xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 1bd31a689844a43c9cde41a067119bef11159539)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GetElementPtrTypeIterator.h"
71 #include "llvm/IR/InlineAsm.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsAArch64.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Statepoint.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/Support/AtomicOrdering.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/MathExtras.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Target/TargetIntrinsicInfo.h"
96 #include "llvm/Target/TargetMachine.h"
97 #include "llvm/Target/TargetOptions.h"
98 #include "llvm/Transforms/Utils/Local.h"
99 #include <cstddef>
100 #include <iterator>
101 #include <limits>
102 #include <tuple>
103 
104 using namespace llvm;
105 using namespace PatternMatch;
106 using namespace SwitchCG;
107 
108 #define DEBUG_TYPE "isel"
109 
110 /// LimitFloatPrecision - Generate low-precision inline sequences for
111 /// some float libcalls (6, 8 or 12 bits).
112 static unsigned LimitFloatPrecision;
113 
114 static cl::opt<bool>
115     InsertAssertAlign("insert-assert-align", cl::init(true),
116                       cl::desc("Insert the experimental `assertalign` node."),
117                       cl::ReallyHidden);
118 
119 static cl::opt<unsigned, true>
120     LimitFPPrecision("limit-float-precision",
121                      cl::desc("Generate low-precision inline sequences "
122                               "for some float libcalls"),
123                      cl::location(LimitFloatPrecision), cl::Hidden,
124                      cl::init(0));
125 
126 static cl::opt<unsigned> SwitchPeelThreshold(
127     "switch-peel-threshold", cl::Hidden, cl::init(66),
128     cl::desc("Set the case probability threshold for peeling the case from a "
129              "switch statement. A value greater than 100 will void this "
130              "optimization"));
131 
132 // Limit the width of DAG chains. This is important in general to prevent
133 // DAG-based analysis from blowing up. For example, alias analysis and
134 // load clustering may not complete in reasonable time. It is difficult to
135 // recognize and avoid this situation within each individual analysis, and
136 // future analyses are likely to have the same behavior. Limiting DAG width is
137 // the safe approach and will be especially important with global DAGs.
138 //
139 // MaxParallelChains default is arbitrarily high to avoid affecting
140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
141 // sequence over this should have been converted to llvm.memcpy by the
142 // frontend. It is easy to induce this behavior with .ll code such as:
143 // %buffer = alloca [4096 x i8]
144 // %data = load [4096 x i8]* %argPtr
145 // store [4096 x i8] %data, [4096 x i8]* %buffer
146 static const unsigned MaxParallelChains = 64;
147 
148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
149                                       const SDValue *Parts, unsigned NumParts,
150                                       MVT PartVT, EVT ValueVT, const Value *V,
151                                       Optional<CallingConv::ID> CC);
152 
153 /// getCopyFromParts - Create a value that contains the specified legal parts
154 /// combined into the value they represent.  If the parts combine to a type
155 /// larger than ValueVT then AssertOp can be used to specify whether the extra
156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
157 /// (ISD::AssertSext).
158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
159                                 const SDValue *Parts, unsigned NumParts,
160                                 MVT PartVT, EVT ValueVT, const Value *V,
161                                 Optional<CallingConv::ID> CC = None,
162                                 Optional<ISD::NodeType> AssertOp = None) {
163   // Let the target assemble the parts if it wants to
164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
165   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
166                                                    PartVT, ValueVT, CC))
167     return Val;
168 
169   if (ValueVT.isVector())
170     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
171                                   CC);
172 
173   assert(NumParts > 0 && "No parts to assemble!");
174   SDValue Val = Parts[0];
175 
176   if (NumParts > 1) {
177     // Assemble the value from multiple parts.
178     if (ValueVT.isInteger()) {
179       unsigned PartBits = PartVT.getSizeInBits();
180       unsigned ValueBits = ValueVT.getSizeInBits();
181 
182       // Assemble the power of 2 part.
183       unsigned RoundParts =
184           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
185       unsigned RoundBits = PartBits * RoundParts;
186       EVT RoundVT = RoundBits == ValueBits ?
187         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
188       SDValue Lo, Hi;
189 
190       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
191 
192       if (RoundParts > 2) {
193         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
194                               PartVT, HalfVT, V);
195         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
196                               RoundParts / 2, PartVT, HalfVT, V);
197       } else {
198         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
199         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
200       }
201 
202       if (DAG.getDataLayout().isBigEndian())
203         std::swap(Lo, Hi);
204 
205       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
206 
207       if (RoundParts < NumParts) {
208         // Assemble the trailing non-power-of-2 part.
209         unsigned OddParts = NumParts - RoundParts;
210         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
211         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
212                               OddVT, V, CC);
213 
214         // Combine the round and odd parts.
215         Lo = Val;
216         if (DAG.getDataLayout().isBigEndian())
217           std::swap(Lo, Hi);
218         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
219         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
220         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
221                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
222                                          TLI.getShiftAmountTy(
223                                              TotalVT, DAG.getDataLayout())));
224         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
225         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
226       }
227     } else if (PartVT.isFloatingPoint()) {
228       // FP split into multiple FP parts (for ppcf128)
229       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
230              "Unexpected split");
231       SDValue Lo, Hi;
232       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
233       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
234       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
235         std::swap(Lo, Hi);
236       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
237     } else {
238       // FP split into integer parts (soft fp)
239       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
240              !PartVT.isVector() && "Unexpected split");
241       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
242       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
243     }
244   }
245 
246   // There is now one part, held in Val.  Correct it to match ValueVT.
247   // PartEVT is the type of the register class that holds the value.
248   // ValueVT is the type of the inline asm operation.
249   EVT PartEVT = Val.getValueType();
250 
251   if (PartEVT == ValueVT)
252     return Val;
253 
254   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
255       ValueVT.bitsLT(PartEVT)) {
256     // For an FP value in an integer part, we need to truncate to the right
257     // width first.
258     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
259     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
260   }
261 
262   // Handle types that have the same size.
263   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
264     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
265 
266   // Handle types with different sizes.
267   if (PartEVT.isInteger() && ValueVT.isInteger()) {
268     if (ValueVT.bitsLT(PartEVT)) {
269       // For a truncate, see if we have any information to
270       // indicate whether the truncated bits will always be
271       // zero or sign-extension.
272       if (AssertOp)
273         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
274                           DAG.getValueType(ValueVT));
275       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
276     }
277     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
278   }
279 
280   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
281     // FP_ROUND's are always exact here.
282     if (ValueVT.bitsLT(Val.getValueType()))
283       return DAG.getNode(
284           ISD::FP_ROUND, DL, ValueVT, Val,
285           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
286 
287     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
288   }
289 
290   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
291   // then truncating.
292   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
293       ValueVT.bitsLT(PartEVT)) {
294     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
295     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
296   }
297 
298   report_fatal_error("Unknown mismatch in getCopyFromParts!");
299 }
300 
301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
302                                               const Twine &ErrMsg) {
303   const Instruction *I = dyn_cast_or_null<Instruction>(V);
304   if (!V)
305     return Ctx.emitError(ErrMsg);
306 
307   const char *AsmError = ", possible invalid constraint for vector type";
308   if (const CallInst *CI = dyn_cast<CallInst>(I))
309     if (CI->isInlineAsm())
310       return Ctx.emitError(I, ErrMsg + AsmError);
311 
312   return Ctx.emitError(I, ErrMsg);
313 }
314 
315 /// getCopyFromPartsVector - Create a value that contains the specified legal
316 /// parts combined into the value they represent.  If the parts combine to a
317 /// type larger than ValueVT then AssertOp can be used to specify whether the
318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
319 /// ValueVT (ISD::AssertSext).
320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
321                                       const SDValue *Parts, unsigned NumParts,
322                                       MVT PartVT, EVT ValueVT, const Value *V,
323                                       Optional<CallingConv::ID> CallConv) {
324   assert(ValueVT.isVector() && "Not a vector value");
325   assert(NumParts > 0 && "No parts to assemble!");
326   const bool IsABIRegCopy = CallConv.has_value();
327 
328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
329   SDValue Val = Parts[0];
330 
331   // Handle a multi-element vector.
332   if (NumParts > 1) {
333     EVT IntermediateVT;
334     MVT RegisterVT;
335     unsigned NumIntermediates;
336     unsigned NumRegs;
337 
338     if (IsABIRegCopy) {
339       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
340           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
341           NumIntermediates, RegisterVT);
342     } else {
343       NumRegs =
344           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
345                                      NumIntermediates, RegisterVT);
346     }
347 
348     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
349     NumParts = NumRegs; // Silence a compiler warning.
350     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
351     assert(RegisterVT.getSizeInBits() ==
352            Parts[0].getSimpleValueType().getSizeInBits() &&
353            "Part type sizes don't match!");
354 
355     // Assemble the parts into intermediate operands.
356     SmallVector<SDValue, 8> Ops(NumIntermediates);
357     if (NumIntermediates == NumParts) {
358       // If the register was not expanded, truncate or copy the value,
359       // as appropriate.
360       for (unsigned i = 0; i != NumParts; ++i)
361         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
362                                   PartVT, IntermediateVT, V, CallConv);
363     } else if (NumParts > 0) {
364       // If the intermediate type was expanded, build the intermediate
365       // operands from the parts.
366       assert(NumParts % NumIntermediates == 0 &&
367              "Must expand into a divisible number of parts!");
368       unsigned Factor = NumParts / NumIntermediates;
369       for (unsigned i = 0; i != NumIntermediates; ++i)
370         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
371                                   PartVT, IntermediateVT, V, CallConv);
372     }
373 
374     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
375     // intermediate operands.
376     EVT BuiltVectorTy =
377         IntermediateVT.isVector()
378             ? EVT::getVectorVT(
379                   *DAG.getContext(), IntermediateVT.getScalarType(),
380                   IntermediateVT.getVectorElementCount() * NumParts)
381             : EVT::getVectorVT(*DAG.getContext(),
382                                IntermediateVT.getScalarType(),
383                                NumIntermediates);
384     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
385                                                 : ISD::BUILD_VECTOR,
386                       DL, BuiltVectorTy, Ops);
387   }
388 
389   // There is now one part, held in Val.  Correct it to match ValueVT.
390   EVT PartEVT = Val.getValueType();
391 
392   if (PartEVT == ValueVT)
393     return Val;
394 
395   if (PartEVT.isVector()) {
396     // Vector/Vector bitcast.
397     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
398       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
399 
400     // If the element type of the source/dest vectors are the same, but the
401     // parts vector has more elements than the value vector, then we have a
402     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
403     // elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417     }
418 
419     // Promoted vector extract
420     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
421   }
422 
423   // Trivial bitcast if the types are the same size and the destination
424   // vector type is legal.
425   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
426       TLI.isTypeLegal(ValueVT))
427     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
428 
429   if (ValueVT.getVectorNumElements() != 1) {
430      // Certain ABIs require that vectors are passed as integers. For vectors
431      // are the same size, this is an obvious bitcast.
432      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
433        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434      } else if (ValueVT.bitsLT(PartEVT)) {
435        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
436        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
437        // Drop the extra bits.
438        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
439        return DAG.getBitcast(ValueVT, Val);
440      }
441 
442      diagnosePossiblyInvalidConstraint(
443          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
444      return DAG.getUNDEF(ValueVT);
445   }
446 
447   // Handle cases such as i8 -> <1 x i1>
448   EVT ValueSVT = ValueVT.getVectorElementType();
449   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
450     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
451       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
452     else
453       Val = ValueVT.isFloatingPoint()
454                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
455                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
456   }
457 
458   return DAG.getBuildVector(ValueVT, DL, Val);
459 }
460 
461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
462                                  SDValue Val, SDValue *Parts, unsigned NumParts,
463                                  MVT PartVT, const Value *V,
464                                  Optional<CallingConv::ID> CallConv);
465 
466 /// getCopyToParts - Create a series of nodes that contain the specified value
467 /// split into legal parts.  If the parts contain more bits than Val, then, for
468 /// integers, ExtendKind can be used to specify how to generate the extra bits.
469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
470                            SDValue *Parts, unsigned NumParts, MVT PartVT,
471                            const Value *V,
472                            Optional<CallingConv::ID> CallConv = None,
473                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
474   // Let the target split the parts if it wants to
475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
477                                       CallConv))
478     return;
479   EVT ValueVT = Val.getValueType();
480 
481   // Handle the vector case separately.
482   if (ValueVT.isVector())
483     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
484                                 CallConv);
485 
486   unsigned PartBits = PartVT.getSizeInBits();
487   unsigned OrigNumParts = NumParts;
488   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
489          "Copying to an illegal type!");
490 
491   if (NumParts == 0)
492     return;
493 
494   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
495   EVT PartEVT = PartVT;
496   if (PartEVT == ValueVT) {
497     assert(NumParts == 1 && "No-op copy with multiple parts!");
498     Parts[0] = Val;
499     return;
500   }
501 
502   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
503     // If the parts cover more bits than the value has, promote the value.
504     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
505       assert(NumParts == 1 && "Do not know what to promote to!");
506       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
507     } else {
508       if (ValueVT.isFloatingPoint()) {
509         // FP values need to be bitcast, then extended if they are being put
510         // into a larger container.
511         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
512         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
513       }
514       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
515              ValueVT.isInteger() &&
516              "Unknown mismatch!");
517       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
518       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
519       if (PartVT == MVT::x86mmx)
520         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
521     }
522   } else if (PartBits == ValueVT.getSizeInBits()) {
523     // Different types of the same size.
524     assert(NumParts == 1 && PartEVT != ValueVT);
525     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
526   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
527     // If the parts cover less bits than value has, truncate the value.
528     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529            ValueVT.isInteger() &&
530            "Unknown mismatch!");
531     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
533     if (PartVT == MVT::x86mmx)
534       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535   }
536 
537   // The value may have changed - recompute ValueVT.
538   ValueVT = Val.getValueType();
539   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
540          "Failed to tile the value with PartVT!");
541 
542   if (NumParts == 1) {
543     if (PartEVT != ValueVT) {
544       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
545                                         "scalar-to-vector conversion failed");
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547     }
548 
549     Parts[0] = Val;
550     return;
551   }
552 
553   // Expand the value into multiple parts.
554   if (NumParts & (NumParts - 1)) {
555     // The number of parts is not a power of 2.  Split off and copy the tail.
556     assert(PartVT.isInteger() && ValueVT.isInteger() &&
557            "Do not know what to expand to!");
558     unsigned RoundParts = 1 << Log2_32(NumParts);
559     unsigned RoundBits = RoundParts * PartBits;
560     unsigned OddParts = NumParts - RoundParts;
561     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
562       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
563 
564     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
565                    CallConv);
566 
567     if (DAG.getDataLayout().isBigEndian())
568       // The odd parts were reversed by getCopyToParts - unreverse them.
569       std::reverse(Parts + RoundParts, Parts + NumParts);
570 
571     NumParts = RoundParts;
572     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
573     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
574   }
575 
576   // The number of parts is a power of 2.  Repeatedly bisect the value using
577   // EXTRACT_ELEMENT.
578   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
579                          EVT::getIntegerVT(*DAG.getContext(),
580                                            ValueVT.getSizeInBits()),
581                          Val);
582 
583   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
584     for (unsigned i = 0; i < NumParts; i += StepSize) {
585       unsigned ThisBits = StepSize * PartBits / 2;
586       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
587       SDValue &Part0 = Parts[i];
588       SDValue &Part1 = Parts[i+StepSize/2];
589 
590       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
591                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
592       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
594 
595       if (ThisBits == PartBits && ThisVT != PartVT) {
596         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
597         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
598       }
599     }
600   }
601 
602   if (DAG.getDataLayout().isBigEndian())
603     std::reverse(Parts, Parts + OrigNumParts);
604 }
605 
606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
607                                      const SDLoc &DL, EVT PartVT) {
608   if (!PartVT.isVector())
609     return SDValue();
610 
611   EVT ValueVT = Val.getValueType();
612   ElementCount PartNumElts = PartVT.getVectorElementCount();
613   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
614 
615   // We only support widening vectors with equivalent element types and
616   // fixed/scalable properties. If a target needs to widen a fixed-length type
617   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
618   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
619       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
620       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
621     return SDValue();
622 
623   // Widening a scalable vector to another scalable vector is done by inserting
624   // the vector into a larger undef one.
625   if (PartNumElts.isScalable())
626     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
627                        Val, DAG.getVectorIdxConstant(0, DL));
628 
629   EVT ElementVT = PartVT.getVectorElementType();
630   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631   // undef elements.
632   SmallVector<SDValue, 16> Ops;
633   DAG.ExtractVectorElements(Val, Ops);
634   SDValue EltUndef = DAG.getUNDEF(ElementVT);
635   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
636 
637   // FIXME: Use CONCAT for 2x -> 4x.
638   return DAG.getBuildVector(PartVT, DL, Ops);
639 }
640 
641 /// getCopyToPartsVector - Create a series of nodes that contain the specified
642 /// value split into legal parts.
643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
644                                  SDValue Val, SDValue *Parts, unsigned NumParts,
645                                  MVT PartVT, const Value *V,
646                                  Optional<CallingConv::ID> CallConv) {
647   EVT ValueVT = Val.getValueType();
648   assert(ValueVT.isVector() && "Not a vector");
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650   const bool IsABIRegCopy = CallConv.has_value();
651 
652   if (NumParts == 1) {
653     EVT PartEVT = PartVT;
654     if (PartEVT == ValueVT) {
655       // Nothing to do.
656     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
657       // Bitconvert vector->vector case.
658       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
659     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
660       Val = Widened;
661     } else if (PartVT.isVector() &&
662                PartEVT.getVectorElementType().bitsGE(
663                    ValueVT.getVectorElementType()) &&
664                PartEVT.getVectorElementCount() ==
665                    ValueVT.getVectorElementCount()) {
666 
667       // Promoted vector extract
668       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
669     } else if (PartEVT.isVector() &&
670                PartEVT.getVectorElementType() !=
671                    ValueVT.getVectorElementType() &&
672                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
673                    TargetLowering::TypeWidenVector) {
674       // Combination of widening and promotion.
675       EVT WidenVT =
676           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
677                            PartVT.getVectorElementCount());
678       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
679       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
680     } else {
681       if (ValueVT.getVectorElementCount().isScalar()) {
682         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
683                           DAG.getVectorIdxConstant(0, DL));
684       } else {
685         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
686         assert(PartVT.getFixedSizeInBits() > ValueSize &&
687                "lossy conversion of vector to scalar type");
688         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
689         Val = DAG.getBitcast(IntermediateType, Val);
690         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691       }
692     }
693 
694     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
695     Parts[0] = Val;
696     return;
697   }
698 
699   // Handle a multi-element vector.
700   EVT IntermediateVT;
701   MVT RegisterVT;
702   unsigned NumIntermediates;
703   unsigned NumRegs;
704   if (IsABIRegCopy) {
705     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
706         *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT,
707         NumIntermediates, RegisterVT);
708   } else {
709     NumRegs =
710         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
711                                    NumIntermediates, RegisterVT);
712   }
713 
714   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
715   NumParts = NumRegs; // Silence a compiler warning.
716   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
717 
718   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
719          "Mixing scalable and fixed vectors when copying in parts");
720 
721   Optional<ElementCount> DestEltCnt;
722 
723   if (IntermediateVT.isVector())
724     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
725   else
726     DestEltCnt = ElementCount::getFixed(NumIntermediates);
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
730 
731   if (ValueVT == BuiltVectorTy) {
732     // Nothing to do.
733   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
734     // Bitconvert vector->vector case.
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   } else {
737     if (BuiltVectorTy.getVectorElementType().bitsGT(
738             ValueVT.getVectorElementType())) {
739       // Integer promotion.
740       ValueVT = EVT::getVectorVT(*DAG.getContext(),
741                                  BuiltVectorTy.getVectorElementType(),
742                                  ValueVT.getVectorElementCount());
743       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
744     }
745 
746     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
747       Val = Widened;
748     }
749   }
750 
751   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
752 
753   // Split the vector into intermediate operands.
754   SmallVector<SDValue, 8> Ops(NumIntermediates);
755   for (unsigned i = 0; i != NumIntermediates; ++i) {
756     if (IntermediateVT.isVector()) {
757       // This does something sensible for scalable vectors - see the
758       // definition of EXTRACT_SUBVECTOR for further details.
759       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
760       Ops[i] =
761           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
762                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
763     } else {
764       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
765                            DAG.getVectorIdxConstant(i, DL));
766     }
767   }
768 
769   // Split the intermediate operands into legal parts.
770   if (NumParts == NumIntermediates) {
771     // If the register was not expanded, promote or copy the value,
772     // as appropriate.
773     for (unsigned i = 0; i != NumParts; ++i)
774       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
775   } else if (NumParts > 0) {
776     // If the intermediate type was expanded, split each the value into
777     // legal parts.
778     assert(NumIntermediates != 0 && "division by zero");
779     assert(NumParts % NumIntermediates == 0 &&
780            "Must expand into a divisible number of parts!");
781     unsigned Factor = NumParts / NumIntermediates;
782     for (unsigned i = 0; i != NumIntermediates; ++i)
783       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
784                      CallConv);
785   }
786 }
787 
788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
789                            EVT valuevt, Optional<CallingConv::ID> CC)
790     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
791       RegCount(1, regs.size()), CallConv(CC) {}
792 
793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
794                            const DataLayout &DL, unsigned Reg, Type *Ty,
795                            Optional<CallingConv::ID> CC) {
796   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
797 
798   CallConv = CC;
799 
800   for (EVT ValueVT : ValueVTs) {
801     unsigned NumRegs =
802         isABIMangled()
803             ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT)
804             : TLI.getNumRegisters(Context, ValueVT);
805     MVT RegisterVT =
806         isABIMangled()
807             ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT)
808             : TLI.getRegisterType(Context, ValueVT);
809     for (unsigned i = 0; i != NumRegs; ++i)
810       Regs.push_back(Reg + i);
811     RegVTs.push_back(RegisterVT);
812     RegCount.push_back(NumRegs);
813     Reg += NumRegs;
814   }
815 }
816 
817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
818                                       FunctionLoweringInfo &FuncInfo,
819                                       const SDLoc &dl, SDValue &Chain,
820                                       SDValue *Flag, const Value *V) const {
821   // A Value with type {} or [0 x %t] needs no registers.
822   if (ValueVTs.empty())
823     return SDValue();
824 
825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
826 
827   // Assemble the legal parts into the final values.
828   SmallVector<SDValue, 4> Values(ValueVTs.size());
829   SmallVector<SDValue, 8> Parts;
830   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
831     // Copy the legal parts from the registers.
832     EVT ValueVT = ValueVTs[Value];
833     unsigned NumRegs = RegCount[Value];
834     MVT RegisterVT =
835         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
836                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
837                        : RegVTs[Value];
838 
839     Parts.resize(NumRegs);
840     for (unsigned i = 0; i != NumRegs; ++i) {
841       SDValue P;
842       if (!Flag) {
843         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
844       } else {
845         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
846         *Flag = P.getValue(2);
847       }
848 
849       Chain = P.getValue(1);
850       Parts[i] = P;
851 
852       // If the source register was virtual and if we know something about it,
853       // add an assert node.
854       if (!Register::isVirtualRegister(Regs[Part + i]) ||
855           !RegisterVT.isInteger())
856         continue;
857 
858       const FunctionLoweringInfo::LiveOutInfo *LOI =
859         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
860       if (!LOI)
861         continue;
862 
863       unsigned RegSize = RegisterVT.getScalarSizeInBits();
864       unsigned NumSignBits = LOI->NumSignBits;
865       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
866 
867       if (NumZeroBits == RegSize) {
868         // The current value is a zero.
869         // Explicitly express that as it would be easier for
870         // optimizations to kick in.
871         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
872         continue;
873       }
874 
875       // FIXME: We capture more information than the dag can represent.  For
876       // now, just use the tightest assertzext/assertsext possible.
877       bool isSExt;
878       EVT FromVT(MVT::Other);
879       if (NumZeroBits) {
880         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
881         isSExt = false;
882       } else if (NumSignBits > 1) {
883         FromVT =
884             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
885         isSExt = true;
886       } else {
887         continue;
888       }
889       // Add an assertion node.
890       assert(FromVT != MVT::Other);
891       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
892                              RegisterVT, P, DAG.getValueType(FromVT));
893     }
894 
895     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
896                                      RegisterVT, ValueVT, V, CallConv);
897     Part += NumRegs;
898     Parts.clear();
899   }
900 
901   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
902 }
903 
904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
905                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
906                                  const Value *V,
907                                  ISD::NodeType PreferredExtendType) const {
908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
909   ISD::NodeType ExtendKind = PreferredExtendType;
910 
911   // Get the list of the values's legal parts.
912   unsigned NumRegs = Regs.size();
913   SmallVector<SDValue, 8> Parts(NumRegs);
914   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
915     unsigned NumParts = RegCount[Value];
916 
917     MVT RegisterVT =
918         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
919                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
920                        : RegVTs[Value];
921 
922     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
923       ExtendKind = ISD::ZERO_EXTEND;
924 
925     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
926                    NumParts, RegisterVT, V, CallConv, ExtendKind);
927     Part += NumParts;
928   }
929 
930   // Copy the parts into the registers.
931   SmallVector<SDValue, 8> Chains(NumRegs);
932   for (unsigned i = 0; i != NumRegs; ++i) {
933     SDValue Part;
934     if (!Flag) {
935       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
936     } else {
937       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
938       *Flag = Part.getValue(1);
939     }
940 
941     Chains[i] = Part.getValue(0);
942   }
943 
944   if (NumRegs == 1 || Flag)
945     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
946     // flagged to it. That is the CopyToReg nodes and the user are considered
947     // a single scheduling unit. If we create a TokenFactor and return it as
948     // chain, then the TokenFactor is both a predecessor (operand) of the
949     // user as well as a successor (the TF operands are flagged to the user).
950     // c1, f1 = CopyToReg
951     // c2, f2 = CopyToReg
952     // c3     = TokenFactor c1, c2
953     // ...
954     //        = op c3, ..., f2
955     Chain = Chains[NumRegs-1];
956   else
957     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
958 }
959 
960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
961                                         unsigned MatchingIdx, const SDLoc &dl,
962                                         SelectionDAG &DAG,
963                                         std::vector<SDValue> &Ops) const {
964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
965 
966   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
967   if (HasMatching)
968     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
969   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
970     // Put the register class of the virtual registers in the flag word.  That
971     // way, later passes can recompute register class constraints for inline
972     // assembly as well as normal instructions.
973     // Don't do this for tied operands that can use the regclass information
974     // from the def.
975     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
976     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
977     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
978   }
979 
980   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
981   Ops.push_back(Res);
982 
983   if (Code == InlineAsm::Kind_Clobber) {
984     // Clobbers should always have a 1:1 mapping with registers, and may
985     // reference registers that have illegal (e.g. vector) types. Hence, we
986     // shouldn't try to apply any sort of splitting logic to them.
987     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
988            "No 1:1 mapping from clobbers to regs?");
989     Register SP = TLI.getStackPointerRegisterToSaveRestore();
990     (void)SP;
991     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
992       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
993       assert(
994           (Regs[I] != SP ||
995            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
996           "If we clobbered the stack pointer, MFI should know about it.");
997     }
998     return;
999   }
1000 
1001   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1002     MVT RegisterVT = RegVTs[Value];
1003     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1004                                            RegisterVT);
1005     for (unsigned i = 0; i != NumRegs; ++i) {
1006       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1007       unsigned TheReg = Regs[Reg++];
1008       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1009     }
1010   }
1011 }
1012 
1013 SmallVector<std::pair<unsigned, TypeSize>, 4>
1014 RegsForValue::getRegsAndSizes() const {
1015   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1016   unsigned I = 0;
1017   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1018     unsigned RegCount = std::get<0>(CountAndVT);
1019     MVT RegisterVT = std::get<1>(CountAndVT);
1020     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1021     for (unsigned E = I + RegCount; I != E; ++I)
1022       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1023   }
1024   return OutVec;
1025 }
1026 
1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1028                                const TargetLibraryInfo *li) {
1029   AA = aa;
1030   GFI = gfi;
1031   LibInfo = li;
1032   Context = DAG.getContext();
1033   LPadToCallSiteMap.clear();
1034   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1035 }
1036 
1037 void SelectionDAGBuilder::clear() {
1038   NodeMap.clear();
1039   UnusedArgNodeMap.clear();
1040   PendingLoads.clear();
1041   PendingExports.clear();
1042   PendingConstrainedFP.clear();
1043   PendingConstrainedFPStrict.clear();
1044   CurInst = nullptr;
1045   HasTailCall = false;
1046   SDNodeOrder = LowestSDNodeOrder;
1047   StatepointLowering.clear();
1048 }
1049 
1050 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1051   DanglingDebugInfoMap.clear();
1052 }
1053 
1054 // Update DAG root to include dependencies on Pending chains.
1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1056   SDValue Root = DAG.getRoot();
1057 
1058   if (Pending.empty())
1059     return Root;
1060 
1061   // Add current root to PendingChains, unless we already indirectly
1062   // depend on it.
1063   if (Root.getOpcode() != ISD::EntryToken) {
1064     unsigned i = 0, e = Pending.size();
1065     for (; i != e; ++i) {
1066       assert(Pending[i].getNode()->getNumOperands() > 1);
1067       if (Pending[i].getNode()->getOperand(0) == Root)
1068         break;  // Don't add the root if we already indirectly depend on it.
1069     }
1070 
1071     if (i == e)
1072       Pending.push_back(Root);
1073   }
1074 
1075   if (Pending.size() == 1)
1076     Root = Pending[0];
1077   else
1078     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1079 
1080   DAG.setRoot(Root);
1081   Pending.clear();
1082   return Root;
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getMemoryRoot() {
1086   return updateRoot(PendingLoads);
1087 }
1088 
1089 SDValue SelectionDAGBuilder::getRoot() {
1090   // Chain up all pending constrained intrinsics together with all
1091   // pending loads, by simply appending them to PendingLoads and
1092   // then calling getMemoryRoot().
1093   PendingLoads.reserve(PendingLoads.size() +
1094                        PendingConstrainedFP.size() +
1095                        PendingConstrainedFPStrict.size());
1096   PendingLoads.append(PendingConstrainedFP.begin(),
1097                       PendingConstrainedFP.end());
1098   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1099                       PendingConstrainedFPStrict.end());
1100   PendingConstrainedFP.clear();
1101   PendingConstrainedFPStrict.clear();
1102   return getMemoryRoot();
1103 }
1104 
1105 SDValue SelectionDAGBuilder::getControlRoot() {
1106   // We need to emit pending fpexcept.strict constrained intrinsics,
1107   // so append them to the PendingExports list.
1108   PendingExports.append(PendingConstrainedFPStrict.begin(),
1109                         PendingConstrainedFPStrict.end());
1110   PendingConstrainedFPStrict.clear();
1111   return updateRoot(PendingExports);
1112 }
1113 
1114 void SelectionDAGBuilder::visit(const Instruction &I) {
1115   // Set up outgoing PHI node register values before emitting the terminator.
1116   if (I.isTerminator()) {
1117     HandlePHINodesInSuccessorBlocks(I.getParent());
1118   }
1119 
1120   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1121   if (!isa<DbgInfoIntrinsic>(I))
1122     ++SDNodeOrder;
1123 
1124   CurInst = &I;
1125 
1126   visit(I.getOpcode(), I);
1127 
1128   if (!I.isTerminator() && !HasTailCall &&
1129       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1130     CopyToExportRegsIfNeeded(&I);
1131 
1132   CurInst = nullptr;
1133 }
1134 
1135 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1136   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1137 }
1138 
1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1140   // Note: this doesn't use InstVisitor, because it has to work with
1141   // ConstantExpr's in addition to instructions.
1142   switch (Opcode) {
1143   default: llvm_unreachable("Unknown instruction type encountered!");
1144     // Build the switch statement using the Instruction.def file.
1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1146     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1147 #include "llvm/IR/Instruction.def"
1148   }
1149 }
1150 
1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1152                                                DebugLoc DL, unsigned Order) {
1153   // We treat variadic dbg_values differently at this stage.
1154   if (DI->hasArgList()) {
1155     // For variadic dbg_values we will now insert an undef.
1156     // FIXME: We can potentially recover these!
1157     SmallVector<SDDbgOperand, 2> Locs;
1158     for (const Value *V : DI->getValues()) {
1159       auto Undef = UndefValue::get(V->getType());
1160       Locs.push_back(SDDbgOperand::fromConst(Undef));
1161     }
1162     SDDbgValue *SDV = DAG.getDbgValueList(
1163         DI->getVariable(), DI->getExpression(), Locs, {},
1164         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1165     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1166   } else {
1167     // TODO: Dangling debug info will eventually either be resolved or produce
1168     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1169     // between the original dbg.value location and its resolved DBG_VALUE,
1170     // which we should ideally fill with an extra Undef DBG_VALUE.
1171     assert(DI->getNumVariableLocationOps() == 1 &&
1172            "DbgValueInst without an ArgList should have a single location "
1173            "operand.");
1174     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1175   }
1176 }
1177 
1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1179                                                 const DIExpression *Expr) {
1180   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1181     const DbgValueInst *DI = DDI.getDI();
1182     DIVariable *DanglingVariable = DI->getVariable();
1183     DIExpression *DanglingExpr = DI->getExpression();
1184     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1185       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1186       return true;
1187     }
1188     return false;
1189   };
1190 
1191   for (auto &DDIMI : DanglingDebugInfoMap) {
1192     DanglingDebugInfoVector &DDIV = DDIMI.second;
1193 
1194     // If debug info is to be dropped, run it through final checks to see
1195     // whether it can be salvaged.
1196     for (auto &DDI : DDIV)
1197       if (isMatchingDbgValue(DDI))
1198         salvageUnresolvedDbgValue(DDI);
1199 
1200     erase_if(DDIV, isMatchingDbgValue);
1201   }
1202 }
1203 
1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1205 // generate the debug data structures now that we've seen its definition.
1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1207                                                    SDValue Val) {
1208   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1209   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1210     return;
1211 
1212   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1213   for (auto &DDI : DDIV) {
1214     const DbgValueInst *DI = DDI.getDI();
1215     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1216     assert(DI && "Ill-formed DanglingDebugInfo");
1217     DebugLoc dl = DDI.getdl();
1218     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1219     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1220     DILocalVariable *Variable = DI->getVariable();
1221     DIExpression *Expr = DI->getExpression();
1222     assert(Variable->isValidLocationForIntrinsic(dl) &&
1223            "Expected inlined-at fields to agree");
1224     SDDbgValue *SDV;
1225     if (Val.getNode()) {
1226       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1227       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1228       // we couldn't resolve it directly when examining the DbgValue intrinsic
1229       // in the first place we should not be more successful here). Unless we
1230       // have some test case that prove this to be correct we should avoid
1231       // calling EmitFuncArgumentDbgValue here.
1232       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1233                                     FuncArgumentDbgValueKind::Value, Val)) {
1234         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1235                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1236         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1237         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1238         // inserted after the definition of Val when emitting the instructions
1239         // after ISel. An alternative could be to teach
1240         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1241         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1242                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1243                    << ValSDNodeOrder << "\n");
1244         SDV = getDbgValue(Val, Variable, Expr, dl,
1245                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1246         DAG.AddDbgValue(SDV, false);
1247       } else
1248         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1249                           << "in EmitFuncArgumentDbgValue\n");
1250     } else {
1251       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1252       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1253       auto SDV =
1254           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1255       DAG.AddDbgValue(SDV, false);
1256     }
1257   }
1258   DDIV.clear();
1259 }
1260 
1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1262   // TODO: For the variadic implementation, instead of only checking the fail
1263   // state of `handleDebugValue`, we need know specifically which values were
1264   // invalid, so that we attempt to salvage only those values when processing
1265   // a DIArgList.
1266   assert(!DDI.getDI()->hasArgList() &&
1267          "Not implemented for variadic dbg_values");
1268   Value *V = DDI.getDI()->getValue(0);
1269   DILocalVariable *Var = DDI.getDI()->getVariable();
1270   DIExpression *Expr = DDI.getDI()->getExpression();
1271   DebugLoc DL = DDI.getdl();
1272   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1273   unsigned SDOrder = DDI.getSDNodeOrder();
1274   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1275   // that DW_OP_stack_value is desired.
1276   assert(isa<DbgValueInst>(DDI.getDI()));
1277   bool StackValue = true;
1278 
1279   // Can this Value can be encoded without any further work?
1280   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1281     return;
1282 
1283   // Attempt to salvage back through as many instructions as possible. Bail if
1284   // a non-instruction is seen, such as a constant expression or global
1285   // variable. FIXME: Further work could recover those too.
1286   while (isa<Instruction>(V)) {
1287     Instruction &VAsInst = *cast<Instruction>(V);
1288     // Temporary "0", awaiting real implementation.
1289     SmallVector<uint64_t, 16> Ops;
1290     SmallVector<Value *, 4> AdditionalValues;
1291     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1292                              AdditionalValues);
1293     // If we cannot salvage any further, and haven't yet found a suitable debug
1294     // expression, bail out.
1295     if (!V)
1296       break;
1297 
1298     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1299     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1300     // here for variadic dbg_values, remove that condition.
1301     if (!AdditionalValues.empty())
1302       break;
1303 
1304     // New value and expr now represent this debuginfo.
1305     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1306 
1307     // Some kind of simplification occurred: check whether the operand of the
1308     // salvaged debug expression can be encoded in this DAG.
1309     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1310                          /*IsVariadic=*/false)) {
1311       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1312                         << *DDI.getDI() << "\nBy stripping back to:\n  " << *V);
1313       return;
1314     }
1315   }
1316 
1317   // This was the final opportunity to salvage this debug information, and it
1318   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1319   // any earlier variable location.
1320   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1321   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1322   DAG.AddDbgValue(SDV, false);
1323 
1324   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << *DDI.getDI()
1325                     << "\n");
1326   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1327                     << "\n");
1328 }
1329 
1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1331                                            DILocalVariable *Var,
1332                                            DIExpression *Expr, DebugLoc dl,
1333                                            DebugLoc InstDL, unsigned Order,
1334                                            bool IsVariadic) {
1335   if (Values.empty())
1336     return true;
1337   SmallVector<SDDbgOperand> LocationOps;
1338   SmallVector<SDNode *> Dependencies;
1339   for (const Value *V : Values) {
1340     // Constant value.
1341     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1342         isa<ConstantPointerNull>(V)) {
1343       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1344       continue;
1345     }
1346 
1347     // Look through IntToPtr constants.
1348     if (auto *CE = dyn_cast<ConstantExpr>(V))
1349       if (CE->getOpcode() == Instruction::IntToPtr) {
1350         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1351         continue;
1352       }
1353 
1354     // If the Value is a frame index, we can create a FrameIndex debug value
1355     // without relying on the DAG at all.
1356     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1357       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1358       if (SI != FuncInfo.StaticAllocaMap.end()) {
1359         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1360         continue;
1361       }
1362     }
1363 
1364     // Do not use getValue() in here; we don't want to generate code at
1365     // this point if it hasn't been done yet.
1366     SDValue N = NodeMap[V];
1367     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1368       N = UnusedArgNodeMap[V];
1369     if (N.getNode()) {
1370       // Only emit func arg dbg value for non-variadic dbg.values for now.
1371       if (!IsVariadic &&
1372           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1373                                    FuncArgumentDbgValueKind::Value, N))
1374         return true;
1375       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1376         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1377         // describe stack slot locations.
1378         //
1379         // Consider "int x = 0; int *px = &x;". There are two kinds of
1380         // interesting debug values here after optimization:
1381         //
1382         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1383         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1384         //
1385         // Both describe the direct values of their associated variables.
1386         Dependencies.push_back(N.getNode());
1387         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1388         continue;
1389       }
1390       LocationOps.emplace_back(
1391           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1392       continue;
1393     }
1394 
1395     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1396     // Special rules apply for the first dbg.values of parameter variables in a
1397     // function. Identify them by the fact they reference Argument Values, that
1398     // they're parameters, and they are parameters of the current function. We
1399     // need to let them dangle until they get an SDNode.
1400     bool IsParamOfFunc =
1401         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1402     if (IsParamOfFunc)
1403       return false;
1404 
1405     // The value is not used in this block yet (or it would have an SDNode).
1406     // We still want the value to appear for the user if possible -- if it has
1407     // an associated VReg, we can refer to that instead.
1408     auto VMI = FuncInfo.ValueMap.find(V);
1409     if (VMI != FuncInfo.ValueMap.end()) {
1410       unsigned Reg = VMI->second;
1411       // If this is a PHI node, it may be split up into several MI PHI nodes
1412       // (in FunctionLoweringInfo::set).
1413       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1414                        V->getType(), None);
1415       if (RFV.occupiesMultipleRegs()) {
1416         // FIXME: We could potentially support variadic dbg_values here.
1417         if (IsVariadic)
1418           return false;
1419         unsigned Offset = 0;
1420         unsigned BitsToDescribe = 0;
1421         if (auto VarSize = Var->getSizeInBits())
1422           BitsToDescribe = *VarSize;
1423         if (auto Fragment = Expr->getFragmentInfo())
1424           BitsToDescribe = Fragment->SizeInBits;
1425         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1426           // Bail out if all bits are described already.
1427           if (Offset >= BitsToDescribe)
1428             break;
1429           // TODO: handle scalable vectors.
1430           unsigned RegisterSize = RegAndSize.second;
1431           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1432                                       ? BitsToDescribe - Offset
1433                                       : RegisterSize;
1434           auto FragmentExpr = DIExpression::createFragmentExpression(
1435               Expr, Offset, FragmentSize);
1436           if (!FragmentExpr)
1437             continue;
1438           SDDbgValue *SDV = DAG.getVRegDbgValue(
1439               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1440           DAG.AddDbgValue(SDV, false);
1441           Offset += RegisterSize;
1442         }
1443         return true;
1444       }
1445       // We can use simple vreg locations for variadic dbg_values as well.
1446       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1447       continue;
1448     }
1449     // We failed to create a SDDbgOperand for V.
1450     return false;
1451   }
1452 
1453   // We have created a SDDbgOperand for each Value in Values.
1454   // Should use Order instead of SDNodeOrder?
1455   assert(!LocationOps.empty());
1456   SDDbgValue *SDV =
1457       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1458                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1459   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1460   return true;
1461 }
1462 
1463 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1464   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1465   for (auto &Pair : DanglingDebugInfoMap)
1466     for (auto &DDI : Pair.second)
1467       salvageUnresolvedDbgValue(DDI);
1468   clearDanglingDebugInfo();
1469 }
1470 
1471 /// getCopyFromRegs - If there was virtual register allocated for the value V
1472 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1473 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1474   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1475   SDValue Result;
1476 
1477   if (It != FuncInfo.ValueMap.end()) {
1478     Register InReg = It->second;
1479 
1480     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1481                      DAG.getDataLayout(), InReg, Ty,
1482                      None); // This is not an ABI copy.
1483     SDValue Chain = DAG.getEntryNode();
1484     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1485                                  V);
1486     resolveDanglingDebugInfo(V, Result);
1487   }
1488 
1489   return Result;
1490 }
1491 
1492 /// getValue - Return an SDValue for the given Value.
1493 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1494   // If we already have an SDValue for this value, use it. It's important
1495   // to do this first, so that we don't create a CopyFromReg if we already
1496   // have a regular SDValue.
1497   SDValue &N = NodeMap[V];
1498   if (N.getNode()) return N;
1499 
1500   // If there's a virtual register allocated and initialized for this
1501   // value, use it.
1502   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1503     return copyFromReg;
1504 
1505   // Otherwise create a new SDValue and remember it.
1506   SDValue Val = getValueImpl(V);
1507   NodeMap[V] = Val;
1508   resolveDanglingDebugInfo(V, Val);
1509   return Val;
1510 }
1511 
1512 /// getNonRegisterValue - Return an SDValue for the given Value, but
1513 /// don't look in FuncInfo.ValueMap for a virtual register.
1514 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1515   // If we already have an SDValue for this value, use it.
1516   SDValue &N = NodeMap[V];
1517   if (N.getNode()) {
1518     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1519       // Remove the debug location from the node as the node is about to be used
1520       // in a location which may differ from the original debug location.  This
1521       // is relevant to Constant and ConstantFP nodes because they can appear
1522       // as constant expressions inside PHI nodes.
1523       N->setDebugLoc(DebugLoc());
1524     }
1525     return N;
1526   }
1527 
1528   // Otherwise create a new SDValue and remember it.
1529   SDValue Val = getValueImpl(V);
1530   NodeMap[V] = Val;
1531   resolveDanglingDebugInfo(V, Val);
1532   return Val;
1533 }
1534 
1535 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1536 /// Create an SDValue for the given value.
1537 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1538   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1539 
1540   if (const Constant *C = dyn_cast<Constant>(V)) {
1541     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1542 
1543     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1544       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1545 
1546     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1547       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1548 
1549     if (isa<ConstantPointerNull>(C)) {
1550       unsigned AS = V->getType()->getPointerAddressSpace();
1551       return DAG.getConstant(0, getCurSDLoc(),
1552                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1553     }
1554 
1555     if (match(C, m_VScale(DAG.getDataLayout())))
1556       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1557 
1558     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1559       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1560 
1561     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1562       return DAG.getUNDEF(VT);
1563 
1564     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1565       visit(CE->getOpcode(), *CE);
1566       SDValue N1 = NodeMap[V];
1567       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1568       return N1;
1569     }
1570 
1571     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1572       SmallVector<SDValue, 4> Constants;
1573       for (const Use &U : C->operands()) {
1574         SDNode *Val = getValue(U).getNode();
1575         // If the operand is an empty aggregate, there are no values.
1576         if (!Val) continue;
1577         // Add each leaf value from the operand to the Constants list
1578         // to form a flattened list of all the values.
1579         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1580           Constants.push_back(SDValue(Val, i));
1581       }
1582 
1583       return DAG.getMergeValues(Constants, getCurSDLoc());
1584     }
1585 
1586     if (const ConstantDataSequential *CDS =
1587           dyn_cast<ConstantDataSequential>(C)) {
1588       SmallVector<SDValue, 4> Ops;
1589       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1590         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1591         // Add each leaf value from the operand to the Constants list
1592         // to form a flattened list of all the values.
1593         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1594           Ops.push_back(SDValue(Val, i));
1595       }
1596 
1597       if (isa<ArrayType>(CDS->getType()))
1598         return DAG.getMergeValues(Ops, getCurSDLoc());
1599       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1600     }
1601 
1602     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1603       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1604              "Unknown struct or array constant!");
1605 
1606       SmallVector<EVT, 4> ValueVTs;
1607       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1608       unsigned NumElts = ValueVTs.size();
1609       if (NumElts == 0)
1610         return SDValue(); // empty struct
1611       SmallVector<SDValue, 4> Constants(NumElts);
1612       for (unsigned i = 0; i != NumElts; ++i) {
1613         EVT EltVT = ValueVTs[i];
1614         if (isa<UndefValue>(C))
1615           Constants[i] = DAG.getUNDEF(EltVT);
1616         else if (EltVT.isFloatingPoint())
1617           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1618         else
1619           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1620       }
1621 
1622       return DAG.getMergeValues(Constants, getCurSDLoc());
1623     }
1624 
1625     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1626       return DAG.getBlockAddress(BA, VT);
1627 
1628     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1629       return getValue(Equiv->getGlobalValue());
1630 
1631     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1632       return getValue(NC->getGlobalValue());
1633 
1634     VectorType *VecTy = cast<VectorType>(V->getType());
1635 
1636     // Now that we know the number and type of the elements, get that number of
1637     // elements into the Ops array based on what kind of constant it is.
1638     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1639       SmallVector<SDValue, 16> Ops;
1640       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1641       for (unsigned i = 0; i != NumElements; ++i)
1642         Ops.push_back(getValue(CV->getOperand(i)));
1643 
1644       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1645     }
1646 
1647     if (isa<ConstantAggregateZero>(C)) {
1648       EVT EltVT =
1649           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1650 
1651       SDValue Op;
1652       if (EltVT.isFloatingPoint())
1653         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1654       else
1655         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1656 
1657       if (isa<ScalableVectorType>(VecTy))
1658         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1659 
1660       SmallVector<SDValue, 16> Ops;
1661       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1662       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1663     }
1664 
1665     llvm_unreachable("Unknown vector constant");
1666   }
1667 
1668   // If this is a static alloca, generate it as the frameindex instead of
1669   // computation.
1670   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1671     DenseMap<const AllocaInst*, int>::iterator SI =
1672       FuncInfo.StaticAllocaMap.find(AI);
1673     if (SI != FuncInfo.StaticAllocaMap.end())
1674       return DAG.getFrameIndex(SI->second,
1675                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1676   }
1677 
1678   // If this is an instruction which fast-isel has deferred, select it now.
1679   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1680     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1681 
1682     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1683                      Inst->getType(), None);
1684     SDValue Chain = DAG.getEntryNode();
1685     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1686   }
1687 
1688   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1689     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1690 
1691   if (const auto *BB = dyn_cast<BasicBlock>(V))
1692     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1693 
1694   llvm_unreachable("Can't get register for value!");
1695 }
1696 
1697 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1698   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1699   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1700   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1701   bool IsSEH = isAsynchronousEHPersonality(Pers);
1702   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1703   if (!IsSEH)
1704     CatchPadMBB->setIsEHScopeEntry();
1705   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1706   if (IsMSVCCXX || IsCoreCLR)
1707     CatchPadMBB->setIsEHFuncletEntry();
1708 }
1709 
1710 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1711   // Update machine-CFG edge.
1712   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1713   FuncInfo.MBB->addSuccessor(TargetMBB);
1714   TargetMBB->setIsEHCatchretTarget(true);
1715   DAG.getMachineFunction().setHasEHCatchret(true);
1716 
1717   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1718   bool IsSEH = isAsynchronousEHPersonality(Pers);
1719   if (IsSEH) {
1720     // If this is not a fall-through branch or optimizations are switched off,
1721     // emit the branch.
1722     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1723         TM.getOptLevel() == CodeGenOpt::None)
1724       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1725                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1726     return;
1727   }
1728 
1729   // Figure out the funclet membership for the catchret's successor.
1730   // This will be used by the FuncletLayout pass to determine how to order the
1731   // BB's.
1732   // A 'catchret' returns to the outer scope's color.
1733   Value *ParentPad = I.getCatchSwitchParentPad();
1734   const BasicBlock *SuccessorColor;
1735   if (isa<ConstantTokenNone>(ParentPad))
1736     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1737   else
1738     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1739   assert(SuccessorColor && "No parent funclet for catchret!");
1740   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1741   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1742 
1743   // Create the terminator node.
1744   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1745                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1746                             DAG.getBasicBlock(SuccessorColorMBB));
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1751   // Don't emit any special code for the cleanuppad instruction. It just marks
1752   // the start of an EH scope/funclet.
1753   FuncInfo.MBB->setIsEHScopeEntry();
1754   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1755   if (Pers != EHPersonality::Wasm_CXX) {
1756     FuncInfo.MBB->setIsEHFuncletEntry();
1757     FuncInfo.MBB->setIsCleanupFuncletEntry();
1758   }
1759 }
1760 
1761 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1762 // not match, it is OK to add only the first unwind destination catchpad to the
1763 // successors, because there will be at least one invoke instruction within the
1764 // catch scope that points to the next unwind destination, if one exists, so
1765 // CFGSort cannot mess up with BB sorting order.
1766 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1767 // call within them, and catchpads only consisting of 'catch (...)' have a
1768 // '__cxa_end_catch' call within them, both of which generate invokes in case
1769 // the next unwind destination exists, i.e., the next unwind destination is not
1770 // the caller.)
1771 //
1772 // Having at most one EH pad successor is also simpler and helps later
1773 // transformations.
1774 //
1775 // For example,
1776 // current:
1777 //   invoke void @foo to ... unwind label %catch.dispatch
1778 // catch.dispatch:
1779 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1780 // catch.start:
1781 //   ...
1782 //   ... in this BB or some other child BB dominated by this BB there will be an
1783 //   invoke that points to 'next' BB as an unwind destination
1784 //
1785 // next: ; We don't need to add this to 'current' BB's successor
1786 //   ...
1787 static void findWasmUnwindDestinations(
1788     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1789     BranchProbability Prob,
1790     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1791         &UnwindDests) {
1792   while (EHPadBB) {
1793     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1794     if (isa<CleanupPadInst>(Pad)) {
1795       // Stop on cleanup pads.
1796       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1797       UnwindDests.back().first->setIsEHScopeEntry();
1798       break;
1799     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1800       // Add the catchpad handlers to the possible destinations. We don't
1801       // continue to the unwind destination of the catchswitch for wasm.
1802       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1803         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1804         UnwindDests.back().first->setIsEHScopeEntry();
1805       }
1806       break;
1807     } else {
1808       continue;
1809     }
1810   }
1811 }
1812 
1813 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1814 /// many places it could ultimately go. In the IR, we have a single unwind
1815 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1816 /// This function skips over imaginary basic blocks that hold catchswitch
1817 /// instructions, and finds all the "real" machine
1818 /// basic block destinations. As those destinations may not be successors of
1819 /// EHPadBB, here we also calculate the edge probability to those destinations.
1820 /// The passed-in Prob is the edge probability to EHPadBB.
1821 static void findUnwindDestinations(
1822     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1823     BranchProbability Prob,
1824     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1825         &UnwindDests) {
1826   EHPersonality Personality =
1827     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1828   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1829   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1830   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1831   bool IsSEH = isAsynchronousEHPersonality(Personality);
1832 
1833   if (IsWasmCXX) {
1834     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1835     assert(UnwindDests.size() <= 1 &&
1836            "There should be at most one unwind destination for wasm");
1837     return;
1838   }
1839 
1840   while (EHPadBB) {
1841     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1842     BasicBlock *NewEHPadBB = nullptr;
1843     if (isa<LandingPadInst>(Pad)) {
1844       // Stop on landingpads. They are not funclets.
1845       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1846       break;
1847     } else if (isa<CleanupPadInst>(Pad)) {
1848       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1849       // personalities.
1850       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1851       UnwindDests.back().first->setIsEHScopeEntry();
1852       UnwindDests.back().first->setIsEHFuncletEntry();
1853       break;
1854     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1855       // Add the catchpad handlers to the possible destinations.
1856       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1857         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1858         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1859         if (IsMSVCCXX || IsCoreCLR)
1860           UnwindDests.back().first->setIsEHFuncletEntry();
1861         if (!IsSEH)
1862           UnwindDests.back().first->setIsEHScopeEntry();
1863       }
1864       NewEHPadBB = CatchSwitch->getUnwindDest();
1865     } else {
1866       continue;
1867     }
1868 
1869     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1870     if (BPI && NewEHPadBB)
1871       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1872     EHPadBB = NewEHPadBB;
1873   }
1874 }
1875 
1876 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1877   // Update successor info.
1878   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1879   auto UnwindDest = I.getUnwindDest();
1880   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1881   BranchProbability UnwindDestProb =
1882       (BPI && UnwindDest)
1883           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1884           : BranchProbability::getZero();
1885   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1886   for (auto &UnwindDest : UnwindDests) {
1887     UnwindDest.first->setIsEHPad();
1888     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1889   }
1890   FuncInfo.MBB->normalizeSuccProbs();
1891 
1892   // Create the terminator node.
1893   SDValue Ret =
1894       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1895   DAG.setRoot(Ret);
1896 }
1897 
1898 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1899   report_fatal_error("visitCatchSwitch not yet implemented!");
1900 }
1901 
1902 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1904   auto &DL = DAG.getDataLayout();
1905   SDValue Chain = getControlRoot();
1906   SmallVector<ISD::OutputArg, 8> Outs;
1907   SmallVector<SDValue, 8> OutVals;
1908 
1909   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1910   // lower
1911   //
1912   //   %val = call <ty> @llvm.experimental.deoptimize()
1913   //   ret <ty> %val
1914   //
1915   // differently.
1916   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1917     LowerDeoptimizingReturn();
1918     return;
1919   }
1920 
1921   if (!FuncInfo.CanLowerReturn) {
1922     unsigned DemoteReg = FuncInfo.DemoteRegister;
1923     const Function *F = I.getParent()->getParent();
1924 
1925     // Emit a store of the return value through the virtual register.
1926     // Leave Outs empty so that LowerReturn won't try to load return
1927     // registers the usual way.
1928     SmallVector<EVT, 1> PtrValueVTs;
1929     ComputeValueVTs(TLI, DL,
1930                     F->getReturnType()->getPointerTo(
1931                         DAG.getDataLayout().getAllocaAddrSpace()),
1932                     PtrValueVTs);
1933 
1934     SDValue RetPtr =
1935         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1936     SDValue RetOp = getValue(I.getOperand(0));
1937 
1938     SmallVector<EVT, 4> ValueVTs, MemVTs;
1939     SmallVector<uint64_t, 4> Offsets;
1940     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1941                     &Offsets);
1942     unsigned NumValues = ValueVTs.size();
1943 
1944     SmallVector<SDValue, 4> Chains(NumValues);
1945     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1946     for (unsigned i = 0; i != NumValues; ++i) {
1947       // An aggregate return value cannot wrap around the address space, so
1948       // offsets to its parts don't wrap either.
1949       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1950                                            TypeSize::Fixed(Offsets[i]));
1951 
1952       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1953       if (MemVTs[i] != ValueVTs[i])
1954         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1955       Chains[i] = DAG.getStore(
1956           Chain, getCurSDLoc(), Val,
1957           // FIXME: better loc info would be nice.
1958           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1959           commonAlignment(BaseAlign, Offsets[i]));
1960     }
1961 
1962     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1963                         MVT::Other, Chains);
1964   } else if (I.getNumOperands() != 0) {
1965     SmallVector<EVT, 4> ValueVTs;
1966     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1967     unsigned NumValues = ValueVTs.size();
1968     if (NumValues) {
1969       SDValue RetOp = getValue(I.getOperand(0));
1970 
1971       const Function *F = I.getParent()->getParent();
1972 
1973       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1974           I.getOperand(0)->getType(), F->getCallingConv(),
1975           /*IsVarArg*/ false, DL);
1976 
1977       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1978       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1979         ExtendKind = ISD::SIGN_EXTEND;
1980       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1981         ExtendKind = ISD::ZERO_EXTEND;
1982 
1983       LLVMContext &Context = F->getContext();
1984       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1985 
1986       for (unsigned j = 0; j != NumValues; ++j) {
1987         EVT VT = ValueVTs[j];
1988 
1989         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1990           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1991 
1992         CallingConv::ID CC = F->getCallingConv();
1993 
1994         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1995         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1996         SmallVector<SDValue, 4> Parts(NumParts);
1997         getCopyToParts(DAG, getCurSDLoc(),
1998                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1999                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2000 
2001         // 'inreg' on function refers to return value
2002         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2003         if (RetInReg)
2004           Flags.setInReg();
2005 
2006         if (I.getOperand(0)->getType()->isPointerTy()) {
2007           Flags.setPointer();
2008           Flags.setPointerAddrSpace(
2009               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2010         }
2011 
2012         if (NeedsRegBlock) {
2013           Flags.setInConsecutiveRegs();
2014           if (j == NumValues - 1)
2015             Flags.setInConsecutiveRegsLast();
2016         }
2017 
2018         // Propagate extension type if any
2019         if (ExtendKind == ISD::SIGN_EXTEND)
2020           Flags.setSExt();
2021         else if (ExtendKind == ISD::ZERO_EXTEND)
2022           Flags.setZExt();
2023 
2024         for (unsigned i = 0; i < NumParts; ++i) {
2025           Outs.push_back(ISD::OutputArg(Flags,
2026                                         Parts[i].getValueType().getSimpleVT(),
2027                                         VT, /*isfixed=*/true, 0, 0));
2028           OutVals.push_back(Parts[i]);
2029         }
2030       }
2031     }
2032   }
2033 
2034   // Push in swifterror virtual register as the last element of Outs. This makes
2035   // sure swifterror virtual register will be returned in the swifterror
2036   // physical register.
2037   const Function *F = I.getParent()->getParent();
2038   if (TLI.supportSwiftError() &&
2039       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2040     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2041     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2042     Flags.setSwiftError();
2043     Outs.push_back(ISD::OutputArg(
2044         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2045         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2046     // Create SDNode for the swifterror virtual register.
2047     OutVals.push_back(
2048         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2049                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2050                         EVT(TLI.getPointerTy(DL))));
2051   }
2052 
2053   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2054   CallingConv::ID CallConv =
2055     DAG.getMachineFunction().getFunction().getCallingConv();
2056   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2057       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2058 
2059   // Verify that the target's LowerReturn behaved as expected.
2060   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2061          "LowerReturn didn't return a valid chain!");
2062 
2063   // Update the DAG with the new chain value resulting from return lowering.
2064   DAG.setRoot(Chain);
2065 }
2066 
2067 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2068 /// created for it, emit nodes to copy the value into the virtual
2069 /// registers.
2070 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2071   // Skip empty types
2072   if (V->getType()->isEmptyTy())
2073     return;
2074 
2075   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2076   if (VMI != FuncInfo.ValueMap.end()) {
2077     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2078     CopyValueToVirtualRegister(V, VMI->second);
2079   }
2080 }
2081 
2082 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2083 /// the current basic block, add it to ValueMap now so that we'll get a
2084 /// CopyTo/FromReg.
2085 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2086   // No need to export constants.
2087   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2088 
2089   // Already exported?
2090   if (FuncInfo.isExportedInst(V)) return;
2091 
2092   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2093   CopyValueToVirtualRegister(V, Reg);
2094 }
2095 
2096 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2097                                                      const BasicBlock *FromBB) {
2098   // The operands of the setcc have to be in this block.  We don't know
2099   // how to export them from some other block.
2100   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2101     // Can export from current BB.
2102     if (VI->getParent() == FromBB)
2103       return true;
2104 
2105     // Is already exported, noop.
2106     return FuncInfo.isExportedInst(V);
2107   }
2108 
2109   // If this is an argument, we can export it if the BB is the entry block or
2110   // if it is already exported.
2111   if (isa<Argument>(V)) {
2112     if (FromBB->isEntryBlock())
2113       return true;
2114 
2115     // Otherwise, can only export this if it is already exported.
2116     return FuncInfo.isExportedInst(V);
2117   }
2118 
2119   // Otherwise, constants can always be exported.
2120   return true;
2121 }
2122 
2123 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2124 BranchProbability
2125 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2126                                         const MachineBasicBlock *Dst) const {
2127   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2128   const BasicBlock *SrcBB = Src->getBasicBlock();
2129   const BasicBlock *DstBB = Dst->getBasicBlock();
2130   if (!BPI) {
2131     // If BPI is not available, set the default probability as 1 / N, where N is
2132     // the number of successors.
2133     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2134     return BranchProbability(1, SuccSize);
2135   }
2136   return BPI->getEdgeProbability(SrcBB, DstBB);
2137 }
2138 
2139 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2140                                                MachineBasicBlock *Dst,
2141                                                BranchProbability Prob) {
2142   if (!FuncInfo.BPI)
2143     Src->addSuccessorWithoutProb(Dst);
2144   else {
2145     if (Prob.isUnknown())
2146       Prob = getEdgeProbability(Src, Dst);
2147     Src->addSuccessor(Dst, Prob);
2148   }
2149 }
2150 
2151 static bool InBlock(const Value *V, const BasicBlock *BB) {
2152   if (const Instruction *I = dyn_cast<Instruction>(V))
2153     return I->getParent() == BB;
2154   return true;
2155 }
2156 
2157 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2158 /// This function emits a branch and is used at the leaves of an OR or an
2159 /// AND operator tree.
2160 void
2161 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2162                                                   MachineBasicBlock *TBB,
2163                                                   MachineBasicBlock *FBB,
2164                                                   MachineBasicBlock *CurBB,
2165                                                   MachineBasicBlock *SwitchBB,
2166                                                   BranchProbability TProb,
2167                                                   BranchProbability FProb,
2168                                                   bool InvertCond) {
2169   const BasicBlock *BB = CurBB->getBasicBlock();
2170 
2171   // If the leaf of the tree is a comparison, merge the condition into
2172   // the caseblock.
2173   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2174     // The operands of the cmp have to be in this block.  We don't know
2175     // how to export them from some other block.  If this is the first block
2176     // of the sequence, no exporting is needed.
2177     if (CurBB == SwitchBB ||
2178         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2179          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2180       ISD::CondCode Condition;
2181       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2182         ICmpInst::Predicate Pred =
2183             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2184         Condition = getICmpCondCode(Pred);
2185       } else {
2186         const FCmpInst *FC = cast<FCmpInst>(Cond);
2187         FCmpInst::Predicate Pred =
2188             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2189         Condition = getFCmpCondCode(Pred);
2190         if (TM.Options.NoNaNsFPMath)
2191           Condition = getFCmpCodeWithoutNaN(Condition);
2192       }
2193 
2194       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2195                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2196       SL->SwitchCases.push_back(CB);
2197       return;
2198     }
2199   }
2200 
2201   // Create a CaseBlock record representing this branch.
2202   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2203   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2204                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2205   SL->SwitchCases.push_back(CB);
2206 }
2207 
2208 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2209                                                MachineBasicBlock *TBB,
2210                                                MachineBasicBlock *FBB,
2211                                                MachineBasicBlock *CurBB,
2212                                                MachineBasicBlock *SwitchBB,
2213                                                Instruction::BinaryOps Opc,
2214                                                BranchProbability TProb,
2215                                                BranchProbability FProb,
2216                                                bool InvertCond) {
2217   // Skip over not part of the tree and remember to invert op and operands at
2218   // next level.
2219   Value *NotCond;
2220   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2221       InBlock(NotCond, CurBB->getBasicBlock())) {
2222     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2223                          !InvertCond);
2224     return;
2225   }
2226 
2227   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2228   const Value *BOpOp0, *BOpOp1;
2229   // Compute the effective opcode for Cond, taking into account whether it needs
2230   // to be inverted, e.g.
2231   //   and (not (or A, B)), C
2232   // gets lowered as
2233   //   and (and (not A, not B), C)
2234   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2235   if (BOp) {
2236     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2237                ? Instruction::And
2238                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2239                       ? Instruction::Or
2240                       : (Instruction::BinaryOps)0);
2241     if (InvertCond) {
2242       if (BOpc == Instruction::And)
2243         BOpc = Instruction::Or;
2244       else if (BOpc == Instruction::Or)
2245         BOpc = Instruction::And;
2246     }
2247   }
2248 
2249   // If this node is not part of the or/and tree, emit it as a branch.
2250   // Note that all nodes in the tree should have same opcode.
2251   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2252   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2253       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2254       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2255     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2256                                  TProb, FProb, InvertCond);
2257     return;
2258   }
2259 
2260   //  Create TmpBB after CurBB.
2261   MachineFunction::iterator BBI(CurBB);
2262   MachineFunction &MF = DAG.getMachineFunction();
2263   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2264   CurBB->getParent()->insert(++BBI, TmpBB);
2265 
2266   if (Opc == Instruction::Or) {
2267     // Codegen X | Y as:
2268     // BB1:
2269     //   jmp_if_X TBB
2270     //   jmp TmpBB
2271     // TmpBB:
2272     //   jmp_if_Y TBB
2273     //   jmp FBB
2274     //
2275 
2276     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2277     // The requirement is that
2278     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2279     //     = TrueProb for original BB.
2280     // Assuming the original probabilities are A and B, one choice is to set
2281     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2282     // A/(1+B) and 2B/(1+B). This choice assumes that
2283     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2284     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2285     // TmpBB, but the math is more complicated.
2286 
2287     auto NewTrueProb = TProb / 2;
2288     auto NewFalseProb = TProb / 2 + FProb;
2289     // Emit the LHS condition.
2290     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2291                          NewFalseProb, InvertCond);
2292 
2293     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2294     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2295     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2296     // Emit the RHS condition into TmpBB.
2297     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2298                          Probs[1], InvertCond);
2299   } else {
2300     assert(Opc == Instruction::And && "Unknown merge op!");
2301     // Codegen X & Y as:
2302     // BB1:
2303     //   jmp_if_X TmpBB
2304     //   jmp FBB
2305     // TmpBB:
2306     //   jmp_if_Y TBB
2307     //   jmp FBB
2308     //
2309     //  This requires creation of TmpBB after CurBB.
2310 
2311     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2312     // The requirement is that
2313     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2314     //     = FalseProb for original BB.
2315     // Assuming the original probabilities are A and B, one choice is to set
2316     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2317     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2318     // TrueProb for BB1 * FalseProb for TmpBB.
2319 
2320     auto NewTrueProb = TProb + FProb / 2;
2321     auto NewFalseProb = FProb / 2;
2322     // Emit the LHS condition.
2323     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2324                          NewFalseProb, InvertCond);
2325 
2326     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2327     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2328     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2329     // Emit the RHS condition into TmpBB.
2330     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2331                          Probs[1], InvertCond);
2332   }
2333 }
2334 
2335 /// If the set of cases should be emitted as a series of branches, return true.
2336 /// If we should emit this as a bunch of and/or'd together conditions, return
2337 /// false.
2338 bool
2339 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2340   if (Cases.size() != 2) return true;
2341 
2342   // If this is two comparisons of the same values or'd or and'd together, they
2343   // will get folded into a single comparison, so don't emit two blocks.
2344   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2345        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2346       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2347        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2348     return false;
2349   }
2350 
2351   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2352   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2353   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2354       Cases[0].CC == Cases[1].CC &&
2355       isa<Constant>(Cases[0].CmpRHS) &&
2356       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2357     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2358       return false;
2359     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2360       return false;
2361   }
2362 
2363   return true;
2364 }
2365 
2366 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2367   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2368 
2369   // Update machine-CFG edges.
2370   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2371 
2372   if (I.isUnconditional()) {
2373     // Update machine-CFG edges.
2374     BrMBB->addSuccessor(Succ0MBB);
2375 
2376     // If this is not a fall-through branch or optimizations are switched off,
2377     // emit the branch.
2378     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2379       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2380                               MVT::Other, getControlRoot(),
2381                               DAG.getBasicBlock(Succ0MBB)));
2382 
2383     return;
2384   }
2385 
2386   // If this condition is one of the special cases we handle, do special stuff
2387   // now.
2388   const Value *CondVal = I.getCondition();
2389   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2390 
2391   // If this is a series of conditions that are or'd or and'd together, emit
2392   // this as a sequence of branches instead of setcc's with and/or operations.
2393   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2394   // unpredictable branches, and vector extracts because those jumps are likely
2395   // expensive for any target), this should improve performance.
2396   // For example, instead of something like:
2397   //     cmp A, B
2398   //     C = seteq
2399   //     cmp D, E
2400   //     F = setle
2401   //     or C, F
2402   //     jnz foo
2403   // Emit:
2404   //     cmp A, B
2405   //     je foo
2406   //     cmp D, E
2407   //     jle foo
2408   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2409   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2410       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2411     Value *Vec;
2412     const Value *BOp0, *BOp1;
2413     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2414     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2415       Opcode = Instruction::And;
2416     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2417       Opcode = Instruction::Or;
2418 
2419     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2420                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2421       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2422                            getEdgeProbability(BrMBB, Succ0MBB),
2423                            getEdgeProbability(BrMBB, Succ1MBB),
2424                            /*InvertCond=*/false);
2425       // If the compares in later blocks need to use values not currently
2426       // exported from this block, export them now.  This block should always
2427       // be the first entry.
2428       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2429 
2430       // Allow some cases to be rejected.
2431       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2432         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2433           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2434           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2435         }
2436 
2437         // Emit the branch for this block.
2438         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2439         SL->SwitchCases.erase(SL->SwitchCases.begin());
2440         return;
2441       }
2442 
2443       // Okay, we decided not to do this, remove any inserted MBB's and clear
2444       // SwitchCases.
2445       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2446         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2447 
2448       SL->SwitchCases.clear();
2449     }
2450   }
2451 
2452   // Create a CaseBlock record representing this branch.
2453   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2454                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2455 
2456   // Use visitSwitchCase to actually insert the fast branch sequence for this
2457   // cond branch.
2458   visitSwitchCase(CB, BrMBB);
2459 }
2460 
2461 /// visitSwitchCase - Emits the necessary code to represent a single node in
2462 /// the binary search tree resulting from lowering a switch instruction.
2463 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2464                                           MachineBasicBlock *SwitchBB) {
2465   SDValue Cond;
2466   SDValue CondLHS = getValue(CB.CmpLHS);
2467   SDLoc dl = CB.DL;
2468 
2469   if (CB.CC == ISD::SETTRUE) {
2470     // Branch or fall through to TrueBB.
2471     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2472     SwitchBB->normalizeSuccProbs();
2473     if (CB.TrueBB != NextBlock(SwitchBB)) {
2474       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2475                               DAG.getBasicBlock(CB.TrueBB)));
2476     }
2477     return;
2478   }
2479 
2480   auto &TLI = DAG.getTargetLoweringInfo();
2481   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2482 
2483   // Build the setcc now.
2484   if (!CB.CmpMHS) {
2485     // Fold "(X == true)" to X and "(X == false)" to !X to
2486     // handle common cases produced by branch lowering.
2487     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2488         CB.CC == ISD::SETEQ)
2489       Cond = CondLHS;
2490     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2491              CB.CC == ISD::SETEQ) {
2492       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2493       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2494     } else {
2495       SDValue CondRHS = getValue(CB.CmpRHS);
2496 
2497       // If a pointer's DAG type is larger than its memory type then the DAG
2498       // values are zero-extended. This breaks signed comparisons so truncate
2499       // back to the underlying type before doing the compare.
2500       if (CondLHS.getValueType() != MemVT) {
2501         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2502         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2503       }
2504       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2505     }
2506   } else {
2507     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2508 
2509     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2510     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2511 
2512     SDValue CmpOp = getValue(CB.CmpMHS);
2513     EVT VT = CmpOp.getValueType();
2514 
2515     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2516       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2517                           ISD::SETLE);
2518     } else {
2519       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2520                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2521       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2522                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2523     }
2524   }
2525 
2526   // Update successor info
2527   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2528   // TrueBB and FalseBB are always different unless the incoming IR is
2529   // degenerate. This only happens when running llc on weird IR.
2530   if (CB.TrueBB != CB.FalseBB)
2531     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2532   SwitchBB->normalizeSuccProbs();
2533 
2534   // If the lhs block is the next block, invert the condition so that we can
2535   // fall through to the lhs instead of the rhs block.
2536   if (CB.TrueBB == NextBlock(SwitchBB)) {
2537     std::swap(CB.TrueBB, CB.FalseBB);
2538     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2539     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2540   }
2541 
2542   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2543                                MVT::Other, getControlRoot(), Cond,
2544                                DAG.getBasicBlock(CB.TrueBB));
2545 
2546   // Insert the false branch. Do this even if it's a fall through branch,
2547   // this makes it easier to do DAG optimizations which require inverting
2548   // the branch condition.
2549   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2550                        DAG.getBasicBlock(CB.FalseBB));
2551 
2552   DAG.setRoot(BrCond);
2553 }
2554 
2555 /// visitJumpTable - Emit JumpTable node in the current MBB
2556 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2557   // Emit the code for the jump table
2558   assert(JT.Reg != -1U && "Should lower JT Header first!");
2559   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2560   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2561                                      JT.Reg, PTy);
2562   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2563   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2564                                     MVT::Other, Index.getValue(1),
2565                                     Table, Index);
2566   DAG.setRoot(BrJumpTable);
2567 }
2568 
2569 /// visitJumpTableHeader - This function emits necessary code to produce index
2570 /// in the JumpTable from switch case.
2571 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2572                                                JumpTableHeader &JTH,
2573                                                MachineBasicBlock *SwitchBB) {
2574   SDLoc dl = getCurSDLoc();
2575 
2576   // Subtract the lowest switch case value from the value being switched on.
2577   SDValue SwitchOp = getValue(JTH.SValue);
2578   EVT VT = SwitchOp.getValueType();
2579   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2580                             DAG.getConstant(JTH.First, dl, VT));
2581 
2582   // The SDNode we just created, which holds the value being switched on minus
2583   // the smallest case value, needs to be copied to a virtual register so it
2584   // can be used as an index into the jump table in a subsequent basic block.
2585   // This value may be smaller or larger than the target's pointer type, and
2586   // therefore require extension or truncating.
2587   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2588   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2589 
2590   unsigned JumpTableReg =
2591       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2592   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2593                                     JumpTableReg, SwitchOp);
2594   JT.Reg = JumpTableReg;
2595 
2596   if (!JTH.FallthroughUnreachable) {
2597     // Emit the range check for the jump table, and branch to the default block
2598     // for the switch statement if the value being switched on exceeds the
2599     // largest case in the switch.
2600     SDValue CMP = DAG.getSetCC(
2601         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2602                                    Sub.getValueType()),
2603         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2604 
2605     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2606                                  MVT::Other, CopyTo, CMP,
2607                                  DAG.getBasicBlock(JT.Default));
2608 
2609     // Avoid emitting unnecessary branches to the next block.
2610     if (JT.MBB != NextBlock(SwitchBB))
2611       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2612                            DAG.getBasicBlock(JT.MBB));
2613 
2614     DAG.setRoot(BrCond);
2615   } else {
2616     // Avoid emitting unnecessary branches to the next block.
2617     if (JT.MBB != NextBlock(SwitchBB))
2618       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2619                               DAG.getBasicBlock(JT.MBB)));
2620     else
2621       DAG.setRoot(CopyTo);
2622   }
2623 }
2624 
2625 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2626 /// variable if there exists one.
2627 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2628                                  SDValue &Chain) {
2629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2631   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2632   MachineFunction &MF = DAG.getMachineFunction();
2633   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2634   MachineSDNode *Node =
2635       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2636   if (Global) {
2637     MachinePointerInfo MPInfo(Global);
2638     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2639                  MachineMemOperand::MODereferenceable;
2640     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2641         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2642     DAG.setNodeMemRefs(Node, {MemRef});
2643   }
2644   if (PtrTy != PtrMemTy)
2645     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2646   return SDValue(Node, 0);
2647 }
2648 
2649 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2650 /// tail spliced into a stack protector check success bb.
2651 ///
2652 /// For a high level explanation of how this fits into the stack protector
2653 /// generation see the comment on the declaration of class
2654 /// StackProtectorDescriptor.
2655 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2656                                                   MachineBasicBlock *ParentBB) {
2657 
2658   // First create the loads to the guard/stack slot for the comparison.
2659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2660   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2661   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2662 
2663   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2664   int FI = MFI.getStackProtectorIndex();
2665 
2666   SDValue Guard;
2667   SDLoc dl = getCurSDLoc();
2668   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2669   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2670   Align Align =
2671       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2672 
2673   // Generate code to load the content of the guard slot.
2674   SDValue GuardVal = DAG.getLoad(
2675       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2676       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2677       MachineMemOperand::MOVolatile);
2678 
2679   if (TLI.useStackGuardXorFP())
2680     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2681 
2682   // Retrieve guard check function, nullptr if instrumentation is inlined.
2683   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2684     // The target provides a guard check function to validate the guard value.
2685     // Generate a call to that function with the content of the guard slot as
2686     // argument.
2687     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2688     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2689 
2690     TargetLowering::ArgListTy Args;
2691     TargetLowering::ArgListEntry Entry;
2692     Entry.Node = GuardVal;
2693     Entry.Ty = FnTy->getParamType(0);
2694     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2695       Entry.IsInReg = true;
2696     Args.push_back(Entry);
2697 
2698     TargetLowering::CallLoweringInfo CLI(DAG);
2699     CLI.setDebugLoc(getCurSDLoc())
2700         .setChain(DAG.getEntryNode())
2701         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2702                    getValue(GuardCheckFn), std::move(Args));
2703 
2704     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2705     DAG.setRoot(Result.second);
2706     return;
2707   }
2708 
2709   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2710   // Otherwise, emit a volatile load to retrieve the stack guard value.
2711   SDValue Chain = DAG.getEntryNode();
2712   if (TLI.useLoadStackGuardNode()) {
2713     Guard = getLoadStackGuard(DAG, dl, Chain);
2714   } else {
2715     const Value *IRGuard = TLI.getSDagStackGuard(M);
2716     SDValue GuardPtr = getValue(IRGuard);
2717 
2718     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2719                         MachinePointerInfo(IRGuard, 0), Align,
2720                         MachineMemOperand::MOVolatile);
2721   }
2722 
2723   // Perform the comparison via a getsetcc.
2724   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2725                                                         *DAG.getContext(),
2726                                                         Guard.getValueType()),
2727                              Guard, GuardVal, ISD::SETNE);
2728 
2729   // If the guard/stackslot do not equal, branch to failure MBB.
2730   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2731                                MVT::Other, GuardVal.getOperand(0),
2732                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2733   // Otherwise branch to success MBB.
2734   SDValue Br = DAG.getNode(ISD::BR, dl,
2735                            MVT::Other, BrCond,
2736                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2737 
2738   DAG.setRoot(Br);
2739 }
2740 
2741 /// Codegen the failure basic block for a stack protector check.
2742 ///
2743 /// A failure stack protector machine basic block consists simply of a call to
2744 /// __stack_chk_fail().
2745 ///
2746 /// For a high level explanation of how this fits into the stack protector
2747 /// generation see the comment on the declaration of class
2748 /// StackProtectorDescriptor.
2749 void
2750 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2751   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2752   TargetLowering::MakeLibCallOptions CallOptions;
2753   CallOptions.setDiscardResult(true);
2754   SDValue Chain =
2755       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2756                       None, CallOptions, getCurSDLoc()).second;
2757   // On PS4/PS5, the "return address" must still be within the calling
2758   // function, even if it's at the very end, so emit an explicit TRAP here.
2759   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2760   if (TM.getTargetTriple().isPS())
2761     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2762   // WebAssembly needs an unreachable instruction after a non-returning call,
2763   // because the function return type can be different from __stack_chk_fail's
2764   // return type (void).
2765   if (TM.getTargetTriple().isWasm())
2766     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2767 
2768   DAG.setRoot(Chain);
2769 }
2770 
2771 /// visitBitTestHeader - This function emits necessary code to produce value
2772 /// suitable for "bit tests"
2773 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2774                                              MachineBasicBlock *SwitchBB) {
2775   SDLoc dl = getCurSDLoc();
2776 
2777   // Subtract the minimum value.
2778   SDValue SwitchOp = getValue(B.SValue);
2779   EVT VT = SwitchOp.getValueType();
2780   SDValue RangeSub =
2781       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2782 
2783   // Determine the type of the test operands.
2784   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2785   bool UsePtrType = false;
2786   if (!TLI.isTypeLegal(VT)) {
2787     UsePtrType = true;
2788   } else {
2789     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2790       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2791         // Switch table case range are encoded into series of masks.
2792         // Just use pointer type, it's guaranteed to fit.
2793         UsePtrType = true;
2794         break;
2795       }
2796   }
2797   SDValue Sub = RangeSub;
2798   if (UsePtrType) {
2799     VT = TLI.getPointerTy(DAG.getDataLayout());
2800     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2801   }
2802 
2803   B.RegVT = VT.getSimpleVT();
2804   B.Reg = FuncInfo.CreateReg(B.RegVT);
2805   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2806 
2807   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2808 
2809   if (!B.FallthroughUnreachable)
2810     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2811   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2812   SwitchBB->normalizeSuccProbs();
2813 
2814   SDValue Root = CopyTo;
2815   if (!B.FallthroughUnreachable) {
2816     // Conditional branch to the default block.
2817     SDValue RangeCmp = DAG.getSetCC(dl,
2818         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2819                                RangeSub.getValueType()),
2820         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2821         ISD::SETUGT);
2822 
2823     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2824                        DAG.getBasicBlock(B.Default));
2825   }
2826 
2827   // Avoid emitting unnecessary branches to the next block.
2828   if (MBB != NextBlock(SwitchBB))
2829     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2830 
2831   DAG.setRoot(Root);
2832 }
2833 
2834 /// visitBitTestCase - this function produces one "bit test"
2835 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2836                                            MachineBasicBlock* NextMBB,
2837                                            BranchProbability BranchProbToNext,
2838                                            unsigned Reg,
2839                                            BitTestCase &B,
2840                                            MachineBasicBlock *SwitchBB) {
2841   SDLoc dl = getCurSDLoc();
2842   MVT VT = BB.RegVT;
2843   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2844   SDValue Cmp;
2845   unsigned PopCount = countPopulation(B.Mask);
2846   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2847   if (PopCount == 1) {
2848     // Testing for a single bit; just compare the shift count with what it
2849     // would need to be to shift a 1 bit in that position.
2850     Cmp = DAG.getSetCC(
2851         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2852         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2853         ISD::SETEQ);
2854   } else if (PopCount == BB.Range) {
2855     // There is only one zero bit in the range, test for it directly.
2856     Cmp = DAG.getSetCC(
2857         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2858         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2859         ISD::SETNE);
2860   } else {
2861     // Make desired shift
2862     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2863                                     DAG.getConstant(1, dl, VT), ShiftOp);
2864 
2865     // Emit bit tests and jumps
2866     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2867                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2868     Cmp = DAG.getSetCC(
2869         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2870         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2871   }
2872 
2873   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2874   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2875   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2876   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2877   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2878   // one as they are relative probabilities (and thus work more like weights),
2879   // and hence we need to normalize them to let the sum of them become one.
2880   SwitchBB->normalizeSuccProbs();
2881 
2882   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2883                               MVT::Other, getControlRoot(),
2884                               Cmp, DAG.getBasicBlock(B.TargetBB));
2885 
2886   // Avoid emitting unnecessary branches to the next block.
2887   if (NextMBB != NextBlock(SwitchBB))
2888     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2889                         DAG.getBasicBlock(NextMBB));
2890 
2891   DAG.setRoot(BrAnd);
2892 }
2893 
2894 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2895   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2896 
2897   // Retrieve successors. Look through artificial IR level blocks like
2898   // catchswitch for successors.
2899   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2900   const BasicBlock *EHPadBB = I.getSuccessor(1);
2901 
2902   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2903   // have to do anything here to lower funclet bundles.
2904   assert(!I.hasOperandBundlesOtherThan(
2905              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2906               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2907               LLVMContext::OB_cfguardtarget,
2908               LLVMContext::OB_clang_arc_attachedcall}) &&
2909          "Cannot lower invokes with arbitrary operand bundles yet!");
2910 
2911   const Value *Callee(I.getCalledOperand());
2912   const Function *Fn = dyn_cast<Function>(Callee);
2913   if (isa<InlineAsm>(Callee))
2914     visitInlineAsm(I, EHPadBB);
2915   else if (Fn && Fn->isIntrinsic()) {
2916     switch (Fn->getIntrinsicID()) {
2917     default:
2918       llvm_unreachable("Cannot invoke this intrinsic");
2919     case Intrinsic::donothing:
2920       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2921     case Intrinsic::seh_try_begin:
2922     case Intrinsic::seh_scope_begin:
2923     case Intrinsic::seh_try_end:
2924     case Intrinsic::seh_scope_end:
2925       break;
2926     case Intrinsic::experimental_patchpoint_void:
2927     case Intrinsic::experimental_patchpoint_i64:
2928       visitPatchpoint(I, EHPadBB);
2929       break;
2930     case Intrinsic::experimental_gc_statepoint:
2931       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2932       break;
2933     case Intrinsic::wasm_rethrow: {
2934       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2935       // special because it can be invoked, so we manually lower it to a DAG
2936       // node here.
2937       SmallVector<SDValue, 8> Ops;
2938       Ops.push_back(getRoot()); // inchain
2939       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2940       Ops.push_back(
2941           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2942                                 TLI.getPointerTy(DAG.getDataLayout())));
2943       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2944       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2945       break;
2946     }
2947     }
2948   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2949     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2950     // Eventually we will support lowering the @llvm.experimental.deoptimize
2951     // intrinsic, and right now there are no plans to support other intrinsics
2952     // with deopt state.
2953     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2954   } else {
2955     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2956   }
2957 
2958   // If the value of the invoke is used outside of its defining block, make it
2959   // available as a virtual register.
2960   // We already took care of the exported value for the statepoint instruction
2961   // during call to the LowerStatepoint.
2962   if (!isa<GCStatepointInst>(I)) {
2963     CopyToExportRegsIfNeeded(&I);
2964   }
2965 
2966   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2967   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2968   BranchProbability EHPadBBProb =
2969       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2970           : BranchProbability::getZero();
2971   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2972 
2973   // Update successor info.
2974   addSuccessorWithProb(InvokeMBB, Return);
2975   for (auto &UnwindDest : UnwindDests) {
2976     UnwindDest.first->setIsEHPad();
2977     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2978   }
2979   InvokeMBB->normalizeSuccProbs();
2980 
2981   // Drop into normal successor.
2982   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2983                           DAG.getBasicBlock(Return)));
2984 }
2985 
2986 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2987   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2988 
2989   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2990   // have to do anything here to lower funclet bundles.
2991   assert(!I.hasOperandBundlesOtherThan(
2992              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2993          "Cannot lower callbrs with arbitrary operand bundles yet!");
2994 
2995   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2996   visitInlineAsm(I);
2997   CopyToExportRegsIfNeeded(&I);
2998 
2999   // Retrieve successors.
3000   SmallPtrSet<BasicBlock *, 8> Dests;
3001   Dests.insert(I.getDefaultDest());
3002   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3003 
3004   // Update successor info.
3005   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3006   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3007     BasicBlock *Dest = I.getIndirectDest(i);
3008     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3009     Target->setIsInlineAsmBrIndirectTarget();
3010     Target->setHasAddressTaken();
3011     // Don't add duplicate machine successors.
3012     if (Dests.insert(Dest).second)
3013       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3014   }
3015   CallBrMBB->normalizeSuccProbs();
3016 
3017   // Drop into default successor.
3018   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3019                           MVT::Other, getControlRoot(),
3020                           DAG.getBasicBlock(Return)));
3021 }
3022 
3023 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3024   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3025 }
3026 
3027 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3028   assert(FuncInfo.MBB->isEHPad() &&
3029          "Call to landingpad not in landing pad!");
3030 
3031   // If there aren't registers to copy the values into (e.g., during SjLj
3032   // exceptions), then don't bother to create these DAG nodes.
3033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3034   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3035   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3036       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3037     return;
3038 
3039   // If landingpad's return type is token type, we don't create DAG nodes
3040   // for its exception pointer and selector value. The extraction of exception
3041   // pointer or selector value from token type landingpads is not currently
3042   // supported.
3043   if (LP.getType()->isTokenTy())
3044     return;
3045 
3046   SmallVector<EVT, 2> ValueVTs;
3047   SDLoc dl = getCurSDLoc();
3048   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3049   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3050 
3051   // Get the two live-in registers as SDValues. The physregs have already been
3052   // copied into virtual registers.
3053   SDValue Ops[2];
3054   if (FuncInfo.ExceptionPointerVirtReg) {
3055     Ops[0] = DAG.getZExtOrTrunc(
3056         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3057                            FuncInfo.ExceptionPointerVirtReg,
3058                            TLI.getPointerTy(DAG.getDataLayout())),
3059         dl, ValueVTs[0]);
3060   } else {
3061     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3062   }
3063   Ops[1] = DAG.getZExtOrTrunc(
3064       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3065                          FuncInfo.ExceptionSelectorVirtReg,
3066                          TLI.getPointerTy(DAG.getDataLayout())),
3067       dl, ValueVTs[1]);
3068 
3069   // Merge into one.
3070   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3071                             DAG.getVTList(ValueVTs), Ops);
3072   setValue(&LP, Res);
3073 }
3074 
3075 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3076                                            MachineBasicBlock *Last) {
3077   // Update JTCases.
3078   for (JumpTableBlock &JTB : SL->JTCases)
3079     if (JTB.first.HeaderBB == First)
3080       JTB.first.HeaderBB = Last;
3081 
3082   // Update BitTestCases.
3083   for (BitTestBlock &BTB : SL->BitTestCases)
3084     if (BTB.Parent == First)
3085       BTB.Parent = Last;
3086 }
3087 
3088 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3089   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3090 
3091   // Update machine-CFG edges with unique successors.
3092   SmallSet<BasicBlock*, 32> Done;
3093   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3094     BasicBlock *BB = I.getSuccessor(i);
3095     bool Inserted = Done.insert(BB).second;
3096     if (!Inserted)
3097         continue;
3098 
3099     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3100     addSuccessorWithProb(IndirectBrMBB, Succ);
3101   }
3102   IndirectBrMBB->normalizeSuccProbs();
3103 
3104   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3105                           MVT::Other, getControlRoot(),
3106                           getValue(I.getAddress())));
3107 }
3108 
3109 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3110   if (!DAG.getTarget().Options.TrapUnreachable)
3111     return;
3112 
3113   // We may be able to ignore unreachable behind a noreturn call.
3114   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3115     const BasicBlock &BB = *I.getParent();
3116     if (&I != &BB.front()) {
3117       BasicBlock::const_iterator PredI =
3118         std::prev(BasicBlock::const_iterator(&I));
3119       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3120         if (Call->doesNotReturn())
3121           return;
3122       }
3123     }
3124   }
3125 
3126   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3127 }
3128 
3129 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3130   SDNodeFlags Flags;
3131   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3132     Flags.copyFMF(*FPOp);
3133 
3134   SDValue Op = getValue(I.getOperand(0));
3135   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3136                                     Op, Flags);
3137   setValue(&I, UnNodeValue);
3138 }
3139 
3140 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3141   SDNodeFlags Flags;
3142   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3143     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3144     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3145   }
3146   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3147     Flags.setExact(ExactOp->isExact());
3148   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3149     Flags.copyFMF(*FPOp);
3150 
3151   SDValue Op1 = getValue(I.getOperand(0));
3152   SDValue Op2 = getValue(I.getOperand(1));
3153   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3154                                      Op1, Op2, Flags);
3155   setValue(&I, BinNodeValue);
3156 }
3157 
3158 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3159   SDValue Op1 = getValue(I.getOperand(0));
3160   SDValue Op2 = getValue(I.getOperand(1));
3161 
3162   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3163       Op1.getValueType(), DAG.getDataLayout());
3164 
3165   // Coerce the shift amount to the right type if we can. This exposes the
3166   // truncate or zext to optimization early.
3167   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3168     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3169            "Unexpected shift type");
3170     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3171   }
3172 
3173   bool nuw = false;
3174   bool nsw = false;
3175   bool exact = false;
3176 
3177   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3178 
3179     if (const OverflowingBinaryOperator *OFBinOp =
3180             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3181       nuw = OFBinOp->hasNoUnsignedWrap();
3182       nsw = OFBinOp->hasNoSignedWrap();
3183     }
3184     if (const PossiblyExactOperator *ExactOp =
3185             dyn_cast<const PossiblyExactOperator>(&I))
3186       exact = ExactOp->isExact();
3187   }
3188   SDNodeFlags Flags;
3189   Flags.setExact(exact);
3190   Flags.setNoSignedWrap(nsw);
3191   Flags.setNoUnsignedWrap(nuw);
3192   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3193                             Flags);
3194   setValue(&I, Res);
3195 }
3196 
3197 void SelectionDAGBuilder::visitSDiv(const User &I) {
3198   SDValue Op1 = getValue(I.getOperand(0));
3199   SDValue Op2 = getValue(I.getOperand(1));
3200 
3201   SDNodeFlags Flags;
3202   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3203                  cast<PossiblyExactOperator>(&I)->isExact());
3204   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3205                            Op2, Flags));
3206 }
3207 
3208 void SelectionDAGBuilder::visitICmp(const User &I) {
3209   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3210   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3211     predicate = IC->getPredicate();
3212   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3213     predicate = ICmpInst::Predicate(IC->getPredicate());
3214   SDValue Op1 = getValue(I.getOperand(0));
3215   SDValue Op2 = getValue(I.getOperand(1));
3216   ISD::CondCode Opcode = getICmpCondCode(predicate);
3217 
3218   auto &TLI = DAG.getTargetLoweringInfo();
3219   EVT MemVT =
3220       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3221 
3222   // If a pointer's DAG type is larger than its memory type then the DAG values
3223   // are zero-extended. This breaks signed comparisons so truncate back to the
3224   // underlying type before doing the compare.
3225   if (Op1.getValueType() != MemVT) {
3226     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3227     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3228   }
3229 
3230   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3231                                                         I.getType());
3232   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3233 }
3234 
3235 void SelectionDAGBuilder::visitFCmp(const User &I) {
3236   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3237   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3238     predicate = FC->getPredicate();
3239   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3240     predicate = FCmpInst::Predicate(FC->getPredicate());
3241   SDValue Op1 = getValue(I.getOperand(0));
3242   SDValue Op2 = getValue(I.getOperand(1));
3243 
3244   ISD::CondCode Condition = getFCmpCondCode(predicate);
3245   auto *FPMO = cast<FPMathOperator>(&I);
3246   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3247     Condition = getFCmpCodeWithoutNaN(Condition);
3248 
3249   SDNodeFlags Flags;
3250   Flags.copyFMF(*FPMO);
3251   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3252 
3253   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3254                                                         I.getType());
3255   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3256 }
3257 
3258 // Check if the condition of the select has one use or two users that are both
3259 // selects with the same condition.
3260 static bool hasOnlySelectUsers(const Value *Cond) {
3261   return llvm::all_of(Cond->users(), [](const Value *V) {
3262     return isa<SelectInst>(V);
3263   });
3264 }
3265 
3266 void SelectionDAGBuilder::visitSelect(const User &I) {
3267   SmallVector<EVT, 4> ValueVTs;
3268   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3269                   ValueVTs);
3270   unsigned NumValues = ValueVTs.size();
3271   if (NumValues == 0) return;
3272 
3273   SmallVector<SDValue, 4> Values(NumValues);
3274   SDValue Cond     = getValue(I.getOperand(0));
3275   SDValue LHSVal   = getValue(I.getOperand(1));
3276   SDValue RHSVal   = getValue(I.getOperand(2));
3277   SmallVector<SDValue, 1> BaseOps(1, Cond);
3278   ISD::NodeType OpCode =
3279       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3280 
3281   bool IsUnaryAbs = false;
3282   bool Negate = false;
3283 
3284   SDNodeFlags Flags;
3285   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3286     Flags.copyFMF(*FPOp);
3287 
3288   // Min/max matching is only viable if all output VTs are the same.
3289   if (is_splat(ValueVTs)) {
3290     EVT VT = ValueVTs[0];
3291     LLVMContext &Ctx = *DAG.getContext();
3292     auto &TLI = DAG.getTargetLoweringInfo();
3293 
3294     // We care about the legality of the operation after it has been type
3295     // legalized.
3296     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3297       VT = TLI.getTypeToTransformTo(Ctx, VT);
3298 
3299     // If the vselect is legal, assume we want to leave this as a vector setcc +
3300     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3301     // min/max is legal on the scalar type.
3302     bool UseScalarMinMax = VT.isVector() &&
3303       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3304 
3305     Value *LHS, *RHS;
3306     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3307     ISD::NodeType Opc = ISD::DELETED_NODE;
3308     switch (SPR.Flavor) {
3309     case SPF_UMAX:    Opc = ISD::UMAX; break;
3310     case SPF_UMIN:    Opc = ISD::UMIN; break;
3311     case SPF_SMAX:    Opc = ISD::SMAX; break;
3312     case SPF_SMIN:    Opc = ISD::SMIN; break;
3313     case SPF_FMINNUM:
3314       switch (SPR.NaNBehavior) {
3315       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3316       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3317       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3318       case SPNB_RETURNS_ANY: {
3319         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3320           Opc = ISD::FMINNUM;
3321         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3322           Opc = ISD::FMINIMUM;
3323         else if (UseScalarMinMax)
3324           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3325             ISD::FMINNUM : ISD::FMINIMUM;
3326         break;
3327       }
3328       }
3329       break;
3330     case SPF_FMAXNUM:
3331       switch (SPR.NaNBehavior) {
3332       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3333       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3334       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3335       case SPNB_RETURNS_ANY:
3336 
3337         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3338           Opc = ISD::FMAXNUM;
3339         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3340           Opc = ISD::FMAXIMUM;
3341         else if (UseScalarMinMax)
3342           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3343             ISD::FMAXNUM : ISD::FMAXIMUM;
3344         break;
3345       }
3346       break;
3347     case SPF_NABS:
3348       Negate = true;
3349       LLVM_FALLTHROUGH;
3350     case SPF_ABS:
3351       IsUnaryAbs = true;
3352       Opc = ISD::ABS;
3353       break;
3354     default: break;
3355     }
3356 
3357     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3358         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3359          (UseScalarMinMax &&
3360           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3361         // If the underlying comparison instruction is used by any other
3362         // instruction, the consumed instructions won't be destroyed, so it is
3363         // not profitable to convert to a min/max.
3364         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3365       OpCode = Opc;
3366       LHSVal = getValue(LHS);
3367       RHSVal = getValue(RHS);
3368       BaseOps.clear();
3369     }
3370 
3371     if (IsUnaryAbs) {
3372       OpCode = Opc;
3373       LHSVal = getValue(LHS);
3374       BaseOps.clear();
3375     }
3376   }
3377 
3378   if (IsUnaryAbs) {
3379     for (unsigned i = 0; i != NumValues; ++i) {
3380       SDLoc dl = getCurSDLoc();
3381       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3382       Values[i] =
3383           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3384       if (Negate)
3385         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3386                                 Values[i]);
3387     }
3388   } else {
3389     for (unsigned i = 0; i != NumValues; ++i) {
3390       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3391       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3392       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3393       Values[i] = DAG.getNode(
3394           OpCode, getCurSDLoc(),
3395           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3396     }
3397   }
3398 
3399   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3400                            DAG.getVTList(ValueVTs), Values));
3401 }
3402 
3403 void SelectionDAGBuilder::visitTrunc(const User &I) {
3404   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3405   SDValue N = getValue(I.getOperand(0));
3406   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3407                                                         I.getType());
3408   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3409 }
3410 
3411 void SelectionDAGBuilder::visitZExt(const User &I) {
3412   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3413   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3414   SDValue N = getValue(I.getOperand(0));
3415   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3416                                                         I.getType());
3417   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3418 }
3419 
3420 void SelectionDAGBuilder::visitSExt(const User &I) {
3421   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3422   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3423   SDValue N = getValue(I.getOperand(0));
3424   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3425                                                         I.getType());
3426   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3427 }
3428 
3429 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3430   // FPTrunc is never a no-op cast, no need to check
3431   SDValue N = getValue(I.getOperand(0));
3432   SDLoc dl = getCurSDLoc();
3433   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3434   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3435   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3436                            DAG.getTargetConstant(
3437                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3438 }
3439 
3440 void SelectionDAGBuilder::visitFPExt(const User &I) {
3441   // FPExt is never a no-op cast, no need to check
3442   SDValue N = getValue(I.getOperand(0));
3443   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3444                                                         I.getType());
3445   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3446 }
3447 
3448 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3449   // FPToUI is never a no-op cast, no need to check
3450   SDValue N = getValue(I.getOperand(0));
3451   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3452                                                         I.getType());
3453   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3454 }
3455 
3456 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3457   // FPToSI is never a no-op cast, no need to check
3458   SDValue N = getValue(I.getOperand(0));
3459   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3460                                                         I.getType());
3461   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3462 }
3463 
3464 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3465   // UIToFP is never a no-op cast, no need to check
3466   SDValue N = getValue(I.getOperand(0));
3467   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3468                                                         I.getType());
3469   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3470 }
3471 
3472 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3473   // SIToFP is never a no-op cast, no need to check
3474   SDValue N = getValue(I.getOperand(0));
3475   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3476                                                         I.getType());
3477   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3478 }
3479 
3480 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3481   // What to do depends on the size of the integer and the size of the pointer.
3482   // We can either truncate, zero extend, or no-op, accordingly.
3483   SDValue N = getValue(I.getOperand(0));
3484   auto &TLI = DAG.getTargetLoweringInfo();
3485   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3486                                                         I.getType());
3487   EVT PtrMemVT =
3488       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3489   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3490   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3491   setValue(&I, N);
3492 }
3493 
3494 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3495   // What to do depends on the size of the integer and the size of the pointer.
3496   // We can either truncate, zero extend, or no-op, accordingly.
3497   SDValue N = getValue(I.getOperand(0));
3498   auto &TLI = DAG.getTargetLoweringInfo();
3499   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3500   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3501   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3502   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3503   setValue(&I, N);
3504 }
3505 
3506 void SelectionDAGBuilder::visitBitCast(const User &I) {
3507   SDValue N = getValue(I.getOperand(0));
3508   SDLoc dl = getCurSDLoc();
3509   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3510                                                         I.getType());
3511 
3512   // BitCast assures us that source and destination are the same size so this is
3513   // either a BITCAST or a no-op.
3514   if (DestVT != N.getValueType())
3515     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3516                              DestVT, N)); // convert types.
3517   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3518   // might fold any kind of constant expression to an integer constant and that
3519   // is not what we are looking for. Only recognize a bitcast of a genuine
3520   // constant integer as an opaque constant.
3521   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3522     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3523                                  /*isOpaque*/true));
3524   else
3525     setValue(&I, N);            // noop cast.
3526 }
3527 
3528 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3529   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3530   const Value *SV = I.getOperand(0);
3531   SDValue N = getValue(SV);
3532   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3533 
3534   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3535   unsigned DestAS = I.getType()->getPointerAddressSpace();
3536 
3537   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3538     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3539 
3540   setValue(&I, N);
3541 }
3542 
3543 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3545   SDValue InVec = getValue(I.getOperand(0));
3546   SDValue InVal = getValue(I.getOperand(1));
3547   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3548                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3549   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3550                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3551                            InVec, InVal, InIdx));
3552 }
3553 
3554 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3555   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3556   SDValue InVec = getValue(I.getOperand(0));
3557   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3558                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3559   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3560                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3561                            InVec, InIdx));
3562 }
3563 
3564 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3565   SDValue Src1 = getValue(I.getOperand(0));
3566   SDValue Src2 = getValue(I.getOperand(1));
3567   ArrayRef<int> Mask;
3568   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3569     Mask = SVI->getShuffleMask();
3570   else
3571     Mask = cast<ConstantExpr>(I).getShuffleMask();
3572   SDLoc DL = getCurSDLoc();
3573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3574   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3575   EVT SrcVT = Src1.getValueType();
3576 
3577   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3578       VT.isScalableVector()) {
3579     // Canonical splat form of first element of first input vector.
3580     SDValue FirstElt =
3581         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3582                     DAG.getVectorIdxConstant(0, DL));
3583     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3584     return;
3585   }
3586 
3587   // For now, we only handle splats for scalable vectors.
3588   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3589   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3590   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3591 
3592   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3593   unsigned MaskNumElts = Mask.size();
3594 
3595   if (SrcNumElts == MaskNumElts) {
3596     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3597     return;
3598   }
3599 
3600   // Normalize the shuffle vector since mask and vector length don't match.
3601   if (SrcNumElts < MaskNumElts) {
3602     // Mask is longer than the source vectors. We can use concatenate vector to
3603     // make the mask and vectors lengths match.
3604 
3605     if (MaskNumElts % SrcNumElts == 0) {
3606       // Mask length is a multiple of the source vector length.
3607       // Check if the shuffle is some kind of concatenation of the input
3608       // vectors.
3609       unsigned NumConcat = MaskNumElts / SrcNumElts;
3610       bool IsConcat = true;
3611       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3612       for (unsigned i = 0; i != MaskNumElts; ++i) {
3613         int Idx = Mask[i];
3614         if (Idx < 0)
3615           continue;
3616         // Ensure the indices in each SrcVT sized piece are sequential and that
3617         // the same source is used for the whole piece.
3618         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3619             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3620              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3621           IsConcat = false;
3622           break;
3623         }
3624         // Remember which source this index came from.
3625         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3626       }
3627 
3628       // The shuffle is concatenating multiple vectors together. Just emit
3629       // a CONCAT_VECTORS operation.
3630       if (IsConcat) {
3631         SmallVector<SDValue, 8> ConcatOps;
3632         for (auto Src : ConcatSrcs) {
3633           if (Src < 0)
3634             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3635           else if (Src == 0)
3636             ConcatOps.push_back(Src1);
3637           else
3638             ConcatOps.push_back(Src2);
3639         }
3640         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3641         return;
3642       }
3643     }
3644 
3645     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3646     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3647     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3648                                     PaddedMaskNumElts);
3649 
3650     // Pad both vectors with undefs to make them the same length as the mask.
3651     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3652 
3653     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3654     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3655     MOps1[0] = Src1;
3656     MOps2[0] = Src2;
3657 
3658     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3659     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3660 
3661     // Readjust mask for new input vector length.
3662     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3663     for (unsigned i = 0; i != MaskNumElts; ++i) {
3664       int Idx = Mask[i];
3665       if (Idx >= (int)SrcNumElts)
3666         Idx -= SrcNumElts - PaddedMaskNumElts;
3667       MappedOps[i] = Idx;
3668     }
3669 
3670     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3671 
3672     // If the concatenated vector was padded, extract a subvector with the
3673     // correct number of elements.
3674     if (MaskNumElts != PaddedMaskNumElts)
3675       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3676                            DAG.getVectorIdxConstant(0, DL));
3677 
3678     setValue(&I, Result);
3679     return;
3680   }
3681 
3682   if (SrcNumElts > MaskNumElts) {
3683     // Analyze the access pattern of the vector to see if we can extract
3684     // two subvectors and do the shuffle.
3685     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3686     bool CanExtract = true;
3687     for (int Idx : Mask) {
3688       unsigned Input = 0;
3689       if (Idx < 0)
3690         continue;
3691 
3692       if (Idx >= (int)SrcNumElts) {
3693         Input = 1;
3694         Idx -= SrcNumElts;
3695       }
3696 
3697       // If all the indices come from the same MaskNumElts sized portion of
3698       // the sources we can use extract. Also make sure the extract wouldn't
3699       // extract past the end of the source.
3700       int NewStartIdx = alignDown(Idx, MaskNumElts);
3701       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3702           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3703         CanExtract = false;
3704       // Make sure we always update StartIdx as we use it to track if all
3705       // elements are undef.
3706       StartIdx[Input] = NewStartIdx;
3707     }
3708 
3709     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3710       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3711       return;
3712     }
3713     if (CanExtract) {
3714       // Extract appropriate subvector and generate a vector shuffle
3715       for (unsigned Input = 0; Input < 2; ++Input) {
3716         SDValue &Src = Input == 0 ? Src1 : Src2;
3717         if (StartIdx[Input] < 0)
3718           Src = DAG.getUNDEF(VT);
3719         else {
3720           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3721                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3722         }
3723       }
3724 
3725       // Calculate new mask.
3726       SmallVector<int, 8> MappedOps(Mask);
3727       for (int &Idx : MappedOps) {
3728         if (Idx >= (int)SrcNumElts)
3729           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3730         else if (Idx >= 0)
3731           Idx -= StartIdx[0];
3732       }
3733 
3734       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3735       return;
3736     }
3737   }
3738 
3739   // We can't use either concat vectors or extract subvectors so fall back to
3740   // replacing the shuffle with extract and build vector.
3741   // to insert and build vector.
3742   EVT EltVT = VT.getVectorElementType();
3743   SmallVector<SDValue,8> Ops;
3744   for (int Idx : Mask) {
3745     SDValue Res;
3746 
3747     if (Idx < 0) {
3748       Res = DAG.getUNDEF(EltVT);
3749     } else {
3750       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3751       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3752 
3753       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3754                         DAG.getVectorIdxConstant(Idx, DL));
3755     }
3756 
3757     Ops.push_back(Res);
3758   }
3759 
3760   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3761 }
3762 
3763 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3764   ArrayRef<unsigned> Indices = I.getIndices();
3765   const Value *Op0 = I.getOperand(0);
3766   const Value *Op1 = I.getOperand(1);
3767   Type *AggTy = I.getType();
3768   Type *ValTy = Op1->getType();
3769   bool IntoUndef = isa<UndefValue>(Op0);
3770   bool FromUndef = isa<UndefValue>(Op1);
3771 
3772   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3773 
3774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3775   SmallVector<EVT, 4> AggValueVTs;
3776   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3777   SmallVector<EVT, 4> ValValueVTs;
3778   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3779 
3780   unsigned NumAggValues = AggValueVTs.size();
3781   unsigned NumValValues = ValValueVTs.size();
3782   SmallVector<SDValue, 4> Values(NumAggValues);
3783 
3784   // Ignore an insertvalue that produces an empty object
3785   if (!NumAggValues) {
3786     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3787     return;
3788   }
3789 
3790   SDValue Agg = getValue(Op0);
3791   unsigned i = 0;
3792   // Copy the beginning value(s) from the original aggregate.
3793   for (; i != LinearIndex; ++i)
3794     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3795                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3796   // Copy values from the inserted value(s).
3797   if (NumValValues) {
3798     SDValue Val = getValue(Op1);
3799     for (; i != LinearIndex + NumValValues; ++i)
3800       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3801                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3802   }
3803   // Copy remaining value(s) from the original aggregate.
3804   for (; i != NumAggValues; ++i)
3805     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3806                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3807 
3808   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3809                            DAG.getVTList(AggValueVTs), Values));
3810 }
3811 
3812 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3813   ArrayRef<unsigned> Indices = I.getIndices();
3814   const Value *Op0 = I.getOperand(0);
3815   Type *AggTy = Op0->getType();
3816   Type *ValTy = I.getType();
3817   bool OutOfUndef = isa<UndefValue>(Op0);
3818 
3819   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3820 
3821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3822   SmallVector<EVT, 4> ValValueVTs;
3823   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3824 
3825   unsigned NumValValues = ValValueVTs.size();
3826 
3827   // Ignore a extractvalue that produces an empty object
3828   if (!NumValValues) {
3829     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3830     return;
3831   }
3832 
3833   SmallVector<SDValue, 4> Values(NumValValues);
3834 
3835   SDValue Agg = getValue(Op0);
3836   // Copy out the selected value(s).
3837   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3838     Values[i - LinearIndex] =
3839       OutOfUndef ?
3840         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3841         SDValue(Agg.getNode(), Agg.getResNo() + i);
3842 
3843   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3844                            DAG.getVTList(ValValueVTs), Values));
3845 }
3846 
3847 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3848   Value *Op0 = I.getOperand(0);
3849   // Note that the pointer operand may be a vector of pointers. Take the scalar
3850   // element which holds a pointer.
3851   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3852   SDValue N = getValue(Op0);
3853   SDLoc dl = getCurSDLoc();
3854   auto &TLI = DAG.getTargetLoweringInfo();
3855 
3856   // Normalize Vector GEP - all scalar operands should be converted to the
3857   // splat vector.
3858   bool IsVectorGEP = I.getType()->isVectorTy();
3859   ElementCount VectorElementCount =
3860       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3861                   : ElementCount::getFixed(0);
3862 
3863   if (IsVectorGEP && !N.getValueType().isVector()) {
3864     LLVMContext &Context = *DAG.getContext();
3865     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3866     if (VectorElementCount.isScalable())
3867       N = DAG.getSplatVector(VT, dl, N);
3868     else
3869       N = DAG.getSplatBuildVector(VT, dl, N);
3870   }
3871 
3872   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3873        GTI != E; ++GTI) {
3874     const Value *Idx = GTI.getOperand();
3875     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3876       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3877       if (Field) {
3878         // N = N + Offset
3879         uint64_t Offset =
3880             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3881 
3882         // In an inbounds GEP with an offset that is nonnegative even when
3883         // interpreted as signed, assume there is no unsigned overflow.
3884         SDNodeFlags Flags;
3885         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3886           Flags.setNoUnsignedWrap(true);
3887 
3888         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3889                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3890       }
3891     } else {
3892       // IdxSize is the width of the arithmetic according to IR semantics.
3893       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3894       // (and fix up the result later).
3895       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3896       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3897       TypeSize ElementSize =
3898           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3899       // We intentionally mask away the high bits here; ElementSize may not
3900       // fit in IdxTy.
3901       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3902       bool ElementScalable = ElementSize.isScalable();
3903 
3904       // If this is a scalar constant or a splat vector of constants,
3905       // handle it quickly.
3906       const auto *C = dyn_cast<Constant>(Idx);
3907       if (C && isa<VectorType>(C->getType()))
3908         C = C->getSplatValue();
3909 
3910       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3911       if (CI && CI->isZero())
3912         continue;
3913       if (CI && !ElementScalable) {
3914         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3915         LLVMContext &Context = *DAG.getContext();
3916         SDValue OffsVal;
3917         if (IsVectorGEP)
3918           OffsVal = DAG.getConstant(
3919               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3920         else
3921           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3922 
3923         // In an inbounds GEP with an offset that is nonnegative even when
3924         // interpreted as signed, assume there is no unsigned overflow.
3925         SDNodeFlags Flags;
3926         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3927           Flags.setNoUnsignedWrap(true);
3928 
3929         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3930 
3931         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3932         continue;
3933       }
3934 
3935       // N = N + Idx * ElementMul;
3936       SDValue IdxN = getValue(Idx);
3937 
3938       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3939         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3940                                   VectorElementCount);
3941         if (VectorElementCount.isScalable())
3942           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3943         else
3944           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3945       }
3946 
3947       // If the index is smaller or larger than intptr_t, truncate or extend
3948       // it.
3949       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3950 
3951       if (ElementScalable) {
3952         EVT VScaleTy = N.getValueType().getScalarType();
3953         SDValue VScale = DAG.getNode(
3954             ISD::VSCALE, dl, VScaleTy,
3955             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3956         if (IsVectorGEP)
3957           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3958         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3959       } else {
3960         // If this is a multiply by a power of two, turn it into a shl
3961         // immediately.  This is a very common case.
3962         if (ElementMul != 1) {
3963           if (ElementMul.isPowerOf2()) {
3964             unsigned Amt = ElementMul.logBase2();
3965             IdxN = DAG.getNode(ISD::SHL, dl,
3966                                N.getValueType(), IdxN,
3967                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3968           } else {
3969             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3970                                             IdxN.getValueType());
3971             IdxN = DAG.getNode(ISD::MUL, dl,
3972                                N.getValueType(), IdxN, Scale);
3973           }
3974         }
3975       }
3976 
3977       N = DAG.getNode(ISD::ADD, dl,
3978                       N.getValueType(), N, IdxN);
3979     }
3980   }
3981 
3982   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3983   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3984   if (IsVectorGEP) {
3985     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3986     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3987   }
3988 
3989   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3990     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3991 
3992   setValue(&I, N);
3993 }
3994 
3995 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3996   // If this is a fixed sized alloca in the entry block of the function,
3997   // allocate it statically on the stack.
3998   if (FuncInfo.StaticAllocaMap.count(&I))
3999     return;   // getValue will auto-populate this.
4000 
4001   SDLoc dl = getCurSDLoc();
4002   Type *Ty = I.getAllocatedType();
4003   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4004   auto &DL = DAG.getDataLayout();
4005   TypeSize TySize = DL.getTypeAllocSize(Ty);
4006   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4007 
4008   SDValue AllocSize = getValue(I.getArraySize());
4009 
4010   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4011   if (AllocSize.getValueType() != IntPtr)
4012     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4013 
4014   if (TySize.isScalable())
4015     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4016                             DAG.getVScale(dl, IntPtr,
4017                                           APInt(IntPtr.getScalarSizeInBits(),
4018                                                 TySize.getKnownMinValue())));
4019   else
4020     AllocSize =
4021         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4022                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4023 
4024   // Handle alignment.  If the requested alignment is less than or equal to
4025   // the stack alignment, ignore it.  If the size is greater than or equal to
4026   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4027   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4028   if (*Alignment <= StackAlign)
4029     Alignment = None;
4030 
4031   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4032   // Round the size of the allocation up to the stack alignment size
4033   // by add SA-1 to the size. This doesn't overflow because we're computing
4034   // an address inside an alloca.
4035   SDNodeFlags Flags;
4036   Flags.setNoUnsignedWrap(true);
4037   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4038                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4039 
4040   // Mask out the low bits for alignment purposes.
4041   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4042                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4043 
4044   SDValue Ops[] = {
4045       getRoot(), AllocSize,
4046       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4047   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4048   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4049   setValue(&I, DSA);
4050   DAG.setRoot(DSA.getValue(1));
4051 
4052   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4053 }
4054 
4055 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4056   if (I.isAtomic())
4057     return visitAtomicLoad(I);
4058 
4059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4060   const Value *SV = I.getOperand(0);
4061   if (TLI.supportSwiftError()) {
4062     // Swifterror values can come from either a function parameter with
4063     // swifterror attribute or an alloca with swifterror attribute.
4064     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4065       if (Arg->hasSwiftErrorAttr())
4066         return visitLoadFromSwiftError(I);
4067     }
4068 
4069     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4070       if (Alloca->isSwiftError())
4071         return visitLoadFromSwiftError(I);
4072     }
4073   }
4074 
4075   SDValue Ptr = getValue(SV);
4076 
4077   Type *Ty = I.getType();
4078   Align Alignment = I.getAlign();
4079 
4080   AAMDNodes AAInfo = I.getAAMetadata();
4081   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4082 
4083   SmallVector<EVT, 4> ValueVTs, MemVTs;
4084   SmallVector<uint64_t, 4> Offsets;
4085   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4086   unsigned NumValues = ValueVTs.size();
4087   if (NumValues == 0)
4088     return;
4089 
4090   bool isVolatile = I.isVolatile();
4091   MachineMemOperand::Flags MMOFlags =
4092       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4093 
4094   SDValue Root;
4095   bool ConstantMemory = false;
4096   if (isVolatile)
4097     // Serialize volatile loads with other side effects.
4098     Root = getRoot();
4099   else if (NumValues > MaxParallelChains)
4100     Root = getMemoryRoot();
4101   else if (AA &&
4102            AA->pointsToConstantMemory(MemoryLocation(
4103                SV,
4104                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4105                AAInfo))) {
4106     // Do not serialize (non-volatile) loads of constant memory with anything.
4107     Root = DAG.getEntryNode();
4108     ConstantMemory = true;
4109     MMOFlags |= MachineMemOperand::MOInvariant;
4110 
4111     // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
4112     // but the previous usage implied it did. Probably should check
4113     // isDereferenceableAndAlignedPointer.
4114     MMOFlags |= MachineMemOperand::MODereferenceable;
4115   } else {
4116     // Do not serialize non-volatile loads against each other.
4117     Root = DAG.getRoot();
4118   }
4119 
4120   SDLoc dl = getCurSDLoc();
4121 
4122   if (isVolatile)
4123     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4124 
4125   // An aggregate load cannot wrap around the address space, so offsets to its
4126   // parts don't wrap either.
4127   SDNodeFlags Flags;
4128   Flags.setNoUnsignedWrap(true);
4129 
4130   SmallVector<SDValue, 4> Values(NumValues);
4131   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4132   EVT PtrVT = Ptr.getValueType();
4133 
4134   unsigned ChainI = 0;
4135   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4136     // Serializing loads here may result in excessive register pressure, and
4137     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4138     // could recover a bit by hoisting nodes upward in the chain by recognizing
4139     // they are side-effect free or do not alias. The optimizer should really
4140     // avoid this case by converting large object/array copies to llvm.memcpy
4141     // (MaxParallelChains should always remain as failsafe).
4142     if (ChainI == MaxParallelChains) {
4143       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4144       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4145                                   makeArrayRef(Chains.data(), ChainI));
4146       Root = Chain;
4147       ChainI = 0;
4148     }
4149     SDValue A = DAG.getNode(ISD::ADD, dl,
4150                             PtrVT, Ptr,
4151                             DAG.getConstant(Offsets[i], dl, PtrVT),
4152                             Flags);
4153 
4154     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4155                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4156                             MMOFlags, AAInfo, Ranges);
4157     Chains[ChainI] = L.getValue(1);
4158 
4159     if (MemVTs[i] != ValueVTs[i])
4160       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4161 
4162     Values[i] = L;
4163   }
4164 
4165   if (!ConstantMemory) {
4166     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4167                                 makeArrayRef(Chains.data(), ChainI));
4168     if (isVolatile)
4169       DAG.setRoot(Chain);
4170     else
4171       PendingLoads.push_back(Chain);
4172   }
4173 
4174   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4175                            DAG.getVTList(ValueVTs), Values));
4176 }
4177 
4178 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4179   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4180          "call visitStoreToSwiftError when backend supports swifterror");
4181 
4182   SmallVector<EVT, 4> ValueVTs;
4183   SmallVector<uint64_t, 4> Offsets;
4184   const Value *SrcV = I.getOperand(0);
4185   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4186                   SrcV->getType(), ValueVTs, &Offsets);
4187   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4188          "expect a single EVT for swifterror");
4189 
4190   SDValue Src = getValue(SrcV);
4191   // Create a virtual register, then update the virtual register.
4192   Register VReg =
4193       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4194   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4195   // Chain can be getRoot or getControlRoot.
4196   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4197                                       SDValue(Src.getNode(), Src.getResNo()));
4198   DAG.setRoot(CopyNode);
4199 }
4200 
4201 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4202   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4203          "call visitLoadFromSwiftError when backend supports swifterror");
4204 
4205   assert(!I.isVolatile() &&
4206          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4207          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4208          "Support volatile, non temporal, invariant for load_from_swift_error");
4209 
4210   const Value *SV = I.getOperand(0);
4211   Type *Ty = I.getType();
4212   assert(
4213       (!AA ||
4214        !AA->pointsToConstantMemory(MemoryLocation(
4215            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4216            I.getAAMetadata()))) &&
4217       "load_from_swift_error should not be constant memory");
4218 
4219   SmallVector<EVT, 4> ValueVTs;
4220   SmallVector<uint64_t, 4> Offsets;
4221   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4222                   ValueVTs, &Offsets);
4223   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4224          "expect a single EVT for swifterror");
4225 
4226   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4227   SDValue L = DAG.getCopyFromReg(
4228       getRoot(), getCurSDLoc(),
4229       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4230 
4231   setValue(&I, L);
4232 }
4233 
4234 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4235   if (I.isAtomic())
4236     return visitAtomicStore(I);
4237 
4238   const Value *SrcV = I.getOperand(0);
4239   const Value *PtrV = I.getOperand(1);
4240 
4241   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4242   if (TLI.supportSwiftError()) {
4243     // Swifterror values can come from either a function parameter with
4244     // swifterror attribute or an alloca with swifterror attribute.
4245     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4246       if (Arg->hasSwiftErrorAttr())
4247         return visitStoreToSwiftError(I);
4248     }
4249 
4250     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4251       if (Alloca->isSwiftError())
4252         return visitStoreToSwiftError(I);
4253     }
4254   }
4255 
4256   SmallVector<EVT, 4> ValueVTs, MemVTs;
4257   SmallVector<uint64_t, 4> Offsets;
4258   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4259                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4260   unsigned NumValues = ValueVTs.size();
4261   if (NumValues == 0)
4262     return;
4263 
4264   // Get the lowered operands. Note that we do this after
4265   // checking if NumResults is zero, because with zero results
4266   // the operands won't have values in the map.
4267   SDValue Src = getValue(SrcV);
4268   SDValue Ptr = getValue(PtrV);
4269 
4270   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4271   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4272   SDLoc dl = getCurSDLoc();
4273   Align Alignment = I.getAlign();
4274   AAMDNodes AAInfo = I.getAAMetadata();
4275 
4276   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4277 
4278   // An aggregate load cannot wrap around the address space, so offsets to its
4279   // parts don't wrap either.
4280   SDNodeFlags Flags;
4281   Flags.setNoUnsignedWrap(true);
4282 
4283   unsigned ChainI = 0;
4284   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4285     // See visitLoad comments.
4286     if (ChainI == MaxParallelChains) {
4287       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4288                                   makeArrayRef(Chains.data(), ChainI));
4289       Root = Chain;
4290       ChainI = 0;
4291     }
4292     SDValue Add =
4293         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4294     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4295     if (MemVTs[i] != ValueVTs[i])
4296       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4297     SDValue St =
4298         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4299                      Alignment, MMOFlags, AAInfo);
4300     Chains[ChainI] = St;
4301   }
4302 
4303   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4304                                   makeArrayRef(Chains.data(), ChainI));
4305   DAG.setRoot(StoreNode);
4306 }
4307 
4308 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4309                                            bool IsCompressing) {
4310   SDLoc sdl = getCurSDLoc();
4311 
4312   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4313                                MaybeAlign &Alignment) {
4314     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4315     Src0 = I.getArgOperand(0);
4316     Ptr = I.getArgOperand(1);
4317     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4318     Mask = I.getArgOperand(3);
4319   };
4320   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4321                                     MaybeAlign &Alignment) {
4322     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4323     Src0 = I.getArgOperand(0);
4324     Ptr = I.getArgOperand(1);
4325     Mask = I.getArgOperand(2);
4326     Alignment = None;
4327   };
4328 
4329   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4330   MaybeAlign Alignment;
4331   if (IsCompressing)
4332     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4333   else
4334     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4335 
4336   SDValue Ptr = getValue(PtrOperand);
4337   SDValue Src0 = getValue(Src0Operand);
4338   SDValue Mask = getValue(MaskOperand);
4339   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4340 
4341   EVT VT = Src0.getValueType();
4342   if (!Alignment)
4343     Alignment = DAG.getEVTAlign(VT);
4344 
4345   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4346       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4347       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4348   SDValue StoreNode =
4349       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4350                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4351   DAG.setRoot(StoreNode);
4352   setValue(&I, StoreNode);
4353 }
4354 
4355 // Get a uniform base for the Gather/Scatter intrinsic.
4356 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4357 // We try to represent it as a base pointer + vector of indices.
4358 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4359 // The first operand of the GEP may be a single pointer or a vector of pointers
4360 // Example:
4361 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4362 //  or
4363 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4364 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4365 //
4366 // When the first GEP operand is a single pointer - it is the uniform base we
4367 // are looking for. If first operand of the GEP is a splat vector - we
4368 // extract the splat value and use it as a uniform base.
4369 // In all other cases the function returns 'false'.
4370 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4371                            ISD::MemIndexType &IndexType, SDValue &Scale,
4372                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4373                            uint64_t ElemSize) {
4374   SelectionDAG& DAG = SDB->DAG;
4375   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4376   const DataLayout &DL = DAG.getDataLayout();
4377 
4378   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4379 
4380   // Handle splat constant pointer.
4381   if (auto *C = dyn_cast<Constant>(Ptr)) {
4382     C = C->getSplatValue();
4383     if (!C)
4384       return false;
4385 
4386     Base = SDB->getValue(C);
4387 
4388     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4389     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4390     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4391     IndexType = ISD::SIGNED_SCALED;
4392     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4393     return true;
4394   }
4395 
4396   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4397   if (!GEP || GEP->getParent() != CurBB)
4398     return false;
4399 
4400   if (GEP->getNumOperands() != 2)
4401     return false;
4402 
4403   const Value *BasePtr = GEP->getPointerOperand();
4404   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4405 
4406   // Make sure the base is scalar and the index is a vector.
4407   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4408     return false;
4409 
4410   Base = SDB->getValue(BasePtr);
4411   Index = SDB->getValue(IndexVal);
4412   IndexType = ISD::SIGNED_SCALED;
4413 
4414   // MGATHER/MSCATTER are only required to support scaling by one or by the
4415   // element size. Other scales may be produced using target-specific DAG
4416   // combines.
4417   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4418   if (ScaleVal != ElemSize && ScaleVal != 1)
4419     return false;
4420 
4421   Scale =
4422       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4423   return true;
4424 }
4425 
4426 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4427   SDLoc sdl = getCurSDLoc();
4428 
4429   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4430   const Value *Ptr = I.getArgOperand(1);
4431   SDValue Src0 = getValue(I.getArgOperand(0));
4432   SDValue Mask = getValue(I.getArgOperand(3));
4433   EVT VT = Src0.getValueType();
4434   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4435                         ->getMaybeAlignValue()
4436                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4437   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4438 
4439   SDValue Base;
4440   SDValue Index;
4441   ISD::MemIndexType IndexType;
4442   SDValue Scale;
4443   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4444                                     I.getParent(), VT.getScalarStoreSize());
4445 
4446   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4447   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4448       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4449       // TODO: Make MachineMemOperands aware of scalable
4450       // vectors.
4451       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4452   if (!UniformBase) {
4453     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4454     Index = getValue(Ptr);
4455     IndexType = ISD::SIGNED_SCALED;
4456     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4457   }
4458 
4459   EVT IdxVT = Index.getValueType();
4460   EVT EltTy = IdxVT.getVectorElementType();
4461   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4462     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4463     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4464   }
4465 
4466   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4467   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4468                                          Ops, MMO, IndexType, false);
4469   DAG.setRoot(Scatter);
4470   setValue(&I, Scatter);
4471 }
4472 
4473 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4474   SDLoc sdl = getCurSDLoc();
4475 
4476   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4477                               MaybeAlign &Alignment) {
4478     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4479     Ptr = I.getArgOperand(0);
4480     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4481     Mask = I.getArgOperand(2);
4482     Src0 = I.getArgOperand(3);
4483   };
4484   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4485                                  MaybeAlign &Alignment) {
4486     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4487     Ptr = I.getArgOperand(0);
4488     Alignment = None;
4489     Mask = I.getArgOperand(1);
4490     Src0 = I.getArgOperand(2);
4491   };
4492 
4493   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4494   MaybeAlign Alignment;
4495   if (IsExpanding)
4496     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4497   else
4498     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4499 
4500   SDValue Ptr = getValue(PtrOperand);
4501   SDValue Src0 = getValue(Src0Operand);
4502   SDValue Mask = getValue(MaskOperand);
4503   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4504 
4505   EVT VT = Src0.getValueType();
4506   if (!Alignment)
4507     Alignment = DAG.getEVTAlign(VT);
4508 
4509   AAMDNodes AAInfo = I.getAAMetadata();
4510   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4511 
4512   // Do not serialize masked loads of constant memory with anything.
4513   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4514   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4515 
4516   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4517 
4518   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4519       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4520       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4521 
4522   SDValue Load =
4523       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4524                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4525   if (AddToChain)
4526     PendingLoads.push_back(Load.getValue(1));
4527   setValue(&I, Load);
4528 }
4529 
4530 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4531   SDLoc sdl = getCurSDLoc();
4532 
4533   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4534   const Value *Ptr = I.getArgOperand(0);
4535   SDValue Src0 = getValue(I.getArgOperand(3));
4536   SDValue Mask = getValue(I.getArgOperand(2));
4537 
4538   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4539   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4540   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4541                         ->getMaybeAlignValue()
4542                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4543 
4544   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4545 
4546   SDValue Root = DAG.getRoot();
4547   SDValue Base;
4548   SDValue Index;
4549   ISD::MemIndexType IndexType;
4550   SDValue Scale;
4551   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4552                                     I.getParent(), VT.getScalarStoreSize());
4553   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4554   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4555       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4556       // TODO: Make MachineMemOperands aware of scalable
4557       // vectors.
4558       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4559 
4560   if (!UniformBase) {
4561     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4562     Index = getValue(Ptr);
4563     IndexType = ISD::SIGNED_SCALED;
4564     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4565   }
4566 
4567   EVT IdxVT = Index.getValueType();
4568   EVT EltTy = IdxVT.getVectorElementType();
4569   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4570     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4571     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4572   }
4573 
4574   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4575   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4576                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4577 
4578   PendingLoads.push_back(Gather.getValue(1));
4579   setValue(&I, Gather);
4580 }
4581 
4582 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4583   SDLoc dl = getCurSDLoc();
4584   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4585   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4586   SyncScope::ID SSID = I.getSyncScopeID();
4587 
4588   SDValue InChain = getRoot();
4589 
4590   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4591   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4592 
4593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4594   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4595 
4596   MachineFunction &MF = DAG.getMachineFunction();
4597   MachineMemOperand *MMO = MF.getMachineMemOperand(
4598       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4599       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4600       FailureOrdering);
4601 
4602   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4603                                    dl, MemVT, VTs, InChain,
4604                                    getValue(I.getPointerOperand()),
4605                                    getValue(I.getCompareOperand()),
4606                                    getValue(I.getNewValOperand()), MMO);
4607 
4608   SDValue OutChain = L.getValue(2);
4609 
4610   setValue(&I, L);
4611   DAG.setRoot(OutChain);
4612 }
4613 
4614 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4615   SDLoc dl = getCurSDLoc();
4616   ISD::NodeType NT;
4617   switch (I.getOperation()) {
4618   default: llvm_unreachable("Unknown atomicrmw operation");
4619   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4620   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4621   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4622   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4623   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4624   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4625   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4626   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4627   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4628   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4629   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4630   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4631   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4632   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4633   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4634   }
4635   AtomicOrdering Ordering = I.getOrdering();
4636   SyncScope::ID SSID = I.getSyncScopeID();
4637 
4638   SDValue InChain = getRoot();
4639 
4640   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4642   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4643 
4644   MachineFunction &MF = DAG.getMachineFunction();
4645   MachineMemOperand *MMO = MF.getMachineMemOperand(
4646       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4647       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4648 
4649   SDValue L =
4650     DAG.getAtomic(NT, dl, MemVT, InChain,
4651                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4652                   MMO);
4653 
4654   SDValue OutChain = L.getValue(1);
4655 
4656   setValue(&I, L);
4657   DAG.setRoot(OutChain);
4658 }
4659 
4660 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4661   SDLoc dl = getCurSDLoc();
4662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4663   SDValue Ops[3];
4664   Ops[0] = getRoot();
4665   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4666                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4667   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4668                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4669   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4670 }
4671 
4672 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4673   SDLoc dl = getCurSDLoc();
4674   AtomicOrdering Order = I.getOrdering();
4675   SyncScope::ID SSID = I.getSyncScopeID();
4676 
4677   SDValue InChain = getRoot();
4678 
4679   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4680   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4681   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4682 
4683   if (!TLI.supportsUnalignedAtomics() &&
4684       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4685     report_fatal_error("Cannot generate unaligned atomic load");
4686 
4687   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4688 
4689   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4690       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4691       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4692 
4693   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4694 
4695   SDValue Ptr = getValue(I.getPointerOperand());
4696 
4697   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4698     // TODO: Once this is better exercised by tests, it should be merged with
4699     // the normal path for loads to prevent future divergence.
4700     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4701     if (MemVT != VT)
4702       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4703 
4704     setValue(&I, L);
4705     SDValue OutChain = L.getValue(1);
4706     if (!I.isUnordered())
4707       DAG.setRoot(OutChain);
4708     else
4709       PendingLoads.push_back(OutChain);
4710     return;
4711   }
4712 
4713   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4714                             Ptr, MMO);
4715 
4716   SDValue OutChain = L.getValue(1);
4717   if (MemVT != VT)
4718     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4719 
4720   setValue(&I, L);
4721   DAG.setRoot(OutChain);
4722 }
4723 
4724 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4725   SDLoc dl = getCurSDLoc();
4726 
4727   AtomicOrdering Ordering = I.getOrdering();
4728   SyncScope::ID SSID = I.getSyncScopeID();
4729 
4730   SDValue InChain = getRoot();
4731 
4732   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4733   EVT MemVT =
4734       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4735 
4736   if (I.getAlign().value() < MemVT.getSizeInBits() / 8)
4737     report_fatal_error("Cannot generate unaligned atomic store");
4738 
4739   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4740 
4741   MachineFunction &MF = DAG.getMachineFunction();
4742   MachineMemOperand *MMO = MF.getMachineMemOperand(
4743       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4744       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4745 
4746   SDValue Val = getValue(I.getValueOperand());
4747   if (Val.getValueType() != MemVT)
4748     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4749   SDValue Ptr = getValue(I.getPointerOperand());
4750 
4751   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4752     // TODO: Once this is better exercised by tests, it should be merged with
4753     // the normal path for stores to prevent future divergence.
4754     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4755     DAG.setRoot(S);
4756     return;
4757   }
4758   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4759                                    Ptr, Val, MMO);
4760 
4761 
4762   DAG.setRoot(OutChain);
4763 }
4764 
4765 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4766 /// node.
4767 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4768                                                unsigned Intrinsic) {
4769   // Ignore the callsite's attributes. A specific call site may be marked with
4770   // readnone, but the lowering code will expect the chain based on the
4771   // definition.
4772   const Function *F = I.getCalledFunction();
4773   bool HasChain = !F->doesNotAccessMemory();
4774   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4775 
4776   // Build the operand list.
4777   SmallVector<SDValue, 8> Ops;
4778   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4779     if (OnlyLoad) {
4780       // We don't need to serialize loads against other loads.
4781       Ops.push_back(DAG.getRoot());
4782     } else {
4783       Ops.push_back(getRoot());
4784     }
4785   }
4786 
4787   // Info is set by getTgtMemIntrinsic
4788   TargetLowering::IntrinsicInfo Info;
4789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4790   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4791                                                DAG.getMachineFunction(),
4792                                                Intrinsic);
4793 
4794   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4795   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4796       Info.opc == ISD::INTRINSIC_W_CHAIN)
4797     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4798                                         TLI.getPointerTy(DAG.getDataLayout())));
4799 
4800   // Add all operands of the call to the operand list.
4801   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4802     const Value *Arg = I.getArgOperand(i);
4803     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4804       Ops.push_back(getValue(Arg));
4805       continue;
4806     }
4807 
4808     // Use TargetConstant instead of a regular constant for immarg.
4809     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4810     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4811       assert(CI->getBitWidth() <= 64 &&
4812              "large intrinsic immediates not handled");
4813       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4814     } else {
4815       Ops.push_back(
4816           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4817     }
4818   }
4819 
4820   SmallVector<EVT, 4> ValueVTs;
4821   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4822 
4823   if (HasChain)
4824     ValueVTs.push_back(MVT::Other);
4825 
4826   SDVTList VTs = DAG.getVTList(ValueVTs);
4827 
4828   // Propagate fast-math-flags from IR to node(s).
4829   SDNodeFlags Flags;
4830   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4831     Flags.copyFMF(*FPMO);
4832   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4833 
4834   // Create the node.
4835   SDValue Result;
4836   if (IsTgtIntrinsic) {
4837     // This is target intrinsic that touches memory
4838     Result =
4839         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4840                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4841                                 Info.align, Info.flags, Info.size,
4842                                 I.getAAMetadata());
4843   } else if (!HasChain) {
4844     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4845   } else if (!I.getType()->isVoidTy()) {
4846     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4847   } else {
4848     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4849   }
4850 
4851   if (HasChain) {
4852     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4853     if (OnlyLoad)
4854       PendingLoads.push_back(Chain);
4855     else
4856       DAG.setRoot(Chain);
4857   }
4858 
4859   if (!I.getType()->isVoidTy()) {
4860     if (!isa<VectorType>(I.getType()))
4861       Result = lowerRangeToAssertZExt(DAG, I, Result);
4862 
4863     MaybeAlign Alignment = I.getRetAlign();
4864     if (!Alignment)
4865       Alignment = F->getAttributes().getRetAlignment();
4866     // Insert `assertalign` node if there's an alignment.
4867     if (InsertAssertAlign && Alignment) {
4868       Result =
4869           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4870     }
4871 
4872     setValue(&I, Result);
4873   }
4874 }
4875 
4876 /// GetSignificand - Get the significand and build it into a floating-point
4877 /// number with exponent of 1:
4878 ///
4879 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4880 ///
4881 /// where Op is the hexadecimal representation of floating point value.
4882 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4883   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4884                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4885   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4886                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4887   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4888 }
4889 
4890 /// GetExponent - Get the exponent:
4891 ///
4892 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4893 ///
4894 /// where Op is the hexadecimal representation of floating point value.
4895 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4896                            const TargetLowering &TLI, const SDLoc &dl) {
4897   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4898                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4899   SDValue t1 = DAG.getNode(
4900       ISD::SRL, dl, MVT::i32, t0,
4901       DAG.getConstant(23, dl,
4902                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4903   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4904                            DAG.getConstant(127, dl, MVT::i32));
4905   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4906 }
4907 
4908 /// getF32Constant - Get 32-bit floating point constant.
4909 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4910                               const SDLoc &dl) {
4911   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4912                            MVT::f32);
4913 }
4914 
4915 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4916                                        SelectionDAG &DAG) {
4917   // TODO: What fast-math-flags should be set on the floating-point nodes?
4918 
4919   //   IntegerPartOfX = ((int32_t)(t0);
4920   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4921 
4922   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4923   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4924   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4925 
4926   //   IntegerPartOfX <<= 23;
4927   IntegerPartOfX =
4928       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4929                   DAG.getConstant(23, dl,
4930                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4931                                       MVT::i32, DAG.getDataLayout())));
4932 
4933   SDValue TwoToFractionalPartOfX;
4934   if (LimitFloatPrecision <= 6) {
4935     // For floating-point precision of 6:
4936     //
4937     //   TwoToFractionalPartOfX =
4938     //     0.997535578f +
4939     //       (0.735607626f + 0.252464424f * x) * x;
4940     //
4941     // error 0.0144103317, which is 6 bits
4942     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4943                              getF32Constant(DAG, 0x3e814304, dl));
4944     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4945                              getF32Constant(DAG, 0x3f3c50c8, dl));
4946     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4947     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4948                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4949   } else if (LimitFloatPrecision <= 12) {
4950     // For floating-point precision of 12:
4951     //
4952     //   TwoToFractionalPartOfX =
4953     //     0.999892986f +
4954     //       (0.696457318f +
4955     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4956     //
4957     // error 0.000107046256, which is 13 to 14 bits
4958     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4959                              getF32Constant(DAG, 0x3da235e3, dl));
4960     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4961                              getF32Constant(DAG, 0x3e65b8f3, dl));
4962     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4963     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4964                              getF32Constant(DAG, 0x3f324b07, dl));
4965     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4966     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4967                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4968   } else { // LimitFloatPrecision <= 18
4969     // For floating-point precision of 18:
4970     //
4971     //   TwoToFractionalPartOfX =
4972     //     0.999999982f +
4973     //       (0.693148872f +
4974     //         (0.240227044f +
4975     //           (0.554906021e-1f +
4976     //             (0.961591928e-2f +
4977     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4978     // error 2.47208000*10^(-7), which is better than 18 bits
4979     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4980                              getF32Constant(DAG, 0x3924b03e, dl));
4981     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4982                              getF32Constant(DAG, 0x3ab24b87, dl));
4983     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4984     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4985                              getF32Constant(DAG, 0x3c1d8c17, dl));
4986     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4987     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4988                              getF32Constant(DAG, 0x3d634a1d, dl));
4989     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4990     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4991                              getF32Constant(DAG, 0x3e75fe14, dl));
4992     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4993     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4994                               getF32Constant(DAG, 0x3f317234, dl));
4995     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4996     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4997                                          getF32Constant(DAG, 0x3f800000, dl));
4998   }
4999 
5000   // Add the exponent into the result in integer domain.
5001   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5002   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5003                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5004 }
5005 
5006 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5007 /// limited-precision mode.
5008 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5009                          const TargetLowering &TLI, SDNodeFlags Flags) {
5010   if (Op.getValueType() == MVT::f32 &&
5011       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5012 
5013     // Put the exponent in the right bit position for later addition to the
5014     // final result:
5015     //
5016     // t0 = Op * log2(e)
5017 
5018     // TODO: What fast-math-flags should be set here?
5019     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5020                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5021     return getLimitedPrecisionExp2(t0, dl, DAG);
5022   }
5023 
5024   // No special expansion.
5025   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5026 }
5027 
5028 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5029 /// limited-precision mode.
5030 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5031                          const TargetLowering &TLI, SDNodeFlags Flags) {
5032   // TODO: What fast-math-flags should be set on the floating-point nodes?
5033 
5034   if (Op.getValueType() == MVT::f32 &&
5035       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5036     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5037 
5038     // Scale the exponent by log(2).
5039     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5040     SDValue LogOfExponent =
5041         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5042                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5043 
5044     // Get the significand and build it into a floating-point number with
5045     // exponent of 1.
5046     SDValue X = GetSignificand(DAG, Op1, dl);
5047 
5048     SDValue LogOfMantissa;
5049     if (LimitFloatPrecision <= 6) {
5050       // For floating-point precision of 6:
5051       //
5052       //   LogofMantissa =
5053       //     -1.1609546f +
5054       //       (1.4034025f - 0.23903021f * x) * x;
5055       //
5056       // error 0.0034276066, which is better than 8 bits
5057       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5058                                getF32Constant(DAG, 0xbe74c456, dl));
5059       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5060                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5061       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5062       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5063                                   getF32Constant(DAG, 0x3f949a29, dl));
5064     } else if (LimitFloatPrecision <= 12) {
5065       // For floating-point precision of 12:
5066       //
5067       //   LogOfMantissa =
5068       //     -1.7417939f +
5069       //       (2.8212026f +
5070       //         (-1.4699568f +
5071       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5072       //
5073       // error 0.000061011436, which is 14 bits
5074       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5075                                getF32Constant(DAG, 0xbd67b6d6, dl));
5076       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5077                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5078       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5079       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5080                                getF32Constant(DAG, 0x3fbc278b, dl));
5081       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5082       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5083                                getF32Constant(DAG, 0x40348e95, dl));
5084       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5085       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5086                                   getF32Constant(DAG, 0x3fdef31a, dl));
5087     } else { // LimitFloatPrecision <= 18
5088       // For floating-point precision of 18:
5089       //
5090       //   LogOfMantissa =
5091       //     -2.1072184f +
5092       //       (4.2372794f +
5093       //         (-3.7029485f +
5094       //           (2.2781945f +
5095       //             (-0.87823314f +
5096       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5097       //
5098       // error 0.0000023660568, which is better than 18 bits
5099       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5100                                getF32Constant(DAG, 0xbc91e5ac, dl));
5101       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5102                                getF32Constant(DAG, 0x3e4350aa, dl));
5103       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5104       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5105                                getF32Constant(DAG, 0x3f60d3e3, dl));
5106       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5107       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5108                                getF32Constant(DAG, 0x4011cdf0, dl));
5109       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5110       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5111                                getF32Constant(DAG, 0x406cfd1c, dl));
5112       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5113       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5114                                getF32Constant(DAG, 0x408797cb, dl));
5115       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5116       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5117                                   getF32Constant(DAG, 0x4006dcab, dl));
5118     }
5119 
5120     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5121   }
5122 
5123   // No special expansion.
5124   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5125 }
5126 
5127 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5128 /// limited-precision mode.
5129 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5130                           const TargetLowering &TLI, SDNodeFlags Flags) {
5131   // TODO: What fast-math-flags should be set on the floating-point nodes?
5132 
5133   if (Op.getValueType() == MVT::f32 &&
5134       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5135     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5136 
5137     // Get the exponent.
5138     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5139 
5140     // Get the significand and build it into a floating-point number with
5141     // exponent of 1.
5142     SDValue X = GetSignificand(DAG, Op1, dl);
5143 
5144     // Different possible minimax approximations of significand in
5145     // floating-point for various degrees of accuracy over [1,2].
5146     SDValue Log2ofMantissa;
5147     if (LimitFloatPrecision <= 6) {
5148       // For floating-point precision of 6:
5149       //
5150       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5151       //
5152       // error 0.0049451742, which is more than 7 bits
5153       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5154                                getF32Constant(DAG, 0xbeb08fe0, dl));
5155       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5156                                getF32Constant(DAG, 0x40019463, dl));
5157       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5158       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5159                                    getF32Constant(DAG, 0x3fd6633d, dl));
5160     } else if (LimitFloatPrecision <= 12) {
5161       // For floating-point precision of 12:
5162       //
5163       //   Log2ofMantissa =
5164       //     -2.51285454f +
5165       //       (4.07009056f +
5166       //         (-2.12067489f +
5167       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5168       //
5169       // error 0.0000876136000, which is better than 13 bits
5170       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5171                                getF32Constant(DAG, 0xbda7262e, dl));
5172       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5173                                getF32Constant(DAG, 0x3f25280b, dl));
5174       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5175       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5176                                getF32Constant(DAG, 0x4007b923, dl));
5177       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5178       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5179                                getF32Constant(DAG, 0x40823e2f, dl));
5180       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5181       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5182                                    getF32Constant(DAG, 0x4020d29c, dl));
5183     } else { // LimitFloatPrecision <= 18
5184       // For floating-point precision of 18:
5185       //
5186       //   Log2ofMantissa =
5187       //     -3.0400495f +
5188       //       (6.1129976f +
5189       //         (-5.3420409f +
5190       //           (3.2865683f +
5191       //             (-1.2669343f +
5192       //               (0.27515199f -
5193       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5194       //
5195       // error 0.0000018516, which is better than 18 bits
5196       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5197                                getF32Constant(DAG, 0xbcd2769e, dl));
5198       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5199                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5200       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5201       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5202                                getF32Constant(DAG, 0x3fa22ae7, dl));
5203       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5204       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5205                                getF32Constant(DAG, 0x40525723, dl));
5206       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5207       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5208                                getF32Constant(DAG, 0x40aaf200, dl));
5209       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5210       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5211                                getF32Constant(DAG, 0x40c39dad, dl));
5212       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5213       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5214                                    getF32Constant(DAG, 0x4042902c, dl));
5215     }
5216 
5217     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5218   }
5219 
5220   // No special expansion.
5221   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5222 }
5223 
5224 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5225 /// limited-precision mode.
5226 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5227                            const TargetLowering &TLI, SDNodeFlags Flags) {
5228   // TODO: What fast-math-flags should be set on the floating-point nodes?
5229 
5230   if (Op.getValueType() == MVT::f32 &&
5231       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5232     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5233 
5234     // Scale the exponent by log10(2) [0.30102999f].
5235     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5236     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5237                                         getF32Constant(DAG, 0x3e9a209a, dl));
5238 
5239     // Get the significand and build it into a floating-point number with
5240     // exponent of 1.
5241     SDValue X = GetSignificand(DAG, Op1, dl);
5242 
5243     SDValue Log10ofMantissa;
5244     if (LimitFloatPrecision <= 6) {
5245       // For floating-point precision of 6:
5246       //
5247       //   Log10ofMantissa =
5248       //     -0.50419619f +
5249       //       (0.60948995f - 0.10380950f * x) * x;
5250       //
5251       // error 0.0014886165, which is 6 bits
5252       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5253                                getF32Constant(DAG, 0xbdd49a13, dl));
5254       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5255                                getF32Constant(DAG, 0x3f1c0789, dl));
5256       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5257       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5258                                     getF32Constant(DAG, 0x3f011300, dl));
5259     } else if (LimitFloatPrecision <= 12) {
5260       // For floating-point precision of 12:
5261       //
5262       //   Log10ofMantissa =
5263       //     -0.64831180f +
5264       //       (0.91751397f +
5265       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5266       //
5267       // error 0.00019228036, which is better than 12 bits
5268       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5269                                getF32Constant(DAG, 0x3d431f31, dl));
5270       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5271                                getF32Constant(DAG, 0x3ea21fb2, dl));
5272       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5273       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5274                                getF32Constant(DAG, 0x3f6ae232, dl));
5275       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5276       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5277                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5278     } else { // LimitFloatPrecision <= 18
5279       // For floating-point precision of 18:
5280       //
5281       //   Log10ofMantissa =
5282       //     -0.84299375f +
5283       //       (1.5327582f +
5284       //         (-1.0688956f +
5285       //           (0.49102474f +
5286       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5287       //
5288       // error 0.0000037995730, which is better than 18 bits
5289       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5290                                getF32Constant(DAG, 0x3c5d51ce, dl));
5291       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5292                                getF32Constant(DAG, 0x3e00685a, dl));
5293       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5294       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5295                                getF32Constant(DAG, 0x3efb6798, dl));
5296       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5297       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5298                                getF32Constant(DAG, 0x3f88d192, dl));
5299       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5300       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5301                                getF32Constant(DAG, 0x3fc4316c, dl));
5302       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5303       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5304                                     getF32Constant(DAG, 0x3f57ce70, dl));
5305     }
5306 
5307     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5308   }
5309 
5310   // No special expansion.
5311   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5312 }
5313 
5314 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5315 /// limited-precision mode.
5316 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5317                           const TargetLowering &TLI, SDNodeFlags Flags) {
5318   if (Op.getValueType() == MVT::f32 &&
5319       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5320     return getLimitedPrecisionExp2(Op, dl, DAG);
5321 
5322   // No special expansion.
5323   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5324 }
5325 
5326 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5327 /// limited-precision mode with x == 10.0f.
5328 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5329                          SelectionDAG &DAG, const TargetLowering &TLI,
5330                          SDNodeFlags Flags) {
5331   bool IsExp10 = false;
5332   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5333       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5334     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5335       APFloat Ten(10.0f);
5336       IsExp10 = LHSC->isExactlyValue(Ten);
5337     }
5338   }
5339 
5340   // TODO: What fast-math-flags should be set on the FMUL node?
5341   if (IsExp10) {
5342     // Put the exponent in the right bit position for later addition to the
5343     // final result:
5344     //
5345     //   #define LOG2OF10 3.3219281f
5346     //   t0 = Op * LOG2OF10;
5347     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5348                              getF32Constant(DAG, 0x40549a78, dl));
5349     return getLimitedPrecisionExp2(t0, dl, DAG);
5350   }
5351 
5352   // No special expansion.
5353   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5354 }
5355 
5356 /// ExpandPowI - Expand a llvm.powi intrinsic.
5357 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5358                           SelectionDAG &DAG) {
5359   // If RHS is a constant, we can expand this out to a multiplication tree if
5360   // it's beneficial on the target, otherwise we end up lowering to a call to
5361   // __powidf2 (for example).
5362   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5363     unsigned Val = RHSC->getSExtValue();
5364 
5365     // powi(x, 0) -> 1.0
5366     if (Val == 0)
5367       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5368 
5369     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5370             Val, DAG.shouldOptForSize())) {
5371       // Get the exponent as a positive value.
5372       if ((int)Val < 0)
5373         Val = -Val;
5374       // We use the simple binary decomposition method to generate the multiply
5375       // sequence.  There are more optimal ways to do this (for example,
5376       // powi(x,15) generates one more multiply than it should), but this has
5377       // the benefit of being both really simple and much better than a libcall.
5378       SDValue Res; // Logically starts equal to 1.0
5379       SDValue CurSquare = LHS;
5380       // TODO: Intrinsics should have fast-math-flags that propagate to these
5381       // nodes.
5382       while (Val) {
5383         if (Val & 1) {
5384           if (Res.getNode())
5385             Res =
5386                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5387           else
5388             Res = CurSquare; // 1.0*CurSquare.
5389         }
5390 
5391         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5392                                 CurSquare, CurSquare);
5393         Val >>= 1;
5394       }
5395 
5396       // If the original was negative, invert the result, producing 1/(x*x*x).
5397       if (RHSC->getSExtValue() < 0)
5398         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5399                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5400       return Res;
5401     }
5402   }
5403 
5404   // Otherwise, expand to a libcall.
5405   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5406 }
5407 
5408 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5409                             SDValue LHS, SDValue RHS, SDValue Scale,
5410                             SelectionDAG &DAG, const TargetLowering &TLI) {
5411   EVT VT = LHS.getValueType();
5412   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5413   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5414   LLVMContext &Ctx = *DAG.getContext();
5415 
5416   // If the type is legal but the operation isn't, this node might survive all
5417   // the way to operation legalization. If we end up there and we do not have
5418   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5419   // node.
5420 
5421   // Coax the legalizer into expanding the node during type legalization instead
5422   // by bumping the size by one bit. This will force it to Promote, enabling the
5423   // early expansion and avoiding the need to expand later.
5424 
5425   // We don't have to do this if Scale is 0; that can always be expanded, unless
5426   // it's a saturating signed operation. Those can experience true integer
5427   // division overflow, a case which we must avoid.
5428 
5429   // FIXME: We wouldn't have to do this (or any of the early
5430   // expansion/promotion) if it was possible to expand a libcall of an
5431   // illegal type during operation legalization. But it's not, so things
5432   // get a bit hacky.
5433   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5434   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5435       (TLI.isTypeLegal(VT) ||
5436        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5437     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5438         Opcode, VT, ScaleInt);
5439     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5440       EVT PromVT;
5441       if (VT.isScalarInteger())
5442         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5443       else if (VT.isVector()) {
5444         PromVT = VT.getVectorElementType();
5445         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5446         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5447       } else
5448         llvm_unreachable("Wrong VT for DIVFIX?");
5449       if (Signed) {
5450         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5451         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5452       } else {
5453         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5454         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5455       }
5456       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5457       // For saturating operations, we need to shift up the LHS to get the
5458       // proper saturation width, and then shift down again afterwards.
5459       if (Saturating)
5460         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5461                           DAG.getConstant(1, DL, ShiftTy));
5462       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5463       if (Saturating)
5464         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5465                           DAG.getConstant(1, DL, ShiftTy));
5466       return DAG.getZExtOrTrunc(Res, DL, VT);
5467     }
5468   }
5469 
5470   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5471 }
5472 
5473 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5474 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5475 static void
5476 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5477                      const SDValue &N) {
5478   switch (N.getOpcode()) {
5479   case ISD::CopyFromReg: {
5480     SDValue Op = N.getOperand(1);
5481     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5482                       Op.getValueType().getSizeInBits());
5483     return;
5484   }
5485   case ISD::BITCAST:
5486   case ISD::AssertZext:
5487   case ISD::AssertSext:
5488   case ISD::TRUNCATE:
5489     getUnderlyingArgRegs(Regs, N.getOperand(0));
5490     return;
5491   case ISD::BUILD_PAIR:
5492   case ISD::BUILD_VECTOR:
5493   case ISD::CONCAT_VECTORS:
5494     for (SDValue Op : N->op_values())
5495       getUnderlyingArgRegs(Regs, Op);
5496     return;
5497   default:
5498     return;
5499   }
5500 }
5501 
5502 /// If the DbgValueInst is a dbg_value of a function argument, create the
5503 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5504 /// instruction selection, they will be inserted to the entry BB.
5505 /// We don't currently support this for variadic dbg_values, as they shouldn't
5506 /// appear for function arguments or in the prologue.
5507 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5508     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5509     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5510   const Argument *Arg = dyn_cast<Argument>(V);
5511   if (!Arg)
5512     return false;
5513 
5514   MachineFunction &MF = DAG.getMachineFunction();
5515   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5516 
5517   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5518   // we've been asked to pursue.
5519   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5520                               bool Indirect) {
5521     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5522       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5523       // pointing at the VReg, which will be patched up later.
5524       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5525       auto MIB = BuildMI(MF, DL, Inst);
5526       MIB.addReg(Reg);
5527       MIB.addImm(0);
5528       MIB.addMetadata(Variable);
5529       auto *NewDIExpr = FragExpr;
5530       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5531       // the DIExpression.
5532       if (Indirect)
5533         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5534       MIB.addMetadata(NewDIExpr);
5535       return MIB;
5536     } else {
5537       // Create a completely standard DBG_VALUE.
5538       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5539       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5540     }
5541   };
5542 
5543   if (Kind == FuncArgumentDbgValueKind::Value) {
5544     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5545     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5546     // the entry block.
5547     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5548     if (!IsInEntryBlock)
5549       return false;
5550 
5551     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5552     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5553     // variable that also is a param.
5554     //
5555     // Although, if we are at the top of the entry block already, we can still
5556     // emit using ArgDbgValue. This might catch some situations when the
5557     // dbg.value refers to an argument that isn't used in the entry block, so
5558     // any CopyToReg node would be optimized out and the only way to express
5559     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5560     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5561     // we should only emit as ArgDbgValue if the Variable is an argument to the
5562     // current function, and the dbg.value intrinsic is found in the entry
5563     // block.
5564     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5565         !DL->getInlinedAt();
5566     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5567     if (!IsInPrologue && !VariableIsFunctionInputArg)
5568       return false;
5569 
5570     // Here we assume that a function argument on IR level only can be used to
5571     // describe one input parameter on source level. If we for example have
5572     // source code like this
5573     //
5574     //    struct A { long x, y; };
5575     //    void foo(struct A a, long b) {
5576     //      ...
5577     //      b = a.x;
5578     //      ...
5579     //    }
5580     //
5581     // and IR like this
5582     //
5583     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5584     //  entry:
5585     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5586     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5587     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5588     //    ...
5589     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5590     //    ...
5591     //
5592     // then the last dbg.value is describing a parameter "b" using a value that
5593     // is an argument. But since we already has used %a1 to describe a parameter
5594     // we should not handle that last dbg.value here (that would result in an
5595     // incorrect hoisting of the DBG_VALUE to the function entry).
5596     // Notice that we allow one dbg.value per IR level argument, to accommodate
5597     // for the situation with fragments above.
5598     if (VariableIsFunctionInputArg) {
5599       unsigned ArgNo = Arg->getArgNo();
5600       if (ArgNo >= FuncInfo.DescribedArgs.size())
5601         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5602       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5603         return false;
5604       FuncInfo.DescribedArgs.set(ArgNo);
5605     }
5606   }
5607 
5608   bool IsIndirect = false;
5609   Optional<MachineOperand> Op;
5610   // Some arguments' frame index is recorded during argument lowering.
5611   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5612   if (FI != std::numeric_limits<int>::max())
5613     Op = MachineOperand::CreateFI(FI);
5614 
5615   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5616   if (!Op && N.getNode()) {
5617     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5618     Register Reg;
5619     if (ArgRegsAndSizes.size() == 1)
5620       Reg = ArgRegsAndSizes.front().first;
5621 
5622     if (Reg && Reg.isVirtual()) {
5623       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5624       Register PR = RegInfo.getLiveInPhysReg(Reg);
5625       if (PR)
5626         Reg = PR;
5627     }
5628     if (Reg) {
5629       Op = MachineOperand::CreateReg(Reg, false);
5630       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5631     }
5632   }
5633 
5634   if (!Op && N.getNode()) {
5635     // Check if frame index is available.
5636     SDValue LCandidate = peekThroughBitcasts(N);
5637     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5638       if (FrameIndexSDNode *FINode =
5639           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5640         Op = MachineOperand::CreateFI(FINode->getIndex());
5641   }
5642 
5643   if (!Op) {
5644     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5645     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5646                                          SplitRegs) {
5647       unsigned Offset = 0;
5648       for (const auto &RegAndSize : SplitRegs) {
5649         // If the expression is already a fragment, the current register
5650         // offset+size might extend beyond the fragment. In this case, only
5651         // the register bits that are inside the fragment are relevant.
5652         int RegFragmentSizeInBits = RegAndSize.second;
5653         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5654           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5655           // The register is entirely outside the expression fragment,
5656           // so is irrelevant for debug info.
5657           if (Offset >= ExprFragmentSizeInBits)
5658             break;
5659           // The register is partially outside the expression fragment, only
5660           // the low bits within the fragment are relevant for debug info.
5661           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5662             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5663           }
5664         }
5665 
5666         auto FragmentExpr = DIExpression::createFragmentExpression(
5667             Expr, Offset, RegFragmentSizeInBits);
5668         Offset += RegAndSize.second;
5669         // If a valid fragment expression cannot be created, the variable's
5670         // correct value cannot be determined and so it is set as Undef.
5671         if (!FragmentExpr) {
5672           SDDbgValue *SDV = DAG.getConstantDbgValue(
5673               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5674           DAG.AddDbgValue(SDV, false);
5675           continue;
5676         }
5677         MachineInstr *NewMI =
5678             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5679                              Kind != FuncArgumentDbgValueKind::Value);
5680         FuncInfo.ArgDbgValues.push_back(NewMI);
5681       }
5682     };
5683 
5684     // Check if ValueMap has reg number.
5685     DenseMap<const Value *, Register>::const_iterator
5686       VMI = FuncInfo.ValueMap.find(V);
5687     if (VMI != FuncInfo.ValueMap.end()) {
5688       const auto &TLI = DAG.getTargetLoweringInfo();
5689       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5690                        V->getType(), None);
5691       if (RFV.occupiesMultipleRegs()) {
5692         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5693         return true;
5694       }
5695 
5696       Op = MachineOperand::CreateReg(VMI->second, false);
5697       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5698     } else if (ArgRegsAndSizes.size() > 1) {
5699       // This was split due to the calling convention, and no virtual register
5700       // mapping exists for the value.
5701       splitMultiRegDbgValue(ArgRegsAndSizes);
5702       return true;
5703     }
5704   }
5705 
5706   if (!Op)
5707     return false;
5708 
5709   assert(Variable->isValidLocationForIntrinsic(DL) &&
5710          "Expected inlined-at fields to agree");
5711   MachineInstr *NewMI = nullptr;
5712 
5713   if (Op->isReg())
5714     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5715   else
5716     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5717                     Variable, Expr);
5718 
5719   // Otherwise, use ArgDbgValues.
5720   FuncInfo.ArgDbgValues.push_back(NewMI);
5721   return true;
5722 }
5723 
5724 /// Return the appropriate SDDbgValue based on N.
5725 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5726                                              DILocalVariable *Variable,
5727                                              DIExpression *Expr,
5728                                              const DebugLoc &dl,
5729                                              unsigned DbgSDNodeOrder) {
5730   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5731     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5732     // stack slot locations.
5733     //
5734     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5735     // debug values here after optimization:
5736     //
5737     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5738     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5739     //
5740     // Both describe the direct values of their associated variables.
5741     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5742                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5743   }
5744   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5745                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5746 }
5747 
5748 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5749   switch (Intrinsic) {
5750   case Intrinsic::smul_fix:
5751     return ISD::SMULFIX;
5752   case Intrinsic::umul_fix:
5753     return ISD::UMULFIX;
5754   case Intrinsic::smul_fix_sat:
5755     return ISD::SMULFIXSAT;
5756   case Intrinsic::umul_fix_sat:
5757     return ISD::UMULFIXSAT;
5758   case Intrinsic::sdiv_fix:
5759     return ISD::SDIVFIX;
5760   case Intrinsic::udiv_fix:
5761     return ISD::UDIVFIX;
5762   case Intrinsic::sdiv_fix_sat:
5763     return ISD::SDIVFIXSAT;
5764   case Intrinsic::udiv_fix_sat:
5765     return ISD::UDIVFIXSAT;
5766   default:
5767     llvm_unreachable("Unhandled fixed point intrinsic");
5768   }
5769 }
5770 
5771 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5772                                            const char *FunctionName) {
5773   assert(FunctionName && "FunctionName must not be nullptr");
5774   SDValue Callee = DAG.getExternalSymbol(
5775       FunctionName,
5776       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5777   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5778 }
5779 
5780 /// Given a @llvm.call.preallocated.setup, return the corresponding
5781 /// preallocated call.
5782 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5783   assert(cast<CallBase>(PreallocatedSetup)
5784                  ->getCalledFunction()
5785                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5786          "expected call_preallocated_setup Value");
5787   for (const auto *U : PreallocatedSetup->users()) {
5788     auto *UseCall = cast<CallBase>(U);
5789     const Function *Fn = UseCall->getCalledFunction();
5790     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5791       return UseCall;
5792     }
5793   }
5794   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5795 }
5796 
5797 /// Lower the call to the specified intrinsic function.
5798 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5799                                              unsigned Intrinsic) {
5800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5801   SDLoc sdl = getCurSDLoc();
5802   DebugLoc dl = getCurDebugLoc();
5803   SDValue Res;
5804 
5805   SDNodeFlags Flags;
5806   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5807     Flags.copyFMF(*FPOp);
5808 
5809   switch (Intrinsic) {
5810   default:
5811     // By default, turn this into a target intrinsic node.
5812     visitTargetIntrinsic(I, Intrinsic);
5813     return;
5814   case Intrinsic::vscale: {
5815     match(&I, m_VScale(DAG.getDataLayout()));
5816     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5817     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5818     return;
5819   }
5820   case Intrinsic::vastart:  visitVAStart(I); return;
5821   case Intrinsic::vaend:    visitVAEnd(I); return;
5822   case Intrinsic::vacopy:   visitVACopy(I); return;
5823   case Intrinsic::returnaddress:
5824     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5825                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5826                              getValue(I.getArgOperand(0))));
5827     return;
5828   case Intrinsic::addressofreturnaddress:
5829     setValue(&I,
5830              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5831                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5832     return;
5833   case Intrinsic::sponentry:
5834     setValue(&I,
5835              DAG.getNode(ISD::SPONENTRY, sdl,
5836                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5837     return;
5838   case Intrinsic::frameaddress:
5839     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5840                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5841                              getValue(I.getArgOperand(0))));
5842     return;
5843   case Intrinsic::read_volatile_register:
5844   case Intrinsic::read_register: {
5845     Value *Reg = I.getArgOperand(0);
5846     SDValue Chain = getRoot();
5847     SDValue RegName =
5848         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5849     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5850     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5851       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5852     setValue(&I, Res);
5853     DAG.setRoot(Res.getValue(1));
5854     return;
5855   }
5856   case Intrinsic::write_register: {
5857     Value *Reg = I.getArgOperand(0);
5858     Value *RegValue = I.getArgOperand(1);
5859     SDValue Chain = getRoot();
5860     SDValue RegName =
5861         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5862     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5863                             RegName, getValue(RegValue)));
5864     return;
5865   }
5866   case Intrinsic::memcpy: {
5867     const auto &MCI = cast<MemCpyInst>(I);
5868     SDValue Op1 = getValue(I.getArgOperand(0));
5869     SDValue Op2 = getValue(I.getArgOperand(1));
5870     SDValue Op3 = getValue(I.getArgOperand(2));
5871     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5872     Align DstAlign = MCI.getDestAlign().valueOrOne();
5873     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5874     Align Alignment = std::min(DstAlign, SrcAlign);
5875     bool isVol = MCI.isVolatile();
5876     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5877     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5878     // node.
5879     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5880     SDValue MC = DAG.getMemcpy(
5881         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5882         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5883         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5884     updateDAGForMaybeTailCall(MC);
5885     return;
5886   }
5887   case Intrinsic::memcpy_inline: {
5888     const auto &MCI = cast<MemCpyInlineInst>(I);
5889     SDValue Dst = getValue(I.getArgOperand(0));
5890     SDValue Src = getValue(I.getArgOperand(1));
5891     SDValue Size = getValue(I.getArgOperand(2));
5892     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5893     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5894     Align DstAlign = MCI.getDestAlign().valueOrOne();
5895     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5896     Align Alignment = std::min(DstAlign, SrcAlign);
5897     bool isVol = MCI.isVolatile();
5898     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5899     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5900     // node.
5901     SDValue MC = DAG.getMemcpy(
5902         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5903         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5904         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5905     updateDAGForMaybeTailCall(MC);
5906     return;
5907   }
5908   case Intrinsic::memset: {
5909     const auto &MSI = cast<MemSetInst>(I);
5910     SDValue Op1 = getValue(I.getArgOperand(0));
5911     SDValue Op2 = getValue(I.getArgOperand(1));
5912     SDValue Op3 = getValue(I.getArgOperand(2));
5913     // @llvm.memset defines 0 and 1 to both mean no alignment.
5914     Align Alignment = MSI.getDestAlign().valueOrOne();
5915     bool isVol = MSI.isVolatile();
5916     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5917     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5918     SDValue MS = DAG.getMemset(
5919         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5920         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5921     updateDAGForMaybeTailCall(MS);
5922     return;
5923   }
5924   case Intrinsic::memset_inline: {
5925     const auto &MSII = cast<MemSetInlineInst>(I);
5926     SDValue Dst = getValue(I.getArgOperand(0));
5927     SDValue Value = getValue(I.getArgOperand(1));
5928     SDValue Size = getValue(I.getArgOperand(2));
5929     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5930     // @llvm.memset defines 0 and 1 to both mean no alignment.
5931     Align DstAlign = MSII.getDestAlign().valueOrOne();
5932     bool isVol = MSII.isVolatile();
5933     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5934     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5935     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5936                                /* AlwaysInline */ true, isTC,
5937                                MachinePointerInfo(I.getArgOperand(0)),
5938                                I.getAAMetadata());
5939     updateDAGForMaybeTailCall(MC);
5940     return;
5941   }
5942   case Intrinsic::memmove: {
5943     const auto &MMI = cast<MemMoveInst>(I);
5944     SDValue Op1 = getValue(I.getArgOperand(0));
5945     SDValue Op2 = getValue(I.getArgOperand(1));
5946     SDValue Op3 = getValue(I.getArgOperand(2));
5947     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5948     Align DstAlign = MMI.getDestAlign().valueOrOne();
5949     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5950     Align Alignment = std::min(DstAlign, SrcAlign);
5951     bool isVol = MMI.isVolatile();
5952     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5953     // FIXME: Support passing different dest/src alignments to the memmove DAG
5954     // node.
5955     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5956     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5957                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5958                                 MachinePointerInfo(I.getArgOperand(1)),
5959                                 I.getAAMetadata(), AA);
5960     updateDAGForMaybeTailCall(MM);
5961     return;
5962   }
5963   case Intrinsic::memcpy_element_unordered_atomic: {
5964     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5965     SDValue Dst = getValue(MI.getRawDest());
5966     SDValue Src = getValue(MI.getRawSource());
5967     SDValue Length = getValue(MI.getLength());
5968 
5969     Type *LengthTy = MI.getLength()->getType();
5970     unsigned ElemSz = MI.getElementSizeInBytes();
5971     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5972     SDValue MC =
5973         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5974                             isTC, MachinePointerInfo(MI.getRawDest()),
5975                             MachinePointerInfo(MI.getRawSource()));
5976     updateDAGForMaybeTailCall(MC);
5977     return;
5978   }
5979   case Intrinsic::memmove_element_unordered_atomic: {
5980     auto &MI = cast<AtomicMemMoveInst>(I);
5981     SDValue Dst = getValue(MI.getRawDest());
5982     SDValue Src = getValue(MI.getRawSource());
5983     SDValue Length = getValue(MI.getLength());
5984 
5985     Type *LengthTy = MI.getLength()->getType();
5986     unsigned ElemSz = MI.getElementSizeInBytes();
5987     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5988     SDValue MC =
5989         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5990                              isTC, MachinePointerInfo(MI.getRawDest()),
5991                              MachinePointerInfo(MI.getRawSource()));
5992     updateDAGForMaybeTailCall(MC);
5993     return;
5994   }
5995   case Intrinsic::memset_element_unordered_atomic: {
5996     auto &MI = cast<AtomicMemSetInst>(I);
5997     SDValue Dst = getValue(MI.getRawDest());
5998     SDValue Val = getValue(MI.getValue());
5999     SDValue Length = getValue(MI.getLength());
6000 
6001     Type *LengthTy = MI.getLength()->getType();
6002     unsigned ElemSz = MI.getElementSizeInBytes();
6003     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6004     SDValue MC =
6005         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6006                             isTC, MachinePointerInfo(MI.getRawDest()));
6007     updateDAGForMaybeTailCall(MC);
6008     return;
6009   }
6010   case Intrinsic::call_preallocated_setup: {
6011     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6012     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6013     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6014                               getRoot(), SrcValue);
6015     setValue(&I, Res);
6016     DAG.setRoot(Res);
6017     return;
6018   }
6019   case Intrinsic::call_preallocated_arg: {
6020     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6021     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6022     SDValue Ops[3];
6023     Ops[0] = getRoot();
6024     Ops[1] = SrcValue;
6025     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6026                                    MVT::i32); // arg index
6027     SDValue Res = DAG.getNode(
6028         ISD::PREALLOCATED_ARG, sdl,
6029         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6030     setValue(&I, Res);
6031     DAG.setRoot(Res.getValue(1));
6032     return;
6033   }
6034   case Intrinsic::dbg_addr:
6035   case Intrinsic::dbg_declare: {
6036     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6037     // they are non-variadic.
6038     const auto &DI = cast<DbgVariableIntrinsic>(I);
6039     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6040     DILocalVariable *Variable = DI.getVariable();
6041     DIExpression *Expression = DI.getExpression();
6042     dropDanglingDebugInfo(Variable, Expression);
6043     assert(Variable && "Missing variable");
6044     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6045                       << "\n");
6046     // Check if address has undef value.
6047     const Value *Address = DI.getVariableLocationOp(0);
6048     if (!Address || isa<UndefValue>(Address) ||
6049         (Address->use_empty() && !isa<Argument>(Address))) {
6050       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6051                         << " (bad/undef/unused-arg address)\n");
6052       return;
6053     }
6054 
6055     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6056 
6057     // Check if this variable can be described by a frame index, typically
6058     // either as a static alloca or a byval parameter.
6059     int FI = std::numeric_limits<int>::max();
6060     if (const auto *AI =
6061             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6062       if (AI->isStaticAlloca()) {
6063         auto I = FuncInfo.StaticAllocaMap.find(AI);
6064         if (I != FuncInfo.StaticAllocaMap.end())
6065           FI = I->second;
6066       }
6067     } else if (const auto *Arg = dyn_cast<Argument>(
6068                    Address->stripInBoundsConstantOffsets())) {
6069       FI = FuncInfo.getArgumentFrameIndex(Arg);
6070     }
6071 
6072     // llvm.dbg.addr is control dependent and always generates indirect
6073     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6074     // the MachineFunction variable table.
6075     if (FI != std::numeric_limits<int>::max()) {
6076       if (Intrinsic == Intrinsic::dbg_addr) {
6077         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6078             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6079             dl, SDNodeOrder);
6080         DAG.AddDbgValue(SDV, isParameter);
6081       } else {
6082         LLVM_DEBUG(dbgs() << "Skipping " << DI
6083                           << " (variable info stashed in MF side table)\n");
6084       }
6085       return;
6086     }
6087 
6088     SDValue &N = NodeMap[Address];
6089     if (!N.getNode() && isa<Argument>(Address))
6090       // Check unused arguments map.
6091       N = UnusedArgNodeMap[Address];
6092     SDDbgValue *SDV;
6093     if (N.getNode()) {
6094       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6095         Address = BCI->getOperand(0);
6096       // Parameters are handled specially.
6097       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6098       if (isParameter && FINode) {
6099         // Byval parameter. We have a frame index at this point.
6100         SDV =
6101             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6102                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6103       } else if (isa<Argument>(Address)) {
6104         // Address is an argument, so try to emit its dbg value using
6105         // virtual register info from the FuncInfo.ValueMap.
6106         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6107                                  FuncArgumentDbgValueKind::Declare, N);
6108         return;
6109       } else {
6110         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6111                               true, dl, SDNodeOrder);
6112       }
6113       DAG.AddDbgValue(SDV, isParameter);
6114     } else {
6115       // If Address is an argument then try to emit its dbg value using
6116       // virtual register info from the FuncInfo.ValueMap.
6117       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6118                                     FuncArgumentDbgValueKind::Declare, N)) {
6119         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6120                           << " (could not emit func-arg dbg_value)\n");
6121       }
6122     }
6123     return;
6124   }
6125   case Intrinsic::dbg_label: {
6126     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6127     DILabel *Label = DI.getLabel();
6128     assert(Label && "Missing label");
6129 
6130     SDDbgLabel *SDV;
6131     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6132     DAG.AddDbgLabel(SDV);
6133     return;
6134   }
6135   case Intrinsic::dbg_value: {
6136     const DbgValueInst &DI = cast<DbgValueInst>(I);
6137     assert(DI.getVariable() && "Missing variable");
6138 
6139     DILocalVariable *Variable = DI.getVariable();
6140     DIExpression *Expression = DI.getExpression();
6141     dropDanglingDebugInfo(Variable, Expression);
6142     SmallVector<Value *, 4> Values(DI.getValues());
6143     if (Values.empty())
6144       return;
6145 
6146     if (llvm::is_contained(Values, nullptr))
6147       return;
6148 
6149     bool IsVariadic = DI.hasArgList();
6150     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6151                           SDNodeOrder, IsVariadic))
6152       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6153     return;
6154   }
6155 
6156   case Intrinsic::eh_typeid_for: {
6157     // Find the type id for the given typeinfo.
6158     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6159     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6160     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6161     setValue(&I, Res);
6162     return;
6163   }
6164 
6165   case Intrinsic::eh_return_i32:
6166   case Intrinsic::eh_return_i64:
6167     DAG.getMachineFunction().setCallsEHReturn(true);
6168     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6169                             MVT::Other,
6170                             getControlRoot(),
6171                             getValue(I.getArgOperand(0)),
6172                             getValue(I.getArgOperand(1))));
6173     return;
6174   case Intrinsic::eh_unwind_init:
6175     DAG.getMachineFunction().setCallsUnwindInit(true);
6176     return;
6177   case Intrinsic::eh_dwarf_cfa:
6178     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6179                              TLI.getPointerTy(DAG.getDataLayout()),
6180                              getValue(I.getArgOperand(0))));
6181     return;
6182   case Intrinsic::eh_sjlj_callsite: {
6183     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6184     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6185     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6186 
6187     MMI.setCurrentCallSite(CI->getZExtValue());
6188     return;
6189   }
6190   case Intrinsic::eh_sjlj_functioncontext: {
6191     // Get and store the index of the function context.
6192     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6193     AllocaInst *FnCtx =
6194       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6195     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6196     MFI.setFunctionContextIndex(FI);
6197     return;
6198   }
6199   case Intrinsic::eh_sjlj_setjmp: {
6200     SDValue Ops[2];
6201     Ops[0] = getRoot();
6202     Ops[1] = getValue(I.getArgOperand(0));
6203     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6204                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6205     setValue(&I, Op.getValue(0));
6206     DAG.setRoot(Op.getValue(1));
6207     return;
6208   }
6209   case Intrinsic::eh_sjlj_longjmp:
6210     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6211                             getRoot(), getValue(I.getArgOperand(0))));
6212     return;
6213   case Intrinsic::eh_sjlj_setup_dispatch:
6214     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6215                             getRoot()));
6216     return;
6217   case Intrinsic::masked_gather:
6218     visitMaskedGather(I);
6219     return;
6220   case Intrinsic::masked_load:
6221     visitMaskedLoad(I);
6222     return;
6223   case Intrinsic::masked_scatter:
6224     visitMaskedScatter(I);
6225     return;
6226   case Intrinsic::masked_store:
6227     visitMaskedStore(I);
6228     return;
6229   case Intrinsic::masked_expandload:
6230     visitMaskedLoad(I, true /* IsExpanding */);
6231     return;
6232   case Intrinsic::masked_compressstore:
6233     visitMaskedStore(I, true /* IsCompressing */);
6234     return;
6235   case Intrinsic::powi:
6236     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6237                             getValue(I.getArgOperand(1)), DAG));
6238     return;
6239   case Intrinsic::log:
6240     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6241     return;
6242   case Intrinsic::log2:
6243     setValue(&I,
6244              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6245     return;
6246   case Intrinsic::log10:
6247     setValue(&I,
6248              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6249     return;
6250   case Intrinsic::exp:
6251     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6252     return;
6253   case Intrinsic::exp2:
6254     setValue(&I,
6255              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6256     return;
6257   case Intrinsic::pow:
6258     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6259                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6260     return;
6261   case Intrinsic::sqrt:
6262   case Intrinsic::fabs:
6263   case Intrinsic::sin:
6264   case Intrinsic::cos:
6265   case Intrinsic::floor:
6266   case Intrinsic::ceil:
6267   case Intrinsic::trunc:
6268   case Intrinsic::rint:
6269   case Intrinsic::nearbyint:
6270   case Intrinsic::round:
6271   case Intrinsic::roundeven:
6272   case Intrinsic::canonicalize: {
6273     unsigned Opcode;
6274     switch (Intrinsic) {
6275     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6276     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6277     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6278     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6279     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6280     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6281     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6282     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6283     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6284     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6285     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6286     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6287     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6288     }
6289 
6290     setValue(&I, DAG.getNode(Opcode, sdl,
6291                              getValue(I.getArgOperand(0)).getValueType(),
6292                              getValue(I.getArgOperand(0)), Flags));
6293     return;
6294   }
6295   case Intrinsic::lround:
6296   case Intrinsic::llround:
6297   case Intrinsic::lrint:
6298   case Intrinsic::llrint: {
6299     unsigned Opcode;
6300     switch (Intrinsic) {
6301     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6302     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6303     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6304     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6305     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6306     }
6307 
6308     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6309     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6310                              getValue(I.getArgOperand(0))));
6311     return;
6312   }
6313   case Intrinsic::minnum:
6314     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6315                              getValue(I.getArgOperand(0)).getValueType(),
6316                              getValue(I.getArgOperand(0)),
6317                              getValue(I.getArgOperand(1)), Flags));
6318     return;
6319   case Intrinsic::maxnum:
6320     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6321                              getValue(I.getArgOperand(0)).getValueType(),
6322                              getValue(I.getArgOperand(0)),
6323                              getValue(I.getArgOperand(1)), Flags));
6324     return;
6325   case Intrinsic::minimum:
6326     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6327                              getValue(I.getArgOperand(0)).getValueType(),
6328                              getValue(I.getArgOperand(0)),
6329                              getValue(I.getArgOperand(1)), Flags));
6330     return;
6331   case Intrinsic::maximum:
6332     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6333                              getValue(I.getArgOperand(0)).getValueType(),
6334                              getValue(I.getArgOperand(0)),
6335                              getValue(I.getArgOperand(1)), Flags));
6336     return;
6337   case Intrinsic::copysign:
6338     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6339                              getValue(I.getArgOperand(0)).getValueType(),
6340                              getValue(I.getArgOperand(0)),
6341                              getValue(I.getArgOperand(1)), Flags));
6342     return;
6343   case Intrinsic::arithmetic_fence: {
6344     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6345                              getValue(I.getArgOperand(0)).getValueType(),
6346                              getValue(I.getArgOperand(0)), Flags));
6347     return;
6348   }
6349   case Intrinsic::fma:
6350     setValue(&I, DAG.getNode(
6351                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6352                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6353                      getValue(I.getArgOperand(2)), Flags));
6354     return;
6355 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6356   case Intrinsic::INTRINSIC:
6357 #include "llvm/IR/ConstrainedOps.def"
6358     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6359     return;
6360 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6361 #include "llvm/IR/VPIntrinsics.def"
6362     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6363     return;
6364   case Intrinsic::fptrunc_round: {
6365     // Get the last argument, the metadata and convert it to an integer in the
6366     // call
6367     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6368     Optional<RoundingMode> RoundMode =
6369         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6370 
6371     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6372 
6373     // Propagate fast-math-flags from IR to node(s).
6374     SDNodeFlags Flags;
6375     Flags.copyFMF(*cast<FPMathOperator>(&I));
6376     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6377 
6378     SDValue Result;
6379     Result = DAG.getNode(
6380         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6381         DAG.getTargetConstant((int)*RoundMode, sdl,
6382                               TLI.getPointerTy(DAG.getDataLayout())));
6383     setValue(&I, Result);
6384 
6385     return;
6386   }
6387   case Intrinsic::fmuladd: {
6388     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6389     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6390         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6391       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6392                                getValue(I.getArgOperand(0)).getValueType(),
6393                                getValue(I.getArgOperand(0)),
6394                                getValue(I.getArgOperand(1)),
6395                                getValue(I.getArgOperand(2)), Flags));
6396     } else {
6397       // TODO: Intrinsic calls should have fast-math-flags.
6398       SDValue Mul = DAG.getNode(
6399           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6400           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6401       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6402                                 getValue(I.getArgOperand(0)).getValueType(),
6403                                 Mul, getValue(I.getArgOperand(2)), Flags);
6404       setValue(&I, Add);
6405     }
6406     return;
6407   }
6408   case Intrinsic::convert_to_fp16:
6409     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6410                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6411                                          getValue(I.getArgOperand(0)),
6412                                          DAG.getTargetConstant(0, sdl,
6413                                                                MVT::i32))));
6414     return;
6415   case Intrinsic::convert_from_fp16:
6416     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6417                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6418                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6419                                          getValue(I.getArgOperand(0)))));
6420     return;
6421   case Intrinsic::fptosi_sat: {
6422     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6423     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6424                              getValue(I.getArgOperand(0)),
6425                              DAG.getValueType(VT.getScalarType())));
6426     return;
6427   }
6428   case Intrinsic::fptoui_sat: {
6429     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6430     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6431                              getValue(I.getArgOperand(0)),
6432                              DAG.getValueType(VT.getScalarType())));
6433     return;
6434   }
6435   case Intrinsic::set_rounding:
6436     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6437                       {getRoot(), getValue(I.getArgOperand(0))});
6438     setValue(&I, Res);
6439     DAG.setRoot(Res.getValue(0));
6440     return;
6441   case Intrinsic::is_fpclass: {
6442     const DataLayout DLayout = DAG.getDataLayout();
6443     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6444     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6445     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6446     MachineFunction &MF = DAG.getMachineFunction();
6447     const Function &F = MF.getFunction();
6448     SDValue Op = getValue(I.getArgOperand(0));
6449     SDNodeFlags Flags;
6450     Flags.setNoFPExcept(
6451         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6452     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6453     // expansion can use illegal types. Making expansion early allows
6454     // legalizing these types prior to selection.
6455     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6456       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6457       setValue(&I, Result);
6458       return;
6459     }
6460 
6461     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6462     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6463     setValue(&I, V);
6464     return;
6465   }
6466   case Intrinsic::pcmarker: {
6467     SDValue Tmp = getValue(I.getArgOperand(0));
6468     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6469     return;
6470   }
6471   case Intrinsic::readcyclecounter: {
6472     SDValue Op = getRoot();
6473     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6474                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6475     setValue(&I, Res);
6476     DAG.setRoot(Res.getValue(1));
6477     return;
6478   }
6479   case Intrinsic::bitreverse:
6480     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6481                              getValue(I.getArgOperand(0)).getValueType(),
6482                              getValue(I.getArgOperand(0))));
6483     return;
6484   case Intrinsic::bswap:
6485     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6486                              getValue(I.getArgOperand(0)).getValueType(),
6487                              getValue(I.getArgOperand(0))));
6488     return;
6489   case Intrinsic::cttz: {
6490     SDValue Arg = getValue(I.getArgOperand(0));
6491     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6492     EVT Ty = Arg.getValueType();
6493     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6494                              sdl, Ty, Arg));
6495     return;
6496   }
6497   case Intrinsic::ctlz: {
6498     SDValue Arg = getValue(I.getArgOperand(0));
6499     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6500     EVT Ty = Arg.getValueType();
6501     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6502                              sdl, Ty, Arg));
6503     return;
6504   }
6505   case Intrinsic::ctpop: {
6506     SDValue Arg = getValue(I.getArgOperand(0));
6507     EVT Ty = Arg.getValueType();
6508     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6509     return;
6510   }
6511   case Intrinsic::fshl:
6512   case Intrinsic::fshr: {
6513     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6514     SDValue X = getValue(I.getArgOperand(0));
6515     SDValue Y = getValue(I.getArgOperand(1));
6516     SDValue Z = getValue(I.getArgOperand(2));
6517     EVT VT = X.getValueType();
6518 
6519     if (X == Y) {
6520       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6521       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6522     } else {
6523       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6524       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6525     }
6526     return;
6527   }
6528   case Intrinsic::sadd_sat: {
6529     SDValue Op1 = getValue(I.getArgOperand(0));
6530     SDValue Op2 = getValue(I.getArgOperand(1));
6531     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6532     return;
6533   }
6534   case Intrinsic::uadd_sat: {
6535     SDValue Op1 = getValue(I.getArgOperand(0));
6536     SDValue Op2 = getValue(I.getArgOperand(1));
6537     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6538     return;
6539   }
6540   case Intrinsic::ssub_sat: {
6541     SDValue Op1 = getValue(I.getArgOperand(0));
6542     SDValue Op2 = getValue(I.getArgOperand(1));
6543     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6544     return;
6545   }
6546   case Intrinsic::usub_sat: {
6547     SDValue Op1 = getValue(I.getArgOperand(0));
6548     SDValue Op2 = getValue(I.getArgOperand(1));
6549     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6550     return;
6551   }
6552   case Intrinsic::sshl_sat: {
6553     SDValue Op1 = getValue(I.getArgOperand(0));
6554     SDValue Op2 = getValue(I.getArgOperand(1));
6555     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6556     return;
6557   }
6558   case Intrinsic::ushl_sat: {
6559     SDValue Op1 = getValue(I.getArgOperand(0));
6560     SDValue Op2 = getValue(I.getArgOperand(1));
6561     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6562     return;
6563   }
6564   case Intrinsic::smul_fix:
6565   case Intrinsic::umul_fix:
6566   case Intrinsic::smul_fix_sat:
6567   case Intrinsic::umul_fix_sat: {
6568     SDValue Op1 = getValue(I.getArgOperand(0));
6569     SDValue Op2 = getValue(I.getArgOperand(1));
6570     SDValue Op3 = getValue(I.getArgOperand(2));
6571     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6572                              Op1.getValueType(), Op1, Op2, Op3));
6573     return;
6574   }
6575   case Intrinsic::sdiv_fix:
6576   case Intrinsic::udiv_fix:
6577   case Intrinsic::sdiv_fix_sat:
6578   case Intrinsic::udiv_fix_sat: {
6579     SDValue Op1 = getValue(I.getArgOperand(0));
6580     SDValue Op2 = getValue(I.getArgOperand(1));
6581     SDValue Op3 = getValue(I.getArgOperand(2));
6582     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6583                               Op1, Op2, Op3, DAG, TLI));
6584     return;
6585   }
6586   case Intrinsic::smax: {
6587     SDValue Op1 = getValue(I.getArgOperand(0));
6588     SDValue Op2 = getValue(I.getArgOperand(1));
6589     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6590     return;
6591   }
6592   case Intrinsic::smin: {
6593     SDValue Op1 = getValue(I.getArgOperand(0));
6594     SDValue Op2 = getValue(I.getArgOperand(1));
6595     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6596     return;
6597   }
6598   case Intrinsic::umax: {
6599     SDValue Op1 = getValue(I.getArgOperand(0));
6600     SDValue Op2 = getValue(I.getArgOperand(1));
6601     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6602     return;
6603   }
6604   case Intrinsic::umin: {
6605     SDValue Op1 = getValue(I.getArgOperand(0));
6606     SDValue Op2 = getValue(I.getArgOperand(1));
6607     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6608     return;
6609   }
6610   case Intrinsic::abs: {
6611     // TODO: Preserve "int min is poison" arg in SDAG?
6612     SDValue Op1 = getValue(I.getArgOperand(0));
6613     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6614     return;
6615   }
6616   case Intrinsic::stacksave: {
6617     SDValue Op = getRoot();
6618     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6619     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6620     setValue(&I, Res);
6621     DAG.setRoot(Res.getValue(1));
6622     return;
6623   }
6624   case Intrinsic::stackrestore:
6625     Res = getValue(I.getArgOperand(0));
6626     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6627     return;
6628   case Intrinsic::get_dynamic_area_offset: {
6629     SDValue Op = getRoot();
6630     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6631     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6632     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6633     // target.
6634     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6635       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6636                          " intrinsic!");
6637     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6638                       Op);
6639     DAG.setRoot(Op);
6640     setValue(&I, Res);
6641     return;
6642   }
6643   case Intrinsic::stackguard: {
6644     MachineFunction &MF = DAG.getMachineFunction();
6645     const Module &M = *MF.getFunction().getParent();
6646     SDValue Chain = getRoot();
6647     if (TLI.useLoadStackGuardNode()) {
6648       Res = getLoadStackGuard(DAG, sdl, Chain);
6649     } else {
6650       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6651       const Value *Global = TLI.getSDagStackGuard(M);
6652       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6653       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6654                         MachinePointerInfo(Global, 0), Align,
6655                         MachineMemOperand::MOVolatile);
6656     }
6657     if (TLI.useStackGuardXorFP())
6658       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6659     DAG.setRoot(Chain);
6660     setValue(&I, Res);
6661     return;
6662   }
6663   case Intrinsic::stackprotector: {
6664     // Emit code into the DAG to store the stack guard onto the stack.
6665     MachineFunction &MF = DAG.getMachineFunction();
6666     MachineFrameInfo &MFI = MF.getFrameInfo();
6667     SDValue Src, Chain = getRoot();
6668 
6669     if (TLI.useLoadStackGuardNode())
6670       Src = getLoadStackGuard(DAG, sdl, Chain);
6671     else
6672       Src = getValue(I.getArgOperand(0));   // The guard's value.
6673 
6674     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6675 
6676     int FI = FuncInfo.StaticAllocaMap[Slot];
6677     MFI.setStackProtectorIndex(FI);
6678     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6679 
6680     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6681 
6682     // Store the stack protector onto the stack.
6683     Res = DAG.getStore(
6684         Chain, sdl, Src, FIN,
6685         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6686         MaybeAlign(), MachineMemOperand::MOVolatile);
6687     setValue(&I, Res);
6688     DAG.setRoot(Res);
6689     return;
6690   }
6691   case Intrinsic::objectsize:
6692     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6693 
6694   case Intrinsic::is_constant:
6695     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6696 
6697   case Intrinsic::annotation:
6698   case Intrinsic::ptr_annotation:
6699   case Intrinsic::launder_invariant_group:
6700   case Intrinsic::strip_invariant_group:
6701     // Drop the intrinsic, but forward the value
6702     setValue(&I, getValue(I.getOperand(0)));
6703     return;
6704 
6705   case Intrinsic::assume:
6706   case Intrinsic::experimental_noalias_scope_decl:
6707   case Intrinsic::var_annotation:
6708   case Intrinsic::sideeffect:
6709     // Discard annotate attributes, noalias scope declarations, assumptions, and
6710     // artificial side-effects.
6711     return;
6712 
6713   case Intrinsic::codeview_annotation: {
6714     // Emit a label associated with this metadata.
6715     MachineFunction &MF = DAG.getMachineFunction();
6716     MCSymbol *Label =
6717         MF.getMMI().getContext().createTempSymbol("annotation", true);
6718     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6719     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6720     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6721     DAG.setRoot(Res);
6722     return;
6723   }
6724 
6725   case Intrinsic::init_trampoline: {
6726     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6727 
6728     SDValue Ops[6];
6729     Ops[0] = getRoot();
6730     Ops[1] = getValue(I.getArgOperand(0));
6731     Ops[2] = getValue(I.getArgOperand(1));
6732     Ops[3] = getValue(I.getArgOperand(2));
6733     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6734     Ops[5] = DAG.getSrcValue(F);
6735 
6736     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6737 
6738     DAG.setRoot(Res);
6739     return;
6740   }
6741   case Intrinsic::adjust_trampoline:
6742     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6743                              TLI.getPointerTy(DAG.getDataLayout()),
6744                              getValue(I.getArgOperand(0))));
6745     return;
6746   case Intrinsic::gcroot: {
6747     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6748            "only valid in functions with gc specified, enforced by Verifier");
6749     assert(GFI && "implied by previous");
6750     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6751     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6752 
6753     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6754     GFI->addStackRoot(FI->getIndex(), TypeMap);
6755     return;
6756   }
6757   case Intrinsic::gcread:
6758   case Intrinsic::gcwrite:
6759     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6760   case Intrinsic::flt_rounds:
6761     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6762     setValue(&I, Res);
6763     DAG.setRoot(Res.getValue(1));
6764     return;
6765 
6766   case Intrinsic::expect:
6767     // Just replace __builtin_expect(exp, c) with EXP.
6768     setValue(&I, getValue(I.getArgOperand(0)));
6769     return;
6770 
6771   case Intrinsic::ubsantrap:
6772   case Intrinsic::debugtrap:
6773   case Intrinsic::trap: {
6774     StringRef TrapFuncName =
6775         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6776     if (TrapFuncName.empty()) {
6777       switch (Intrinsic) {
6778       case Intrinsic::trap:
6779         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6780         break;
6781       case Intrinsic::debugtrap:
6782         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6783         break;
6784       case Intrinsic::ubsantrap:
6785         DAG.setRoot(DAG.getNode(
6786             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6787             DAG.getTargetConstant(
6788                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6789                 MVT::i32)));
6790         break;
6791       default: llvm_unreachable("unknown trap intrinsic");
6792       }
6793       return;
6794     }
6795     TargetLowering::ArgListTy Args;
6796     if (Intrinsic == Intrinsic::ubsantrap) {
6797       Args.push_back(TargetLoweringBase::ArgListEntry());
6798       Args[0].Val = I.getArgOperand(0);
6799       Args[0].Node = getValue(Args[0].Val);
6800       Args[0].Ty = Args[0].Val->getType();
6801     }
6802 
6803     TargetLowering::CallLoweringInfo CLI(DAG);
6804     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6805         CallingConv::C, I.getType(),
6806         DAG.getExternalSymbol(TrapFuncName.data(),
6807                               TLI.getPointerTy(DAG.getDataLayout())),
6808         std::move(Args));
6809 
6810     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6811     DAG.setRoot(Result.second);
6812     return;
6813   }
6814 
6815   case Intrinsic::uadd_with_overflow:
6816   case Intrinsic::sadd_with_overflow:
6817   case Intrinsic::usub_with_overflow:
6818   case Intrinsic::ssub_with_overflow:
6819   case Intrinsic::umul_with_overflow:
6820   case Intrinsic::smul_with_overflow: {
6821     ISD::NodeType Op;
6822     switch (Intrinsic) {
6823     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6824     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6825     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6826     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6827     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6828     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6829     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6830     }
6831     SDValue Op1 = getValue(I.getArgOperand(0));
6832     SDValue Op2 = getValue(I.getArgOperand(1));
6833 
6834     EVT ResultVT = Op1.getValueType();
6835     EVT OverflowVT = MVT::i1;
6836     if (ResultVT.isVector())
6837       OverflowVT = EVT::getVectorVT(
6838           *Context, OverflowVT, ResultVT.getVectorElementCount());
6839 
6840     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6841     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6842     return;
6843   }
6844   case Intrinsic::prefetch: {
6845     SDValue Ops[5];
6846     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6847     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6848     Ops[0] = DAG.getRoot();
6849     Ops[1] = getValue(I.getArgOperand(0));
6850     Ops[2] = getValue(I.getArgOperand(1));
6851     Ops[3] = getValue(I.getArgOperand(2));
6852     Ops[4] = getValue(I.getArgOperand(3));
6853     SDValue Result = DAG.getMemIntrinsicNode(
6854         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6855         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6856         /* align */ None, Flags);
6857 
6858     // Chain the prefetch in parallell with any pending loads, to stay out of
6859     // the way of later optimizations.
6860     PendingLoads.push_back(Result);
6861     Result = getRoot();
6862     DAG.setRoot(Result);
6863     return;
6864   }
6865   case Intrinsic::lifetime_start:
6866   case Intrinsic::lifetime_end: {
6867     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6868     // Stack coloring is not enabled in O0, discard region information.
6869     if (TM.getOptLevel() == CodeGenOpt::None)
6870       return;
6871 
6872     const int64_t ObjectSize =
6873         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6874     Value *const ObjectPtr = I.getArgOperand(1);
6875     SmallVector<const Value *, 4> Allocas;
6876     getUnderlyingObjects(ObjectPtr, Allocas);
6877 
6878     for (const Value *Alloca : Allocas) {
6879       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6880 
6881       // Could not find an Alloca.
6882       if (!LifetimeObject)
6883         continue;
6884 
6885       // First check that the Alloca is static, otherwise it won't have a
6886       // valid frame index.
6887       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6888       if (SI == FuncInfo.StaticAllocaMap.end())
6889         return;
6890 
6891       const int FrameIndex = SI->second;
6892       int64_t Offset;
6893       if (GetPointerBaseWithConstantOffset(
6894               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6895         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6896       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6897                                 Offset);
6898       DAG.setRoot(Res);
6899     }
6900     return;
6901   }
6902   case Intrinsic::pseudoprobe: {
6903     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6904     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6905     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6906     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6907     DAG.setRoot(Res);
6908     return;
6909   }
6910   case Intrinsic::invariant_start:
6911     // Discard region information.
6912     setValue(&I,
6913              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6914     return;
6915   case Intrinsic::invariant_end:
6916     // Discard region information.
6917     return;
6918   case Intrinsic::clear_cache:
6919     /// FunctionName may be null.
6920     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6921       lowerCallToExternalSymbol(I, FunctionName);
6922     return;
6923   case Intrinsic::donothing:
6924   case Intrinsic::seh_try_begin:
6925   case Intrinsic::seh_scope_begin:
6926   case Intrinsic::seh_try_end:
6927   case Intrinsic::seh_scope_end:
6928     // ignore
6929     return;
6930   case Intrinsic::experimental_stackmap:
6931     visitStackmap(I);
6932     return;
6933   case Intrinsic::experimental_patchpoint_void:
6934   case Intrinsic::experimental_patchpoint_i64:
6935     visitPatchpoint(I);
6936     return;
6937   case Intrinsic::experimental_gc_statepoint:
6938     LowerStatepoint(cast<GCStatepointInst>(I));
6939     return;
6940   case Intrinsic::experimental_gc_result:
6941     visitGCResult(cast<GCResultInst>(I));
6942     return;
6943   case Intrinsic::experimental_gc_relocate:
6944     visitGCRelocate(cast<GCRelocateInst>(I));
6945     return;
6946   case Intrinsic::instrprof_cover:
6947     llvm_unreachable("instrprof failed to lower a cover");
6948   case Intrinsic::instrprof_increment:
6949     llvm_unreachable("instrprof failed to lower an increment");
6950   case Intrinsic::instrprof_value_profile:
6951     llvm_unreachable("instrprof failed to lower a value profiling call");
6952   case Intrinsic::localescape: {
6953     MachineFunction &MF = DAG.getMachineFunction();
6954     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6955 
6956     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6957     // is the same on all targets.
6958     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6959       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6960       if (isa<ConstantPointerNull>(Arg))
6961         continue; // Skip null pointers. They represent a hole in index space.
6962       AllocaInst *Slot = cast<AllocaInst>(Arg);
6963       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6964              "can only escape static allocas");
6965       int FI = FuncInfo.StaticAllocaMap[Slot];
6966       MCSymbol *FrameAllocSym =
6967           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6968               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6969       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6970               TII->get(TargetOpcode::LOCAL_ESCAPE))
6971           .addSym(FrameAllocSym)
6972           .addFrameIndex(FI);
6973     }
6974 
6975     return;
6976   }
6977 
6978   case Intrinsic::localrecover: {
6979     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6980     MachineFunction &MF = DAG.getMachineFunction();
6981 
6982     // Get the symbol that defines the frame offset.
6983     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6984     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6985     unsigned IdxVal =
6986         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6987     MCSymbol *FrameAllocSym =
6988         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6989             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6990 
6991     Value *FP = I.getArgOperand(1);
6992     SDValue FPVal = getValue(FP);
6993     EVT PtrVT = FPVal.getValueType();
6994 
6995     // Create a MCSymbol for the label to avoid any target lowering
6996     // that would make this PC relative.
6997     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6998     SDValue OffsetVal =
6999         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7000 
7001     // Add the offset to the FP.
7002     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7003     setValue(&I, Add);
7004 
7005     return;
7006   }
7007 
7008   case Intrinsic::eh_exceptionpointer:
7009   case Intrinsic::eh_exceptioncode: {
7010     // Get the exception pointer vreg, copy from it, and resize it to fit.
7011     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7012     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7013     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7014     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7015     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7016     if (Intrinsic == Intrinsic::eh_exceptioncode)
7017       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7018     setValue(&I, N);
7019     return;
7020   }
7021   case Intrinsic::xray_customevent: {
7022     // Here we want to make sure that the intrinsic behaves as if it has a
7023     // specific calling convention, and only for x86_64.
7024     // FIXME: Support other platforms later.
7025     const auto &Triple = DAG.getTarget().getTargetTriple();
7026     if (Triple.getArch() != Triple::x86_64)
7027       return;
7028 
7029     SmallVector<SDValue, 8> Ops;
7030 
7031     // We want to say that we always want the arguments in registers.
7032     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7033     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7034     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7035     SDValue Chain = getRoot();
7036     Ops.push_back(LogEntryVal);
7037     Ops.push_back(StrSizeVal);
7038     Ops.push_back(Chain);
7039 
7040     // We need to enforce the calling convention for the callsite, so that
7041     // argument ordering is enforced correctly, and that register allocation can
7042     // see that some registers may be assumed clobbered and have to preserve
7043     // them across calls to the intrinsic.
7044     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7045                                            sdl, NodeTys, Ops);
7046     SDValue patchableNode = SDValue(MN, 0);
7047     DAG.setRoot(patchableNode);
7048     setValue(&I, patchableNode);
7049     return;
7050   }
7051   case Intrinsic::xray_typedevent: {
7052     // Here we want to make sure that the intrinsic behaves as if it has a
7053     // specific calling convention, and only for x86_64.
7054     // FIXME: Support other platforms later.
7055     const auto &Triple = DAG.getTarget().getTargetTriple();
7056     if (Triple.getArch() != Triple::x86_64)
7057       return;
7058 
7059     SmallVector<SDValue, 8> Ops;
7060 
7061     // We want to say that we always want the arguments in registers.
7062     // It's unclear to me how manipulating the selection DAG here forces callers
7063     // to provide arguments in registers instead of on the stack.
7064     SDValue LogTypeId = getValue(I.getArgOperand(0));
7065     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7066     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7067     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7068     SDValue Chain = getRoot();
7069     Ops.push_back(LogTypeId);
7070     Ops.push_back(LogEntryVal);
7071     Ops.push_back(StrSizeVal);
7072     Ops.push_back(Chain);
7073 
7074     // We need to enforce the calling convention for the callsite, so that
7075     // argument ordering is enforced correctly, and that register allocation can
7076     // see that some registers may be assumed clobbered and have to preserve
7077     // them across calls to the intrinsic.
7078     MachineSDNode *MN = DAG.getMachineNode(
7079         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7080     SDValue patchableNode = SDValue(MN, 0);
7081     DAG.setRoot(patchableNode);
7082     setValue(&I, patchableNode);
7083     return;
7084   }
7085   case Intrinsic::experimental_deoptimize:
7086     LowerDeoptimizeCall(&I);
7087     return;
7088   case Intrinsic::experimental_stepvector:
7089     visitStepVector(I);
7090     return;
7091   case Intrinsic::vector_reduce_fadd:
7092   case Intrinsic::vector_reduce_fmul:
7093   case Intrinsic::vector_reduce_add:
7094   case Intrinsic::vector_reduce_mul:
7095   case Intrinsic::vector_reduce_and:
7096   case Intrinsic::vector_reduce_or:
7097   case Intrinsic::vector_reduce_xor:
7098   case Intrinsic::vector_reduce_smax:
7099   case Intrinsic::vector_reduce_smin:
7100   case Intrinsic::vector_reduce_umax:
7101   case Intrinsic::vector_reduce_umin:
7102   case Intrinsic::vector_reduce_fmax:
7103   case Intrinsic::vector_reduce_fmin:
7104     visitVectorReduce(I, Intrinsic);
7105     return;
7106 
7107   case Intrinsic::icall_branch_funnel: {
7108     SmallVector<SDValue, 16> Ops;
7109     Ops.push_back(getValue(I.getArgOperand(0)));
7110 
7111     int64_t Offset;
7112     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7113         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7114     if (!Base)
7115       report_fatal_error(
7116           "llvm.icall.branch.funnel operand must be a GlobalValue");
7117     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7118 
7119     struct BranchFunnelTarget {
7120       int64_t Offset;
7121       SDValue Target;
7122     };
7123     SmallVector<BranchFunnelTarget, 8> Targets;
7124 
7125     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7126       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7127           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7128       if (ElemBase != Base)
7129         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7130                            "to the same GlobalValue");
7131 
7132       SDValue Val = getValue(I.getArgOperand(Op + 1));
7133       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7134       if (!GA)
7135         report_fatal_error(
7136             "llvm.icall.branch.funnel operand must be a GlobalValue");
7137       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7138                                      GA->getGlobal(), sdl, Val.getValueType(),
7139                                      GA->getOffset())});
7140     }
7141     llvm::sort(Targets,
7142                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7143                  return T1.Offset < T2.Offset;
7144                });
7145 
7146     for (auto &T : Targets) {
7147       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7148       Ops.push_back(T.Target);
7149     }
7150 
7151     Ops.push_back(DAG.getRoot()); // Chain
7152     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7153                                  MVT::Other, Ops),
7154               0);
7155     DAG.setRoot(N);
7156     setValue(&I, N);
7157     HasTailCall = true;
7158     return;
7159   }
7160 
7161   case Intrinsic::wasm_landingpad_index:
7162     // Information this intrinsic contained has been transferred to
7163     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7164     // delete it now.
7165     return;
7166 
7167   case Intrinsic::aarch64_settag:
7168   case Intrinsic::aarch64_settag_zero: {
7169     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7170     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7171     SDValue Val = TSI.EmitTargetCodeForSetTag(
7172         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7173         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7174         ZeroMemory);
7175     DAG.setRoot(Val);
7176     setValue(&I, Val);
7177     return;
7178   }
7179   case Intrinsic::ptrmask: {
7180     SDValue Ptr = getValue(I.getOperand(0));
7181     SDValue Const = getValue(I.getOperand(1));
7182 
7183     EVT PtrVT = Ptr.getValueType();
7184     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7185                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7186     return;
7187   }
7188   case Intrinsic::threadlocal_address: {
7189     setValue(&I, getValue(I.getOperand(0)));
7190     return;
7191   }
7192   case Intrinsic::get_active_lane_mask: {
7193     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7194     SDValue Index = getValue(I.getOperand(0));
7195     EVT ElementVT = Index.getValueType();
7196 
7197     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7198       visitTargetIntrinsic(I, Intrinsic);
7199       return;
7200     }
7201 
7202     SDValue TripCount = getValue(I.getOperand(1));
7203     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7204 
7205     SDValue VectorIndex, VectorTripCount;
7206     if (VecTy.isScalableVector()) {
7207       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7208       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7209     } else {
7210       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7211       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7212     }
7213     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7214     SDValue VectorInduction = DAG.getNode(
7215         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7216     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7217                                  VectorTripCount, ISD::CondCode::SETULT);
7218     setValue(&I, SetCC);
7219     return;
7220   }
7221   case Intrinsic::vector_insert: {
7222     SDValue Vec = getValue(I.getOperand(0));
7223     SDValue SubVec = getValue(I.getOperand(1));
7224     SDValue Index = getValue(I.getOperand(2));
7225 
7226     // The intrinsic's index type is i64, but the SDNode requires an index type
7227     // suitable for the target. Convert the index as required.
7228     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7229     if (Index.getValueType() != VectorIdxTy)
7230       Index = DAG.getVectorIdxConstant(
7231           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7232 
7233     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7234     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7235                              Index));
7236     return;
7237   }
7238   case Intrinsic::vector_extract: {
7239     SDValue Vec = getValue(I.getOperand(0));
7240     SDValue Index = getValue(I.getOperand(1));
7241     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7242 
7243     // The intrinsic's index type is i64, but the SDNode requires an index type
7244     // suitable for the target. Convert the index as required.
7245     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7246     if (Index.getValueType() != VectorIdxTy)
7247       Index = DAG.getVectorIdxConstant(
7248           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7249 
7250     setValue(&I,
7251              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7252     return;
7253   }
7254   case Intrinsic::experimental_vector_reverse:
7255     visitVectorReverse(I);
7256     return;
7257   case Intrinsic::experimental_vector_splice:
7258     visitVectorSplice(I);
7259     return;
7260   }
7261 }
7262 
7263 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7264     const ConstrainedFPIntrinsic &FPI) {
7265   SDLoc sdl = getCurSDLoc();
7266 
7267   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7268   SmallVector<EVT, 4> ValueVTs;
7269   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7270   ValueVTs.push_back(MVT::Other); // Out chain
7271 
7272   // We do not need to serialize constrained FP intrinsics against
7273   // each other or against (nonvolatile) loads, so they can be
7274   // chained like loads.
7275   SDValue Chain = DAG.getRoot();
7276   SmallVector<SDValue, 4> Opers;
7277   Opers.push_back(Chain);
7278   if (FPI.isUnaryOp()) {
7279     Opers.push_back(getValue(FPI.getArgOperand(0)));
7280   } else if (FPI.isTernaryOp()) {
7281     Opers.push_back(getValue(FPI.getArgOperand(0)));
7282     Opers.push_back(getValue(FPI.getArgOperand(1)));
7283     Opers.push_back(getValue(FPI.getArgOperand(2)));
7284   } else {
7285     Opers.push_back(getValue(FPI.getArgOperand(0)));
7286     Opers.push_back(getValue(FPI.getArgOperand(1)));
7287   }
7288 
7289   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7290     assert(Result.getNode()->getNumValues() == 2);
7291 
7292     // Push node to the appropriate list so that future instructions can be
7293     // chained up correctly.
7294     SDValue OutChain = Result.getValue(1);
7295     switch (EB) {
7296     case fp::ExceptionBehavior::ebIgnore:
7297       // The only reason why ebIgnore nodes still need to be chained is that
7298       // they might depend on the current rounding mode, and therefore must
7299       // not be moved across instruction that may change that mode.
7300       LLVM_FALLTHROUGH;
7301     case fp::ExceptionBehavior::ebMayTrap:
7302       // These must not be moved across calls or instructions that may change
7303       // floating-point exception masks.
7304       PendingConstrainedFP.push_back(OutChain);
7305       break;
7306     case fp::ExceptionBehavior::ebStrict:
7307       // These must not be moved across calls or instructions that may change
7308       // floating-point exception masks or read floating-point exception flags.
7309       // In addition, they cannot be optimized out even if unused.
7310       PendingConstrainedFPStrict.push_back(OutChain);
7311       break;
7312     }
7313   };
7314 
7315   SDVTList VTs = DAG.getVTList(ValueVTs);
7316   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7317 
7318   SDNodeFlags Flags;
7319   if (EB == fp::ExceptionBehavior::ebIgnore)
7320     Flags.setNoFPExcept(true);
7321 
7322   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7323     Flags.copyFMF(*FPOp);
7324 
7325   unsigned Opcode;
7326   switch (FPI.getIntrinsicID()) {
7327   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7328 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7329   case Intrinsic::INTRINSIC:                                                   \
7330     Opcode = ISD::STRICT_##DAGN;                                               \
7331     break;
7332 #include "llvm/IR/ConstrainedOps.def"
7333   case Intrinsic::experimental_constrained_fmuladd: {
7334     Opcode = ISD::STRICT_FMA;
7335     // Break fmuladd into fmul and fadd.
7336     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7337         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7338                                         ValueVTs[0])) {
7339       Opers.pop_back();
7340       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7341       pushOutChain(Mul, EB);
7342       Opcode = ISD::STRICT_FADD;
7343       Opers.clear();
7344       Opers.push_back(Mul.getValue(1));
7345       Opers.push_back(Mul.getValue(0));
7346       Opers.push_back(getValue(FPI.getArgOperand(2)));
7347     }
7348     break;
7349   }
7350   }
7351 
7352   // A few strict DAG nodes carry additional operands that are not
7353   // set up by the default code above.
7354   switch (Opcode) {
7355   default: break;
7356   case ISD::STRICT_FP_ROUND:
7357     Opers.push_back(
7358         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7359     break;
7360   case ISD::STRICT_FSETCC:
7361   case ISD::STRICT_FSETCCS: {
7362     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7363     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7364     if (TM.Options.NoNaNsFPMath)
7365       Condition = getFCmpCodeWithoutNaN(Condition);
7366     Opers.push_back(DAG.getCondCode(Condition));
7367     break;
7368   }
7369   }
7370 
7371   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7372   pushOutChain(Result, EB);
7373 
7374   SDValue FPResult = Result.getValue(0);
7375   setValue(&FPI, FPResult);
7376 }
7377 
7378 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7379   Optional<unsigned> ResOPC;
7380   switch (VPIntrin.getIntrinsicID()) {
7381 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7382   case Intrinsic::VPID:                                                        \
7383     ResOPC = ISD::VPSD;                                                        \
7384     break;
7385 #include "llvm/IR/VPIntrinsics.def"
7386   }
7387 
7388   if (!ResOPC)
7389     llvm_unreachable(
7390         "Inconsistency: no SDNode available for this VPIntrinsic!");
7391 
7392   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7393       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7394     if (VPIntrin.getFastMathFlags().allowReassoc())
7395       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7396                                                 : ISD::VP_REDUCE_FMUL;
7397   }
7398 
7399   return *ResOPC;
7400 }
7401 
7402 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7403                                             SmallVector<SDValue, 7> &OpValues,
7404                                             bool IsGather) {
7405   SDLoc DL = getCurSDLoc();
7406   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7407   Value *PtrOperand = VPIntrin.getArgOperand(0);
7408   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7409   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7410   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7411   SDValue LD;
7412   bool AddToChain = true;
7413   if (!IsGather) {
7414     // Do not serialize variable-length loads of constant memory with
7415     // anything.
7416     if (!Alignment)
7417       Alignment = DAG.getEVTAlign(VT);
7418     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7419     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7420     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7421     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7422         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7423         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7424     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7425                        MMO, false /*IsExpanding */);
7426   } else {
7427     if (!Alignment)
7428       Alignment = DAG.getEVTAlign(VT.getScalarType());
7429     unsigned AS =
7430         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7431     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7432         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7433         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7434     SDValue Base, Index, Scale;
7435     ISD::MemIndexType IndexType;
7436     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7437                                       this, VPIntrin.getParent(),
7438                                       VT.getScalarStoreSize());
7439     if (!UniformBase) {
7440       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7441       Index = getValue(PtrOperand);
7442       IndexType = ISD::SIGNED_SCALED;
7443       Scale =
7444           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7445     }
7446     EVT IdxVT = Index.getValueType();
7447     EVT EltTy = IdxVT.getVectorElementType();
7448     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7449       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7450       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7451     }
7452     LD = DAG.getGatherVP(
7453         DAG.getVTList(VT, MVT::Other), VT, DL,
7454         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7455         IndexType);
7456   }
7457   if (AddToChain)
7458     PendingLoads.push_back(LD.getValue(1));
7459   setValue(&VPIntrin, LD);
7460 }
7461 
7462 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7463                                               SmallVector<SDValue, 7> &OpValues,
7464                                               bool IsScatter) {
7465   SDLoc DL = getCurSDLoc();
7466   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7467   Value *PtrOperand = VPIntrin.getArgOperand(1);
7468   EVT VT = OpValues[0].getValueType();
7469   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7470   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7471   SDValue ST;
7472   if (!IsScatter) {
7473     if (!Alignment)
7474       Alignment = DAG.getEVTAlign(VT);
7475     SDValue Ptr = OpValues[1];
7476     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7477     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7478         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7479         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7480     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7481                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7482                         /* IsTruncating */ false, /*IsCompressing*/ false);
7483   } else {
7484     if (!Alignment)
7485       Alignment = DAG.getEVTAlign(VT.getScalarType());
7486     unsigned AS =
7487         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7488     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7489         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7490         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7491     SDValue Base, Index, Scale;
7492     ISD::MemIndexType IndexType;
7493     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7494                                       this, VPIntrin.getParent(),
7495                                       VT.getScalarStoreSize());
7496     if (!UniformBase) {
7497       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7498       Index = getValue(PtrOperand);
7499       IndexType = ISD::SIGNED_SCALED;
7500       Scale =
7501           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7502     }
7503     EVT IdxVT = Index.getValueType();
7504     EVT EltTy = IdxVT.getVectorElementType();
7505     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7506       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7507       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7508     }
7509     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7510                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7511                            OpValues[2], OpValues[3]},
7512                           MMO, IndexType);
7513   }
7514   DAG.setRoot(ST);
7515   setValue(&VPIntrin, ST);
7516 }
7517 
7518 void SelectionDAGBuilder::visitVPStridedLoad(
7519     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7520   SDLoc DL = getCurSDLoc();
7521   Value *PtrOperand = VPIntrin.getArgOperand(0);
7522   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7523   if (!Alignment)
7524     Alignment = DAG.getEVTAlign(VT.getScalarType());
7525   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7526   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7527   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7528   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7529   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7530   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7531       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7532       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7533 
7534   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7535                                     OpValues[2], OpValues[3], MMO,
7536                                     false /*IsExpanding*/);
7537 
7538   if (AddToChain)
7539     PendingLoads.push_back(LD.getValue(1));
7540   setValue(&VPIntrin, LD);
7541 }
7542 
7543 void SelectionDAGBuilder::visitVPStridedStore(
7544     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7545   SDLoc DL = getCurSDLoc();
7546   Value *PtrOperand = VPIntrin.getArgOperand(1);
7547   EVT VT = OpValues[0].getValueType();
7548   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7549   if (!Alignment)
7550     Alignment = DAG.getEVTAlign(VT.getScalarType());
7551   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7552   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7553       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7554       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7555 
7556   SDValue ST = DAG.getStridedStoreVP(
7557       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7558       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7559       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7560       /*IsCompressing*/ false);
7561 
7562   DAG.setRoot(ST);
7563   setValue(&VPIntrin, ST);
7564 }
7565 
7566 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7568   SDLoc DL = getCurSDLoc();
7569 
7570   ISD::CondCode Condition;
7571   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7572   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7573   if (IsFP) {
7574     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7575     // flags, but calls that don't return floating-point types can't be
7576     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7577     Condition = getFCmpCondCode(CondCode);
7578     if (TM.Options.NoNaNsFPMath)
7579       Condition = getFCmpCodeWithoutNaN(Condition);
7580   } else {
7581     Condition = getICmpCondCode(CondCode);
7582   }
7583 
7584   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7585   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7586   // #2 is the condition code
7587   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7588   SDValue EVL = getValue(VPIntrin.getOperand(4));
7589   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7590   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7591          "Unexpected target EVL type");
7592   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7593 
7594   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7595                                                         VPIntrin.getType());
7596   setValue(&VPIntrin,
7597            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7598 }
7599 
7600 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7601     const VPIntrinsic &VPIntrin) {
7602   SDLoc DL = getCurSDLoc();
7603   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7604 
7605   auto IID = VPIntrin.getIntrinsicID();
7606 
7607   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7608     return visitVPCmp(*CmpI);
7609 
7610   SmallVector<EVT, 4> ValueVTs;
7611   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7612   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7613   SDVTList VTs = DAG.getVTList(ValueVTs);
7614 
7615   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7616 
7617   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7618   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7619          "Unexpected target EVL type");
7620 
7621   // Request operands.
7622   SmallVector<SDValue, 7> OpValues;
7623   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7624     auto Op = getValue(VPIntrin.getArgOperand(I));
7625     if (I == EVLParamPos)
7626       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7627     OpValues.push_back(Op);
7628   }
7629 
7630   switch (Opcode) {
7631   default: {
7632     SDNodeFlags SDFlags;
7633     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7634       SDFlags.copyFMF(*FPMO);
7635     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7636     setValue(&VPIntrin, Result);
7637     break;
7638   }
7639   case ISD::VP_LOAD:
7640   case ISD::VP_GATHER:
7641     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7642                       Opcode == ISD::VP_GATHER);
7643     break;
7644   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7645     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7646     break;
7647   case ISD::VP_STORE:
7648   case ISD::VP_SCATTER:
7649     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7650     break;
7651   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7652     visitVPStridedStore(VPIntrin, OpValues);
7653     break;
7654   }
7655 }
7656 
7657 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7658                                           const BasicBlock *EHPadBB,
7659                                           MCSymbol *&BeginLabel) {
7660   MachineFunction &MF = DAG.getMachineFunction();
7661   MachineModuleInfo &MMI = MF.getMMI();
7662 
7663   // Insert a label before the invoke call to mark the try range.  This can be
7664   // used to detect deletion of the invoke via the MachineModuleInfo.
7665   BeginLabel = MMI.getContext().createTempSymbol();
7666 
7667   // For SjLj, keep track of which landing pads go with which invokes
7668   // so as to maintain the ordering of pads in the LSDA.
7669   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7670   if (CallSiteIndex) {
7671     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7672     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7673 
7674     // Now that the call site is handled, stop tracking it.
7675     MMI.setCurrentCallSite(0);
7676   }
7677 
7678   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7679 }
7680 
7681 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7682                                         const BasicBlock *EHPadBB,
7683                                         MCSymbol *BeginLabel) {
7684   assert(BeginLabel && "BeginLabel should've been set");
7685 
7686   MachineFunction &MF = DAG.getMachineFunction();
7687   MachineModuleInfo &MMI = MF.getMMI();
7688 
7689   // Insert a label at the end of the invoke call to mark the try range.  This
7690   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7691   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7692   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7693 
7694   // Inform MachineModuleInfo of range.
7695   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7696   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7697   // actually use outlined funclets and their LSDA info style.
7698   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7699     assert(II && "II should've been set");
7700     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7701     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7702   } else if (!isScopedEHPersonality(Pers)) {
7703     assert(EHPadBB);
7704     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7705   }
7706 
7707   return Chain;
7708 }
7709 
7710 std::pair<SDValue, SDValue>
7711 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7712                                     const BasicBlock *EHPadBB) {
7713   MCSymbol *BeginLabel = nullptr;
7714 
7715   if (EHPadBB) {
7716     // Both PendingLoads and PendingExports must be flushed here;
7717     // this call might not return.
7718     (void)getRoot();
7719     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7720     CLI.setChain(getRoot());
7721   }
7722 
7723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7724   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7725 
7726   assert((CLI.IsTailCall || Result.second.getNode()) &&
7727          "Non-null chain expected with non-tail call!");
7728   assert((Result.second.getNode() || !Result.first.getNode()) &&
7729          "Null value expected with tail call!");
7730 
7731   if (!Result.second.getNode()) {
7732     // As a special case, a null chain means that a tail call has been emitted
7733     // and the DAG root is already updated.
7734     HasTailCall = true;
7735 
7736     // Since there's no actual continuation from this block, nothing can be
7737     // relying on us setting vregs for them.
7738     PendingExports.clear();
7739   } else {
7740     DAG.setRoot(Result.second);
7741   }
7742 
7743   if (EHPadBB) {
7744     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7745                            BeginLabel));
7746   }
7747 
7748   return Result;
7749 }
7750 
7751 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7752                                       bool isTailCall,
7753                                       bool isMustTailCall,
7754                                       const BasicBlock *EHPadBB) {
7755   auto &DL = DAG.getDataLayout();
7756   FunctionType *FTy = CB.getFunctionType();
7757   Type *RetTy = CB.getType();
7758 
7759   TargetLowering::ArgListTy Args;
7760   Args.reserve(CB.arg_size());
7761 
7762   const Value *SwiftErrorVal = nullptr;
7763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7764 
7765   if (isTailCall) {
7766     // Avoid emitting tail calls in functions with the disable-tail-calls
7767     // attribute.
7768     auto *Caller = CB.getParent()->getParent();
7769     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7770         "true" && !isMustTailCall)
7771       isTailCall = false;
7772 
7773     // We can't tail call inside a function with a swifterror argument. Lowering
7774     // does not support this yet. It would have to move into the swifterror
7775     // register before the call.
7776     if (TLI.supportSwiftError() &&
7777         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7778       isTailCall = false;
7779   }
7780 
7781   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7782     TargetLowering::ArgListEntry Entry;
7783     const Value *V = *I;
7784 
7785     // Skip empty types
7786     if (V->getType()->isEmptyTy())
7787       continue;
7788 
7789     SDValue ArgNode = getValue(V);
7790     Entry.Node = ArgNode; Entry.Ty = V->getType();
7791 
7792     Entry.setAttributes(&CB, I - CB.arg_begin());
7793 
7794     // Use swifterror virtual register as input to the call.
7795     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7796       SwiftErrorVal = V;
7797       // We find the virtual register for the actual swifterror argument.
7798       // Instead of using the Value, we use the virtual register instead.
7799       Entry.Node =
7800           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7801                           EVT(TLI.getPointerTy(DL)));
7802     }
7803 
7804     Args.push_back(Entry);
7805 
7806     // If we have an explicit sret argument that is an Instruction, (i.e., it
7807     // might point to function-local memory), we can't meaningfully tail-call.
7808     if (Entry.IsSRet && isa<Instruction>(V))
7809       isTailCall = false;
7810   }
7811 
7812   // If call site has a cfguardtarget operand bundle, create and add an
7813   // additional ArgListEntry.
7814   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7815     TargetLowering::ArgListEntry Entry;
7816     Value *V = Bundle->Inputs[0];
7817     SDValue ArgNode = getValue(V);
7818     Entry.Node = ArgNode;
7819     Entry.Ty = V->getType();
7820     Entry.IsCFGuardTarget = true;
7821     Args.push_back(Entry);
7822   }
7823 
7824   // Check if target-independent constraints permit a tail call here.
7825   // Target-dependent constraints are checked within TLI->LowerCallTo.
7826   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7827     isTailCall = false;
7828 
7829   // Disable tail calls if there is an swifterror argument. Targets have not
7830   // been updated to support tail calls.
7831   if (TLI.supportSwiftError() && SwiftErrorVal)
7832     isTailCall = false;
7833 
7834   TargetLowering::CallLoweringInfo CLI(DAG);
7835   CLI.setDebugLoc(getCurSDLoc())
7836       .setChain(getRoot())
7837       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7838       .setTailCall(isTailCall)
7839       .setConvergent(CB.isConvergent())
7840       .setIsPreallocated(
7841           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7842   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7843 
7844   if (Result.first.getNode()) {
7845     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7846     setValue(&CB, Result.first);
7847   }
7848 
7849   // The last element of CLI.InVals has the SDValue for swifterror return.
7850   // Here we copy it to a virtual register and update SwiftErrorMap for
7851   // book-keeping.
7852   if (SwiftErrorVal && TLI.supportSwiftError()) {
7853     // Get the last element of InVals.
7854     SDValue Src = CLI.InVals.back();
7855     Register VReg =
7856         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7857     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7858     DAG.setRoot(CopyNode);
7859   }
7860 }
7861 
7862 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7863                              SelectionDAGBuilder &Builder) {
7864   // Check to see if this load can be trivially constant folded, e.g. if the
7865   // input is from a string literal.
7866   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7867     // Cast pointer to the type we really want to load.
7868     Type *LoadTy =
7869         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7870     if (LoadVT.isVector())
7871       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7872 
7873     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7874                                          PointerType::getUnqual(LoadTy));
7875 
7876     if (const Constant *LoadCst =
7877             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7878                                          LoadTy, Builder.DAG.getDataLayout()))
7879       return Builder.getValue(LoadCst);
7880   }
7881 
7882   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7883   // still constant memory, the input chain can be the entry node.
7884   SDValue Root;
7885   bool ConstantMemory = false;
7886 
7887   // Do not serialize (non-volatile) loads of constant memory with anything.
7888   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7889     Root = Builder.DAG.getEntryNode();
7890     ConstantMemory = true;
7891   } else {
7892     // Do not serialize non-volatile loads against each other.
7893     Root = Builder.DAG.getRoot();
7894   }
7895 
7896   SDValue Ptr = Builder.getValue(PtrVal);
7897   SDValue LoadVal =
7898       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7899                           MachinePointerInfo(PtrVal), Align(1));
7900 
7901   if (!ConstantMemory)
7902     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7903   return LoadVal;
7904 }
7905 
7906 /// Record the value for an instruction that produces an integer result,
7907 /// converting the type where necessary.
7908 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7909                                                   SDValue Value,
7910                                                   bool IsSigned) {
7911   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7912                                                     I.getType(), true);
7913   if (IsSigned)
7914     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7915   else
7916     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7917   setValue(&I, Value);
7918 }
7919 
7920 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7921 /// true and lower it. Otherwise return false, and it will be lowered like a
7922 /// normal call.
7923 /// The caller already checked that \p I calls the appropriate LibFunc with a
7924 /// correct prototype.
7925 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7926   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7927   const Value *Size = I.getArgOperand(2);
7928   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7929   if (CSize && CSize->getZExtValue() == 0) {
7930     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7931                                                           I.getType(), true);
7932     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7933     return true;
7934   }
7935 
7936   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7937   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7938       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7939       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7940   if (Res.first.getNode()) {
7941     processIntegerCallValue(I, Res.first, true);
7942     PendingLoads.push_back(Res.second);
7943     return true;
7944   }
7945 
7946   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7947   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7948   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7949     return false;
7950 
7951   // If the target has a fast compare for the given size, it will return a
7952   // preferred load type for that size. Require that the load VT is legal and
7953   // that the target supports unaligned loads of that type. Otherwise, return
7954   // INVALID.
7955   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7956     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7957     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7958     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7959       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7960       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7961       // TODO: Check alignment of src and dest ptrs.
7962       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7963       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7964       if (!TLI.isTypeLegal(LVT) ||
7965           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7966           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7967         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7968     }
7969 
7970     return LVT;
7971   };
7972 
7973   // This turns into unaligned loads. We only do this if the target natively
7974   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7975   // we'll only produce a small number of byte loads.
7976   MVT LoadVT;
7977   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7978   switch (NumBitsToCompare) {
7979   default:
7980     return false;
7981   case 16:
7982     LoadVT = MVT::i16;
7983     break;
7984   case 32:
7985     LoadVT = MVT::i32;
7986     break;
7987   case 64:
7988   case 128:
7989   case 256:
7990     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7991     break;
7992   }
7993 
7994   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7995     return false;
7996 
7997   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7998   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7999 
8000   // Bitcast to a wide integer type if the loads are vectors.
8001   if (LoadVT.isVector()) {
8002     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8003     LoadL = DAG.getBitcast(CmpVT, LoadL);
8004     LoadR = DAG.getBitcast(CmpVT, LoadR);
8005   }
8006 
8007   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8008   processIntegerCallValue(I, Cmp, false);
8009   return true;
8010 }
8011 
8012 /// See if we can lower a memchr call into an optimized form. If so, return
8013 /// true and lower it. Otherwise return false, and it will be lowered like a
8014 /// normal call.
8015 /// The caller already checked that \p I calls the appropriate LibFunc with a
8016 /// correct prototype.
8017 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8018   const Value *Src = I.getArgOperand(0);
8019   const Value *Char = I.getArgOperand(1);
8020   const Value *Length = I.getArgOperand(2);
8021 
8022   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8023   std::pair<SDValue, SDValue> Res =
8024     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8025                                 getValue(Src), getValue(Char), getValue(Length),
8026                                 MachinePointerInfo(Src));
8027   if (Res.first.getNode()) {
8028     setValue(&I, Res.first);
8029     PendingLoads.push_back(Res.second);
8030     return true;
8031   }
8032 
8033   return false;
8034 }
8035 
8036 /// See if we can lower a mempcpy call into an optimized form. If so, return
8037 /// true and lower it. Otherwise return false, and it will be lowered like a
8038 /// normal call.
8039 /// The caller already checked that \p I calls the appropriate LibFunc with a
8040 /// correct prototype.
8041 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8042   SDValue Dst = getValue(I.getArgOperand(0));
8043   SDValue Src = getValue(I.getArgOperand(1));
8044   SDValue Size = getValue(I.getArgOperand(2));
8045 
8046   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8047   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8048   // DAG::getMemcpy needs Alignment to be defined.
8049   Align Alignment = std::min(DstAlign, SrcAlign);
8050 
8051   bool isVol = false;
8052   SDLoc sdl = getCurSDLoc();
8053 
8054   // In the mempcpy context we need to pass in a false value for isTailCall
8055   // because the return pointer needs to be adjusted by the size of
8056   // the copied memory.
8057   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8058   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8059                              /*isTailCall=*/false,
8060                              MachinePointerInfo(I.getArgOperand(0)),
8061                              MachinePointerInfo(I.getArgOperand(1)),
8062                              I.getAAMetadata());
8063   assert(MC.getNode() != nullptr &&
8064          "** memcpy should not be lowered as TailCall in mempcpy context **");
8065   DAG.setRoot(MC);
8066 
8067   // Check if Size needs to be truncated or extended.
8068   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8069 
8070   // Adjust return pointer to point just past the last dst byte.
8071   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8072                                     Dst, Size);
8073   setValue(&I, DstPlusSize);
8074   return true;
8075 }
8076 
8077 /// See if we can lower a strcpy call into an optimized form.  If so, return
8078 /// true and lower it, otherwise return false and it will be lowered like a
8079 /// normal call.
8080 /// The caller already checked that \p I calls the appropriate LibFunc with a
8081 /// correct prototype.
8082 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8083   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8084 
8085   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8086   std::pair<SDValue, SDValue> Res =
8087     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8088                                 getValue(Arg0), getValue(Arg1),
8089                                 MachinePointerInfo(Arg0),
8090                                 MachinePointerInfo(Arg1), isStpcpy);
8091   if (Res.first.getNode()) {
8092     setValue(&I, Res.first);
8093     DAG.setRoot(Res.second);
8094     return true;
8095   }
8096 
8097   return false;
8098 }
8099 
8100 /// See if we can lower a strcmp call into an optimized form.  If so, return
8101 /// true and lower it, otherwise return false and it will be lowered like a
8102 /// normal call.
8103 /// The caller already checked that \p I calls the appropriate LibFunc with a
8104 /// correct prototype.
8105 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8106   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8107 
8108   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8109   std::pair<SDValue, SDValue> Res =
8110     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8111                                 getValue(Arg0), getValue(Arg1),
8112                                 MachinePointerInfo(Arg0),
8113                                 MachinePointerInfo(Arg1));
8114   if (Res.first.getNode()) {
8115     processIntegerCallValue(I, Res.first, true);
8116     PendingLoads.push_back(Res.second);
8117     return true;
8118   }
8119 
8120   return false;
8121 }
8122 
8123 /// See if we can lower a strlen call into an optimized form.  If so, return
8124 /// true and lower it, otherwise return false and it will be lowered like a
8125 /// normal call.
8126 /// The caller already checked that \p I calls the appropriate LibFunc with a
8127 /// correct prototype.
8128 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8129   const Value *Arg0 = I.getArgOperand(0);
8130 
8131   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8132   std::pair<SDValue, SDValue> Res =
8133     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8134                                 getValue(Arg0), MachinePointerInfo(Arg0));
8135   if (Res.first.getNode()) {
8136     processIntegerCallValue(I, Res.first, false);
8137     PendingLoads.push_back(Res.second);
8138     return true;
8139   }
8140 
8141   return false;
8142 }
8143 
8144 /// See if we can lower a strnlen call into an optimized form.  If so, return
8145 /// true and lower it, otherwise return false and it will be lowered like a
8146 /// normal call.
8147 /// The caller already checked that \p I calls the appropriate LibFunc with a
8148 /// correct prototype.
8149 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8150   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8151 
8152   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8153   std::pair<SDValue, SDValue> Res =
8154     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8155                                  getValue(Arg0), getValue(Arg1),
8156                                  MachinePointerInfo(Arg0));
8157   if (Res.first.getNode()) {
8158     processIntegerCallValue(I, Res.first, false);
8159     PendingLoads.push_back(Res.second);
8160     return true;
8161   }
8162 
8163   return false;
8164 }
8165 
8166 /// See if we can lower a unary floating-point operation into an SDNode with
8167 /// the specified Opcode.  If so, return true and lower it, otherwise return
8168 /// false and it will be lowered like a normal call.
8169 /// The caller already checked that \p I calls the appropriate LibFunc with a
8170 /// correct prototype.
8171 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8172                                               unsigned Opcode) {
8173   // We already checked this call's prototype; verify it doesn't modify errno.
8174   if (!I.onlyReadsMemory())
8175     return false;
8176 
8177   SDNodeFlags Flags;
8178   Flags.copyFMF(cast<FPMathOperator>(I));
8179 
8180   SDValue Tmp = getValue(I.getArgOperand(0));
8181   setValue(&I,
8182            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8183   return true;
8184 }
8185 
8186 /// See if we can lower a binary floating-point operation into an SDNode with
8187 /// the specified Opcode. If so, return true and lower it. Otherwise return
8188 /// false, and it will be lowered like a normal call.
8189 /// The caller already checked that \p I calls the appropriate LibFunc with a
8190 /// correct prototype.
8191 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8192                                                unsigned Opcode) {
8193   // We already checked this call's prototype; verify it doesn't modify errno.
8194   if (!I.onlyReadsMemory())
8195     return false;
8196 
8197   SDNodeFlags Flags;
8198   Flags.copyFMF(cast<FPMathOperator>(I));
8199 
8200   SDValue Tmp0 = getValue(I.getArgOperand(0));
8201   SDValue Tmp1 = getValue(I.getArgOperand(1));
8202   EVT VT = Tmp0.getValueType();
8203   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8204   return true;
8205 }
8206 
8207 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8208   // Handle inline assembly differently.
8209   if (I.isInlineAsm()) {
8210     visitInlineAsm(I);
8211     return;
8212   }
8213 
8214   if (Function *F = I.getCalledFunction()) {
8215     diagnoseDontCall(I);
8216 
8217     if (F->isDeclaration()) {
8218       // Is this an LLVM intrinsic or a target-specific intrinsic?
8219       unsigned IID = F->getIntrinsicID();
8220       if (!IID)
8221         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8222           IID = II->getIntrinsicID(F);
8223 
8224       if (IID) {
8225         visitIntrinsicCall(I, IID);
8226         return;
8227       }
8228     }
8229 
8230     // Check for well-known libc/libm calls.  If the function is internal, it
8231     // can't be a library call.  Don't do the check if marked as nobuiltin for
8232     // some reason or the call site requires strict floating point semantics.
8233     LibFunc Func;
8234     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8235         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8236         LibInfo->hasOptimizedCodeGen(Func)) {
8237       switch (Func) {
8238       default: break;
8239       case LibFunc_bcmp:
8240         if (visitMemCmpBCmpCall(I))
8241           return;
8242         break;
8243       case LibFunc_copysign:
8244       case LibFunc_copysignf:
8245       case LibFunc_copysignl:
8246         // We already checked this call's prototype; verify it doesn't modify
8247         // errno.
8248         if (I.onlyReadsMemory()) {
8249           SDValue LHS = getValue(I.getArgOperand(0));
8250           SDValue RHS = getValue(I.getArgOperand(1));
8251           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8252                                    LHS.getValueType(), LHS, RHS));
8253           return;
8254         }
8255         break;
8256       case LibFunc_fabs:
8257       case LibFunc_fabsf:
8258       case LibFunc_fabsl:
8259         if (visitUnaryFloatCall(I, ISD::FABS))
8260           return;
8261         break;
8262       case LibFunc_fmin:
8263       case LibFunc_fminf:
8264       case LibFunc_fminl:
8265         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8266           return;
8267         break;
8268       case LibFunc_fmax:
8269       case LibFunc_fmaxf:
8270       case LibFunc_fmaxl:
8271         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8272           return;
8273         break;
8274       case LibFunc_sin:
8275       case LibFunc_sinf:
8276       case LibFunc_sinl:
8277         if (visitUnaryFloatCall(I, ISD::FSIN))
8278           return;
8279         break;
8280       case LibFunc_cos:
8281       case LibFunc_cosf:
8282       case LibFunc_cosl:
8283         if (visitUnaryFloatCall(I, ISD::FCOS))
8284           return;
8285         break;
8286       case LibFunc_sqrt:
8287       case LibFunc_sqrtf:
8288       case LibFunc_sqrtl:
8289       case LibFunc_sqrt_finite:
8290       case LibFunc_sqrtf_finite:
8291       case LibFunc_sqrtl_finite:
8292         if (visitUnaryFloatCall(I, ISD::FSQRT))
8293           return;
8294         break;
8295       case LibFunc_floor:
8296       case LibFunc_floorf:
8297       case LibFunc_floorl:
8298         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8299           return;
8300         break;
8301       case LibFunc_nearbyint:
8302       case LibFunc_nearbyintf:
8303       case LibFunc_nearbyintl:
8304         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8305           return;
8306         break;
8307       case LibFunc_ceil:
8308       case LibFunc_ceilf:
8309       case LibFunc_ceill:
8310         if (visitUnaryFloatCall(I, ISD::FCEIL))
8311           return;
8312         break;
8313       case LibFunc_rint:
8314       case LibFunc_rintf:
8315       case LibFunc_rintl:
8316         if (visitUnaryFloatCall(I, ISD::FRINT))
8317           return;
8318         break;
8319       case LibFunc_round:
8320       case LibFunc_roundf:
8321       case LibFunc_roundl:
8322         if (visitUnaryFloatCall(I, ISD::FROUND))
8323           return;
8324         break;
8325       case LibFunc_trunc:
8326       case LibFunc_truncf:
8327       case LibFunc_truncl:
8328         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8329           return;
8330         break;
8331       case LibFunc_log2:
8332       case LibFunc_log2f:
8333       case LibFunc_log2l:
8334         if (visitUnaryFloatCall(I, ISD::FLOG2))
8335           return;
8336         break;
8337       case LibFunc_exp2:
8338       case LibFunc_exp2f:
8339       case LibFunc_exp2l:
8340         if (visitUnaryFloatCall(I, ISD::FEXP2))
8341           return;
8342         break;
8343       case LibFunc_memcmp:
8344         if (visitMemCmpBCmpCall(I))
8345           return;
8346         break;
8347       case LibFunc_mempcpy:
8348         if (visitMemPCpyCall(I))
8349           return;
8350         break;
8351       case LibFunc_memchr:
8352         if (visitMemChrCall(I))
8353           return;
8354         break;
8355       case LibFunc_strcpy:
8356         if (visitStrCpyCall(I, false))
8357           return;
8358         break;
8359       case LibFunc_stpcpy:
8360         if (visitStrCpyCall(I, true))
8361           return;
8362         break;
8363       case LibFunc_strcmp:
8364         if (visitStrCmpCall(I))
8365           return;
8366         break;
8367       case LibFunc_strlen:
8368         if (visitStrLenCall(I))
8369           return;
8370         break;
8371       case LibFunc_strnlen:
8372         if (visitStrNLenCall(I))
8373           return;
8374         break;
8375       }
8376     }
8377   }
8378 
8379   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8380   // have to do anything here to lower funclet bundles.
8381   // CFGuardTarget bundles are lowered in LowerCallTo.
8382   assert(!I.hasOperandBundlesOtherThan(
8383              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8384               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8385               LLVMContext::OB_clang_arc_attachedcall}) &&
8386          "Cannot lower calls with arbitrary operand bundles!");
8387 
8388   SDValue Callee = getValue(I.getCalledOperand());
8389 
8390   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8391     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8392   else
8393     // Check if we can potentially perform a tail call. More detailed checking
8394     // is be done within LowerCallTo, after more information about the call is
8395     // known.
8396     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8397 }
8398 
8399 namespace {
8400 
8401 /// AsmOperandInfo - This contains information for each constraint that we are
8402 /// lowering.
8403 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8404 public:
8405   /// CallOperand - If this is the result output operand or a clobber
8406   /// this is null, otherwise it is the incoming operand to the CallInst.
8407   /// This gets modified as the asm is processed.
8408   SDValue CallOperand;
8409 
8410   /// AssignedRegs - If this is a register or register class operand, this
8411   /// contains the set of register corresponding to the operand.
8412   RegsForValue AssignedRegs;
8413 
8414   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8415     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8416   }
8417 
8418   /// Whether or not this operand accesses memory
8419   bool hasMemory(const TargetLowering &TLI) const {
8420     // Indirect operand accesses access memory.
8421     if (isIndirect)
8422       return true;
8423 
8424     for (const auto &Code : Codes)
8425       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8426         return true;
8427 
8428     return false;
8429   }
8430 };
8431 
8432 
8433 } // end anonymous namespace
8434 
8435 /// Make sure that the output operand \p OpInfo and its corresponding input
8436 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8437 /// out).
8438 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8439                                SDISelAsmOperandInfo &MatchingOpInfo,
8440                                SelectionDAG &DAG) {
8441   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8442     return;
8443 
8444   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8445   const auto &TLI = DAG.getTargetLoweringInfo();
8446 
8447   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8448       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8449                                        OpInfo.ConstraintVT);
8450   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8451       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8452                                        MatchingOpInfo.ConstraintVT);
8453   if ((OpInfo.ConstraintVT.isInteger() !=
8454        MatchingOpInfo.ConstraintVT.isInteger()) ||
8455       (MatchRC.second != InputRC.second)) {
8456     // FIXME: error out in a more elegant fashion
8457     report_fatal_error("Unsupported asm: input constraint"
8458                        " with a matching output constraint of"
8459                        " incompatible type!");
8460   }
8461   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8462 }
8463 
8464 /// Get a direct memory input to behave well as an indirect operand.
8465 /// This may introduce stores, hence the need for a \p Chain.
8466 /// \return The (possibly updated) chain.
8467 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8468                                         SDISelAsmOperandInfo &OpInfo,
8469                                         SelectionDAG &DAG) {
8470   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8471 
8472   // If we don't have an indirect input, put it in the constpool if we can,
8473   // otherwise spill it to a stack slot.
8474   // TODO: This isn't quite right. We need to handle these according to
8475   // the addressing mode that the constraint wants. Also, this may take
8476   // an additional register for the computation and we don't want that
8477   // either.
8478 
8479   // If the operand is a float, integer, or vector constant, spill to a
8480   // constant pool entry to get its address.
8481   const Value *OpVal = OpInfo.CallOperandVal;
8482   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8483       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8484     OpInfo.CallOperand = DAG.getConstantPool(
8485         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8486     return Chain;
8487   }
8488 
8489   // Otherwise, create a stack slot and emit a store to it before the asm.
8490   Type *Ty = OpVal->getType();
8491   auto &DL = DAG.getDataLayout();
8492   uint64_t TySize = DL.getTypeAllocSize(Ty);
8493   MachineFunction &MF = DAG.getMachineFunction();
8494   int SSFI = MF.getFrameInfo().CreateStackObject(
8495       TySize, DL.getPrefTypeAlign(Ty), false);
8496   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8497   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8498                             MachinePointerInfo::getFixedStack(MF, SSFI),
8499                             TLI.getMemValueType(DL, Ty));
8500   OpInfo.CallOperand = StackSlot;
8501 
8502   return Chain;
8503 }
8504 
8505 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8506 /// specified operand.  We prefer to assign virtual registers, to allow the
8507 /// register allocator to handle the assignment process.  However, if the asm
8508 /// uses features that we can't model on machineinstrs, we have SDISel do the
8509 /// allocation.  This produces generally horrible, but correct, code.
8510 ///
8511 ///   OpInfo describes the operand
8512 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8513 static llvm::Optional<unsigned>
8514 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8515                      SDISelAsmOperandInfo &OpInfo,
8516                      SDISelAsmOperandInfo &RefOpInfo) {
8517   LLVMContext &Context = *DAG.getContext();
8518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8519 
8520   MachineFunction &MF = DAG.getMachineFunction();
8521   SmallVector<unsigned, 4> Regs;
8522   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8523 
8524   // No work to do for memory/address operands.
8525   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8526       OpInfo.ConstraintType == TargetLowering::C_Address)
8527     return None;
8528 
8529   // If this is a constraint for a single physreg, or a constraint for a
8530   // register class, find it.
8531   unsigned AssignedReg;
8532   const TargetRegisterClass *RC;
8533   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8534       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8535   // RC is unset only on failure. Return immediately.
8536   if (!RC)
8537     return None;
8538 
8539   // Get the actual register value type.  This is important, because the user
8540   // may have asked for (e.g.) the AX register in i32 type.  We need to
8541   // remember that AX is actually i16 to get the right extension.
8542   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8543 
8544   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8545     // If this is an FP operand in an integer register (or visa versa), or more
8546     // generally if the operand value disagrees with the register class we plan
8547     // to stick it in, fix the operand type.
8548     //
8549     // If this is an input value, the bitcast to the new type is done now.
8550     // Bitcast for output value is done at the end of visitInlineAsm().
8551     if ((OpInfo.Type == InlineAsm::isOutput ||
8552          OpInfo.Type == InlineAsm::isInput) &&
8553         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8554       // Try to convert to the first EVT that the reg class contains.  If the
8555       // types are identical size, use a bitcast to convert (e.g. two differing
8556       // vector types).  Note: output bitcast is done at the end of
8557       // visitInlineAsm().
8558       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8559         // Exclude indirect inputs while they are unsupported because the code
8560         // to perform the load is missing and thus OpInfo.CallOperand still
8561         // refers to the input address rather than the pointed-to value.
8562         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8563           OpInfo.CallOperand =
8564               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8565         OpInfo.ConstraintVT = RegVT;
8566         // If the operand is an FP value and we want it in integer registers,
8567         // use the corresponding integer type. This turns an f64 value into
8568         // i64, which can be passed with two i32 values on a 32-bit machine.
8569       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8570         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8571         if (OpInfo.Type == InlineAsm::isInput)
8572           OpInfo.CallOperand =
8573               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8574         OpInfo.ConstraintVT = VT;
8575       }
8576     }
8577   }
8578 
8579   // No need to allocate a matching input constraint since the constraint it's
8580   // matching to has already been allocated.
8581   if (OpInfo.isMatchingInputConstraint())
8582     return None;
8583 
8584   EVT ValueVT = OpInfo.ConstraintVT;
8585   if (OpInfo.ConstraintVT == MVT::Other)
8586     ValueVT = RegVT;
8587 
8588   // Initialize NumRegs.
8589   unsigned NumRegs = 1;
8590   if (OpInfo.ConstraintVT != MVT::Other)
8591     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8592 
8593   // If this is a constraint for a specific physical register, like {r17},
8594   // assign it now.
8595 
8596   // If this associated to a specific register, initialize iterator to correct
8597   // place. If virtual, make sure we have enough registers
8598 
8599   // Initialize iterator if necessary
8600   TargetRegisterClass::iterator I = RC->begin();
8601   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8602 
8603   // Do not check for single registers.
8604   if (AssignedReg) {
8605     I = std::find(I, RC->end(), AssignedReg);
8606     if (I == RC->end()) {
8607       // RC does not contain the selected register, which indicates a
8608       // mismatch between the register and the required type/bitwidth.
8609       return {AssignedReg};
8610     }
8611   }
8612 
8613   for (; NumRegs; --NumRegs, ++I) {
8614     assert(I != RC->end() && "Ran out of registers to allocate!");
8615     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8616     Regs.push_back(R);
8617   }
8618 
8619   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8620   return None;
8621 }
8622 
8623 static unsigned
8624 findMatchingInlineAsmOperand(unsigned OperandNo,
8625                              const std::vector<SDValue> &AsmNodeOperands) {
8626   // Scan until we find the definition we already emitted of this operand.
8627   unsigned CurOp = InlineAsm::Op_FirstOperand;
8628   for (; OperandNo; --OperandNo) {
8629     // Advance to the next operand.
8630     unsigned OpFlag =
8631         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8632     assert((InlineAsm::isRegDefKind(OpFlag) ||
8633             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8634             InlineAsm::isMemKind(OpFlag)) &&
8635            "Skipped past definitions?");
8636     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8637   }
8638   return CurOp;
8639 }
8640 
8641 namespace {
8642 
8643 class ExtraFlags {
8644   unsigned Flags = 0;
8645 
8646 public:
8647   explicit ExtraFlags(const CallBase &Call) {
8648     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8649     if (IA->hasSideEffects())
8650       Flags |= InlineAsm::Extra_HasSideEffects;
8651     if (IA->isAlignStack())
8652       Flags |= InlineAsm::Extra_IsAlignStack;
8653     if (Call.isConvergent())
8654       Flags |= InlineAsm::Extra_IsConvergent;
8655     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8656   }
8657 
8658   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8659     // Ideally, we would only check against memory constraints.  However, the
8660     // meaning of an Other constraint can be target-specific and we can't easily
8661     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8662     // for Other constraints as well.
8663     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8664         OpInfo.ConstraintType == TargetLowering::C_Other) {
8665       if (OpInfo.Type == InlineAsm::isInput)
8666         Flags |= InlineAsm::Extra_MayLoad;
8667       else if (OpInfo.Type == InlineAsm::isOutput)
8668         Flags |= InlineAsm::Extra_MayStore;
8669       else if (OpInfo.Type == InlineAsm::isClobber)
8670         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8671     }
8672   }
8673 
8674   unsigned get() const { return Flags; }
8675 };
8676 
8677 } // end anonymous namespace
8678 
8679 /// visitInlineAsm - Handle a call to an InlineAsm object.
8680 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8681                                          const BasicBlock *EHPadBB) {
8682   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8683 
8684   /// ConstraintOperands - Information about all of the constraints.
8685   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8686 
8687   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8688   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8689       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8690 
8691   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8692   // AsmDialect, MayLoad, MayStore).
8693   bool HasSideEffect = IA->hasSideEffects();
8694   ExtraFlags ExtraInfo(Call);
8695 
8696   for (auto &T : TargetConstraints) {
8697     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8698     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8699 
8700     if (OpInfo.CallOperandVal)
8701       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8702 
8703     if (!HasSideEffect)
8704       HasSideEffect = OpInfo.hasMemory(TLI);
8705 
8706     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8707     // FIXME: Could we compute this on OpInfo rather than T?
8708 
8709     // Compute the constraint code and ConstraintType to use.
8710     TLI.ComputeConstraintToUse(T, SDValue());
8711 
8712     if (T.ConstraintType == TargetLowering::C_Immediate &&
8713         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8714       // We've delayed emitting a diagnostic like the "n" constraint because
8715       // inlining could cause an integer showing up.
8716       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8717                                           "' expects an integer constant "
8718                                           "expression");
8719 
8720     ExtraInfo.update(T);
8721   }
8722 
8723   // We won't need to flush pending loads if this asm doesn't touch
8724   // memory and is nonvolatile.
8725   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8726 
8727   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8728   if (EmitEHLabels) {
8729     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8730   }
8731   bool IsCallBr = isa<CallBrInst>(Call);
8732 
8733   if (IsCallBr || EmitEHLabels) {
8734     // If this is a callbr or invoke we need to flush pending exports since
8735     // inlineasm_br and invoke are terminators.
8736     // We need to do this before nodes are glued to the inlineasm_br node.
8737     Chain = getControlRoot();
8738   }
8739 
8740   MCSymbol *BeginLabel = nullptr;
8741   if (EmitEHLabels) {
8742     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8743   }
8744 
8745   // Second pass over the constraints: compute which constraint option to use.
8746   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8747     // If this is an output operand with a matching input operand, look up the
8748     // matching input. If their types mismatch, e.g. one is an integer, the
8749     // other is floating point, or their sizes are different, flag it as an
8750     // error.
8751     if (OpInfo.hasMatchingInput()) {
8752       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8753       patchMatchingInput(OpInfo, Input, DAG);
8754     }
8755 
8756     // Compute the constraint code and ConstraintType to use.
8757     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8758 
8759     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8760          OpInfo.Type == InlineAsm::isClobber) ||
8761         OpInfo.ConstraintType == TargetLowering::C_Address)
8762       continue;
8763 
8764     // If this is a memory input, and if the operand is not indirect, do what we
8765     // need to provide an address for the memory input.
8766     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8767         !OpInfo.isIndirect) {
8768       assert((OpInfo.isMultipleAlternative ||
8769               (OpInfo.Type == InlineAsm::isInput)) &&
8770              "Can only indirectify direct input operands!");
8771 
8772       // Memory operands really want the address of the value.
8773       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8774 
8775       // There is no longer a Value* corresponding to this operand.
8776       OpInfo.CallOperandVal = nullptr;
8777 
8778       // It is now an indirect operand.
8779       OpInfo.isIndirect = true;
8780     }
8781 
8782   }
8783 
8784   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8785   std::vector<SDValue> AsmNodeOperands;
8786   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8787   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8788       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8789 
8790   // If we have a !srcloc metadata node associated with it, we want to attach
8791   // this to the ultimately generated inline asm machineinstr.  To do this, we
8792   // pass in the third operand as this (potentially null) inline asm MDNode.
8793   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8794   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8795 
8796   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8797   // bits as operand 3.
8798   AsmNodeOperands.push_back(DAG.getTargetConstant(
8799       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8800 
8801   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8802   // this, assign virtual and physical registers for inputs and otput.
8803   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8804     // Assign Registers.
8805     SDISelAsmOperandInfo &RefOpInfo =
8806         OpInfo.isMatchingInputConstraint()
8807             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8808             : OpInfo;
8809     const auto RegError =
8810         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8811     if (RegError) {
8812       const MachineFunction &MF = DAG.getMachineFunction();
8813       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8814       const char *RegName = TRI.getName(RegError.value());
8815       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8816                                    "' allocated for constraint '" +
8817                                    Twine(OpInfo.ConstraintCode) +
8818                                    "' does not match required type");
8819       return;
8820     }
8821 
8822     auto DetectWriteToReservedRegister = [&]() {
8823       const MachineFunction &MF = DAG.getMachineFunction();
8824       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8825       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8826         if (Register::isPhysicalRegister(Reg) &&
8827             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8828           const char *RegName = TRI.getName(Reg);
8829           emitInlineAsmError(Call, "write to reserved register '" +
8830                                        Twine(RegName) + "'");
8831           return true;
8832         }
8833       }
8834       return false;
8835     };
8836     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8837             (OpInfo.Type == InlineAsm::isInput &&
8838              !OpInfo.isMatchingInputConstraint())) &&
8839            "Only address as input operand is allowed.");
8840 
8841     switch (OpInfo.Type) {
8842     case InlineAsm::isOutput:
8843       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8844         unsigned ConstraintID =
8845             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8846         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8847                "Failed to convert memory constraint code to constraint id.");
8848 
8849         // Add information to the INLINEASM node to know about this output.
8850         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8851         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8852         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8853                                                         MVT::i32));
8854         AsmNodeOperands.push_back(OpInfo.CallOperand);
8855       } else {
8856         // Otherwise, this outputs to a register (directly for C_Register /
8857         // C_RegisterClass, and a target-defined fashion for
8858         // C_Immediate/C_Other). Find a register that we can use.
8859         if (OpInfo.AssignedRegs.Regs.empty()) {
8860           emitInlineAsmError(
8861               Call, "couldn't allocate output register for constraint '" +
8862                         Twine(OpInfo.ConstraintCode) + "'");
8863           return;
8864         }
8865 
8866         if (DetectWriteToReservedRegister())
8867           return;
8868 
8869         // Add information to the INLINEASM node to know that this register is
8870         // set.
8871         OpInfo.AssignedRegs.AddInlineAsmOperands(
8872             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8873                                   : InlineAsm::Kind_RegDef,
8874             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8875       }
8876       break;
8877 
8878     case InlineAsm::isInput:
8879     case InlineAsm::isLabel: {
8880       SDValue InOperandVal = OpInfo.CallOperand;
8881 
8882       if (OpInfo.isMatchingInputConstraint()) {
8883         // If this is required to match an output register we have already set,
8884         // just use its register.
8885         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8886                                                   AsmNodeOperands);
8887         unsigned OpFlag =
8888           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8889         if (InlineAsm::isRegDefKind(OpFlag) ||
8890             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8891           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8892           if (OpInfo.isIndirect) {
8893             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8894             emitInlineAsmError(Call, "inline asm not supported yet: "
8895                                      "don't know how to handle tied "
8896                                      "indirect register inputs");
8897             return;
8898           }
8899 
8900           SmallVector<unsigned, 4> Regs;
8901           MachineFunction &MF = DAG.getMachineFunction();
8902           MachineRegisterInfo &MRI = MF.getRegInfo();
8903           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8904           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8905           Register TiedReg = R->getReg();
8906           MVT RegVT = R->getSimpleValueType(0);
8907           const TargetRegisterClass *RC =
8908               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8909               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8910                                       : TRI.getMinimalPhysRegClass(TiedReg);
8911           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8912           for (unsigned i = 0; i != NumRegs; ++i)
8913             Regs.push_back(MRI.createVirtualRegister(RC));
8914 
8915           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8916 
8917           SDLoc dl = getCurSDLoc();
8918           // Use the produced MatchedRegs object to
8919           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8920           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8921                                            true, OpInfo.getMatchedOperand(), dl,
8922                                            DAG, AsmNodeOperands);
8923           break;
8924         }
8925 
8926         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8927         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8928                "Unexpected number of operands");
8929         // Add information to the INLINEASM node to know about this input.
8930         // See InlineAsm.h isUseOperandTiedToDef.
8931         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8932         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8933                                                     OpInfo.getMatchedOperand());
8934         AsmNodeOperands.push_back(DAG.getTargetConstant(
8935             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8936         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8937         break;
8938       }
8939 
8940       // Treat indirect 'X' constraint as memory.
8941       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8942           OpInfo.isIndirect)
8943         OpInfo.ConstraintType = TargetLowering::C_Memory;
8944 
8945       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8946           OpInfo.ConstraintType == TargetLowering::C_Other) {
8947         std::vector<SDValue> Ops;
8948         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8949                                           Ops, DAG);
8950         if (Ops.empty()) {
8951           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8952             if (isa<ConstantSDNode>(InOperandVal)) {
8953               emitInlineAsmError(Call, "value out of range for constraint '" +
8954                                            Twine(OpInfo.ConstraintCode) + "'");
8955               return;
8956             }
8957 
8958           emitInlineAsmError(Call,
8959                              "invalid operand for inline asm constraint '" +
8960                                  Twine(OpInfo.ConstraintCode) + "'");
8961           return;
8962         }
8963 
8964         // Add information to the INLINEASM node to know about this input.
8965         unsigned ResOpType =
8966           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8967         AsmNodeOperands.push_back(DAG.getTargetConstant(
8968             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8969         llvm::append_range(AsmNodeOperands, Ops);
8970         break;
8971       }
8972 
8973       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8974           OpInfo.ConstraintType == TargetLowering::C_Address) {
8975         assert((OpInfo.isIndirect ||
8976                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
8977                "Operand must be indirect to be a mem!");
8978         assert(InOperandVal.getValueType() ==
8979                    TLI.getPointerTy(DAG.getDataLayout()) &&
8980                "Memory operands expect pointer values");
8981 
8982         unsigned ConstraintID =
8983             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8984         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8985                "Failed to convert memory constraint code to constraint id.");
8986 
8987         // Add information to the INLINEASM node to know about this input.
8988         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8989         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8990         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8991                                                         getCurSDLoc(),
8992                                                         MVT::i32));
8993         AsmNodeOperands.push_back(InOperandVal);
8994         break;
8995       }
8996 
8997       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8998               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8999              "Unknown constraint type!");
9000 
9001       // TODO: Support this.
9002       if (OpInfo.isIndirect) {
9003         emitInlineAsmError(
9004             Call, "Don't know how to handle indirect register inputs yet "
9005                   "for constraint '" +
9006                       Twine(OpInfo.ConstraintCode) + "'");
9007         return;
9008       }
9009 
9010       // Copy the input into the appropriate registers.
9011       if (OpInfo.AssignedRegs.Regs.empty()) {
9012         emitInlineAsmError(Call,
9013                            "couldn't allocate input reg for constraint '" +
9014                                Twine(OpInfo.ConstraintCode) + "'");
9015         return;
9016       }
9017 
9018       if (DetectWriteToReservedRegister())
9019         return;
9020 
9021       SDLoc dl = getCurSDLoc();
9022 
9023       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9024                                         &Call);
9025 
9026       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9027                                                dl, DAG, AsmNodeOperands);
9028       break;
9029     }
9030     case InlineAsm::isClobber:
9031       // Add the clobbered value to the operand list, so that the register
9032       // allocator is aware that the physreg got clobbered.
9033       if (!OpInfo.AssignedRegs.Regs.empty())
9034         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9035                                                  false, 0, getCurSDLoc(), DAG,
9036                                                  AsmNodeOperands);
9037       break;
9038     }
9039   }
9040 
9041   // Finish up input operands.  Set the input chain and add the flag last.
9042   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9043   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9044 
9045   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9046   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9047                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9048   Flag = Chain.getValue(1);
9049 
9050   // Do additional work to generate outputs.
9051 
9052   SmallVector<EVT, 1> ResultVTs;
9053   SmallVector<SDValue, 1> ResultValues;
9054   SmallVector<SDValue, 8> OutChains;
9055 
9056   llvm::Type *CallResultType = Call.getType();
9057   ArrayRef<Type *> ResultTypes;
9058   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9059     ResultTypes = StructResult->elements();
9060   else if (!CallResultType->isVoidTy())
9061     ResultTypes = makeArrayRef(CallResultType);
9062 
9063   auto CurResultType = ResultTypes.begin();
9064   auto handleRegAssign = [&](SDValue V) {
9065     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9066     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9067     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9068     ++CurResultType;
9069     // If the type of the inline asm call site return value is different but has
9070     // same size as the type of the asm output bitcast it.  One example of this
9071     // is for vectors with different width / number of elements.  This can
9072     // happen for register classes that can contain multiple different value
9073     // types.  The preg or vreg allocated may not have the same VT as was
9074     // expected.
9075     //
9076     // This can also happen for a return value that disagrees with the register
9077     // class it is put in, eg. a double in a general-purpose register on a
9078     // 32-bit machine.
9079     if (ResultVT != V.getValueType() &&
9080         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9081       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9082     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9083              V.getValueType().isInteger()) {
9084       // If a result value was tied to an input value, the computed result
9085       // may have a wider width than the expected result.  Extract the
9086       // relevant portion.
9087       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9088     }
9089     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9090     ResultVTs.push_back(ResultVT);
9091     ResultValues.push_back(V);
9092   };
9093 
9094   // Deal with output operands.
9095   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9096     if (OpInfo.Type == InlineAsm::isOutput) {
9097       SDValue Val;
9098       // Skip trivial output operands.
9099       if (OpInfo.AssignedRegs.Regs.empty())
9100         continue;
9101 
9102       switch (OpInfo.ConstraintType) {
9103       case TargetLowering::C_Register:
9104       case TargetLowering::C_RegisterClass:
9105         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9106                                                   Chain, &Flag, &Call);
9107         break;
9108       case TargetLowering::C_Immediate:
9109       case TargetLowering::C_Other:
9110         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9111                                               OpInfo, DAG);
9112         break;
9113       case TargetLowering::C_Memory:
9114         break; // Already handled.
9115       case TargetLowering::C_Address:
9116         break; // Silence warning.
9117       case TargetLowering::C_Unknown:
9118         assert(false && "Unexpected unknown constraint");
9119       }
9120 
9121       // Indirect output manifest as stores. Record output chains.
9122       if (OpInfo.isIndirect) {
9123         const Value *Ptr = OpInfo.CallOperandVal;
9124         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9125         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9126                                      MachinePointerInfo(Ptr));
9127         OutChains.push_back(Store);
9128       } else {
9129         // generate CopyFromRegs to associated registers.
9130         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9131         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9132           for (const SDValue &V : Val->op_values())
9133             handleRegAssign(V);
9134         } else
9135           handleRegAssign(Val);
9136       }
9137     }
9138   }
9139 
9140   // Set results.
9141   if (!ResultValues.empty()) {
9142     assert(CurResultType == ResultTypes.end() &&
9143            "Mismatch in number of ResultTypes");
9144     assert(ResultValues.size() == ResultTypes.size() &&
9145            "Mismatch in number of output operands in asm result");
9146 
9147     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9148                             DAG.getVTList(ResultVTs), ResultValues);
9149     setValue(&Call, V);
9150   }
9151 
9152   // Collect store chains.
9153   if (!OutChains.empty())
9154     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9155 
9156   if (EmitEHLabels) {
9157     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9158   }
9159 
9160   // Only Update Root if inline assembly has a memory effect.
9161   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9162       EmitEHLabels)
9163     DAG.setRoot(Chain);
9164 }
9165 
9166 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9167                                              const Twine &Message) {
9168   LLVMContext &Ctx = *DAG.getContext();
9169   Ctx.emitError(&Call, Message);
9170 
9171   // Make sure we leave the DAG in a valid state
9172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9173   SmallVector<EVT, 1> ValueVTs;
9174   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9175 
9176   if (ValueVTs.empty())
9177     return;
9178 
9179   SmallVector<SDValue, 1> Ops;
9180   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9181     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9182 
9183   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9184 }
9185 
9186 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9187   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9188                           MVT::Other, getRoot(),
9189                           getValue(I.getArgOperand(0)),
9190                           DAG.getSrcValue(I.getArgOperand(0))));
9191 }
9192 
9193 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9195   const DataLayout &DL = DAG.getDataLayout();
9196   SDValue V = DAG.getVAArg(
9197       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9198       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9199       DL.getABITypeAlign(I.getType()).value());
9200   DAG.setRoot(V.getValue(1));
9201 
9202   if (I.getType()->isPointerTy())
9203     V = DAG.getPtrExtOrTrunc(
9204         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9205   setValue(&I, V);
9206 }
9207 
9208 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9209   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9210                           MVT::Other, getRoot(),
9211                           getValue(I.getArgOperand(0)),
9212                           DAG.getSrcValue(I.getArgOperand(0))));
9213 }
9214 
9215 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9216   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9217                           MVT::Other, getRoot(),
9218                           getValue(I.getArgOperand(0)),
9219                           getValue(I.getArgOperand(1)),
9220                           DAG.getSrcValue(I.getArgOperand(0)),
9221                           DAG.getSrcValue(I.getArgOperand(1))));
9222 }
9223 
9224 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9225                                                     const Instruction &I,
9226                                                     SDValue Op) {
9227   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9228   if (!Range)
9229     return Op;
9230 
9231   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9232   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9233     return Op;
9234 
9235   APInt Lo = CR.getUnsignedMin();
9236   if (!Lo.isMinValue())
9237     return Op;
9238 
9239   APInt Hi = CR.getUnsignedMax();
9240   unsigned Bits = std::max(Hi.getActiveBits(),
9241                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9242 
9243   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9244 
9245   SDLoc SL = getCurSDLoc();
9246 
9247   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9248                              DAG.getValueType(SmallVT));
9249   unsigned NumVals = Op.getNode()->getNumValues();
9250   if (NumVals == 1)
9251     return ZExt;
9252 
9253   SmallVector<SDValue, 4> Ops;
9254 
9255   Ops.push_back(ZExt);
9256   for (unsigned I = 1; I != NumVals; ++I)
9257     Ops.push_back(Op.getValue(I));
9258 
9259   return DAG.getMergeValues(Ops, SL);
9260 }
9261 
9262 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9263 /// the call being lowered.
9264 ///
9265 /// This is a helper for lowering intrinsics that follow a target calling
9266 /// convention or require stack pointer adjustment. Only a subset of the
9267 /// intrinsic's operands need to participate in the calling convention.
9268 void SelectionDAGBuilder::populateCallLoweringInfo(
9269     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9270     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9271     bool IsPatchPoint) {
9272   TargetLowering::ArgListTy Args;
9273   Args.reserve(NumArgs);
9274 
9275   // Populate the argument list.
9276   // Attributes for args start at offset 1, after the return attribute.
9277   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9278        ArgI != ArgE; ++ArgI) {
9279     const Value *V = Call->getOperand(ArgI);
9280 
9281     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9282 
9283     TargetLowering::ArgListEntry Entry;
9284     Entry.Node = getValue(V);
9285     Entry.Ty = V->getType();
9286     Entry.setAttributes(Call, ArgI);
9287     Args.push_back(Entry);
9288   }
9289 
9290   CLI.setDebugLoc(getCurSDLoc())
9291       .setChain(getRoot())
9292       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9293       .setDiscardResult(Call->use_empty())
9294       .setIsPatchPoint(IsPatchPoint)
9295       .setIsPreallocated(
9296           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9297 }
9298 
9299 /// Add a stack map intrinsic call's live variable operands to a stackmap
9300 /// or patchpoint target node's operand list.
9301 ///
9302 /// Constants are converted to TargetConstants purely as an optimization to
9303 /// avoid constant materialization and register allocation.
9304 ///
9305 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9306 /// generate addess computation nodes, and so FinalizeISel can convert the
9307 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9308 /// address materialization and register allocation, but may also be required
9309 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9310 /// alloca in the entry block, then the runtime may assume that the alloca's
9311 /// StackMap location can be read immediately after compilation and that the
9312 /// location is valid at any point during execution (this is similar to the
9313 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9314 /// only available in a register, then the runtime would need to trap when
9315 /// execution reaches the StackMap in order to read the alloca's location.
9316 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9317                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9318                                 SelectionDAGBuilder &Builder) {
9319   SelectionDAG &DAG = Builder.DAG;
9320   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9321     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9322 
9323     // Things on the stack are pointer-typed, meaning that they are already
9324     // legal and can be emitted directly to target nodes.
9325     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9326       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9327     } else {
9328       // Otherwise emit a target independent node to be legalised.
9329       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9330     }
9331   }
9332 }
9333 
9334 /// Lower llvm.experimental.stackmap.
9335 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9336   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9337   //                                  [live variables...])
9338 
9339   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9340 
9341   SDValue Chain, InFlag, Callee, NullPtr;
9342   SmallVector<SDValue, 32> Ops;
9343 
9344   SDLoc DL = getCurSDLoc();
9345   Callee = getValue(CI.getCalledOperand());
9346   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9347 
9348   // The stackmap intrinsic only records the live variables (the arguments
9349   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9350   // intrinsic, this won't be lowered to a function call. This means we don't
9351   // have to worry about calling conventions and target specific lowering code.
9352   // Instead we perform the call lowering right here.
9353   //
9354   // chain, flag = CALLSEQ_START(chain, 0, 0)
9355   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9356   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9357   //
9358   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9359   InFlag = Chain.getValue(1);
9360 
9361   // Add the STACKMAP operands, starting with DAG house-keeping.
9362   Ops.push_back(Chain);
9363   Ops.push_back(InFlag);
9364 
9365   // Add the <id>, <numShadowBytes> operands.
9366   //
9367   // These do not require legalisation, and can be emitted directly to target
9368   // constant nodes.
9369   SDValue ID = getValue(CI.getArgOperand(0));
9370   assert(ID.getValueType() == MVT::i64);
9371   SDValue IDConst = DAG.getTargetConstant(
9372       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9373   Ops.push_back(IDConst);
9374 
9375   SDValue Shad = getValue(CI.getArgOperand(1));
9376   assert(Shad.getValueType() == MVT::i32);
9377   SDValue ShadConst = DAG.getTargetConstant(
9378       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9379   Ops.push_back(ShadConst);
9380 
9381   // Add the live variables.
9382   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9383 
9384   // Create the STACKMAP node.
9385   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9386   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9387   InFlag = Chain.getValue(1);
9388 
9389   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9390 
9391   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9392 
9393   // Set the root to the target-lowered call chain.
9394   DAG.setRoot(Chain);
9395 
9396   // Inform the Frame Information that we have a stackmap in this function.
9397   FuncInfo.MF->getFrameInfo().setHasStackMap();
9398 }
9399 
9400 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9401 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9402                                           const BasicBlock *EHPadBB) {
9403   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9404   //                                                 i32 <numBytes>,
9405   //                                                 i8* <target>,
9406   //                                                 i32 <numArgs>,
9407   //                                                 [Args...],
9408   //                                                 [live variables...])
9409 
9410   CallingConv::ID CC = CB.getCallingConv();
9411   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9412   bool HasDef = !CB.getType()->isVoidTy();
9413   SDLoc dl = getCurSDLoc();
9414   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9415 
9416   // Handle immediate and symbolic callees.
9417   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9418     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9419                                    /*isTarget=*/true);
9420   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9421     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9422                                          SDLoc(SymbolicCallee),
9423                                          SymbolicCallee->getValueType(0));
9424 
9425   // Get the real number of arguments participating in the call <numArgs>
9426   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9427   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9428 
9429   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9430   // Intrinsics include all meta-operands up to but not including CC.
9431   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9432   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9433          "Not enough arguments provided to the patchpoint intrinsic");
9434 
9435   // For AnyRegCC the arguments are lowered later on manually.
9436   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9437   Type *ReturnTy =
9438       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9439 
9440   TargetLowering::CallLoweringInfo CLI(DAG);
9441   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9442                            ReturnTy, true);
9443   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9444 
9445   SDNode *CallEnd = Result.second.getNode();
9446   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9447     CallEnd = CallEnd->getOperand(0).getNode();
9448 
9449   /// Get a call instruction from the call sequence chain.
9450   /// Tail calls are not allowed.
9451   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9452          "Expected a callseq node.");
9453   SDNode *Call = CallEnd->getOperand(0).getNode();
9454   bool HasGlue = Call->getGluedNode();
9455 
9456   // Replace the target specific call node with the patchable intrinsic.
9457   SmallVector<SDValue, 8> Ops;
9458 
9459   // Push the chain.
9460   Ops.push_back(*(Call->op_begin()));
9461 
9462   // Optionally, push the glue (if any).
9463   if (HasGlue)
9464     Ops.push_back(*(Call->op_end() - 1));
9465 
9466   // Push the register mask info.
9467   if (HasGlue)
9468     Ops.push_back(*(Call->op_end() - 2));
9469   else
9470     Ops.push_back(*(Call->op_end() - 1));
9471 
9472   // Add the <id> and <numBytes> constants.
9473   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9474   Ops.push_back(DAG.getTargetConstant(
9475                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9476   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9477   Ops.push_back(DAG.getTargetConstant(
9478                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9479                   MVT::i32));
9480 
9481   // Add the callee.
9482   Ops.push_back(Callee);
9483 
9484   // Adjust <numArgs> to account for any arguments that have been passed on the
9485   // stack instead.
9486   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9487   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9488   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9489   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9490 
9491   // Add the calling convention
9492   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9493 
9494   // Add the arguments we omitted previously. The register allocator should
9495   // place these in any free register.
9496   if (IsAnyRegCC)
9497     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9498       Ops.push_back(getValue(CB.getArgOperand(i)));
9499 
9500   // Push the arguments from the call instruction.
9501   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9502   Ops.append(Call->op_begin() + 2, e);
9503 
9504   // Push live variables for the stack map.
9505   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9506 
9507   SDVTList NodeTys;
9508   if (IsAnyRegCC && HasDef) {
9509     // Create the return types based on the intrinsic definition
9510     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9511     SmallVector<EVT, 3> ValueVTs;
9512     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9513     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9514 
9515     // There is always a chain and a glue type at the end
9516     ValueVTs.push_back(MVT::Other);
9517     ValueVTs.push_back(MVT::Glue);
9518     NodeTys = DAG.getVTList(ValueVTs);
9519   } else
9520     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9521 
9522   // Replace the target specific call node with a PATCHPOINT node.
9523   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9524 
9525   // Update the NodeMap.
9526   if (HasDef) {
9527     if (IsAnyRegCC)
9528       setValue(&CB, SDValue(PPV.getNode(), 0));
9529     else
9530       setValue(&CB, Result.first);
9531   }
9532 
9533   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9534   // call sequence. Furthermore the location of the chain and glue can change
9535   // when the AnyReg calling convention is used and the intrinsic returns a
9536   // value.
9537   if (IsAnyRegCC && HasDef) {
9538     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9539     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9540     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9541   } else
9542     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9543   DAG.DeleteNode(Call);
9544 
9545   // Inform the Frame Information that we have a patchpoint in this function.
9546   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9547 }
9548 
9549 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9550                                             unsigned Intrinsic) {
9551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9552   SDValue Op1 = getValue(I.getArgOperand(0));
9553   SDValue Op2;
9554   if (I.arg_size() > 1)
9555     Op2 = getValue(I.getArgOperand(1));
9556   SDLoc dl = getCurSDLoc();
9557   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9558   SDValue Res;
9559   SDNodeFlags SDFlags;
9560   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9561     SDFlags.copyFMF(*FPMO);
9562 
9563   switch (Intrinsic) {
9564   case Intrinsic::vector_reduce_fadd:
9565     if (SDFlags.hasAllowReassociation())
9566       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9567                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9568                         SDFlags);
9569     else
9570       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9571     break;
9572   case Intrinsic::vector_reduce_fmul:
9573     if (SDFlags.hasAllowReassociation())
9574       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9575                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9576                         SDFlags);
9577     else
9578       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9579     break;
9580   case Intrinsic::vector_reduce_add:
9581     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9582     break;
9583   case Intrinsic::vector_reduce_mul:
9584     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9585     break;
9586   case Intrinsic::vector_reduce_and:
9587     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9588     break;
9589   case Intrinsic::vector_reduce_or:
9590     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9591     break;
9592   case Intrinsic::vector_reduce_xor:
9593     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9594     break;
9595   case Intrinsic::vector_reduce_smax:
9596     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9597     break;
9598   case Intrinsic::vector_reduce_smin:
9599     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9600     break;
9601   case Intrinsic::vector_reduce_umax:
9602     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9603     break;
9604   case Intrinsic::vector_reduce_umin:
9605     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9606     break;
9607   case Intrinsic::vector_reduce_fmax:
9608     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9609     break;
9610   case Intrinsic::vector_reduce_fmin:
9611     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9612     break;
9613   default:
9614     llvm_unreachable("Unhandled vector reduce intrinsic");
9615   }
9616   setValue(&I, Res);
9617 }
9618 
9619 /// Returns an AttributeList representing the attributes applied to the return
9620 /// value of the given call.
9621 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9622   SmallVector<Attribute::AttrKind, 2> Attrs;
9623   if (CLI.RetSExt)
9624     Attrs.push_back(Attribute::SExt);
9625   if (CLI.RetZExt)
9626     Attrs.push_back(Attribute::ZExt);
9627   if (CLI.IsInReg)
9628     Attrs.push_back(Attribute::InReg);
9629 
9630   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9631                             Attrs);
9632 }
9633 
9634 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9635 /// implementation, which just calls LowerCall.
9636 /// FIXME: When all targets are
9637 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9638 std::pair<SDValue, SDValue>
9639 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9640   // Handle the incoming return values from the call.
9641   CLI.Ins.clear();
9642   Type *OrigRetTy = CLI.RetTy;
9643   SmallVector<EVT, 4> RetTys;
9644   SmallVector<uint64_t, 4> Offsets;
9645   auto &DL = CLI.DAG.getDataLayout();
9646   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9647 
9648   if (CLI.IsPostTypeLegalization) {
9649     // If we are lowering a libcall after legalization, split the return type.
9650     SmallVector<EVT, 4> OldRetTys;
9651     SmallVector<uint64_t, 4> OldOffsets;
9652     RetTys.swap(OldRetTys);
9653     Offsets.swap(OldOffsets);
9654 
9655     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9656       EVT RetVT = OldRetTys[i];
9657       uint64_t Offset = OldOffsets[i];
9658       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9659       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9660       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9661       RetTys.append(NumRegs, RegisterVT);
9662       for (unsigned j = 0; j != NumRegs; ++j)
9663         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9664     }
9665   }
9666 
9667   SmallVector<ISD::OutputArg, 4> Outs;
9668   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9669 
9670   bool CanLowerReturn =
9671       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9672                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9673 
9674   SDValue DemoteStackSlot;
9675   int DemoteStackIdx = -100;
9676   if (!CanLowerReturn) {
9677     // FIXME: equivalent assert?
9678     // assert(!CS.hasInAllocaArgument() &&
9679     //        "sret demotion is incompatible with inalloca");
9680     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9681     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9682     MachineFunction &MF = CLI.DAG.getMachineFunction();
9683     DemoteStackIdx =
9684         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9685     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9686                                               DL.getAllocaAddrSpace());
9687 
9688     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9689     ArgListEntry Entry;
9690     Entry.Node = DemoteStackSlot;
9691     Entry.Ty = StackSlotPtrType;
9692     Entry.IsSExt = false;
9693     Entry.IsZExt = false;
9694     Entry.IsInReg = false;
9695     Entry.IsSRet = true;
9696     Entry.IsNest = false;
9697     Entry.IsByVal = false;
9698     Entry.IsByRef = false;
9699     Entry.IsReturned = false;
9700     Entry.IsSwiftSelf = false;
9701     Entry.IsSwiftAsync = false;
9702     Entry.IsSwiftError = false;
9703     Entry.IsCFGuardTarget = false;
9704     Entry.Alignment = Alignment;
9705     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9706     CLI.NumFixedArgs += 1;
9707     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9708 
9709     // sret demotion isn't compatible with tail-calls, since the sret argument
9710     // points into the callers stack frame.
9711     CLI.IsTailCall = false;
9712   } else {
9713     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9714         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9715     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9716       ISD::ArgFlagsTy Flags;
9717       if (NeedsRegBlock) {
9718         Flags.setInConsecutiveRegs();
9719         if (I == RetTys.size() - 1)
9720           Flags.setInConsecutiveRegsLast();
9721       }
9722       EVT VT = RetTys[I];
9723       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9724                                                      CLI.CallConv, VT);
9725       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9726                                                        CLI.CallConv, VT);
9727       for (unsigned i = 0; i != NumRegs; ++i) {
9728         ISD::InputArg MyFlags;
9729         MyFlags.Flags = Flags;
9730         MyFlags.VT = RegisterVT;
9731         MyFlags.ArgVT = VT;
9732         MyFlags.Used = CLI.IsReturnValueUsed;
9733         if (CLI.RetTy->isPointerTy()) {
9734           MyFlags.Flags.setPointer();
9735           MyFlags.Flags.setPointerAddrSpace(
9736               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9737         }
9738         if (CLI.RetSExt)
9739           MyFlags.Flags.setSExt();
9740         if (CLI.RetZExt)
9741           MyFlags.Flags.setZExt();
9742         if (CLI.IsInReg)
9743           MyFlags.Flags.setInReg();
9744         CLI.Ins.push_back(MyFlags);
9745       }
9746     }
9747   }
9748 
9749   // We push in swifterror return as the last element of CLI.Ins.
9750   ArgListTy &Args = CLI.getArgs();
9751   if (supportSwiftError()) {
9752     for (const ArgListEntry &Arg : Args) {
9753       if (Arg.IsSwiftError) {
9754         ISD::InputArg MyFlags;
9755         MyFlags.VT = getPointerTy(DL);
9756         MyFlags.ArgVT = EVT(getPointerTy(DL));
9757         MyFlags.Flags.setSwiftError();
9758         CLI.Ins.push_back(MyFlags);
9759       }
9760     }
9761   }
9762 
9763   // Handle all of the outgoing arguments.
9764   CLI.Outs.clear();
9765   CLI.OutVals.clear();
9766   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9767     SmallVector<EVT, 4> ValueVTs;
9768     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9769     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9770     Type *FinalType = Args[i].Ty;
9771     if (Args[i].IsByVal)
9772       FinalType = Args[i].IndirectType;
9773     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9774         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9775     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9776          ++Value) {
9777       EVT VT = ValueVTs[Value];
9778       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9779       SDValue Op = SDValue(Args[i].Node.getNode(),
9780                            Args[i].Node.getResNo() + Value);
9781       ISD::ArgFlagsTy Flags;
9782 
9783       // Certain targets (such as MIPS), may have a different ABI alignment
9784       // for a type depending on the context. Give the target a chance to
9785       // specify the alignment it wants.
9786       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9787       Flags.setOrigAlign(OriginalAlignment);
9788 
9789       if (Args[i].Ty->isPointerTy()) {
9790         Flags.setPointer();
9791         Flags.setPointerAddrSpace(
9792             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9793       }
9794       if (Args[i].IsZExt)
9795         Flags.setZExt();
9796       if (Args[i].IsSExt)
9797         Flags.setSExt();
9798       if (Args[i].IsInReg) {
9799         // If we are using vectorcall calling convention, a structure that is
9800         // passed InReg - is surely an HVA
9801         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9802             isa<StructType>(FinalType)) {
9803           // The first value of a structure is marked
9804           if (0 == Value)
9805             Flags.setHvaStart();
9806           Flags.setHva();
9807         }
9808         // Set InReg Flag
9809         Flags.setInReg();
9810       }
9811       if (Args[i].IsSRet)
9812         Flags.setSRet();
9813       if (Args[i].IsSwiftSelf)
9814         Flags.setSwiftSelf();
9815       if (Args[i].IsSwiftAsync)
9816         Flags.setSwiftAsync();
9817       if (Args[i].IsSwiftError)
9818         Flags.setSwiftError();
9819       if (Args[i].IsCFGuardTarget)
9820         Flags.setCFGuardTarget();
9821       if (Args[i].IsByVal)
9822         Flags.setByVal();
9823       if (Args[i].IsByRef)
9824         Flags.setByRef();
9825       if (Args[i].IsPreallocated) {
9826         Flags.setPreallocated();
9827         // Set the byval flag for CCAssignFn callbacks that don't know about
9828         // preallocated.  This way we can know how many bytes we should've
9829         // allocated and how many bytes a callee cleanup function will pop.  If
9830         // we port preallocated to more targets, we'll have to add custom
9831         // preallocated handling in the various CC lowering callbacks.
9832         Flags.setByVal();
9833       }
9834       if (Args[i].IsInAlloca) {
9835         Flags.setInAlloca();
9836         // Set the byval flag for CCAssignFn callbacks that don't know about
9837         // inalloca.  This way we can know how many bytes we should've allocated
9838         // and how many bytes a callee cleanup function will pop.  If we port
9839         // inalloca to more targets, we'll have to add custom inalloca handling
9840         // in the various CC lowering callbacks.
9841         Flags.setByVal();
9842       }
9843       Align MemAlign;
9844       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9845         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9846         Flags.setByValSize(FrameSize);
9847 
9848         // info is not there but there are cases it cannot get right.
9849         if (auto MA = Args[i].Alignment)
9850           MemAlign = *MA;
9851         else
9852           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9853       } else if (auto MA = Args[i].Alignment) {
9854         MemAlign = *MA;
9855       } else {
9856         MemAlign = OriginalAlignment;
9857       }
9858       Flags.setMemAlign(MemAlign);
9859       if (Args[i].IsNest)
9860         Flags.setNest();
9861       if (NeedsRegBlock)
9862         Flags.setInConsecutiveRegs();
9863 
9864       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9865                                                  CLI.CallConv, VT);
9866       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9867                                                         CLI.CallConv, VT);
9868       SmallVector<SDValue, 4> Parts(NumParts);
9869       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9870 
9871       if (Args[i].IsSExt)
9872         ExtendKind = ISD::SIGN_EXTEND;
9873       else if (Args[i].IsZExt)
9874         ExtendKind = ISD::ZERO_EXTEND;
9875 
9876       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9877       // for now.
9878       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9879           CanLowerReturn) {
9880         assert((CLI.RetTy == Args[i].Ty ||
9881                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9882                  CLI.RetTy->getPointerAddressSpace() ==
9883                      Args[i].Ty->getPointerAddressSpace())) &&
9884                RetTys.size() == NumValues && "unexpected use of 'returned'");
9885         // Before passing 'returned' to the target lowering code, ensure that
9886         // either the register MVT and the actual EVT are the same size or that
9887         // the return value and argument are extended in the same way; in these
9888         // cases it's safe to pass the argument register value unchanged as the
9889         // return register value (although it's at the target's option whether
9890         // to do so)
9891         // TODO: allow code generation to take advantage of partially preserved
9892         // registers rather than clobbering the entire register when the
9893         // parameter extension method is not compatible with the return
9894         // extension method
9895         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9896             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9897              CLI.RetZExt == Args[i].IsZExt))
9898           Flags.setReturned();
9899       }
9900 
9901       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9902                      CLI.CallConv, ExtendKind);
9903 
9904       for (unsigned j = 0; j != NumParts; ++j) {
9905         // if it isn't first piece, alignment must be 1
9906         // For scalable vectors the scalable part is currently handled
9907         // by individual targets, so we just use the known minimum size here.
9908         ISD::OutputArg MyFlags(
9909             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9910             i < CLI.NumFixedArgs, i,
9911             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9912         if (NumParts > 1 && j == 0)
9913           MyFlags.Flags.setSplit();
9914         else if (j != 0) {
9915           MyFlags.Flags.setOrigAlign(Align(1));
9916           if (j == NumParts - 1)
9917             MyFlags.Flags.setSplitEnd();
9918         }
9919 
9920         CLI.Outs.push_back(MyFlags);
9921         CLI.OutVals.push_back(Parts[j]);
9922       }
9923 
9924       if (NeedsRegBlock && Value == NumValues - 1)
9925         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9926     }
9927   }
9928 
9929   SmallVector<SDValue, 4> InVals;
9930   CLI.Chain = LowerCall(CLI, InVals);
9931 
9932   // Update CLI.InVals to use outside of this function.
9933   CLI.InVals = InVals;
9934 
9935   // Verify that the target's LowerCall behaved as expected.
9936   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9937          "LowerCall didn't return a valid chain!");
9938   assert((!CLI.IsTailCall || InVals.empty()) &&
9939          "LowerCall emitted a return value for a tail call!");
9940   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9941          "LowerCall didn't emit the correct number of values!");
9942 
9943   // For a tail call, the return value is merely live-out and there aren't
9944   // any nodes in the DAG representing it. Return a special value to
9945   // indicate that a tail call has been emitted and no more Instructions
9946   // should be processed in the current block.
9947   if (CLI.IsTailCall) {
9948     CLI.DAG.setRoot(CLI.Chain);
9949     return std::make_pair(SDValue(), SDValue());
9950   }
9951 
9952 #ifndef NDEBUG
9953   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9954     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9955     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9956            "LowerCall emitted a value with the wrong type!");
9957   }
9958 #endif
9959 
9960   SmallVector<SDValue, 4> ReturnValues;
9961   if (!CanLowerReturn) {
9962     // The instruction result is the result of loading from the
9963     // hidden sret parameter.
9964     SmallVector<EVT, 1> PVTs;
9965     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9966 
9967     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9968     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9969     EVT PtrVT = PVTs[0];
9970 
9971     unsigned NumValues = RetTys.size();
9972     ReturnValues.resize(NumValues);
9973     SmallVector<SDValue, 4> Chains(NumValues);
9974 
9975     // An aggregate return value cannot wrap around the address space, so
9976     // offsets to its parts don't wrap either.
9977     SDNodeFlags Flags;
9978     Flags.setNoUnsignedWrap(true);
9979 
9980     MachineFunction &MF = CLI.DAG.getMachineFunction();
9981     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9982     for (unsigned i = 0; i < NumValues; ++i) {
9983       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9984                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9985                                                         PtrVT), Flags);
9986       SDValue L = CLI.DAG.getLoad(
9987           RetTys[i], CLI.DL, CLI.Chain, Add,
9988           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9989                                             DemoteStackIdx, Offsets[i]),
9990           HiddenSRetAlign);
9991       ReturnValues[i] = L;
9992       Chains[i] = L.getValue(1);
9993     }
9994 
9995     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9996   } else {
9997     // Collect the legal value parts into potentially illegal values
9998     // that correspond to the original function's return values.
9999     Optional<ISD::NodeType> AssertOp;
10000     if (CLI.RetSExt)
10001       AssertOp = ISD::AssertSext;
10002     else if (CLI.RetZExt)
10003       AssertOp = ISD::AssertZext;
10004     unsigned CurReg = 0;
10005     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10006       EVT VT = RetTys[I];
10007       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10008                                                      CLI.CallConv, VT);
10009       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10010                                                        CLI.CallConv, VT);
10011 
10012       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10013                                               NumRegs, RegisterVT, VT, nullptr,
10014                                               CLI.CallConv, AssertOp));
10015       CurReg += NumRegs;
10016     }
10017 
10018     // For a function returning void, there is no return value. We can't create
10019     // such a node, so we just return a null return value in that case. In
10020     // that case, nothing will actually look at the value.
10021     if (ReturnValues.empty())
10022       return std::make_pair(SDValue(), CLI.Chain);
10023   }
10024 
10025   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10026                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10027   return std::make_pair(Res, CLI.Chain);
10028 }
10029 
10030 /// Places new result values for the node in Results (their number
10031 /// and types must exactly match those of the original return values of
10032 /// the node), or leaves Results empty, which indicates that the node is not
10033 /// to be custom lowered after all.
10034 void TargetLowering::LowerOperationWrapper(SDNode *N,
10035                                            SmallVectorImpl<SDValue> &Results,
10036                                            SelectionDAG &DAG) const {
10037   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10038 
10039   if (!Res.getNode())
10040     return;
10041 
10042   // If the original node has one result, take the return value from
10043   // LowerOperation as is. It might not be result number 0.
10044   if (N->getNumValues() == 1) {
10045     Results.push_back(Res);
10046     return;
10047   }
10048 
10049   // If the original node has multiple results, then the return node should
10050   // have the same number of results.
10051   assert((N->getNumValues() == Res->getNumValues()) &&
10052       "Lowering returned the wrong number of results!");
10053 
10054   // Places new result values base on N result number.
10055   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10056     Results.push_back(Res.getValue(I));
10057 }
10058 
10059 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10060   llvm_unreachable("LowerOperation not implemented for this target!");
10061 }
10062 
10063 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10064                                                      unsigned Reg,
10065                                                      ISD::NodeType ExtendType) {
10066   SDValue Op = getNonRegisterValue(V);
10067   assert((Op.getOpcode() != ISD::CopyFromReg ||
10068           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10069          "Copy from a reg to the same reg!");
10070   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10071 
10072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10073   // If this is an InlineAsm we have to match the registers required, not the
10074   // notional registers required by the type.
10075 
10076   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10077                    None); // This is not an ABI copy.
10078   SDValue Chain = DAG.getEntryNode();
10079 
10080   if (ExtendType == ISD::ANY_EXTEND) {
10081     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10082     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10083       ExtendType = PreferredExtendIt->second;
10084   }
10085   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10086   PendingExports.push_back(Chain);
10087 }
10088 
10089 #include "llvm/CodeGen/SelectionDAGISel.h"
10090 
10091 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10092 /// entry block, return true.  This includes arguments used by switches, since
10093 /// the switch may expand into multiple basic blocks.
10094 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10095   // With FastISel active, we may be splitting blocks, so force creation
10096   // of virtual registers for all non-dead arguments.
10097   if (FastISel)
10098     return A->use_empty();
10099 
10100   const BasicBlock &Entry = A->getParent()->front();
10101   for (const User *U : A->users())
10102     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10103       return false;  // Use not in entry block.
10104 
10105   return true;
10106 }
10107 
10108 using ArgCopyElisionMapTy =
10109     DenseMap<const Argument *,
10110              std::pair<const AllocaInst *, const StoreInst *>>;
10111 
10112 /// Scan the entry block of the function in FuncInfo for arguments that look
10113 /// like copies into a local alloca. Record any copied arguments in
10114 /// ArgCopyElisionCandidates.
10115 static void
10116 findArgumentCopyElisionCandidates(const DataLayout &DL,
10117                                   FunctionLoweringInfo *FuncInfo,
10118                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10119   // Record the state of every static alloca used in the entry block. Argument
10120   // allocas are all used in the entry block, so we need approximately as many
10121   // entries as we have arguments.
10122   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10123   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10124   unsigned NumArgs = FuncInfo->Fn->arg_size();
10125   StaticAllocas.reserve(NumArgs * 2);
10126 
10127   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10128     if (!V)
10129       return nullptr;
10130     V = V->stripPointerCasts();
10131     const auto *AI = dyn_cast<AllocaInst>(V);
10132     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10133       return nullptr;
10134     auto Iter = StaticAllocas.insert({AI, Unknown});
10135     return &Iter.first->second;
10136   };
10137 
10138   // Look for stores of arguments to static allocas. Look through bitcasts and
10139   // GEPs to handle type coercions, as long as the alloca is fully initialized
10140   // by the store. Any non-store use of an alloca escapes it and any subsequent
10141   // unanalyzed store might write it.
10142   // FIXME: Handle structs initialized with multiple stores.
10143   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10144     // Look for stores, and handle non-store uses conservatively.
10145     const auto *SI = dyn_cast<StoreInst>(&I);
10146     if (!SI) {
10147       // We will look through cast uses, so ignore them completely.
10148       if (I.isCast())
10149         continue;
10150       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10151       // to allocas.
10152       if (I.isDebugOrPseudoInst())
10153         continue;
10154       // This is an unknown instruction. Assume it escapes or writes to all
10155       // static alloca operands.
10156       for (const Use &U : I.operands()) {
10157         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10158           *Info = StaticAllocaInfo::Clobbered;
10159       }
10160       continue;
10161     }
10162 
10163     // If the stored value is a static alloca, mark it as escaped.
10164     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10165       *Info = StaticAllocaInfo::Clobbered;
10166 
10167     // Check if the destination is a static alloca.
10168     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10169     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10170     if (!Info)
10171       continue;
10172     const AllocaInst *AI = cast<AllocaInst>(Dst);
10173 
10174     // Skip allocas that have been initialized or clobbered.
10175     if (*Info != StaticAllocaInfo::Unknown)
10176       continue;
10177 
10178     // Check if the stored value is an argument, and that this store fully
10179     // initializes the alloca.
10180     // If the argument type has padding bits we can't directly forward a pointer
10181     // as the upper bits may contain garbage.
10182     // Don't elide copies from the same argument twice.
10183     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10184     const auto *Arg = dyn_cast<Argument>(Val);
10185     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10186         Arg->getType()->isEmptyTy() ||
10187         DL.getTypeStoreSize(Arg->getType()) !=
10188             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10189         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10190         ArgCopyElisionCandidates.count(Arg)) {
10191       *Info = StaticAllocaInfo::Clobbered;
10192       continue;
10193     }
10194 
10195     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10196                       << '\n');
10197 
10198     // Mark this alloca and store for argument copy elision.
10199     *Info = StaticAllocaInfo::Elidable;
10200     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10201 
10202     // Stop scanning if we've seen all arguments. This will happen early in -O0
10203     // builds, which is useful, because -O0 builds have large entry blocks and
10204     // many allocas.
10205     if (ArgCopyElisionCandidates.size() == NumArgs)
10206       break;
10207   }
10208 }
10209 
10210 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10211 /// ArgVal is a load from a suitable fixed stack object.
10212 static void tryToElideArgumentCopy(
10213     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10214     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10215     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10216     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10217     SDValue ArgVal, bool &ArgHasUses) {
10218   // Check if this is a load from a fixed stack object.
10219   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10220   if (!LNode)
10221     return;
10222   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10223   if (!FINode)
10224     return;
10225 
10226   // Check that the fixed stack object is the right size and alignment.
10227   // Look at the alignment that the user wrote on the alloca instead of looking
10228   // at the stack object.
10229   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10230   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10231   const AllocaInst *AI = ArgCopyIter->second.first;
10232   int FixedIndex = FINode->getIndex();
10233   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10234   int OldIndex = AllocaIndex;
10235   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10236   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10237     LLVM_DEBUG(
10238         dbgs() << "  argument copy elision failed due to bad fixed stack "
10239                   "object size\n");
10240     return;
10241   }
10242   Align RequiredAlignment = AI->getAlign();
10243   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10244     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10245                          "greater than stack argument alignment ("
10246                       << DebugStr(RequiredAlignment) << " vs "
10247                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10248     return;
10249   }
10250 
10251   // Perform the elision. Delete the old stack object and replace its only use
10252   // in the variable info map. Mark the stack object as mutable.
10253   LLVM_DEBUG({
10254     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10255            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10256            << '\n';
10257   });
10258   MFI.RemoveStackObject(OldIndex);
10259   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10260   AllocaIndex = FixedIndex;
10261   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10262   Chains.push_back(ArgVal.getValue(1));
10263 
10264   // Avoid emitting code for the store implementing the copy.
10265   const StoreInst *SI = ArgCopyIter->second.second;
10266   ElidedArgCopyInstrs.insert(SI);
10267 
10268   // Check for uses of the argument again so that we can avoid exporting ArgVal
10269   // if it is't used by anything other than the store.
10270   for (const Value *U : Arg.users()) {
10271     if (U != SI) {
10272       ArgHasUses = true;
10273       break;
10274     }
10275   }
10276 }
10277 
10278 void SelectionDAGISel::LowerArguments(const Function &F) {
10279   SelectionDAG &DAG = SDB->DAG;
10280   SDLoc dl = SDB->getCurSDLoc();
10281   const DataLayout &DL = DAG.getDataLayout();
10282   SmallVector<ISD::InputArg, 16> Ins;
10283 
10284   // In Naked functions we aren't going to save any registers.
10285   if (F.hasFnAttribute(Attribute::Naked))
10286     return;
10287 
10288   if (!FuncInfo->CanLowerReturn) {
10289     // Put in an sret pointer parameter before all the other parameters.
10290     SmallVector<EVT, 1> ValueVTs;
10291     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10292                     F.getReturnType()->getPointerTo(
10293                         DAG.getDataLayout().getAllocaAddrSpace()),
10294                     ValueVTs);
10295 
10296     // NOTE: Assuming that a pointer will never break down to more than one VT
10297     // or one register.
10298     ISD::ArgFlagsTy Flags;
10299     Flags.setSRet();
10300     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10301     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10302                          ISD::InputArg::NoArgIndex, 0);
10303     Ins.push_back(RetArg);
10304   }
10305 
10306   // Look for stores of arguments to static allocas. Mark such arguments with a
10307   // flag to ask the target to give us the memory location of that argument if
10308   // available.
10309   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10310   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10311                                     ArgCopyElisionCandidates);
10312 
10313   // Set up the incoming argument description vector.
10314   for (const Argument &Arg : F.args()) {
10315     unsigned ArgNo = Arg.getArgNo();
10316     SmallVector<EVT, 4> ValueVTs;
10317     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10318     bool isArgValueUsed = !Arg.use_empty();
10319     unsigned PartBase = 0;
10320     Type *FinalType = Arg.getType();
10321     if (Arg.hasAttribute(Attribute::ByVal))
10322       FinalType = Arg.getParamByValType();
10323     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10324         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10325     for (unsigned Value = 0, NumValues = ValueVTs.size();
10326          Value != NumValues; ++Value) {
10327       EVT VT = ValueVTs[Value];
10328       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10329       ISD::ArgFlagsTy Flags;
10330 
10331 
10332       if (Arg.getType()->isPointerTy()) {
10333         Flags.setPointer();
10334         Flags.setPointerAddrSpace(
10335             cast<PointerType>(Arg.getType())->getAddressSpace());
10336       }
10337       if (Arg.hasAttribute(Attribute::ZExt))
10338         Flags.setZExt();
10339       if (Arg.hasAttribute(Attribute::SExt))
10340         Flags.setSExt();
10341       if (Arg.hasAttribute(Attribute::InReg)) {
10342         // If we are using vectorcall calling convention, a structure that is
10343         // passed InReg - is surely an HVA
10344         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10345             isa<StructType>(Arg.getType())) {
10346           // The first value of a structure is marked
10347           if (0 == Value)
10348             Flags.setHvaStart();
10349           Flags.setHva();
10350         }
10351         // Set InReg Flag
10352         Flags.setInReg();
10353       }
10354       if (Arg.hasAttribute(Attribute::StructRet))
10355         Flags.setSRet();
10356       if (Arg.hasAttribute(Attribute::SwiftSelf))
10357         Flags.setSwiftSelf();
10358       if (Arg.hasAttribute(Attribute::SwiftAsync))
10359         Flags.setSwiftAsync();
10360       if (Arg.hasAttribute(Attribute::SwiftError))
10361         Flags.setSwiftError();
10362       if (Arg.hasAttribute(Attribute::ByVal))
10363         Flags.setByVal();
10364       if (Arg.hasAttribute(Attribute::ByRef))
10365         Flags.setByRef();
10366       if (Arg.hasAttribute(Attribute::InAlloca)) {
10367         Flags.setInAlloca();
10368         // Set the byval flag for CCAssignFn callbacks that don't know about
10369         // inalloca.  This way we can know how many bytes we should've allocated
10370         // and how many bytes a callee cleanup function will pop.  If we port
10371         // inalloca to more targets, we'll have to add custom inalloca handling
10372         // in the various CC lowering callbacks.
10373         Flags.setByVal();
10374       }
10375       if (Arg.hasAttribute(Attribute::Preallocated)) {
10376         Flags.setPreallocated();
10377         // Set the byval flag for CCAssignFn callbacks that don't know about
10378         // preallocated.  This way we can know how many bytes we should've
10379         // allocated and how many bytes a callee cleanup function will pop.  If
10380         // we port preallocated to more targets, we'll have to add custom
10381         // preallocated handling in the various CC lowering callbacks.
10382         Flags.setByVal();
10383       }
10384 
10385       // Certain targets (such as MIPS), may have a different ABI alignment
10386       // for a type depending on the context. Give the target a chance to
10387       // specify the alignment it wants.
10388       const Align OriginalAlignment(
10389           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10390       Flags.setOrigAlign(OriginalAlignment);
10391 
10392       Align MemAlign;
10393       Type *ArgMemTy = nullptr;
10394       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10395           Flags.isByRef()) {
10396         if (!ArgMemTy)
10397           ArgMemTy = Arg.getPointeeInMemoryValueType();
10398 
10399         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10400 
10401         // For in-memory arguments, size and alignment should be passed from FE.
10402         // BE will guess if this info is not there but there are cases it cannot
10403         // get right.
10404         if (auto ParamAlign = Arg.getParamStackAlign())
10405           MemAlign = *ParamAlign;
10406         else if ((ParamAlign = Arg.getParamAlign()))
10407           MemAlign = *ParamAlign;
10408         else
10409           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10410         if (Flags.isByRef())
10411           Flags.setByRefSize(MemSize);
10412         else
10413           Flags.setByValSize(MemSize);
10414       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10415         MemAlign = *ParamAlign;
10416       } else {
10417         MemAlign = OriginalAlignment;
10418       }
10419       Flags.setMemAlign(MemAlign);
10420 
10421       if (Arg.hasAttribute(Attribute::Nest))
10422         Flags.setNest();
10423       if (NeedsRegBlock)
10424         Flags.setInConsecutiveRegs();
10425       if (ArgCopyElisionCandidates.count(&Arg))
10426         Flags.setCopyElisionCandidate();
10427       if (Arg.hasAttribute(Attribute::Returned))
10428         Flags.setReturned();
10429 
10430       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10431           *CurDAG->getContext(), F.getCallingConv(), VT);
10432       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10433           *CurDAG->getContext(), F.getCallingConv(), VT);
10434       for (unsigned i = 0; i != NumRegs; ++i) {
10435         // For scalable vectors, use the minimum size; individual targets
10436         // are responsible for handling scalable vector arguments and
10437         // return values.
10438         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10439                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10440         if (NumRegs > 1 && i == 0)
10441           MyFlags.Flags.setSplit();
10442         // if it isn't first piece, alignment must be 1
10443         else if (i > 0) {
10444           MyFlags.Flags.setOrigAlign(Align(1));
10445           if (i == NumRegs - 1)
10446             MyFlags.Flags.setSplitEnd();
10447         }
10448         Ins.push_back(MyFlags);
10449       }
10450       if (NeedsRegBlock && Value == NumValues - 1)
10451         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10452       PartBase += VT.getStoreSize().getKnownMinSize();
10453     }
10454   }
10455 
10456   // Call the target to set up the argument values.
10457   SmallVector<SDValue, 8> InVals;
10458   SDValue NewRoot = TLI->LowerFormalArguments(
10459       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10460 
10461   // Verify that the target's LowerFormalArguments behaved as expected.
10462   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10463          "LowerFormalArguments didn't return a valid chain!");
10464   assert(InVals.size() == Ins.size() &&
10465          "LowerFormalArguments didn't emit the correct number of values!");
10466   LLVM_DEBUG({
10467     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10468       assert(InVals[i].getNode() &&
10469              "LowerFormalArguments emitted a null value!");
10470       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10471              "LowerFormalArguments emitted a value with the wrong type!");
10472     }
10473   });
10474 
10475   // Update the DAG with the new chain value resulting from argument lowering.
10476   DAG.setRoot(NewRoot);
10477 
10478   // Set up the argument values.
10479   unsigned i = 0;
10480   if (!FuncInfo->CanLowerReturn) {
10481     // Create a virtual register for the sret pointer, and put in a copy
10482     // from the sret argument into it.
10483     SmallVector<EVT, 1> ValueVTs;
10484     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10485                     F.getReturnType()->getPointerTo(
10486                         DAG.getDataLayout().getAllocaAddrSpace()),
10487                     ValueVTs);
10488     MVT VT = ValueVTs[0].getSimpleVT();
10489     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10490     Optional<ISD::NodeType> AssertOp = None;
10491     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10492                                         nullptr, F.getCallingConv(), AssertOp);
10493 
10494     MachineFunction& MF = SDB->DAG.getMachineFunction();
10495     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10496     Register SRetReg =
10497         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10498     FuncInfo->DemoteRegister = SRetReg;
10499     NewRoot =
10500         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10501     DAG.setRoot(NewRoot);
10502 
10503     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10504     ++i;
10505   }
10506 
10507   SmallVector<SDValue, 4> Chains;
10508   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10509   for (const Argument &Arg : F.args()) {
10510     SmallVector<SDValue, 4> ArgValues;
10511     SmallVector<EVT, 4> ValueVTs;
10512     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10513     unsigned NumValues = ValueVTs.size();
10514     if (NumValues == 0)
10515       continue;
10516 
10517     bool ArgHasUses = !Arg.use_empty();
10518 
10519     // Elide the copying store if the target loaded this argument from a
10520     // suitable fixed stack object.
10521     if (Ins[i].Flags.isCopyElisionCandidate()) {
10522       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10523                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10524                              InVals[i], ArgHasUses);
10525     }
10526 
10527     // If this argument is unused then remember its value. It is used to generate
10528     // debugging information.
10529     bool isSwiftErrorArg =
10530         TLI->supportSwiftError() &&
10531         Arg.hasAttribute(Attribute::SwiftError);
10532     if (!ArgHasUses && !isSwiftErrorArg) {
10533       SDB->setUnusedArgValue(&Arg, InVals[i]);
10534 
10535       // Also remember any frame index for use in FastISel.
10536       if (FrameIndexSDNode *FI =
10537           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10538         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10539     }
10540 
10541     for (unsigned Val = 0; Val != NumValues; ++Val) {
10542       EVT VT = ValueVTs[Val];
10543       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10544                                                       F.getCallingConv(), VT);
10545       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10546           *CurDAG->getContext(), F.getCallingConv(), VT);
10547 
10548       // Even an apparent 'unused' swifterror argument needs to be returned. So
10549       // we do generate a copy for it that can be used on return from the
10550       // function.
10551       if (ArgHasUses || isSwiftErrorArg) {
10552         Optional<ISD::NodeType> AssertOp;
10553         if (Arg.hasAttribute(Attribute::SExt))
10554           AssertOp = ISD::AssertSext;
10555         else if (Arg.hasAttribute(Attribute::ZExt))
10556           AssertOp = ISD::AssertZext;
10557 
10558         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10559                                              PartVT, VT, nullptr,
10560                                              F.getCallingConv(), AssertOp));
10561       }
10562 
10563       i += NumParts;
10564     }
10565 
10566     // We don't need to do anything else for unused arguments.
10567     if (ArgValues.empty())
10568       continue;
10569 
10570     // Note down frame index.
10571     if (FrameIndexSDNode *FI =
10572         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10573       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10574 
10575     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10576                                      SDB->getCurSDLoc());
10577 
10578     SDB->setValue(&Arg, Res);
10579     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10580       // We want to associate the argument with the frame index, among
10581       // involved operands, that correspond to the lowest address. The
10582       // getCopyFromParts function, called earlier, is swapping the order of
10583       // the operands to BUILD_PAIR depending on endianness. The result of
10584       // that swapping is that the least significant bits of the argument will
10585       // be in the first operand of the BUILD_PAIR node, and the most
10586       // significant bits will be in the second operand.
10587       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10588       if (LoadSDNode *LNode =
10589           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10590         if (FrameIndexSDNode *FI =
10591             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10592           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10593     }
10594 
10595     // Analyses past this point are naive and don't expect an assertion.
10596     if (Res.getOpcode() == ISD::AssertZext)
10597       Res = Res.getOperand(0);
10598 
10599     // Update the SwiftErrorVRegDefMap.
10600     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10601       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10602       if (Register::isVirtualRegister(Reg))
10603         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10604                                    Reg);
10605     }
10606 
10607     // If this argument is live outside of the entry block, insert a copy from
10608     // wherever we got it to the vreg that other BB's will reference it as.
10609     if (Res.getOpcode() == ISD::CopyFromReg) {
10610       // If we can, though, try to skip creating an unnecessary vreg.
10611       // FIXME: This isn't very clean... it would be nice to make this more
10612       // general.
10613       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10614       if (Register::isVirtualRegister(Reg)) {
10615         FuncInfo->ValueMap[&Arg] = Reg;
10616         continue;
10617       }
10618     }
10619     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10620       FuncInfo->InitializeRegForValue(&Arg);
10621       SDB->CopyToExportRegsIfNeeded(&Arg);
10622     }
10623   }
10624 
10625   if (!Chains.empty()) {
10626     Chains.push_back(NewRoot);
10627     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10628   }
10629 
10630   DAG.setRoot(NewRoot);
10631 
10632   assert(i == InVals.size() && "Argument register count mismatch!");
10633 
10634   // If any argument copy elisions occurred and we have debug info, update the
10635   // stale frame indices used in the dbg.declare variable info table.
10636   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10637   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10638     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10639       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10640       if (I != ArgCopyElisionFrameIndexMap.end())
10641         VI.Slot = I->second;
10642     }
10643   }
10644 
10645   // Finally, if the target has anything special to do, allow it to do so.
10646   emitFunctionEntryCode();
10647 }
10648 
10649 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10650 /// ensure constants are generated when needed.  Remember the virtual registers
10651 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10652 /// directly add them, because expansion might result in multiple MBB's for one
10653 /// BB.  As such, the start of the BB might correspond to a different MBB than
10654 /// the end.
10655 void
10656 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10658   const Instruction *TI = LLVMBB->getTerminator();
10659 
10660   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10661 
10662   // Check PHI nodes in successors that expect a value to be available from this
10663   // block.
10664   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10665     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10666     if (!isa<PHINode>(SuccBB->begin())) continue;
10667     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10668 
10669     // If this terminator has multiple identical successors (common for
10670     // switches), only handle each succ once.
10671     if (!SuccsHandled.insert(SuccMBB).second)
10672       continue;
10673 
10674     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10675 
10676     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10677     // nodes and Machine PHI nodes, but the incoming operands have not been
10678     // emitted yet.
10679     for (const PHINode &PN : SuccBB->phis()) {
10680       // Ignore dead phi's.
10681       if (PN.use_empty())
10682         continue;
10683 
10684       // Skip empty types
10685       if (PN.getType()->isEmptyTy())
10686         continue;
10687 
10688       unsigned Reg;
10689       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10690 
10691       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10692         unsigned &RegOut = ConstantsOut[C];
10693         if (RegOut == 0) {
10694           RegOut = FuncInfo.CreateRegs(C);
10695           // We need to zero/sign extend ConstantInt phi operands to match
10696           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10697           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10698           if (auto *CI = dyn_cast<ConstantInt>(C))
10699             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10700                                                     : ISD::ZERO_EXTEND;
10701           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10702         }
10703         Reg = RegOut;
10704       } else {
10705         DenseMap<const Value *, Register>::iterator I =
10706           FuncInfo.ValueMap.find(PHIOp);
10707         if (I != FuncInfo.ValueMap.end())
10708           Reg = I->second;
10709         else {
10710           assert(isa<AllocaInst>(PHIOp) &&
10711                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10712                  "Didn't codegen value into a register!??");
10713           Reg = FuncInfo.CreateRegs(PHIOp);
10714           CopyValueToVirtualRegister(PHIOp, Reg);
10715         }
10716       }
10717 
10718       // Remember that this register needs to added to the machine PHI node as
10719       // the input for this MBB.
10720       SmallVector<EVT, 4> ValueVTs;
10721       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10722       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10723         EVT VT = ValueVTs[vti];
10724         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10725         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10726           FuncInfo.PHINodesToUpdate.push_back(
10727               std::make_pair(&*MBBI++, Reg + i));
10728         Reg += NumRegisters;
10729       }
10730     }
10731   }
10732 
10733   ConstantsOut.clear();
10734 }
10735 
10736 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10737   MachineFunction::iterator I(MBB);
10738   if (++I == FuncInfo.MF->end())
10739     return nullptr;
10740   return &*I;
10741 }
10742 
10743 /// During lowering new call nodes can be created (such as memset, etc.).
10744 /// Those will become new roots of the current DAG, but complications arise
10745 /// when they are tail calls. In such cases, the call lowering will update
10746 /// the root, but the builder still needs to know that a tail call has been
10747 /// lowered in order to avoid generating an additional return.
10748 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10749   // If the node is null, we do have a tail call.
10750   if (MaybeTC.getNode() != nullptr)
10751     DAG.setRoot(MaybeTC);
10752   else
10753     HasTailCall = true;
10754 }
10755 
10756 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10757                                         MachineBasicBlock *SwitchMBB,
10758                                         MachineBasicBlock *DefaultMBB) {
10759   MachineFunction *CurMF = FuncInfo.MF;
10760   MachineBasicBlock *NextMBB = nullptr;
10761   MachineFunction::iterator BBI(W.MBB);
10762   if (++BBI != FuncInfo.MF->end())
10763     NextMBB = &*BBI;
10764 
10765   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10766 
10767   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10768 
10769   if (Size == 2 && W.MBB == SwitchMBB) {
10770     // If any two of the cases has the same destination, and if one value
10771     // is the same as the other, but has one bit unset that the other has set,
10772     // use bit manipulation to do two compares at once.  For example:
10773     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10774     // TODO: This could be extended to merge any 2 cases in switches with 3
10775     // cases.
10776     // TODO: Handle cases where W.CaseBB != SwitchBB.
10777     CaseCluster &Small = *W.FirstCluster;
10778     CaseCluster &Big = *W.LastCluster;
10779 
10780     if (Small.Low == Small.High && Big.Low == Big.High &&
10781         Small.MBB == Big.MBB) {
10782       const APInt &SmallValue = Small.Low->getValue();
10783       const APInt &BigValue = Big.Low->getValue();
10784 
10785       // Check that there is only one bit different.
10786       APInt CommonBit = BigValue ^ SmallValue;
10787       if (CommonBit.isPowerOf2()) {
10788         SDValue CondLHS = getValue(Cond);
10789         EVT VT = CondLHS.getValueType();
10790         SDLoc DL = getCurSDLoc();
10791 
10792         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10793                                  DAG.getConstant(CommonBit, DL, VT));
10794         SDValue Cond = DAG.getSetCC(
10795             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10796             ISD::SETEQ);
10797 
10798         // Update successor info.
10799         // Both Small and Big will jump to Small.BB, so we sum up the
10800         // probabilities.
10801         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10802         if (BPI)
10803           addSuccessorWithProb(
10804               SwitchMBB, DefaultMBB,
10805               // The default destination is the first successor in IR.
10806               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10807         else
10808           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10809 
10810         // Insert the true branch.
10811         SDValue BrCond =
10812             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10813                         DAG.getBasicBlock(Small.MBB));
10814         // Insert the false branch.
10815         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10816                              DAG.getBasicBlock(DefaultMBB));
10817 
10818         DAG.setRoot(BrCond);
10819         return;
10820       }
10821     }
10822   }
10823 
10824   if (TM.getOptLevel() != CodeGenOpt::None) {
10825     // Here, we order cases by probability so the most likely case will be
10826     // checked first. However, two clusters can have the same probability in
10827     // which case their relative ordering is non-deterministic. So we use Low
10828     // as a tie-breaker as clusters are guaranteed to never overlap.
10829     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10830                [](const CaseCluster &a, const CaseCluster &b) {
10831       return a.Prob != b.Prob ?
10832              a.Prob > b.Prob :
10833              a.Low->getValue().slt(b.Low->getValue());
10834     });
10835 
10836     // Rearrange the case blocks so that the last one falls through if possible
10837     // without changing the order of probabilities.
10838     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10839       --I;
10840       if (I->Prob > W.LastCluster->Prob)
10841         break;
10842       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10843         std::swap(*I, *W.LastCluster);
10844         break;
10845       }
10846     }
10847   }
10848 
10849   // Compute total probability.
10850   BranchProbability DefaultProb = W.DefaultProb;
10851   BranchProbability UnhandledProbs = DefaultProb;
10852   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10853     UnhandledProbs += I->Prob;
10854 
10855   MachineBasicBlock *CurMBB = W.MBB;
10856   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10857     bool FallthroughUnreachable = false;
10858     MachineBasicBlock *Fallthrough;
10859     if (I == W.LastCluster) {
10860       // For the last cluster, fall through to the default destination.
10861       Fallthrough = DefaultMBB;
10862       FallthroughUnreachable = isa<UnreachableInst>(
10863           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10864     } else {
10865       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10866       CurMF->insert(BBI, Fallthrough);
10867       // Put Cond in a virtual register to make it available from the new blocks.
10868       ExportFromCurrentBlock(Cond);
10869     }
10870     UnhandledProbs -= I->Prob;
10871 
10872     switch (I->Kind) {
10873       case CC_JumpTable: {
10874         // FIXME: Optimize away range check based on pivot comparisons.
10875         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10876         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10877 
10878         // The jump block hasn't been inserted yet; insert it here.
10879         MachineBasicBlock *JumpMBB = JT->MBB;
10880         CurMF->insert(BBI, JumpMBB);
10881 
10882         auto JumpProb = I->Prob;
10883         auto FallthroughProb = UnhandledProbs;
10884 
10885         // If the default statement is a target of the jump table, we evenly
10886         // distribute the default probability to successors of CurMBB. Also
10887         // update the probability on the edge from JumpMBB to Fallthrough.
10888         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10889                                               SE = JumpMBB->succ_end();
10890              SI != SE; ++SI) {
10891           if (*SI == DefaultMBB) {
10892             JumpProb += DefaultProb / 2;
10893             FallthroughProb -= DefaultProb / 2;
10894             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10895             JumpMBB->normalizeSuccProbs();
10896             break;
10897           }
10898         }
10899 
10900         if (FallthroughUnreachable)
10901           JTH->FallthroughUnreachable = true;
10902 
10903         if (!JTH->FallthroughUnreachable)
10904           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10905         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10906         CurMBB->normalizeSuccProbs();
10907 
10908         // The jump table header will be inserted in our current block, do the
10909         // range check, and fall through to our fallthrough block.
10910         JTH->HeaderBB = CurMBB;
10911         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10912 
10913         // If we're in the right place, emit the jump table header right now.
10914         if (CurMBB == SwitchMBB) {
10915           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10916           JTH->Emitted = true;
10917         }
10918         break;
10919       }
10920       case CC_BitTests: {
10921         // FIXME: Optimize away range check based on pivot comparisons.
10922         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10923 
10924         // The bit test blocks haven't been inserted yet; insert them here.
10925         for (BitTestCase &BTC : BTB->Cases)
10926           CurMF->insert(BBI, BTC.ThisBB);
10927 
10928         // Fill in fields of the BitTestBlock.
10929         BTB->Parent = CurMBB;
10930         BTB->Default = Fallthrough;
10931 
10932         BTB->DefaultProb = UnhandledProbs;
10933         // If the cases in bit test don't form a contiguous range, we evenly
10934         // distribute the probability on the edge to Fallthrough to two
10935         // successors of CurMBB.
10936         if (!BTB->ContiguousRange) {
10937           BTB->Prob += DefaultProb / 2;
10938           BTB->DefaultProb -= DefaultProb / 2;
10939         }
10940 
10941         if (FallthroughUnreachable)
10942           BTB->FallthroughUnreachable = true;
10943 
10944         // If we're in the right place, emit the bit test header right now.
10945         if (CurMBB == SwitchMBB) {
10946           visitBitTestHeader(*BTB, SwitchMBB);
10947           BTB->Emitted = true;
10948         }
10949         break;
10950       }
10951       case CC_Range: {
10952         const Value *RHS, *LHS, *MHS;
10953         ISD::CondCode CC;
10954         if (I->Low == I->High) {
10955           // Check Cond == I->Low.
10956           CC = ISD::SETEQ;
10957           LHS = Cond;
10958           RHS=I->Low;
10959           MHS = nullptr;
10960         } else {
10961           // Check I->Low <= Cond <= I->High.
10962           CC = ISD::SETLE;
10963           LHS = I->Low;
10964           MHS = Cond;
10965           RHS = I->High;
10966         }
10967 
10968         // If Fallthrough is unreachable, fold away the comparison.
10969         if (FallthroughUnreachable)
10970           CC = ISD::SETTRUE;
10971 
10972         // The false probability is the sum of all unhandled cases.
10973         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10974                      getCurSDLoc(), I->Prob, UnhandledProbs);
10975 
10976         if (CurMBB == SwitchMBB)
10977           visitSwitchCase(CB, SwitchMBB);
10978         else
10979           SL->SwitchCases.push_back(CB);
10980 
10981         break;
10982       }
10983     }
10984     CurMBB = Fallthrough;
10985   }
10986 }
10987 
10988 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10989                                               CaseClusterIt First,
10990                                               CaseClusterIt Last) {
10991   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10992     if (X.Prob != CC.Prob)
10993       return X.Prob > CC.Prob;
10994 
10995     // Ties are broken by comparing the case value.
10996     return X.Low->getValue().slt(CC.Low->getValue());
10997   });
10998 }
10999 
11000 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11001                                         const SwitchWorkListItem &W,
11002                                         Value *Cond,
11003                                         MachineBasicBlock *SwitchMBB) {
11004   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11005          "Clusters not sorted?");
11006 
11007   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11008 
11009   // Balance the tree based on branch probabilities to create a near-optimal (in
11010   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11011   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11012   CaseClusterIt LastLeft = W.FirstCluster;
11013   CaseClusterIt FirstRight = W.LastCluster;
11014   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11015   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11016 
11017   // Move LastLeft and FirstRight towards each other from opposite directions to
11018   // find a partitioning of the clusters which balances the probability on both
11019   // sides. If LeftProb and RightProb are equal, alternate which side is
11020   // taken to ensure 0-probability nodes are distributed evenly.
11021   unsigned I = 0;
11022   while (LastLeft + 1 < FirstRight) {
11023     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11024       LeftProb += (++LastLeft)->Prob;
11025     else
11026       RightProb += (--FirstRight)->Prob;
11027     I++;
11028   }
11029 
11030   while (true) {
11031     // Our binary search tree differs from a typical BST in that ours can have up
11032     // to three values in each leaf. The pivot selection above doesn't take that
11033     // into account, which means the tree might require more nodes and be less
11034     // efficient. We compensate for this here.
11035 
11036     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11037     unsigned NumRight = W.LastCluster - FirstRight + 1;
11038 
11039     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11040       // If one side has less than 3 clusters, and the other has more than 3,
11041       // consider taking a cluster from the other side.
11042 
11043       if (NumLeft < NumRight) {
11044         // Consider moving the first cluster on the right to the left side.
11045         CaseCluster &CC = *FirstRight;
11046         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11047         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11048         if (LeftSideRank <= RightSideRank) {
11049           // Moving the cluster to the left does not demote it.
11050           ++LastLeft;
11051           ++FirstRight;
11052           continue;
11053         }
11054       } else {
11055         assert(NumRight < NumLeft);
11056         // Consider moving the last element on the left to the right side.
11057         CaseCluster &CC = *LastLeft;
11058         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11059         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11060         if (RightSideRank <= LeftSideRank) {
11061           // Moving the cluster to the right does not demot it.
11062           --LastLeft;
11063           --FirstRight;
11064           continue;
11065         }
11066       }
11067     }
11068     break;
11069   }
11070 
11071   assert(LastLeft + 1 == FirstRight);
11072   assert(LastLeft >= W.FirstCluster);
11073   assert(FirstRight <= W.LastCluster);
11074 
11075   // Use the first element on the right as pivot since we will make less-than
11076   // comparisons against it.
11077   CaseClusterIt PivotCluster = FirstRight;
11078   assert(PivotCluster > W.FirstCluster);
11079   assert(PivotCluster <= W.LastCluster);
11080 
11081   CaseClusterIt FirstLeft = W.FirstCluster;
11082   CaseClusterIt LastRight = W.LastCluster;
11083 
11084   const ConstantInt *Pivot = PivotCluster->Low;
11085 
11086   // New blocks will be inserted immediately after the current one.
11087   MachineFunction::iterator BBI(W.MBB);
11088   ++BBI;
11089 
11090   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11091   // we can branch to its destination directly if it's squeezed exactly in
11092   // between the known lower bound and Pivot - 1.
11093   MachineBasicBlock *LeftMBB;
11094   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11095       FirstLeft->Low == W.GE &&
11096       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11097     LeftMBB = FirstLeft->MBB;
11098   } else {
11099     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11100     FuncInfo.MF->insert(BBI, LeftMBB);
11101     WorkList.push_back(
11102         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11103     // Put Cond in a virtual register to make it available from the new blocks.
11104     ExportFromCurrentBlock(Cond);
11105   }
11106 
11107   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11108   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11109   // directly if RHS.High equals the current upper bound.
11110   MachineBasicBlock *RightMBB;
11111   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11112       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11113     RightMBB = FirstRight->MBB;
11114   } else {
11115     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11116     FuncInfo.MF->insert(BBI, RightMBB);
11117     WorkList.push_back(
11118         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11119     // Put Cond in a virtual register to make it available from the new blocks.
11120     ExportFromCurrentBlock(Cond);
11121   }
11122 
11123   // Create the CaseBlock record that will be used to lower the branch.
11124   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11125                getCurSDLoc(), LeftProb, RightProb);
11126 
11127   if (W.MBB == SwitchMBB)
11128     visitSwitchCase(CB, SwitchMBB);
11129   else
11130     SL->SwitchCases.push_back(CB);
11131 }
11132 
11133 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11134 // from the swith statement.
11135 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11136                                             BranchProbability PeeledCaseProb) {
11137   if (PeeledCaseProb == BranchProbability::getOne())
11138     return BranchProbability::getZero();
11139   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11140 
11141   uint32_t Numerator = CaseProb.getNumerator();
11142   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11143   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11144 }
11145 
11146 // Try to peel the top probability case if it exceeds the threshold.
11147 // Return current MachineBasicBlock for the switch statement if the peeling
11148 // does not occur.
11149 // If the peeling is performed, return the newly created MachineBasicBlock
11150 // for the peeled switch statement. Also update Clusters to remove the peeled
11151 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11152 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11153     const SwitchInst &SI, CaseClusterVector &Clusters,
11154     BranchProbability &PeeledCaseProb) {
11155   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11156   // Don't perform if there is only one cluster or optimizing for size.
11157   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11158       TM.getOptLevel() == CodeGenOpt::None ||
11159       SwitchMBB->getParent()->getFunction().hasMinSize())
11160     return SwitchMBB;
11161 
11162   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11163   unsigned PeeledCaseIndex = 0;
11164   bool SwitchPeeled = false;
11165   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11166     CaseCluster &CC = Clusters[Index];
11167     if (CC.Prob < TopCaseProb)
11168       continue;
11169     TopCaseProb = CC.Prob;
11170     PeeledCaseIndex = Index;
11171     SwitchPeeled = true;
11172   }
11173   if (!SwitchPeeled)
11174     return SwitchMBB;
11175 
11176   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11177                     << TopCaseProb << "\n");
11178 
11179   // Record the MBB for the peeled switch statement.
11180   MachineFunction::iterator BBI(SwitchMBB);
11181   ++BBI;
11182   MachineBasicBlock *PeeledSwitchMBB =
11183       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11184   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11185 
11186   ExportFromCurrentBlock(SI.getCondition());
11187   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11188   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11189                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11190   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11191 
11192   Clusters.erase(PeeledCaseIt);
11193   for (CaseCluster &CC : Clusters) {
11194     LLVM_DEBUG(
11195         dbgs() << "Scale the probablity for one cluster, before scaling: "
11196                << CC.Prob << "\n");
11197     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11198     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11199   }
11200   PeeledCaseProb = TopCaseProb;
11201   return PeeledSwitchMBB;
11202 }
11203 
11204 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11205   // Extract cases from the switch.
11206   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11207   CaseClusterVector Clusters;
11208   Clusters.reserve(SI.getNumCases());
11209   for (auto I : SI.cases()) {
11210     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11211     const ConstantInt *CaseVal = I.getCaseValue();
11212     BranchProbability Prob =
11213         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11214             : BranchProbability(1, SI.getNumCases() + 1);
11215     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11216   }
11217 
11218   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11219 
11220   // Cluster adjacent cases with the same destination. We do this at all
11221   // optimization levels because it's cheap to do and will make codegen faster
11222   // if there are many clusters.
11223   sortAndRangeify(Clusters);
11224 
11225   // The branch probablity of the peeled case.
11226   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11227   MachineBasicBlock *PeeledSwitchMBB =
11228       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11229 
11230   // If there is only the default destination, jump there directly.
11231   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11232   if (Clusters.empty()) {
11233     assert(PeeledSwitchMBB == SwitchMBB);
11234     SwitchMBB->addSuccessor(DefaultMBB);
11235     if (DefaultMBB != NextBlock(SwitchMBB)) {
11236       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11237                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11238     }
11239     return;
11240   }
11241 
11242   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11243   SL->findBitTestClusters(Clusters, &SI);
11244 
11245   LLVM_DEBUG({
11246     dbgs() << "Case clusters: ";
11247     for (const CaseCluster &C : Clusters) {
11248       if (C.Kind == CC_JumpTable)
11249         dbgs() << "JT:";
11250       if (C.Kind == CC_BitTests)
11251         dbgs() << "BT:";
11252 
11253       C.Low->getValue().print(dbgs(), true);
11254       if (C.Low != C.High) {
11255         dbgs() << '-';
11256         C.High->getValue().print(dbgs(), true);
11257       }
11258       dbgs() << ' ';
11259     }
11260     dbgs() << '\n';
11261   });
11262 
11263   assert(!Clusters.empty());
11264   SwitchWorkList WorkList;
11265   CaseClusterIt First = Clusters.begin();
11266   CaseClusterIt Last = Clusters.end() - 1;
11267   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11268   // Scale the branchprobability for DefaultMBB if the peel occurs and
11269   // DefaultMBB is not replaced.
11270   if (PeeledCaseProb != BranchProbability::getZero() &&
11271       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11272     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11273   WorkList.push_back(
11274       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11275 
11276   while (!WorkList.empty()) {
11277     SwitchWorkListItem W = WorkList.pop_back_val();
11278     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11279 
11280     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11281         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11282       // For optimized builds, lower large range as a balanced binary tree.
11283       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11284       continue;
11285     }
11286 
11287     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11288   }
11289 }
11290 
11291 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11292   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11293   auto DL = getCurSDLoc();
11294   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11295   setValue(&I, DAG.getStepVector(DL, ResultVT));
11296 }
11297 
11298 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11299   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11300   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11301 
11302   SDLoc DL = getCurSDLoc();
11303   SDValue V = getValue(I.getOperand(0));
11304   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11305 
11306   if (VT.isScalableVector()) {
11307     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11308     return;
11309   }
11310 
11311   // Use VECTOR_SHUFFLE for the fixed-length vector
11312   // to maintain existing behavior.
11313   SmallVector<int, 8> Mask;
11314   unsigned NumElts = VT.getVectorMinNumElements();
11315   for (unsigned i = 0; i != NumElts; ++i)
11316     Mask.push_back(NumElts - 1 - i);
11317 
11318   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11319 }
11320 
11321 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11322   SmallVector<EVT, 4> ValueVTs;
11323   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11324                   ValueVTs);
11325   unsigned NumValues = ValueVTs.size();
11326   if (NumValues == 0) return;
11327 
11328   SmallVector<SDValue, 4> Values(NumValues);
11329   SDValue Op = getValue(I.getOperand(0));
11330 
11331   for (unsigned i = 0; i != NumValues; ++i)
11332     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11333                             SDValue(Op.getNode(), Op.getResNo() + i));
11334 
11335   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11336                            DAG.getVTList(ValueVTs), Values));
11337 }
11338 
11339 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11341   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11342 
11343   SDLoc DL = getCurSDLoc();
11344   SDValue V1 = getValue(I.getOperand(0));
11345   SDValue V2 = getValue(I.getOperand(1));
11346   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11347 
11348   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11349   if (VT.isScalableVector()) {
11350     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11351     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11352                              DAG.getConstant(Imm, DL, IdxVT)));
11353     return;
11354   }
11355 
11356   unsigned NumElts = VT.getVectorNumElements();
11357 
11358   uint64_t Idx = (NumElts + Imm) % NumElts;
11359 
11360   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11361   SmallVector<int, 8> Mask;
11362   for (unsigned i = 0; i < NumElts; ++i)
11363     Mask.push_back(Idx + i);
11364   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11365 }
11366