/Scatter intrinsic. 4402 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4403 // We try to represent it as a base pointer + vector of indices. 4404 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4405 // The first operand of the GEP may be a single pointer or a vector of pointers 4406 // Example: 4407 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4408 // or 4409 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4410 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4411 // 4412 // When the first GEP operand is a single pointer - it is the uniform base we 4413 // are looking for. If first operand of the GEP is a splat vector - we 4414 // extract the splat value and use it as a uniform base. 4415 // In all other cases the function returns 'false'. 4416 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4417 ISD::MemIndexType &IndexType, SDValue &Scale, 4418 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4419 uint64_t ElemSize) { 4420 SelectionDAG& DAG = SDB->DAG; 4421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4422 const DataLayout &DL = DAG.getDataLayout(); 4423 4424 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4425 4426 // Handle splat constant pointer. 4427 if (auto *C = dyn_cast<Constant>(Ptr)) { 4428 C = C->getSplatValue(); 4429 if (!C) 4430 return false; 4431 4432 Base = SDB->getValue(C); 4433 4434 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4435 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4436 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4437 IndexType = ISD::SIGNED_SCALED; 4438 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4439 return true; 4440 } 4441 4442 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4443 if (!GEP || GEP->getParent() != CurBB) 4444 return false; 4445 4446 if (GEP->getNumOperands() != 2) 4447 return false; 4448 4449 const Value *BasePtr = GEP->getPointerOperand(); 4450 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4451 4452 // Make sure the base is scalar and the index is a vector. 4453 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4454 return false; 4455 4456 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4457 4458 // Target may not support the required addressing mode. 4459 if (ScaleVal != 1 && 4460 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4461 return false; 4462 4463 Base = SDB->getValue(BasePtr); 4464 Index = SDB->getValue(IndexVal); 4465 IndexType = ISD::SIGNED_SCALED; 4466 4467 Scale = 4468 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4469 return true; 4470 } 4471 4472 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4473 SDLoc sdl = getCurSDLoc(); 4474 4475 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4476 const Value *Ptr = I.getArgOperand(1); 4477 SDValue Src0 = getValue(I.getArgOperand(0)); 4478 SDValue Mask = getValue(I.getArgOperand(3)); 4479 EVT VT = Src0.getValueType(); 4480 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4481 ->getMaybeAlignValue() 4482 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4484 4485 SDValue Base; 4486 SDValue Index; 4487 ISD::MemIndexType IndexType; 4488 SDValue Scale; 4489 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4490 I.getParent(), VT.getScalarStoreSize()); 4491 4492 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4493 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4494 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4495 // TODO: Make MachineMemOperands aware of scalable 4496 // vectors. 4497 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4498 if (!UniformBase) { 4499 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4500 Index = getValue(Ptr); 4501 IndexType = ISD::SIGNED_SCALED; 4502 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4503 } 4504 4505 EVT IdxVT = Index.getValueType(); 4506 EVT EltTy = IdxVT.getVectorElementType(); 4507 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4508 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4509 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4510 } 4511 4512 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4513 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4514 Ops, MMO, IndexType, false); 4515 DAG.setRoot(Scatter); 4516 setValue(&I, Scatter); 4517 } 4518 4519 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4520 SDLoc sdl = getCurSDLoc(); 4521 4522 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4523 MaybeAlign &Alignment) { 4524 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4525 Ptr = I.getArgOperand(0); 4526 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4527 Mask = I.getArgOperand(2); 4528 Src0 = I.getArgOperand(3); 4529 }; 4530 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4531 MaybeAlign &Alignment) { 4532 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4533 Ptr = I.getArgOperand(0); 4534 Alignment = std::nullopt; 4535 Mask = I.getArgOperand(1); 4536 Src0 = I.getArgOperand(2); 4537 }; 4538 4539 Value *PtrOperand, *MaskOperand, *Src0Operand; 4540 MaybeAlign Alignment; 4541 if (IsExpanding) 4542 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4543 else 4544 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4545 4546 SDValue Ptr = getValue(PtrOperand); 4547 SDValue Src0 = getValue(Src0Operand); 4548 SDValue Mask = getValue(MaskOperand); 4549 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4550 4551 EVT VT = Src0.getValueType(); 4552 if (!Alignment) 4553 Alignment = DAG.getEVTAlign(VT); 4554 4555 AAMDNodes AAInfo = I.getAAMetadata(); 4556 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4557 4558 // Do not serialize masked loads of constant memory with anything. 4559 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4560 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4561 4562 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4563 4564 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4565 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4566 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4567 4568 SDValue Load = 4569 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4570 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4571 if (AddToChain) 4572 PendingLoads.push_back(Load.getValue(1)); 4573 setValue(&I, Load); 4574 } 4575 4576 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4577 SDLoc sdl = getCurSDLoc(); 4578 4579 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4580 const Value *Ptr = I.getArgOperand(0); 4581 SDValue Src0 = getValue(I.getArgOperand(3)); 4582 SDValue Mask = getValue(I.getArgOperand(2)); 4583 4584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4585 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4586 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4587 ->getMaybeAlignValue() 4588 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4589 4590 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4591 4592 SDValue Root = DAG.getRoot(); 4593 SDValue Base; 4594 SDValue Index; 4595 ISD::MemIndexType IndexType; 4596 SDValue Scale; 4597 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4598 I.getParent(), VT.getScalarStoreSize()); 4599 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4600 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4601 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4602 // TODO: Make MachineMemOperands aware of scalable 4603 // vectors. 4604 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4605 4606 if (!UniformBase) { 4607 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4608 Index = getValue(Ptr); 4609 IndexType = ISD::SIGNED_SCALED; 4610 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4611 } 4612 4613 EVT IdxVT = Index.getValueType(); 4614 EVT EltTy = IdxVT.getVectorElementType(); 4615 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4616 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4617 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4618 } 4619 4620 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4621 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4622 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4623 4624 PendingLoads.push_back(Gather.getValue(1)); 4625 setValue(&I, Gather); 4626 } 4627 4628 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4629 SDLoc dl = getCurSDLoc(); 4630 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4631 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4632 SyncScope::ID SSID = I.getSyncScopeID(); 4633 4634 SDValue InChain = getRoot(); 4635 4636 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4637 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4638 4639 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4640 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4641 4642 MachineFunction &MF = DAG.getMachineFunction(); 4643 MachineMemOperand *MMO = MF.getMachineMemOperand( 4644 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4645 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4646 FailureOrdering); 4647 4648 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4649 dl, MemVT, VTs, InChain, 4650 getValue(I.getPointerOperand()), 4651 getValue(I.getCompareOperand()), 4652 getValue(I.getNewValOperand()), MMO); 4653 4654 SDValue OutChain = L.getValue(2); 4655 4656 setValue(&I, L); 4657 DAG.setRoot(OutChain); 4658 } 4659 4660 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4661 SDLoc dl = getCurSDLoc(); 4662 ISD::NodeType NT; 4663 switch (I.getOperation()) { 4664 default: llvm_unreachable("Unknown atomicrmw operation"); 4665 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4666 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4667 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4668 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4669 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4670 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4671 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4672 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4673 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4674 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4675 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4676 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4677 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4678 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4679 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4680 } 4681 AtomicOrdering Ordering = I.getOrdering(); 4682 SyncScope::ID SSID = I.getSyncScopeID(); 4683 4684 SDValue InChain = getRoot(); 4685 4686 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4688 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4689 4690 MachineFunction &MF = DAG.getMachineFunction(); 4691 MachineMemOperand *MMO = MF.getMachineMemOperand( 4692 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4693 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4694 4695 SDValue L = 4696 DAG.getAtomic(NT, dl, MemVT, InChain, 4697 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4698 MMO); 4699 4700 SDValue OutChain = L.getValue(1); 4701 4702 setValue(&I, L); 4703 DAG.setRoot(OutChain); 4704 } 4705 4706 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4707 SDLoc dl = getCurSDLoc(); 4708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4709 SDValue Ops[3]; 4710 Ops[0] = getRoot(); 4711 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4712 TLI.getFenceOperandTy(DAG.getDataLayout())); 4713 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4714 TLI.getFenceOperandTy(DAG.getDataLayout())); 4715 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4716 setValue(&I, N); 4717 DAG.setRoot(N); 4718 } 4719 4720 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4721 SDLoc dl = getCurSDLoc(); 4722 AtomicOrdering Order = I.getOrdering(); 4723 SyncScope::ID SSID = I.getSyncScopeID(); 4724 4725 SDValue InChain = getRoot(); 4726 4727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4728 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4729 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4730 4731 if (!TLI.supportsUnalignedAtomics() && 4732 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4733 report_fatal_error("Cannot generate unaligned atomic load"); 4734 4735 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4736 4737 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4738 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4739 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4740 4741 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4742 4743 SDValue Ptr = getValue(I.getPointerOperand()); 4744 4745 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4746 // TODO: Once this is better exercised by tests, it should be merged with 4747 // the normal path for loads to prevent future divergence. 4748 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4749 if (MemVT != VT) 4750 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4751 4752 setValue(&I, L); 4753 SDValue OutChain = L.getValue(1); 4754 if (!I.isUnordered()) 4755 DAG.setRoot(OutChain); 4756 else 4757 PendingLoads.push_back(OutChain); 4758 return; 4759 } 4760 4761 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4762 Ptr, MMO); 4763 4764 SDValue OutChain = L.getValue(1); 4765 if (MemVT != VT) 4766 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4767 4768 setValue(&I, L); 4769 DAG.setRoot(OutChain); 4770 } 4771 4772 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4773 SDLoc dl = getCurSDLoc(); 4774 4775 AtomicOrdering Ordering = I.getOrdering(); 4776 SyncScope::ID SSID = I.getSyncScopeID(); 4777 4778 SDValue InChain = getRoot(); 4779 4780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4781 EVT MemVT = 4782 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4783 4784 if (!TLI.supportsUnalignedAtomics() && 4785 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4786 report_fatal_error("Cannot generate unaligned atomic store"); 4787 4788 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4789 4790 MachineFunction &MF = DAG.getMachineFunction(); 4791 MachineMemOperand *MMO = MF.getMachineMemOperand( 4792 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4793 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4794 4795 SDValue Val = getValue(I.getValueOperand()); 4796 if (Val.getValueType() != MemVT) 4797 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4798 SDValue Ptr = getValue(I.getPointerOperand()); 4799 4800 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4801 // TODO: Once this is better exercised by tests, it should be merged with 4802 // the normal path for stores to prevent future divergence. 4803 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4804 setValue(&I, S); 4805 DAG.setRoot(S); 4806 return; 4807 } 4808 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4809 Ptr, Val, MMO); 4810 4811 setValue(&I, OutChain); 4812 DAG.setRoot(OutChain); 4813 } 4814 4815 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4816 /// node. 4817 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4818 unsigned Intrinsic) { 4819 // Ignore the callsite's attributes. A specific call site may be marked with 4820 // readnone, but the lowering code will expect the chain based on the 4821 // definition. 4822 const Function *F = I.getCalledFunction(); 4823 bool HasChain = !F->doesNotAccessMemory(); 4824 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4825 4826 // Build the operand list. 4827 SmallVector<SDValue, 8> Ops; 4828 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4829 if (OnlyLoad) { 4830 // We don't need to serialize loads against other loads. 4831 Ops.push_back(DAG.getRoot()); 4832 } else { 4833 Ops.push_back(getRoot()); 4834 } 4835 } 4836 4837 // Info is set by getTgtMemIntrinsic 4838 TargetLowering::IntrinsicInfo Info; 4839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4840 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4841 DAG.getMachineFunction(), 4842 Intrinsic); 4843 4844 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4845 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4846 Info.opc == ISD::INTRINSIC_W_CHAIN) 4847 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4848 TLI.getPointerTy(DAG.getDataLayout()))); 4849 4850 // Add all operands of the call to the operand list. 4851 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4852 const Value *Arg = I.getArgOperand(i); 4853 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4854 Ops.push_back(getValue(Arg)); 4855 continue; 4856 } 4857 4858 // Use TargetConstant instead of a regular constant for immarg. 4859 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4860 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4861 assert(CI->getBitWidth() <= 64 && 4862 "large intrinsic immediates not handled"); 4863 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4864 } else { 4865 Ops.push_back( 4866 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4867 } 4868 } 4869 4870 SmallVector<EVT, 4> ValueVTs; 4871 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4872 4873 if (HasChain) 4874 ValueVTs.push_back(MVT::Other); 4875 4876 SDVTList VTs = DAG.getVTList(ValueVTs); 4877 4878 // Propagate fast-math-flags from IR to node(s). 4879 SDNodeFlags Flags; 4880 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4881 Flags.copyFMF(*FPMO); 4882 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4883 4884 // Create the node. 4885 SDValue Result; 4886 // In some cases, custom collection of operands from CallInst I may be needed. 4887 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4888 if (IsTgtIntrinsic) { 4889 // This is target intrinsic that touches memory 4890 // 4891 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4892 // didn't yield anything useful. 4893 MachinePointerInfo MPI; 4894 if (Info.ptrVal) 4895 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4896 else if (Info.fallbackAddressSpace) 4897 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4898 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4899 Info.memVT, MPI, Info.align, Info.flags, 4900 Info.size, I.getAAMetadata()); 4901 } else if (!HasChain) { 4902 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4903 } else if (!I.getType()->isVoidTy()) { 4904 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4905 } else { 4906 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4907 } 4908 4909 if (HasChain) { 4910 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4911 if (OnlyLoad) 4912 PendingLoads.push_back(Chain); 4913 else 4914 DAG.setRoot(Chain); 4915 } 4916 4917 if (!I.getType()->isVoidTy()) { 4918 if (!isa<VectorType>(I.getType())) 4919 Result = lowerRangeToAssertZExt(DAG, I, Result); 4920 4921 MaybeAlign Alignment = I.getRetAlign(); 4922 if (!Alignment) 4923 Alignment = F->getAttributes().getRetAlignment(); 4924 // Insert `assertalign` node if there's an alignment. 4925 if (InsertAssertAlign && Alignment) { 4926 Result = 4927 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4928 } 4929 4930 setValue(&I, Result); 4931 } 4932 } 4933 4934 /// GetSignificand - Get the significand and build it into a floating-point 4935 /// number with exponent of 1: 4936 /// 4937 /// Op = (Op & 0x007fffff) | 0x3f800000; 4938 /// 4939 /// where Op is the hexadecimal representation of floating point value. 4940 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4941 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4942 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4943 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4944 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4945 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4946 } 4947 4948 /// GetExponent - Get the exponent: 4949 /// 4950 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4951 /// 4952 /// where Op is the hexadecimal representation of floating point value. 4953 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4954 const TargetLowering &TLI, const SDLoc &dl) { 4955 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4956 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4957 SDValue t1 = DAG.getNode( 4958 ISD::SRL, dl, MVT::i32, t0, 4959 DAG.getConstant(23, dl, 4960 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4961 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4962 DAG.getConstant(127, dl, MVT::i32)); 4963 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4964 } 4965 4966 /// getF32Constant - Get 32-bit floating point constant. 4967 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4968 const SDLoc &dl) { 4969 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4970 MVT::f32); 4971 } 4972 4973 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4974 SelectionDAG &DAG) { 4975 // TODO: What fast-math-flags should be set on the floating-point nodes? 4976 4977 // IntegerPartOfX = ((int32_t)(t0); 4978 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4979 4980 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4981 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4982 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4983 4984 // IntegerPartOfX <<= 23; 4985 IntegerPartOfX = 4986 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4987 DAG.getConstant(23, dl, 4988 DAG.getTargetLoweringInfo().getShiftAmountTy( 4989 MVT::i32, DAG.getDataLayout()))); 4990 4991 SDValue TwoToFractionalPartOfX; 4992 if (LimitFloatPrecision <= 6) { 4993 // For floating-point precision of 6: 4994 // 4995 // TwoToFractionalPartOfX = 4996 // 0.997535578f + 4997 // (0.735607626f + 0.252464424f * x) * x; 4998 // 4999 // error 0.0144103317, which is 6 bits 5000 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5001 getF32Constant(DAG, 0x3e814304, dl)); 5002 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5003 getF32Constant(DAG, 0x3f3c50c8, dl)); 5004 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5005 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5006 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5007 } else if (LimitFloatPrecision <= 12) { 5008 // For floating-point precision of 12: 5009 // 5010 // TwoToFractionalPartOfX = 5011 // 0.999892986f + 5012 // (0.696457318f + 5013 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5014 // 5015 // error 0.000107046256, which is 13 to 14 bits 5016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5017 getF32Constant(DAG, 0x3da235e3, dl)); 5018 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5019 getF32Constant(DAG, 0x3e65b8f3, dl)); 5020 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5021 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5022 getF32Constant(DAG, 0x3f324b07, dl)); 5023 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5024 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5025 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5026 } else { // LimitFloatPrecision <= 18 5027 // For floating-point precision of 18: 5028 // 5029 // TwoToFractionalPartOfX = 5030 // 0.999999982f + 5031 // (0.693148872f + 5032 // (0.240227044f + 5033 // (0.554906021e-1f + 5034 // (0.961591928e-2f + 5035 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5036 // error 2.47208000*10^(-7), which is better than 18 bits 5037 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5038 getF32Constant(DAG, 0x3924b03e, dl)); 5039 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5040 getF32Constant(DAG, 0x3ab24b87, dl)); 5041 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5042 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5043 getF32Constant(DAG, 0x3c1d8c17, dl)); 5044 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5045 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5046 getF32Constant(DAG, 0x3d634a1d, dl)); 5047 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5048 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5049 getF32Constant(DAG, 0x3e75fe14, dl)); 5050 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5051 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5052 getF32Constant(DAG, 0x3f317234, dl)); 5053 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5054 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5055 getF32Constant(DAG, 0x3f800000, dl)); 5056 } 5057 5058 // Add the exponent into the result in integer domain. 5059 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5060 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5061 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5062 } 5063 5064 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5065 /// limited-precision mode. 5066 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5067 const TargetLowering &TLI, SDNodeFlags Flags) { 5068 if (Op.getValueType() == MVT::f32 && 5069 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5070 5071 // Put the exponent in the right bit position for later addition to the 5072 // final result: 5073 // 5074 // t0 = Op * log2(e) 5075 5076 // TODO: What fast-math-flags should be set here? 5077 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5078 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5079 return getLimitedPrecisionExp2(t0, dl, DAG); 5080 } 5081 5082 // No special expansion. 5083 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5084 } 5085 5086 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5087 /// limited-precision mode. 5088 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5089 const TargetLowering &TLI, SDNodeFlags Flags) { 5090 // TODO: What fast-math-flags should be set on the floating-point nodes? 5091 5092 if (Op.getValueType() == MVT::f32 && 5093 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5094 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5095 5096 // Scale the exponent by log(2). 5097 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5098 SDValue LogOfExponent = 5099 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5100 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5101 5102 // Get the significand and build it into a floating-point number with 5103 // exponent of 1. 5104 SDValue X = GetSignificand(DAG, Op1, dl); 5105 5106 SDValue LogOfMantissa; 5107 if (LimitFloatPrecision <= 6) { 5108 // For floating-point precision of 6: 5109 // 5110 // LogofMantissa = 5111 // -1.1609546f + 5112 // (1.4034025f - 0.23903021f * x) * x; 5113 // 5114 // error 0.0034276066, which is better than 8 bits 5115 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5116 getF32Constant(DAG, 0xbe74c456, dl)); 5117 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5118 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5120 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5121 getF32Constant(DAG, 0x3f949a29, dl)); 5122 } else if (LimitFloatPrecision <= 12) { 5123 // For floating-point precision of 12: 5124 // 5125 // LogOfMantissa = 5126 // -1.7417939f + 5127 // (2.8212026f + 5128 // (-1.4699568f + 5129 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5130 // 5131 // error 0.000061011436, which is 14 bits 5132 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5133 getF32Constant(DAG, 0xbd67b6d6, dl)); 5134 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5135 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5137 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5138 getF32Constant(DAG, 0x3fbc278b, dl)); 5139 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5140 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5141 getF32Constant(DAG, 0x40348e95, dl)); 5142 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5143 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5144 getF32Constant(DAG, 0x3fdef31a, dl)); 5145 } else { // LimitFloatPrecision <= 18 5146 // For floating-point precision of 18: 5147 // 5148 // LogOfMantissa = 5149 // -2.1072184f + 5150 // (4.2372794f + 5151 // (-3.7029485f + 5152 // (2.2781945f + 5153 // (-0.87823314f + 5154 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5155 // 5156 // error 0.0000023660568, which is better than 18 bits 5157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5158 getF32Constant(DAG, 0xbc91e5ac, dl)); 5159 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5160 getF32Constant(DAG, 0x3e4350aa, dl)); 5161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5162 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5163 getF32Constant(DAG, 0x3f60d3e3, dl)); 5164 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5165 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5166 getF32Constant(DAG, 0x4011cdf0, dl)); 5167 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5168 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5169 getF32Constant(DAG, 0x406cfd1c, dl)); 5170 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5171 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5172 getF32Constant(DAG, 0x408797cb, dl)); 5173 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5174 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5175 getF32Constant(DAG, 0x4006dcab, dl)); 5176 } 5177 5178 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5179 } 5180 5181 // No special expansion. 5182 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5183 } 5184 5185 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5186 /// limited-precision mode. 5187 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5188 const TargetLowering &TLI, SDNodeFlags Flags) { 5189 // TODO: What fast-math-flags should be set on the floating-point nodes? 5190 5191 if (Op.getValueType() == MVT::f32 && 5192 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5193 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5194 5195 // Get the exponent. 5196 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5197 5198 // Get the significand and build it into a floating-point number with 5199 // exponent of 1. 5200 SDValue X = GetSignificand(DAG, Op1, dl); 5201 5202 // Different possible minimax approximations of significand in 5203 // floating-point for various degrees of accuracy over [1,2]. 5204 SDValue Log2ofMantissa; 5205 if (LimitFloatPrecision <= 6) { 5206 // For floating-point precision of 6: 5207 // 5208 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5209 // 5210 // error 0.0049451742, which is more than 7 bits 5211 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5212 getF32Constant(DAG, 0xbeb08fe0, dl)); 5213 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5214 getF32Constant(DAG, 0x40019463, dl)); 5215 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5216 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5217 getF32Constant(DAG, 0x3fd6633d, dl)); 5218 } else if (LimitFloatPrecision <= 12) { 5219 // For floating-point precision of 12: 5220 // 5221 // Log2ofMantissa = 5222 // -2.51285454f + 5223 // (4.07009056f + 5224 // (-2.12067489f + 5225 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5226 // 5227 // error 0.0000876136000, which is better than 13 bits 5228 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5229 getF32Constant(DAG, 0xbda7262e, dl)); 5230 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5231 getF32Constant(DAG, 0x3f25280b, dl)); 5232 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5233 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5234 getF32Constant(DAG, 0x4007b923, dl)); 5235 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5236 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5237 getF32Constant(DAG, 0x40823e2f, dl)); 5238 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5239 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5240 getF32Constant(DAG, 0x4020d29c, dl)); 5241 } else { // LimitFloatPrecision <= 18 5242 // For floating-point precision of 18: 5243 // 5244 // Log2ofMantissa = 5245 // -3.0400495f + 5246 // (6.1129976f + 5247 // (-5.3420409f + 5248 // (3.2865683f + 5249 // (-1.2669343f + 5250 // (0.27515199f - 5251 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5252 // 5253 // error 0.0000018516, which is better than 18 bits 5254 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5255 getF32Constant(DAG, 0xbcd2769e, dl)); 5256 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5257 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5259 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5260 getF32Constant(DAG, 0x3fa22ae7, dl)); 5261 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5262 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5263 getF32Constant(DAG, 0x40525723, dl)); 5264 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5265 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5266 getF32Constant(DAG, 0x40aaf200, dl)); 5267 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5268 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5269 getF32Constant(DAG, 0x40c39dad, dl)); 5270 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5271 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5272 getF32Constant(DAG, 0x4042902c, dl)); 5273 } 5274 5275 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5276 } 5277 5278 // No special expansion. 5279 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5280 } 5281 5282 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5283 /// limited-precision mode. 5284 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5285 const TargetLowering &TLI, SDNodeFlags Flags) { 5286 // TODO: What fast-math-flags should be set on the floating-point nodes? 5287 5288 if (Op.getValueType() == MVT::f32 && 5289 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5290 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5291 5292 // Scale the exponent by log10(2) [0.30102999f]. 5293 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5294 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5295 getF32Constant(DAG, 0x3e9a209a, dl)); 5296 5297 // Get the significand and build it into a floating-point number with 5298 // exponent of 1. 5299 SDValue X = GetSignificand(DAG, Op1, dl); 5300 5301 SDValue Log10ofMantissa; 5302 if (LimitFloatPrecision <= 6) { 5303 // For floating-point precision of 6: 5304 // 5305 // Log10ofMantissa = 5306 // -0.50419619f + 5307 // (0.60948995f - 0.10380950f * x) * x; 5308 // 5309 // error 0.0014886165, which is 6 bits 5310 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5311 getF32Constant(DAG, 0xbdd49a13, dl)); 5312 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5313 getF32Constant(DAG, 0x3f1c0789, dl)); 5314 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5315 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5316 getF32Constant(DAG, 0x3f011300, dl)); 5317 } else if (LimitFloatPrecision <= 12) { 5318 // For floating-point precision of 12: 5319 // 5320 // Log10ofMantissa = 5321 // -0.64831180f + 5322 // (0.91751397f + 5323 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5324 // 5325 // error 0.00019228036, which is better than 12 bits 5326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5327 getF32Constant(DAG, 0x3d431f31, dl)); 5328 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5329 getF32Constant(DAG, 0x3ea21fb2, dl)); 5330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5331 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5332 getF32Constant(DAG, 0x3f6ae232, dl)); 5333 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5334 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5335 getF32Constant(DAG, 0x3f25f7c3, dl)); 5336 } else { // LimitFloatPrecision <= 18 5337 // For floating-point precision of 18: 5338 // 5339 // Log10ofMantissa = 5340 // -0.84299375f + 5341 // (1.5327582f + 5342 // (-1.0688956f + 5343 // (0.49102474f + 5344 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5345 // 5346 // error 0.0000037995730, which is better than 18 bits 5347 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5348 getF32Constant(DAG, 0x3c5d51ce, dl)); 5349 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5350 getF32Constant(DAG, 0x3e00685a, dl)); 5351 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5352 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5353 getF32Constant(DAG, 0x3efb6798, dl)); 5354 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5355 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5356 getF32Constant(DAG, 0x3f88d192, dl)); 5357 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5358 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5359 getF32Constant(DAG, 0x3fc4316c, dl)); 5360 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5361 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5362 getF32Constant(DAG, 0x3f57ce70, dl)); 5363 } 5364 5365 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5366 } 5367 5368 // No special expansion. 5369 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5370 } 5371 5372 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5373 /// limited-precision mode. 5374 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5375 const TargetLowering &TLI, SDNodeFlags Flags) { 5376 if (Op.getValueType() == MVT::f32 && 5377 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5378 return getLimitedPrecisionExp2(Op, dl, DAG); 5379 5380 // No special expansion. 5381 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5382 } 5383 5384 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5385 /// limited-precision mode with x == 10.0f. 5386 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5387 SelectionDAG &DAG, const TargetLowering &TLI, 5388 SDNodeFlags Flags) { 5389 bool IsExp10 = false; 5390 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5391 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5392 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5393 APFloat Ten(10.0f); 5394 IsExp10 = LHSC->isExactlyValue(Ten); 5395 } 5396 } 5397 5398 // TODO: What fast-math-flags should be set on the FMUL node? 5399 if (IsExp10) { 5400 // Put the exponent in the right bit position for later addition to the 5401 // final result: 5402 // 5403 // #define LOG2OF10 3.3219281f 5404 // t0 = Op * LOG2OF10; 5405 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5406 getF32Constant(DAG, 0x40549a78, dl)); 5407 return getLimitedPrecisionExp2(t0, dl, DAG); 5408 } 5409 5410 // No special expansion. 5411 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5412 } 5413 5414 /// ExpandPowI - Expand a llvm.powi intrinsic. 5415 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5416 SelectionDAG &DAG) { 5417 // If RHS is a constant, we can expand this out to a multiplication tree if 5418 // it's beneficial on the target, otherwise we end up lowering to a call to 5419 // __powidf2 (for example). 5420 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5421 unsigned Val = RHSC->getSExtValue(); 5422 5423 // powi(x, 0) -> 1.0 5424 if (Val == 0) 5425 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5426 5427 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5428 Val, DAG.shouldOptForSize())) { 5429 // Get the exponent as a positive value. 5430 if ((int)Val < 0) 5431 Val = -Val; 5432 // We use the simple binary decomposition method to generate the multiply 5433 // sequence. There are more optimal ways to do this (for example, 5434 // powi(x,15) generates one more multiply than it should), but this has 5435 // the benefit of being both really simple and much better than a libcall. 5436 SDValue Res; // Logically starts equal to 1.0 5437 SDValue CurSquare = LHS; 5438 // TODO: Intrinsics should have fast-math-flags that propagate to these 5439 // nodes. 5440 while (Val) { 5441 if (Val & 1) { 5442 if (Res.getNode()) 5443 Res = 5444 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5445 else 5446 Res = CurSquare; // 1.0*CurSquare. 5447 } 5448 5449 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5450 CurSquare, CurSquare); 5451 Val >>= 1; 5452 } 5453 5454 // If the original was negative, invert the result, producing 1/(x*x*x). 5455 if (RHSC->getSExtValue() < 0) 5456 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5457 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5458 return Res; 5459 } 5460 } 5461 5462 // Otherwise, expand to a libcall. 5463 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5464 } 5465 5466 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5467 SDValue LHS, SDValue RHS, SDValue Scale, 5468 SelectionDAG &DAG, const TargetLowering &TLI) { 5469 EVT VT = LHS.getValueType(); 5470 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5471 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5472 LLVMContext &Ctx = *DAG.getContext(); 5473 5474 // If the type is legal but the operation isn't, this node might survive all 5475 // the way to operation legalization. If we end up there and we do not have 5476 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5477 // node. 5478 5479 // Coax the legalizer into expanding the node during type legalization instead 5480 // by bumping the size by one bit. This will force it to Promote, enabling the 5481 // early expansion and avoiding the need to expand later. 5482 5483 // We don't have to do this if Scale is 0; that can always be expanded, unless 5484 // it's a saturating signed operation. Those can experience true integer 5485 // division overflow, a case which we must avoid. 5486 5487 // FIXME: We wouldn't have to do this (or any of the early 5488 // expansion/promotion) if it was possible to expand a libcall of an 5489 // illegal type during operation legalization. But it's not, so things 5490 // get a bit hacky. 5491 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5492 if ((ScaleInt > 0 || (Saturating && Signed)) && 5493 (TLI.isTypeLegal(VT) || 5494 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5495 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5496 Opcode, VT, ScaleInt); 5497 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5498 EVT PromVT; 5499 if (VT.isScalarInteger()) 5500 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5501 else if (VT.isVector()) { 5502 PromVT = VT.getVectorElementType(); 5503 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5504 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5505 } else 5506 llvm_unreachable("Wrong VT for DIVFIX?"); 5507 if (Signed) { 5508 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5509 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5510 } else { 5511 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5512 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5513 } 5514 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5515 // For saturating operations, we need to shift up the LHS to get the 5516 // proper saturation width, and then shift down again afterwards. 5517 if (Saturating) 5518 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5519 DAG.getConstant(1, DL, ShiftTy)); 5520 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5521 if (Saturating) 5522 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5523 DAG.getConstant(1, DL, ShiftTy)); 5524 return DAG.getZExtOrTrunc(Res, DL, VT); 5525 } 5526 } 5527 5528 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5529 } 5530 5531 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5532 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5533 static void 5534 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5535 const SDValue &N) { 5536 switch (N.getOpcode()) { 5537 case ISD::CopyFromReg: { 5538 SDValue Op = N.getOperand(1); 5539 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5540 Op.getValueType().getSizeInBits()); 5541 return; 5542 } 5543 case ISD::BITCAST: 5544 case ISD::AssertZext: 5545 case ISD::AssertSext: 5546 case ISD::TRUNCATE: 5547 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5548 return; 5549 case ISD::BUILD_PAIR: 5550 case ISD::BUILD_VECTOR: 5551 case ISD::CONCAT_VECTORS: 5552 for (SDValue Op : N->op_values()) 5553 getUnderlyingArgRegs(Regs, Op); 5554 return; 5555 default: 5556 return; 5557 } 5558 } 5559 5560 /// If the DbgValueInst is a dbg_value of a function argument, create the 5561 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5562 /// instruction selection, they will be inserted to the entry BB. 5563 /// We don't currently support this for variadic dbg_values, as they shouldn't 5564 /// appear for function arguments or in the prologue. 5565 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5566 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5567 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5568 const Argument *Arg = dyn_cast<Argument>(V); 5569 if (!Arg) 5570 return false; 5571 5572 MachineFunction &MF = DAG.getMachineFunction(); 5573 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5574 5575 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5576 // we've been asked to pursue. 5577 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5578 bool Indirect) { 5579 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5580 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5581 // pointing at the VReg, which will be patched up later. 5582 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5583 auto MIB = BuildMI(MF, DL, Inst); 5584 MIB.addReg(Reg); 5585 MIB.addImm(0); 5586 MIB.addMetadata(Variable); 5587 auto *NewDIExpr = FragExpr; 5588 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5589 // the DIExpression. 5590 if (Indirect) 5591 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5592 MIB.addMetadata(NewDIExpr); 5593 return MIB; 5594 } else { 5595 // Create a completely standard DBG_VALUE. 5596 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5597 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5598 } 5599 }; 5600 5601 if (Kind == FuncArgumentDbgValueKind::Value) { 5602 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5603 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5604 // the entry block. 5605 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5606 if (!IsInEntryBlock) 5607 return false; 5608 5609 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5610 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5611 // variable that also is a param. 5612 // 5613 // Although, if we are at the top of the entry block already, we can still 5614 // emit using ArgDbgValue. This might catch some situations when the 5615 // dbg.value refers to an argument that isn't used in the entry block, so 5616 // any CopyToReg node would be optimized out and the only way to express 5617 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5618 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5619 // we should only emit as ArgDbgValue if the Variable is an argument to the 5620 // current function, and the dbg.value intrinsic is found in the entry 5621 // block. 5622 bool VariableIsFunctionInputArg = Variable->isParameter() && 5623 !DL->getInlinedAt(); 5624 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5625 if (!IsInPrologue && !VariableIsFunctionInputArg) 5626 return false; 5627 5628 // Here we assume that a function argument on IR level only can be used to 5629 // describe one input parameter on source level. If we for example have 5630 // source code like this 5631 // 5632 // struct A { long x, y; }; 5633 // void foo(struct A a, long b) { 5634 // ... 5635 // b = a.x; 5636 // ... 5637 // } 5638 // 5639 // and IR like this 5640 // 5641 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5642 // entry: 5643 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5644 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5645 // call void @llvm.dbg.value(metadata i32 %b, "b", 5646 // ... 5647 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5648 // ... 5649 // 5650 // then the last dbg.value is describing a parameter "b" using a value that 5651 // is an argument. But since we already has used %a1 to describe a parameter 5652 // we should not handle that last dbg.value here (that would result in an 5653 // incorrect hoisting of the DBG_VALUE to the function entry). 5654 // Notice that we allow one dbg.value per IR level argument, to accommodate 5655 // for the situation with fragments above. 5656 if (VariableIsFunctionInputArg) { 5657 unsigned ArgNo = Arg->getArgNo(); 5658 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5659 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5660 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5661 return false; 5662 FuncInfo.DescribedArgs.set(ArgNo); 5663 } 5664 } 5665 5666 bool IsIndirect = false; 5667 std::optional<MachineOperand> Op; 5668 // Some arguments' frame index is recorded during argument lowering. 5669 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5670 if (FI != std::numeric_limits<int>::max()) 5671 Op = MachineOperand::CreateFI(FI); 5672 5673 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5674 if (!Op && N.getNode()) { 5675 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5676 Register Reg; 5677 if (ArgRegsAndSizes.size() == 1) 5678 Reg = ArgRegsAndSizes.front().first; 5679 5680 if (Reg && Reg.isVirtual()) { 5681 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5682 Register PR = RegInfo.getLiveInPhysReg(Reg); 5683 if (PR) 5684 Reg = PR; 5685 } 5686 if (Reg) { 5687 Op = MachineOperand::CreateReg(Reg, false); 5688 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5689 } 5690 } 5691 5692 if (!Op && N.getNode()) { 5693 // Check if frame index is available. 5694 SDValue LCandidate = peekThroughBitcasts(N); 5695 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5696 if (FrameIndexSDNode *FINode = 5697 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5698 Op = MachineOperand::CreateFI(FINode->getIndex()); 5699 } 5700 5701 if (!Op) { 5702 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5703 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5704 SplitRegs) { 5705 unsigned Offset = 0; 5706 for (const auto &RegAndSize : SplitRegs) { 5707 // If the expression is already a fragment, the current register 5708 // offset+size might extend beyond the fragment. In this case, only 5709 // the register bits that are inside the fragment are relevant. 5710 int RegFragmentSizeInBits = RegAndSize.second; 5711 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5712 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5713 // The register is entirely outside the expression fragment, 5714 // so is irrelevant for debug info. 5715 if (Offset >= ExprFragmentSizeInBits) 5716 break; 5717 // The register is partially outside the expression fragment, only 5718 // the low bits within the fragment are relevant for debug info. 5719 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5720 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5721 } 5722 } 5723 5724 auto FragmentExpr = DIExpression::createFragmentExpression( 5725 Expr, Offset, RegFragmentSizeInBits); 5726 Offset += RegAndSize.second; 5727 // If a valid fragment expression cannot be created, the variable's 5728 // correct value cannot be determined and so it is set as Undef. 5729 if (!FragmentExpr) { 5730 SDDbgValue *SDV = DAG.getConstantDbgValue( 5731 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5732 DAG.AddDbgValue(SDV, false); 5733 continue; 5734 } 5735 MachineInstr *NewMI = 5736 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5737 Kind != FuncArgumentDbgValueKind::Value); 5738 FuncInfo.ArgDbgValues.push_back(NewMI); 5739 } 5740 }; 5741 5742 // Check if ValueMap has reg number. 5743 DenseMap<const Value *, Register>::const_iterator 5744 VMI = FuncInfo.ValueMap.find(V); 5745 if (VMI != FuncInfo.ValueMap.end()) { 5746 const auto &TLI = DAG.getTargetLoweringInfo(); 5747 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5748 V->getType(), std::nullopt); 5749 if (RFV.occupiesMultipleRegs()) { 5750 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5751 return true; 5752 } 5753 5754 Op = MachineOperand::CreateReg(VMI->second, false); 5755 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5756 } else if (ArgRegsAndSizes.size() > 1) { 5757 // This was split due to the calling convention, and no virtual register 5758 // mapping exists for the value. 5759 splitMultiRegDbgValue(ArgRegsAndSizes); 5760 return true; 5761 } 5762 } 5763 5764 if (!Op) 5765 return false; 5766 5767 assert(Variable->isValidLocationForIntrinsic(DL) && 5768 "Expected inlined-at fields to agree"); 5769 MachineInstr *NewMI = nullptr; 5770 5771 if (Op->isReg()) 5772 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5773 else 5774 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5775 Variable, Expr); 5776 5777 // Otherwise, use ArgDbgValues. 5778 FuncInfo.ArgDbgValues.push_back(NewMI); 5779 return true; 5780 } 5781 5782 /// Return the appropriate SDDbgValue based on N. 5783 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5784 DILocalVariable *Variable, 5785 DIExpression *Expr, 5786 const DebugLoc &dl, 5787 unsigned DbgSDNodeOrder) { 5788 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5789 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5790 // stack slot locations. 5791 // 5792 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5793 // debug values here after optimization: 5794 // 5795 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5796 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5797 // 5798 // Both describe the direct values of their associated variables. 5799 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5800 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5801 } 5802 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5803 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5804 } 5805 5806 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5807 switch (Intrinsic) { 5808 case Intrinsic::smul_fix: 5809 return ISD::SMULFIX; 5810 case Intrinsic::umul_fix: 5811 return ISD::UMULFIX; 5812 case Intrinsic::smul_fix_sat: 5813 return ISD::SMULFIXSAT; 5814 case Intrinsic::umul_fix_sat: 5815 return ISD::UMULFIXSAT; 5816 case Intrinsic::sdiv_fix: 5817 return ISD::SDIVFIX; 5818 case Intrinsic::udiv_fix: 5819 return ISD::UDIVFIX; 5820 case Intrinsic::sdiv_fix_sat: 5821 return ISD::SDIVFIXSAT; 5822 case Intrinsic::udiv_fix_sat: 5823 return ISD::UDIVFIXSAT; 5824 default: 5825 llvm_unreachable("Unhandled fixed point intrinsic"); 5826 } 5827 } 5828 5829 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5830 const char *FunctionName) { 5831 assert(FunctionName && "FunctionName must not be nullptr"); 5832 SDValue Callee = DAG.getExternalSymbol( 5833 FunctionName, 5834 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5835 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5836 } 5837 5838 /// Given a @llvm.call.preallocated.setup, return the corresponding 5839 /// preallocated call. 5840 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5841 assert(cast<CallBase>(PreallocatedSetup) 5842 ->getCalledFunction() 5843 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5844 "expected call_preallocated_setup Value"); 5845 for (const auto *U : PreallocatedSetup->users()) { 5846 auto *UseCall = cast<CallBase>(U); 5847 const Function *Fn = UseCall->getCalledFunction(); 5848 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5849 return UseCall; 5850 } 5851 } 5852 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5853 } 5854 5855 /// Lower the call to the specified intrinsic function. 5856 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5857 unsigned Intrinsic) { 5858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5859 SDLoc sdl = getCurSDLoc(); 5860 DebugLoc dl = getCurDebugLoc(); 5861 SDValue Res; 5862 5863 SDNodeFlags Flags; 5864 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5865 Flags.copyFMF(*FPOp); 5866 5867 switch (Intrinsic) { 5868 default: 5869 // By default, turn this into a target intrinsic node. 5870 visitTargetIntrinsic(I, Intrinsic); 5871 return; 5872 case Intrinsic::vscale: { 5873 match(&I, m_VScale(DAG.getDataLayout())); 5874 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5875 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5876 return; 5877 } 5878 case Intrinsic::vastart: visitVAStart(I); return; 5879 case Intrinsic::vaend: visitVAEnd(I); return; 5880 case Intrinsic::vacopy: visitVACopy(I); return; 5881 case Intrinsic::returnaddress: 5882 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5883 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5884 getValue(I.getArgOperand(0)))); 5885 return; 5886 case Intrinsic::addressofreturnaddress: 5887 setValue(&I, 5888 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5889 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5890 return; 5891 case Intrinsic::sponentry: 5892 setValue(&I, 5893 DAG.getNode(ISD::SPONENTRY, sdl, 5894 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5895 return; 5896 case Intrinsic::frameaddress: 5897 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5898 TLI.getFrameIndexTy(DAG.getDataLayout()), 5899 getValue(I.getArgOperand(0)))); 5900 return; 5901 case Intrinsic::read_volatile_register: 5902 case Intrinsic::read_register: { 5903 Value *Reg = I.getArgOperand(0); 5904 SDValue Chain = getRoot(); 5905 SDValue RegName = 5906 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5907 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5908 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5909 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5910 setValue(&I, Res); 5911 DAG.setRoot(Res.getValue(1)); 5912 return; 5913 } 5914 case Intrinsic::write_register: { 5915 Value *Reg = I.getArgOperand(0); 5916 Value *RegValue = I.getArgOperand(1); 5917 SDValue Chain = getRoot(); 5918 SDValue RegName = 5919 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5920 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5921 RegName, getValue(RegValue))); 5922 return; 5923 } 5924 case Intrinsic::memcpy: { 5925 const auto &MCI = cast<MemCpyInst>(I); 5926 SDValue Op1 = getValue(I.getArgOperand(0)); 5927 SDValue Op2 = getValue(I.getArgOperand(1)); 5928 SDValue Op3 = getValue(I.getArgOperand(2)); 5929 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5930 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5931 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5932 Align Alignment = std::min(DstAlign, SrcAlign); 5933 bool isVol = MCI.isVolatile(); 5934 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5935 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5936 // node. 5937 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5938 SDValue MC = DAG.getMemcpy( 5939 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5940 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5941 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5942 updateDAGForMaybeTailCall(MC); 5943 return; 5944 } 5945 case Intrinsic::memcpy_inline: { 5946 const auto &MCI = cast<MemCpyInlineInst>(I); 5947 SDValue Dst = getValue(I.getArgOperand(0)); 5948 SDValue Src = getValue(I.getArgOperand(1)); 5949 SDValue Size = getValue(I.getArgOperand(2)); 5950 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5951 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5952 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5953 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5954 Align Alignment = std::min(DstAlign, SrcAlign); 5955 bool isVol = MCI.isVolatile(); 5956 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5957 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5958 // node. 5959 SDValue MC = DAG.getMemcpy( 5960 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5961 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5962 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5963 updateDAGForMaybeTailCall(MC); 5964 return; 5965 } 5966 case Intrinsic::memset: { 5967 const auto &MSI = cast<MemSetInst>(I); 5968 SDValue Op1 = getValue(I.getArgOperand(0)); 5969 SDValue Op2 = getValue(I.getArgOperand(1)); 5970 SDValue Op3 = getValue(I.getArgOperand(2)); 5971 // @llvm.memset defines 0 and 1 to both mean no alignment. 5972 Align Alignment = MSI.getDestAlign().valueOrOne(); 5973 bool isVol = MSI.isVolatile(); 5974 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5975 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5976 SDValue MS = DAG.getMemset( 5977 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5978 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5979 updateDAGForMaybeTailCall(MS); 5980 return; 5981 } 5982 case Intrinsic::memset_inline: { 5983 const auto &MSII = cast<MemSetInlineInst>(I); 5984 SDValue Dst = getValue(I.getArgOperand(0)); 5985 SDValue Value = getValue(I.getArgOperand(1)); 5986 SDValue Size = getValue(I.getArgOperand(2)); 5987 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5988 // @llvm.memset defines 0 and 1 to both mean no alignment. 5989 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5990 bool isVol = MSII.isVolatile(); 5991 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5992 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5993 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5994 /* AlwaysInline */ true, isTC, 5995 MachinePointerInfo(I.getArgOperand(0)), 5996 I.getAAMetadata()); 5997 updateDAGForMaybeTailCall(MC); 5998 return; 5999 } 6000 case Intrinsic::memmove: { 6001 const auto &MMI = cast<MemMoveInst>(I); 6002 SDValue Op1 = getValue(I.getArgOperand(0)); 6003 SDValue Op2 = getValue(I.getArgOperand(1)); 6004 SDValue Op3 = getValue(I.getArgOperand(2)); 6005 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6006 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6007 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6008 Align Alignment = std::min(DstAlign, SrcAlign); 6009 bool isVol = MMI.isVolatile(); 6010 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6011 // FIXME: Support passing different dest/src alignments to the memmove DAG 6012 // node. 6013 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6014 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6015 isTC, MachinePointerInfo(I.getArgOperand(0)), 6016 MachinePointerInfo(I.getArgOperand(1)), 6017 I.getAAMetadata(), AA); 6018 updateDAGForMaybeTailCall(MM); 6019 return; 6020 } 6021 case Intrinsic::memcpy_element_unordered_atomic: { 6022 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6023 SDValue Dst = getValue(MI.getRawDest()); 6024 SDValue Src = getValue(MI.getRawSource()); 6025 SDValue Length = getValue(MI.getLength()); 6026 6027 Type *LengthTy = MI.getLength()->getType(); 6028 unsigned ElemSz = MI.getElementSizeInBytes(); 6029 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6030 SDValue MC = 6031 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6032 isTC, MachinePointerInfo(MI.getRawDest()), 6033 MachinePointerInfo(MI.getRawSource())); 6034 updateDAGForMaybeTailCall(MC); 6035 return; 6036 } 6037 case Intrinsic::memmove_element_unordered_atomic: { 6038 auto &MI = cast<AtomicMemMoveInst>(I); 6039 SDValue Dst = getValue(MI.getRawDest()); 6040 SDValue Src = getValue(MI.getRawSource()); 6041 SDValue Length = getValue(MI.getLength()); 6042 6043 Type *LengthTy = MI.getLength()->getType(); 6044 unsigned ElemSz = MI.getElementSizeInBytes(); 6045 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6046 SDValue MC = 6047 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6048 isTC, MachinePointerInfo(MI.getRawDest()), 6049 MachinePointerInfo(MI.getRawSource())); 6050 updateDAGForMaybeTailCall(MC); 6051 return; 6052 } 6053 case Intrinsic::memset_element_unordered_atomic: { 6054 auto &MI = cast<AtomicMemSetInst>(I); 6055 SDValue Dst = getValue(MI.getRawDest()); 6056 SDValue Val = getValue(MI.getValue()); 6057 SDValue Length = getValue(MI.getLength()); 6058 6059 Type *LengthTy = MI.getLength()->getType(); 6060 unsigned ElemSz = MI.getElementSizeInBytes(); 6061 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6062 SDValue MC = 6063 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6064 isTC, MachinePointerInfo(MI.getRawDest())); 6065 updateDAGForMaybeTailCall(MC); 6066 return; 6067 } 6068 case Intrinsic::call_preallocated_setup: { 6069 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6070 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6071 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6072 getRoot(), SrcValue); 6073 setValue(&I, Res); 6074 DAG.setRoot(Res); 6075 return; 6076 } 6077 case Intrinsic::call_preallocated_arg: { 6078 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6079 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6080 SDValue Ops[3]; 6081 Ops[0] = getRoot(); 6082 Ops[1] = SrcValue; 6083 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6084 MVT::i32); // arg index 6085 SDValue Res = DAG.getNode( 6086 ISD::PREALLOCATED_ARG, sdl, 6087 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6088 setValue(&I, Res); 6089 DAG.setRoot(Res.getValue(1)); 6090 return; 6091 } 6092 case Intrinsic::dbg_addr: 6093 case Intrinsic::dbg_declare: { 6094 // Debug intrinsics are handled seperately in assignment tracking mode. 6095 if (getEnableAssignmentTracking()) 6096 return; 6097 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6098 // they are non-variadic. 6099 const auto &DI = cast<DbgVariableIntrinsic>(I); 6100 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6101 DILocalVariable *Variable = DI.getVariable(); 6102 DIExpression *Expression = DI.getExpression(); 6103 dropDanglingDebugInfo(Variable, Expression); 6104 assert(Variable && "Missing variable"); 6105 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6106 << "\n"); 6107 // Check if address has undef value. 6108 const Value *Address = DI.getVariableLocationOp(0); 6109 if (!Address || isa<UndefValue>(Address) || 6110 (Address->use_empty() && !isa<Argument>(Address))) { 6111 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6112 << " (bad/undef/unused-arg address)\n"); 6113 return; 6114 } 6115 6116 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6117 6118 // Check if this variable can be described by a frame index, typically 6119 // either as a static alloca or a byval parameter. 6120 int FI = std::numeric_limits<int>::max(); 6121 if (const auto *AI = 6122 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6123 if (AI->isStaticAlloca()) { 6124 auto I = FuncInfo.StaticAllocaMap.find(AI); 6125 if (I != FuncInfo.StaticAllocaMap.end()) 6126 FI = I->second; 6127 } 6128 } else if (const auto *Arg = dyn_cast<Argument>( 6129 Address->stripInBoundsConstantOffsets())) { 6130 FI = FuncInfo.getArgumentFrameIndex(Arg); 6131 } 6132 6133 // llvm.dbg.addr is control dependent and always generates indirect 6134 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6135 // the MachineFunction variable table. 6136 if (FI != std::numeric_limits<int>::max()) { 6137 if (Intrinsic == Intrinsic::dbg_addr) { 6138 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6139 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6140 dl, SDNodeOrder); 6141 DAG.AddDbgValue(SDV, isParameter); 6142 } else { 6143 LLVM_DEBUG(dbgs() << "Skipping " << DI 6144 << " (variable info stashed in MF side table)\n"); 6145 } 6146 return; 6147 } 6148 6149 SDValue &N = NodeMap[Address]; 6150 if (!N.getNode() && isa<Argument>(Address)) 6151 // Check unused arguments map. 6152 N = UnusedArgNodeMap[Address]; 6153 SDDbgValue *SDV; 6154 if (N.getNode()) { 6155 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6156 Address = BCI->getOperand(0); 6157 // Parameters are handled specially. 6158 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6159 if (isParameter && FINode) { 6160 // Byval parameter. We have a frame index at this point. 6161 SDV = 6162 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6163 /*IsIndirect*/ true, dl, SDNodeOrder); 6164 } else if (isa<Argument>(Address)) { 6165 // Address is an argument, so try to emit its dbg value using 6166 // virtual register info from the FuncInfo.ValueMap. 6167 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6168 FuncArgumentDbgValueKind::Declare, N); 6169 return; 6170 } else { 6171 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6172 true, dl, SDNodeOrder); 6173 } 6174 DAG.AddDbgValue(SDV, isParameter); 6175 } else { 6176 // If Address is an argument then try to emit its dbg value using 6177 // virtual register info from the FuncInfo.ValueMap. 6178 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6179 FuncArgumentDbgValueKind::Declare, N)) { 6180 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6181 << " (could not emit func-arg dbg_value)\n"); 6182 } 6183 } 6184 return; 6185 } 6186 case Intrinsic::dbg_label: { 6187 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6188 DILabel *Label = DI.getLabel(); 6189 assert(Label && "Missing label"); 6190 6191 SDDbgLabel *SDV; 6192 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6193 DAG.AddDbgLabel(SDV); 6194 return; 6195 } 6196 case Intrinsic::dbg_assign: { 6197 // Debug intrinsics are handled seperately in assignment tracking mode. 6198 assert(getEnableAssignmentTracking() && 6199 "expected assignment tracking to be enabled"); 6200 return; 6201 } 6202 case Intrinsic::dbg_value: { 6203 // Debug intrinsics are handled seperately in assignment tracking mode. 6204 if (getEnableAssignmentTracking()) 6205 return; 6206 const DbgValueInst &DI = cast<DbgValueInst>(I); 6207 assert(DI.getVariable() && "Missing variable"); 6208 6209 DILocalVariable *Variable = DI.getVariable(); 6210 DIExpression *Expression = DI.getExpression(); 6211 dropDanglingDebugInfo(Variable, Expression); 6212 SmallVector<Value *, 4> Values(DI.getValues()); 6213 if (Values.empty()) 6214 return; 6215 6216 if (llvm::is_contained(Values, nullptr)) 6217 return; 6218 6219 bool IsVariadic = DI.hasArgList(); 6220 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6221 SDNodeOrder, IsVariadic)) 6222 addDanglingDebugInfo(&DI, SDNodeOrder); 6223 return; 6224 } 6225 6226 case Intrinsic::eh_typeid_for: { 6227 // Find the type id for the given typeinfo. 6228 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6229 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6230 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6231 setValue(&I, Res); 6232 return; 6233 } 6234 6235 case Intrinsic::eh_return_i32: 6236 case Intrinsic::eh_return_i64: 6237 DAG.getMachineFunction().setCallsEHReturn(true); 6238 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6239 MVT::Other, 6240 getControlRoot(), 6241 getValue(I.getArgOperand(0)), 6242 getValue(I.getArgOperand(1)))); 6243 return; 6244 case Intrinsic::eh_unwind_init: 6245 DAG.getMachineFunction().setCallsUnwindInit(true); 6246 return; 6247 case Intrinsic::eh_dwarf_cfa: 6248 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6249 TLI.getPointerTy(DAG.getDataLayout()), 6250 getValue(I.getArgOperand(0)))); 6251 return; 6252 case Intrinsic::eh_sjlj_callsite: { 6253 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6254 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6255 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6256 6257 MMI.setCurrentCallSite(CI->getZExtValue()); 6258 return; 6259 } 6260 case Intrinsic::eh_sjlj_functioncontext: { 6261 // Get and store the index of the function context. 6262 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6263 AllocaInst *FnCtx = 6264 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6265 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6266 MFI.setFunctionContextIndex(FI); 6267 return; 6268 } 6269 case Intrinsic::eh_sjlj_setjmp: { 6270 SDValue Ops[2]; 6271 Ops[0] = getRoot(); 6272 Ops[1] = getValue(I.getArgOperand(0)); 6273 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6274 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6275 setValue(&I, Op.getValue(0)); 6276 DAG.setRoot(Op.getValue(1)); 6277 return; 6278 } 6279 case Intrinsic::eh_sjlj_longjmp: 6280 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6281 getRoot(), getValue(I.getArgOperand(0)))); 6282 return; 6283 case Intrinsic::eh_sjlj_setup_dispatch: 6284 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6285 getRoot())); 6286 return; 6287 case Intrinsic::masked_gather: 6288 visitMaskedGather(I); 6289 return; 6290 case Intrinsic::masked_load: 6291 visitMaskedLoad(I); 6292 return; 6293 case Intrinsic::masked_scatter: 6294 visitMaskedScatter(I); 6295 return; 6296 case Intrinsic::masked_store: 6297 visitMaskedStore(I); 6298 return; 6299 case Intrinsic::masked_expandload: 6300 visitMaskedLoad(I, true /* IsExpanding */); 6301 return; 6302 case Intrinsic::masked_compressstore: 6303 visitMaskedStore(I, true /* IsCompressing */); 6304 return; 6305 case Intrinsic::powi: 6306 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6307 getValue(I.getArgOperand(1)), DAG)); 6308 return; 6309 case Intrinsic::log: 6310 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6311 return; 6312 case Intrinsic::log2: 6313 setValue(&I, 6314 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6315 return; 6316 case Intrinsic::log10: 6317 setValue(&I, 6318 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6319 return; 6320 case Intrinsic::exp: 6321 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6322 return; 6323 case Intrinsic::exp2: 6324 setValue(&I, 6325 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6326 return; 6327 case Intrinsic::pow: 6328 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6329 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6330 return; 6331 case Intrinsic::sqrt: 6332 case Intrinsic::fabs: 6333 case Intrinsic::sin: 6334 case Intrinsic::cos: 6335 case Intrinsic::floor: 6336 case Intrinsic::ceil: 6337 case Intrinsic::trunc: 6338 case Intrinsic::rint: 6339 case Intrinsic::nearbyint: 6340 case Intrinsic::round: 6341 case Intrinsic::roundeven: 6342 case Intrinsic::canonicalize: { 6343 unsigned Opcode; 6344 switch (Intrinsic) { 6345 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6346 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6347 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6348 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6349 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6350 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6351 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6352 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6353 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6354 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6355 case Intrinsic::round: Opcode = ISD::FROUND; break; 6356 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6357 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6358 } 6359 6360 setValue(&I, DAG.getNode(Opcode, sdl, 6361 getValue(I.getArgOperand(0)).getValueType(), 6362 getValue(I.getArgOperand(0)), Flags)); 6363 return; 6364 } 6365 case Intrinsic::lround: 6366 case Intrinsic::llround: 6367 case Intrinsic::lrint: 6368 case Intrinsic::llrint: { 6369 unsigned Opcode; 6370 switch (Intrinsic) { 6371 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6372 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6373 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6374 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6375 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6376 } 6377 6378 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6379 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6380 getValue(I.getArgOperand(0)))); 6381 return; 6382 } 6383 case Intrinsic::minnum: 6384 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6385 getValue(I.getArgOperand(0)).getValueType(), 6386 getValue(I.getArgOperand(0)), 6387 getValue(I.getArgOperand(1)), Flags)); 6388 return; 6389 case Intrinsic::maxnum: 6390 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6391 getValue(I.getArgOperand(0)).getValueType(), 6392 getValue(I.getArgOperand(0)), 6393 getValue(I.getArgOperand(1)), Flags)); 6394 return; 6395 case Intrinsic::minimum: 6396 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6397 getValue(I.getArgOperand(0)).getValueType(), 6398 getValue(I.getArgOperand(0)), 6399 getValue(I.getArgOperand(1)), Flags)); 6400 return; 6401 case Intrinsic::maximum: 6402 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6403 getValue(I.getArgOperand(0)).getValueType(), 6404 getValue(I.getArgOperand(0)), 6405 getValue(I.getArgOperand(1)), Flags)); 6406 return; 6407 case Intrinsic::copysign: 6408 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6409 getValue(I.getArgOperand(0)).getValueType(), 6410 getValue(I.getArgOperand(0)), 6411 getValue(I.getArgOperand(1)), Flags)); 6412 return; 6413 case Intrinsic::arithmetic_fence: { 6414 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6415 getValue(I.getArgOperand(0)).getValueType(), 6416 getValue(I.getArgOperand(0)), Flags)); 6417 return; 6418 } 6419 case Intrinsic::fma: 6420 setValue(&I, DAG.getNode( 6421 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6422 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6423 getValue(I.getArgOperand(2)), Flags)); 6424 return; 6425 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6426 case Intrinsic::INTRINSIC: 6427 #include "llvm/IR/ConstrainedOps.def" 6428 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6429 return; 6430 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6431 #include "llvm/IR/VPIntrinsics.def" 6432 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6433 return; 6434 case Intrinsic::fptrunc_round: { 6435 // Get the last argument, the metadata and convert it to an integer in the 6436 // call 6437 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6438 std::optional<RoundingMode> RoundMode = 6439 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6440 6441 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6442 6443 // Propagate fast-math-flags from IR to node(s). 6444 SDNodeFlags Flags; 6445 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6446 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6447 6448 SDValue Result; 6449 Result = DAG.getNode( 6450 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6451 DAG.getTargetConstant((int)*RoundMode, sdl, 6452 TLI.getPointerTy(DAG.getDataLayout()))); 6453 setValue(&I, Result); 6454 6455 return; 6456 } 6457 case Intrinsic::fmuladd: { 6458 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6459 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6460 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6461 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6462 getValue(I.getArgOperand(0)).getValueType(), 6463 getValue(I.getArgOperand(0)), 6464 getValue(I.getArgOperand(1)), 6465 getValue(I.getArgOperand(2)), Flags)); 6466 } else { 6467 // TODO: Intrinsic calls should have fast-math-flags. 6468 SDValue Mul = DAG.getNode( 6469 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6470 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6471 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6472 getValue(I.getArgOperand(0)).getValueType(), 6473 Mul, getValue(I.getArgOperand(2)), Flags); 6474 setValue(&I, Add); 6475 } 6476 return; 6477 } 6478 case Intrinsic::convert_to_fp16: 6479 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6480 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6481 getValue(I.getArgOperand(0)), 6482 DAG.getTargetConstant(0, sdl, 6483 MVT::i32)))); 6484 return; 6485 case Intrinsic::convert_from_fp16: 6486 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6487 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6488 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6489 getValue(I.getArgOperand(0))))); 6490 return; 6491 case Intrinsic::fptosi_sat: { 6492 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6493 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6494 getValue(I.getArgOperand(0)), 6495 DAG.getValueType(VT.getScalarType()))); 6496 return; 6497 } 6498 case Intrinsic::fptoui_sat: { 6499 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6500 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6501 getValue(I.getArgOperand(0)), 6502 DAG.getValueType(VT.getScalarType()))); 6503 return; 6504 } 6505 case Intrinsic::set_rounding: 6506 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6507 {getRoot(), getValue(I.getArgOperand(0))}); 6508 setValue(&I, Res); 6509 DAG.setRoot(Res.getValue(0)); 6510 return; 6511 case Intrinsic::is_fpclass: { 6512 const DataLayout DLayout = DAG.getDataLayout(); 6513 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6514 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6515 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6516 MachineFunction &MF = DAG.getMachineFunction(); 6517 const Function &F = MF.getFunction(); 6518 SDValue Op = getValue(I.getArgOperand(0)); 6519 SDNodeFlags Flags; 6520 Flags.setNoFPExcept( 6521 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6522 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6523 // expansion can use illegal types. Making expansion early allows 6524 // legalizing these types prior to selection. 6525 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6526 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6527 setValue(&I, Result); 6528 return; 6529 } 6530 6531 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6532 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6533 setValue(&I, V); 6534 return; 6535 } 6536 case Intrinsic::pcmarker: { 6537 SDValue Tmp = getValue(I.getArgOperand(0)); 6538 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6539 return; 6540 } 6541 case Intrinsic::readcyclecounter: { 6542 SDValue Op = getRoot(); 6543 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6544 DAG.getVTList(MVT::i64, MVT::Other), Op); 6545 setValue(&I, Res); 6546 DAG.setRoot(Res.getValue(1)); 6547 return; 6548 } 6549 case Intrinsic::bitreverse: 6550 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6551 getValue(I.getArgOperand(0)).getValueType(), 6552 getValue(I.getArgOperand(0)))); 6553 return; 6554 case Intrinsic::bswap: 6555 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6556 getValue(I.getArgOperand(0)).getValueType(), 6557 getValue(I.getArgOperand(0)))); 6558 return; 6559 case Intrinsic::cttz: { 6560 SDValue Arg = getValue(I.getArgOperand(0)); 6561 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6562 EVT Ty = Arg.getValueType(); 6563 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6564 sdl, Ty, Arg)); 6565 return; 6566 } 6567 case Intrinsic::ctlz: { 6568 SDValue Arg = getValue(I.getArgOperand(0)); 6569 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6570 EVT Ty = Arg.getValueType(); 6571 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6572 sdl, Ty, Arg)); 6573 return; 6574 } 6575 case Intrinsic::ctpop: { 6576 SDValue Arg = getValue(I.getArgOperand(0)); 6577 EVT Ty = Arg.getValueType(); 6578 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6579 return; 6580 } 6581 case Intrinsic::fshl: 6582 case Intrinsic::fshr: { 6583 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6584 SDValue X = getValue(I.getArgOperand(0)); 6585 SDValue Y = getValue(I.getArgOperand(1)); 6586 SDValue Z = getValue(I.getArgOperand(2)); 6587 EVT VT = X.getValueType(); 6588 6589 if (X == Y) { 6590 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6591 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6592 } else { 6593 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6594 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6595 } 6596 return; 6597 } 6598 case Intrinsic::sadd_sat: { 6599 SDValue Op1 = getValue(I.getArgOperand(0)); 6600 SDValue Op2 = getValue(I.getArgOperand(1)); 6601 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6602 return; 6603 } 6604 case Intrinsic::uadd_sat: { 6605 SDValue Op1 = getValue(I.getArgOperand(0)); 6606 SDValue Op2 = getValue(I.getArgOperand(1)); 6607 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6608 return; 6609 } 6610 case Intrinsic::ssub_sat: { 6611 SDValue Op1 = getValue(I.getArgOperand(0)); 6612 SDValue Op2 = getValue(I.getArgOperand(1)); 6613 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6614 return; 6615 } 6616 case Intrinsic::usub_sat: { 6617 SDValue Op1 = getValue(I.getArgOperand(0)); 6618 SDValue Op2 = getValue(I.getArgOperand(1)); 6619 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6620 return; 6621 } 6622 case Intrinsic::sshl_sat: { 6623 SDValue Op1 = getValue(I.getArgOperand(0)); 6624 SDValue Op2 = getValue(I.getArgOperand(1)); 6625 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6626 return; 6627 } 6628 case Intrinsic::ushl_sat: { 6629 SDValue Op1 = getValue(I.getArgOperand(0)); 6630 SDValue Op2 = getValue(I.getArgOperand(1)); 6631 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6632 return; 6633 } 6634 case Intrinsic::smul_fix: 6635 case Intrinsic::umul_fix: 6636 case Intrinsic::smul_fix_sat: 6637 case Intrinsic::umul_fix_sat: { 6638 SDValue Op1 = getValue(I.getArgOperand(0)); 6639 SDValue Op2 = getValue(I.getArgOperand(1)); 6640 SDValue Op3 = getValue(I.getArgOperand(2)); 6641 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6642 Op1.getValueType(), Op1, Op2, Op3)); 6643 return; 6644 } 6645 case Intrinsic::sdiv_fix: 6646 case Intrinsic::udiv_fix: 6647 case Intrinsic::sdiv_fix_sat: 6648 case Intrinsic::udiv_fix_sat: { 6649 SDValue Op1 = getValue(I.getArgOperand(0)); 6650 SDValue Op2 = getValue(I.getArgOperand(1)); 6651 SDValue Op3 = getValue(I.getArgOperand(2)); 6652 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6653 Op1, Op2, Op3, DAG, TLI)); 6654 return; 6655 } 6656 case Intrinsic::smax: { 6657 SDValue Op1 = getValue(I.getArgOperand(0)); 6658 SDValue Op2 = getValue(I.getArgOperand(1)); 6659 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6660 return; 6661 } 6662 case Intrinsic::smin: { 6663 SDValue Op1 = getValue(I.getArgOperand(0)); 6664 SDValue Op2 = getValue(I.getArgOperand(1)); 6665 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6666 return; 6667 } 6668 case Intrinsic::umax: { 6669 SDValue Op1 = getValue(I.getArgOperand(0)); 6670 SDValue Op2 = getValue(I.getArgOperand(1)); 6671 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6672 return; 6673 } 6674 case Intrinsic::umin: { 6675 SDValue Op1 = getValue(I.getArgOperand(0)); 6676 SDValue Op2 = getValue(I.getArgOperand(1)); 6677 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6678 return; 6679 } 6680 case Intrinsic::abs: { 6681 // TODO: Preserve "int min is poison" arg in SDAG? 6682 SDValue Op1 = getValue(I.getArgOperand(0)); 6683 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6684 return; 6685 } 6686 case Intrinsic::stacksave: { 6687 SDValue Op = getRoot(); 6688 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6689 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6690 setValue(&I, Res); 6691 DAG.setRoot(Res.getValue(1)); 6692 return; 6693 } 6694 case Intrinsic::stackrestore: 6695 Res = getValue(I.getArgOperand(0)); 6696 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6697 return; 6698 case Intrinsic::get_dynamic_area_offset: { 6699 SDValue Op = getRoot(); 6700 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6701 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6702 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6703 // target. 6704 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6705 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6706 " intrinsic!"); 6707 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6708 Op); 6709 DAG.setRoot(Op); 6710 setValue(&I, Res); 6711 return; 6712 } 6713 case Intrinsic::stackguard: { 6714 MachineFunction &MF = DAG.getMachineFunction(); 6715 const Module &M = *MF.getFunction().getParent(); 6716 SDValue Chain = getRoot(); 6717 if (TLI.useLoadStackGuardNode()) { 6718 Res = getLoadStackGuard(DAG, sdl, Chain); 6719 } else { 6720 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6721 const Value *Global = TLI.getSDagStackGuard(M); 6722 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6723 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6724 MachinePointerInfo(Global, 0), Align, 6725 MachineMemOperand::MOVolatile); 6726 } 6727 if (TLI.useStackGuardXorFP()) 6728 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6729 DAG.setRoot(Chain); 6730 setValue(&I, Res); 6731 return; 6732 } 6733 case Intrinsic::stackprotector: { 6734 // Emit code into the DAG to store the stack guard onto the stack. 6735 MachineFunction &MF = DAG.getMachineFunction(); 6736 MachineFrameInfo &MFI = MF.getFrameInfo(); 6737 SDValue Src, Chain = getRoot(); 6738 6739 if (TLI.useLoadStackGuardNode()) 6740 Src = getLoadStackGuard(DAG, sdl, Chain); 6741 else 6742 Src = getValue(I.getArgOperand(0)); // The guard's value. 6743 6744 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6745 6746 int FI = FuncInfo.StaticAllocaMap[Slot]; 6747 MFI.setStackProtectorIndex(FI); 6748 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6749 6750 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6751 6752 // Store the stack protector onto the stack. 6753 Res = DAG.getStore( 6754 Chain, sdl, Src, FIN, 6755 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6756 MaybeAlign(), MachineMemOperand::MOVolatile); 6757 setValue(&I, Res); 6758 DAG.setRoot(Res); 6759 return; 6760 } 6761 case Intrinsic::objectsize: 6762 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6763 6764 case Intrinsic::is_constant: 6765 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6766 6767 case Intrinsic::annotation: 6768 case Intrinsic::ptr_annotation: 6769 case Intrinsic::launder_invariant_group: 6770 case Intrinsic::strip_invariant_group: 6771 // Drop the intrinsic, but forward the value 6772 setValue(&I, getValue(I.getOperand(0))); 6773 return; 6774 6775 case Intrinsic::assume: 6776 case Intrinsic::experimental_noalias_scope_decl: 6777 case Intrinsic::var_annotation: 6778 case Intrinsic::sideeffect: 6779 // Discard annotate attributes, noalias scope declarations, assumptions, and 6780 // artificial side-effects. 6781 return; 6782 6783 case Intrinsic::codeview_annotation: { 6784 // Emit a label associated with this metadata. 6785 MachineFunction &MF = DAG.getMachineFunction(); 6786 MCSymbol *Label = 6787 MF.getMMI().getContext().createTempSymbol("annotation", true); 6788 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6789 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6790 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6791 DAG.setRoot(Res); 6792 return; 6793 } 6794 6795 case Intrinsic::init_trampoline: { 6796 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6797 6798 SDValue Ops[6]; 6799 Ops[0] = getRoot(); 6800 Ops[1] = getValue(I.getArgOperand(0)); 6801 Ops[2] = getValue(I.getArgOperand(1)); 6802 Ops[3] = getValue(I.getArgOperand(2)); 6803 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6804 Ops[5] = DAG.getSrcValue(F); 6805 6806 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6807 6808 DAG.setRoot(Res); 6809 return; 6810 } 6811 case Intrinsic::adjust_trampoline: 6812 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6813 TLI.getPointerTy(DAG.getDataLayout()), 6814 getValue(I.getArgOperand(0)))); 6815 return; 6816 case Intrinsic::gcroot: { 6817 assert(DAG.getMachineFunction().getFunction().hasGC() && 6818 "only valid in functions with gc specified, enforced by Verifier"); 6819 assert(GFI && "implied by previous"); 6820 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6821 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6822 6823 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6824 GFI->addStackRoot(FI->getIndex(), TypeMap); 6825 return; 6826 } 6827 case Intrinsic::gcread: 6828 case Intrinsic::gcwrite: 6829 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6830 case Intrinsic::flt_rounds: 6831 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6832 setValue(&I, Res); 6833 DAG.setRoot(Res.getValue(1)); 6834 return; 6835 6836 case Intrinsic::expect: 6837 // Just replace __builtin_expect(exp, c) with EXP. 6838 setValue(&I, getValue(I.getArgOperand(0))); 6839 return; 6840 6841 case Intrinsic::ubsantrap: 6842 case Intrinsic::debugtrap: 6843 case Intrinsic::trap: { 6844 StringRef TrapFuncName = 6845 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6846 if (TrapFuncName.empty()) { 6847 switch (Intrinsic) { 6848 case Intrinsic::trap: 6849 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6850 break; 6851 case Intrinsic::debugtrap: 6852 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6853 break; 6854 case Intrinsic::ubsantrap: 6855 DAG.setRoot(DAG.getNode( 6856 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6857 DAG.getTargetConstant( 6858 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6859 MVT::i32))); 6860 break; 6861 default: llvm_unreachable("unknown trap intrinsic"); 6862 } 6863 return; 6864 } 6865 TargetLowering::ArgListTy Args; 6866 if (Intrinsic == Intrinsic::ubsantrap) { 6867 Args.push_back(TargetLoweringBase::ArgListEntry()); 6868 Args[0].Val = I.getArgOperand(0); 6869 Args[0].Node = getValue(Args[0].Val); 6870 Args[0].Ty = Args[0].Val->getType(); 6871 } 6872 6873 TargetLowering::CallLoweringInfo CLI(DAG); 6874 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6875 CallingConv::C, I.getType(), 6876 DAG.getExternalSymbol(TrapFuncName.data(), 6877 TLI.getPointerTy(DAG.getDataLayout())), 6878 std::move(Args)); 6879 6880 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6881 DAG.setRoot(Result.second); 6882 return; 6883 } 6884 6885 case Intrinsic::uadd_with_overflow: 6886 case Intrinsic::sadd_with_overflow: 6887 case Intrinsic::usub_with_overflow: 6888 case Intrinsic::ssub_with_overflow: 6889 case Intrinsic::umul_with_overflow: 6890 case Intrinsic::smul_with_overflow: { 6891 ISD::NodeType Op; 6892 switch (Intrinsic) { 6893 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6894 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6895 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6896 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6897 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6898 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6899 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6900 } 6901 SDValue Op1 = getValue(I.getArgOperand(0)); 6902 SDValue Op2 = getValue(I.getArgOperand(1)); 6903 6904 EVT ResultVT = Op1.getValueType(); 6905 EVT OverflowVT = MVT::i1; 6906 if (ResultVT.isVector()) 6907 OverflowVT = EVT::getVectorVT( 6908 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6909 6910 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6911 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6912 return; 6913 } 6914 case Intrinsic::prefetch: { 6915 SDValue Ops[5]; 6916 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6917 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6918 Ops[0] = DAG.getRoot(); 6919 Ops[1] = getValue(I.getArgOperand(0)); 6920 Ops[2] = getValue(I.getArgOperand(1)); 6921 Ops[3] = getValue(I.getArgOperand(2)); 6922 Ops[4] = getValue(I.getArgOperand(3)); 6923 SDValue Result = DAG.getMemIntrinsicNode( 6924 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6925 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6926 /* align */ std::nullopt, Flags); 6927 6928 // Chain the prefetch in parallell with any pending loads, to stay out of 6929 // the way of later optimizations. 6930 PendingLoads.push_back(Result); 6931 Result = getRoot(); 6932 DAG.setRoot(Result); 6933 return; 6934 } 6935 case Intrinsic::lifetime_start: 6936 case Intrinsic::lifetime_end: { 6937 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6938 // Stack coloring is not enabled in O0, discard region information. 6939 if (TM.getOptLevel() == CodeGenOpt::None) 6940 return; 6941 6942 const int64_t ObjectSize = 6943 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6944 Value *const ObjectPtr = I.getArgOperand(1); 6945 SmallVector<const Value *, 4> Allocas; 6946 getUnderlyingObjects(ObjectPtr, Allocas); 6947 6948 for (const Value *Alloca : Allocas) { 6949 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6950 6951 // Could not find an Alloca. 6952 if (!LifetimeObject) 6953 continue; 6954 6955 // First check that the Alloca is static, otherwise it won't have a 6956 // valid frame index. 6957 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6958 if (SI == FuncInfo.StaticAllocaMap.end()) 6959 return; 6960 6961 const int FrameIndex = SI->second; 6962 int64_t Offset; 6963 if (GetPointerBaseWithConstantOffset( 6964 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6965 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6966 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6967 Offset); 6968 DAG.setRoot(Res); 6969 } 6970 return; 6971 } 6972 case Intrinsic::pseudoprobe: { 6973 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6974 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6975 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6976 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6977 DAG.setRoot(Res); 6978 return; 6979 } 6980 case Intrinsic::invariant_start: 6981 // Discard region information. 6982 setValue(&I, 6983 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6984 return; 6985 case Intrinsic::invariant_end: 6986 // Discard region information. 6987 return; 6988 case Intrinsic::clear_cache: 6989 /// FunctionName may be null. 6990 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6991 lowerCallToExternalSymbol(I, FunctionName); 6992 return; 6993 case Intrinsic::donothing: 6994 case Intrinsic::seh_try_begin: 6995 case Intrinsic::seh_scope_begin: 6996 case Intrinsic::seh_try_end: 6997 case Intrinsic::seh_scope_end: 6998 // ignore 6999 return; 7000 case Intrinsic::experimental_stackmap: 7001 visitStackmap(I); 7002 return; 7003 case Intrinsic::experimental_patchpoint_void: 7004 case Intrinsic::experimental_patchpoint_i64: 7005 visitPatchpoint(I); 7006 return; 7007 case Intrinsic::experimental_gc_statepoint: 7008 LowerStatepoint(cast<GCStatepointInst>(I)); 7009 return; 7010 case Intrinsic::experimental_gc_result: 7011 visitGCResult(cast<GCResultInst>(I)); 7012 return; 7013 case Intrinsic::experimental_gc_relocate: 7014 visitGCRelocate(cast<GCRelocateInst>(I)); 7015 return; 7016 case Intrinsic::instrprof_cover: 7017 llvm_unreachable("instrprof failed to lower a cover"); 7018 case Intrinsic::instrprof_increment: 7019 llvm_unreachable("instrprof failed to lower an increment"); 7020 case Intrinsic::instrprof_value_profile: 7021 llvm_unreachable("instrprof failed to lower a value profiling call"); 7022 case Intrinsic::localescape: { 7023 MachineFunction &MF = DAG.getMachineFunction(); 7024 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7025 7026 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7027 // is the same on all targets. 7028 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7029 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7030 if (isa<ConstantPointerNull>(Arg)) 7031 continue; // Skip null pointers. They represent a hole in index space. 7032 AllocaInst *Slot = cast<AllocaInst>(Arg); 7033 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7034 "can only escape static allocas"); 7035 int FI = FuncInfo.StaticAllocaMap[Slot]; 7036 MCSymbol *FrameAllocSym = 7037 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7038 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7039 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7040 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7041 .addSym(FrameAllocSym) 7042 .addFrameIndex(FI); 7043 } 7044 7045 return; 7046 } 7047 7048 case Intrinsic::localrecover: { 7049 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7050 MachineFunction &MF = DAG.getMachineFunction(); 7051 7052 // Get the symbol that defines the frame offset. 7053 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7054 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7055 unsigned IdxVal = 7056 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7057 MCSymbol *FrameAllocSym = 7058 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7059 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7060 7061 Value *FP = I.getArgOperand(1); 7062 SDValue FPVal = getValue(FP); 7063 EVT PtrVT = FPVal.getValueType(); 7064 7065 // Create a MCSymbol for the label to avoid any target lowering 7066 // that would make this PC relative. 7067 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7068 SDValue OffsetVal = 7069 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7070 7071 // Add the offset to the FP. 7072 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7073 setValue(&I, Add); 7074 7075 return; 7076 } 7077 7078 case Intrinsic::eh_exceptionpointer: 7079 case Intrinsic::eh_exceptioncode: { 7080 // Get the exception pointer vreg, copy from it, and resize it to fit. 7081 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7082 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7083 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7084 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7085 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7086 if (Intrinsic == Intrinsic::eh_exceptioncode) 7087 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7088 setValue(&I, N); 7089 return; 7090 } 7091 case Intrinsic::xray_customevent: { 7092 // Here we want to make sure that the intrinsic behaves as if it has a 7093 // specific calling convention, and only for x86_64. 7094 // FIXME: Support other platforms later. 7095 const auto &Triple = DAG.getTarget().getTargetTriple(); 7096 if (Triple.getArch() != Triple::x86_64) 7097 return; 7098 7099 SmallVector<SDValue, 8> Ops; 7100 7101 // We want to say that we always want the arguments in registers. 7102 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7103 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7104 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7105 SDValue Chain = getRoot(); 7106 Ops.push_back(LogEntryVal); 7107 Ops.push_back(StrSizeVal); 7108 Ops.push_back(Chain); 7109 7110 // We need to enforce the calling convention for the callsite, so that 7111 // argument ordering is enforced correctly, and that register allocation can 7112 // see that some registers may be assumed clobbered and have to preserve 7113 // them across calls to the intrinsic. 7114 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7115 sdl, NodeTys, Ops); 7116 SDValue patchableNode = SDValue(MN, 0); 7117 DAG.setRoot(patchableNode); 7118 setValue(&I, patchableNode); 7119 return; 7120 } 7121 case Intrinsic::xray_typedevent: { 7122 // Here we want to make sure that the intrinsic behaves as if it has a 7123 // specific calling convention, and only for x86_64. 7124 // FIXME: Support other platforms later. 7125 const auto &Triple = DAG.getTarget().getTargetTriple(); 7126 if (Triple.getArch() != Triple::x86_64) 7127 return; 7128 7129 SmallVector<SDValue, 8> Ops; 7130 7131 // We want to say that we always want the arguments in registers. 7132 // It's unclear to me how manipulating the selection DAG here forces callers 7133 // to provide arguments in registers instead of on the stack. 7134 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7135 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7136 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7137 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7138 SDValue Chain = getRoot(); 7139 Ops.push_back(LogTypeId); 7140 Ops.push_back(LogEntryVal); 7141 Ops.push_back(StrSizeVal); 7142 Ops.push_back(Chain); 7143 7144 // We need to enforce the calling convention for the callsite, so that 7145 // argument ordering is enforced correctly, and that register allocation can 7146 // see that some registers may be assumed clobbered and have to preserve 7147 // them across calls to the intrinsic. 7148 MachineSDNode *MN = DAG.getMachineNode( 7149 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7150 SDValue patchableNode = SDValue(MN, 0); 7151 DAG.setRoot(patchableNode); 7152 setValue(&I, patchableNode); 7153 return; 7154 } 7155 case Intrinsic::experimental_deoptimize: 7156 LowerDeoptimizeCall(&I); 7157 return; 7158 case Intrinsic::experimental_stepvector: 7159 visitStepVector(I); 7160 return; 7161 case Intrinsic::vector_reduce_fadd: 7162 case Intrinsic::vector_reduce_fmul: 7163 case Intrinsic::vector_reduce_add: 7164 case Intrinsic::vector_reduce_mul: 7165 case Intrinsic::vector_reduce_and: 7166 case Intrinsic::vector_reduce_or: 7167 case Intrinsic::vector_reduce_xor: 7168 case Intrinsic::vector_reduce_smax: 7169 case Intrinsic::vector_reduce_smin: 7170 case Intrinsic::vector_reduce_umax: 7171 case Intrinsic::vector_reduce_umin: 7172 case Intrinsic::vector_reduce_fmax: 7173 case Intrinsic::vector_reduce_fmin: 7174 visitVectorReduce(I, Intrinsic); 7175 return; 7176 7177 case Intrinsic::icall_branch_funnel: { 7178 SmallVector<SDValue, 16> Ops; 7179 Ops.push_back(getValue(I.getArgOperand(0))); 7180 7181 int64_t Offset; 7182 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7183 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7184 if (!Base) 7185 report_fatal_error( 7186 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7187 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7188 7189 struct BranchFunnelTarget { 7190 int64_t Offset; 7191 SDValue Target; 7192 }; 7193 SmallVector<BranchFunnelTarget, 8> Targets; 7194 7195 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7196 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7197 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7198 if (ElemBase != Base) 7199 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7200 "to the same GlobalValue"); 7201 7202 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7203 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7204 if (!GA) 7205 report_fatal_error( 7206 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7207 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7208 GA->getGlobal(), sdl, Val.getValueType(), 7209 GA->getOffset())}); 7210 } 7211 llvm::sort(Targets, 7212 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7213 return T1.Offset < T2.Offset; 7214 }); 7215 7216 for (auto &T : Targets) { 7217 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7218 Ops.push_back(T.Target); 7219 } 7220 7221 Ops.push_back(DAG.getRoot()); // Chain 7222 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7223 MVT::Other, Ops), 7224 0); 7225 DAG.setRoot(N); 7226 setValue(&I, N); 7227 HasTailCall = true; 7228 return; 7229 } 7230 7231 case Intrinsic::wasm_landingpad_index: 7232 // Information this intrinsic contained has been transferred to 7233 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7234 // delete it now. 7235 return; 7236 7237 case Intrinsic::aarch64_settag: 7238 case Intrinsic::aarch64_settag_zero: { 7239 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7240 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7241 SDValue Val = TSI.EmitTargetCodeForSetTag( 7242 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7243 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7244 ZeroMemory); 7245 DAG.setRoot(Val); 7246 setValue(&I, Val); 7247 return; 7248 } 7249 case Intrinsic::ptrmask: { 7250 SDValue Ptr = getValue(I.getOperand(0)); 7251 SDValue Const = getValue(I.getOperand(1)); 7252 7253 EVT PtrVT = Ptr.getValueType(); 7254 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7255 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7256 return; 7257 } 7258 case Intrinsic::threadlocal_address: { 7259 setValue(&I, getValue(I.getOperand(0))); 7260 return; 7261 } 7262 case Intrinsic::get_active_lane_mask: { 7263 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7264 SDValue Index = getValue(I.getOperand(0)); 7265 EVT ElementVT = Index.getValueType(); 7266 7267 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7268 visitTargetIntrinsic(I, Intrinsic); 7269 return; 7270 } 7271 7272 SDValue TripCount = getValue(I.getOperand(1)); 7273 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7274 7275 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7276 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7277 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7278 SDValue VectorInduction = DAG.getNode( 7279 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7280 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7281 VectorTripCount, ISD::CondCode::SETULT); 7282 setValue(&I, SetCC); 7283 return; 7284 } 7285 case Intrinsic::vector_insert: { 7286 SDValue Vec = getValue(I.getOperand(0)); 7287 SDValue SubVec = getValue(I.getOperand(1)); 7288 SDValue Index = getValue(I.getOperand(2)); 7289 7290 // The intrinsic's index type is i64, but the SDNode requires an index type 7291 // suitable for the target. Convert the index as required. 7292 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7293 if (Index.getValueType() != VectorIdxTy) 7294 Index = DAG.getVectorIdxConstant( 7295 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7296 7297 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7298 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7299 Index)); 7300 return; 7301 } 7302 case Intrinsic::vector_extract: { 7303 SDValue Vec = getValue(I.getOperand(0)); 7304 SDValue Index = getValue(I.getOperand(1)); 7305 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7306 7307 // The intrinsic's index type is i64, but the SDNode requires an index type 7308 // suitable for the target. Convert the index as required. 7309 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7310 if (Index.getValueType() != VectorIdxTy) 7311 Index = DAG.getVectorIdxConstant( 7312 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7313 7314 setValue(&I, 7315 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7316 return; 7317 } 7318 case Intrinsic::experimental_vector_reverse: 7319 visitVectorReverse(I); 7320 return; 7321 case Intrinsic::experimental_vector_splice: 7322 visitVectorSplice(I); 7323 return; 7324 } 7325 } 7326 7327 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7328 const ConstrainedFPIntrinsic &FPI) { 7329 SDLoc sdl = getCurSDLoc(); 7330 7331 // We do not need to serialize constrained FP intrinsics against 7332 // each other or against (nonvolatile) loads, so they can be 7333 // chained like loads. 7334 SDValue Chain = DAG.getRoot(); 7335 SmallVector<SDValue, 4> Opers; 7336 Opers.push_back(Chain); 7337 if (FPI.isUnaryOp()) { 7338 Opers.push_back(getValue(FPI.getArgOperand(0))); 7339 } else if (FPI.isTernaryOp()) { 7340 Opers.push_back(getValue(FPI.getArgOperand(0))); 7341 Opers.push_back(getValue(FPI.getArgOperand(1))); 7342 Opers.push_back(getValue(FPI.getArgOperand(2))); 7343 } else { 7344 Opers.push_back(getValue(FPI.getArgOperand(0))); 7345 Opers.push_back(getValue(FPI.getArgOperand(1))); 7346 } 7347 7348 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7349 assert(Result.getNode()->getNumValues() == 2); 7350 7351 // Push node to the appropriate list so that future instructions can be 7352 // chained up correctly. 7353 SDValue OutChain = Result.getValue(1); 7354 switch (EB) { 7355 case fp::ExceptionBehavior::ebIgnore: 7356 // The only reason why ebIgnore nodes still need to be chained is that 7357 // they might depend on the current rounding mode, and therefore must 7358 // not be moved across instruction that may change that mode. 7359 [[fallthrough]]; 7360 case fp::ExceptionBehavior::ebMayTrap: 7361 // These must not be moved across calls or instructions that may change 7362 // floating-point exception masks. 7363 PendingConstrainedFP.push_back(OutChain); 7364 break; 7365 case fp::ExceptionBehavior::ebStrict: 7366 // These must not be moved across calls or instructions that may change 7367 // floating-point exception masks or read floating-point exception flags. 7368 // In addition, they cannot be optimized out even if unused. 7369 PendingConstrainedFPStrict.push_back(OutChain); 7370 break; 7371 } 7372 }; 7373 7374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7375 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7376 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7377 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7378 7379 SDNodeFlags Flags; 7380 if (EB == fp::ExceptionBehavior::ebIgnore) 7381 Flags.setNoFPExcept(true); 7382 7383 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7384 Flags.copyFMF(*FPOp); 7385 7386 unsigned Opcode; 7387 switch (FPI.getIntrinsicID()) { 7388 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7389 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7390 case Intrinsic::INTRINSIC: \ 7391 Opcode = ISD::STRICT_##DAGN; \ 7392 break; 7393 #include "llvm/IR/ConstrainedOps.def" 7394 case Intrinsic::experimental_constrained_fmuladd: { 7395 Opcode = ISD::STRICT_FMA; 7396 // Break fmuladd into fmul and fadd. 7397 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7398 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7399 Opers.pop_back(); 7400 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7401 pushOutChain(Mul, EB); 7402 Opcode = ISD::STRICT_FADD; 7403 Opers.clear(); 7404 Opers.push_back(Mul.getValue(1)); 7405 Opers.push_back(Mul.getValue(0)); 7406 Opers.push_back(getValue(FPI.getArgOperand(2))); 7407 } 7408 break; 7409 } 7410 } 7411 7412 // A few strict DAG nodes carry additional operands that are not 7413 // set up by the default code above. 7414 switch (Opcode) { 7415 default: break; 7416 case ISD::STRICT_FP_ROUND: 7417 Opers.push_back( 7418 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7419 break; 7420 case ISD::STRICT_FSETCC: 7421 case ISD::STRICT_FSETCCS: { 7422 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7423 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7424 if (TM.Options.NoNaNsFPMath) 7425 Condition = getFCmpCodeWithoutNaN(Condition); 7426 Opers.push_back(DAG.getCondCode(Condition)); 7427 break; 7428 } 7429 } 7430 7431 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7432 pushOutChain(Result, EB); 7433 7434 SDValue FPResult = Result.getValue(0); 7435 setValue(&FPI, FPResult); 7436 } 7437 7438 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7439 std::optional<unsigned> ResOPC; 7440 switch (VPIntrin.getIntrinsicID()) { 7441 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7442 case Intrinsic::VPID: \ 7443 ResOPC = ISD::VPSD; \ 7444 break; 7445 #include "llvm/IR/VPIntrinsics.def" 7446 } 7447 7448 if (!ResOPC) 7449 llvm_unreachable( 7450 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7451 7452 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7453 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7454 if (VPIntrin.getFastMathFlags().allowReassoc()) 7455 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7456 : ISD::VP_REDUCE_FMUL; 7457 } 7458 7459 return *ResOPC; 7460 } 7461 7462 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7463 SmallVector<SDValue, 7> &OpValues) { 7464 SDLoc DL = getCurSDLoc(); 7465 Value *PtrOperand = VPIntrin.getArgOperand(0); 7466 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7467 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7468 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7469 SDValue LD; 7470 bool AddToChain = true; 7471 // Do not serialize variable-length loads of constant memory with 7472 // anything. 7473 if (!Alignment) 7474 Alignment = DAG.getEVTAlign(VT); 7475 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7476 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7477 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7478 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7479 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7480 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7481 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7482 MMO, false /*IsExpanding */); 7483 if (AddToChain) 7484 PendingLoads.push_back(LD.getValue(1)); 7485 setValue(&VPIntrin, LD); 7486 } 7487 7488 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7489 SmallVector<SDValue, 7> &OpValues) { 7490 SDLoc DL = getCurSDLoc(); 7491 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7492 Value *PtrOperand = VPIntrin.getArgOperand(0); 7493 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7494 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7495 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7496 SDValue LD; 7497 if (!Alignment) 7498 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7499 unsigned AS = 7500 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7501 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7502 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7503 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7504 SDValue Base, Index, Scale; 7505 ISD::MemIndexType IndexType; 7506 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7507 this, VPIntrin.getParent(), 7508 VT.getScalarStoreSize()); 7509 if (!UniformBase) { 7510 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7511 Index = getValue(PtrOperand); 7512 IndexType = ISD::SIGNED_SCALED; 7513 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7514 } 7515 EVT IdxVT = Index.getValueType(); 7516 EVT EltTy = IdxVT.getVectorElementType(); 7517 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7518 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7519 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7520 } 7521 LD = DAG.getGatherVP( 7522 DAG.getVTList(VT, MVT::Other), VT, DL, 7523 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7524 IndexType); 7525 PendingLoads.push_back(LD.getValue(1)); 7526 setValue(&VPIntrin, LD); 7527 } 7528 7529 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7530 SmallVector<SDValue, 7> &OpValues) { 7531 SDLoc DL = getCurSDLoc(); 7532 Value *PtrOperand = VPIntrin.getArgOperand(1); 7533 EVT VT = OpValues[0].getValueType(); 7534 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7535 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7536 SDValue ST; 7537 if (!Alignment) 7538 Alignment = DAG.getEVTAlign(VT); 7539 SDValue Ptr = OpValues[1]; 7540 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7541 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7542 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7543 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7544 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7545 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7546 /* IsTruncating */ false, /*IsCompressing*/ false); 7547 DAG.setRoot(ST); 7548 setValue(&VPIntrin, ST); 7549 } 7550 7551 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7552 SmallVector<SDValue, 7> &OpValues) { 7553 SDLoc DL = getCurSDLoc(); 7554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7555 Value *PtrOperand = VPIntrin.getArgOperand(1); 7556 EVT VT = OpValues[0].getValueType(); 7557 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7558 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7559 SDValue ST; 7560 if (!Alignment) 7561 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7562 unsigned AS = 7563 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7564 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7565 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7566 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7567 SDValue Base, Index, Scale; 7568 ISD::MemIndexType IndexType; 7569 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7570 this, VPIntrin.getParent(), 7571 VT.getScalarStoreSize()); 7572 if (!UniformBase) { 7573 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7574 Index = getValue(PtrOperand); 7575 IndexType = ISD::SIGNED_SCALED; 7576 Scale = 7577 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7578 } 7579 EVT IdxVT = Index.getValueType(); 7580 EVT EltTy = IdxVT.getVectorElementType(); 7581 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7582 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7583 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7584 } 7585 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7586 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7587 OpValues[2], OpValues[3]}, 7588 MMO, IndexType); 7589 DAG.setRoot(ST); 7590 setValue(&VPIntrin, ST); 7591 } 7592 7593 void SelectionDAGBuilder::visitVPStridedLoad( 7594 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7595 SDLoc DL = getCurSDLoc(); 7596 Value *PtrOperand = VPIntrin.getArgOperand(0); 7597 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7598 if (!Alignment) 7599 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7600 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7601 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7602 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7603 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7604 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7605 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7606 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7607 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7608 7609 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7610 OpValues[2], OpValues[3], MMO, 7611 false /*IsExpanding*/); 7612 7613 if (AddToChain) 7614 PendingLoads.push_back(LD.getValue(1)); 7615 setValue(&VPIntrin, LD); 7616 } 7617 7618 void SelectionDAGBuilder::visitVPStridedStore( 7619 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7620 SDLoc DL = getCurSDLoc(); 7621 Value *PtrOperand = VPIntrin.getArgOperand(1); 7622 EVT VT = OpValues[0].getValueType(); 7623 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7624 if (!Alignment) 7625 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7626 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7627 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7628 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7629 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7630 7631 SDValue ST = DAG.getStridedStoreVP( 7632 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7633 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7634 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7635 /*IsCompressing*/ false); 7636 7637 DAG.setRoot(ST); 7638 setValue(&VPIntrin, ST); 7639 } 7640 7641 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7643 SDLoc DL = getCurSDLoc(); 7644 7645 ISD::CondCode Condition; 7646 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7647 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7648 if (IsFP) { 7649 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7650 // flags, but calls that don't return floating-point types can't be 7651 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7652 Condition = getFCmpCondCode(CondCode); 7653 if (TM.Options.NoNaNsFPMath) 7654 Condition = getFCmpCodeWithoutNaN(Condition); 7655 } else { 7656 Condition = getICmpCondCode(CondCode); 7657 } 7658 7659 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7660 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7661 // #2 is the condition code 7662 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7663 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7664 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7665 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7666 "Unexpected target EVL type"); 7667 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7668 7669 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7670 VPIntrin.getType()); 7671 setValue(&VPIntrin, 7672 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7673 } 7674 7675 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7676 const VPIntrinsic &VPIntrin) { 7677 SDLoc DL = getCurSDLoc(); 7678 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7679 7680 auto IID = VPIntrin.getIntrinsicID(); 7681 7682 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7683 return visitVPCmp(*CmpI); 7684 7685 SmallVector<EVT, 4> ValueVTs; 7686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7687 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7688 SDVTList VTs = DAG.getVTList(ValueVTs); 7689 7690 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7691 7692 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7693 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7694 "Unexpected target EVL type"); 7695 7696 // Request operands. 7697 SmallVector<SDValue, 7> OpValues; 7698 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7699 auto Op = getValue(VPIntrin.getArgOperand(I)); 7700 if (I == EVLParamPos) 7701 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7702 OpValues.push_back(Op); 7703 } 7704 7705 switch (Opcode) { 7706 default: { 7707 SDNodeFlags SDFlags; 7708 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7709 SDFlags.copyFMF(*FPMO); 7710 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7711 setValue(&VPIntrin, Result); 7712 break; 7713 } 7714 case ISD::VP_LOAD: 7715 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7716 break; 7717 case ISD::VP_GATHER: 7718 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7719 break; 7720 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7721 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7722 break; 7723 case ISD::VP_STORE: 7724 visitVPStore(VPIntrin, OpValues); 7725 break; 7726 case ISD::VP_SCATTER: 7727 visitVPScatter(VPIntrin, OpValues); 7728 break; 7729 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7730 visitVPStridedStore(VPIntrin, OpValues); 7731 break; 7732 case ISD::VP_FMULADD: { 7733 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7734 SDNodeFlags SDFlags; 7735 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7736 SDFlags.copyFMF(*FPMO); 7737 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7738 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7739 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7740 } else { 7741 SDValue Mul = DAG.getNode( 7742 ISD::VP_FMUL, DL, VTs, 7743 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7744 SDValue Add = 7745 DAG.getNode(ISD::VP_FADD, DL, VTs, 7746 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7747 setValue(&VPIntrin, Add); 7748 } 7749 break; 7750 } 7751 case ISD::VP_INTTOPTR: { 7752 SDValue N = OpValues[0]; 7753 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7754 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7755 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7756 OpValues[2]); 7757 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7758 OpValues[2]); 7759 setValue(&VPIntrin, N); 7760 break; 7761 } 7762 case ISD::VP_PTRTOINT: { 7763 SDValue N = OpValues[0]; 7764 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7765 VPIntrin.getType()); 7766 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7767 VPIntrin.getOperand(0)->getType()); 7768 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7769 OpValues[2]); 7770 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7771 OpValues[2]); 7772 setValue(&VPIntrin, N); 7773 break; 7774 } 7775 } 7776 } 7777 7778 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7779 const BasicBlock *EHPadBB, 7780 MCSymbol *&BeginLabel) { 7781 MachineFunction &MF = DAG.getMachineFunction(); 7782 MachineModuleInfo &MMI = MF.getMMI(); 7783 7784 // Insert a label before the invoke call to mark the try range. This can be 7785 // used to detect deletion of the invoke via the MachineModuleInfo. 7786 BeginLabel = MMI.getContext().createTempSymbol(); 7787 7788 // For SjLj, keep track of which landing pads go with which invokes 7789 // so as to maintain the ordering of pads in the LSDA. 7790 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7791 if (CallSiteIndex) { 7792 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7793 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7794 7795 // Now that the call site is handled, stop tracking it. 7796 MMI.setCurrentCallSite(0); 7797 } 7798 7799 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7800 } 7801 7802 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7803 const BasicBlock *EHPadBB, 7804 MCSymbol *BeginLabel) { 7805 assert(BeginLabel && "BeginLabel should've been set"); 7806 7807 MachineFunction &MF = DAG.getMachineFunction(); 7808 MachineModuleInfo &MMI = MF.getMMI(); 7809 7810 // Insert a label at the end of the invoke call to mark the try range. This 7811 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7812 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7813 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7814 7815 // Inform MachineModuleInfo of range. 7816 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7817 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7818 // actually use outlined funclets and their LSDA info style. 7819 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7820 assert(II && "II should've been set"); 7821 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7822 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7823 } else if (!isScopedEHPersonality(Pers)) { 7824 assert(EHPadBB); 7825 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7826 } 7827 7828 return Chain; 7829 } 7830 7831 std::pair<SDValue, SDValue> 7832 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7833 const BasicBlock *EHPadBB) { 7834 MCSymbol *BeginLabel = nullptr; 7835 7836 if (EHPadBB) { 7837 // Both PendingLoads and PendingExports must be flushed here; 7838 // this call might not return. 7839 (void)getRoot(); 7840 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7841 CLI.setChain(getRoot()); 7842 } 7843 7844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7845 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7846 7847 assert((CLI.IsTailCall || Result.second.getNode()) && 7848 "Non-null chain expected with non-tail call!"); 7849 assert((Result.second.getNode() || !Result.first.getNode()) && 7850 "Null value expected with tail call!"); 7851 7852 if (!Result.second.getNode()) { 7853 // As a special case, a null chain means that a tail call has been emitted 7854 // and the DAG root is already updated. 7855 HasTailCall = true; 7856 7857 // Since there's no actual continuation from this block, nothing can be 7858 // relying on us setting vregs for them. 7859 PendingExports.clear(); 7860 } else { 7861 DAG.setRoot(Result.second); 7862 } 7863 7864 if (EHPadBB) { 7865 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7866 BeginLabel)); 7867 } 7868 7869 return Result; 7870 } 7871 7872 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7873 bool isTailCall, 7874 bool isMustTailCall, 7875 const BasicBlock *EHPadBB) { 7876 auto &DL = DAG.getDataLayout(); 7877 FunctionType *FTy = CB.getFunctionType(); 7878 Type *RetTy = CB.getType(); 7879 7880 TargetLowering::ArgListTy Args; 7881 Args.reserve(CB.arg_size()); 7882 7883 const Value *SwiftErrorVal = nullptr; 7884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7885 7886 if (isTailCall) { 7887 // Avoid emitting tail calls in functions with the disable-tail-calls 7888 // attribute. 7889 auto *Caller = CB.getParent()->getParent(); 7890 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7891 "true" && !isMustTailCall) 7892 isTailCall = false; 7893 7894 // We can't tail call inside a function with a swifterror argument. Lowering 7895 // does not support this yet. It would have to move into the swifterror 7896 // register before the call. 7897 if (TLI.supportSwiftError() && 7898 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7899 isTailCall = false; 7900 } 7901 7902 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7903 TargetLowering::ArgListEntry Entry; 7904 const Value *V = *I; 7905 7906 // Skip empty types 7907 if (V->getType()->isEmptyTy()) 7908 continue; 7909 7910 SDValue ArgNode = getValue(V); 7911 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7912 7913 Entry.setAttributes(&CB, I - CB.arg_begin()); 7914 7915 // Use swifterror virtual register as input to the call. 7916 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7917 SwiftErrorVal = V; 7918 // We find the virtual register for the actual swifterror argument. 7919 // Instead of using the Value, we use the virtual register instead. 7920 Entry.Node = 7921 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7922 EVT(TLI.getPointerTy(DL))); 7923 } 7924 7925 Args.push_back(Entry); 7926 7927 // If we have an explicit sret argument that is an Instruction, (i.e., it 7928 // might point to function-local memory), we can't meaningfully tail-call. 7929 if (Entry.IsSRet && isa<Instruction>(V)) 7930 isTailCall = false; 7931 } 7932 7933 // If call site has a cfguardtarget operand bundle, create and add an 7934 // additional ArgListEntry. 7935 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7936 TargetLowering::ArgListEntry Entry; 7937 Value *V = Bundle->Inputs[0]; 7938 SDValue ArgNode = getValue(V); 7939 Entry.Node = ArgNode; 7940 Entry.Ty = V->getType(); 7941 Entry.IsCFGuardTarget = true; 7942 Args.push_back(Entry); 7943 } 7944 7945 // Check if target-independent constraints permit a tail call here. 7946 // Target-dependent constraints are checked within TLI->LowerCallTo. 7947 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7948 isTailCall = false; 7949 7950 // Disable tail calls if there is an swifterror argument. Targets have not 7951 // been updated to support tail calls. 7952 if (TLI.supportSwiftError() && SwiftErrorVal) 7953 isTailCall = false; 7954 7955 ConstantInt *CFIType = nullptr; 7956 if (CB.isIndirectCall()) { 7957 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7958 if (!TLI.supportKCFIBundles()) 7959 report_fatal_error( 7960 "Target doesn't support calls with kcfi operand bundles."); 7961 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7962 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7963 } 7964 } 7965 7966 TargetLowering::CallLoweringInfo CLI(DAG); 7967 CLI.setDebugLoc(getCurSDLoc()) 7968 .setChain(getRoot()) 7969 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7970 .setTailCall(isTailCall) 7971 .setConvergent(CB.isConvergent()) 7972 .setIsPreallocated( 7973 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7974 .setCFIType(CFIType); 7975 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7976 7977 if (Result.first.getNode()) { 7978 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7979 setValue(&CB, Result.first); 7980 } 7981 7982 // The last element of CLI.InVals has the SDValue for swifterror return. 7983 // Here we copy it to a virtual register and update SwiftErrorMap for 7984 // book-keeping. 7985 if (SwiftErrorVal && TLI.supportSwiftError()) { 7986 // Get the last element of InVals. 7987 SDValue Src = CLI.InVals.back(); 7988 Register VReg = 7989 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7990 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7991 DAG.setRoot(CopyNode); 7992 } 7993 } 7994 7995 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7996 SelectionDAGBuilder &Builder) { 7997 // Check to see if this load can be trivially constant folded, e.g. if the 7998 // input is from a string literal. 7999 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8000 // Cast pointer to the type we really want to load. 8001 Type *LoadTy = 8002 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8003 if (LoadVT.isVector()) 8004 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8005 8006 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8007 PointerType::getUnqual(LoadTy)); 8008 8009 if (const Constant *LoadCst = 8010 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8011 LoadTy, Builder.DAG.getDataLayout())) 8012 return Builder.getValue(LoadCst); 8013 } 8014 8015 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8016 // still constant memory, the input chain can be the entry node. 8017 SDValue Root; 8018 bool ConstantMemory = false; 8019 8020 // Do not serialize (non-volatile) loads of constant memory with anything. 8021 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8022 Root = Builder.DAG.getEntryNode(); 8023 ConstantMemory = true; 8024 } else { 8025 // Do not serialize non-volatile loads against each other. 8026 Root = Builder.DAG.getRoot(); 8027 } 8028 8029 SDValue Ptr = Builder.getValue(PtrVal); 8030 SDValue LoadVal = 8031 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8032 MachinePointerInfo(PtrVal), Align(1)); 8033 8034 if (!ConstantMemory) 8035 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8036 return LoadVal; 8037 } 8038 8039 /// Record the value for an instruction that produces an integer result, 8040 /// converting the type where necessary. 8041 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8042 SDValue Value, 8043 bool IsSigned) { 8044 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8045 I.getType(), true); 8046 if (IsSigned) 8047 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 8048 else 8049 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 8050 setValue(&I, Value); 8051 } 8052 8053 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8054 /// true and lower it. Otherwise return false, and it will be lowered like a 8055 /// normal call. 8056 /// The caller already checked that \p I calls the appropriate LibFunc with a 8057 /// correct prototype. 8058 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8059 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8060 const Value *Size = I.getArgOperand(2); 8061 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8062 if (CSize && CSize->getZExtValue() == 0) { 8063 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8064 I.getType(), true); 8065 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8066 return true; 8067 } 8068 8069 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8070 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8071 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8072 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8073 if (Res.first.getNode()) { 8074 processIntegerCallValue(I, Res.first, true); 8075 PendingLoads.push_back(Res.second); 8076 return true; 8077 } 8078 8079 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8080 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8081 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8082 return false; 8083 8084 // If the target has a fast compare for the given size, it will return a 8085 // preferred load type for that size. Require that the load VT is legal and 8086 // that the target supports unaligned loads of that type. Otherwise, return 8087 // INVALID. 8088 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8090 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8091 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8092 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8093 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8094 // TODO: Check alignment of src and dest ptrs. 8095 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8096 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8097 if (!TLI.isTypeLegal(LVT) || 8098 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8099 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8100 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8101 } 8102 8103 return LVT; 8104 }; 8105 8106 // This turns into unaligned loads. We only do this if the target natively 8107 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8108 // we'll only produce a small number of byte loads. 8109 MVT LoadVT; 8110 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8111 switch (NumBitsToCompare) { 8112 default: 8113 return false; 8114 case 16: 8115 LoadVT = MVT::i16; 8116 break; 8117 case 32: 8118 LoadVT = MVT::i32; 8119 break; 8120 case 64: 8121 case 128: 8122 case 256: 8123 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8124 break; 8125 } 8126 8127 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8128 return false; 8129 8130 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8131 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8132 8133 // Bitcast to a wide integer type if the loads are vectors. 8134 if (LoadVT.isVector()) { 8135 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8136 LoadL = DAG.getBitcast(CmpVT, LoadL); 8137 LoadR = DAG.getBitcast(CmpVT, LoadR); 8138 } 8139 8140 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8141 processIntegerCallValue(I, Cmp, false); 8142 return true; 8143 } 8144 8145 /// See if we can lower a memchr call into an optimized form. If so, return 8146 /// true and lower it. Otherwise return false, and it will be lowered like a 8147 /// normal call. 8148 /// The caller already checked that \p I calls the appropriate LibFunc with a 8149 /// correct prototype. 8150 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8151 const Value *Src = I.getArgOperand(0); 8152 const Value *Char = I.getArgOperand(1); 8153 const Value *Length = I.getArgOperand(2); 8154 8155 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8156 std::pair<SDValue, SDValue> Res = 8157 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8158 getValue(Src), getValue(Char), getValue(Length), 8159 MachinePointerInfo(Src)); 8160 if (Res.first.getNode()) { 8161 setValue(&I, Res.first); 8162 PendingLoads.push_back(Res.second); 8163 return true; 8164 } 8165 8166 return false; 8167 } 8168 8169 /// See if we can lower a mempcpy call into an optimized form. If so, return 8170 /// true and lower it. Otherwise return false, and it will be lowered like a 8171 /// normal call. 8172 /// The caller already checked that \p I calls the appropriate LibFunc with a 8173 /// correct prototype. 8174 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8175 SDValue Dst = getValue(I.getArgOperand(0)); 8176 SDValue Src = getValue(I.getArgOperand(1)); 8177 SDValue Size = getValue(I.getArgOperand(2)); 8178 8179 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8180 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8181 // DAG::getMemcpy needs Alignment to be defined. 8182 Align Alignment = std::min(DstAlign, SrcAlign); 8183 8184 bool isVol = false; 8185 SDLoc sdl = getCurSDLoc(); 8186 8187 // In the mempcpy context we need to pass in a false value for isTailCall 8188 // because the return pointer needs to be adjusted by the size of 8189 // the copied memory. 8190 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8191 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8192 /*isTailCall=*/false, 8193 MachinePointerInfo(I.getArgOperand(0)), 8194 MachinePointerInfo(I.getArgOperand(1)), 8195 I.getAAMetadata()); 8196 assert(MC.getNode() != nullptr && 8197 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8198 DAG.setRoot(MC); 8199 8200 // Check if Size needs to be truncated or extended. 8201 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8202 8203 // Adjust return pointer to point just past the last dst byte. 8204 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8205 Dst, Size); 8206 setValue(&I, DstPlusSize); 8207 return true; 8208 } 8209 8210 /// See if we can lower a strcpy call into an optimized form. If so, return 8211 /// true and lower it, otherwise return false and it will be lowered like a 8212 /// normal call. 8213 /// The caller already checked that \p I calls the appropriate LibFunc with a 8214 /// correct prototype. 8215 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8216 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8217 8218 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8219 std::pair<SDValue, SDValue> Res = 8220 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8221 getValue(Arg0), getValue(Arg1), 8222 MachinePointerInfo(Arg0), 8223 MachinePointerInfo(Arg1), isStpcpy); 8224 if (Res.first.getNode()) { 8225 setValue(&I, Res.first); 8226 DAG.setRoot(Res.second); 8227 return true; 8228 } 8229 8230 return false; 8231 } 8232 8233 /// See if we can lower a strcmp call into an optimized form. If so, return 8234 /// true and lower it, otherwise return false and it will be lowered like a 8235 /// normal call. 8236 /// The caller already checked that \p I calls the appropriate LibFunc with a 8237 /// correct prototype. 8238 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8239 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8240 8241 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8242 std::pair<SDValue, SDValue> Res = 8243 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8244 getValue(Arg0), getValue(Arg1), 8245 MachinePointerInfo(Arg0), 8246 MachinePointerInfo(Arg1)); 8247 if (Res.first.getNode()) { 8248 processIntegerCallValue(I, Res.first, true); 8249 PendingLoads.push_back(Res.second); 8250 return true; 8251 } 8252 8253 return false; 8254 } 8255 8256 /// See if we can lower a strlen call into an optimized form. If so, return 8257 /// true and lower it, otherwise return false and it will be lowered like a 8258 /// normal call. 8259 /// The caller already checked that \p I calls the appropriate LibFunc with a 8260 /// correct prototype. 8261 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8262 const Value *Arg0 = I.getArgOperand(0); 8263 8264 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8265 std::pair<SDValue, SDValue> Res = 8266 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8267 getValue(Arg0), MachinePointerInfo(Arg0)); 8268 if (Res.first.getNode()) { 8269 processIntegerCallValue(I, Res.first, false); 8270 PendingLoads.push_back(Res.second); 8271 return true; 8272 } 8273 8274 return false; 8275 } 8276 8277 /// See if we can lower a strnlen call into an optimized form. If so, return 8278 /// true and lower it, otherwise return false and it will be lowered like a 8279 /// normal call. 8280 /// The caller already checked that \p I calls the appropriate LibFunc with a 8281 /// correct prototype. 8282 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8283 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8284 8285 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8286 std::pair<SDValue, SDValue> Res = 8287 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8288 getValue(Arg0), getValue(Arg1), 8289 MachinePointerInfo(Arg0)); 8290 if (Res.first.getNode()) { 8291 processIntegerCallValue(I, Res.first, false); 8292 PendingLoads.push_back(Res.second); 8293 return true; 8294 } 8295 8296 return false; 8297 } 8298 8299 /// See if we can lower a unary floating-point operation into an SDNode with 8300 /// the specified Opcode. If so, return true and lower it, otherwise return 8301 /// false and it will be lowered like a normal call. 8302 /// The caller already checked that \p I calls the appropriate LibFunc with a 8303 /// correct prototype. 8304 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8305 unsigned Opcode) { 8306 // We already checked this call's prototype; verify it doesn't modify errno. 8307 if (!I.onlyReadsMemory()) 8308 return false; 8309 8310 SDNodeFlags Flags; 8311 Flags.copyFMF(cast<FPMathOperator>(I)); 8312 8313 SDValue Tmp = getValue(I.getArgOperand(0)); 8314 setValue(&I, 8315 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8316 return true; 8317 } 8318 8319 /// See if we can lower a binary floating-point operation into an SDNode with 8320 /// the specified Opcode. If so, return true and lower it. Otherwise return 8321 /// false, and it will be lowered like a normal call. 8322 /// The caller already checked that \p I calls the appropriate LibFunc with a 8323 /// correct prototype. 8324 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8325 unsigned Opcode) { 8326 // We already checked this call's prototype; verify it doesn't modify errno. 8327 if (!I.onlyReadsMemory()) 8328 return false; 8329 8330 SDNodeFlags Flags; 8331 Flags.copyFMF(cast<FPMathOperator>(I)); 8332 8333 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8334 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8335 EVT VT = Tmp0.getValueType(); 8336 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8337 return true; 8338 } 8339 8340 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8341 // Handle inline assembly differently. 8342 if (I.isInlineAsm()) { 8343 visitInlineAsm(I); 8344 return; 8345 } 8346 8347 if (Function *F = I.getCalledFunction()) { 8348 diagnoseDontCall(I); 8349 8350 if (F->isDeclaration()) { 8351 // Is this an LLVM intrinsic or a target-specific intrinsic? 8352 unsigned IID = F->getIntrinsicID(); 8353 if (!IID) 8354 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8355 IID = II->getIntrinsicID(F); 8356 8357 if (IID) { 8358 visitIntrinsicCall(I, IID); 8359 return; 8360 } 8361 } 8362 8363 // Check for well-known libc/libm calls. If the function is internal, it 8364 // can't be a library call. Don't do the check if marked as nobuiltin for 8365 // some reason or the call site requires strict floating point semantics. 8366 LibFunc Func; 8367 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8368 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8369 LibInfo->hasOptimizedCodeGen(Func)) { 8370 switch (Func) { 8371 default: break; 8372 case LibFunc_bcmp: 8373 if (visitMemCmpBCmpCall(I)) 8374 return; 8375 break; 8376 case LibFunc_copysign: 8377 case LibFunc_copysignf: 8378 case LibFunc_copysignl: 8379 // We already checked this call's prototype; verify it doesn't modify 8380 // errno. 8381 if (I.onlyReadsMemory()) { 8382 SDValue LHS = getValue(I.getArgOperand(0)); 8383 SDValue RHS = getValue(I.getArgOperand(1)); 8384 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8385 LHS.getValueType(), LHS, RHS)); 8386 return; 8387 } 8388 break; 8389 case LibFunc_fabs: 8390 case LibFunc_fabsf: 8391 case LibFunc_fabsl: 8392 if (visitUnaryFloatCall(I, ISD::FABS)) 8393 return; 8394 break; 8395 case LibFunc_fmin: 8396 case LibFunc_fminf: 8397 case LibFunc_fminl: 8398 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8399 return; 8400 break; 8401 case LibFunc_fmax: 8402 case LibFunc_fmaxf: 8403 case LibFunc_fmaxl: 8404 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8405 return; 8406 break; 8407 case LibFunc_sin: 8408 case LibFunc_sinf: 8409 case LibFunc_sinl: 8410 if (visitUnaryFloatCall(I, ISD::FSIN)) 8411 return; 8412 break; 8413 case LibFunc_cos: 8414 case LibFunc_cosf: 8415 case LibFunc_cosl: 8416 if (visitUnaryFloatCall(I, ISD::FCOS)) 8417 return; 8418 break; 8419 case LibFunc_sqrt: 8420 case LibFunc_sqrtf: 8421 case LibFunc_sqrtl: 8422 case LibFunc_sqrt_finite: 8423 case LibFunc_sqrtf_finite: 8424 case LibFunc_sqrtl_finite: 8425 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8426 return; 8427 break; 8428 case LibFunc_floor: 8429 case LibFunc_floorf: 8430 case LibFunc_floorl: 8431 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8432 return; 8433 break; 8434 case LibFunc_nearbyint: 8435 case LibFunc_nearbyintf: 8436 case LibFunc_nearbyintl: 8437 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8438 return; 8439 break; 8440 case LibFunc_ceil: 8441 case LibFunc_ceilf: 8442 case LibFunc_ceill: 8443 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8444 return; 8445 break; 8446 case LibFunc_rint: 8447 case LibFunc_rintf: 8448 case LibFunc_rintl: 8449 if (visitUnaryFloatCall(I, ISD::FRINT)) 8450 return; 8451 break; 8452 case LibFunc_round: 8453 case LibFunc_roundf: 8454 case LibFunc_roundl: 8455 if (visitUnaryFloatCall(I, ISD::FROUND)) 8456 return; 8457 break; 8458 case LibFunc_trunc: 8459 case LibFunc_truncf: 8460 case LibFunc_truncl: 8461 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8462 return; 8463 break; 8464 case LibFunc_log2: 8465 case LibFunc_log2f: 8466 case LibFunc_log2l: 8467 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8468 return; 8469 break; 8470 case LibFunc_exp2: 8471 case LibFunc_exp2f: 8472 case LibFunc_exp2l: 8473 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8474 return; 8475 break; 8476 case LibFunc_memcmp: 8477 if (visitMemCmpBCmpCall(I)) 8478 return; 8479 break; 8480 case LibFunc_mempcpy: 8481 if (visitMemPCpyCall(I)) 8482 return; 8483 break; 8484 case LibFunc_memchr: 8485 if (visitMemChrCall(I)) 8486 return; 8487 break; 8488 case LibFunc_strcpy: 8489 if (visitStrCpyCall(I, false)) 8490 return; 8491 break; 8492 case LibFunc_stpcpy: 8493 if (visitStrCpyCall(I, true)) 8494 return; 8495 break; 8496 case LibFunc_strcmp: 8497 if (visitStrCmpCall(I)) 8498 return; 8499 break; 8500 case LibFunc_strlen: 8501 if (visitStrLenCall(I)) 8502 return; 8503 break; 8504 case LibFunc_strnlen: 8505 if (visitStrNLenCall(I)) 8506 return; 8507 break; 8508 } 8509 } 8510 } 8511 8512 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8513 // have to do anything here to lower funclet bundles. 8514 // CFGuardTarget bundles are lowered in LowerCallTo. 8515 assert(!I.hasOperandBundlesOtherThan( 8516 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8517 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8518 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8519 "Cannot lower calls with arbitrary operand bundles!"); 8520 8521 SDValue Callee = getValue(I.getCalledOperand()); 8522 8523 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8524 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8525 else 8526 // Check if we can potentially perform a tail call. More detailed checking 8527 // is be done within LowerCallTo, after more information about the call is 8528 // known. 8529 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8530 } 8531 8532 namespace { 8533 8534 /// AsmOperandInfo - This contains information for each constraint that we are 8535 /// lowering. 8536 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8537 public: 8538 /// CallOperand - If this is the result output operand or a clobber 8539 /// this is null, otherwise it is the incoming operand to the CallInst. 8540 /// This gets modified as the asm is processed. 8541 SDValue CallOperand; 8542 8543 /// AssignedRegs - If this is a register or register class operand, this 8544 /// contains the set of register corresponding to the operand. 8545 RegsForValue AssignedRegs; 8546 8547 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8548 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8549 } 8550 8551 /// Whether or not this operand accesses memory 8552 bool hasMemory(const TargetLowering &TLI) const { 8553 // Indirect operand accesses access memory. 8554 if (isIndirect) 8555 return true; 8556 8557 for (const auto &Code : Codes) 8558 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8559 return true; 8560 8561 return false; 8562 } 8563 }; 8564 8565 8566 } // end anonymous namespace 8567 8568 /// Make sure that the output operand \p OpInfo and its corresponding input 8569 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8570 /// out). 8571 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8572 SDISelAsmOperandInfo &MatchingOpInfo, 8573 SelectionDAG &DAG) { 8574 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8575 return; 8576 8577 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8578 const auto &TLI = DAG.getTargetLoweringInfo(); 8579 8580 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8581 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8582 OpInfo.ConstraintVT); 8583 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8584 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8585 MatchingOpInfo.ConstraintVT); 8586 if ((OpInfo.ConstraintVT.isInteger() != 8587 MatchingOpInfo.ConstraintVT.isInteger()) || 8588 (MatchRC.second != InputRC.second)) { 8589 // FIXME: error out in a more elegant fashion 8590 report_fatal_error("Unsupported asm: input constraint" 8591 " with a matching output constraint of" 8592 " incompatible type!"); 8593 } 8594 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8595 } 8596 8597 /// Get a direct memory input to behave well as an indirect operand. 8598 /// This may introduce stores, hence the need for a \p Chain. 8599 /// \return The (possibly updated) chain. 8600 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8601 SDISelAsmOperandInfo &OpInfo, 8602 SelectionDAG &DAG) { 8603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8604 8605 // If we don't have an indirect input, put it in the constpool if we can, 8606 // otherwise spill it to a stack slot. 8607 // TODO: This isn't quite right. We need to handle these according to 8608 // the addressing mode that the constraint wants. Also, this may take 8609 // an additional register for the computation and we don't want that 8610 // either. 8611 8612 // If the operand is a float, integer, or vector constant, spill to a 8613 // constant pool entry to get its address. 8614 const Value *OpVal = OpInfo.CallOperandVal; 8615 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8616 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8617 OpInfo.CallOperand = DAG.getConstantPool( 8618 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8619 return Chain; 8620 } 8621 8622 // Otherwise, create a stack slot and emit a store to it before the asm. 8623 Type *Ty = OpVal->getType(); 8624 auto &DL = DAG.getDataLayout(); 8625 uint64_t TySize = DL.getTypeAllocSize(Ty); 8626 MachineFunction &MF = DAG.getMachineFunction(); 8627 int SSFI = MF.getFrameInfo().CreateStackObject( 8628 TySize, DL.getPrefTypeAlign(Ty), false); 8629 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8630 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8631 MachinePointerInfo::getFixedStack(MF, SSFI), 8632 TLI.getMemValueType(DL, Ty)); 8633 OpInfo.CallOperand = StackSlot; 8634 8635 return Chain; 8636 } 8637 8638 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8639 /// specified operand. We prefer to assign virtual registers, to allow the 8640 /// register allocator to handle the assignment process. However, if the asm 8641 /// uses features that we can't model on machineinstrs, we have SDISel do the 8642 /// allocation. This produces generally horrible, but correct, code. 8643 /// 8644 /// OpInfo describes the operand 8645 /// RefOpInfo describes the matching operand if any, the operand otherwise 8646 static std::optional<unsigned> 8647 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8648 SDISelAsmOperandInfo &OpInfo, 8649 SDISelAsmOperandInfo &RefOpInfo) { 8650 LLVMContext &Context = *DAG.getContext(); 8651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8652 8653 MachineFunction &MF = DAG.getMachineFunction(); 8654 SmallVector<unsigned, 4> Regs; 8655 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8656 8657 // No work to do for memory/address operands. 8658 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8659 OpInfo.ConstraintType == TargetLowering::C_Address) 8660 return std::nullopt; 8661 8662 // If this is a constraint for a single physreg, or a constraint for a 8663 // register class, find it. 8664 unsigned AssignedReg; 8665 const TargetRegisterClass *RC; 8666 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8667 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8668 // RC is unset only on failure. Return immediately. 8669 if (!RC) 8670 return std::nullopt; 8671 8672 // Get the actual register value type. This is important, because the user 8673 // may have asked for (e.g.) the AX register in i32 type. We need to 8674 // remember that AX is actually i16 to get the right extension. 8675 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8676 8677 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8678 // If this is an FP operand in an integer register (or visa versa), or more 8679 // generally if the operand value disagrees with the register class we plan 8680 // to stick it in, fix the operand type. 8681 // 8682 // If this is an input value, the bitcast to the new type is done now. 8683 // Bitcast for output value is done at the end of visitInlineAsm(). 8684 if ((OpInfo.Type == InlineAsm::isOutput || 8685 OpInfo.Type == InlineAsm::isInput) && 8686 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8687 // Try to convert to the first EVT that the reg class contains. If the 8688 // types are identical size, use a bitcast to convert (e.g. two differing 8689 // vector types). Note: output bitcast is done at the end of 8690 // visitInlineAsm(). 8691 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8692 // Exclude indirect inputs while they are unsupported because the code 8693 // to perform the load is missing and thus OpInfo.CallOperand still 8694 // refers to the input address rather than the pointed-to value. 8695 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8696 OpInfo.CallOperand = 8697 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8698 OpInfo.ConstraintVT = RegVT; 8699 // If the operand is an FP value and we want it in integer registers, 8700 // use the corresponding integer type. This turns an f64 value into 8701 // i64, which can be passed with two i32 values on a 32-bit machine. 8702 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8703 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8704 if (OpInfo.Type == InlineAsm::isInput) 8705 OpInfo.CallOperand = 8706 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8707 OpInfo.ConstraintVT = VT; 8708 } 8709 } 8710 } 8711 8712 // No need to allocate a matching input constraint since the constraint it's 8713 // matching to has already been allocated. 8714 if (OpInfo.isMatchingInputConstraint()) 8715 return std::nullopt; 8716 8717 EVT ValueVT = OpInfo.ConstraintVT; 8718 if (OpInfo.ConstraintVT == MVT::Other) 8719 ValueVT = RegVT; 8720 8721 // Initialize NumRegs. 8722 unsigned NumRegs = 1; 8723 if (OpInfo.ConstraintVT != MVT::Other) 8724 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8725 8726 // If this is a constraint for a specific physical register, like {r17}, 8727 // assign it now. 8728 8729 // If this associated to a specific register, initialize iterator to correct 8730 // place. If virtual, make sure we have enough registers 8731 8732 // Initialize iterator if necessary 8733 TargetRegisterClass::iterator I = RC->begin(); 8734 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8735 8736 // Do not check for single registers. 8737 if (AssignedReg) { 8738 I = std::find(I, RC->end(), AssignedReg); 8739 if (I == RC->end()) { 8740 // RC does not contain the selected register, which indicates a 8741 // mismatch between the register and the required type/bitwidth. 8742 return {AssignedReg}; 8743 } 8744 } 8745 8746 for (; NumRegs; --NumRegs, ++I) { 8747 assert(I != RC->end() && "Ran out of registers to allocate!"); 8748 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8749 Regs.push_back(R); 8750 } 8751 8752 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8753 return std::nullopt; 8754 } 8755 8756 static unsigned 8757 findMatchingInlineAsmOperand(unsigned OperandNo, 8758 const std::vector<SDValue> &AsmNodeOperands) { 8759 // Scan until we find the definition we already emitted of this operand. 8760 unsigned CurOp = InlineAsm::Op_FirstOperand; 8761 for (; OperandNo; --OperandNo) { 8762 // Advance to the next operand. 8763 unsigned OpFlag = 8764 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8765 assert((InlineAsm::isRegDefKind(OpFlag) || 8766 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8767 InlineAsm::isMemKind(OpFlag)) && 8768 "Skipped past definitions?"); 8769 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8770 } 8771 return CurOp; 8772 } 8773 8774 namespace { 8775 8776 class ExtraFlags { 8777 unsigned Flags = 0; 8778 8779 public: 8780 explicit ExtraFlags(const CallBase &Call) { 8781 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8782 if (IA->hasSideEffects()) 8783 Flags |= InlineAsm::Extra_HasSideEffects; 8784 if (IA->isAlignStack()) 8785 Flags |= InlineAsm::Extra_IsAlignStack; 8786 if (Call.isConvergent()) 8787 Flags |= InlineAsm::Extra_IsConvergent; 8788 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8789 } 8790 8791 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8792 // Ideally, we would only check against memory constraints. However, the 8793 // meaning of an Other constraint can be target-specific and we can't easily 8794 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8795 // for Other constraints as well. 8796 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8797 OpInfo.ConstraintType == TargetLowering::C_Other) { 8798 if (OpInfo.Type == InlineAsm::isInput) 8799 Flags |= InlineAsm::Extra_MayLoad; 8800 else if (OpInfo.Type == InlineAsm::isOutput) 8801 Flags |= InlineAsm::Extra_MayStore; 8802 else if (OpInfo.Type == InlineAsm::isClobber) 8803 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8804 } 8805 } 8806 8807 unsigned get() const { return Flags; } 8808 }; 8809 8810 } // end anonymous namespace 8811 8812 static bool isFunction(SDValue Op) { 8813 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8814 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8815 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8816 8817 // In normal "call dllimport func" instruction (non-inlineasm) it force 8818 // indirect access by specifing call opcode. And usually specially print 8819 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8820 // not do in this way now. (In fact, this is similar with "Data Access" 8821 // action). So here we ignore dllimport function. 8822 if (Fn && !Fn->hasDLLImportStorageClass()) 8823 return true; 8824 } 8825 } 8826 return false; 8827 } 8828 8829 /// visitInlineAsm - Handle a call to an InlineAsm object. 8830 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8831 const BasicBlock *EHPadBB) { 8832 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8833 8834 /// ConstraintOperands - Information about all of the constraints. 8835 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8836 8837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8838 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8839 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8840 8841 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8842 // AsmDialect, MayLoad, MayStore). 8843 bool HasSideEffect = IA->hasSideEffects(); 8844 ExtraFlags ExtraInfo(Call); 8845 8846 for (auto &T : TargetConstraints) { 8847 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8848 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8849 8850 if (OpInfo.CallOperandVal) 8851 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8852 8853 if (!HasSideEffect) 8854 HasSideEffect = OpInfo.hasMemory(TLI); 8855 8856 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8857 // FIXME: Could we compute this on OpInfo rather than T? 8858 8859 // Compute the constraint code and ConstraintType to use. 8860 TLI.ComputeConstraintToUse(T, SDValue()); 8861 8862 if (T.ConstraintType == TargetLowering::C_Immediate && 8863 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8864 // We've delayed emitting a diagnostic like the "n" constraint because 8865 // inlining could cause an integer showing up. 8866 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8867 "' expects an integer constant " 8868 "expression"); 8869 8870 ExtraInfo.update(T); 8871 } 8872 8873 // We won't need to flush pending loads if this asm doesn't touch 8874 // memory and is nonvolatile. 8875 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8876 8877 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8878 if (EmitEHLabels) { 8879 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8880 } 8881 bool IsCallBr = isa<CallBrInst>(Call); 8882 8883 if (IsCallBr || EmitEHLabels) { 8884 // If this is a callbr or invoke we need to flush pending exports since 8885 // inlineasm_br and invoke are terminators. 8886 // We need to do this before nodes are glued to the inlineasm_br node. 8887 Chain = getControlRoot(); 8888 } 8889 8890 MCSymbol *BeginLabel = nullptr; 8891 if (EmitEHLabels) { 8892 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8893 } 8894 8895 int OpNo = -1; 8896 SmallVector<StringRef> AsmStrs; 8897 IA->collectAsmStrs(AsmStrs); 8898 8899 // Second pass over the constraints: compute which constraint option to use. 8900 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8901 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8902 OpNo++; 8903 8904 // If this is an output operand with a matching input operand, look up the 8905 // matching input. If their types mismatch, e.g. one is an integer, the 8906 // other is floating point, or their sizes are different, flag it as an 8907 // error. 8908 if (OpInfo.hasMatchingInput()) { 8909 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8910 patchMatchingInput(OpInfo, Input, DAG); 8911 } 8912 8913 // Compute the constraint code and ConstraintType to use. 8914 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8915 8916 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8917 OpInfo.Type == InlineAsm::isClobber) || 8918 OpInfo.ConstraintType == TargetLowering::C_Address) 8919 continue; 8920 8921 // In Linux PIC model, there are 4 cases about value/label addressing: 8922 // 8923 // 1: Function call or Label jmp inside the module. 8924 // 2: Data access (such as global variable, static variable) inside module. 8925 // 3: Function call or Label jmp outside the module. 8926 // 4: Data access (such as global variable) outside the module. 8927 // 8928 // Due to current llvm inline asm architecture designed to not "recognize" 8929 // the asm code, there are quite troubles for us to treat mem addressing 8930 // differently for same value/adress used in different instuctions. 8931 // For example, in pic model, call a func may in plt way or direclty 8932 // pc-related, but lea/mov a function adress may use got. 8933 // 8934 // Here we try to "recognize" function call for the case 1 and case 3 in 8935 // inline asm. And try to adjust the constraint for them. 8936 // 8937 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8938 // label, so here we don't handle jmp function label now, but we need to 8939 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8940 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8941 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8942 TM.getCodeModel() != CodeModel::Large) { 8943 OpInfo.isIndirect = false; 8944 OpInfo.ConstraintType = TargetLowering::C_Address; 8945 } 8946 8947 // If this is a memory input, and if the operand is not indirect, do what we 8948 // need to provide an address for the memory input. 8949 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8950 !OpInfo.isIndirect) { 8951 assert((OpInfo.isMultipleAlternative || 8952 (OpInfo.Type == InlineAsm::isInput)) && 8953 "Can only indirectify direct input operands!"); 8954 8955 // Memory operands really want the address of the value. 8956 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8957 8958 // There is no longer a Value* corresponding to this operand. 8959 OpInfo.CallOperandVal = nullptr; 8960 8961 // It is now an indirect operand. 8962 OpInfo.isIndirect = true; 8963 } 8964 8965 } 8966 8967 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8968 std::vector<SDValue> AsmNodeOperands; 8969 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8970 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8971 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8972 8973 // If we have a !srcloc metadata node associated with it, we want to attach 8974 // this to the ultimately generated inline asm machineinstr. To do this, we 8975 // pass in the third operand as this (potentially null) inline asm MDNode. 8976 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8977 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8978 8979 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8980 // bits as operand 3. 8981 AsmNodeOperands.push_back(DAG.getTargetConstant( 8982 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8983 8984 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8985 // this, assign virtual and physical registers for inputs and otput. 8986 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8987 // Assign Registers. 8988 SDISelAsmOperandInfo &RefOpInfo = 8989 OpInfo.isMatchingInputConstraint() 8990 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8991 : OpInfo; 8992 const auto RegError = 8993 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8994 if (RegError) { 8995 const MachineFunction &MF = DAG.getMachineFunction(); 8996 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8997 const char *RegName = TRI.getName(RegError.value()); 8998 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8999 "' allocated for constraint '" + 9000 Twine(OpInfo.ConstraintCode) + 9001 "' does not match required type"); 9002 return; 9003 } 9004 9005 auto DetectWriteToReservedRegister = [&]() { 9006 const MachineFunction &MF = DAG.getMachineFunction(); 9007 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9008 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9009 if (Register::isPhysicalRegister(Reg) && 9010 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9011 const char *RegName = TRI.getName(Reg); 9012 emitInlineAsmError(Call, "write to reserved register '" + 9013 Twine(RegName) + "'"); 9014 return true; 9015 } 9016 } 9017 return false; 9018 }; 9019 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9020 (OpInfo.Type == InlineAsm::isInput && 9021 !OpInfo.isMatchingInputConstraint())) && 9022 "Only address as input operand is allowed."); 9023 9024 switch (OpInfo.Type) { 9025 case InlineAsm::isOutput: 9026 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9027 unsigned ConstraintID = 9028 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9029 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9030 "Failed to convert memory constraint code to constraint id."); 9031 9032 // Add information to the INLINEASM node to know about this output. 9033 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9034 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 9035 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9036 MVT::i32)); 9037 AsmNodeOperands.push_back(OpInfo.CallOperand); 9038 } else { 9039 // Otherwise, this outputs to a register (directly for C_Register / 9040 // C_RegisterClass, and a target-defined fashion for 9041 // C_Immediate/C_Other). Find a register that we can use. 9042 if (OpInfo.AssignedRegs.Regs.empty()) { 9043 emitInlineAsmError( 9044 Call, "couldn't allocate output register for constraint '" + 9045 Twine(OpInfo.ConstraintCode) + "'"); 9046 return; 9047 } 9048 9049 if (DetectWriteToReservedRegister()) 9050 return; 9051 9052 // Add information to the INLINEASM node to know that this register is 9053 // set. 9054 OpInfo.AssignedRegs.AddInlineAsmOperands( 9055 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9056 : InlineAsm::Kind_RegDef, 9057 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9058 } 9059 break; 9060 9061 case InlineAsm::isInput: 9062 case InlineAsm::isLabel: { 9063 SDValue InOperandVal = OpInfo.CallOperand; 9064 9065 if (OpInfo.isMatchingInputConstraint()) { 9066 // If this is required to match an output register we have already set, 9067 // just use its register. 9068 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9069 AsmNodeOperands); 9070 unsigned OpFlag = 9071 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9072 if (InlineAsm::isRegDefKind(OpFlag) || 9073 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9074 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9075 if (OpInfo.isIndirect) { 9076 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9077 emitInlineAsmError(Call, "inline asm not supported yet: " 9078 "don't know how to handle tied " 9079 "indirect register inputs"); 9080 return; 9081 } 9082 9083 SmallVector<unsigned, 4> Regs; 9084 MachineFunction &MF = DAG.getMachineFunction(); 9085 MachineRegisterInfo &MRI = MF.getRegInfo(); 9086 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9087 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9088 Register TiedReg = R->getReg(); 9089 MVT RegVT = R->getSimpleValueType(0); 9090 const TargetRegisterClass *RC = 9091 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9092 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9093 : TRI.getMinimalPhysRegClass(TiedReg); 9094 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9095 for (unsigned i = 0; i != NumRegs; ++i) 9096 Regs.push_back(MRI.createVirtualRegister(RC)); 9097 9098 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9099 9100 SDLoc dl = getCurSDLoc(); 9101 // Use the produced MatchedRegs object to 9102 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9103 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9104 true, OpInfo.getMatchedOperand(), dl, 9105 DAG, AsmNodeOperands); 9106 break; 9107 } 9108 9109 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9110 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9111 "Unexpected number of operands"); 9112 // Add information to the INLINEASM node to know about this input. 9113 // See InlineAsm.h isUseOperandTiedToDef. 9114 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9115 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9116 OpInfo.getMatchedOperand()); 9117 AsmNodeOperands.push_back(DAG.getTargetConstant( 9118 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9119 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9120 break; 9121 } 9122 9123 // Treat indirect 'X' constraint as memory. 9124 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9125 OpInfo.isIndirect) 9126 OpInfo.ConstraintType = TargetLowering::C_Memory; 9127 9128 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9129 OpInfo.ConstraintType == TargetLowering::C_Other) { 9130 std::vector<SDValue> Ops; 9131 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9132 Ops, DAG); 9133 if (Ops.empty()) { 9134 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9135 if (isa<ConstantSDNode>(InOperandVal)) { 9136 emitInlineAsmError(Call, "value out of range for constraint '" + 9137 Twine(OpInfo.ConstraintCode) + "'"); 9138 return; 9139 } 9140 9141 emitInlineAsmError(Call, 9142 "invalid operand for inline asm constraint '" + 9143 Twine(OpInfo.ConstraintCode) + "'"); 9144 return; 9145 } 9146 9147 // Add information to the INLINEASM node to know about this input. 9148 unsigned ResOpType = 9149 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9150 AsmNodeOperands.push_back(DAG.getTargetConstant( 9151 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9152 llvm::append_range(AsmNodeOperands, Ops); 9153 break; 9154 } 9155 9156 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9157 assert((OpInfo.isIndirect || 9158 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9159 "Operand must be indirect to be a mem!"); 9160 assert(InOperandVal.getValueType() == 9161 TLI.getPointerTy(DAG.getDataLayout()) && 9162 "Memory operands expect pointer values"); 9163 9164 unsigned ConstraintID = 9165 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9166 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9167 "Failed to convert memory constraint code to constraint id."); 9168 9169 // Add information to the INLINEASM node to know about this input. 9170 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9171 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9172 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9173 getCurSDLoc(), 9174 MVT::i32)); 9175 AsmNodeOperands.push_back(InOperandVal); 9176 break; 9177 } 9178 9179 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9180 assert(InOperandVal.getValueType() == 9181 TLI.getPointerTy(DAG.getDataLayout()) && 9182 "Address operands expect pointer values"); 9183 9184 unsigned ConstraintID = 9185 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9186 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9187 "Failed to convert memory constraint code to constraint id."); 9188 9189 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9190 9191 SDValue AsmOp = InOperandVal; 9192 if (isFunction(InOperandVal)) { 9193 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9194 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9195 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9196 InOperandVal.getValueType(), 9197 GA->getOffset()); 9198 } 9199 9200 // Add information to the INLINEASM node to know about this input. 9201 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9202 9203 AsmNodeOperands.push_back( 9204 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9205 9206 AsmNodeOperands.push_back(AsmOp); 9207 break; 9208 } 9209 9210 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9211 OpInfo.ConstraintType == TargetLowering::C_Register) && 9212 "Unknown constraint type!"); 9213 9214 // TODO: Support this. 9215 if (OpInfo.isIndirect) { 9216 emitInlineAsmError( 9217 Call, "Don't know how to handle indirect register inputs yet " 9218 "for constraint '" + 9219 Twine(OpInfo.ConstraintCode) + "'"); 9220 return; 9221 } 9222 9223 // Copy the input into the appropriate registers. 9224 if (OpInfo.AssignedRegs.Regs.empty()) { 9225 emitInlineAsmError(Call, 9226 "couldn't allocate input reg for constraint '" + 9227 Twine(OpInfo.ConstraintCode) + "'"); 9228 return; 9229 } 9230 9231 if (DetectWriteToReservedRegister()) 9232 return; 9233 9234 SDLoc dl = getCurSDLoc(); 9235 9236 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9237 &Call); 9238 9239 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9240 dl, DAG, AsmNodeOperands); 9241 break; 9242 } 9243 case InlineAsm::isClobber: 9244 // Add the clobbered value to the operand list, so that the register 9245 // allocator is aware that the physreg got clobbered. 9246 if (!OpInfo.AssignedRegs.Regs.empty()) 9247 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9248 false, 0, getCurSDLoc(), DAG, 9249 AsmNodeOperands); 9250 break; 9251 } 9252 } 9253 9254 // Finish up input operands. Set the input chain and add the flag last. 9255 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9256 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9257 9258 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9259 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9260 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9261 Flag = Chain.getValue(1); 9262 9263 // Do additional work to generate outputs. 9264 9265 SmallVector<EVT, 1> ResultVTs; 9266 SmallVector<SDValue, 1> ResultValues; 9267 SmallVector<SDValue, 8> OutChains; 9268 9269 llvm::Type *CallResultType = Call.getType(); 9270 ArrayRef<Type *> ResultTypes; 9271 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9272 ResultTypes = StructResult->elements(); 9273 else if (!CallResultType->isVoidTy()) 9274 ResultTypes = makeArrayRef(CallResultType); 9275 9276 auto CurResultType = ResultTypes.begin(); 9277 auto handleRegAssign = [&](SDValue V) { 9278 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9279 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9280 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9281 ++CurResultType; 9282 // If the type of the inline asm call site return value is different but has 9283 // same size as the type of the asm output bitcast it. One example of this 9284 // is for vectors with different width / number of elements. This can 9285 // happen for register classes that can contain multiple different value 9286 // types. The preg or vreg allocated may not have the same VT as was 9287 // expected. 9288 // 9289 // This can also happen for a return value that disagrees with the register 9290 // class it is put in, eg. a double in a general-purpose register on a 9291 // 32-bit machine. 9292 if (ResultVT != V.getValueType() && 9293 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9294 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9295 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9296 V.getValueType().isInteger()) { 9297 // If a result value was tied to an input value, the computed result 9298 // may have a wider width than the expected result. Extract the 9299 // relevant portion. 9300 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9301 } 9302 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9303 ResultVTs.push_back(ResultVT); 9304 ResultValues.push_back(V); 9305 }; 9306 9307 // Deal with output operands. 9308 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9309 if (OpInfo.Type == InlineAsm::isOutput) { 9310 SDValue Val; 9311 // Skip trivial output operands. 9312 if (OpInfo.AssignedRegs.Regs.empty()) 9313 continue; 9314 9315 switch (OpInfo.ConstraintType) { 9316 case TargetLowering::C_Register: 9317 case TargetLowering::C_RegisterClass: 9318 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9319 Chain, &Flag, &Call); 9320 break; 9321 case TargetLowering::C_Immediate: 9322 case TargetLowering::C_Other: 9323 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9324 OpInfo, DAG); 9325 break; 9326 case TargetLowering::C_Memory: 9327 break; // Already handled. 9328 case TargetLowering::C_Address: 9329 break; // Silence warning. 9330 case TargetLowering::C_Unknown: 9331 assert(false && "Unexpected unknown constraint"); 9332 } 9333 9334 // Indirect output manifest as stores. Record output chains. 9335 if (OpInfo.isIndirect) { 9336 const Value *Ptr = OpInfo.CallOperandVal; 9337 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9338 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9339 MachinePointerInfo(Ptr)); 9340 OutChains.push_back(Store); 9341 } else { 9342 // generate CopyFromRegs to associated registers. 9343 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9344 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9345 for (const SDValue &V : Val->op_values()) 9346 handleRegAssign(V); 9347 } else 9348 handleRegAssign(Val); 9349 } 9350 } 9351 } 9352 9353 // Set results. 9354 if (!ResultValues.empty()) { 9355 assert(CurResultType == ResultTypes.end() && 9356 "Mismatch in number of ResultTypes"); 9357 assert(ResultValues.size() == ResultTypes.size() && 9358 "Mismatch in number of output operands in asm result"); 9359 9360 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9361 DAG.getVTList(ResultVTs), ResultValues); 9362 setValue(&Call, V); 9363 } 9364 9365 // Collect store chains. 9366 if (!OutChains.empty()) 9367 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9368 9369 if (EmitEHLabels) { 9370 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9371 } 9372 9373 // Only Update Root if inline assembly has a memory effect. 9374 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9375 EmitEHLabels) 9376 DAG.setRoot(Chain); 9377 } 9378 9379 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9380 const Twine &Message) { 9381 LLVMContext &Ctx = *DAG.getContext(); 9382 Ctx.emitError(&Call, Message); 9383 9384 // Make sure we leave the DAG in a valid state 9385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9386 SmallVector<EVT, 1> ValueVTs; 9387 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9388 9389 if (ValueVTs.empty()) 9390 return; 9391 9392 SmallVector<SDValue, 1> Ops; 9393 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9394 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9395 9396 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9397 } 9398 9399 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9400 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9401 MVT::Other, getRoot(), 9402 getValue(I.getArgOperand(0)), 9403 DAG.getSrcValue(I.getArgOperand(0)))); 9404 } 9405 9406 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9407 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9408 const DataLayout &DL = DAG.getDataLayout(); 9409 SDValue V = DAG.getVAArg( 9410 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9411 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9412 DL.getABITypeAlign(I.getType()).value()); 9413 DAG.setRoot(V.getValue(1)); 9414 9415 if (I.getType()->isPointerTy()) 9416 V = DAG.getPtrExtOrTrunc( 9417 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9418 setValue(&I, V); 9419 } 9420 9421 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9422 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9423 MVT::Other, getRoot(), 9424 getValue(I.getArgOperand(0)), 9425 DAG.getSrcValue(I.getArgOperand(0)))); 9426 } 9427 9428 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9429 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9430 MVT::Other, getRoot(), 9431 getValue(I.getArgOperand(0)), 9432 getValue(I.getArgOperand(1)), 9433 DAG.getSrcValue(I.getArgOperand(0)), 9434 DAG.getSrcValue(I.getArgOperand(1)))); 9435 } 9436 9437 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9438 const Instruction &I, 9439 SDValue Op) { 9440 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9441 if (!Range) 9442 return Op; 9443 9444 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9445 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9446 return Op; 9447 9448 APInt Lo = CR.getUnsignedMin(); 9449 if (!Lo.isMinValue()) 9450 return Op; 9451 9452 APInt Hi = CR.getUnsignedMax(); 9453 unsigned Bits = std::max(Hi.getActiveBits(), 9454 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9455 9456 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9457 9458 SDLoc SL = getCurSDLoc(); 9459 9460 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9461 DAG.getValueType(SmallVT)); 9462 unsigned NumVals = Op.getNode()->getNumValues(); 9463 if (NumVals == 1) 9464 return ZExt; 9465 9466 SmallVector<SDValue, 4> Ops; 9467 9468 Ops.push_back(ZExt); 9469 for (unsigned I = 1; I != NumVals; ++I) 9470 Ops.push_back(Op.getValue(I)); 9471 9472 return DAG.getMergeValues(Ops, SL); 9473 } 9474 9475 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9476 /// the call being lowered. 9477 /// 9478 /// This is a helper for lowering intrinsics that follow a target calling 9479 /// convention or require stack pointer adjustment. Only a subset of the 9480 /// intrinsic's operands need to participate in the calling convention. 9481 void SelectionDAGBuilder::populateCallLoweringInfo( 9482 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9483 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9484 bool IsPatchPoint) { 9485 TargetLowering::ArgListTy Args; 9486 Args.reserve(NumArgs); 9487 9488 // Populate the argument list. 9489 // Attributes for args start at offset 1, after the return attribute. 9490 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9491 ArgI != ArgE; ++ArgI) { 9492 const Value *V = Call->getOperand(ArgI); 9493 9494 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9495 9496 TargetLowering::ArgListEntry Entry; 9497 Entry.Node = getValue(V); 9498 Entry.Ty = V->getType(); 9499 Entry.setAttributes(Call, ArgI); 9500 Args.push_back(Entry); 9501 } 9502 9503 CLI.setDebugLoc(getCurSDLoc()) 9504 .setChain(getRoot()) 9505 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9506 .setDiscardResult(Call->use_empty()) 9507 .setIsPatchPoint(IsPatchPoint) 9508 .setIsPreallocated( 9509 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9510 } 9511 9512 /// Add a stack map intrinsic call's live variable operands to a stackmap 9513 /// or patchpoint target node's operand list. 9514 /// 9515 /// Constants are converted to TargetConstants purely as an optimization to 9516 /// avoid constant materialization and register allocation. 9517 /// 9518 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9519 /// generate addess computation nodes, and so FinalizeISel can convert the 9520 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9521 /// address materialization and register allocation, but may also be required 9522 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9523 /// alloca in the entry block, then the runtime may assume that the alloca's 9524 /// StackMap location can be read immediately after compilation and that the 9525 /// location is valid at any point during execution (this is similar to the 9526 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9527 /// only available in a register, then the runtime would need to trap when 9528 /// execution reaches the StackMap in order to read the alloca's location. 9529 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9530 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9531 SelectionDAGBuilder &Builder) { 9532 SelectionDAG &DAG = Builder.DAG; 9533 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9534 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9535 9536 // Things on the stack are pointer-typed, meaning that they are already 9537 // legal and can be emitted directly to target nodes. 9538 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9539 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9540 } else { 9541 // Otherwise emit a target independent node to be legalised. 9542 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9543 } 9544 } 9545 } 9546 9547 /// Lower llvm.experimental.stackmap. 9548 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9549 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9550 // [live variables...]) 9551 9552 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9553 9554 SDValue Chain, InFlag, Callee; 9555 SmallVector<SDValue, 32> Ops; 9556 9557 SDLoc DL = getCurSDLoc(); 9558 Callee = getValue(CI.getCalledOperand()); 9559 9560 // The stackmap intrinsic only records the live variables (the arguments 9561 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9562 // intrinsic, this won't be lowered to a function call. This means we don't 9563 // have to worry about calling conventions and target specific lowering code. 9564 // Instead we perform the call lowering right here. 9565 // 9566 // chain, flag = CALLSEQ_START(chain, 0, 0) 9567 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9568 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9569 // 9570 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9571 InFlag = Chain.getValue(1); 9572 9573 // Add the STACKMAP operands, starting with DAG house-keeping. 9574 Ops.push_back(Chain); 9575 Ops.push_back(InFlag); 9576 9577 // Add the <id>, <numShadowBytes> operands. 9578 // 9579 // These do not require legalisation, and can be emitted directly to target 9580 // constant nodes. 9581 SDValue ID = getValue(CI.getArgOperand(0)); 9582 assert(ID.getValueType() == MVT::i64); 9583 SDValue IDConst = DAG.getTargetConstant( 9584 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9585 Ops.push_back(IDConst); 9586 9587 SDValue Shad = getValue(CI.getArgOperand(1)); 9588 assert(Shad.getValueType() == MVT::i32); 9589 SDValue ShadConst = DAG.getTargetConstant( 9590 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9591 Ops.push_back(ShadConst); 9592 9593 // Add the live variables. 9594 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9595 9596 // Create the STACKMAP node. 9597 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9598 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9599 InFlag = Chain.getValue(1); 9600 9601 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9602 9603 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9604 9605 // Set the root to the target-lowered call chain. 9606 DAG.setRoot(Chain); 9607 9608 // Inform the Frame Information that we have a stackmap in this function. 9609 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9610 } 9611 9612 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9613 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9614 const BasicBlock *EHPadBB) { 9615 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9616 // i32 <numBytes>, 9617 // i8* <target>, 9618 // i32 <numArgs>, 9619 // [Args...], 9620 // [live variables...]) 9621 9622 CallingConv::ID CC = CB.getCallingConv(); 9623 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9624 bool HasDef = !CB.getType()->isVoidTy(); 9625 SDLoc dl = getCurSDLoc(); 9626 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9627 9628 // Handle immediate and symbolic callees. 9629 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9630 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9631 /*isTarget=*/true); 9632 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9633 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9634 SDLoc(SymbolicCallee), 9635 SymbolicCallee->getValueType(0)); 9636 9637 // Get the real number of arguments participating in the call <numArgs> 9638 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9639 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9640 9641 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9642 // Intrinsics include all meta-operands up to but not including CC. 9643 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9644 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9645 "Not enough arguments provided to the patchpoint intrinsic"); 9646 9647 // For AnyRegCC the arguments are lowered later on manually. 9648 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9649 Type *ReturnTy = 9650 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9651 9652 TargetLowering::CallLoweringInfo CLI(DAG); 9653 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9654 ReturnTy, true); 9655 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9656 9657 SDNode *CallEnd = Result.second.getNode(); 9658 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9659 CallEnd = CallEnd->getOperand(0).getNode(); 9660 9661 /// Get a call instruction from the call sequence chain. 9662 /// Tail calls are not allowed. 9663 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9664 "Expected a callseq node."); 9665 SDNode *Call = CallEnd->getOperand(0).getNode(); 9666 bool HasGlue = Call->getGluedNode(); 9667 9668 // Replace the target specific call node with the patchable intrinsic. 9669 SmallVector<SDValue, 8> Ops; 9670 9671 // Push the chain. 9672 Ops.push_back(*(Call->op_begin())); 9673 9674 // Optionally, push the glue (if any). 9675 if (HasGlue) 9676 Ops.push_back(*(Call->op_end() - 1)); 9677 9678 // Push the register mask info. 9679 if (HasGlue) 9680 Ops.push_back(*(Call->op_end() - 2)); 9681 else 9682 Ops.push_back(*(Call->op_end() - 1)); 9683 9684 // Add the <id> and <numBytes> constants. 9685 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9686 Ops.push_back(DAG.getTargetConstant( 9687 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9688 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9689 Ops.push_back(DAG.getTargetConstant( 9690 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9691 MVT::i32)); 9692 9693 // Add the callee. 9694 Ops.push_back(Callee); 9695 9696 // Adjust <numArgs> to account for any arguments that have been passed on the 9697 // stack instead. 9698 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9699 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9700 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9701 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9702 9703 // Add the calling convention 9704 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9705 9706 // Add the arguments we omitted previously. The register allocator should 9707 // place these in any free register. 9708 if (IsAnyRegCC) 9709 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9710 Ops.push_back(getValue(CB.getArgOperand(i))); 9711 9712 // Push the arguments from the call instruction. 9713 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9714 Ops.append(Call->op_begin() + 2, e); 9715 9716 // Push live variables for the stack map. 9717 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9718 9719 SDVTList NodeTys; 9720 if (IsAnyRegCC && HasDef) { 9721 // Create the return types based on the intrinsic definition 9722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9723 SmallVector<EVT, 3> ValueVTs; 9724 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9725 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9726 9727 // There is always a chain and a glue type at the end 9728 ValueVTs.push_back(MVT::Other); 9729 ValueVTs.push_back(MVT::Glue); 9730 NodeTys = DAG.getVTList(ValueVTs); 9731 } else 9732 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9733 9734 // Replace the target specific call node with a PATCHPOINT node. 9735 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9736 9737 // Update the NodeMap. 9738 if (HasDef) { 9739 if (IsAnyRegCC) 9740 setValue(&CB, SDValue(PPV.getNode(), 0)); 9741 else 9742 setValue(&CB, Result.first); 9743 } 9744 9745 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9746 // call sequence. Furthermore the location of the chain and glue can change 9747 // when the AnyReg calling convention is used and the intrinsic returns a 9748 // value. 9749 if (IsAnyRegCC && HasDef) { 9750 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9751 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9752 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9753 } else 9754 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9755 DAG.DeleteNode(Call); 9756 9757 // Inform the Frame Information that we have a patchpoint in this function. 9758 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9759 } 9760 9761 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9762 unsigned Intrinsic) { 9763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9764 SDValue Op1 = getValue(I.getArgOperand(0)); 9765 SDValue Op2; 9766 if (I.arg_size() > 1) 9767 Op2 = getValue(I.getArgOperand(1)); 9768 SDLoc dl = getCurSDLoc(); 9769 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9770 SDValue Res; 9771 SDNodeFlags SDFlags; 9772 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9773 SDFlags.copyFMF(*FPMO); 9774 9775 switch (Intrinsic) { 9776 case Intrinsic::vector_reduce_fadd: 9777 if (SDFlags.hasAllowReassociation()) 9778 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9779 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9780 SDFlags); 9781 else 9782 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9783 break; 9784 case Intrinsic::vector_reduce_fmul: 9785 if (SDFlags.hasAllowReassociation()) 9786 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9787 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9788 SDFlags); 9789 else 9790 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9791 break; 9792 case Intrinsic::vector_reduce_add: 9793 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9794 break; 9795 case Intrinsic::vector_reduce_mul: 9796 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9797 break; 9798 case Intrinsic::vector_reduce_and: 9799 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9800 break; 9801 case Intrinsic::vector_reduce_or: 9802 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9803 break; 9804 case Intrinsic::vector_reduce_xor: 9805 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9806 break; 9807 case Intrinsic::vector_reduce_smax: 9808 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9809 break; 9810 case Intrinsic::vector_reduce_smin: 9811 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9812 break; 9813 case Intrinsic::vector_reduce_umax: 9814 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9815 break; 9816 case Intrinsic::vector_reduce_umin: 9817 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9818 break; 9819 case Intrinsic::vector_reduce_fmax: 9820 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9821 break; 9822 case Intrinsic::vector_reduce_fmin: 9823 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9824 break; 9825 default: 9826 llvm_unreachable("Unhandled vector reduce intrinsic"); 9827 } 9828 setValue(&I, Res); 9829 } 9830 9831 /// Returns an AttributeList representing the attributes applied to the return 9832 /// value of the given call. 9833 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9834 SmallVector<Attribute::AttrKind, 2> Attrs; 9835 if (CLI.RetSExt) 9836 Attrs.push_back(Attribute::SExt); 9837 if (CLI.RetZExt) 9838 Attrs.push_back(Attribute::ZExt); 9839 if (CLI.IsInReg) 9840 Attrs.push_back(Attribute::InReg); 9841 9842 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9843 Attrs); 9844 } 9845 9846 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9847 /// implementation, which just calls LowerCall. 9848 /// FIXME: When all targets are 9849 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9850 std::pair<SDValue, SDValue> 9851 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9852 // Handle the incoming return values from the call. 9853 CLI.Ins.clear(); 9854 Type *OrigRetTy = CLI.RetTy; 9855 SmallVector<EVT, 4> RetTys; 9856 SmallVector<uint64_t, 4> Offsets; 9857 auto &DL = CLI.DAG.getDataLayout(); 9858 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9859 9860 if (CLI.IsPostTypeLegalization) { 9861 // If we are lowering a libcall after legalization, split the return type. 9862 SmallVector<EVT, 4> OldRetTys; 9863 SmallVector<uint64_t, 4> OldOffsets; 9864 RetTys.swap(OldRetTys); 9865 Offsets.swap(OldOffsets); 9866 9867 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9868 EVT RetVT = OldRetTys[i]; 9869 uint64_t Offset = OldOffsets[i]; 9870 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9871 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9872 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9873 RetTys.append(NumRegs, RegisterVT); 9874 for (unsigned j = 0; j != NumRegs; ++j) 9875 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9876 } 9877 } 9878 9879 SmallVector<ISD::OutputArg, 4> Outs; 9880 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9881 9882 bool CanLowerReturn = 9883 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9884 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9885 9886 SDValue DemoteStackSlot; 9887 int DemoteStackIdx = -100; 9888 if (!CanLowerReturn) { 9889 // FIXME: equivalent assert? 9890 // assert(!CS.hasInAllocaArgument() && 9891 // "sret demotion is incompatible with inalloca"); 9892 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9893 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9894 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9895 DemoteStackIdx = 9896 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9897 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9898 DL.getAllocaAddrSpace()); 9899 9900 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9901 ArgListEntry Entry; 9902 Entry.Node = DemoteStackSlot; 9903 Entry.Ty = StackSlotPtrType; 9904 Entry.IsSExt = false; 9905 Entry.IsZExt = false; 9906 Entry.IsInReg = false; 9907 Entry.IsSRet = true; 9908 Entry.IsNest = false; 9909 Entry.IsByVal = false; 9910 Entry.IsByRef = false; 9911 Entry.IsReturned = false; 9912 Entry.IsSwiftSelf = false; 9913 Entry.IsSwiftAsync = false; 9914 Entry.IsSwiftError = false; 9915 Entry.IsCFGuardTarget = false; 9916 Entry.Alignment = Alignment; 9917 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9918 CLI.NumFixedArgs += 1; 9919 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9920 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9921 9922 // sret demotion isn't compatible with tail-calls, since the sret argument 9923 // points into the callers stack frame. 9924 CLI.IsTailCall = false; 9925 } else { 9926 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9927 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9928 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9929 ISD::ArgFlagsTy Flags; 9930 if (NeedsRegBlock) { 9931 Flags.setInConsecutiveRegs(); 9932 if (I == RetTys.size() - 1) 9933 Flags.setInConsecutiveRegsLast(); 9934 } 9935 EVT VT = RetTys[I]; 9936 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9937 CLI.CallConv, VT); 9938 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9939 CLI.CallConv, VT); 9940 for (unsigned i = 0; i != NumRegs; ++i) { 9941 ISD::InputArg MyFlags; 9942 MyFlags.Flags = Flags; 9943 MyFlags.VT = RegisterVT; 9944 MyFlags.ArgVT = VT; 9945 MyFlags.Used = CLI.IsReturnValueUsed; 9946 if (CLI.RetTy->isPointerTy()) { 9947 MyFlags.Flags.setPointer(); 9948 MyFlags.Flags.setPointerAddrSpace( 9949 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9950 } 9951 if (CLI.RetSExt) 9952 MyFlags.Flags.setSExt(); 9953 if (CLI.RetZExt) 9954 MyFlags.Flags.setZExt(); 9955 if (CLI.IsInReg) 9956 MyFlags.Flags.setInReg(); 9957 CLI.Ins.push_back(MyFlags); 9958 } 9959 } 9960 } 9961 9962 // We push in swifterror return as the last element of CLI.Ins. 9963 ArgListTy &Args = CLI.getArgs(); 9964 if (supportSwiftError()) { 9965 for (const ArgListEntry &Arg : Args) { 9966 if (Arg.IsSwiftError) { 9967 ISD::InputArg MyFlags; 9968 MyFlags.VT = getPointerTy(DL); 9969 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9970 MyFlags.Flags.setSwiftError(); 9971 CLI.Ins.push_back(MyFlags); 9972 } 9973 } 9974 } 9975 9976 // Handle all of the outgoing arguments. 9977 CLI.Outs.clear(); 9978 CLI.OutVals.clear(); 9979 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9980 SmallVector<EVT, 4> ValueVTs; 9981 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9982 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9983 Type *FinalType = Args[i].Ty; 9984 if (Args[i].IsByVal) 9985 FinalType = Args[i].IndirectType; 9986 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9987 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9988 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9989 ++Value) { 9990 EVT VT = ValueVTs[Value]; 9991 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9992 SDValue Op = SDValue(Args[i].Node.getNode(), 9993 Args[i].Node.getResNo() + Value); 9994 ISD::ArgFlagsTy Flags; 9995 9996 // Certain targets (such as MIPS), may have a different ABI alignment 9997 // for a type depending on the context. Give the target a chance to 9998 // specify the alignment it wants. 9999 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10000 Flags.setOrigAlign(OriginalAlignment); 10001 10002 if (Args[i].Ty->isPointerTy()) { 10003 Flags.setPointer(); 10004 Flags.setPointerAddrSpace( 10005 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10006 } 10007 if (Args[i].IsZExt) 10008 Flags.setZExt(); 10009 if (Args[i].IsSExt) 10010 Flags.setSExt(); 10011 if (Args[i].IsInReg) { 10012 // If we are using vectorcall calling convention, a structure that is 10013 // passed InReg - is surely an HVA 10014 if (CLI.CallConv == CallingConv::X86_VectorCall && 10015 isa<StructType>(FinalType)) { 10016 // The first value of a structure is marked 10017 if (0 == Value) 10018 Flags.setHvaStart(); 10019 Flags.setHva(); 10020 } 10021 // Set InReg Flag 10022 Flags.setInReg(); 10023 } 10024 if (Args[i].IsSRet) 10025 Flags.setSRet(); 10026 if (Args[i].IsSwiftSelf) 10027 Flags.setSwiftSelf(); 10028 if (Args[i].IsSwiftAsync) 10029 Flags.setSwiftAsync(); 10030 if (Args[i].IsSwiftError) 10031 Flags.setSwiftError(); 10032 if (Args[i].IsCFGuardTarget) 10033 Flags.setCFGuardTarget(); 10034 if (Args[i].IsByVal) 10035 Flags.setByVal(); 10036 if (Args[i].IsByRef) 10037 Flags.setByRef(); 10038 if (Args[i].IsPreallocated) { 10039 Flags.setPreallocated(); 10040 // Set the byval flag for CCAssignFn callbacks that don't know about 10041 // preallocated. This way we can know how many bytes we should've 10042 // allocated and how many bytes a callee cleanup function will pop. If 10043 // we port preallocated to more targets, we'll have to add custom 10044 // preallocated handling in the various CC lowering callbacks. 10045 Flags.setByVal(); 10046 } 10047 if (Args[i].IsInAlloca) { 10048 Flags.setInAlloca(); 10049 // Set the byval flag for CCAssignFn callbacks that don't know about 10050 // inalloca. This way we can know how many bytes we should've allocated 10051 // and how many bytes a callee cleanup function will pop. If we port 10052 // inalloca to more targets, we'll have to add custom inalloca handling 10053 // in the various CC lowering callbacks. 10054 Flags.setByVal(); 10055 } 10056 Align MemAlign; 10057 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10058 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10059 Flags.setByValSize(FrameSize); 10060 10061 // info is not there but there are cases it cannot get right. 10062 if (auto MA = Args[i].Alignment) 10063 MemAlign = *MA; 10064 else 10065 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10066 } else if (auto MA = Args[i].Alignment) { 10067 MemAlign = *MA; 10068 } else { 10069 MemAlign = OriginalAlignment; 10070 } 10071 Flags.setMemAlign(MemAlign); 10072 if (Args[i].IsNest) 10073 Flags.setNest(); 10074 if (NeedsRegBlock) 10075 Flags.setInConsecutiveRegs(); 10076 10077 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10078 CLI.CallConv, VT); 10079 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10080 CLI.CallConv, VT); 10081 SmallVector<SDValue, 4> Parts(NumParts); 10082 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10083 10084 if (Args[i].IsSExt) 10085 ExtendKind = ISD::SIGN_EXTEND; 10086 else if (Args[i].IsZExt) 10087 ExtendKind = ISD::ZERO_EXTEND; 10088 10089 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10090 // for now. 10091 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10092 CanLowerReturn) { 10093 assert((CLI.RetTy == Args[i].Ty || 10094 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10095 CLI.RetTy->getPointerAddressSpace() == 10096 Args[i].Ty->getPointerAddressSpace())) && 10097 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10098 // Before passing 'returned' to the target lowering code, ensure that 10099 // either the register MVT and the actual EVT are the same size or that 10100 // the return value and argument are extended in the same way; in these 10101 // cases it's safe to pass the argument register value unchanged as the 10102 // return register value (although it's at the target's option whether 10103 // to do so) 10104 // TODO: allow code generation to take advantage of partially preserved 10105 // registers rather than clobbering the entire register when the 10106 // parameter extension method is not compatible with the return 10107 // extension method 10108 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10109 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10110 CLI.RetZExt == Args[i].IsZExt)) 10111 Flags.setReturned(); 10112 } 10113 10114 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10115 CLI.CallConv, ExtendKind); 10116 10117 for (unsigned j = 0; j != NumParts; ++j) { 10118 // if it isn't first piece, alignment must be 1 10119 // For scalable vectors the scalable part is currently handled 10120 // by individual targets, so we just use the known minimum size here. 10121 ISD::OutputArg MyFlags( 10122 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10123 i < CLI.NumFixedArgs, i, 10124 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 10125 if (NumParts > 1 && j == 0) 10126 MyFlags.Flags.setSplit(); 10127 else if (j != 0) { 10128 MyFlags.Flags.setOrigAlign(Align(1)); 10129 if (j == NumParts - 1) 10130 MyFlags.Flags.setSplitEnd(); 10131 } 10132 10133 CLI.Outs.push_back(MyFlags); 10134 CLI.OutVals.push_back(Parts[j]); 10135 } 10136 10137 if (NeedsRegBlock && Value == NumValues - 1) 10138 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10139 } 10140 } 10141 10142 SmallVector<SDValue, 4> InVals; 10143 CLI.Chain = LowerCall(CLI, InVals); 10144 10145 // Update CLI.InVals to use outside of this function. 10146 CLI.InVals = InVals; 10147 10148 // Verify that the target's LowerCall behaved as expected. 10149 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10150 "LowerCall didn't return a valid chain!"); 10151 assert((!CLI.IsTailCall || InVals.empty()) && 10152 "LowerCall emitted a return value for a tail call!"); 10153 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10154 "LowerCall didn't emit the correct number of values!"); 10155 10156 // For a tail call, the return value is merely live-out and there aren't 10157 // any nodes in the DAG representing it. Return a special value to 10158 // indicate that a tail call has been emitted and no more Instructions 10159 // should be processed in the current block. 10160 if (CLI.IsTailCall) { 10161 CLI.DAG.setRoot(CLI.Chain); 10162 return std::make_pair(SDValue(), SDValue()); 10163 } 10164 10165 #ifndef NDEBUG 10166 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10167 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10168 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10169 "LowerCall emitted a value with the wrong type!"); 10170 } 10171 #endif 10172 10173 SmallVector<SDValue, 4> ReturnValues; 10174 if (!CanLowerReturn) { 10175 // The instruction result is the result of loading from the 10176 // hidden sret parameter. 10177 SmallVector<EVT, 1> PVTs; 10178 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10179 10180 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10181 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10182 EVT PtrVT = PVTs[0]; 10183 10184 unsigned NumValues = RetTys.size(); 10185 ReturnValues.resize(NumValues); 10186 SmallVector<SDValue, 4> Chains(NumValues); 10187 10188 // An aggregate return value cannot wrap around the address space, so 10189 // offsets to its parts don't wrap either. 10190 SDNodeFlags Flags; 10191 Flags.setNoUnsignedWrap(true); 10192 10193 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10194 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10195 for (unsigned i = 0; i < NumValues; ++i) { 10196 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10197 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10198 PtrVT), Flags); 10199 SDValue L = CLI.DAG.getLoad( 10200 RetTys[i], CLI.DL, CLI.Chain, Add, 10201 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10202 DemoteStackIdx, Offsets[i]), 10203 HiddenSRetAlign); 10204 ReturnValues[i] = L; 10205 Chains[i] = L.getValue(1); 10206 } 10207 10208 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10209 } else { 10210 // Collect the legal value parts into potentially illegal values 10211 // that correspond to the original function's return values. 10212 std::optional<ISD::NodeType> AssertOp; 10213 if (CLI.RetSExt) 10214 AssertOp = ISD::AssertSext; 10215 else if (CLI.RetZExt) 10216 AssertOp = ISD::AssertZext; 10217 unsigned CurReg = 0; 10218 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10219 EVT VT = RetTys[I]; 10220 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10221 CLI.CallConv, VT); 10222 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10223 CLI.CallConv, VT); 10224 10225 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10226 NumRegs, RegisterVT, VT, nullptr, 10227 CLI.CallConv, AssertOp)); 10228 CurReg += NumRegs; 10229 } 10230 10231 // For a function returning void, there is no return value. We can't create 10232 // such a node, so we just return a null return value in that case. In 10233 // that case, nothing will actually look at the value. 10234 if (ReturnValues.empty()) 10235 return std::make_pair(SDValue(), CLI.Chain); 10236 } 10237 10238 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10239 CLI.DAG.getVTList(RetTys), ReturnValues); 10240 return std::make_pair(Res, CLI.Chain); 10241 } 10242 10243 /// Places new result values for the node in Results (their number 10244 /// and types must exactly match those of the original return values of 10245 /// the node), or leaves Results empty, which indicates that the node is not 10246 /// to be custom lowered after all. 10247 void TargetLowering::LowerOperationWrapper(SDNode *N, 10248 SmallVectorImpl<SDValue> &Results, 10249 SelectionDAG &DAG) const { 10250 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10251 10252 if (!Res.getNode()) 10253 return; 10254 10255 // If the original node has one result, take the return value from 10256 // LowerOperation as is. It might not be result number 0. 10257 if (N->getNumValues() == 1) { 10258 Results.push_back(Res); 10259 return; 10260 } 10261 10262 // If the original node has multiple results, then the return node should 10263 // have the same number of results. 10264 assert((N->getNumValues() == Res->getNumValues()) && 10265 "Lowering returned the wrong number of results!"); 10266 10267 // Places new result values base on N result number. 10268 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10269 Results.push_back(Res.getValue(I)); 10270 } 10271 10272 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10273 llvm_unreachable("LowerOperation not implemented for this target!"); 10274 } 10275 10276 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10277 unsigned Reg, 10278 ISD::NodeType ExtendType) { 10279 SDValue Op = getNonRegisterValue(V); 10280 assert((Op.getOpcode() != ISD::CopyFromReg || 10281 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10282 "Copy from a reg to the same reg!"); 10283 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10284 10285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10286 // If this is an InlineAsm we have to match the registers required, not the 10287 // notional registers required by the type. 10288 10289 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10290 std::nullopt); // This is not an ABI copy. 10291 SDValue Chain = DAG.getEntryNode(); 10292 10293 if (ExtendType == ISD::ANY_EXTEND) { 10294 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10295 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10296 ExtendType = PreferredExtendIt->second; 10297 } 10298 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10299 PendingExports.push_back(Chain); 10300 } 10301 10302 #include "llvm/CodeGen/SelectionDAGISel.h" 10303 10304 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10305 /// entry block, return true. This includes arguments used by switches, since 10306 /// the switch may expand into multiple basic blocks. 10307 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10308 // With FastISel active, we may be splitting blocks, so force creation 10309 // of virtual registers for all non-dead arguments. 10310 if (FastISel) 10311 return A->use_empty(); 10312 10313 const BasicBlock &Entry = A->getParent()->front(); 10314 for (const User *U : A->users()) 10315 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10316 return false; // Use not in entry block. 10317 10318 return true; 10319 } 10320 10321 using ArgCopyElisionMapTy = 10322 DenseMap<const Argument *, 10323 std::pair<const AllocaInst *, const StoreInst *>>; 10324 10325 /// Scan the entry block of the function in FuncInfo for arguments that look 10326 /// like copies into a local alloca. Record any copied arguments in 10327 /// ArgCopyElisionCandidates. 10328 static void 10329 findArgumentCopyElisionCandidates(const DataLayout &DL, 10330 FunctionLoweringInfo *FuncInfo, 10331 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10332 // Record the state of every static alloca used in the entry block. Argument 10333 // allocas are all used in the entry block, so we need approximately as many 10334 // entries as we have arguments. 10335 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10336 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10337 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10338 StaticAllocas.reserve(NumArgs * 2); 10339 10340 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10341 if (!V) 10342 return nullptr; 10343 V = V->stripPointerCasts(); 10344 const auto *AI = dyn_cast<AllocaInst>(V); 10345 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10346 return nullptr; 10347 auto Iter = StaticAllocas.insert({AI, Unknown}); 10348 return &Iter.first->second; 10349 }; 10350 10351 // Look for stores of arguments to static allocas. Look through bitcasts and 10352 // GEPs to handle type coercions, as long as the alloca is fully initialized 10353 // by the store. Any non-store use of an alloca escapes it and any subsequent 10354 // unanalyzed store might write it. 10355 // FIXME: Handle structs initialized with multiple stores. 10356 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10357 // Look for stores, and handle non-store uses conservatively. 10358 const auto *SI = dyn_cast<StoreInst>(&I); 10359 if (!SI) { 10360 // We will look through cast uses, so ignore them completely. 10361 if (I.isCast()) 10362 continue; 10363 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10364 // to allocas. 10365 if (I.isDebugOrPseudoInst()) 10366 continue; 10367 // This is an unknown instruction. Assume it escapes or writes to all 10368 // static alloca operands. 10369 for (const Use &U : I.operands()) { 10370 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10371 *Info = StaticAllocaInfo::Clobbered; 10372 } 10373 continue; 10374 } 10375 10376 // If the stored value is a static alloca, mark it as escaped. 10377 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10378 *Info = StaticAllocaInfo::Clobbered; 10379 10380 // Check if the destination is a static alloca. 10381 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10382 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10383 if (!Info) 10384 continue; 10385 const AllocaInst *AI = cast<AllocaInst>(Dst); 10386 10387 // Skip allocas that have been initialized or clobbered. 10388 if (*Info != StaticAllocaInfo::Unknown) 10389 continue; 10390 10391 // Check if the stored value is an argument, and that this store fully 10392 // initializes the alloca. 10393 // If the argument type has padding bits we can't directly forward a pointer 10394 // as the upper bits may contain garbage. 10395 // Don't elide copies from the same argument twice. 10396 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10397 const auto *Arg = dyn_cast<Argument>(Val); 10398 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10399 Arg->getType()->isEmptyTy() || 10400 DL.getTypeStoreSize(Arg->getType()) != 10401 DL.getTypeAllocSize(AI->getAllocatedType()) || 10402 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10403 ArgCopyElisionCandidates.count(Arg)) { 10404 *Info = StaticAllocaInfo::Clobbered; 10405 continue; 10406 } 10407 10408 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10409 << '\n'); 10410 10411 // Mark this alloca and store for argument copy elision. 10412 *Info = StaticAllocaInfo::Elidable; 10413 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10414 10415 // Stop scanning if we've seen all arguments. This will happen early in -O0 10416 // builds, which is useful, because -O0 builds have large entry blocks and 10417 // many allocas. 10418 if (ArgCopyElisionCandidates.size() == NumArgs) 10419 break; 10420 } 10421 } 10422 10423 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10424 /// ArgVal is a load from a suitable fixed stack object. 10425 static void tryToElideArgumentCopy( 10426 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10427 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10428 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10429 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10430 SDValue ArgVal, bool &ArgHasUses) { 10431 // Check if this is a load from a fixed stack object. 10432 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10433 if (!LNode) 10434 return; 10435 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10436 if (!FINode) 10437 return; 10438 10439 // Check that the fixed stack object is the right size and alignment. 10440 // Look at the alignment that the user wrote on the alloca instead of looking 10441 // at the stack object. 10442 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10443 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10444 const AllocaInst *AI = ArgCopyIter->second.first; 10445 int FixedIndex = FINode->getIndex(); 10446 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10447 int OldIndex = AllocaIndex; 10448 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10449 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10450 LLVM_DEBUG( 10451 dbgs() << " argument copy elision failed due to bad fixed stack " 10452 "object size\n"); 10453 return; 10454 } 10455 Align RequiredAlignment = AI->getAlign(); 10456 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10457 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10458 "greater than stack argument alignment (" 10459 << DebugStr(RequiredAlignment) << " vs " 10460 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10461 return; 10462 } 10463 10464 // Perform the elision. Delete the old stack object and replace its only use 10465 // in the variable info map. Mark the stack object as mutable. 10466 LLVM_DEBUG({ 10467 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10468 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10469 << '\n'; 10470 }); 10471 MFI.RemoveStackObject(OldIndex); 10472 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10473 AllocaIndex = FixedIndex; 10474 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10475 Chains.push_back(ArgVal.getValue(1)); 10476 10477 // Avoid emitting code for the store implementing the copy. 10478 const StoreInst *SI = ArgCopyIter->second.second; 10479 ElidedArgCopyInstrs.insert(SI); 10480 10481 // Check for uses of the argument again so that we can avoid exporting ArgVal 10482 // if it is't used by anything other than the store. 10483 for (const Value *U : Arg.users()) { 10484 if (U != SI) { 10485 ArgHasUses = true; 10486 break; 10487 } 10488 } 10489 } 10490 10491 void SelectionDAGISel::LowerArguments(const Function &F) { 10492 SelectionDAG &DAG = SDB->DAG; 10493 SDLoc dl = SDB->getCurSDLoc(); 10494 const DataLayout &DL = DAG.getDataLayout(); 10495 SmallVector<ISD::InputArg, 16> Ins; 10496 10497 // In Naked functions we aren't going to save any registers. 10498 if (F.hasFnAttribute(Attribute::Naked)) 10499 return; 10500 10501 if (!FuncInfo->CanLowerReturn) { 10502 // Put in an sret pointer parameter before all the other parameters. 10503 SmallVector<EVT, 1> ValueVTs; 10504 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10505 F.getReturnType()->getPointerTo( 10506 DAG.getDataLayout().getAllocaAddrSpace()), 10507 ValueVTs); 10508 10509 // NOTE: Assuming that a pointer will never break down to more than one VT 10510 // or one register. 10511 ISD::ArgFlagsTy Flags; 10512 Flags.setSRet(); 10513 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10514 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10515 ISD::InputArg::NoArgIndex, 0); 10516 Ins.push_back(RetArg); 10517 } 10518 10519 // Look for stores of arguments to static allocas. Mark such arguments with a 10520 // flag to ask the target to give us the memory location of that argument if 10521 // available. 10522 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10523 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10524 ArgCopyElisionCandidates); 10525 10526 // Set up the incoming argument description vector. 10527 for (const Argument &Arg : F.args()) { 10528 unsigned ArgNo = Arg.getArgNo(); 10529 SmallVector<EVT, 4> ValueVTs; 10530 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10531 bool isArgValueUsed = !Arg.use_empty(); 10532 unsigned PartBase = 0; 10533 Type *FinalType = Arg.getType(); 10534 if (Arg.hasAttribute(Attribute::ByVal)) 10535 FinalType = Arg.getParamByValType(); 10536 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10537 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10538 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10539 Value != NumValues; ++Value) { 10540 EVT VT = ValueVTs[Value]; 10541 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10542 ISD::ArgFlagsTy Flags; 10543 10544 10545 if (Arg.getType()->isPointerTy()) { 10546 Flags.setPointer(); 10547 Flags.setPointerAddrSpace( 10548 cast<PointerType>(Arg.getType())->getAddressSpace()); 10549 } 10550 if (Arg.hasAttribute(Attribute::ZExt)) 10551 Flags.setZExt(); 10552 if (Arg.hasAttribute(Attribute::SExt)) 10553 Flags.setSExt(); 10554 if (Arg.hasAttribute(Attribute::InReg)) { 10555 // If we are using vectorcall calling convention, a structure that is 10556 // passed InReg - is surely an HVA 10557 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10558 isa<StructType>(Arg.getType())) { 10559 // The first value of a structure is marked 10560 if (0 == Value) 10561 Flags.setHvaStart(); 10562 Flags.setHva(); 10563 } 10564 // Set InReg Flag 10565 Flags.setInReg(); 10566 } 10567 if (Arg.hasAttribute(Attribute::StructRet)) 10568 Flags.setSRet(); 10569 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10570 Flags.setSwiftSelf(); 10571 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10572 Flags.setSwiftAsync(); 10573 if (Arg.hasAttribute(Attribute::SwiftError)) 10574 Flags.setSwiftError(); 10575 if (Arg.hasAttribute(Attribute::ByVal)) 10576 Flags.setByVal(); 10577 if (Arg.hasAttribute(Attribute::ByRef)) 10578 Flags.setByRef(); 10579 if (Arg.hasAttribute(Attribute::InAlloca)) { 10580 Flags.setInAlloca(); 10581 // Set the byval flag for CCAssignFn callbacks that don't know about 10582 // inalloca. This way we can know how many bytes we should've allocated 10583 // and how many bytes a callee cleanup function will pop. If we port 10584 // inalloca to more targets, we'll have to add custom inalloca handling 10585 // in the various CC lowering callbacks. 10586 Flags.setByVal(); 10587 } 10588 if (Arg.hasAttribute(Attribute::Preallocated)) { 10589 Flags.setPreallocated(); 10590 // Set the byval flag for CCAssignFn callbacks that don't know about 10591 // preallocated. This way we can know how many bytes we should've 10592 // allocated and how many bytes a callee cleanup function will pop. If 10593 // we port preallocated to more targets, we'll have to add custom 10594 // preallocated handling in the various CC lowering callbacks. 10595 Flags.setByVal(); 10596 } 10597 10598 // Certain targets (such as MIPS), may have a different ABI alignment 10599 // for a type depending on the context. Give the target a chance to 10600 // specify the alignment it wants. 10601 const Align OriginalAlignment( 10602 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10603 Flags.setOrigAlign(OriginalAlignment); 10604 10605 Align MemAlign; 10606 Type *ArgMemTy = nullptr; 10607 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10608 Flags.isByRef()) { 10609 if (!ArgMemTy) 10610 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10611 10612 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10613 10614 // For in-memory arguments, size and alignment should be passed from FE. 10615 // BE will guess if this info is not there but there are cases it cannot 10616 // get right. 10617 if (auto ParamAlign = Arg.getParamStackAlign()) 10618 MemAlign = *ParamAlign; 10619 else if ((ParamAlign = Arg.getParamAlign())) 10620 MemAlign = *ParamAlign; 10621 else 10622 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10623 if (Flags.isByRef()) 10624 Flags.setByRefSize(MemSize); 10625 else 10626 Flags.setByValSize(MemSize); 10627 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10628 MemAlign = *ParamAlign; 10629 } else { 10630 MemAlign = OriginalAlignment; 10631 } 10632 Flags.setMemAlign(MemAlign); 10633 10634 if (Arg.hasAttribute(Attribute::Nest)) 10635 Flags.setNest(); 10636 if (NeedsRegBlock) 10637 Flags.setInConsecutiveRegs(); 10638 if (ArgCopyElisionCandidates.count(&Arg)) 10639 Flags.setCopyElisionCandidate(); 10640 if (Arg.hasAttribute(Attribute::Returned)) 10641 Flags.setReturned(); 10642 10643 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10644 *CurDAG->getContext(), F.getCallingConv(), VT); 10645 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10646 *CurDAG->getContext(), F.getCallingConv(), VT); 10647 for (unsigned i = 0; i != NumRegs; ++i) { 10648 // For scalable vectors, use the minimum size; individual targets 10649 // are responsible for handling scalable vector arguments and 10650 // return values. 10651 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10652 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10653 if (NumRegs > 1 && i == 0) 10654 MyFlags.Flags.setSplit(); 10655 // if it isn't first piece, alignment must be 1 10656 else if (i > 0) { 10657 MyFlags.Flags.setOrigAlign(Align(1)); 10658 if (i == NumRegs - 1) 10659 MyFlags.Flags.setSplitEnd(); 10660 } 10661 Ins.push_back(MyFlags); 10662 } 10663 if (NeedsRegBlock && Value == NumValues - 1) 10664 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10665 PartBase += VT.getStoreSize().getKnownMinSize(); 10666 } 10667 } 10668 10669 // Call the target to set up the argument values. 10670 SmallVector<SDValue, 8> InVals; 10671 SDValue NewRoot = TLI->LowerFormalArguments( 10672 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10673 10674 // Verify that the target's LowerFormalArguments behaved as expected. 10675 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10676 "LowerFormalArguments didn't return a valid chain!"); 10677 assert(InVals.size() == Ins.size() && 10678 "LowerFormalArguments didn't emit the correct number of values!"); 10679 LLVM_DEBUG({ 10680 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10681 assert(InVals[i].getNode() && 10682 "LowerFormalArguments emitted a null value!"); 10683 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10684 "LowerFormalArguments emitted a value with the wrong type!"); 10685 } 10686 }); 10687 10688 // Update the DAG with the new chain value resulting from argument lowering. 10689 DAG.setRoot(NewRoot); 10690 10691 // Set up the argument values. 10692 unsigned i = 0; 10693 if (!FuncInfo->CanLowerReturn) { 10694 // Create a virtual register for the sret pointer, and put in a copy 10695 // from the sret argument into it. 10696 SmallVector<EVT, 1> ValueVTs; 10697 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10698 F.getReturnType()->getPointerTo( 10699 DAG.getDataLayout().getAllocaAddrSpace()), 10700 ValueVTs); 10701 MVT VT = ValueVTs[0].getSimpleVT(); 10702 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10703 std::optional<ISD::NodeType> AssertOp; 10704 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10705 nullptr, F.getCallingConv(), AssertOp); 10706 10707 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10708 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10709 Register SRetReg = 10710 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10711 FuncInfo->DemoteRegister = SRetReg; 10712 NewRoot = 10713 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10714 DAG.setRoot(NewRoot); 10715 10716 // i indexes lowered arguments. Bump it past the hidden sret argument. 10717 ++i; 10718 } 10719 10720 SmallVector<SDValue, 4> Chains; 10721 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10722 for (const Argument &Arg : F.args()) { 10723 SmallVector<SDValue, 4> ArgValues; 10724 SmallVector<EVT, 4> ValueVTs; 10725 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10726 unsigned NumValues = ValueVTs.size(); 10727 if (NumValues == 0) 10728 continue; 10729 10730 bool ArgHasUses = !Arg.use_empty(); 10731 10732 // Elide the copying store if the target loaded this argument from a 10733 // suitable fixed stack object. 10734 if (Ins[i].Flags.isCopyElisionCandidate()) { 10735 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10736 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10737 InVals[i], ArgHasUses); 10738 } 10739 10740 // If this argument is unused then remember its value. It is used to generate 10741 // debugging information. 10742 bool isSwiftErrorArg = 10743 TLI->supportSwiftError() && 10744 Arg.hasAttribute(Attribute::SwiftError); 10745 if (!ArgHasUses && !isSwiftErrorArg) { 10746 SDB->setUnusedArgValue(&Arg, InVals[i]); 10747 10748 // Also remember any frame index for use in FastISel. 10749 if (FrameIndexSDNode *FI = 10750 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10751 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10752 } 10753 10754 for (unsigned Val = 0; Val != NumValues; ++Val) { 10755 EVT VT = ValueVTs[Val]; 10756 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10757 F.getCallingConv(), VT); 10758 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10759 *CurDAG->getContext(), F.getCallingConv(), VT); 10760 10761 // Even an apparent 'unused' swifterror argument needs to be returned. So 10762 // we do generate a copy for it that can be used on return from the 10763 // function. 10764 if (ArgHasUses || isSwiftErrorArg) { 10765 std::optional<ISD::NodeType> AssertOp; 10766 if (Arg.hasAttribute(Attribute::SExt)) 10767 AssertOp = ISD::AssertSext; 10768 else if (Arg.hasAttribute(Attribute::ZExt)) 10769 AssertOp = ISD::AssertZext; 10770 10771 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10772 PartVT, VT, nullptr, 10773 F.getCallingConv(), AssertOp)); 10774 } 10775 10776 i += NumParts; 10777 } 10778 10779 // We don't need to do anything else for unused arguments. 10780 if (ArgValues.empty()) 10781 continue; 10782 10783 // Note down frame index. 10784 if (FrameIndexSDNode *FI = 10785 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10786 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10787 10788 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10789 SDB->getCurSDLoc()); 10790 10791 SDB->setValue(&Arg, Res); 10792 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10793 // We want to associate the argument with the frame index, among 10794 // involved operands, that correspond to the lowest address. The 10795 // getCopyFromParts function, called earlier, is swapping the order of 10796 // the operands to BUILD_PAIR depending on endianness. The result of 10797 // that swapping is that the least significant bits of the argument will 10798 // be in the first operand of the BUILD_PAIR node, and the most 10799 // significant bits will be in the second operand. 10800 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10801 if (LoadSDNode *LNode = 10802 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10803 if (FrameIndexSDNode *FI = 10804 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10805 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10806 } 10807 10808 // Analyses past this point are naive and don't expect an assertion. 10809 if (Res.getOpcode() == ISD::AssertZext) 10810 Res = Res.getOperand(0); 10811 10812 // Update the SwiftErrorVRegDefMap. 10813 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10814 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10815 if (Register::isVirtualRegister(Reg)) 10816 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10817 Reg); 10818 } 10819 10820 // If this argument is live outside of the entry block, insert a copy from 10821 // wherever we got it to the vreg that other BB's will reference it as. 10822 if (Res.getOpcode() == ISD::CopyFromReg) { 10823 // If we can, though, try to skip creating an unnecessary vreg. 10824 // FIXME: This isn't very clean... it would be nice to make this more 10825 // general. 10826 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10827 if (Register::isVirtualRegister(Reg)) { 10828 FuncInfo->ValueMap[&Arg] = Reg; 10829 continue; 10830 } 10831 } 10832 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10833 FuncInfo->InitializeRegForValue(&Arg); 10834 SDB->CopyToExportRegsIfNeeded(&Arg); 10835 } 10836 } 10837 10838 if (!Chains.empty()) { 10839 Chains.push_back(NewRoot); 10840 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10841 } 10842 10843 DAG.setRoot(NewRoot); 10844 10845 assert(i == InVals.size() && "Argument register count mismatch!"); 10846 10847 // If any argument copy elisions occurred and we have debug info, update the 10848 // stale frame indices used in the dbg.declare variable info table. 10849 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10850 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10851 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10852 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10853 if (I != ArgCopyElisionFrameIndexMap.end()) 10854 VI.Slot = I->second; 10855 } 10856 } 10857 10858 // Finally, if the target has anything special to do, allow it to do so. 10859 emitFunctionEntryCode(); 10860 } 10861 10862 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10863 /// ensure constants are generated when needed. Remember the virtual registers 10864 /// that need to be added to the Machine PHI nodes as input. We cannot just 10865 /// directly add them, because expansion might result in multiple MBB's for one 10866 /// BB. As such, the start of the BB might correspond to a different MBB than 10867 /// the end. 10868 void 10869 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10871 10872 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10873 10874 // Check PHI nodes in successors that expect a value to be available from this 10875 // block. 10876 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10877 if (!isa<PHINode>(SuccBB->begin())) continue; 10878 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10879 10880 // If this terminator has multiple identical successors (common for 10881 // switches), only handle each succ once. 10882 if (!SuccsHandled.insert(SuccMBB).second) 10883 continue; 10884 10885 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10886 10887 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10888 // nodes and Machine PHI nodes, but the incoming operands have not been 10889 // emitted yet. 10890 for (const PHINode &PN : SuccBB->phis()) { 10891 // Ignore dead phi's. 10892 if (PN.use_empty()) 10893 continue; 10894 10895 // Skip empty types 10896 if (PN.getType()->isEmptyTy()) 10897 continue; 10898 10899 unsigned Reg; 10900 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10901 10902 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10903 unsigned &RegOut = ConstantsOut[C]; 10904 if (RegOut == 0) { 10905 RegOut = FuncInfo.CreateRegs(C); 10906 // We need to zero/sign extend ConstantInt phi operands to match 10907 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10908 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10909 if (auto *CI = dyn_cast<ConstantInt>(C)) 10910 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10911 : ISD::ZERO_EXTEND; 10912 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10913 } 10914 Reg = RegOut; 10915 } else { 10916 DenseMap<const Value *, Register>::iterator I = 10917 FuncInfo.ValueMap.find(PHIOp); 10918 if (I != FuncInfo.ValueMap.end()) 10919 Reg = I->second; 10920 else { 10921 assert(isa<AllocaInst>(PHIOp) && 10922 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10923 "Didn't codegen value into a register!??"); 10924 Reg = FuncInfo.CreateRegs(PHIOp); 10925 CopyValueToVirtualRegister(PHIOp, Reg); 10926 } 10927 } 10928 10929 // Remember that this register needs to added to the machine PHI node as 10930 // the input for this MBB. 10931 SmallVector<EVT, 4> ValueVTs; 10932 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10933 for (EVT VT : ValueVTs) { 10934 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10935 for (unsigned i = 0; i != NumRegisters; ++i) 10936 FuncInfo.PHINodesToUpdate.push_back( 10937 std::make_pair(&*MBBI++, Reg + i)); 10938 Reg += NumRegisters; 10939 } 10940 } 10941 } 10942 10943 ConstantsOut.clear(); 10944 } 10945 10946 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10947 MachineFunction::iterator I(MBB); 10948 if (++I == FuncInfo.MF->end()) 10949 return nullptr; 10950 return &*I; 10951 } 10952 10953 /// During lowering new call nodes can be created (such as memset, etc.). 10954 /// Those will become new roots of the current DAG, but complications arise 10955 /// when they are tail calls. In such cases, the call lowering will update 10956 /// the root, but the builder still needs to know that a tail call has been 10957 /// lowered in order to avoid generating an additional return. 10958 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10959 // If the node is null, we do have a tail call. 10960 if (MaybeTC.getNode() != nullptr) 10961 DAG.setRoot(MaybeTC); 10962 else 10963 HasTailCall = true; 10964 } 10965 10966 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10967 MachineBasicBlock *SwitchMBB, 10968 MachineBasicBlock *DefaultMBB) { 10969 MachineFunction *CurMF = FuncInfo.MF; 10970 MachineBasicBlock *NextMBB = nullptr; 10971 MachineFunction::iterator BBI(W.MBB); 10972 if (++BBI != FuncInfo.MF->end()) 10973 NextMBB = &*BBI; 10974 10975 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10976 10977 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10978 10979 if (Size == 2 && W.MBB == SwitchMBB) { 10980 // If any two of the cases has the same destination, and if one value 10981 // is the same as the other, but has one bit unset that the other has set, 10982 // use bit manipulation to do two compares at once. For example: 10983 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10984 // TODO: This could be extended to merge any 2 cases in switches with 3 10985 // cases. 10986 // TODO: Handle cases where W.CaseBB != SwitchBB. 10987 CaseCluster &Small = *W.FirstCluster; 10988 CaseCluster &Big = *W.LastCluster; 10989 10990 if (Small.Low == Small.High && Big.Low == Big.High && 10991 Small.MBB == Big.MBB) { 10992 const APInt &SmallValue = Small.Low->getValue(); 10993 const APInt &BigValue = Big.Low->getValue(); 10994 10995 // Check that there is only one bit different. 10996 APInt CommonBit = BigValue ^ SmallValue; 10997 if (CommonBit.isPowerOf2()) { 10998 SDValue CondLHS = getValue(Cond); 10999 EVT VT = CondLHS.getValueType(); 11000 SDLoc DL = getCurSDLoc(); 11001 11002 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11003 DAG.getConstant(CommonBit, DL, VT)); 11004 SDValue Cond = DAG.getSetCC( 11005 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11006 ISD::SETEQ); 11007 11008 // Update successor info. 11009 // Both Small and Big will jump to Small.BB, so we sum up the 11010 // probabilities. 11011 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11012 if (BPI) 11013 addSuccessorWithProb( 11014 SwitchMBB, DefaultMBB, 11015 // The default destination is the first successor in IR. 11016 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11017 else 11018 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11019 11020 // Insert the true branch. 11021 SDValue BrCond = 11022 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11023 DAG.getBasicBlock(Small.MBB)); 11024 // Insert the false branch. 11025 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11026 DAG.getBasicBlock(DefaultMBB)); 11027 11028 DAG.setRoot(BrCond); 11029 return; 11030 } 11031 } 11032 } 11033 11034 if (TM.getOptLevel() != CodeGenOpt::None) { 11035 // Here, we order cases by probability so the most likely case will be 11036 // checked first. However, two clusters can have the same probability in 11037 // which case their relative ordering is non-deterministic. So we use Low 11038 // as a tie-breaker as clusters are guaranteed to never overlap. 11039 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11040 [](const CaseCluster &a, const CaseCluster &b) { 11041 return a.Prob != b.Prob ? 11042 a.Prob > b.Prob : 11043 a.Low->getValue().slt(b.Low->getValue()); 11044 }); 11045 11046 // Rearrange the case blocks so that the last one falls through if possible 11047 // without changing the order of probabilities. 11048 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11049 --I; 11050 if (I->Prob > W.LastCluster->Prob) 11051 break; 11052 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11053 std::swap(*I, *W.LastCluster); 11054 break; 11055 } 11056 } 11057 } 11058 11059 // Compute total probability. 11060 BranchProbability DefaultProb = W.DefaultProb; 11061 BranchProbability UnhandledProbs = DefaultProb; 11062 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11063 UnhandledProbs += I->Prob; 11064 11065 MachineBasicBlock *CurMBB = W.MBB; 11066 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11067 bool FallthroughUnreachable = false; 11068 MachineBasicBlock *Fallthrough; 11069 if (I == W.LastCluster) { 11070 // For the last cluster, fall through to the default destination. 11071 Fallthrough = DefaultMBB; 11072 FallthroughUnreachable = isa<UnreachableInst>( 11073 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11074 } else { 11075 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11076 CurMF->insert(BBI, Fallthrough); 11077 // Put Cond in a virtual register to make it available from the new blocks. 11078 ExportFromCurrentBlock(Cond); 11079 } 11080 UnhandledProbs -= I->Prob; 11081 11082 switch (I->Kind) { 11083 case CC_JumpTable: { 11084 // FIXME: Optimize away range check based on pivot comparisons. 11085 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11086 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11087 11088 // The jump block hasn't been inserted yet; insert it here. 11089 MachineBasicBlock *JumpMBB = JT->MBB; 11090 CurMF->insert(BBI, JumpMBB); 11091 11092 auto JumpProb = I->Prob; 11093 auto FallthroughProb = UnhandledProbs; 11094 11095 // If the default statement is a target of the jump table, we evenly 11096 // distribute the default probability to successors of CurMBB. Also 11097 // update the probability on the edge from JumpMBB to Fallthrough. 11098 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11099 SE = JumpMBB->succ_end(); 11100 SI != SE; ++SI) { 11101 if (*SI == DefaultMBB) { 11102 JumpProb += DefaultProb / 2; 11103 FallthroughProb -= DefaultProb / 2; 11104 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11105 JumpMBB->normalizeSuccProbs(); 11106 break; 11107 } 11108 } 11109 11110 if (FallthroughUnreachable) 11111 JTH->FallthroughUnreachable = true; 11112 11113 if (!JTH->FallthroughUnreachable) 11114 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11115 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11116 CurMBB->normalizeSuccProbs(); 11117 11118 // The jump table header will be inserted in our current block, do the 11119 // range check, and fall through to our fallthrough block. 11120 JTH->HeaderBB = CurMBB; 11121 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11122 11123 // If we're in the right place, emit the jump table header right now. 11124 if (CurMBB == SwitchMBB) { 11125 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11126 JTH->Emitted = true; 11127 } 11128 break; 11129 } 11130 case CC_BitTests: { 11131 // FIXME: Optimize away range check based on pivot comparisons. 11132 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11133 11134 // The bit test blocks haven't been inserted yet; insert them here. 11135 for (BitTestCase &BTC : BTB->Cases) 11136 CurMF->insert(BBI, BTC.ThisBB); 11137 11138 // Fill in fields of the BitTestBlock. 11139 BTB->Parent = CurMBB; 11140 BTB->Default = Fallthrough; 11141 11142 BTB->DefaultProb = UnhandledProbs; 11143 // If the cases in bit test don't form a contiguous range, we evenly 11144 // distribute the probability on the edge to Fallthrough to two 11145 // successors of CurMBB. 11146 if (!BTB->ContiguousRange) { 11147 BTB->Prob += DefaultProb / 2; 11148 BTB->DefaultProb -= DefaultProb / 2; 11149 } 11150 11151 if (FallthroughUnreachable) 11152 BTB->FallthroughUnreachable = true; 11153 11154 // If we're in the right place, emit the bit test header right now. 11155 if (CurMBB == SwitchMBB) { 11156 visitBitTestHeader(*BTB, SwitchMBB); 11157 BTB->Emitted = true; 11158 } 11159 break; 11160 } 11161 case CC_Range: { 11162 const Value *RHS, *LHS, *MHS; 11163 ISD::CondCode CC; 11164 if (I->Low == I->High) { 11165 // Check Cond == I->Low. 11166 CC = ISD::SETEQ; 11167 LHS = Cond; 11168 RHS=I->Low; 11169 MHS = nullptr; 11170 } else { 11171 // Check I->Low <= Cond <= I->High. 11172 CC = ISD::SETLE; 11173 LHS = I->Low; 11174 MHS = Cond; 11175 RHS = I->High; 11176 } 11177 11178 // If Fallthrough is unreachable, fold away the comparison. 11179 if (FallthroughUnreachable) 11180 CC = ISD::SETTRUE; 11181 11182 // The false probability is the sum of all unhandled cases. 11183 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11184 getCurSDLoc(), I->Prob, UnhandledProbs); 11185 11186 if (CurMBB == SwitchMBB) 11187 visitSwitchCase(CB, SwitchMBB); 11188 else 11189 SL->SwitchCases.push_back(CB); 11190 11191 break; 11192 } 11193 } 11194 CurMBB = Fallthrough; 11195 } 11196 } 11197 11198 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11199 CaseClusterIt First, 11200 CaseClusterIt Last) { 11201 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11202 if (X.Prob != CC.Prob) 11203 return X.Prob > CC.Prob; 11204 11205 // Ties are broken by comparing the case value. 11206 return X.Low->getValue().slt(CC.Low->getValue()); 11207 }); 11208 } 11209 11210 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11211 const SwitchWorkListItem &W, 11212 Value *Cond, 11213 MachineBasicBlock *SwitchMBB) { 11214 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11215 "Clusters not sorted?"); 11216 11217 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11218 11219 // Balance the tree based on branch probabilities to create a near-optimal (in 11220 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11221 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11222 CaseClusterIt LastLeft = W.FirstCluster; 11223 CaseClusterIt FirstRight = W.LastCluster; 11224 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11225 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11226 11227 // Move LastLeft and FirstRight towards each other from opposite directions to 11228 // find a partitioning of the clusters which balances the probability on both 11229 // sides. If LeftProb and RightProb are equal, alternate which side is 11230 // taken to ensure 0-probability nodes are distributed evenly. 11231 unsigned I = 0; 11232 while (LastLeft + 1 < FirstRight) { 11233 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11234 LeftProb += (++LastLeft)->Prob; 11235 else 11236 RightProb += (--FirstRight)->Prob; 11237 I++; 11238 } 11239 11240 while (true) { 11241 // Our binary search tree differs from a typical BST in that ours can have up 11242 // to three values in each leaf. The pivot selection above doesn't take that 11243 // into account, which means the tree might require more nodes and be less 11244 // efficient. We compensate for this here. 11245 11246 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11247 unsigned NumRight = W.LastCluster - FirstRight + 1; 11248 11249 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11250 // If one side has less than 3 clusters, and the other has more than 3, 11251 // consider taking a cluster from the other side. 11252 11253 if (NumLeft < NumRight) { 11254 // Consider moving the first cluster on the right to the left side. 11255 CaseCluster &CC = *FirstRight; 11256 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11257 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11258 if (LeftSideRank <= RightSideRank) { 11259 // Moving the cluster to the left does not demote it. 11260 ++LastLeft; 11261 ++FirstRight; 11262 continue; 11263 } 11264 } else { 11265 assert(NumRight < NumLeft); 11266 // Consider moving the last element on the left to the right side. 11267 CaseCluster &CC = *LastLeft; 11268 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11269 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11270 if (RightSideRank <= LeftSideRank) { 11271 // Moving the cluster to the right does not demot it. 11272 --LastLeft; 11273 --FirstRight; 11274 continue; 11275 } 11276 } 11277 } 11278 break; 11279 } 11280 11281 assert(LastLeft + 1 == FirstRight); 11282 assert(LastLeft >= W.FirstCluster); 11283 assert(FirstRight <= W.LastCluster); 11284 11285 // Use the first element on the right as pivot since we will make less-than 11286 // comparisons against it. 11287 CaseClusterIt PivotCluster = FirstRight; 11288 assert(PivotCluster > W.FirstCluster); 11289 assert(PivotCluster <= W.LastCluster); 11290 11291 CaseClusterIt FirstLeft = W.FirstCluster; 11292 CaseClusterIt LastRight = W.LastCluster; 11293 11294 const ConstantInt *Pivot = PivotCluster->Low; 11295 11296 // New blocks will be inserted immediately after the current one. 11297 MachineFunction::iterator BBI(W.MBB); 11298 ++BBI; 11299 11300 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11301 // we can branch to its destination directly if it's squeezed exactly in 11302 // between the known lower bound and Pivot - 1. 11303 MachineBasicBlock *LeftMBB; 11304 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11305 FirstLeft->Low == W.GE && 11306 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11307 LeftMBB = FirstLeft->MBB; 11308 } else { 11309 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11310 FuncInfo.MF->insert(BBI, LeftMBB); 11311 WorkList.push_back( 11312 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11313 // Put Cond in a virtual register to make it available from the new blocks. 11314 ExportFromCurrentBlock(Cond); 11315 } 11316 11317 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11318 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11319 // directly if RHS.High equals the current upper bound. 11320 MachineBasicBlock *RightMBB; 11321 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11322 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11323 RightMBB = FirstRight->MBB; 11324 } else { 11325 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11326 FuncInfo.MF->insert(BBI, RightMBB); 11327 WorkList.push_back( 11328 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11329 // Put Cond in a virtual register to make it available from the new blocks. 11330 ExportFromCurrentBlock(Cond); 11331 } 11332 11333 // Create the CaseBlock record that will be used to lower the branch. 11334 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11335 getCurSDLoc(), LeftProb, RightProb); 11336 11337 if (W.MBB == SwitchMBB) 11338 visitSwitchCase(CB, SwitchMBB); 11339 else 11340 SL->SwitchCases.push_back(CB); 11341 } 11342 11343 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11344 // from the swith statement. 11345 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11346 BranchProbability PeeledCaseProb) { 11347 if (PeeledCaseProb == BranchProbability::getOne()) 11348 return BranchProbability::getZero(); 11349 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11350 11351 uint32_t Numerator = CaseProb.getNumerator(); 11352 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11353 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11354 } 11355 11356 // Try to peel the top probability case if it exceeds the threshold. 11357 // Return current MachineBasicBlock for the switch statement if the peeling 11358 // does not occur. 11359 // If the peeling is performed, return the newly created MachineBasicBlock 11360 // for the peeled switch statement. Also update Clusters to remove the peeled 11361 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11362 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11363 const SwitchInst &SI, CaseClusterVector &Clusters, 11364 BranchProbability &PeeledCaseProb) { 11365 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11366 // Don't perform if there is only one cluster or optimizing for size. 11367 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11368 TM.getOptLevel() == CodeGenOpt::None || 11369 SwitchMBB->getParent()->getFunction().hasMinSize()) 11370 return SwitchMBB; 11371 11372 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11373 unsigned PeeledCaseIndex = 0; 11374 bool SwitchPeeled = false; 11375 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11376 CaseCluster &CC = Clusters[Index]; 11377 if (CC.Prob < TopCaseProb) 11378 continue; 11379 TopCaseProb = CC.Prob; 11380 PeeledCaseIndex = Index; 11381 SwitchPeeled = true; 11382 } 11383 if (!SwitchPeeled) 11384 return SwitchMBB; 11385 11386 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11387 << TopCaseProb << "\n"); 11388 11389 // Record the MBB for the peeled switch statement. 11390 MachineFunction::iterator BBI(SwitchMBB); 11391 ++BBI; 11392 MachineBasicBlock *PeeledSwitchMBB = 11393 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11394 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11395 11396 ExportFromCurrentBlock(SI.getCondition()); 11397 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11398 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11399 nullptr, nullptr, TopCaseProb.getCompl()}; 11400 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11401 11402 Clusters.erase(PeeledCaseIt); 11403 for (CaseCluster &CC : Clusters) { 11404 LLVM_DEBUG( 11405 dbgs() << "Scale the probablity for one cluster, before scaling: " 11406 << CC.Prob << "\n"); 11407 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11408 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11409 } 11410 PeeledCaseProb = TopCaseProb; 11411 return PeeledSwitchMBB; 11412 } 11413 11414 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11415 // Extract cases from the switch. 11416 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11417 CaseClusterVector Clusters; 11418 Clusters.reserve(SI.getNumCases()); 11419 for (auto I : SI.cases()) { 11420 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11421 const ConstantInt *CaseVal = I.getCaseValue(); 11422 BranchProbability Prob = 11423 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11424 : BranchProbability(1, SI.getNumCases() + 1); 11425 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11426 } 11427 11428 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11429 11430 // Cluster adjacent cases with the same destination. We do this at all 11431 // optimization levels because it's cheap to do and will make codegen faster 11432 // if there are many clusters. 11433 sortAndRangeify(Clusters); 11434 11435 // The branch probablity of the peeled case. 11436 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11437 MachineBasicBlock *PeeledSwitchMBB = 11438 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11439 11440 // If there is only the default destination, jump there directly. 11441 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11442 if (Clusters.empty()) { 11443 assert(PeeledSwitchMBB == SwitchMBB); 11444 SwitchMBB->addSuccessor(DefaultMBB); 11445 if (DefaultMBB != NextBlock(SwitchMBB)) { 11446 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11447 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11448 } 11449 return; 11450 } 11451 11452 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11453 SL->findBitTestClusters(Clusters, &SI); 11454 11455 LLVM_DEBUG({ 11456 dbgs() << "Case clusters: "; 11457 for (const CaseCluster &C : Clusters) { 11458 if (C.Kind == CC_JumpTable) 11459 dbgs() << "JT:"; 11460 if (C.Kind == CC_BitTests) 11461 dbgs() << "BT:"; 11462 11463 C.Low->getValue().print(dbgs(), true); 11464 if (C.Low != C.High) { 11465 dbgs() << '-'; 11466 C.High->getValue().print(dbgs(), true); 11467 } 11468 dbgs() << ' '; 11469 } 11470 dbgs() << '\n'; 11471 }); 11472 11473 assert(!Clusters.empty()); 11474 SwitchWorkList WorkList; 11475 CaseClusterIt First = Clusters.begin(); 11476 CaseClusterIt Last = Clusters.end() - 1; 11477 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11478 // Scale the branchprobability for DefaultMBB if the peel occurs and 11479 // DefaultMBB is not replaced. 11480 if (PeeledCaseProb != BranchProbability::getZero() && 11481 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11482 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11483 WorkList.push_back( 11484 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11485 11486 while (!WorkList.empty()) { 11487 SwitchWorkListItem W = WorkList.pop_back_val(); 11488 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11489 11490 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11491 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11492 // For optimized builds, lower large range as a balanced binary tree. 11493 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11494 continue; 11495 } 11496 11497 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11498 } 11499 } 11500 11501 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11503 auto DL = getCurSDLoc(); 11504 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11505 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11506 } 11507 11508 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11510 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11511 11512 SDLoc DL = getCurSDLoc(); 11513 SDValue V = getValue(I.getOperand(0)); 11514 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11515 11516 if (VT.isScalableVector()) { 11517 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11518 return; 11519 } 11520 11521 // Use VECTOR_SHUFFLE for the fixed-length vector 11522 // to maintain existing behavior. 11523 SmallVector<int, 8> Mask; 11524 unsigned NumElts = VT.getVectorMinNumElements(); 11525 for (unsigned i = 0; i != NumElts; ++i) 11526 Mask.push_back(NumElts - 1 - i); 11527 11528 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11529 } 11530 11531 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11532 SmallVector<EVT, 4> ValueVTs; 11533 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11534 ValueVTs); 11535 unsigned NumValues = ValueVTs.size(); 11536 if (NumValues == 0) return; 11537 11538 SmallVector<SDValue, 4> Values(NumValues); 11539 SDValue Op = getValue(I.getOperand(0)); 11540 11541 for (unsigned i = 0; i != NumValues; ++i) 11542 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11543 SDValue(Op.getNode(), Op.getResNo() + i)); 11544 11545 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11546 DAG.getVTList(ValueVTs), Values)); 11547 } 11548 11549 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11551 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11552 11553 SDLoc DL = getCurSDLoc(); 11554 SDValue V1 = getValue(I.getOperand(0)); 11555 SDValue V2 = getValue(I.getOperand(1)); 11556 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11557 11558 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11559 if (VT.isScalableVector()) { 11560 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11561 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11562 DAG.getConstant(Imm, DL, IdxVT))); 11563 return; 11564 } 11565 11566 unsigned NumElts = VT.getVectorNumElements(); 11567 11568 uint64_t Idx = (NumElts + Imm) % NumElts; 11569 11570 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11571 SmallVector<int, 8> Mask; 11572 for (unsigned i = 0; i < NumElts; ++i) 11573 Mask.push_back(Idx + i); 11574 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11575 } 11576