1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstddef> 116 #include <cstdint> 117 #include <cstring> 118 #include <iterator> 119 #include <limits> 120 #include <numeric> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace PatternMatch; 127 using namespace SwitchCG; 128 129 #define DEBUG_TYPE "isel" 130 131 /// LimitFloatPrecision - Generate low-precision inline sequences for 132 /// some float libcalls (6, 8 or 12 bits). 133 static unsigned LimitFloatPrecision; 134 135 static cl::opt<unsigned, true> 136 LimitFPPrecision("limit-float-precision", 137 cl::desc("Generate low-precision inline sequences " 138 "for some float libcalls"), 139 cl::location(LimitFloatPrecision), cl::Hidden, 140 cl::init(0)); 141 142 static cl::opt<unsigned> SwitchPeelThreshold( 143 "switch-peel-threshold", cl::Hidden, cl::init(66), 144 cl::desc("Set the case probability threshold for peeling the case from a " 145 "switch statement. A value greater than 100 will void this " 146 "optimization")); 147 148 // Limit the width of DAG chains. This is important in general to prevent 149 // DAG-based analysis from blowing up. For example, alias analysis and 150 // load clustering may not complete in reasonable time. It is difficult to 151 // recognize and avoid this situation within each individual analysis, and 152 // future analyses are likely to have the same behavior. Limiting DAG width is 153 // the safe approach and will be especially important with global DAGs. 154 // 155 // MaxParallelChains default is arbitrarily high to avoid affecting 156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 157 // sequence over this should have been converted to llvm.memcpy by the 158 // frontend. It is easy to induce this behavior with .ll code such as: 159 // %buffer = alloca [4096 x i8] 160 // %data = load [4096 x i8]* %argPtr 161 // store [4096 x i8] %data, [4096 x i8]* %buffer 162 static const unsigned MaxParallelChains = 64; 163 164 // Return the calling convention if the Value passed requires ABI mangling as it 165 // is a parameter to a function or a return value from a function which is not 166 // an intrinsic. 167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 168 if (auto *R = dyn_cast<ReturnInst>(V)) 169 return R->getParent()->getParent()->getCallingConv(); 170 171 if (auto *CI = dyn_cast<CallInst>(V)) { 172 const bool IsInlineAsm = CI->isInlineAsm(); 173 const bool IsIndirectFunctionCall = 174 !IsInlineAsm && !CI->getCalledFunction(); 175 176 // It is possible that the call instruction is an inline asm statement or an 177 // indirect function call in which case the return value of 178 // getCalledFunction() would be nullptr. 179 const bool IsInstrinsicCall = 180 !IsInlineAsm && !IsIndirectFunctionCall && 181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 182 183 if (!IsInlineAsm && !IsInstrinsicCall) 184 return CI->getCallingConv(); 185 } 186 187 return None; 188 } 189 190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<CallingConv::ID> CC); 194 195 /// getCopyFromParts - Create a value that contains the specified legal parts 196 /// combined into the value they represent. If the parts combine to a type 197 /// larger than ValueVT then AssertOp can be used to specify whether the extra 198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 199 /// (ISD::AssertSext). 200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 201 const SDValue *Parts, unsigned NumParts, 202 MVT PartVT, EVT ValueVT, const Value *V, 203 Optional<CallingConv::ID> CC = None, 204 Optional<ISD::NodeType> AssertOp = None) { 205 if (ValueVT.isVector()) 206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 207 CC); 208 209 assert(NumParts > 0 && "No parts to assemble!"); 210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 211 SDValue Val = Parts[0]; 212 213 if (NumParts > 1) { 214 // Assemble the value from multiple parts. 215 if (ValueVT.isInteger()) { 216 unsigned PartBits = PartVT.getSizeInBits(); 217 unsigned ValueBits = ValueVT.getSizeInBits(); 218 219 // Assemble the power of 2 part. 220 unsigned RoundParts = 221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 222 unsigned RoundBits = PartBits * RoundParts; 223 EVT RoundVT = RoundBits == ValueBits ? 224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 225 SDValue Lo, Hi; 226 227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 228 229 if (RoundParts > 2) { 230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 231 PartVT, HalfVT, V); 232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 233 RoundParts / 2, PartVT, HalfVT, V); 234 } else { 235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 237 } 238 239 if (DAG.getDataLayout().isBigEndian()) 240 std::swap(Lo, Hi); 241 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 243 244 if (RoundParts < NumParts) { 245 // Assemble the trailing non-power-of-2 part. 246 unsigned OddParts = NumParts - RoundParts; 247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 249 OddVT, V, CC); 250 251 // Combine the round and odd parts. 252 Lo = Val; 253 if (DAG.getDataLayout().isBigEndian()) 254 std::swap(Lo, Hi); 255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 257 Hi = 258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 259 DAG.getConstant(Lo.getValueSizeInBits(), DL, 260 TLI.getPointerTy(DAG.getDataLayout()))); 261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 263 } 264 } else if (PartVT.isFloatingPoint()) { 265 // FP split into multiple FP parts (for ppcf128) 266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 267 "Unexpected split"); 268 SDValue Lo, Hi; 269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 272 std::swap(Lo, Hi); 273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 274 } else { 275 // FP split into integer parts (soft fp) 276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 277 !PartVT.isVector() && "Unexpected split"); 278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 280 } 281 } 282 283 // There is now one part, held in Val. Correct it to match ValueVT. 284 // PartEVT is the type of the register class that holds the value. 285 // ValueVT is the type of the inline asm operation. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 292 ValueVT.bitsLT(PartEVT)) { 293 // For an FP value in an integer part, we need to truncate to the right 294 // width first. 295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 297 } 298 299 // Handle types that have the same size. 300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 302 303 // Handle types with different sizes. 304 if (PartEVT.isInteger() && ValueVT.isInteger()) { 305 if (ValueVT.bitsLT(PartEVT)) { 306 // For a truncate, see if we have any information to 307 // indicate whether the truncated bits will always be 308 // zero or sign-extension. 309 if (AssertOp.hasValue()) 310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 311 DAG.getValueType(ValueVT)); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 315 } 316 317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 318 // FP_ROUND's are always exact here. 319 if (ValueVT.bitsLT(Val.getValueType())) 320 return DAG.getNode( 321 ISD::FP_ROUND, DL, ValueVT, Val, 322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 323 324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 325 } 326 327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 328 // then truncating. 329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 330 ValueVT.bitsLT(PartEVT)) { 331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 336 } 337 338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 339 const Twine &ErrMsg) { 340 const Instruction *I = dyn_cast_or_null<Instruction>(V); 341 if (!V) 342 return Ctx.emitError(ErrMsg); 343 344 const char *AsmError = ", possible invalid constraint for vector type"; 345 if (const CallInst *CI = dyn_cast<CallInst>(I)) 346 if (isa<InlineAsm>(CI->getCalledValue())) 347 return Ctx.emitError(I, ErrMsg + AsmError); 348 349 return Ctx.emitError(I, ErrMsg); 350 } 351 352 /// getCopyFromPartsVector - Create a value that contains the specified legal 353 /// parts combined into the value they represent. If the parts combine to a 354 /// type larger than ValueVT then AssertOp can be used to specify whether the 355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 356 /// ValueVT (ISD::AssertSext). 357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 358 const SDValue *Parts, unsigned NumParts, 359 MVT PartVT, EVT ValueVT, const Value *V, 360 Optional<CallingConv::ID> CallConv) { 361 assert(ValueVT.isVector() && "Not a vector value"); 362 assert(NumParts > 0 && "No parts to assemble!"); 363 const bool IsABIRegCopy = CallConv.hasValue(); 364 365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 366 SDValue Val = Parts[0]; 367 368 // Handle a multi-element vector. 369 if (NumParts > 1) { 370 EVT IntermediateVT; 371 MVT RegisterVT; 372 unsigned NumIntermediates; 373 unsigned NumRegs; 374 375 if (IsABIRegCopy) { 376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 378 NumIntermediates, RegisterVT); 379 } else { 380 NumRegs = 381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } 384 385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 386 NumParts = NumRegs; // Silence a compiler warning. 387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 388 assert(RegisterVT.getSizeInBits() == 389 Parts[0].getSimpleValueType().getSizeInBits() && 390 "Part type sizes don't match!"); 391 392 // Assemble the parts into intermediate operands. 393 SmallVector<SDValue, 8> Ops(NumIntermediates); 394 if (NumIntermediates == NumParts) { 395 // If the register was not expanded, truncate or copy the value, 396 // as appropriate. 397 for (unsigned i = 0; i != NumParts; ++i) 398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 399 PartVT, IntermediateVT, V); 400 } else if (NumParts > 0) { 401 // If the intermediate type was expanded, build the intermediate 402 // operands from the parts. 403 assert(NumParts % NumIntermediates == 0 && 404 "Must expand into a divisible number of parts!"); 405 unsigned Factor = NumParts / NumIntermediates; 406 for (unsigned i = 0; i != NumIntermediates; ++i) 407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 408 PartVT, IntermediateVT, V); 409 } 410 411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 412 // intermediate operands. 413 EVT BuiltVectorTy = 414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 415 (IntermediateVT.isVector() 416 ? IntermediateVT.getVectorNumElements() * NumParts 417 : NumIntermediates)); 418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 419 : ISD::BUILD_VECTOR, 420 DL, BuiltVectorTy, Ops); 421 } 422 423 // There is now one part, held in Val. Correct it to match ValueVT. 424 EVT PartEVT = Val.getValueType(); 425 426 if (PartEVT == ValueVT) 427 return Val; 428 429 if (PartEVT.isVector()) { 430 // If the element type of the source/dest vectors are the same, but the 431 // parts vector has more elements than the value vector, then we have a 432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 433 // elements we want. 434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 436 "Cannot narrow, it would be a lossy transformation"); 437 return DAG.getNode( 438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 440 } 441 442 // Vector/Vector bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 447 "Cannot handle this kind of promotion"); 448 // Promoted vector extract 449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 450 451 } 452 453 // Trivial bitcast if the types are the same size and the destination 454 // vector type is legal. 455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 456 TLI.isTypeLegal(ValueVT)) 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 459 if (ValueVT.getVectorNumElements() != 1) { 460 // Certain ABIs require that vectors are passed as integers. For vectors 461 // are the same size, this is an obvious bitcast. 462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 465 // Bitcast Val back the original type and extract the corresponding 466 // vector we want. 467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 469 ValueVT.getVectorElementType(), Elts); 470 Val = DAG.getBitcast(WiderVecType, Val); 471 return DAG.getNode( 472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 474 } 475 476 diagnosePossiblyInvalidConstraint( 477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 478 return DAG.getUNDEF(ValueVT); 479 } 480 481 // Handle cases such as i8 -> <1 x i1> 482 EVT ValueSVT = ValueVT.getVectorElementType(); 483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 486 487 return DAG.getBuildVector(ValueVT, DL, Val); 488 } 489 490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 491 SDValue Val, SDValue *Parts, unsigned NumParts, 492 MVT PartVT, const Value *V, 493 Optional<CallingConv::ID> CallConv); 494 495 /// getCopyToParts - Create a series of nodes that contain the specified value 496 /// split into legal parts. If the parts contain more bits than Val, then, for 497 /// integers, ExtendKind can be used to specify how to generate the extra bits. 498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 499 SDValue *Parts, unsigned NumParts, MVT PartVT, 500 const Value *V, 501 Optional<CallingConv::ID> CallConv = None, 502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 503 EVT ValueVT = Val.getValueType(); 504 505 // Handle the vector case separately. 506 if (ValueVT.isVector()) 507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 508 CallConv); 509 510 unsigned PartBits = PartVT.getSizeInBits(); 511 unsigned OrigNumParts = NumParts; 512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 513 "Copying to an illegal type!"); 514 515 if (NumParts == 0) 516 return; 517 518 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 assert(NumParts == 1 && "No-op copy with multiple parts!"); 522 Parts[0] = Val; 523 return; 524 } 525 526 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 527 // If the parts cover more bits than the value has, promote the value. 528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 529 assert(NumParts == 1 && "Do not know what to promote to!"); 530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 531 } else { 532 if (ValueVT.isFloatingPoint()) { 533 // FP values need to be bitcast, then extended if they are being put 534 // into a larger container. 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 537 } 538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 539 ValueVT.isInteger() && 540 "Unknown mismatch!"); 541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 543 if (PartVT == MVT::x86mmx) 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } 546 } else if (PartBits == ValueVT.getSizeInBits()) { 547 // Different types of the same size. 548 assert(NumParts == 1 && PartEVT != ValueVT); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 551 // If the parts cover less bits than value has, truncate the value. 552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 553 ValueVT.isInteger() && 554 "Unknown mismatch!"); 555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 557 if (PartVT == MVT::x86mmx) 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 // The value may have changed - recompute ValueVT. 562 ValueVT = Val.getValueType(); 563 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 564 "Failed to tile the value with PartVT!"); 565 566 if (NumParts == 1) { 567 if (PartEVT != ValueVT) { 568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 569 "scalar-to-vector conversion failed"); 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 Parts[0] = Val; 574 return; 575 } 576 577 // Expand the value into multiple parts. 578 if (NumParts & (NumParts - 1)) { 579 // The number of parts is not a power of 2. Split off and copy the tail. 580 assert(PartVT.isInteger() && ValueVT.isInteger() && 581 "Do not know what to expand to!"); 582 unsigned RoundParts = 1 << Log2_32(NumParts); 583 unsigned RoundBits = RoundParts * PartBits; 584 unsigned OddParts = NumParts - RoundParts; 585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 587 588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 589 CallConv); 590 591 if (DAG.getDataLayout().isBigEndian()) 592 // The odd parts were reversed by getCopyToParts - unreverse them. 593 std::reverse(Parts + RoundParts, Parts + NumParts); 594 595 NumParts = RoundParts; 596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 598 } 599 600 // The number of parts is a power of 2. Repeatedly bisect the value using 601 // EXTRACT_ELEMENT. 602 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 603 EVT::getIntegerVT(*DAG.getContext(), 604 ValueVT.getSizeInBits()), 605 Val); 606 607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 608 for (unsigned i = 0; i < NumParts; i += StepSize) { 609 unsigned ThisBits = StepSize * PartBits / 2; 610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 611 SDValue &Part0 = Parts[i]; 612 SDValue &Part1 = Parts[i+StepSize/2]; 613 614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 618 619 if (ThisBits == PartBits && ThisVT != PartVT) { 620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 622 } 623 } 624 } 625 626 if (DAG.getDataLayout().isBigEndian()) 627 std::reverse(Parts, Parts + OrigNumParts); 628 } 629 630 static SDValue widenVectorToPartType(SelectionDAG &DAG, 631 SDValue Val, const SDLoc &DL, EVT PartVT) { 632 if (!PartVT.isVector()) 633 return SDValue(); 634 635 EVT ValueVT = Val.getValueType(); 636 unsigned PartNumElts = PartVT.getVectorNumElements(); 637 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 638 if (PartNumElts > ValueNumElts && 639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 640 EVT ElementVT = PartVT.getVectorElementType(); 641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 642 // undef elements. 643 SmallVector<SDValue, 16> Ops; 644 DAG.ExtractVectorElements(Val, Ops); 645 SDValue EltUndef = DAG.getUNDEF(ElementVT); 646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 647 Ops.push_back(EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 return SDValue(); 654 } 655 656 /// getCopyToPartsVector - Create a series of nodes that contain the specified 657 /// value split into legal parts. 658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 659 SDValue Val, SDValue *Parts, unsigned NumParts, 660 MVT PartVT, const Value *V, 661 Optional<CallingConv::ID> CallConv) { 662 EVT ValueVT = Val.getValueType(); 663 assert(ValueVT.isVector() && "Not a vector"); 664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 665 const bool IsABIRegCopy = CallConv.hasValue(); 666 667 if (NumParts == 1) { 668 EVT PartEVT = PartVT; 669 if (PartEVT == ValueVT) { 670 // Nothing to do. 671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 672 // Bitconvert vector->vector case. 673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 675 Val = Widened; 676 } else if (PartVT.isVector() && 677 PartEVT.getVectorElementType().bitsGE( 678 ValueVT.getVectorElementType()) && 679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 680 681 // Promoted vector extract 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } else { 684 if (ValueVT.getVectorNumElements() == 1) { 685 Val = DAG.getNode( 686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 688 } else { 689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 690 "lossy conversion of vector to scalar type"); 691 EVT IntermediateType = 692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 693 Val = DAG.getBitcast(IntermediateType, Val); 694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 695 } 696 } 697 698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 699 Parts[0] = Val; 700 return; 701 } 702 703 // Handle a multi-element vector. 704 EVT IntermediateVT; 705 MVT RegisterVT; 706 unsigned NumIntermediates; 707 unsigned NumRegs; 708 if (IsABIRegCopy) { 709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } else { 713 NumRegs = 714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } 717 718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 719 NumParts = NumRegs; // Silence a compiler warning. 720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 721 722 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 723 IntermediateVT.getVectorNumElements() : 1; 724 725 // Convert the vector to the appropriate type if necessary. 726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 731 if (ValueVT != BuiltVectorTy) { 732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 733 Val = Widened; 734 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } 737 738 // Split the vector into intermediate operands. 739 SmallVector<SDValue, 8> Ops(NumIntermediates); 740 for (unsigned i = 0; i != NumIntermediates; ++i) { 741 if (IntermediateVT.isVector()) { 742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 744 } else { 745 Ops[i] = DAG.getNode( 746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 747 DAG.getConstant(i, DL, IdxVT)); 748 } 749 } 750 751 // Split the intermediate operands into legal parts. 752 if (NumParts == NumIntermediates) { 753 // If the register was not expanded, promote or copy the value, 754 // as appropriate. 755 for (unsigned i = 0; i != NumParts; ++i) 756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 757 } else if (NumParts > 0) { 758 // If the intermediate type was expanded, split each the value into 759 // legal parts. 760 assert(NumIntermediates != 0 && "division by zero"); 761 assert(NumParts % NumIntermediates == 0 && 762 "Must expand into a divisible number of parts!"); 763 unsigned Factor = NumParts / NumIntermediates; 764 for (unsigned i = 0; i != NumIntermediates; ++i) 765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 766 CallConv); 767 } 768 } 769 770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 771 EVT valuevt, Optional<CallingConv::ID> CC) 772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 773 RegCount(1, regs.size()), CallConv(CC) {} 774 775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 776 const DataLayout &DL, unsigned Reg, Type *Ty, 777 Optional<CallingConv::ID> CC) { 778 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 779 780 CallConv = CC; 781 782 for (EVT ValueVT : ValueVTs) { 783 unsigned NumRegs = 784 isABIMangled() 785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 786 : TLI.getNumRegisters(Context, ValueVT); 787 MVT RegisterVT = 788 isABIMangled() 789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getRegisterType(Context, ValueVT); 791 for (unsigned i = 0; i != NumRegs; ++i) 792 Regs.push_back(Reg + i); 793 RegVTs.push_back(RegisterVT); 794 RegCount.push_back(NumRegs); 795 Reg += NumRegs; 796 } 797 } 798 799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 800 FunctionLoweringInfo &FuncInfo, 801 const SDLoc &dl, SDValue &Chain, 802 SDValue *Flag, const Value *V) const { 803 // A Value with type {} or [0 x %t] needs no registers. 804 if (ValueVTs.empty()) 805 return SDValue(); 806 807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 808 809 // Assemble the legal parts into the final values. 810 SmallVector<SDValue, 4> Values(ValueVTs.size()); 811 SmallVector<SDValue, 8> Parts; 812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 // Copy the legal parts from the registers. 814 EVT ValueVT = ValueVTs[Value]; 815 unsigned NumRegs = RegCount[Value]; 816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 817 *DAG.getContext(), 818 CallConv.getValue(), RegVTs[Value]) 819 : RegVTs[Value]; 820 821 Parts.resize(NumRegs); 822 for (unsigned i = 0; i != NumRegs; ++i) { 823 SDValue P; 824 if (!Flag) { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 826 } else { 827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 828 *Flag = P.getValue(2); 829 } 830 831 Chain = P.getValue(1); 832 Parts[i] = P; 833 834 // If the source register was virtual and if we know something about it, 835 // add an assert node. 836 if (!Register::isVirtualRegister(Regs[Part + i]) || 837 !RegisterVT.isInteger()) 838 continue; 839 840 const FunctionLoweringInfo::LiveOutInfo *LOI = 841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 842 if (!LOI) 843 continue; 844 845 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 846 unsigned NumSignBits = LOI->NumSignBits; 847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 848 849 if (NumZeroBits == RegSize) { 850 // The current value is a zero. 851 // Explicitly express that as it would be easier for 852 // optimizations to kick in. 853 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 854 continue; 855 } 856 857 // FIXME: We capture more information than the dag can represent. For 858 // now, just use the tightest assertzext/assertsext possible. 859 bool isSExt; 860 EVT FromVT(MVT::Other); 861 if (NumZeroBits) { 862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 863 isSExt = false; 864 } else if (NumSignBits > 1) { 865 FromVT = 866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 867 isSExt = true; 868 } else { 869 continue; 870 } 871 // Add an assertion node. 872 assert(FromVT != MVT::Other); 873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 874 RegisterVT, P, DAG.getValueType(FromVT)); 875 } 876 877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 878 RegisterVT, ValueVT, V, CallConv); 879 Part += NumRegs; 880 Parts.clear(); 881 } 882 883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 884 } 885 886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 887 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 888 const Value *V, 889 ISD::NodeType PreferredExtendType) const { 890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 891 ISD::NodeType ExtendKind = PreferredExtendType; 892 893 // Get the list of the values's legal parts. 894 unsigned NumRegs = Regs.size(); 895 SmallVector<SDValue, 8> Parts(NumRegs); 896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 897 unsigned NumParts = RegCount[Value]; 898 899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 900 *DAG.getContext(), 901 CallConv.getValue(), RegVTs[Value]) 902 : RegVTs[Value]; 903 904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 905 ExtendKind = ISD::ZERO_EXTEND; 906 907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 908 NumParts, RegisterVT, V, CallConv, ExtendKind); 909 Part += NumParts; 910 } 911 912 // Copy the parts into the registers. 913 SmallVector<SDValue, 8> Chains(NumRegs); 914 for (unsigned i = 0; i != NumRegs; ++i) { 915 SDValue Part; 916 if (!Flag) { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 918 } else { 919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 920 *Flag = Part.getValue(1); 921 } 922 923 Chains[i] = Part.getValue(0); 924 } 925 926 if (NumRegs == 1 || Flag) 927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 928 // flagged to it. That is the CopyToReg nodes and the user are considered 929 // a single scheduling unit. If we create a TokenFactor and return it as 930 // chain, then the TokenFactor is both a predecessor (operand) of the 931 // user as well as a successor (the TF operands are flagged to the user). 932 // c1, f1 = CopyToReg 933 // c2, f2 = CopyToReg 934 // c3 = TokenFactor c1, c2 935 // ... 936 // = op c3, ..., f2 937 Chain = Chains[NumRegs-1]; 938 else 939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 940 } 941 942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 943 unsigned MatchingIdx, const SDLoc &dl, 944 SelectionDAG &DAG, 945 std::vector<SDValue> &Ops) const { 946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 947 948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 949 if (HasMatching) 950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 951 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 952 // Put the register class of the virtual registers in the flag word. That 953 // way, later passes can recompute register class constraints for inline 954 // assembly as well as normal instructions. 955 // Don't do this for tied operands that can use the regclass information 956 // from the def. 957 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 958 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 959 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 960 } 961 962 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 963 Ops.push_back(Res); 964 965 if (Code == InlineAsm::Kind_Clobber) { 966 // Clobbers should always have a 1:1 mapping with registers, and may 967 // reference registers that have illegal (e.g. vector) types. Hence, we 968 // shouldn't try to apply any sort of splitting logic to them. 969 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 970 "No 1:1 mapping from clobbers to regs?"); 971 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 972 (void)SP; 973 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 974 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 975 assert( 976 (Regs[I] != SP || 977 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 978 "If we clobbered the stack pointer, MFI should know about it."); 979 } 980 return; 981 } 982 983 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 984 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 985 MVT RegisterVT = RegVTs[Value]; 986 for (unsigned i = 0; i != NumRegs; ++i) { 987 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 988 unsigned TheReg = Regs[Reg++]; 989 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 990 } 991 } 992 } 993 994 SmallVector<std::pair<unsigned, unsigned>, 4> 995 RegsForValue::getRegsAndSizes() const { 996 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 997 unsigned I = 0; 998 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 999 unsigned RegCount = std::get<0>(CountAndVT); 1000 MVT RegisterVT = std::get<1>(CountAndVT); 1001 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1002 for (unsigned E = I + RegCount; I != E; ++I) 1003 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1004 } 1005 return OutVec; 1006 } 1007 1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1009 const TargetLibraryInfo *li) { 1010 AA = aa; 1011 GFI = gfi; 1012 LibInfo = li; 1013 DL = &DAG.getDataLayout(); 1014 Context = DAG.getContext(); 1015 LPadToCallSiteMap.clear(); 1016 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1017 } 1018 1019 void SelectionDAGBuilder::clear() { 1020 NodeMap.clear(); 1021 UnusedArgNodeMap.clear(); 1022 PendingLoads.clear(); 1023 PendingExports.clear(); 1024 CurInst = nullptr; 1025 HasTailCall = false; 1026 SDNodeOrder = LowestSDNodeOrder; 1027 StatepointLowering.clear(); 1028 } 1029 1030 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1031 DanglingDebugInfoMap.clear(); 1032 } 1033 1034 SDValue SelectionDAGBuilder::getRoot() { 1035 if (PendingLoads.empty()) 1036 return DAG.getRoot(); 1037 1038 if (PendingLoads.size() == 1) { 1039 SDValue Root = PendingLoads[0]; 1040 DAG.setRoot(Root); 1041 PendingLoads.clear(); 1042 return Root; 1043 } 1044 1045 // Otherwise, we have to make a token factor node. 1046 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1047 PendingLoads.clear(); 1048 DAG.setRoot(Root); 1049 return Root; 1050 } 1051 1052 SDValue SelectionDAGBuilder::getControlRoot() { 1053 SDValue Root = DAG.getRoot(); 1054 1055 if (PendingExports.empty()) 1056 return Root; 1057 1058 // Turn all of the CopyToReg chains into one factored node. 1059 if (Root.getOpcode() != ISD::EntryToken) { 1060 unsigned i = 0, e = PendingExports.size(); 1061 for (; i != e; ++i) { 1062 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1063 if (PendingExports[i].getNode()->getOperand(0) == Root) 1064 break; // Don't add the root if we already indirectly depend on it. 1065 } 1066 1067 if (i == e) 1068 PendingExports.push_back(Root); 1069 } 1070 1071 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1072 PendingExports); 1073 PendingExports.clear(); 1074 DAG.setRoot(Root); 1075 return Root; 1076 } 1077 1078 void SelectionDAGBuilder::visit(const Instruction &I) { 1079 // Set up outgoing PHI node register values before emitting the terminator. 1080 if (I.isTerminator()) { 1081 HandlePHINodesInSuccessorBlocks(I.getParent()); 1082 } 1083 1084 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1085 if (!isa<DbgInfoIntrinsic>(I)) 1086 ++SDNodeOrder; 1087 1088 CurInst = &I; 1089 1090 visit(I.getOpcode(), I); 1091 1092 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1093 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1094 // maps to this instruction. 1095 // TODO: We could handle all flags (nsw, etc) here. 1096 // TODO: If an IR instruction maps to >1 node, only the final node will have 1097 // flags set. 1098 if (SDNode *Node = getNodeForIRValue(&I)) { 1099 SDNodeFlags IncomingFlags; 1100 IncomingFlags.copyFMF(*FPMO); 1101 if (!Node->getFlags().isDefined()) 1102 Node->setFlags(IncomingFlags); 1103 else 1104 Node->intersectFlagsWith(IncomingFlags); 1105 } 1106 } 1107 1108 if (!I.isTerminator() && !HasTailCall && 1109 !isStatepoint(&I)) // statepoints handle their exports internally 1110 CopyToExportRegsIfNeeded(&I); 1111 1112 CurInst = nullptr; 1113 } 1114 1115 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1117 } 1118 1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1120 // Note: this doesn't use InstVisitor, because it has to work with 1121 // ConstantExpr's in addition to instructions. 1122 switch (Opcode) { 1123 default: llvm_unreachable("Unknown instruction type encountered!"); 1124 // Build the switch statement using the Instruction.def file. 1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1127 #include "llvm/IR/Instruction.def" 1128 } 1129 } 1130 1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1132 const DIExpression *Expr) { 1133 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1134 const DbgValueInst *DI = DDI.getDI(); 1135 DIVariable *DanglingVariable = DI->getVariable(); 1136 DIExpression *DanglingExpr = DI->getExpression(); 1137 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1138 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1139 return true; 1140 } 1141 return false; 1142 }; 1143 1144 for (auto &DDIMI : DanglingDebugInfoMap) { 1145 DanglingDebugInfoVector &DDIV = DDIMI.second; 1146 1147 // If debug info is to be dropped, run it through final checks to see 1148 // whether it can be salvaged. 1149 for (auto &DDI : DDIV) 1150 if (isMatchingDbgValue(DDI)) 1151 salvageUnresolvedDbgValue(DDI); 1152 1153 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1154 } 1155 } 1156 1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1158 // generate the debug data structures now that we've seen its definition. 1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1160 SDValue Val) { 1161 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1162 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1163 return; 1164 1165 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1166 for (auto &DDI : DDIV) { 1167 const DbgValueInst *DI = DDI.getDI(); 1168 assert(DI && "Ill-formed DanglingDebugInfo"); 1169 DebugLoc dl = DDI.getdl(); 1170 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1171 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1172 DILocalVariable *Variable = DI->getVariable(); 1173 DIExpression *Expr = DI->getExpression(); 1174 assert(Variable->isValidLocationForIntrinsic(dl) && 1175 "Expected inlined-at fields to agree"); 1176 SDDbgValue *SDV; 1177 if (Val.getNode()) { 1178 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1179 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1180 // we couldn't resolve it directly when examining the DbgValue intrinsic 1181 // in the first place we should not be more successful here). Unless we 1182 // have some test case that prove this to be correct we should avoid 1183 // calling EmitFuncArgumentDbgValue here. 1184 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1185 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1186 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1187 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1188 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1189 // inserted after the definition of Val when emitting the instructions 1190 // after ISel. An alternative could be to teach 1191 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1192 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1193 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1194 << ValSDNodeOrder << "\n"); 1195 SDV = getDbgValue(Val, Variable, Expr, dl, 1196 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1197 DAG.AddDbgValue(SDV, Val.getNode(), false); 1198 } else 1199 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1200 << "in EmitFuncArgumentDbgValue\n"); 1201 } else { 1202 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1203 auto Undef = 1204 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1205 auto SDV = 1206 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1207 DAG.AddDbgValue(SDV, nullptr, false); 1208 } 1209 } 1210 DDIV.clear(); 1211 } 1212 1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1214 Value *V = DDI.getDI()->getValue(); 1215 DILocalVariable *Var = DDI.getDI()->getVariable(); 1216 DIExpression *Expr = DDI.getDI()->getExpression(); 1217 DebugLoc DL = DDI.getdl(); 1218 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1219 unsigned SDOrder = DDI.getSDNodeOrder(); 1220 1221 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1222 // that DW_OP_stack_value is desired. 1223 assert(isa<DbgValueInst>(DDI.getDI())); 1224 bool StackValue = true; 1225 1226 // Can this Value can be encoded without any further work? 1227 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1228 return; 1229 1230 // Attempt to salvage back through as many instructions as possible. Bail if 1231 // a non-instruction is seen, such as a constant expression or global 1232 // variable. FIXME: Further work could recover those too. 1233 while (isa<Instruction>(V)) { 1234 Instruction &VAsInst = *cast<Instruction>(V); 1235 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1236 1237 // If we cannot salvage any further, and haven't yet found a suitable debug 1238 // expression, bail out. 1239 if (!NewExpr) 1240 break; 1241 1242 // New value and expr now represent this debuginfo. 1243 V = VAsInst.getOperand(0); 1244 Expr = NewExpr; 1245 1246 // Some kind of simplification occurred: check whether the operand of the 1247 // salvaged debug expression can be encoded in this DAG. 1248 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1249 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1250 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1251 return; 1252 } 1253 } 1254 1255 // This was the final opportunity to salvage this debug information, and it 1256 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1257 // any earlier variable location. 1258 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1259 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1260 DAG.AddDbgValue(SDV, nullptr, false); 1261 1262 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1263 << "\n"); 1264 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1265 << "\n"); 1266 } 1267 1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1269 DIExpression *Expr, DebugLoc dl, 1270 DebugLoc InstDL, unsigned Order) { 1271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1272 SDDbgValue *SDV; 1273 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1274 isa<ConstantPointerNull>(V)) { 1275 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1276 DAG.AddDbgValue(SDV, nullptr, false); 1277 return true; 1278 } 1279 1280 // If the Value is a frame index, we can create a FrameIndex debug value 1281 // without relying on the DAG at all. 1282 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1283 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1284 if (SI != FuncInfo.StaticAllocaMap.end()) { 1285 auto SDV = 1286 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1287 /*IsIndirect*/ false, dl, SDNodeOrder); 1288 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1289 // is still available even if the SDNode gets optimized out. 1290 DAG.AddDbgValue(SDV, nullptr, false); 1291 return true; 1292 } 1293 } 1294 1295 // Do not use getValue() in here; we don't want to generate code at 1296 // this point if it hasn't been done yet. 1297 SDValue N = NodeMap[V]; 1298 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1299 N = UnusedArgNodeMap[V]; 1300 if (N.getNode()) { 1301 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1302 return true; 1303 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1304 DAG.AddDbgValue(SDV, N.getNode(), false); 1305 return true; 1306 } 1307 1308 // Special rules apply for the first dbg.values of parameter variables in a 1309 // function. Identify them by the fact they reference Argument Values, that 1310 // they're parameters, and they are parameters of the current function. We 1311 // need to let them dangle until they get an SDNode. 1312 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1313 !InstDL.getInlinedAt(); 1314 if (!IsParamOfFunc) { 1315 // The value is not used in this block yet (or it would have an SDNode). 1316 // We still want the value to appear for the user if possible -- if it has 1317 // an associated VReg, we can refer to that instead. 1318 auto VMI = FuncInfo.ValueMap.find(V); 1319 if (VMI != FuncInfo.ValueMap.end()) { 1320 unsigned Reg = VMI->second; 1321 // If this is a PHI node, it may be split up into several MI PHI nodes 1322 // (in FunctionLoweringInfo::set). 1323 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1324 V->getType(), None); 1325 if (RFV.occupiesMultipleRegs()) { 1326 unsigned Offset = 0; 1327 unsigned BitsToDescribe = 0; 1328 if (auto VarSize = Var->getSizeInBits()) 1329 BitsToDescribe = *VarSize; 1330 if (auto Fragment = Expr->getFragmentInfo()) 1331 BitsToDescribe = Fragment->SizeInBits; 1332 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1333 unsigned RegisterSize = RegAndSize.second; 1334 // Bail out if all bits are described already. 1335 if (Offset >= BitsToDescribe) 1336 break; 1337 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1338 ? BitsToDescribe - Offset 1339 : RegisterSize; 1340 auto FragmentExpr = DIExpression::createFragmentExpression( 1341 Expr, Offset, FragmentSize); 1342 if (!FragmentExpr) 1343 continue; 1344 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1345 false, dl, SDNodeOrder); 1346 DAG.AddDbgValue(SDV, nullptr, false); 1347 Offset += RegisterSize; 1348 } 1349 } else { 1350 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1351 DAG.AddDbgValue(SDV, nullptr, false); 1352 } 1353 return true; 1354 } 1355 } 1356 1357 return false; 1358 } 1359 1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1361 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1362 for (auto &Pair : DanglingDebugInfoMap) 1363 for (auto &DDI : Pair.second) 1364 salvageUnresolvedDbgValue(DDI); 1365 clearDanglingDebugInfo(); 1366 } 1367 1368 /// getCopyFromRegs - If there was virtual register allocated for the value V 1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1371 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1372 SDValue Result; 1373 1374 if (It != FuncInfo.ValueMap.end()) { 1375 unsigned InReg = It->second; 1376 1377 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1378 DAG.getDataLayout(), InReg, Ty, 1379 None); // This is not an ABI copy. 1380 SDValue Chain = DAG.getEntryNode(); 1381 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1382 V); 1383 resolveDanglingDebugInfo(V, Result); 1384 } 1385 1386 return Result; 1387 } 1388 1389 /// getValue - Return an SDValue for the given Value. 1390 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1391 // If we already have an SDValue for this value, use it. It's important 1392 // to do this first, so that we don't create a CopyFromReg if we already 1393 // have a regular SDValue. 1394 SDValue &N = NodeMap[V]; 1395 if (N.getNode()) return N; 1396 1397 // If there's a virtual register allocated and initialized for this 1398 // value, use it. 1399 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1400 return copyFromReg; 1401 1402 // Otherwise create a new SDValue and remember it. 1403 SDValue Val = getValueImpl(V); 1404 NodeMap[V] = Val; 1405 resolveDanglingDebugInfo(V, Val); 1406 return Val; 1407 } 1408 1409 // Return true if SDValue exists for the given Value 1410 bool SelectionDAGBuilder::findValue(const Value *V) const { 1411 return (NodeMap.find(V) != NodeMap.end()) || 1412 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1413 } 1414 1415 /// getNonRegisterValue - Return an SDValue for the given Value, but 1416 /// don't look in FuncInfo.ValueMap for a virtual register. 1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1418 // If we already have an SDValue for this value, use it. 1419 SDValue &N = NodeMap[V]; 1420 if (N.getNode()) { 1421 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1422 // Remove the debug location from the node as the node is about to be used 1423 // in a location which may differ from the original debug location. This 1424 // is relevant to Constant and ConstantFP nodes because they can appear 1425 // as constant expressions inside PHI nodes. 1426 N->setDebugLoc(DebugLoc()); 1427 } 1428 return N; 1429 } 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1439 /// Create an SDValue for the given value. 1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1442 1443 if (const Constant *C = dyn_cast<Constant>(V)) { 1444 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1445 1446 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1447 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1448 1449 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1450 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1451 1452 if (isa<ConstantPointerNull>(C)) { 1453 unsigned AS = V->getType()->getPointerAddressSpace(); 1454 return DAG.getConstant(0, getCurSDLoc(), 1455 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1456 } 1457 1458 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1459 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1460 1461 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1462 return DAG.getUNDEF(VT); 1463 1464 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1465 visit(CE->getOpcode(), *CE); 1466 SDValue N1 = NodeMap[V]; 1467 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1468 return N1; 1469 } 1470 1471 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1472 SmallVector<SDValue, 4> Constants; 1473 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1474 OI != OE; ++OI) { 1475 SDNode *Val = getValue(*OI).getNode(); 1476 // If the operand is an empty aggregate, there are no values. 1477 if (!Val) continue; 1478 // Add each leaf value from the operand to the Constants list 1479 // to form a flattened list of all the values. 1480 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1481 Constants.push_back(SDValue(Val, i)); 1482 } 1483 1484 return DAG.getMergeValues(Constants, getCurSDLoc()); 1485 } 1486 1487 if (const ConstantDataSequential *CDS = 1488 dyn_cast<ConstantDataSequential>(C)) { 1489 SmallVector<SDValue, 4> Ops; 1490 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1491 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1492 // Add each leaf value from the operand to the Constants list 1493 // to form a flattened list of all the values. 1494 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1495 Ops.push_back(SDValue(Val, i)); 1496 } 1497 1498 if (isa<ArrayType>(CDS->getType())) 1499 return DAG.getMergeValues(Ops, getCurSDLoc()); 1500 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1501 } 1502 1503 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1504 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1505 "Unknown struct or array constant!"); 1506 1507 SmallVector<EVT, 4> ValueVTs; 1508 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1509 unsigned NumElts = ValueVTs.size(); 1510 if (NumElts == 0) 1511 return SDValue(); // empty struct 1512 SmallVector<SDValue, 4> Constants(NumElts); 1513 for (unsigned i = 0; i != NumElts; ++i) { 1514 EVT EltVT = ValueVTs[i]; 1515 if (isa<UndefValue>(C)) 1516 Constants[i] = DAG.getUNDEF(EltVT); 1517 else if (EltVT.isFloatingPoint()) 1518 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1519 else 1520 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1521 } 1522 1523 return DAG.getMergeValues(Constants, getCurSDLoc()); 1524 } 1525 1526 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1527 return DAG.getBlockAddress(BA, VT); 1528 1529 VectorType *VecTy = cast<VectorType>(V->getType()); 1530 unsigned NumElements = VecTy->getNumElements(); 1531 1532 // Now that we know the number and type of the elements, get that number of 1533 // elements into the Ops array based on what kind of constant it is. 1534 SmallVector<SDValue, 16> Ops; 1535 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1536 for (unsigned i = 0; i != NumElements; ++i) 1537 Ops.push_back(getValue(CV->getOperand(i))); 1538 } else { 1539 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1540 EVT EltVT = 1541 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1542 1543 SDValue Op; 1544 if (EltVT.isFloatingPoint()) 1545 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1546 else 1547 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1548 Ops.assign(NumElements, Op); 1549 } 1550 1551 // Create a BUILD_VECTOR node. 1552 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1553 } 1554 1555 // If this is a static alloca, generate it as the frameindex instead of 1556 // computation. 1557 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1558 DenseMap<const AllocaInst*, int>::iterator SI = 1559 FuncInfo.StaticAllocaMap.find(AI); 1560 if (SI != FuncInfo.StaticAllocaMap.end()) 1561 return DAG.getFrameIndex(SI->second, 1562 TLI.getFrameIndexTy(DAG.getDataLayout())); 1563 } 1564 1565 // If this is an instruction which fast-isel has deferred, select it now. 1566 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1567 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1568 1569 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1570 Inst->getType(), getABIRegCopyCC(V)); 1571 SDValue Chain = DAG.getEntryNode(); 1572 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1573 } 1574 1575 llvm_unreachable("Can't get register for value!"); 1576 } 1577 1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1582 bool IsSEH = isAsynchronousEHPersonality(Pers); 1583 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1584 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1585 if (!IsSEH) 1586 CatchPadMBB->setIsEHScopeEntry(); 1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1588 if (IsMSVCCXX || IsCoreCLR) 1589 CatchPadMBB->setIsEHFuncletEntry(); 1590 // Wasm does not need catchpads anymore 1591 if (!IsWasmCXX) 1592 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1593 getControlRoot())); 1594 } 1595 1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1597 // Update machine-CFG edge. 1598 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1599 FuncInfo.MBB->addSuccessor(TargetMBB); 1600 1601 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1602 bool IsSEH = isAsynchronousEHPersonality(Pers); 1603 if (IsSEH) { 1604 // If this is not a fall-through branch or optimizations are switched off, 1605 // emit the branch. 1606 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1607 TM.getOptLevel() == CodeGenOpt::None) 1608 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1609 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1610 return; 1611 } 1612 1613 // Figure out the funclet membership for the catchret's successor. 1614 // This will be used by the FuncletLayout pass to determine how to order the 1615 // BB's. 1616 // A 'catchret' returns to the outer scope's color. 1617 Value *ParentPad = I.getCatchSwitchParentPad(); 1618 const BasicBlock *SuccessorColor; 1619 if (isa<ConstantTokenNone>(ParentPad)) 1620 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1621 else 1622 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1623 assert(SuccessorColor && "No parent funclet for catchret!"); 1624 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1625 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1626 1627 // Create the terminator node. 1628 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1629 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1630 DAG.getBasicBlock(SuccessorColorMBB)); 1631 DAG.setRoot(Ret); 1632 } 1633 1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1635 // Don't emit any special code for the cleanuppad instruction. It just marks 1636 // the start of an EH scope/funclet. 1637 FuncInfo.MBB->setIsEHScopeEntry(); 1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1639 if (Pers != EHPersonality::Wasm_CXX) { 1640 FuncInfo.MBB->setIsEHFuncletEntry(); 1641 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1642 } 1643 } 1644 1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1646 // the control flow always stops at the single catch pad, as it does for a 1647 // cleanup pad. In case the exception caught is not of the types the catch pad 1648 // catches, it will be rethrown by a rethrow. 1649 static void findWasmUnwindDestinations( 1650 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1651 BranchProbability Prob, 1652 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1653 &UnwindDests) { 1654 while (EHPadBB) { 1655 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1656 if (isa<CleanupPadInst>(Pad)) { 1657 // Stop on cleanup pads. 1658 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1659 UnwindDests.back().first->setIsEHScopeEntry(); 1660 break; 1661 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1662 // Add the catchpad handlers to the possible destinations. We don't 1663 // continue to the unwind destination of the catchswitch for wasm. 1664 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1665 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1666 UnwindDests.back().first->setIsEHScopeEntry(); 1667 } 1668 break; 1669 } else { 1670 continue; 1671 } 1672 } 1673 } 1674 1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1676 /// many places it could ultimately go. In the IR, we have a single unwind 1677 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1678 /// This function skips over imaginary basic blocks that hold catchswitch 1679 /// instructions, and finds all the "real" machine 1680 /// basic block destinations. As those destinations may not be successors of 1681 /// EHPadBB, here we also calculate the edge probability to those destinations. 1682 /// The passed-in Prob is the edge probability to EHPadBB. 1683 static void findUnwindDestinations( 1684 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1685 BranchProbability Prob, 1686 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1687 &UnwindDests) { 1688 EHPersonality Personality = 1689 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1690 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1691 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1692 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1693 bool IsSEH = isAsynchronousEHPersonality(Personality); 1694 1695 if (IsWasmCXX) { 1696 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1697 assert(UnwindDests.size() <= 1 && 1698 "There should be at most one unwind destination for wasm"); 1699 return; 1700 } 1701 1702 while (EHPadBB) { 1703 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1704 BasicBlock *NewEHPadBB = nullptr; 1705 if (isa<LandingPadInst>(Pad)) { 1706 // Stop on landingpads. They are not funclets. 1707 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1708 break; 1709 } else if (isa<CleanupPadInst>(Pad)) { 1710 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1711 // personalities. 1712 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1713 UnwindDests.back().first->setIsEHScopeEntry(); 1714 UnwindDests.back().first->setIsEHFuncletEntry(); 1715 break; 1716 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1717 // Add the catchpad handlers to the possible destinations. 1718 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1719 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1720 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1721 if (IsMSVCCXX || IsCoreCLR) 1722 UnwindDests.back().first->setIsEHFuncletEntry(); 1723 if (!IsSEH) 1724 UnwindDests.back().first->setIsEHScopeEntry(); 1725 } 1726 NewEHPadBB = CatchSwitch->getUnwindDest(); 1727 } else { 1728 continue; 1729 } 1730 1731 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1732 if (BPI && NewEHPadBB) 1733 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1734 EHPadBB = NewEHPadBB; 1735 } 1736 } 1737 1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1739 // Update successor info. 1740 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1741 auto UnwindDest = I.getUnwindDest(); 1742 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1743 BranchProbability UnwindDestProb = 1744 (BPI && UnwindDest) 1745 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1746 : BranchProbability::getZero(); 1747 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1748 for (auto &UnwindDest : UnwindDests) { 1749 UnwindDest.first->setIsEHPad(); 1750 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1751 } 1752 FuncInfo.MBB->normalizeSuccProbs(); 1753 1754 // Create the terminator node. 1755 SDValue Ret = 1756 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1757 DAG.setRoot(Ret); 1758 } 1759 1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1761 report_fatal_error("visitCatchSwitch not yet implemented!"); 1762 } 1763 1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1766 auto &DL = DAG.getDataLayout(); 1767 SDValue Chain = getControlRoot(); 1768 SmallVector<ISD::OutputArg, 8> Outs; 1769 SmallVector<SDValue, 8> OutVals; 1770 1771 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1772 // lower 1773 // 1774 // %val = call <ty> @llvm.experimental.deoptimize() 1775 // ret <ty> %val 1776 // 1777 // differently. 1778 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1779 LowerDeoptimizingReturn(); 1780 return; 1781 } 1782 1783 if (!FuncInfo.CanLowerReturn) { 1784 unsigned DemoteReg = FuncInfo.DemoteRegister; 1785 const Function *F = I.getParent()->getParent(); 1786 1787 // Emit a store of the return value through the virtual register. 1788 // Leave Outs empty so that LowerReturn won't try to load return 1789 // registers the usual way. 1790 SmallVector<EVT, 1> PtrValueVTs; 1791 ComputeValueVTs(TLI, DL, 1792 F->getReturnType()->getPointerTo( 1793 DAG.getDataLayout().getAllocaAddrSpace()), 1794 PtrValueVTs); 1795 1796 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1797 DemoteReg, PtrValueVTs[0]); 1798 SDValue RetOp = getValue(I.getOperand(0)); 1799 1800 SmallVector<EVT, 4> ValueVTs, MemVTs; 1801 SmallVector<uint64_t, 4> Offsets; 1802 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1803 &Offsets); 1804 unsigned NumValues = ValueVTs.size(); 1805 1806 SmallVector<SDValue, 4> Chains(NumValues); 1807 for (unsigned i = 0; i != NumValues; ++i) { 1808 // An aggregate return value cannot wrap around the address space, so 1809 // offsets to its parts don't wrap either. 1810 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1811 1812 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1813 if (MemVTs[i] != ValueVTs[i]) 1814 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1815 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1816 // FIXME: better loc info would be nice. 1817 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1818 } 1819 1820 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1821 MVT::Other, Chains); 1822 } else if (I.getNumOperands() != 0) { 1823 SmallVector<EVT, 4> ValueVTs; 1824 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1825 unsigned NumValues = ValueVTs.size(); 1826 if (NumValues) { 1827 SDValue RetOp = getValue(I.getOperand(0)); 1828 1829 const Function *F = I.getParent()->getParent(); 1830 1831 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1832 I.getOperand(0)->getType(), F->getCallingConv(), 1833 /*IsVarArg*/ false); 1834 1835 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1836 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1837 Attribute::SExt)) 1838 ExtendKind = ISD::SIGN_EXTEND; 1839 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1840 Attribute::ZExt)) 1841 ExtendKind = ISD::ZERO_EXTEND; 1842 1843 LLVMContext &Context = F->getContext(); 1844 bool RetInReg = F->getAttributes().hasAttribute( 1845 AttributeList::ReturnIndex, Attribute::InReg); 1846 1847 for (unsigned j = 0; j != NumValues; ++j) { 1848 EVT VT = ValueVTs[j]; 1849 1850 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1851 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1852 1853 CallingConv::ID CC = F->getCallingConv(); 1854 1855 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1856 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1857 SmallVector<SDValue, 4> Parts(NumParts); 1858 getCopyToParts(DAG, getCurSDLoc(), 1859 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1860 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1861 1862 // 'inreg' on function refers to return value 1863 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1864 if (RetInReg) 1865 Flags.setInReg(); 1866 1867 if (I.getOperand(0)->getType()->isPointerTy()) { 1868 Flags.setPointer(); 1869 Flags.setPointerAddrSpace( 1870 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1871 } 1872 1873 if (NeedsRegBlock) { 1874 Flags.setInConsecutiveRegs(); 1875 if (j == NumValues - 1) 1876 Flags.setInConsecutiveRegsLast(); 1877 } 1878 1879 // Propagate extension type if any 1880 if (ExtendKind == ISD::SIGN_EXTEND) 1881 Flags.setSExt(); 1882 else if (ExtendKind == ISD::ZERO_EXTEND) 1883 Flags.setZExt(); 1884 1885 for (unsigned i = 0; i < NumParts; ++i) { 1886 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1887 VT, /*isfixed=*/true, 0, 0)); 1888 OutVals.push_back(Parts[i]); 1889 } 1890 } 1891 } 1892 } 1893 1894 // Push in swifterror virtual register as the last element of Outs. This makes 1895 // sure swifterror virtual register will be returned in the swifterror 1896 // physical register. 1897 const Function *F = I.getParent()->getParent(); 1898 if (TLI.supportSwiftError() && 1899 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1900 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1901 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1902 Flags.setSwiftError(); 1903 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1904 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1905 true /*isfixed*/, 1 /*origidx*/, 1906 0 /*partOffs*/)); 1907 // Create SDNode for the swifterror virtual register. 1908 OutVals.push_back( 1909 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1910 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1911 EVT(TLI.getPointerTy(DL)))); 1912 } 1913 1914 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1915 CallingConv::ID CallConv = 1916 DAG.getMachineFunction().getFunction().getCallingConv(); 1917 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1918 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1919 1920 // Verify that the target's LowerReturn behaved as expected. 1921 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1922 "LowerReturn didn't return a valid chain!"); 1923 1924 // Update the DAG with the new chain value resulting from return lowering. 1925 DAG.setRoot(Chain); 1926 } 1927 1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1929 /// created for it, emit nodes to copy the value into the virtual 1930 /// registers. 1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1932 // Skip empty types 1933 if (V->getType()->isEmptyTy()) 1934 return; 1935 1936 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1937 if (VMI != FuncInfo.ValueMap.end()) { 1938 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1939 CopyValueToVirtualRegister(V, VMI->second); 1940 } 1941 } 1942 1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1944 /// the current basic block, add it to ValueMap now so that we'll get a 1945 /// CopyTo/FromReg. 1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1947 // No need to export constants. 1948 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1949 1950 // Already exported? 1951 if (FuncInfo.isExportedInst(V)) return; 1952 1953 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1954 CopyValueToVirtualRegister(V, Reg); 1955 } 1956 1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1958 const BasicBlock *FromBB) { 1959 // The operands of the setcc have to be in this block. We don't know 1960 // how to export them from some other block. 1961 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1962 // Can export from current BB. 1963 if (VI->getParent() == FromBB) 1964 return true; 1965 1966 // Is already exported, noop. 1967 return FuncInfo.isExportedInst(V); 1968 } 1969 1970 // If this is an argument, we can export it if the BB is the entry block or 1971 // if it is already exported. 1972 if (isa<Argument>(V)) { 1973 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1974 return true; 1975 1976 // Otherwise, can only export this if it is already exported. 1977 return FuncInfo.isExportedInst(V); 1978 } 1979 1980 // Otherwise, constants can always be exported. 1981 return true; 1982 } 1983 1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1985 BranchProbability 1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1987 const MachineBasicBlock *Dst) const { 1988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1989 const BasicBlock *SrcBB = Src->getBasicBlock(); 1990 const BasicBlock *DstBB = Dst->getBasicBlock(); 1991 if (!BPI) { 1992 // If BPI is not available, set the default probability as 1 / N, where N is 1993 // the number of successors. 1994 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1995 return BranchProbability(1, SuccSize); 1996 } 1997 return BPI->getEdgeProbability(SrcBB, DstBB); 1998 } 1999 2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2001 MachineBasicBlock *Dst, 2002 BranchProbability Prob) { 2003 if (!FuncInfo.BPI) 2004 Src->addSuccessorWithoutProb(Dst); 2005 else { 2006 if (Prob.isUnknown()) 2007 Prob = getEdgeProbability(Src, Dst); 2008 Src->addSuccessor(Dst, Prob); 2009 } 2010 } 2011 2012 static bool InBlock(const Value *V, const BasicBlock *BB) { 2013 if (const Instruction *I = dyn_cast<Instruction>(V)) 2014 return I->getParent() == BB; 2015 return true; 2016 } 2017 2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2019 /// This function emits a branch and is used at the leaves of an OR or an 2020 /// AND operator tree. 2021 void 2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2023 MachineBasicBlock *TBB, 2024 MachineBasicBlock *FBB, 2025 MachineBasicBlock *CurBB, 2026 MachineBasicBlock *SwitchBB, 2027 BranchProbability TProb, 2028 BranchProbability FProb, 2029 bool InvertCond) { 2030 const BasicBlock *BB = CurBB->getBasicBlock(); 2031 2032 // If the leaf of the tree is a comparison, merge the condition into 2033 // the caseblock. 2034 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2035 // The operands of the cmp have to be in this block. We don't know 2036 // how to export them from some other block. If this is the first block 2037 // of the sequence, no exporting is needed. 2038 if (CurBB == SwitchBB || 2039 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2040 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2041 ISD::CondCode Condition; 2042 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2043 ICmpInst::Predicate Pred = 2044 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2045 Condition = getICmpCondCode(Pred); 2046 } else { 2047 const FCmpInst *FC = cast<FCmpInst>(Cond); 2048 FCmpInst::Predicate Pred = 2049 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2050 Condition = getFCmpCondCode(Pred); 2051 if (TM.Options.NoNaNsFPMath) 2052 Condition = getFCmpCodeWithoutNaN(Condition); 2053 } 2054 2055 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2056 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2057 SL->SwitchCases.push_back(CB); 2058 return; 2059 } 2060 } 2061 2062 // Create a CaseBlock record representing this branch. 2063 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2064 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2065 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2066 SL->SwitchCases.push_back(CB); 2067 } 2068 2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2070 MachineBasicBlock *TBB, 2071 MachineBasicBlock *FBB, 2072 MachineBasicBlock *CurBB, 2073 MachineBasicBlock *SwitchBB, 2074 Instruction::BinaryOps Opc, 2075 BranchProbability TProb, 2076 BranchProbability FProb, 2077 bool InvertCond) { 2078 // Skip over not part of the tree and remember to invert op and operands at 2079 // next level. 2080 Value *NotCond; 2081 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2082 InBlock(NotCond, CurBB->getBasicBlock())) { 2083 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2084 !InvertCond); 2085 return; 2086 } 2087 2088 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2089 // Compute the effective opcode for Cond, taking into account whether it needs 2090 // to be inverted, e.g. 2091 // and (not (or A, B)), C 2092 // gets lowered as 2093 // and (and (not A, not B), C) 2094 unsigned BOpc = 0; 2095 if (BOp) { 2096 BOpc = BOp->getOpcode(); 2097 if (InvertCond) { 2098 if (BOpc == Instruction::And) 2099 BOpc = Instruction::Or; 2100 else if (BOpc == Instruction::Or) 2101 BOpc = Instruction::And; 2102 } 2103 } 2104 2105 // If this node is not part of the or/and tree, emit it as a branch. 2106 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2107 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2108 BOp->getParent() != CurBB->getBasicBlock() || 2109 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2110 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2111 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2112 TProb, FProb, InvertCond); 2113 return; 2114 } 2115 2116 // Create TmpBB after CurBB. 2117 MachineFunction::iterator BBI(CurBB); 2118 MachineFunction &MF = DAG.getMachineFunction(); 2119 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2120 CurBB->getParent()->insert(++BBI, TmpBB); 2121 2122 if (Opc == Instruction::Or) { 2123 // Codegen X | Y as: 2124 // BB1: 2125 // jmp_if_X TBB 2126 // jmp TmpBB 2127 // TmpBB: 2128 // jmp_if_Y TBB 2129 // jmp FBB 2130 // 2131 2132 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2133 // The requirement is that 2134 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2135 // = TrueProb for original BB. 2136 // Assuming the original probabilities are A and B, one choice is to set 2137 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2138 // A/(1+B) and 2B/(1+B). This choice assumes that 2139 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2140 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2141 // TmpBB, but the math is more complicated. 2142 2143 auto NewTrueProb = TProb / 2; 2144 auto NewFalseProb = TProb / 2 + FProb; 2145 // Emit the LHS condition. 2146 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2147 NewTrueProb, NewFalseProb, InvertCond); 2148 2149 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2150 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2151 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2152 // Emit the RHS condition into TmpBB. 2153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2154 Probs[0], Probs[1], InvertCond); 2155 } else { 2156 assert(Opc == Instruction::And && "Unknown merge op!"); 2157 // Codegen X & Y as: 2158 // BB1: 2159 // jmp_if_X TmpBB 2160 // jmp FBB 2161 // TmpBB: 2162 // jmp_if_Y TBB 2163 // jmp FBB 2164 // 2165 // This requires creation of TmpBB after CurBB. 2166 2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2168 // The requirement is that 2169 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2170 // = FalseProb for original BB. 2171 // Assuming the original probabilities are A and B, one choice is to set 2172 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2173 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2174 // TrueProb for BB1 * FalseProb for TmpBB. 2175 2176 auto NewTrueProb = TProb + FProb / 2; 2177 auto NewFalseProb = FProb / 2; 2178 // Emit the LHS condition. 2179 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2180 NewTrueProb, NewFalseProb, InvertCond); 2181 2182 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2183 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2184 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2185 // Emit the RHS condition into TmpBB. 2186 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2187 Probs[0], Probs[1], InvertCond); 2188 } 2189 } 2190 2191 /// If the set of cases should be emitted as a series of branches, return true. 2192 /// If we should emit this as a bunch of and/or'd together conditions, return 2193 /// false. 2194 bool 2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2196 if (Cases.size() != 2) return true; 2197 2198 // If this is two comparisons of the same values or'd or and'd together, they 2199 // will get folded into a single comparison, so don't emit two blocks. 2200 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2201 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2202 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2203 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2204 return false; 2205 } 2206 2207 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2208 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2209 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2210 Cases[0].CC == Cases[1].CC && 2211 isa<Constant>(Cases[0].CmpRHS) && 2212 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2213 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2214 return false; 2215 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2216 return false; 2217 } 2218 2219 return true; 2220 } 2221 2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2223 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2224 2225 // Update machine-CFG edges. 2226 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2227 2228 if (I.isUnconditional()) { 2229 // Update machine-CFG edges. 2230 BrMBB->addSuccessor(Succ0MBB); 2231 2232 // If this is not a fall-through branch or optimizations are switched off, 2233 // emit the branch. 2234 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2235 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2236 MVT::Other, getControlRoot(), 2237 DAG.getBasicBlock(Succ0MBB))); 2238 2239 return; 2240 } 2241 2242 // If this condition is one of the special cases we handle, do special stuff 2243 // now. 2244 const Value *CondVal = I.getCondition(); 2245 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2246 2247 // If this is a series of conditions that are or'd or and'd together, emit 2248 // this as a sequence of branches instead of setcc's with and/or operations. 2249 // As long as jumps are not expensive, this should improve performance. 2250 // For example, instead of something like: 2251 // cmp A, B 2252 // C = seteq 2253 // cmp D, E 2254 // F = setle 2255 // or C, F 2256 // jnz foo 2257 // Emit: 2258 // cmp A, B 2259 // je foo 2260 // cmp D, E 2261 // jle foo 2262 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2263 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2264 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2265 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2266 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2267 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2268 Opcode, 2269 getEdgeProbability(BrMBB, Succ0MBB), 2270 getEdgeProbability(BrMBB, Succ1MBB), 2271 /*InvertCond=*/false); 2272 // If the compares in later blocks need to use values not currently 2273 // exported from this block, export them now. This block should always 2274 // be the first entry. 2275 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2276 2277 // Allow some cases to be rejected. 2278 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2279 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2280 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2282 } 2283 2284 // Emit the branch for this block. 2285 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2286 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2287 return; 2288 } 2289 2290 // Okay, we decided not to do this, remove any inserted MBB's and clear 2291 // SwitchCases. 2292 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2293 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2294 2295 SL->SwitchCases.clear(); 2296 } 2297 } 2298 2299 // Create a CaseBlock record representing this branch. 2300 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2301 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2302 2303 // Use visitSwitchCase to actually insert the fast branch sequence for this 2304 // cond branch. 2305 visitSwitchCase(CB, BrMBB); 2306 } 2307 2308 /// visitSwitchCase - Emits the necessary code to represent a single node in 2309 /// the binary search tree resulting from lowering a switch instruction. 2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2311 MachineBasicBlock *SwitchBB) { 2312 SDValue Cond; 2313 SDValue CondLHS = getValue(CB.CmpLHS); 2314 SDLoc dl = CB.DL; 2315 2316 if (CB.CC == ISD::SETTRUE) { 2317 // Branch or fall through to TrueBB. 2318 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2319 SwitchBB->normalizeSuccProbs(); 2320 if (CB.TrueBB != NextBlock(SwitchBB)) { 2321 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2322 DAG.getBasicBlock(CB.TrueBB))); 2323 } 2324 return; 2325 } 2326 2327 auto &TLI = DAG.getTargetLoweringInfo(); 2328 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2329 2330 // Build the setcc now. 2331 if (!CB.CmpMHS) { 2332 // Fold "(X == true)" to X and "(X == false)" to !X to 2333 // handle common cases produced by branch lowering. 2334 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2335 CB.CC == ISD::SETEQ) 2336 Cond = CondLHS; 2337 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2338 CB.CC == ISD::SETEQ) { 2339 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2340 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2341 } else { 2342 SDValue CondRHS = getValue(CB.CmpRHS); 2343 2344 // If a pointer's DAG type is larger than its memory type then the DAG 2345 // values are zero-extended. This breaks signed comparisons so truncate 2346 // back to the underlying type before doing the compare. 2347 if (CondLHS.getValueType() != MemVT) { 2348 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2349 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2350 } 2351 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2352 } 2353 } else { 2354 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2355 2356 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2357 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2358 2359 SDValue CmpOp = getValue(CB.CmpMHS); 2360 EVT VT = CmpOp.getValueType(); 2361 2362 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2363 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2364 ISD::SETLE); 2365 } else { 2366 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2367 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2368 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2369 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2370 } 2371 } 2372 2373 // Update successor info 2374 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2375 // TrueBB and FalseBB are always different unless the incoming IR is 2376 // degenerate. This only happens when running llc on weird IR. 2377 if (CB.TrueBB != CB.FalseBB) 2378 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2379 SwitchBB->normalizeSuccProbs(); 2380 2381 // If the lhs block is the next block, invert the condition so that we can 2382 // fall through to the lhs instead of the rhs block. 2383 if (CB.TrueBB == NextBlock(SwitchBB)) { 2384 std::swap(CB.TrueBB, CB.FalseBB); 2385 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2386 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2387 } 2388 2389 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2390 MVT::Other, getControlRoot(), Cond, 2391 DAG.getBasicBlock(CB.TrueBB)); 2392 2393 // Insert the false branch. Do this even if it's a fall through branch, 2394 // this makes it easier to do DAG optimizations which require inverting 2395 // the branch condition. 2396 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2397 DAG.getBasicBlock(CB.FalseBB)); 2398 2399 DAG.setRoot(BrCond); 2400 } 2401 2402 /// visitJumpTable - Emit JumpTable node in the current MBB 2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2404 // Emit the code for the jump table 2405 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2406 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2407 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2408 JT.Reg, PTy); 2409 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2410 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2411 MVT::Other, Index.getValue(1), 2412 Table, Index); 2413 DAG.setRoot(BrJumpTable); 2414 } 2415 2416 /// visitJumpTableHeader - This function emits necessary code to produce index 2417 /// in the JumpTable from switch case. 2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2419 JumpTableHeader &JTH, 2420 MachineBasicBlock *SwitchBB) { 2421 SDLoc dl = getCurSDLoc(); 2422 2423 // Subtract the lowest switch case value from the value being switched on. 2424 SDValue SwitchOp = getValue(JTH.SValue); 2425 EVT VT = SwitchOp.getValueType(); 2426 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2427 DAG.getConstant(JTH.First, dl, VT)); 2428 2429 // The SDNode we just created, which holds the value being switched on minus 2430 // the smallest case value, needs to be copied to a virtual register so it 2431 // can be used as an index into the jump table in a subsequent basic block. 2432 // This value may be smaller or larger than the target's pointer type, and 2433 // therefore require extension or truncating. 2434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2435 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2436 2437 unsigned JumpTableReg = 2438 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2439 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2440 JumpTableReg, SwitchOp); 2441 JT.Reg = JumpTableReg; 2442 2443 if (!JTH.OmitRangeCheck) { 2444 // Emit the range check for the jump table, and branch to the default block 2445 // for the switch statement if the value being switched on exceeds the 2446 // largest case in the switch. 2447 SDValue CMP = DAG.getSetCC( 2448 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2449 Sub.getValueType()), 2450 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2451 2452 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2453 MVT::Other, CopyTo, CMP, 2454 DAG.getBasicBlock(JT.Default)); 2455 2456 // Avoid emitting unnecessary branches to the next block. 2457 if (JT.MBB != NextBlock(SwitchBB)) 2458 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2459 DAG.getBasicBlock(JT.MBB)); 2460 2461 DAG.setRoot(BrCond); 2462 } else { 2463 // Avoid emitting unnecessary branches to the next block. 2464 if (JT.MBB != NextBlock(SwitchBB)) 2465 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2466 DAG.getBasicBlock(JT.MBB))); 2467 else 2468 DAG.setRoot(CopyTo); 2469 } 2470 } 2471 2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2473 /// variable if there exists one. 2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2475 SDValue &Chain) { 2476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2477 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2478 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2479 MachineFunction &MF = DAG.getMachineFunction(); 2480 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2481 MachineSDNode *Node = 2482 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2483 if (Global) { 2484 MachinePointerInfo MPInfo(Global); 2485 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2486 MachineMemOperand::MODereferenceable; 2487 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2488 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2489 DAG.setNodeMemRefs(Node, {MemRef}); 2490 } 2491 if (PtrTy != PtrMemTy) 2492 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2493 return SDValue(Node, 0); 2494 } 2495 2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2497 /// tail spliced into a stack protector check success bb. 2498 /// 2499 /// For a high level explanation of how this fits into the stack protector 2500 /// generation see the comment on the declaration of class 2501 /// StackProtectorDescriptor. 2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2503 MachineBasicBlock *ParentBB) { 2504 2505 // First create the loads to the guard/stack slot for the comparison. 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 2510 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2511 int FI = MFI.getStackProtectorIndex(); 2512 2513 SDValue Guard; 2514 SDLoc dl = getCurSDLoc(); 2515 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2516 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2517 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2518 2519 // Generate code to load the content of the guard slot. 2520 SDValue GuardVal = DAG.getLoad( 2521 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2523 MachineMemOperand::MOVolatile); 2524 2525 if (TLI.useStackGuardXorFP()) 2526 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2527 2528 // Retrieve guard check function, nullptr if instrumentation is inlined. 2529 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2530 // The target provides a guard check function to validate the guard value. 2531 // Generate a call to that function with the content of the guard slot as 2532 // argument. 2533 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2534 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2535 2536 TargetLowering::ArgListTy Args; 2537 TargetLowering::ArgListEntry Entry; 2538 Entry.Node = GuardVal; 2539 Entry.Ty = FnTy->getParamType(0); 2540 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2541 Entry.IsInReg = true; 2542 Args.push_back(Entry); 2543 2544 TargetLowering::CallLoweringInfo CLI(DAG); 2545 CLI.setDebugLoc(getCurSDLoc()) 2546 .setChain(DAG.getEntryNode()) 2547 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2548 getValue(GuardCheckFn), std::move(Args)); 2549 2550 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2551 DAG.setRoot(Result.second); 2552 return; 2553 } 2554 2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2556 // Otherwise, emit a volatile load to retrieve the stack guard value. 2557 SDValue Chain = DAG.getEntryNode(); 2558 if (TLI.useLoadStackGuardNode()) { 2559 Guard = getLoadStackGuard(DAG, dl, Chain); 2560 } else { 2561 const Value *IRGuard = TLI.getSDagStackGuard(M); 2562 SDValue GuardPtr = getValue(IRGuard); 2563 2564 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2565 MachinePointerInfo(IRGuard, 0), Align, 2566 MachineMemOperand::MOVolatile); 2567 } 2568 2569 // Perform the comparison via a subtract/getsetcc. 2570 EVT VT = Guard.getValueType(); 2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2572 2573 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2574 *DAG.getContext(), 2575 Sub.getValueType()), 2576 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2577 2578 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2579 // branch to failure MBB. 2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2581 MVT::Other, GuardVal.getOperand(0), 2582 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2583 // Otherwise branch to success MBB. 2584 SDValue Br = DAG.getNode(ISD::BR, dl, 2585 MVT::Other, BrCond, 2586 DAG.getBasicBlock(SPD.getSuccessMBB())); 2587 2588 DAG.setRoot(Br); 2589 } 2590 2591 /// Codegen the failure basic block for a stack protector check. 2592 /// 2593 /// A failure stack protector machine basic block consists simply of a call to 2594 /// __stack_chk_fail(). 2595 /// 2596 /// For a high level explanation of how this fits into the stack protector 2597 /// generation see the comment on the declaration of class 2598 /// StackProtectorDescriptor. 2599 void 2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2602 TargetLowering::MakeLibCallOptions CallOptions; 2603 CallOptions.setDiscardResult(true); 2604 SDValue Chain = 2605 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2606 None, CallOptions, getCurSDLoc()).second; 2607 // On PS4, the "return address" must still be within the calling function, 2608 // even if it's at the very end, so emit an explicit TRAP here. 2609 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2610 if (TM.getTargetTriple().isPS4CPU()) 2611 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2612 2613 DAG.setRoot(Chain); 2614 } 2615 2616 /// visitBitTestHeader - This function emits necessary code to produce value 2617 /// suitable for "bit tests" 2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2619 MachineBasicBlock *SwitchBB) { 2620 SDLoc dl = getCurSDLoc(); 2621 2622 // Subtract the minimum value. 2623 SDValue SwitchOp = getValue(B.SValue); 2624 EVT VT = SwitchOp.getValueType(); 2625 SDValue RangeSub = 2626 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2627 2628 // Determine the type of the test operands. 2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2630 bool UsePtrType = false; 2631 if (!TLI.isTypeLegal(VT)) { 2632 UsePtrType = true; 2633 } else { 2634 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2635 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2636 // Switch table case range are encoded into series of masks. 2637 // Just use pointer type, it's guaranteed to fit. 2638 UsePtrType = true; 2639 break; 2640 } 2641 } 2642 SDValue Sub = RangeSub; 2643 if (UsePtrType) { 2644 VT = TLI.getPointerTy(DAG.getDataLayout()); 2645 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2646 } 2647 2648 B.RegVT = VT.getSimpleVT(); 2649 B.Reg = FuncInfo.CreateReg(B.RegVT); 2650 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2651 2652 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2653 2654 if (!B.OmitRangeCheck) 2655 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2656 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2657 SwitchBB->normalizeSuccProbs(); 2658 2659 SDValue Root = CopyTo; 2660 if (!B.OmitRangeCheck) { 2661 // Conditional branch to the default block. 2662 SDValue RangeCmp = DAG.getSetCC(dl, 2663 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2664 RangeSub.getValueType()), 2665 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2666 ISD::SETUGT); 2667 2668 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2669 DAG.getBasicBlock(B.Default)); 2670 } 2671 2672 // Avoid emitting unnecessary branches to the next block. 2673 if (MBB != NextBlock(SwitchBB)) 2674 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2675 2676 DAG.setRoot(Root); 2677 } 2678 2679 /// visitBitTestCase - this function produces one "bit test" 2680 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2681 MachineBasicBlock* NextMBB, 2682 BranchProbability BranchProbToNext, 2683 unsigned Reg, 2684 BitTestCase &B, 2685 MachineBasicBlock *SwitchBB) { 2686 SDLoc dl = getCurSDLoc(); 2687 MVT VT = BB.RegVT; 2688 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2689 SDValue Cmp; 2690 unsigned PopCount = countPopulation(B.Mask); 2691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2692 if (PopCount == 1) { 2693 // Testing for a single bit; just compare the shift count with what it 2694 // would need to be to shift a 1 bit in that position. 2695 Cmp = DAG.getSetCC( 2696 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2697 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2698 ISD::SETEQ); 2699 } else if (PopCount == BB.Range) { 2700 // There is only one zero bit in the range, test for it directly. 2701 Cmp = DAG.getSetCC( 2702 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2703 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2704 ISD::SETNE); 2705 } else { 2706 // Make desired shift 2707 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2708 DAG.getConstant(1, dl, VT), ShiftOp); 2709 2710 // Emit bit tests and jumps 2711 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2712 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2713 Cmp = DAG.getSetCC( 2714 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2715 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2716 } 2717 2718 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2719 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2720 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2721 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2722 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2723 // one as they are relative probabilities (and thus work more like weights), 2724 // and hence we need to normalize them to let the sum of them become one. 2725 SwitchBB->normalizeSuccProbs(); 2726 2727 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2728 MVT::Other, getControlRoot(), 2729 Cmp, DAG.getBasicBlock(B.TargetBB)); 2730 2731 // Avoid emitting unnecessary branches to the next block. 2732 if (NextMBB != NextBlock(SwitchBB)) 2733 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2734 DAG.getBasicBlock(NextMBB)); 2735 2736 DAG.setRoot(BrAnd); 2737 } 2738 2739 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2740 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2741 2742 // Retrieve successors. Look through artificial IR level blocks like 2743 // catchswitch for successors. 2744 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2745 const BasicBlock *EHPadBB = I.getSuccessor(1); 2746 2747 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2748 // have to do anything here to lower funclet bundles. 2749 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2750 LLVMContext::OB_funclet, 2751 LLVMContext::OB_cfguardtarget}) && 2752 "Cannot lower invokes with arbitrary operand bundles yet!"); 2753 2754 const Value *Callee(I.getCalledValue()); 2755 const Function *Fn = dyn_cast<Function>(Callee); 2756 if (isa<InlineAsm>(Callee)) 2757 visitInlineAsm(&I); 2758 else if (Fn && Fn->isIntrinsic()) { 2759 switch (Fn->getIntrinsicID()) { 2760 default: 2761 llvm_unreachable("Cannot invoke this intrinsic"); 2762 case Intrinsic::donothing: 2763 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2764 break; 2765 case Intrinsic::experimental_patchpoint_void: 2766 case Intrinsic::experimental_patchpoint_i64: 2767 visitPatchpoint(&I, EHPadBB); 2768 break; 2769 case Intrinsic::experimental_gc_statepoint: 2770 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2771 break; 2772 case Intrinsic::wasm_rethrow_in_catch: { 2773 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2774 // special because it can be invoked, so we manually lower it to a DAG 2775 // node here. 2776 SmallVector<SDValue, 8> Ops; 2777 Ops.push_back(getRoot()); // inchain 2778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2779 Ops.push_back( 2780 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2781 TLI.getPointerTy(DAG.getDataLayout()))); 2782 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2783 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2784 break; 2785 } 2786 } 2787 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2788 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2789 // Eventually we will support lowering the @llvm.experimental.deoptimize 2790 // intrinsic, and right now there are no plans to support other intrinsics 2791 // with deopt state. 2792 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2793 } else { 2794 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2795 } 2796 2797 // If the value of the invoke is used outside of its defining block, make it 2798 // available as a virtual register. 2799 // We already took care of the exported value for the statepoint instruction 2800 // during call to the LowerStatepoint. 2801 if (!isStatepoint(I)) { 2802 CopyToExportRegsIfNeeded(&I); 2803 } 2804 2805 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2806 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2807 BranchProbability EHPadBBProb = 2808 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2809 : BranchProbability::getZero(); 2810 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2811 2812 // Update successor info. 2813 addSuccessorWithProb(InvokeMBB, Return); 2814 for (auto &UnwindDest : UnwindDests) { 2815 UnwindDest.first->setIsEHPad(); 2816 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2817 } 2818 InvokeMBB->normalizeSuccProbs(); 2819 2820 // Drop into normal successor. 2821 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2822 DAG.getBasicBlock(Return))); 2823 } 2824 2825 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2826 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2827 2828 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2829 // have to do anything here to lower funclet bundles. 2830 assert(!I.hasOperandBundlesOtherThan( 2831 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2832 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2833 2834 assert(isa<InlineAsm>(I.getCalledValue()) && 2835 "Only know how to handle inlineasm callbr"); 2836 visitInlineAsm(&I); 2837 2838 // Retrieve successors. 2839 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2840 2841 // Update successor info. 2842 addSuccessorWithProb(CallBrMBB, Return); 2843 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2844 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2845 addSuccessorWithProb(CallBrMBB, Target); 2846 } 2847 CallBrMBB->normalizeSuccProbs(); 2848 2849 // Drop into default successor. 2850 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2851 MVT::Other, getControlRoot(), 2852 DAG.getBasicBlock(Return))); 2853 } 2854 2855 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2856 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2857 } 2858 2859 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2860 assert(FuncInfo.MBB->isEHPad() && 2861 "Call to landingpad not in landing pad!"); 2862 2863 // If there aren't registers to copy the values into (e.g., during SjLj 2864 // exceptions), then don't bother to create these DAG nodes. 2865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2866 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2867 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2868 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2869 return; 2870 2871 // If landingpad's return type is token type, we don't create DAG nodes 2872 // for its exception pointer and selector value. The extraction of exception 2873 // pointer or selector value from token type landingpads is not currently 2874 // supported. 2875 if (LP.getType()->isTokenTy()) 2876 return; 2877 2878 SmallVector<EVT, 2> ValueVTs; 2879 SDLoc dl = getCurSDLoc(); 2880 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2881 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2882 2883 // Get the two live-in registers as SDValues. The physregs have already been 2884 // copied into virtual registers. 2885 SDValue Ops[2]; 2886 if (FuncInfo.ExceptionPointerVirtReg) { 2887 Ops[0] = DAG.getZExtOrTrunc( 2888 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2889 FuncInfo.ExceptionPointerVirtReg, 2890 TLI.getPointerTy(DAG.getDataLayout())), 2891 dl, ValueVTs[0]); 2892 } else { 2893 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2894 } 2895 Ops[1] = DAG.getZExtOrTrunc( 2896 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2897 FuncInfo.ExceptionSelectorVirtReg, 2898 TLI.getPointerTy(DAG.getDataLayout())), 2899 dl, ValueVTs[1]); 2900 2901 // Merge into one. 2902 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2903 DAG.getVTList(ValueVTs), Ops); 2904 setValue(&LP, Res); 2905 } 2906 2907 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2908 MachineBasicBlock *Last) { 2909 // Update JTCases. 2910 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2911 if (SL->JTCases[i].first.HeaderBB == First) 2912 SL->JTCases[i].first.HeaderBB = Last; 2913 2914 // Update BitTestCases. 2915 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2916 if (SL->BitTestCases[i].Parent == First) 2917 SL->BitTestCases[i].Parent = Last; 2918 } 2919 2920 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2921 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2922 2923 // Update machine-CFG edges with unique successors. 2924 SmallSet<BasicBlock*, 32> Done; 2925 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2926 BasicBlock *BB = I.getSuccessor(i); 2927 bool Inserted = Done.insert(BB).second; 2928 if (!Inserted) 2929 continue; 2930 2931 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2932 addSuccessorWithProb(IndirectBrMBB, Succ); 2933 } 2934 IndirectBrMBB->normalizeSuccProbs(); 2935 2936 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2937 MVT::Other, getControlRoot(), 2938 getValue(I.getAddress()))); 2939 } 2940 2941 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2942 if (!DAG.getTarget().Options.TrapUnreachable) 2943 return; 2944 2945 // We may be able to ignore unreachable behind a noreturn call. 2946 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2947 const BasicBlock &BB = *I.getParent(); 2948 if (&I != &BB.front()) { 2949 BasicBlock::const_iterator PredI = 2950 std::prev(BasicBlock::const_iterator(&I)); 2951 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2952 if (Call->doesNotReturn()) 2953 return; 2954 } 2955 } 2956 } 2957 2958 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2959 } 2960 2961 void SelectionDAGBuilder::visitFSub(const User &I) { 2962 // -0.0 - X --> fneg 2963 Type *Ty = I.getType(); 2964 if (isa<Constant>(I.getOperand(0)) && 2965 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2966 SDValue Op2 = getValue(I.getOperand(1)); 2967 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2968 Op2.getValueType(), Op2)); 2969 return; 2970 } 2971 2972 visitBinary(I, ISD::FSUB); 2973 } 2974 2975 /// Checks if the given instruction performs a vector reduction, in which case 2976 /// we have the freedom to alter the elements in the result as long as the 2977 /// reduction of them stays unchanged. 2978 static bool isVectorReductionOp(const User *I) { 2979 const Instruction *Inst = dyn_cast<Instruction>(I); 2980 if (!Inst || !Inst->getType()->isVectorTy()) 2981 return false; 2982 2983 auto OpCode = Inst->getOpcode(); 2984 switch (OpCode) { 2985 case Instruction::Add: 2986 case Instruction::Mul: 2987 case Instruction::And: 2988 case Instruction::Or: 2989 case Instruction::Xor: 2990 break; 2991 case Instruction::FAdd: 2992 case Instruction::FMul: 2993 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2994 if (FPOp->getFastMathFlags().isFast()) 2995 break; 2996 LLVM_FALLTHROUGH; 2997 default: 2998 return false; 2999 } 3000 3001 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3002 // Ensure the reduction size is a power of 2. 3003 if (!isPowerOf2_32(ElemNum)) 3004 return false; 3005 3006 unsigned ElemNumToReduce = ElemNum; 3007 3008 // Do DFS search on the def-use chain from the given instruction. We only 3009 // allow four kinds of operations during the search until we reach the 3010 // instruction that extracts the first element from the vector: 3011 // 3012 // 1. The reduction operation of the same opcode as the given instruction. 3013 // 3014 // 2. PHI node. 3015 // 3016 // 3. ShuffleVector instruction together with a reduction operation that 3017 // does a partial reduction. 3018 // 3019 // 4. ExtractElement that extracts the first element from the vector, and we 3020 // stop searching the def-use chain here. 3021 // 3022 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3023 // from 1-3 to the stack to continue the DFS. The given instruction is not 3024 // a reduction operation if we meet any other instructions other than those 3025 // listed above. 3026 3027 SmallVector<const User *, 16> UsersToVisit{Inst}; 3028 SmallPtrSet<const User *, 16> Visited; 3029 bool ReduxExtracted = false; 3030 3031 while (!UsersToVisit.empty()) { 3032 auto User = UsersToVisit.back(); 3033 UsersToVisit.pop_back(); 3034 if (!Visited.insert(User).second) 3035 continue; 3036 3037 for (const auto &U : User->users()) { 3038 auto Inst = dyn_cast<Instruction>(U); 3039 if (!Inst) 3040 return false; 3041 3042 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3043 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3044 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3045 return false; 3046 UsersToVisit.push_back(U); 3047 } else if (const ShuffleVectorInst *ShufInst = 3048 dyn_cast<ShuffleVectorInst>(U)) { 3049 // Detect the following pattern: A ShuffleVector instruction together 3050 // with a reduction that do partial reduction on the first and second 3051 // ElemNumToReduce / 2 elements, and store the result in 3052 // ElemNumToReduce / 2 elements in another vector. 3053 3054 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3055 if (ResultElements < ElemNum) 3056 return false; 3057 3058 if (ElemNumToReduce == 1) 3059 return false; 3060 if (!isa<UndefValue>(U->getOperand(1))) 3061 return false; 3062 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3063 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3064 return false; 3065 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3066 if (ShufInst->getMaskValue(i) != -1) 3067 return false; 3068 3069 // There is only one user of this ShuffleVector instruction, which 3070 // must be a reduction operation. 3071 if (!U->hasOneUse()) 3072 return false; 3073 3074 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3075 if (!U2 || U2->getOpcode() != OpCode) 3076 return false; 3077 3078 // Check operands of the reduction operation. 3079 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3080 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3081 UsersToVisit.push_back(U2); 3082 ElemNumToReduce /= 2; 3083 } else 3084 return false; 3085 } else if (isa<ExtractElementInst>(U)) { 3086 // At this moment we should have reduced all elements in the vector. 3087 if (ElemNumToReduce != 1) 3088 return false; 3089 3090 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3091 if (!Val || !Val->isZero()) 3092 return false; 3093 3094 ReduxExtracted = true; 3095 } else 3096 return false; 3097 } 3098 } 3099 return ReduxExtracted; 3100 } 3101 3102 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3103 SDNodeFlags Flags; 3104 3105 SDValue Op = getValue(I.getOperand(0)); 3106 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3107 Op, Flags); 3108 setValue(&I, UnNodeValue); 3109 } 3110 3111 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3112 SDNodeFlags Flags; 3113 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3114 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3115 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3116 } 3117 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3118 Flags.setExact(ExactOp->isExact()); 3119 } 3120 if (isVectorReductionOp(&I)) { 3121 Flags.setVectorReduction(true); 3122 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3123 } 3124 3125 SDValue Op1 = getValue(I.getOperand(0)); 3126 SDValue Op2 = getValue(I.getOperand(1)); 3127 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3128 Op1, Op2, Flags); 3129 setValue(&I, BinNodeValue); 3130 } 3131 3132 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3133 SDValue Op1 = getValue(I.getOperand(0)); 3134 SDValue Op2 = getValue(I.getOperand(1)); 3135 3136 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3137 Op1.getValueType(), DAG.getDataLayout()); 3138 3139 // Coerce the shift amount to the right type if we can. 3140 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3141 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3142 unsigned Op2Size = Op2.getValueSizeInBits(); 3143 SDLoc DL = getCurSDLoc(); 3144 3145 // If the operand is smaller than the shift count type, promote it. 3146 if (ShiftSize > Op2Size) 3147 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3148 3149 // If the operand is larger than the shift count type but the shift 3150 // count type has enough bits to represent any shift value, truncate 3151 // it now. This is a common case and it exposes the truncate to 3152 // optimization early. 3153 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3154 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3155 // Otherwise we'll need to temporarily settle for some other convenient 3156 // type. Type legalization will make adjustments once the shiftee is split. 3157 else 3158 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3159 } 3160 3161 bool nuw = false; 3162 bool nsw = false; 3163 bool exact = false; 3164 3165 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3166 3167 if (const OverflowingBinaryOperator *OFBinOp = 3168 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3169 nuw = OFBinOp->hasNoUnsignedWrap(); 3170 nsw = OFBinOp->hasNoSignedWrap(); 3171 } 3172 if (const PossiblyExactOperator *ExactOp = 3173 dyn_cast<const PossiblyExactOperator>(&I)) 3174 exact = ExactOp->isExact(); 3175 } 3176 SDNodeFlags Flags; 3177 Flags.setExact(exact); 3178 Flags.setNoSignedWrap(nsw); 3179 Flags.setNoUnsignedWrap(nuw); 3180 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3181 Flags); 3182 setValue(&I, Res); 3183 } 3184 3185 void SelectionDAGBuilder::visitSDiv(const User &I) { 3186 SDValue Op1 = getValue(I.getOperand(0)); 3187 SDValue Op2 = getValue(I.getOperand(1)); 3188 3189 SDNodeFlags Flags; 3190 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3191 cast<PossiblyExactOperator>(&I)->isExact()); 3192 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3193 Op2, Flags)); 3194 } 3195 3196 void SelectionDAGBuilder::visitICmp(const User &I) { 3197 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3198 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3199 predicate = IC->getPredicate(); 3200 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3201 predicate = ICmpInst::Predicate(IC->getPredicate()); 3202 SDValue Op1 = getValue(I.getOperand(0)); 3203 SDValue Op2 = getValue(I.getOperand(1)); 3204 ISD::CondCode Opcode = getICmpCondCode(predicate); 3205 3206 auto &TLI = DAG.getTargetLoweringInfo(); 3207 EVT MemVT = 3208 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3209 3210 // If a pointer's DAG type is larger than its memory type then the DAG values 3211 // are zero-extended. This breaks signed comparisons so truncate back to the 3212 // underlying type before doing the compare. 3213 if (Op1.getValueType() != MemVT) { 3214 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3215 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3216 } 3217 3218 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3219 I.getType()); 3220 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3221 } 3222 3223 void SelectionDAGBuilder::visitFCmp(const User &I) { 3224 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3225 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3226 predicate = FC->getPredicate(); 3227 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3228 predicate = FCmpInst::Predicate(FC->getPredicate()); 3229 SDValue Op1 = getValue(I.getOperand(0)); 3230 SDValue Op2 = getValue(I.getOperand(1)); 3231 3232 ISD::CondCode Condition = getFCmpCondCode(predicate); 3233 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3234 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3235 Condition = getFCmpCodeWithoutNaN(Condition); 3236 3237 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3238 I.getType()); 3239 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3240 } 3241 3242 // Check if the condition of the select has one use or two users that are both 3243 // selects with the same condition. 3244 static bool hasOnlySelectUsers(const Value *Cond) { 3245 return llvm::all_of(Cond->users(), [](const Value *V) { 3246 return isa<SelectInst>(V); 3247 }); 3248 } 3249 3250 void SelectionDAGBuilder::visitSelect(const User &I) { 3251 SmallVector<EVT, 4> ValueVTs; 3252 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3253 ValueVTs); 3254 unsigned NumValues = ValueVTs.size(); 3255 if (NumValues == 0) return; 3256 3257 SmallVector<SDValue, 4> Values(NumValues); 3258 SDValue Cond = getValue(I.getOperand(0)); 3259 SDValue LHSVal = getValue(I.getOperand(1)); 3260 SDValue RHSVal = getValue(I.getOperand(2)); 3261 auto BaseOps = {Cond}; 3262 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3263 ISD::VSELECT : ISD::SELECT; 3264 3265 bool IsUnaryAbs = false; 3266 3267 // Min/max matching is only viable if all output VTs are the same. 3268 if (is_splat(ValueVTs)) { 3269 EVT VT = ValueVTs[0]; 3270 LLVMContext &Ctx = *DAG.getContext(); 3271 auto &TLI = DAG.getTargetLoweringInfo(); 3272 3273 // We care about the legality of the operation after it has been type 3274 // legalized. 3275 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3276 VT = TLI.getTypeToTransformTo(Ctx, VT); 3277 3278 // If the vselect is legal, assume we want to leave this as a vector setcc + 3279 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3280 // min/max is legal on the scalar type. 3281 bool UseScalarMinMax = VT.isVector() && 3282 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3283 3284 Value *LHS, *RHS; 3285 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3286 ISD::NodeType Opc = ISD::DELETED_NODE; 3287 switch (SPR.Flavor) { 3288 case SPF_UMAX: Opc = ISD::UMAX; break; 3289 case SPF_UMIN: Opc = ISD::UMIN; break; 3290 case SPF_SMAX: Opc = ISD::SMAX; break; 3291 case SPF_SMIN: Opc = ISD::SMIN; break; 3292 case SPF_FMINNUM: 3293 switch (SPR.NaNBehavior) { 3294 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3295 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3296 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3297 case SPNB_RETURNS_ANY: { 3298 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3299 Opc = ISD::FMINNUM; 3300 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3301 Opc = ISD::FMINIMUM; 3302 else if (UseScalarMinMax) 3303 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3304 ISD::FMINNUM : ISD::FMINIMUM; 3305 break; 3306 } 3307 } 3308 break; 3309 case SPF_FMAXNUM: 3310 switch (SPR.NaNBehavior) { 3311 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3312 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3313 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3314 case SPNB_RETURNS_ANY: 3315 3316 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3317 Opc = ISD::FMAXNUM; 3318 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3319 Opc = ISD::FMAXIMUM; 3320 else if (UseScalarMinMax) 3321 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3322 ISD::FMAXNUM : ISD::FMAXIMUM; 3323 break; 3324 } 3325 break; 3326 case SPF_ABS: 3327 IsUnaryAbs = true; 3328 Opc = ISD::ABS; 3329 break; 3330 case SPF_NABS: 3331 // TODO: we need to produce sub(0, abs(X)). 3332 default: break; 3333 } 3334 3335 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3336 (TLI.isOperationLegalOrCustom(Opc, VT) || 3337 (UseScalarMinMax && 3338 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3339 // If the underlying comparison instruction is used by any other 3340 // instruction, the consumed instructions won't be destroyed, so it is 3341 // not profitable to convert to a min/max. 3342 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3343 OpCode = Opc; 3344 LHSVal = getValue(LHS); 3345 RHSVal = getValue(RHS); 3346 BaseOps = {}; 3347 } 3348 3349 if (IsUnaryAbs) { 3350 OpCode = Opc; 3351 LHSVal = getValue(LHS); 3352 BaseOps = {}; 3353 } 3354 } 3355 3356 if (IsUnaryAbs) { 3357 for (unsigned i = 0; i != NumValues; ++i) { 3358 Values[i] = 3359 DAG.getNode(OpCode, getCurSDLoc(), 3360 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3361 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3362 } 3363 } else { 3364 for (unsigned i = 0; i != NumValues; ++i) { 3365 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3366 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3367 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3368 Values[i] = DAG.getNode( 3369 OpCode, getCurSDLoc(), 3370 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3371 } 3372 } 3373 3374 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3375 DAG.getVTList(ValueVTs), Values)); 3376 } 3377 3378 void SelectionDAGBuilder::visitTrunc(const User &I) { 3379 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3380 SDValue N = getValue(I.getOperand(0)); 3381 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3382 I.getType()); 3383 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3384 } 3385 3386 void SelectionDAGBuilder::visitZExt(const User &I) { 3387 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3388 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3389 SDValue N = getValue(I.getOperand(0)); 3390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3391 I.getType()); 3392 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3393 } 3394 3395 void SelectionDAGBuilder::visitSExt(const User &I) { 3396 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3397 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3398 SDValue N = getValue(I.getOperand(0)); 3399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3400 I.getType()); 3401 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3402 } 3403 3404 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3405 // FPTrunc is never a no-op cast, no need to check 3406 SDValue N = getValue(I.getOperand(0)); 3407 SDLoc dl = getCurSDLoc(); 3408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3409 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3410 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3411 DAG.getTargetConstant( 3412 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3413 } 3414 3415 void SelectionDAGBuilder::visitFPExt(const User &I) { 3416 // FPExt is never a no-op cast, no need to check 3417 SDValue N = getValue(I.getOperand(0)); 3418 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3419 I.getType()); 3420 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3421 } 3422 3423 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3424 // FPToUI is never a no-op cast, no need to check 3425 SDValue N = getValue(I.getOperand(0)); 3426 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3427 I.getType()); 3428 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3429 } 3430 3431 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3432 // FPToSI is never a no-op cast, no need to check 3433 SDValue N = getValue(I.getOperand(0)); 3434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3435 I.getType()); 3436 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3437 } 3438 3439 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3440 // UIToFP is never a no-op cast, no need to check 3441 SDValue N = getValue(I.getOperand(0)); 3442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3443 I.getType()); 3444 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3445 } 3446 3447 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3448 // SIToFP is never a no-op cast, no need to check 3449 SDValue N = getValue(I.getOperand(0)); 3450 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3451 I.getType()); 3452 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3453 } 3454 3455 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3456 // What to do depends on the size of the integer and the size of the pointer. 3457 // We can either truncate, zero extend, or no-op, accordingly. 3458 SDValue N = getValue(I.getOperand(0)); 3459 auto &TLI = DAG.getTargetLoweringInfo(); 3460 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3461 I.getType()); 3462 EVT PtrMemVT = 3463 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3464 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3465 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3466 setValue(&I, N); 3467 } 3468 3469 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3470 // What to do depends on the size of the integer and the size of the pointer. 3471 // We can either truncate, zero extend, or no-op, accordingly. 3472 SDValue N = getValue(I.getOperand(0)); 3473 auto &TLI = DAG.getTargetLoweringInfo(); 3474 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3475 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3476 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3477 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3478 setValue(&I, N); 3479 } 3480 3481 void SelectionDAGBuilder::visitBitCast(const User &I) { 3482 SDValue N = getValue(I.getOperand(0)); 3483 SDLoc dl = getCurSDLoc(); 3484 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3485 I.getType()); 3486 3487 // BitCast assures us that source and destination are the same size so this is 3488 // either a BITCAST or a no-op. 3489 if (DestVT != N.getValueType()) 3490 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3491 DestVT, N)); // convert types. 3492 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3493 // might fold any kind of constant expression to an integer constant and that 3494 // is not what we are looking for. Only recognize a bitcast of a genuine 3495 // constant integer as an opaque constant. 3496 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3497 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3498 /*isOpaque*/true)); 3499 else 3500 setValue(&I, N); // noop cast. 3501 } 3502 3503 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3504 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3505 const Value *SV = I.getOperand(0); 3506 SDValue N = getValue(SV); 3507 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3508 3509 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3510 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3511 3512 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3513 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3514 3515 setValue(&I, N); 3516 } 3517 3518 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3520 SDValue InVec = getValue(I.getOperand(0)); 3521 SDValue InVal = getValue(I.getOperand(1)); 3522 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3523 TLI.getVectorIdxTy(DAG.getDataLayout())); 3524 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3525 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3526 InVec, InVal, InIdx)); 3527 } 3528 3529 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3531 SDValue InVec = getValue(I.getOperand(0)); 3532 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3533 TLI.getVectorIdxTy(DAG.getDataLayout())); 3534 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3535 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3536 InVec, InIdx)); 3537 } 3538 3539 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3540 SDValue Src1 = getValue(I.getOperand(0)); 3541 SDValue Src2 = getValue(I.getOperand(1)); 3542 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3543 SDLoc DL = getCurSDLoc(); 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3546 EVT SrcVT = Src1.getValueType(); 3547 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3548 3549 if (MaskV->isNullValue() && VT.isScalableVector()) { 3550 // Canonical splat form of first element of first input vector. 3551 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3552 SrcVT.getScalarType(), Src1, 3553 DAG.getConstant(0, DL, 3554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3555 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3556 return; 3557 } 3558 3559 // For now, we only handle splats for scalable vectors. 3560 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3561 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3562 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3563 3564 SmallVector<int, 8> Mask; 3565 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3566 unsigned MaskNumElts = Mask.size(); 3567 3568 if (SrcNumElts == MaskNumElts) { 3569 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3570 return; 3571 } 3572 3573 // Normalize the shuffle vector since mask and vector length don't match. 3574 if (SrcNumElts < MaskNumElts) { 3575 // Mask is longer than the source vectors. We can use concatenate vector to 3576 // make the mask and vectors lengths match. 3577 3578 if (MaskNumElts % SrcNumElts == 0) { 3579 // Mask length is a multiple of the source vector length. 3580 // Check if the shuffle is some kind of concatenation of the input 3581 // vectors. 3582 unsigned NumConcat = MaskNumElts / SrcNumElts; 3583 bool IsConcat = true; 3584 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3585 for (unsigned i = 0; i != MaskNumElts; ++i) { 3586 int Idx = Mask[i]; 3587 if (Idx < 0) 3588 continue; 3589 // Ensure the indices in each SrcVT sized piece are sequential and that 3590 // the same source is used for the whole piece. 3591 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3592 (ConcatSrcs[i / SrcNumElts] >= 0 && 3593 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3594 IsConcat = false; 3595 break; 3596 } 3597 // Remember which source this index came from. 3598 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3599 } 3600 3601 // The shuffle is concatenating multiple vectors together. Just emit 3602 // a CONCAT_VECTORS operation. 3603 if (IsConcat) { 3604 SmallVector<SDValue, 8> ConcatOps; 3605 for (auto Src : ConcatSrcs) { 3606 if (Src < 0) 3607 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3608 else if (Src == 0) 3609 ConcatOps.push_back(Src1); 3610 else 3611 ConcatOps.push_back(Src2); 3612 } 3613 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3614 return; 3615 } 3616 } 3617 3618 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3619 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3620 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3621 PaddedMaskNumElts); 3622 3623 // Pad both vectors with undefs to make them the same length as the mask. 3624 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3625 3626 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3627 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3628 MOps1[0] = Src1; 3629 MOps2[0] = Src2; 3630 3631 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3632 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3633 3634 // Readjust mask for new input vector length. 3635 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3636 for (unsigned i = 0; i != MaskNumElts; ++i) { 3637 int Idx = Mask[i]; 3638 if (Idx >= (int)SrcNumElts) 3639 Idx -= SrcNumElts - PaddedMaskNumElts; 3640 MappedOps[i] = Idx; 3641 } 3642 3643 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3644 3645 // If the concatenated vector was padded, extract a subvector with the 3646 // correct number of elements. 3647 if (MaskNumElts != PaddedMaskNumElts) 3648 Result = DAG.getNode( 3649 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3650 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3651 3652 setValue(&I, Result); 3653 return; 3654 } 3655 3656 if (SrcNumElts > MaskNumElts) { 3657 // Analyze the access pattern of the vector to see if we can extract 3658 // two subvectors and do the shuffle. 3659 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3660 bool CanExtract = true; 3661 for (int Idx : Mask) { 3662 unsigned Input = 0; 3663 if (Idx < 0) 3664 continue; 3665 3666 if (Idx >= (int)SrcNumElts) { 3667 Input = 1; 3668 Idx -= SrcNumElts; 3669 } 3670 3671 // If all the indices come from the same MaskNumElts sized portion of 3672 // the sources we can use extract. Also make sure the extract wouldn't 3673 // extract past the end of the source. 3674 int NewStartIdx = alignDown(Idx, MaskNumElts); 3675 if (NewStartIdx + MaskNumElts > SrcNumElts || 3676 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3677 CanExtract = false; 3678 // Make sure we always update StartIdx as we use it to track if all 3679 // elements are undef. 3680 StartIdx[Input] = NewStartIdx; 3681 } 3682 3683 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3684 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3685 return; 3686 } 3687 if (CanExtract) { 3688 // Extract appropriate subvector and generate a vector shuffle 3689 for (unsigned Input = 0; Input < 2; ++Input) { 3690 SDValue &Src = Input == 0 ? Src1 : Src2; 3691 if (StartIdx[Input] < 0) 3692 Src = DAG.getUNDEF(VT); 3693 else { 3694 Src = DAG.getNode( 3695 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3696 DAG.getConstant(StartIdx[Input], DL, 3697 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3698 } 3699 } 3700 3701 // Calculate new mask. 3702 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3703 for (int &Idx : MappedOps) { 3704 if (Idx >= (int)SrcNumElts) 3705 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3706 else if (Idx >= 0) 3707 Idx -= StartIdx[0]; 3708 } 3709 3710 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3711 return; 3712 } 3713 } 3714 3715 // We can't use either concat vectors or extract subvectors so fall back to 3716 // replacing the shuffle with extract and build vector. 3717 // to insert and build vector. 3718 EVT EltVT = VT.getVectorElementType(); 3719 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3720 SmallVector<SDValue,8> Ops; 3721 for (int Idx : Mask) { 3722 SDValue Res; 3723 3724 if (Idx < 0) { 3725 Res = DAG.getUNDEF(EltVT); 3726 } else { 3727 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3728 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3729 3730 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3731 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3732 } 3733 3734 Ops.push_back(Res); 3735 } 3736 3737 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3738 } 3739 3740 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3741 ArrayRef<unsigned> Indices; 3742 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3743 Indices = IV->getIndices(); 3744 else 3745 Indices = cast<ConstantExpr>(&I)->getIndices(); 3746 3747 const Value *Op0 = I.getOperand(0); 3748 const Value *Op1 = I.getOperand(1); 3749 Type *AggTy = I.getType(); 3750 Type *ValTy = Op1->getType(); 3751 bool IntoUndef = isa<UndefValue>(Op0); 3752 bool FromUndef = isa<UndefValue>(Op1); 3753 3754 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3755 3756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3757 SmallVector<EVT, 4> AggValueVTs; 3758 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3759 SmallVector<EVT, 4> ValValueVTs; 3760 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3761 3762 unsigned NumAggValues = AggValueVTs.size(); 3763 unsigned NumValValues = ValValueVTs.size(); 3764 SmallVector<SDValue, 4> Values(NumAggValues); 3765 3766 // Ignore an insertvalue that produces an empty object 3767 if (!NumAggValues) { 3768 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3769 return; 3770 } 3771 3772 SDValue Agg = getValue(Op0); 3773 unsigned i = 0; 3774 // Copy the beginning value(s) from the original aggregate. 3775 for (; i != LinearIndex; ++i) 3776 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3777 SDValue(Agg.getNode(), Agg.getResNo() + i); 3778 // Copy values from the inserted value(s). 3779 if (NumValValues) { 3780 SDValue Val = getValue(Op1); 3781 for (; i != LinearIndex + NumValValues; ++i) 3782 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3783 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3784 } 3785 // Copy remaining value(s) from the original aggregate. 3786 for (; i != NumAggValues; ++i) 3787 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3788 SDValue(Agg.getNode(), Agg.getResNo() + i); 3789 3790 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3791 DAG.getVTList(AggValueVTs), Values)); 3792 } 3793 3794 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3795 ArrayRef<unsigned> Indices; 3796 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3797 Indices = EV->getIndices(); 3798 else 3799 Indices = cast<ConstantExpr>(&I)->getIndices(); 3800 3801 const Value *Op0 = I.getOperand(0); 3802 Type *AggTy = Op0->getType(); 3803 Type *ValTy = I.getType(); 3804 bool OutOfUndef = isa<UndefValue>(Op0); 3805 3806 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3807 3808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3809 SmallVector<EVT, 4> ValValueVTs; 3810 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3811 3812 unsigned NumValValues = ValValueVTs.size(); 3813 3814 // Ignore a extractvalue that produces an empty object 3815 if (!NumValValues) { 3816 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3817 return; 3818 } 3819 3820 SmallVector<SDValue, 4> Values(NumValValues); 3821 3822 SDValue Agg = getValue(Op0); 3823 // Copy out the selected value(s). 3824 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3825 Values[i - LinearIndex] = 3826 OutOfUndef ? 3827 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3828 SDValue(Agg.getNode(), Agg.getResNo() + i); 3829 3830 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3831 DAG.getVTList(ValValueVTs), Values)); 3832 } 3833 3834 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3835 Value *Op0 = I.getOperand(0); 3836 // Note that the pointer operand may be a vector of pointers. Take the scalar 3837 // element which holds a pointer. 3838 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3839 SDValue N = getValue(Op0); 3840 SDLoc dl = getCurSDLoc(); 3841 auto &TLI = DAG.getTargetLoweringInfo(); 3842 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3843 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3844 3845 // Normalize Vector GEP - all scalar operands should be converted to the 3846 // splat vector. 3847 unsigned VectorWidth = I.getType()->isVectorTy() ? 3848 I.getType()->getVectorNumElements() : 0; 3849 3850 if (VectorWidth && !N.getValueType().isVector()) { 3851 LLVMContext &Context = *DAG.getContext(); 3852 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3853 N = DAG.getSplatBuildVector(VT, dl, N); 3854 } 3855 3856 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3857 GTI != E; ++GTI) { 3858 const Value *Idx = GTI.getOperand(); 3859 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3860 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3861 if (Field) { 3862 // N = N + Offset 3863 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3864 3865 // In an inbounds GEP with an offset that is nonnegative even when 3866 // interpreted as signed, assume there is no unsigned overflow. 3867 SDNodeFlags Flags; 3868 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3869 Flags.setNoUnsignedWrap(true); 3870 3871 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3872 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3873 } 3874 } else { 3875 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3876 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3877 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3878 3879 // If this is a scalar constant or a splat vector of constants, 3880 // handle it quickly. 3881 const auto *C = dyn_cast<Constant>(Idx); 3882 if (C && isa<VectorType>(C->getType())) 3883 C = C->getSplatValue(); 3884 3885 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3886 if (CI->isZero()) 3887 continue; 3888 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3889 LLVMContext &Context = *DAG.getContext(); 3890 SDValue OffsVal = VectorWidth ? 3891 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3892 DAG.getConstant(Offs, dl, IdxTy); 3893 3894 // In an inbounds GEP with an offset that is nonnegative even when 3895 // interpreted as signed, assume there is no unsigned overflow. 3896 SDNodeFlags Flags; 3897 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3898 Flags.setNoUnsignedWrap(true); 3899 3900 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3901 3902 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3903 continue; 3904 } 3905 3906 // N = N + Idx * ElementSize; 3907 SDValue IdxN = getValue(Idx); 3908 3909 if (!IdxN.getValueType().isVector() && VectorWidth) { 3910 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3911 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3912 } 3913 3914 // If the index is smaller or larger than intptr_t, truncate or extend 3915 // it. 3916 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3917 3918 // If this is a multiply by a power of two, turn it into a shl 3919 // immediately. This is a very common case. 3920 if (ElementSize != 1) { 3921 if (ElementSize.isPowerOf2()) { 3922 unsigned Amt = ElementSize.logBase2(); 3923 IdxN = DAG.getNode(ISD::SHL, dl, 3924 N.getValueType(), IdxN, 3925 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3926 } else { 3927 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3928 IdxN.getValueType()); 3929 IdxN = DAG.getNode(ISD::MUL, dl, 3930 N.getValueType(), IdxN, Scale); 3931 } 3932 } 3933 3934 N = DAG.getNode(ISD::ADD, dl, 3935 N.getValueType(), N, IdxN); 3936 } 3937 } 3938 3939 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3940 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3941 3942 setValue(&I, N); 3943 } 3944 3945 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3946 // If this is a fixed sized alloca in the entry block of the function, 3947 // allocate it statically on the stack. 3948 if (FuncInfo.StaticAllocaMap.count(&I)) 3949 return; // getValue will auto-populate this. 3950 3951 SDLoc dl = getCurSDLoc(); 3952 Type *Ty = I.getAllocatedType(); 3953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3954 auto &DL = DAG.getDataLayout(); 3955 uint64_t TySize = DL.getTypeAllocSize(Ty); 3956 unsigned Align = 3957 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3958 3959 SDValue AllocSize = getValue(I.getArraySize()); 3960 3961 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3962 if (AllocSize.getValueType() != IntPtr) 3963 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3964 3965 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3966 AllocSize, 3967 DAG.getConstant(TySize, dl, IntPtr)); 3968 3969 // Handle alignment. If the requested alignment is less than or equal to 3970 // the stack alignment, ignore it. If the size is greater than or equal to 3971 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3972 unsigned StackAlign = 3973 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3974 if (Align <= StackAlign) 3975 Align = 0; 3976 3977 // Round the size of the allocation up to the stack alignment size 3978 // by add SA-1 to the size. This doesn't overflow because we're computing 3979 // an address inside an alloca. 3980 SDNodeFlags Flags; 3981 Flags.setNoUnsignedWrap(true); 3982 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3983 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3984 3985 // Mask out the low bits for alignment purposes. 3986 AllocSize = 3987 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3988 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3989 3990 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3991 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3992 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3993 setValue(&I, DSA); 3994 DAG.setRoot(DSA.getValue(1)); 3995 3996 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3997 } 3998 3999 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4000 if (I.isAtomic()) 4001 return visitAtomicLoad(I); 4002 4003 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4004 const Value *SV = I.getOperand(0); 4005 if (TLI.supportSwiftError()) { 4006 // Swifterror values can come from either a function parameter with 4007 // swifterror attribute or an alloca with swifterror attribute. 4008 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4009 if (Arg->hasSwiftErrorAttr()) 4010 return visitLoadFromSwiftError(I); 4011 } 4012 4013 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4014 if (Alloca->isSwiftError()) 4015 return visitLoadFromSwiftError(I); 4016 } 4017 } 4018 4019 SDValue Ptr = getValue(SV); 4020 4021 Type *Ty = I.getType(); 4022 4023 bool isVolatile = I.isVolatile(); 4024 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); 4025 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); 4026 bool isDereferenceable = 4027 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4028 unsigned Alignment = I.getAlignment(); 4029 4030 AAMDNodes AAInfo; 4031 I.getAAMetadata(AAInfo); 4032 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4033 4034 SmallVector<EVT, 4> ValueVTs, MemVTs; 4035 SmallVector<uint64_t, 4> Offsets; 4036 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4037 unsigned NumValues = ValueVTs.size(); 4038 if (NumValues == 0) 4039 return; 4040 4041 SDValue Root; 4042 bool ConstantMemory = false; 4043 if (isVolatile || NumValues > MaxParallelChains) 4044 // Serialize volatile loads with other side effects. 4045 Root = getRoot(); 4046 else if (AA && 4047 AA->pointsToConstantMemory(MemoryLocation( 4048 SV, 4049 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4050 AAInfo))) { 4051 // Do not serialize (non-volatile) loads of constant memory with anything. 4052 Root = DAG.getEntryNode(); 4053 ConstantMemory = true; 4054 } else { 4055 // Do not serialize non-volatile loads against each other. 4056 Root = DAG.getRoot(); 4057 } 4058 4059 SDLoc dl = getCurSDLoc(); 4060 4061 if (isVolatile) 4062 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4063 4064 // An aggregate load cannot wrap around the address space, so offsets to its 4065 // parts don't wrap either. 4066 SDNodeFlags Flags; 4067 Flags.setNoUnsignedWrap(true); 4068 4069 SmallVector<SDValue, 4> Values(NumValues); 4070 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4071 EVT PtrVT = Ptr.getValueType(); 4072 unsigned ChainI = 0; 4073 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4074 // Serializing loads here may result in excessive register pressure, and 4075 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4076 // could recover a bit by hoisting nodes upward in the chain by recognizing 4077 // they are side-effect free or do not alias. The optimizer should really 4078 // avoid this case by converting large object/array copies to llvm.memcpy 4079 // (MaxParallelChains should always remain as failsafe). 4080 if (ChainI == MaxParallelChains) { 4081 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4082 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4083 makeArrayRef(Chains.data(), ChainI)); 4084 Root = Chain; 4085 ChainI = 0; 4086 } 4087 SDValue A = DAG.getNode(ISD::ADD, dl, 4088 PtrVT, Ptr, 4089 DAG.getConstant(Offsets[i], dl, PtrVT), 4090 Flags); 4091 auto MMOFlags = MachineMemOperand::MONone; 4092 if (isVolatile) 4093 MMOFlags |= MachineMemOperand::MOVolatile; 4094 if (isNonTemporal) 4095 MMOFlags |= MachineMemOperand::MONonTemporal; 4096 if (isInvariant) 4097 MMOFlags |= MachineMemOperand::MOInvariant; 4098 if (isDereferenceable) 4099 MMOFlags |= MachineMemOperand::MODereferenceable; 4100 MMOFlags |= TLI.getMMOFlags(I); 4101 4102 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4103 MachinePointerInfo(SV, Offsets[i]), Alignment, 4104 MMOFlags, AAInfo, Ranges); 4105 Chains[ChainI] = L.getValue(1); 4106 4107 if (MemVTs[i] != ValueVTs[i]) 4108 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4109 4110 Values[i] = L; 4111 } 4112 4113 if (!ConstantMemory) { 4114 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4115 makeArrayRef(Chains.data(), ChainI)); 4116 if (isVolatile) 4117 DAG.setRoot(Chain); 4118 else 4119 PendingLoads.push_back(Chain); 4120 } 4121 4122 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4123 DAG.getVTList(ValueVTs), Values)); 4124 } 4125 4126 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4127 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4128 "call visitStoreToSwiftError when backend supports swifterror"); 4129 4130 SmallVector<EVT, 4> ValueVTs; 4131 SmallVector<uint64_t, 4> Offsets; 4132 const Value *SrcV = I.getOperand(0); 4133 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4134 SrcV->getType(), ValueVTs, &Offsets); 4135 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4136 "expect a single EVT for swifterror"); 4137 4138 SDValue Src = getValue(SrcV); 4139 // Create a virtual register, then update the virtual register. 4140 Register VReg = 4141 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4142 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4143 // Chain can be getRoot or getControlRoot. 4144 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4145 SDValue(Src.getNode(), Src.getResNo())); 4146 DAG.setRoot(CopyNode); 4147 } 4148 4149 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4150 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4151 "call visitLoadFromSwiftError when backend supports swifterror"); 4152 4153 assert(!I.isVolatile() && 4154 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4155 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4156 "Support volatile, non temporal, invariant for load_from_swift_error"); 4157 4158 const Value *SV = I.getOperand(0); 4159 Type *Ty = I.getType(); 4160 AAMDNodes AAInfo; 4161 I.getAAMetadata(AAInfo); 4162 assert( 4163 (!AA || 4164 !AA->pointsToConstantMemory(MemoryLocation( 4165 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4166 AAInfo))) && 4167 "load_from_swift_error should not be constant memory"); 4168 4169 SmallVector<EVT, 4> ValueVTs; 4170 SmallVector<uint64_t, 4> Offsets; 4171 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4172 ValueVTs, &Offsets); 4173 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4174 "expect a single EVT for swifterror"); 4175 4176 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4177 SDValue L = DAG.getCopyFromReg( 4178 getRoot(), getCurSDLoc(), 4179 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4180 4181 setValue(&I, L); 4182 } 4183 4184 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4185 if (I.isAtomic()) 4186 return visitAtomicStore(I); 4187 4188 const Value *SrcV = I.getOperand(0); 4189 const Value *PtrV = I.getOperand(1); 4190 4191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4192 if (TLI.supportSwiftError()) { 4193 // Swifterror values can come from either a function parameter with 4194 // swifterror attribute or an alloca with swifterror attribute. 4195 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4196 if (Arg->hasSwiftErrorAttr()) 4197 return visitStoreToSwiftError(I); 4198 } 4199 4200 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4201 if (Alloca->isSwiftError()) 4202 return visitStoreToSwiftError(I); 4203 } 4204 } 4205 4206 SmallVector<EVT, 4> ValueVTs, MemVTs; 4207 SmallVector<uint64_t, 4> Offsets; 4208 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4209 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4210 unsigned NumValues = ValueVTs.size(); 4211 if (NumValues == 0) 4212 return; 4213 4214 // Get the lowered operands. Note that we do this after 4215 // checking if NumResults is zero, because with zero results 4216 // the operands won't have values in the map. 4217 SDValue Src = getValue(SrcV); 4218 SDValue Ptr = getValue(PtrV); 4219 4220 SDValue Root = getRoot(); 4221 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4222 SDLoc dl = getCurSDLoc(); 4223 EVT PtrVT = Ptr.getValueType(); 4224 unsigned Alignment = I.getAlignment(); 4225 AAMDNodes AAInfo; 4226 I.getAAMetadata(AAInfo); 4227 4228 auto MMOFlags = MachineMemOperand::MONone; 4229 if (I.isVolatile()) 4230 MMOFlags |= MachineMemOperand::MOVolatile; 4231 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4232 MMOFlags |= MachineMemOperand::MONonTemporal; 4233 MMOFlags |= TLI.getMMOFlags(I); 4234 4235 // An aggregate load cannot wrap around the address space, so offsets to its 4236 // parts don't wrap either. 4237 SDNodeFlags Flags; 4238 Flags.setNoUnsignedWrap(true); 4239 4240 unsigned ChainI = 0; 4241 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4242 // See visitLoad comments. 4243 if (ChainI == MaxParallelChains) { 4244 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4245 makeArrayRef(Chains.data(), ChainI)); 4246 Root = Chain; 4247 ChainI = 0; 4248 } 4249 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4250 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4251 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4252 if (MemVTs[i] != ValueVTs[i]) 4253 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4254 SDValue St = 4255 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4256 Alignment, MMOFlags, AAInfo); 4257 Chains[ChainI] = St; 4258 } 4259 4260 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4261 makeArrayRef(Chains.data(), ChainI)); 4262 DAG.setRoot(StoreNode); 4263 } 4264 4265 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4266 bool IsCompressing) { 4267 SDLoc sdl = getCurSDLoc(); 4268 4269 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4270 unsigned& Alignment) { 4271 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4272 Src0 = I.getArgOperand(0); 4273 Ptr = I.getArgOperand(1); 4274 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4275 Mask = I.getArgOperand(3); 4276 }; 4277 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4278 unsigned& Alignment) { 4279 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4280 Src0 = I.getArgOperand(0); 4281 Ptr = I.getArgOperand(1); 4282 Mask = I.getArgOperand(2); 4283 Alignment = 0; 4284 }; 4285 4286 Value *PtrOperand, *MaskOperand, *Src0Operand; 4287 unsigned Alignment; 4288 if (IsCompressing) 4289 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4290 else 4291 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4292 4293 SDValue Ptr = getValue(PtrOperand); 4294 SDValue Src0 = getValue(Src0Operand); 4295 SDValue Mask = getValue(MaskOperand); 4296 4297 EVT VT = Src0.getValueType(); 4298 if (!Alignment) 4299 Alignment = DAG.getEVTAlignment(VT); 4300 4301 AAMDNodes AAInfo; 4302 I.getAAMetadata(AAInfo); 4303 4304 MachineMemOperand *MMO = 4305 DAG.getMachineFunction(). 4306 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4307 MachineMemOperand::MOStore, VT.getStoreSize(), 4308 Alignment, AAInfo); 4309 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4310 MMO, false /* Truncating */, 4311 IsCompressing); 4312 DAG.setRoot(StoreNode); 4313 setValue(&I, StoreNode); 4314 } 4315 4316 // Get a uniform base for the Gather/Scatter intrinsic. 4317 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4318 // We try to represent it as a base pointer + vector of indices. 4319 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4320 // The first operand of the GEP may be a single pointer or a vector of pointers 4321 // Example: 4322 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4323 // or 4324 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4325 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4326 // 4327 // When the first GEP operand is a single pointer - it is the uniform base we 4328 // are looking for. If first operand of the GEP is a splat vector - we 4329 // extract the splat value and use it as a uniform base. 4330 // In all other cases the function returns 'false'. 4331 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4332 ISD::MemIndexType &IndexType, SDValue &Scale, 4333 SelectionDAGBuilder *SDB) { 4334 SelectionDAG& DAG = SDB->DAG; 4335 LLVMContext &Context = *DAG.getContext(); 4336 4337 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4338 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4339 if (!GEP) 4340 return false; 4341 4342 const Value *GEPPtr = GEP->getPointerOperand(); 4343 if (!GEPPtr->getType()->isVectorTy()) 4344 Ptr = GEPPtr; 4345 else if (!(Ptr = getSplatValue(GEPPtr))) 4346 return false; 4347 4348 unsigned FinalIndex = GEP->getNumOperands() - 1; 4349 Value *IndexVal = GEP->getOperand(FinalIndex); 4350 4351 // Ensure all the other indices are 0. 4352 for (unsigned i = 1; i < FinalIndex; ++i) { 4353 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4354 if (!C) 4355 return false; 4356 if (isa<VectorType>(C->getType())) 4357 C = C->getSplatValue(); 4358 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4359 if (!CI || !CI->isZero()) 4360 return false; 4361 } 4362 4363 // The operands of the GEP may be defined in another basic block. 4364 // In this case we'll not find nodes for the operands. 4365 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4366 return false; 4367 4368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4369 const DataLayout &DL = DAG.getDataLayout(); 4370 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4371 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4372 Base = SDB->getValue(Ptr); 4373 Index = SDB->getValue(IndexVal); 4374 IndexType = ISD::SIGNED_SCALED; 4375 4376 if (!Index.getValueType().isVector()) { 4377 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4378 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4379 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4380 } 4381 return true; 4382 } 4383 4384 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4385 SDLoc sdl = getCurSDLoc(); 4386 4387 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4388 const Value *Ptr = I.getArgOperand(1); 4389 SDValue Src0 = getValue(I.getArgOperand(0)); 4390 SDValue Mask = getValue(I.getArgOperand(3)); 4391 EVT VT = Src0.getValueType(); 4392 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4393 if (!Alignment) 4394 Alignment = DAG.getEVTAlignment(VT); 4395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4396 4397 AAMDNodes AAInfo; 4398 I.getAAMetadata(AAInfo); 4399 4400 SDValue Base; 4401 SDValue Index; 4402 ISD::MemIndexType IndexType; 4403 SDValue Scale; 4404 const Value *BasePtr = Ptr; 4405 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4406 this); 4407 4408 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4409 MachineMemOperand *MMO = DAG.getMachineFunction(). 4410 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4411 MachineMemOperand::MOStore, VT.getStoreSize(), 4412 Alignment, AAInfo); 4413 if (!UniformBase) { 4414 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4415 Index = getValue(Ptr); 4416 IndexType = ISD::SIGNED_SCALED; 4417 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4418 } 4419 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4420 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4421 Ops, MMO, IndexType); 4422 DAG.setRoot(Scatter); 4423 setValue(&I, Scatter); 4424 } 4425 4426 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4427 SDLoc sdl = getCurSDLoc(); 4428 4429 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4430 unsigned& Alignment) { 4431 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4432 Ptr = I.getArgOperand(0); 4433 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4434 Mask = I.getArgOperand(2); 4435 Src0 = I.getArgOperand(3); 4436 }; 4437 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4438 unsigned& Alignment) { 4439 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4440 Ptr = I.getArgOperand(0); 4441 Alignment = 0; 4442 Mask = I.getArgOperand(1); 4443 Src0 = I.getArgOperand(2); 4444 }; 4445 4446 Value *PtrOperand, *MaskOperand, *Src0Operand; 4447 unsigned Alignment; 4448 if (IsExpanding) 4449 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4450 else 4451 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4452 4453 SDValue Ptr = getValue(PtrOperand); 4454 SDValue Src0 = getValue(Src0Operand); 4455 SDValue Mask = getValue(MaskOperand); 4456 4457 EVT VT = Src0.getValueType(); 4458 if (!Alignment) 4459 Alignment = DAG.getEVTAlignment(VT); 4460 4461 AAMDNodes AAInfo; 4462 I.getAAMetadata(AAInfo); 4463 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4464 4465 // Do not serialize masked loads of constant memory with anything. 4466 MemoryLocation ML; 4467 if (VT.isScalableVector()) 4468 ML = MemoryLocation(PtrOperand); 4469 else 4470 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4471 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4472 AAInfo); 4473 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4474 4475 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4476 4477 MachineMemOperand *MMO = 4478 DAG.getMachineFunction(). 4479 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4480 MachineMemOperand::MOLoad, VT.getStoreSize(), 4481 Alignment, AAInfo, Ranges); 4482 4483 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4484 ISD::NON_EXTLOAD, IsExpanding); 4485 if (AddToChain) 4486 PendingLoads.push_back(Load.getValue(1)); 4487 setValue(&I, Load); 4488 } 4489 4490 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4491 SDLoc sdl = getCurSDLoc(); 4492 4493 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4494 const Value *Ptr = I.getArgOperand(0); 4495 SDValue Src0 = getValue(I.getArgOperand(3)); 4496 SDValue Mask = getValue(I.getArgOperand(2)); 4497 4498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4499 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4500 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4501 if (!Alignment) 4502 Alignment = DAG.getEVTAlignment(VT); 4503 4504 AAMDNodes AAInfo; 4505 I.getAAMetadata(AAInfo); 4506 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4507 4508 SDValue Root = DAG.getRoot(); 4509 SDValue Base; 4510 SDValue Index; 4511 ISD::MemIndexType IndexType; 4512 SDValue Scale; 4513 const Value *BasePtr = Ptr; 4514 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4515 this); 4516 bool ConstantMemory = false; 4517 if (UniformBase && AA && 4518 AA->pointsToConstantMemory( 4519 MemoryLocation(BasePtr, 4520 LocationSize::precise( 4521 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4522 AAInfo))) { 4523 // Do not serialize (non-volatile) loads of constant memory with anything. 4524 Root = DAG.getEntryNode(); 4525 ConstantMemory = true; 4526 } 4527 4528 MachineMemOperand *MMO = 4529 DAG.getMachineFunction(). 4530 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4531 MachineMemOperand::MOLoad, VT.getStoreSize(), 4532 Alignment, AAInfo, Ranges); 4533 4534 if (!UniformBase) { 4535 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4536 Index = getValue(Ptr); 4537 IndexType = ISD::SIGNED_SCALED; 4538 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4539 } 4540 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4541 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4542 Ops, MMO, IndexType); 4543 4544 SDValue OutChain = Gather.getValue(1); 4545 if (!ConstantMemory) 4546 PendingLoads.push_back(OutChain); 4547 setValue(&I, Gather); 4548 } 4549 4550 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4551 SDLoc dl = getCurSDLoc(); 4552 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4553 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4554 SyncScope::ID SSID = I.getSyncScopeID(); 4555 4556 SDValue InChain = getRoot(); 4557 4558 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4559 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4560 4561 auto Alignment = DAG.getEVTAlignment(MemVT); 4562 4563 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4564 if (I.isVolatile()) 4565 Flags |= MachineMemOperand::MOVolatile; 4566 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4567 4568 MachineFunction &MF = DAG.getMachineFunction(); 4569 MachineMemOperand *MMO = 4570 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4571 Flags, MemVT.getStoreSize(), Alignment, 4572 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4573 FailureOrdering); 4574 4575 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4576 dl, MemVT, VTs, InChain, 4577 getValue(I.getPointerOperand()), 4578 getValue(I.getCompareOperand()), 4579 getValue(I.getNewValOperand()), MMO); 4580 4581 SDValue OutChain = L.getValue(2); 4582 4583 setValue(&I, L); 4584 DAG.setRoot(OutChain); 4585 } 4586 4587 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4588 SDLoc dl = getCurSDLoc(); 4589 ISD::NodeType NT; 4590 switch (I.getOperation()) { 4591 default: llvm_unreachable("Unknown atomicrmw operation"); 4592 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4593 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4594 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4595 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4596 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4597 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4598 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4599 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4600 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4601 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4602 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4603 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4604 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4605 } 4606 AtomicOrdering Ordering = I.getOrdering(); 4607 SyncScope::ID SSID = I.getSyncScopeID(); 4608 4609 SDValue InChain = getRoot(); 4610 4611 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4612 auto Alignment = DAG.getEVTAlignment(MemVT); 4613 4614 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4615 if (I.isVolatile()) 4616 Flags |= MachineMemOperand::MOVolatile; 4617 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4618 4619 MachineFunction &MF = DAG.getMachineFunction(); 4620 MachineMemOperand *MMO = 4621 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4622 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4623 nullptr, SSID, Ordering); 4624 4625 SDValue L = 4626 DAG.getAtomic(NT, dl, MemVT, InChain, 4627 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4628 MMO); 4629 4630 SDValue OutChain = L.getValue(1); 4631 4632 setValue(&I, L); 4633 DAG.setRoot(OutChain); 4634 } 4635 4636 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4637 SDLoc dl = getCurSDLoc(); 4638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4639 SDValue Ops[3]; 4640 Ops[0] = getRoot(); 4641 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4642 TLI.getFenceOperandTy(DAG.getDataLayout())); 4643 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4644 TLI.getFenceOperandTy(DAG.getDataLayout())); 4645 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4646 } 4647 4648 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4649 SDLoc dl = getCurSDLoc(); 4650 AtomicOrdering Order = I.getOrdering(); 4651 SyncScope::ID SSID = I.getSyncScopeID(); 4652 4653 SDValue InChain = getRoot(); 4654 4655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4656 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4657 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4658 4659 if (!TLI.supportsUnalignedAtomics() && 4660 I.getAlignment() < MemVT.getSizeInBits() / 8) 4661 report_fatal_error("Cannot generate unaligned atomic load"); 4662 4663 auto Flags = MachineMemOperand::MOLoad; 4664 if (I.isVolatile()) 4665 Flags |= MachineMemOperand::MOVolatile; 4666 if (I.hasMetadata(LLVMContext::MD_invariant_load)) 4667 Flags |= MachineMemOperand::MOInvariant; 4668 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4669 DAG.getDataLayout())) 4670 Flags |= MachineMemOperand::MODereferenceable; 4671 4672 Flags |= TLI.getMMOFlags(I); 4673 4674 MachineMemOperand *MMO = 4675 DAG.getMachineFunction(). 4676 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4677 Flags, MemVT.getStoreSize(), 4678 I.getAlignment() ? I.getAlignment() : 4679 DAG.getEVTAlignment(MemVT), 4680 AAMDNodes(), nullptr, SSID, Order); 4681 4682 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4683 4684 SDValue Ptr = getValue(I.getPointerOperand()); 4685 4686 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4687 // TODO: Once this is better exercised by tests, it should be merged with 4688 // the normal path for loads to prevent future divergence. 4689 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4690 if (MemVT != VT) 4691 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4692 4693 setValue(&I, L); 4694 SDValue OutChain = L.getValue(1); 4695 if (!I.isUnordered()) 4696 DAG.setRoot(OutChain); 4697 else 4698 PendingLoads.push_back(OutChain); 4699 return; 4700 } 4701 4702 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4703 Ptr, MMO); 4704 4705 SDValue OutChain = L.getValue(1); 4706 if (MemVT != VT) 4707 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4708 4709 setValue(&I, L); 4710 DAG.setRoot(OutChain); 4711 } 4712 4713 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4714 SDLoc dl = getCurSDLoc(); 4715 4716 AtomicOrdering Ordering = I.getOrdering(); 4717 SyncScope::ID SSID = I.getSyncScopeID(); 4718 4719 SDValue InChain = getRoot(); 4720 4721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4722 EVT MemVT = 4723 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4724 4725 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4726 report_fatal_error("Cannot generate unaligned atomic store"); 4727 4728 auto Flags = MachineMemOperand::MOStore; 4729 if (I.isVolatile()) 4730 Flags |= MachineMemOperand::MOVolatile; 4731 Flags |= TLI.getMMOFlags(I); 4732 4733 MachineFunction &MF = DAG.getMachineFunction(); 4734 MachineMemOperand *MMO = 4735 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4736 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4737 nullptr, SSID, Ordering); 4738 4739 SDValue Val = getValue(I.getValueOperand()); 4740 if (Val.getValueType() != MemVT) 4741 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4742 SDValue Ptr = getValue(I.getPointerOperand()); 4743 4744 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4745 // TODO: Once this is better exercised by tests, it should be merged with 4746 // the normal path for stores to prevent future divergence. 4747 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4748 DAG.setRoot(S); 4749 return; 4750 } 4751 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4752 Ptr, Val, MMO); 4753 4754 4755 DAG.setRoot(OutChain); 4756 } 4757 4758 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4759 /// node. 4760 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4761 unsigned Intrinsic) { 4762 // Ignore the callsite's attributes. A specific call site may be marked with 4763 // readnone, but the lowering code will expect the chain based on the 4764 // definition. 4765 const Function *F = I.getCalledFunction(); 4766 bool HasChain = !F->doesNotAccessMemory(); 4767 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4768 4769 // Build the operand list. 4770 SmallVector<SDValue, 8> Ops; 4771 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4772 if (OnlyLoad) { 4773 // We don't need to serialize loads against other loads. 4774 Ops.push_back(DAG.getRoot()); 4775 } else { 4776 Ops.push_back(getRoot()); 4777 } 4778 } 4779 4780 // Info is set by getTgtMemInstrinsic 4781 TargetLowering::IntrinsicInfo Info; 4782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4783 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4784 DAG.getMachineFunction(), 4785 Intrinsic); 4786 4787 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4788 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4789 Info.opc == ISD::INTRINSIC_W_CHAIN) 4790 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4791 TLI.getPointerTy(DAG.getDataLayout()))); 4792 4793 // Add all operands of the call to the operand list. 4794 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4795 const Value *Arg = I.getArgOperand(i); 4796 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4797 Ops.push_back(getValue(Arg)); 4798 continue; 4799 } 4800 4801 // Use TargetConstant instead of a regular constant for immarg. 4802 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4803 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4804 assert(CI->getBitWidth() <= 64 && 4805 "large intrinsic immediates not handled"); 4806 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4807 } else { 4808 Ops.push_back( 4809 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4810 } 4811 } 4812 4813 SmallVector<EVT, 4> ValueVTs; 4814 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4815 4816 if (HasChain) 4817 ValueVTs.push_back(MVT::Other); 4818 4819 SDVTList VTs = DAG.getVTList(ValueVTs); 4820 4821 // Create the node. 4822 SDValue Result; 4823 if (IsTgtIntrinsic) { 4824 // This is target intrinsic that touches memory 4825 AAMDNodes AAInfo; 4826 I.getAAMetadata(AAInfo); 4827 Result = DAG.getMemIntrinsicNode( 4828 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4829 MachinePointerInfo(Info.ptrVal, Info.offset), 4830 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4831 } else if (!HasChain) { 4832 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4833 } else if (!I.getType()->isVoidTy()) { 4834 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4835 } else { 4836 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4837 } 4838 4839 if (HasChain) { 4840 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4841 if (OnlyLoad) 4842 PendingLoads.push_back(Chain); 4843 else 4844 DAG.setRoot(Chain); 4845 } 4846 4847 if (!I.getType()->isVoidTy()) { 4848 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4849 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4850 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4851 } else 4852 Result = lowerRangeToAssertZExt(DAG, I, Result); 4853 4854 setValue(&I, Result); 4855 } 4856 } 4857 4858 /// GetSignificand - Get the significand and build it into a floating-point 4859 /// number with exponent of 1: 4860 /// 4861 /// Op = (Op & 0x007fffff) | 0x3f800000; 4862 /// 4863 /// where Op is the hexadecimal representation of floating point value. 4864 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4865 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4866 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4867 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4868 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4869 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4870 } 4871 4872 /// GetExponent - Get the exponent: 4873 /// 4874 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4875 /// 4876 /// where Op is the hexadecimal representation of floating point value. 4877 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4878 const TargetLowering &TLI, const SDLoc &dl) { 4879 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4880 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4881 SDValue t1 = DAG.getNode( 4882 ISD::SRL, dl, MVT::i32, t0, 4883 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4884 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4885 DAG.getConstant(127, dl, MVT::i32)); 4886 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4887 } 4888 4889 /// getF32Constant - Get 32-bit floating point constant. 4890 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4891 const SDLoc &dl) { 4892 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4893 MVT::f32); 4894 } 4895 4896 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4897 SelectionDAG &DAG) { 4898 // TODO: What fast-math-flags should be set on the floating-point nodes? 4899 4900 // IntegerPartOfX = ((int32_t)(t0); 4901 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4902 4903 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4904 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4905 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4906 4907 // IntegerPartOfX <<= 23; 4908 IntegerPartOfX = DAG.getNode( 4909 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4910 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4911 DAG.getDataLayout()))); 4912 4913 SDValue TwoToFractionalPartOfX; 4914 if (LimitFloatPrecision <= 6) { 4915 // For floating-point precision of 6: 4916 // 4917 // TwoToFractionalPartOfX = 4918 // 0.997535578f + 4919 // (0.735607626f + 0.252464424f * x) * x; 4920 // 4921 // error 0.0144103317, which is 6 bits 4922 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4923 getF32Constant(DAG, 0x3e814304, dl)); 4924 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4925 getF32Constant(DAG, 0x3f3c50c8, dl)); 4926 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4927 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4928 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4929 } else if (LimitFloatPrecision <= 12) { 4930 // For floating-point precision of 12: 4931 // 4932 // TwoToFractionalPartOfX = 4933 // 0.999892986f + 4934 // (0.696457318f + 4935 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4936 // 4937 // error 0.000107046256, which is 13 to 14 bits 4938 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4939 getF32Constant(DAG, 0x3da235e3, dl)); 4940 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4941 getF32Constant(DAG, 0x3e65b8f3, dl)); 4942 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4943 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4944 getF32Constant(DAG, 0x3f324b07, dl)); 4945 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4946 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4947 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4948 } else { // LimitFloatPrecision <= 18 4949 // For floating-point precision of 18: 4950 // 4951 // TwoToFractionalPartOfX = 4952 // 0.999999982f + 4953 // (0.693148872f + 4954 // (0.240227044f + 4955 // (0.554906021e-1f + 4956 // (0.961591928e-2f + 4957 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4958 // error 2.47208000*10^(-7), which is better than 18 bits 4959 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4960 getF32Constant(DAG, 0x3924b03e, dl)); 4961 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4962 getF32Constant(DAG, 0x3ab24b87, dl)); 4963 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4964 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4965 getF32Constant(DAG, 0x3c1d8c17, dl)); 4966 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4967 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4968 getF32Constant(DAG, 0x3d634a1d, dl)); 4969 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4970 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4971 getF32Constant(DAG, 0x3e75fe14, dl)); 4972 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4973 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4974 getF32Constant(DAG, 0x3f317234, dl)); 4975 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4976 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4977 getF32Constant(DAG, 0x3f800000, dl)); 4978 } 4979 4980 // Add the exponent into the result in integer domain. 4981 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4982 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4983 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4984 } 4985 4986 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4987 /// limited-precision mode. 4988 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4989 const TargetLowering &TLI) { 4990 if (Op.getValueType() == MVT::f32 && 4991 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4992 4993 // Put the exponent in the right bit position for later addition to the 4994 // final result: 4995 // 4996 // t0 = Op * log2(e) 4997 4998 // TODO: What fast-math-flags should be set here? 4999 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5000 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5001 return getLimitedPrecisionExp2(t0, dl, DAG); 5002 } 5003 5004 // No special expansion. 5005 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5006 } 5007 5008 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5009 /// limited-precision mode. 5010 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5011 const TargetLowering &TLI) { 5012 // TODO: What fast-math-flags should be set on the floating-point nodes? 5013 5014 if (Op.getValueType() == MVT::f32 && 5015 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5016 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5017 5018 // Scale the exponent by log(2). 5019 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5020 SDValue LogOfExponent = 5021 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5022 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5023 5024 // Get the significand and build it into a floating-point number with 5025 // exponent of 1. 5026 SDValue X = GetSignificand(DAG, Op1, dl); 5027 5028 SDValue LogOfMantissa; 5029 if (LimitFloatPrecision <= 6) { 5030 // For floating-point precision of 6: 5031 // 5032 // LogofMantissa = 5033 // -1.1609546f + 5034 // (1.4034025f - 0.23903021f * x) * x; 5035 // 5036 // error 0.0034276066, which is better than 8 bits 5037 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5038 getF32Constant(DAG, 0xbe74c456, dl)); 5039 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5040 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5041 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5042 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5043 getF32Constant(DAG, 0x3f949a29, dl)); 5044 } else if (LimitFloatPrecision <= 12) { 5045 // For floating-point precision of 12: 5046 // 5047 // LogOfMantissa = 5048 // -1.7417939f + 5049 // (2.8212026f + 5050 // (-1.4699568f + 5051 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5052 // 5053 // error 0.000061011436, which is 14 bits 5054 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5055 getF32Constant(DAG, 0xbd67b6d6, dl)); 5056 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5057 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5058 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5059 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5060 getF32Constant(DAG, 0x3fbc278b, dl)); 5061 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5062 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5063 getF32Constant(DAG, 0x40348e95, dl)); 5064 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5065 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5066 getF32Constant(DAG, 0x3fdef31a, dl)); 5067 } else { // LimitFloatPrecision <= 18 5068 // For floating-point precision of 18: 5069 // 5070 // LogOfMantissa = 5071 // -2.1072184f + 5072 // (4.2372794f + 5073 // (-3.7029485f + 5074 // (2.2781945f + 5075 // (-0.87823314f + 5076 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5077 // 5078 // error 0.0000023660568, which is better than 18 bits 5079 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5080 getF32Constant(DAG, 0xbc91e5ac, dl)); 5081 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5082 getF32Constant(DAG, 0x3e4350aa, dl)); 5083 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5084 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5085 getF32Constant(DAG, 0x3f60d3e3, dl)); 5086 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5087 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5088 getF32Constant(DAG, 0x4011cdf0, dl)); 5089 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5090 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5091 getF32Constant(DAG, 0x406cfd1c, dl)); 5092 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5093 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5094 getF32Constant(DAG, 0x408797cb, dl)); 5095 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5096 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5097 getF32Constant(DAG, 0x4006dcab, dl)); 5098 } 5099 5100 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5101 } 5102 5103 // No special expansion. 5104 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5105 } 5106 5107 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5108 /// limited-precision mode. 5109 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5110 const TargetLowering &TLI) { 5111 // TODO: What fast-math-flags should be set on the floating-point nodes? 5112 5113 if (Op.getValueType() == MVT::f32 && 5114 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5115 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5116 5117 // Get the exponent. 5118 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5119 5120 // Get the significand and build it into a floating-point number with 5121 // exponent of 1. 5122 SDValue X = GetSignificand(DAG, Op1, dl); 5123 5124 // Different possible minimax approximations of significand in 5125 // floating-point for various degrees of accuracy over [1,2]. 5126 SDValue Log2ofMantissa; 5127 if (LimitFloatPrecision <= 6) { 5128 // For floating-point precision of 6: 5129 // 5130 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5131 // 5132 // error 0.0049451742, which is more than 7 bits 5133 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5134 getF32Constant(DAG, 0xbeb08fe0, dl)); 5135 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5136 getF32Constant(DAG, 0x40019463, dl)); 5137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5138 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5139 getF32Constant(DAG, 0x3fd6633d, dl)); 5140 } else if (LimitFloatPrecision <= 12) { 5141 // For floating-point precision of 12: 5142 // 5143 // Log2ofMantissa = 5144 // -2.51285454f + 5145 // (4.07009056f + 5146 // (-2.12067489f + 5147 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5148 // 5149 // error 0.0000876136000, which is better than 13 bits 5150 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5151 getF32Constant(DAG, 0xbda7262e, dl)); 5152 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5153 getF32Constant(DAG, 0x3f25280b, dl)); 5154 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5155 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5156 getF32Constant(DAG, 0x4007b923, dl)); 5157 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5158 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5159 getF32Constant(DAG, 0x40823e2f, dl)); 5160 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5161 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5162 getF32Constant(DAG, 0x4020d29c, dl)); 5163 } else { // LimitFloatPrecision <= 18 5164 // For floating-point precision of 18: 5165 // 5166 // Log2ofMantissa = 5167 // -3.0400495f + 5168 // (6.1129976f + 5169 // (-5.3420409f + 5170 // (3.2865683f + 5171 // (-1.2669343f + 5172 // (0.27515199f - 5173 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5174 // 5175 // error 0.0000018516, which is better than 18 bits 5176 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5177 getF32Constant(DAG, 0xbcd2769e, dl)); 5178 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5179 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5180 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5181 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5182 getF32Constant(DAG, 0x3fa22ae7, dl)); 5183 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5184 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5185 getF32Constant(DAG, 0x40525723, dl)); 5186 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5187 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5188 getF32Constant(DAG, 0x40aaf200, dl)); 5189 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5190 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5191 getF32Constant(DAG, 0x40c39dad, dl)); 5192 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5193 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5194 getF32Constant(DAG, 0x4042902c, dl)); 5195 } 5196 5197 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5198 } 5199 5200 // No special expansion. 5201 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5202 } 5203 5204 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5205 /// limited-precision mode. 5206 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5207 const TargetLowering &TLI) { 5208 // TODO: What fast-math-flags should be set on the floating-point nodes? 5209 5210 if (Op.getValueType() == MVT::f32 && 5211 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5212 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5213 5214 // Scale the exponent by log10(2) [0.30102999f]. 5215 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5216 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5217 getF32Constant(DAG, 0x3e9a209a, dl)); 5218 5219 // Get the significand and build it into a floating-point number with 5220 // exponent of 1. 5221 SDValue X = GetSignificand(DAG, Op1, dl); 5222 5223 SDValue Log10ofMantissa; 5224 if (LimitFloatPrecision <= 6) { 5225 // For floating-point precision of 6: 5226 // 5227 // Log10ofMantissa = 5228 // -0.50419619f + 5229 // (0.60948995f - 0.10380950f * x) * x; 5230 // 5231 // error 0.0014886165, which is 6 bits 5232 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5233 getF32Constant(DAG, 0xbdd49a13, dl)); 5234 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5235 getF32Constant(DAG, 0x3f1c0789, dl)); 5236 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5237 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5238 getF32Constant(DAG, 0x3f011300, dl)); 5239 } else if (LimitFloatPrecision <= 12) { 5240 // For floating-point precision of 12: 5241 // 5242 // Log10ofMantissa = 5243 // -0.64831180f + 5244 // (0.91751397f + 5245 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5246 // 5247 // error 0.00019228036, which is better than 12 bits 5248 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5249 getF32Constant(DAG, 0x3d431f31, dl)); 5250 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5251 getF32Constant(DAG, 0x3ea21fb2, dl)); 5252 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5253 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5254 getF32Constant(DAG, 0x3f6ae232, dl)); 5255 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5256 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5257 getF32Constant(DAG, 0x3f25f7c3, dl)); 5258 } else { // LimitFloatPrecision <= 18 5259 // For floating-point precision of 18: 5260 // 5261 // Log10ofMantissa = 5262 // -0.84299375f + 5263 // (1.5327582f + 5264 // (-1.0688956f + 5265 // (0.49102474f + 5266 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5267 // 5268 // error 0.0000037995730, which is better than 18 bits 5269 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5270 getF32Constant(DAG, 0x3c5d51ce, dl)); 5271 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5272 getF32Constant(DAG, 0x3e00685a, dl)); 5273 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5274 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5275 getF32Constant(DAG, 0x3efb6798, dl)); 5276 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5277 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5278 getF32Constant(DAG, 0x3f88d192, dl)); 5279 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5280 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5281 getF32Constant(DAG, 0x3fc4316c, dl)); 5282 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5283 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5284 getF32Constant(DAG, 0x3f57ce70, dl)); 5285 } 5286 5287 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5288 } 5289 5290 // No special expansion. 5291 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5292 } 5293 5294 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5295 /// limited-precision mode. 5296 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5297 const TargetLowering &TLI) { 5298 if (Op.getValueType() == MVT::f32 && 5299 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5300 return getLimitedPrecisionExp2(Op, dl, DAG); 5301 5302 // No special expansion. 5303 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5304 } 5305 5306 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5307 /// limited-precision mode with x == 10.0f. 5308 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5309 SelectionDAG &DAG, const TargetLowering &TLI) { 5310 bool IsExp10 = false; 5311 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5312 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5313 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5314 APFloat Ten(10.0f); 5315 IsExp10 = LHSC->isExactlyValue(Ten); 5316 } 5317 } 5318 5319 // TODO: What fast-math-flags should be set on the FMUL node? 5320 if (IsExp10) { 5321 // Put the exponent in the right bit position for later addition to the 5322 // final result: 5323 // 5324 // #define LOG2OF10 3.3219281f 5325 // t0 = Op * LOG2OF10; 5326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5327 getF32Constant(DAG, 0x40549a78, dl)); 5328 return getLimitedPrecisionExp2(t0, dl, DAG); 5329 } 5330 5331 // No special expansion. 5332 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5333 } 5334 5335 /// ExpandPowI - Expand a llvm.powi intrinsic. 5336 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5337 SelectionDAG &DAG) { 5338 // If RHS is a constant, we can expand this out to a multiplication tree, 5339 // otherwise we end up lowering to a call to __powidf2 (for example). When 5340 // optimizing for size, we only want to do this if the expansion would produce 5341 // a small number of multiplies, otherwise we do the full expansion. 5342 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5343 // Get the exponent as a positive value. 5344 unsigned Val = RHSC->getSExtValue(); 5345 if ((int)Val < 0) Val = -Val; 5346 5347 // powi(x, 0) -> 1.0 5348 if (Val == 0) 5349 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5350 5351 const Function &F = DAG.getMachineFunction().getFunction(); 5352 if (!F.hasOptSize() || 5353 // If optimizing for size, don't insert too many multiplies. 5354 // This inserts up to 5 multiplies. 5355 countPopulation(Val) + Log2_32(Val) < 7) { 5356 // We use the simple binary decomposition method to generate the multiply 5357 // sequence. There are more optimal ways to do this (for example, 5358 // powi(x,15) generates one more multiply than it should), but this has 5359 // the benefit of being both really simple and much better than a libcall. 5360 SDValue Res; // Logically starts equal to 1.0 5361 SDValue CurSquare = LHS; 5362 // TODO: Intrinsics should have fast-math-flags that propagate to these 5363 // nodes. 5364 while (Val) { 5365 if (Val & 1) { 5366 if (Res.getNode()) 5367 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5368 else 5369 Res = CurSquare; // 1.0*CurSquare. 5370 } 5371 5372 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5373 CurSquare, CurSquare); 5374 Val >>= 1; 5375 } 5376 5377 // If the original was negative, invert the result, producing 1/(x*x*x). 5378 if (RHSC->getSExtValue() < 0) 5379 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5380 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5381 return Res; 5382 } 5383 } 5384 5385 // Otherwise, expand to a libcall. 5386 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5387 } 5388 5389 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5390 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5391 static void 5392 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5393 const SDValue &N) { 5394 switch (N.getOpcode()) { 5395 case ISD::CopyFromReg: { 5396 SDValue Op = N.getOperand(1); 5397 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5398 Op.getValueType().getSizeInBits()); 5399 return; 5400 } 5401 case ISD::BITCAST: 5402 case ISD::AssertZext: 5403 case ISD::AssertSext: 5404 case ISD::TRUNCATE: 5405 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5406 return; 5407 case ISD::BUILD_PAIR: 5408 case ISD::BUILD_VECTOR: 5409 case ISD::CONCAT_VECTORS: 5410 for (SDValue Op : N->op_values()) 5411 getUnderlyingArgRegs(Regs, Op); 5412 return; 5413 default: 5414 return; 5415 } 5416 } 5417 5418 /// If the DbgValueInst is a dbg_value of a function argument, create the 5419 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5420 /// instruction selection, they will be inserted to the entry BB. 5421 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5422 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5423 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5424 const Argument *Arg = dyn_cast<Argument>(V); 5425 if (!Arg) 5426 return false; 5427 5428 if (!IsDbgDeclare) { 5429 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5430 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5431 // the entry block. 5432 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5433 if (!IsInEntryBlock) 5434 return false; 5435 5436 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5437 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5438 // variable that also is a param. 5439 // 5440 // Although, if we are at the top of the entry block already, we can still 5441 // emit using ArgDbgValue. This might catch some situations when the 5442 // dbg.value refers to an argument that isn't used in the entry block, so 5443 // any CopyToReg node would be optimized out and the only way to express 5444 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5445 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5446 // we should only emit as ArgDbgValue if the Variable is an argument to the 5447 // current function, and the dbg.value intrinsic is found in the entry 5448 // block. 5449 bool VariableIsFunctionInputArg = Variable->isParameter() && 5450 !DL->getInlinedAt(); 5451 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5452 if (!IsInPrologue && !VariableIsFunctionInputArg) 5453 return false; 5454 5455 // Here we assume that a function argument on IR level only can be used to 5456 // describe one input parameter on source level. If we for example have 5457 // source code like this 5458 // 5459 // struct A { long x, y; }; 5460 // void foo(struct A a, long b) { 5461 // ... 5462 // b = a.x; 5463 // ... 5464 // } 5465 // 5466 // and IR like this 5467 // 5468 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5469 // entry: 5470 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5471 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5472 // call void @llvm.dbg.value(metadata i32 %b, "b", 5473 // ... 5474 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5475 // ... 5476 // 5477 // then the last dbg.value is describing a parameter "b" using a value that 5478 // is an argument. But since we already has used %a1 to describe a parameter 5479 // we should not handle that last dbg.value here (that would result in an 5480 // incorrect hoisting of the DBG_VALUE to the function entry). 5481 // Notice that we allow one dbg.value per IR level argument, to accommodate 5482 // for the situation with fragments above. 5483 if (VariableIsFunctionInputArg) { 5484 unsigned ArgNo = Arg->getArgNo(); 5485 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5486 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5487 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5488 return false; 5489 FuncInfo.DescribedArgs.set(ArgNo); 5490 } 5491 } 5492 5493 MachineFunction &MF = DAG.getMachineFunction(); 5494 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5495 5496 bool IsIndirect = false; 5497 Optional<MachineOperand> Op; 5498 // Some arguments' frame index is recorded during argument lowering. 5499 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5500 if (FI != std::numeric_limits<int>::max()) 5501 Op = MachineOperand::CreateFI(FI); 5502 5503 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5504 if (!Op && N.getNode()) { 5505 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5506 Register Reg; 5507 if (ArgRegsAndSizes.size() == 1) 5508 Reg = ArgRegsAndSizes.front().first; 5509 5510 if (Reg && Reg.isVirtual()) { 5511 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5512 Register PR = RegInfo.getLiveInPhysReg(Reg); 5513 if (PR) 5514 Reg = PR; 5515 } 5516 if (Reg) { 5517 Op = MachineOperand::CreateReg(Reg, false); 5518 IsIndirect = IsDbgDeclare; 5519 } 5520 } 5521 5522 if (!Op && N.getNode()) { 5523 // Check if frame index is available. 5524 SDValue LCandidate = peekThroughBitcasts(N); 5525 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5526 if (FrameIndexSDNode *FINode = 5527 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5528 Op = MachineOperand::CreateFI(FINode->getIndex()); 5529 } 5530 5531 if (!Op) { 5532 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5533 auto splitMultiRegDbgValue 5534 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5535 unsigned Offset = 0; 5536 for (auto RegAndSize : SplitRegs) { 5537 auto FragmentExpr = DIExpression::createFragmentExpression( 5538 Expr, Offset, RegAndSize.second); 5539 if (!FragmentExpr) 5540 continue; 5541 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5542 FuncInfo.ArgDbgValues.push_back( 5543 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5544 RegAndSize.first, Variable, *FragmentExpr)); 5545 Offset += RegAndSize.second; 5546 } 5547 }; 5548 5549 // Check if ValueMap has reg number. 5550 DenseMap<const Value *, unsigned>::const_iterator 5551 VMI = FuncInfo.ValueMap.find(V); 5552 if (VMI != FuncInfo.ValueMap.end()) { 5553 const auto &TLI = DAG.getTargetLoweringInfo(); 5554 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5555 V->getType(), getABIRegCopyCC(V)); 5556 if (RFV.occupiesMultipleRegs()) { 5557 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5558 return true; 5559 } 5560 5561 Op = MachineOperand::CreateReg(VMI->second, false); 5562 IsIndirect = IsDbgDeclare; 5563 } else if (ArgRegsAndSizes.size() > 1) { 5564 // This was split due to the calling convention, and no virtual register 5565 // mapping exists for the value. 5566 splitMultiRegDbgValue(ArgRegsAndSizes); 5567 return true; 5568 } 5569 } 5570 5571 if (!Op) 5572 return false; 5573 5574 assert(Variable->isValidLocationForIntrinsic(DL) && 5575 "Expected inlined-at fields to agree"); 5576 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5577 if (IsIndirect) 5578 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5579 FuncInfo.ArgDbgValues.push_back( 5580 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5581 *Op, Variable, Expr)); 5582 5583 return true; 5584 } 5585 5586 /// Return the appropriate SDDbgValue based on N. 5587 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5588 DILocalVariable *Variable, 5589 DIExpression *Expr, 5590 const DebugLoc &dl, 5591 unsigned DbgSDNodeOrder) { 5592 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5593 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5594 // stack slot locations. 5595 // 5596 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5597 // debug values here after optimization: 5598 // 5599 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5600 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5601 // 5602 // Both describe the direct values of their associated variables. 5603 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5604 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5605 } 5606 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5607 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5608 } 5609 5610 // VisualStudio defines setjmp as _setjmp 5611 #if defined(_MSC_VER) && defined(setjmp) && \ 5612 !defined(setjmp_undefined_for_msvc) 5613 # pragma push_macro("setjmp") 5614 # undef setjmp 5615 # define setjmp_undefined_for_msvc 5616 #endif 5617 5618 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5619 switch (Intrinsic) { 5620 case Intrinsic::smul_fix: 5621 return ISD::SMULFIX; 5622 case Intrinsic::umul_fix: 5623 return ISD::UMULFIX; 5624 default: 5625 llvm_unreachable("Unhandled fixed point intrinsic"); 5626 } 5627 } 5628 5629 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5630 const char *FunctionName) { 5631 assert(FunctionName && "FunctionName must not be nullptr"); 5632 SDValue Callee = DAG.getExternalSymbol( 5633 FunctionName, 5634 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5635 LowerCallTo(&I, Callee, I.isTailCall()); 5636 } 5637 5638 /// Lower the call to the specified intrinsic function. 5639 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5640 unsigned Intrinsic) { 5641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5642 SDLoc sdl = getCurSDLoc(); 5643 DebugLoc dl = getCurDebugLoc(); 5644 SDValue Res; 5645 5646 switch (Intrinsic) { 5647 default: 5648 // By default, turn this into a target intrinsic node. 5649 visitTargetIntrinsic(I, Intrinsic); 5650 return; 5651 case Intrinsic::vastart: visitVAStart(I); return; 5652 case Intrinsic::vaend: visitVAEnd(I); return; 5653 case Intrinsic::vacopy: visitVACopy(I); return; 5654 case Intrinsic::returnaddress: 5655 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5656 TLI.getPointerTy(DAG.getDataLayout()), 5657 getValue(I.getArgOperand(0)))); 5658 return; 5659 case Intrinsic::addressofreturnaddress: 5660 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5661 TLI.getPointerTy(DAG.getDataLayout()))); 5662 return; 5663 case Intrinsic::sponentry: 5664 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5665 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5666 return; 5667 case Intrinsic::frameaddress: 5668 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5669 TLI.getFrameIndexTy(DAG.getDataLayout()), 5670 getValue(I.getArgOperand(0)))); 5671 return; 5672 case Intrinsic::read_register: { 5673 Value *Reg = I.getArgOperand(0); 5674 SDValue Chain = getRoot(); 5675 SDValue RegName = 5676 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5677 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5678 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5679 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5680 setValue(&I, Res); 5681 DAG.setRoot(Res.getValue(1)); 5682 return; 5683 } 5684 case Intrinsic::write_register: { 5685 Value *Reg = I.getArgOperand(0); 5686 Value *RegValue = I.getArgOperand(1); 5687 SDValue Chain = getRoot(); 5688 SDValue RegName = 5689 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5690 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5691 RegName, getValue(RegValue))); 5692 return; 5693 } 5694 case Intrinsic::setjmp: 5695 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5696 return; 5697 case Intrinsic::longjmp: 5698 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5699 return; 5700 case Intrinsic::memcpy: { 5701 const auto &MCI = cast<MemCpyInst>(I); 5702 SDValue Op1 = getValue(I.getArgOperand(0)); 5703 SDValue Op2 = getValue(I.getArgOperand(1)); 5704 SDValue Op3 = getValue(I.getArgOperand(2)); 5705 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5706 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5707 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5708 unsigned Align = MinAlign(DstAlign, SrcAlign); 5709 bool isVol = MCI.isVolatile(); 5710 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5711 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5712 // node. 5713 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5714 false, isTC, 5715 MachinePointerInfo(I.getArgOperand(0)), 5716 MachinePointerInfo(I.getArgOperand(1))); 5717 updateDAGForMaybeTailCall(MC); 5718 return; 5719 } 5720 case Intrinsic::memset: { 5721 const auto &MSI = cast<MemSetInst>(I); 5722 SDValue Op1 = getValue(I.getArgOperand(0)); 5723 SDValue Op2 = getValue(I.getArgOperand(1)); 5724 SDValue Op3 = getValue(I.getArgOperand(2)); 5725 // @llvm.memset defines 0 and 1 to both mean no alignment. 5726 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5727 bool isVol = MSI.isVolatile(); 5728 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5729 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5730 isTC, MachinePointerInfo(I.getArgOperand(0))); 5731 updateDAGForMaybeTailCall(MS); 5732 return; 5733 } 5734 case Intrinsic::memmove: { 5735 const auto &MMI = cast<MemMoveInst>(I); 5736 SDValue Op1 = getValue(I.getArgOperand(0)); 5737 SDValue Op2 = getValue(I.getArgOperand(1)); 5738 SDValue Op3 = getValue(I.getArgOperand(2)); 5739 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5740 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5741 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5742 unsigned Align = MinAlign(DstAlign, SrcAlign); 5743 bool isVol = MMI.isVolatile(); 5744 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5745 // FIXME: Support passing different dest/src alignments to the memmove DAG 5746 // node. 5747 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5748 isTC, MachinePointerInfo(I.getArgOperand(0)), 5749 MachinePointerInfo(I.getArgOperand(1))); 5750 updateDAGForMaybeTailCall(MM); 5751 return; 5752 } 5753 case Intrinsic::memcpy_element_unordered_atomic: { 5754 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5755 SDValue Dst = getValue(MI.getRawDest()); 5756 SDValue Src = getValue(MI.getRawSource()); 5757 SDValue Length = getValue(MI.getLength()); 5758 5759 unsigned DstAlign = MI.getDestAlignment(); 5760 unsigned SrcAlign = MI.getSourceAlignment(); 5761 Type *LengthTy = MI.getLength()->getType(); 5762 unsigned ElemSz = MI.getElementSizeInBytes(); 5763 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5764 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5765 SrcAlign, Length, LengthTy, ElemSz, isTC, 5766 MachinePointerInfo(MI.getRawDest()), 5767 MachinePointerInfo(MI.getRawSource())); 5768 updateDAGForMaybeTailCall(MC); 5769 return; 5770 } 5771 case Intrinsic::memmove_element_unordered_atomic: { 5772 auto &MI = cast<AtomicMemMoveInst>(I); 5773 SDValue Dst = getValue(MI.getRawDest()); 5774 SDValue Src = getValue(MI.getRawSource()); 5775 SDValue Length = getValue(MI.getLength()); 5776 5777 unsigned DstAlign = MI.getDestAlignment(); 5778 unsigned SrcAlign = MI.getSourceAlignment(); 5779 Type *LengthTy = MI.getLength()->getType(); 5780 unsigned ElemSz = MI.getElementSizeInBytes(); 5781 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5782 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5783 SrcAlign, Length, LengthTy, ElemSz, isTC, 5784 MachinePointerInfo(MI.getRawDest()), 5785 MachinePointerInfo(MI.getRawSource())); 5786 updateDAGForMaybeTailCall(MC); 5787 return; 5788 } 5789 case Intrinsic::memset_element_unordered_atomic: { 5790 auto &MI = cast<AtomicMemSetInst>(I); 5791 SDValue Dst = getValue(MI.getRawDest()); 5792 SDValue Val = getValue(MI.getValue()); 5793 SDValue Length = getValue(MI.getLength()); 5794 5795 unsigned DstAlign = MI.getDestAlignment(); 5796 Type *LengthTy = MI.getLength()->getType(); 5797 unsigned ElemSz = MI.getElementSizeInBytes(); 5798 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5799 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5800 LengthTy, ElemSz, isTC, 5801 MachinePointerInfo(MI.getRawDest())); 5802 updateDAGForMaybeTailCall(MC); 5803 return; 5804 } 5805 case Intrinsic::dbg_addr: 5806 case Intrinsic::dbg_declare: { 5807 const auto &DI = cast<DbgVariableIntrinsic>(I); 5808 DILocalVariable *Variable = DI.getVariable(); 5809 DIExpression *Expression = DI.getExpression(); 5810 dropDanglingDebugInfo(Variable, Expression); 5811 assert(Variable && "Missing variable"); 5812 5813 // Check if address has undef value. 5814 const Value *Address = DI.getVariableLocation(); 5815 if (!Address || isa<UndefValue>(Address) || 5816 (Address->use_empty() && !isa<Argument>(Address))) { 5817 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5818 return; 5819 } 5820 5821 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5822 5823 // Check if this variable can be described by a frame index, typically 5824 // either as a static alloca or a byval parameter. 5825 int FI = std::numeric_limits<int>::max(); 5826 if (const auto *AI = 5827 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5828 if (AI->isStaticAlloca()) { 5829 auto I = FuncInfo.StaticAllocaMap.find(AI); 5830 if (I != FuncInfo.StaticAllocaMap.end()) 5831 FI = I->second; 5832 } 5833 } else if (const auto *Arg = dyn_cast<Argument>( 5834 Address->stripInBoundsConstantOffsets())) { 5835 FI = FuncInfo.getArgumentFrameIndex(Arg); 5836 } 5837 5838 // llvm.dbg.addr is control dependent and always generates indirect 5839 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5840 // the MachineFunction variable table. 5841 if (FI != std::numeric_limits<int>::max()) { 5842 if (Intrinsic == Intrinsic::dbg_addr) { 5843 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5844 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5845 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5846 } 5847 return; 5848 } 5849 5850 SDValue &N = NodeMap[Address]; 5851 if (!N.getNode() && isa<Argument>(Address)) 5852 // Check unused arguments map. 5853 N = UnusedArgNodeMap[Address]; 5854 SDDbgValue *SDV; 5855 if (N.getNode()) { 5856 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5857 Address = BCI->getOperand(0); 5858 // Parameters are handled specially. 5859 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5860 if (isParameter && FINode) { 5861 // Byval parameter. We have a frame index at this point. 5862 SDV = 5863 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5864 /*IsIndirect*/ true, dl, SDNodeOrder); 5865 } else if (isa<Argument>(Address)) { 5866 // Address is an argument, so try to emit its dbg value using 5867 // virtual register info from the FuncInfo.ValueMap. 5868 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5869 return; 5870 } else { 5871 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5872 true, dl, SDNodeOrder); 5873 } 5874 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5875 } else { 5876 // If Address is an argument then try to emit its dbg value using 5877 // virtual register info from the FuncInfo.ValueMap. 5878 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5879 N)) { 5880 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5881 } 5882 } 5883 return; 5884 } 5885 case Intrinsic::dbg_label: { 5886 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5887 DILabel *Label = DI.getLabel(); 5888 assert(Label && "Missing label"); 5889 5890 SDDbgLabel *SDV; 5891 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5892 DAG.AddDbgLabel(SDV); 5893 return; 5894 } 5895 case Intrinsic::dbg_value: { 5896 const DbgValueInst &DI = cast<DbgValueInst>(I); 5897 assert(DI.getVariable() && "Missing variable"); 5898 5899 DILocalVariable *Variable = DI.getVariable(); 5900 DIExpression *Expression = DI.getExpression(); 5901 dropDanglingDebugInfo(Variable, Expression); 5902 const Value *V = DI.getValue(); 5903 if (!V) 5904 return; 5905 5906 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5907 SDNodeOrder)) 5908 return; 5909 5910 // TODO: Dangling debug info will eventually either be resolved or produce 5911 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5912 // between the original dbg.value location and its resolved DBG_VALUE, which 5913 // we should ideally fill with an extra Undef DBG_VALUE. 5914 5915 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5916 return; 5917 } 5918 5919 case Intrinsic::eh_typeid_for: { 5920 // Find the type id for the given typeinfo. 5921 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5922 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5923 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5924 setValue(&I, Res); 5925 return; 5926 } 5927 5928 case Intrinsic::eh_return_i32: 5929 case Intrinsic::eh_return_i64: 5930 DAG.getMachineFunction().setCallsEHReturn(true); 5931 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5932 MVT::Other, 5933 getControlRoot(), 5934 getValue(I.getArgOperand(0)), 5935 getValue(I.getArgOperand(1)))); 5936 return; 5937 case Intrinsic::eh_unwind_init: 5938 DAG.getMachineFunction().setCallsUnwindInit(true); 5939 return; 5940 case Intrinsic::eh_dwarf_cfa: 5941 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5942 TLI.getPointerTy(DAG.getDataLayout()), 5943 getValue(I.getArgOperand(0)))); 5944 return; 5945 case Intrinsic::eh_sjlj_callsite: { 5946 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5947 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5948 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5949 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5950 5951 MMI.setCurrentCallSite(CI->getZExtValue()); 5952 return; 5953 } 5954 case Intrinsic::eh_sjlj_functioncontext: { 5955 // Get and store the index of the function context. 5956 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5957 AllocaInst *FnCtx = 5958 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5959 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5960 MFI.setFunctionContextIndex(FI); 5961 return; 5962 } 5963 case Intrinsic::eh_sjlj_setjmp: { 5964 SDValue Ops[2]; 5965 Ops[0] = getRoot(); 5966 Ops[1] = getValue(I.getArgOperand(0)); 5967 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5968 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5969 setValue(&I, Op.getValue(0)); 5970 DAG.setRoot(Op.getValue(1)); 5971 return; 5972 } 5973 case Intrinsic::eh_sjlj_longjmp: 5974 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5975 getRoot(), getValue(I.getArgOperand(0)))); 5976 return; 5977 case Intrinsic::eh_sjlj_setup_dispatch: 5978 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5979 getRoot())); 5980 return; 5981 case Intrinsic::masked_gather: 5982 visitMaskedGather(I); 5983 return; 5984 case Intrinsic::masked_load: 5985 visitMaskedLoad(I); 5986 return; 5987 case Intrinsic::masked_scatter: 5988 visitMaskedScatter(I); 5989 return; 5990 case Intrinsic::masked_store: 5991 visitMaskedStore(I); 5992 return; 5993 case Intrinsic::masked_expandload: 5994 visitMaskedLoad(I, true /* IsExpanding */); 5995 return; 5996 case Intrinsic::masked_compressstore: 5997 visitMaskedStore(I, true /* IsCompressing */); 5998 return; 5999 case Intrinsic::powi: 6000 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6001 getValue(I.getArgOperand(1)), DAG)); 6002 return; 6003 case Intrinsic::log: 6004 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6005 return; 6006 case Intrinsic::log2: 6007 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6008 return; 6009 case Intrinsic::log10: 6010 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6011 return; 6012 case Intrinsic::exp: 6013 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6014 return; 6015 case Intrinsic::exp2: 6016 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6017 return; 6018 case Intrinsic::pow: 6019 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6020 getValue(I.getArgOperand(1)), DAG, TLI)); 6021 return; 6022 case Intrinsic::sqrt: 6023 case Intrinsic::fabs: 6024 case Intrinsic::sin: 6025 case Intrinsic::cos: 6026 case Intrinsic::floor: 6027 case Intrinsic::ceil: 6028 case Intrinsic::trunc: 6029 case Intrinsic::rint: 6030 case Intrinsic::nearbyint: 6031 case Intrinsic::round: 6032 case Intrinsic::canonicalize: { 6033 unsigned Opcode; 6034 switch (Intrinsic) { 6035 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6036 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6037 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6038 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6039 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6040 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6041 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6042 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6043 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6044 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6045 case Intrinsic::round: Opcode = ISD::FROUND; break; 6046 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6047 } 6048 6049 setValue(&I, DAG.getNode(Opcode, sdl, 6050 getValue(I.getArgOperand(0)).getValueType(), 6051 getValue(I.getArgOperand(0)))); 6052 return; 6053 } 6054 case Intrinsic::lround: 6055 case Intrinsic::llround: 6056 case Intrinsic::lrint: 6057 case Intrinsic::llrint: { 6058 unsigned Opcode; 6059 switch (Intrinsic) { 6060 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6061 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6062 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6063 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6064 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6065 } 6066 6067 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6068 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6069 getValue(I.getArgOperand(0)))); 6070 return; 6071 } 6072 case Intrinsic::minnum: 6073 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6074 getValue(I.getArgOperand(0)).getValueType(), 6075 getValue(I.getArgOperand(0)), 6076 getValue(I.getArgOperand(1)))); 6077 return; 6078 case Intrinsic::maxnum: 6079 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6080 getValue(I.getArgOperand(0)).getValueType(), 6081 getValue(I.getArgOperand(0)), 6082 getValue(I.getArgOperand(1)))); 6083 return; 6084 case Intrinsic::minimum: 6085 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6086 getValue(I.getArgOperand(0)).getValueType(), 6087 getValue(I.getArgOperand(0)), 6088 getValue(I.getArgOperand(1)))); 6089 return; 6090 case Intrinsic::maximum: 6091 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6092 getValue(I.getArgOperand(0)).getValueType(), 6093 getValue(I.getArgOperand(0)), 6094 getValue(I.getArgOperand(1)))); 6095 return; 6096 case Intrinsic::copysign: 6097 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6098 getValue(I.getArgOperand(0)).getValueType(), 6099 getValue(I.getArgOperand(0)), 6100 getValue(I.getArgOperand(1)))); 6101 return; 6102 case Intrinsic::fma: 6103 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6104 getValue(I.getArgOperand(0)).getValueType(), 6105 getValue(I.getArgOperand(0)), 6106 getValue(I.getArgOperand(1)), 6107 getValue(I.getArgOperand(2)))); 6108 return; 6109 case Intrinsic::experimental_constrained_fadd: 6110 case Intrinsic::experimental_constrained_fsub: 6111 case Intrinsic::experimental_constrained_fmul: 6112 case Intrinsic::experimental_constrained_fdiv: 6113 case Intrinsic::experimental_constrained_frem: 6114 case Intrinsic::experimental_constrained_fma: 6115 case Intrinsic::experimental_constrained_fptosi: 6116 case Intrinsic::experimental_constrained_fptoui: 6117 case Intrinsic::experimental_constrained_fptrunc: 6118 case Intrinsic::experimental_constrained_fpext: 6119 case Intrinsic::experimental_constrained_sqrt: 6120 case Intrinsic::experimental_constrained_pow: 6121 case Intrinsic::experimental_constrained_powi: 6122 case Intrinsic::experimental_constrained_sin: 6123 case Intrinsic::experimental_constrained_cos: 6124 case Intrinsic::experimental_constrained_exp: 6125 case Intrinsic::experimental_constrained_exp2: 6126 case Intrinsic::experimental_constrained_log: 6127 case Intrinsic::experimental_constrained_log10: 6128 case Intrinsic::experimental_constrained_log2: 6129 case Intrinsic::experimental_constrained_lrint: 6130 case Intrinsic::experimental_constrained_llrint: 6131 case Intrinsic::experimental_constrained_rint: 6132 case Intrinsic::experimental_constrained_nearbyint: 6133 case Intrinsic::experimental_constrained_maxnum: 6134 case Intrinsic::experimental_constrained_minnum: 6135 case Intrinsic::experimental_constrained_ceil: 6136 case Intrinsic::experimental_constrained_floor: 6137 case Intrinsic::experimental_constrained_lround: 6138 case Intrinsic::experimental_constrained_llround: 6139 case Intrinsic::experimental_constrained_round: 6140 case Intrinsic::experimental_constrained_trunc: 6141 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6142 return; 6143 case Intrinsic::fmuladd: { 6144 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6145 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6146 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6147 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6148 getValue(I.getArgOperand(0)).getValueType(), 6149 getValue(I.getArgOperand(0)), 6150 getValue(I.getArgOperand(1)), 6151 getValue(I.getArgOperand(2)))); 6152 } else { 6153 // TODO: Intrinsic calls should have fast-math-flags. 6154 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6155 getValue(I.getArgOperand(0)).getValueType(), 6156 getValue(I.getArgOperand(0)), 6157 getValue(I.getArgOperand(1))); 6158 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6159 getValue(I.getArgOperand(0)).getValueType(), 6160 Mul, 6161 getValue(I.getArgOperand(2))); 6162 setValue(&I, Add); 6163 } 6164 return; 6165 } 6166 case Intrinsic::convert_to_fp16: 6167 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6168 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6169 getValue(I.getArgOperand(0)), 6170 DAG.getTargetConstant(0, sdl, 6171 MVT::i32)))); 6172 return; 6173 case Intrinsic::convert_from_fp16: 6174 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6175 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6176 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6177 getValue(I.getArgOperand(0))))); 6178 return; 6179 case Intrinsic::pcmarker: { 6180 SDValue Tmp = getValue(I.getArgOperand(0)); 6181 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6182 return; 6183 } 6184 case Intrinsic::readcyclecounter: { 6185 SDValue Op = getRoot(); 6186 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6187 DAG.getVTList(MVT::i64, MVT::Other), Op); 6188 setValue(&I, Res); 6189 DAG.setRoot(Res.getValue(1)); 6190 return; 6191 } 6192 case Intrinsic::bitreverse: 6193 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6194 getValue(I.getArgOperand(0)).getValueType(), 6195 getValue(I.getArgOperand(0)))); 6196 return; 6197 case Intrinsic::bswap: 6198 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6199 getValue(I.getArgOperand(0)).getValueType(), 6200 getValue(I.getArgOperand(0)))); 6201 return; 6202 case Intrinsic::cttz: { 6203 SDValue Arg = getValue(I.getArgOperand(0)); 6204 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6205 EVT Ty = Arg.getValueType(); 6206 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6207 sdl, Ty, Arg)); 6208 return; 6209 } 6210 case Intrinsic::ctlz: { 6211 SDValue Arg = getValue(I.getArgOperand(0)); 6212 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6213 EVT Ty = Arg.getValueType(); 6214 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6215 sdl, Ty, Arg)); 6216 return; 6217 } 6218 case Intrinsic::ctpop: { 6219 SDValue Arg = getValue(I.getArgOperand(0)); 6220 EVT Ty = Arg.getValueType(); 6221 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6222 return; 6223 } 6224 case Intrinsic::fshl: 6225 case Intrinsic::fshr: { 6226 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6227 SDValue X = getValue(I.getArgOperand(0)); 6228 SDValue Y = getValue(I.getArgOperand(1)); 6229 SDValue Z = getValue(I.getArgOperand(2)); 6230 EVT VT = X.getValueType(); 6231 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6232 SDValue Zero = DAG.getConstant(0, sdl, VT); 6233 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6234 6235 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6236 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6237 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6238 return; 6239 } 6240 6241 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6242 // avoid the select that is necessary in the general case to filter out 6243 // the 0-shift possibility that leads to UB. 6244 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6245 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6246 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6247 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6248 return; 6249 } 6250 6251 // Some targets only rotate one way. Try the opposite direction. 6252 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6253 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6254 // Negate the shift amount because it is safe to ignore the high bits. 6255 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6256 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6257 return; 6258 } 6259 6260 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6261 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6262 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6263 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6264 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6265 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6266 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6267 return; 6268 } 6269 6270 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6271 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6272 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6273 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6274 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6275 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6276 6277 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6278 // and that is undefined. We must compare and select to avoid UB. 6279 EVT CCVT = MVT::i1; 6280 if (VT.isVector()) 6281 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6282 6283 // For fshl, 0-shift returns the 1st arg (X). 6284 // For fshr, 0-shift returns the 2nd arg (Y). 6285 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6286 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6287 return; 6288 } 6289 case Intrinsic::sadd_sat: { 6290 SDValue Op1 = getValue(I.getArgOperand(0)); 6291 SDValue Op2 = getValue(I.getArgOperand(1)); 6292 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6293 return; 6294 } 6295 case Intrinsic::uadd_sat: { 6296 SDValue Op1 = getValue(I.getArgOperand(0)); 6297 SDValue Op2 = getValue(I.getArgOperand(1)); 6298 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6299 return; 6300 } 6301 case Intrinsic::ssub_sat: { 6302 SDValue Op1 = getValue(I.getArgOperand(0)); 6303 SDValue Op2 = getValue(I.getArgOperand(1)); 6304 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6305 return; 6306 } 6307 case Intrinsic::usub_sat: { 6308 SDValue Op1 = getValue(I.getArgOperand(0)); 6309 SDValue Op2 = getValue(I.getArgOperand(1)); 6310 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6311 return; 6312 } 6313 case Intrinsic::smul_fix: 6314 case Intrinsic::umul_fix: { 6315 SDValue Op1 = getValue(I.getArgOperand(0)); 6316 SDValue Op2 = getValue(I.getArgOperand(1)); 6317 SDValue Op3 = getValue(I.getArgOperand(2)); 6318 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6319 Op1.getValueType(), Op1, Op2, Op3)); 6320 return; 6321 } 6322 case Intrinsic::smul_fix_sat: { 6323 SDValue Op1 = getValue(I.getArgOperand(0)); 6324 SDValue Op2 = getValue(I.getArgOperand(1)); 6325 SDValue Op3 = getValue(I.getArgOperand(2)); 6326 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6327 Op3)); 6328 return; 6329 } 6330 case Intrinsic::umul_fix_sat: { 6331 SDValue Op1 = getValue(I.getArgOperand(0)); 6332 SDValue Op2 = getValue(I.getArgOperand(1)); 6333 SDValue Op3 = getValue(I.getArgOperand(2)); 6334 setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6335 Op3)); 6336 return; 6337 } 6338 case Intrinsic::stacksave: { 6339 SDValue Op = getRoot(); 6340 Res = DAG.getNode( 6341 ISD::STACKSAVE, sdl, 6342 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6343 setValue(&I, Res); 6344 DAG.setRoot(Res.getValue(1)); 6345 return; 6346 } 6347 case Intrinsic::stackrestore: 6348 Res = getValue(I.getArgOperand(0)); 6349 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6350 return; 6351 case Intrinsic::get_dynamic_area_offset: { 6352 SDValue Op = getRoot(); 6353 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6354 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6355 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6356 // target. 6357 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6358 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6359 " intrinsic!"); 6360 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6361 Op); 6362 DAG.setRoot(Op); 6363 setValue(&I, Res); 6364 return; 6365 } 6366 case Intrinsic::stackguard: { 6367 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6368 MachineFunction &MF = DAG.getMachineFunction(); 6369 const Module &M = *MF.getFunction().getParent(); 6370 SDValue Chain = getRoot(); 6371 if (TLI.useLoadStackGuardNode()) { 6372 Res = getLoadStackGuard(DAG, sdl, Chain); 6373 } else { 6374 const Value *Global = TLI.getSDagStackGuard(M); 6375 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6376 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6377 MachinePointerInfo(Global, 0), Align, 6378 MachineMemOperand::MOVolatile); 6379 } 6380 if (TLI.useStackGuardXorFP()) 6381 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6382 DAG.setRoot(Chain); 6383 setValue(&I, Res); 6384 return; 6385 } 6386 case Intrinsic::stackprotector: { 6387 // Emit code into the DAG to store the stack guard onto the stack. 6388 MachineFunction &MF = DAG.getMachineFunction(); 6389 MachineFrameInfo &MFI = MF.getFrameInfo(); 6390 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6391 SDValue Src, Chain = getRoot(); 6392 6393 if (TLI.useLoadStackGuardNode()) 6394 Src = getLoadStackGuard(DAG, sdl, Chain); 6395 else 6396 Src = getValue(I.getArgOperand(0)); // The guard's value. 6397 6398 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6399 6400 int FI = FuncInfo.StaticAllocaMap[Slot]; 6401 MFI.setStackProtectorIndex(FI); 6402 6403 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6404 6405 // Store the stack protector onto the stack. 6406 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6407 DAG.getMachineFunction(), FI), 6408 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6409 setValue(&I, Res); 6410 DAG.setRoot(Res); 6411 return; 6412 } 6413 case Intrinsic::objectsize: 6414 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6415 6416 case Intrinsic::is_constant: 6417 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6418 6419 case Intrinsic::annotation: 6420 case Intrinsic::ptr_annotation: 6421 case Intrinsic::launder_invariant_group: 6422 case Intrinsic::strip_invariant_group: 6423 // Drop the intrinsic, but forward the value 6424 setValue(&I, getValue(I.getOperand(0))); 6425 return; 6426 case Intrinsic::assume: 6427 case Intrinsic::var_annotation: 6428 case Intrinsic::sideeffect: 6429 // Discard annotate attributes, assumptions, and artificial side-effects. 6430 return; 6431 6432 case Intrinsic::codeview_annotation: { 6433 // Emit a label associated with this metadata. 6434 MachineFunction &MF = DAG.getMachineFunction(); 6435 MCSymbol *Label = 6436 MF.getMMI().getContext().createTempSymbol("annotation", true); 6437 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6438 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6439 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6440 DAG.setRoot(Res); 6441 return; 6442 } 6443 6444 case Intrinsic::init_trampoline: { 6445 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6446 6447 SDValue Ops[6]; 6448 Ops[0] = getRoot(); 6449 Ops[1] = getValue(I.getArgOperand(0)); 6450 Ops[2] = getValue(I.getArgOperand(1)); 6451 Ops[3] = getValue(I.getArgOperand(2)); 6452 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6453 Ops[5] = DAG.getSrcValue(F); 6454 6455 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6456 6457 DAG.setRoot(Res); 6458 return; 6459 } 6460 case Intrinsic::adjust_trampoline: 6461 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6462 TLI.getPointerTy(DAG.getDataLayout()), 6463 getValue(I.getArgOperand(0)))); 6464 return; 6465 case Intrinsic::gcroot: { 6466 assert(DAG.getMachineFunction().getFunction().hasGC() && 6467 "only valid in functions with gc specified, enforced by Verifier"); 6468 assert(GFI && "implied by previous"); 6469 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6470 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6471 6472 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6473 GFI->addStackRoot(FI->getIndex(), TypeMap); 6474 return; 6475 } 6476 case Intrinsic::gcread: 6477 case Intrinsic::gcwrite: 6478 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6479 case Intrinsic::flt_rounds: 6480 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6481 return; 6482 6483 case Intrinsic::expect: 6484 // Just replace __builtin_expect(exp, c) with EXP. 6485 setValue(&I, getValue(I.getArgOperand(0))); 6486 return; 6487 6488 case Intrinsic::debugtrap: 6489 case Intrinsic::trap: { 6490 StringRef TrapFuncName = 6491 I.getAttributes() 6492 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6493 .getValueAsString(); 6494 if (TrapFuncName.empty()) { 6495 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6496 ISD::TRAP : ISD::DEBUGTRAP; 6497 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6498 return; 6499 } 6500 TargetLowering::ArgListTy Args; 6501 6502 TargetLowering::CallLoweringInfo CLI(DAG); 6503 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6504 CallingConv::C, I.getType(), 6505 DAG.getExternalSymbol(TrapFuncName.data(), 6506 TLI.getPointerTy(DAG.getDataLayout())), 6507 std::move(Args)); 6508 6509 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6510 DAG.setRoot(Result.second); 6511 return; 6512 } 6513 6514 case Intrinsic::uadd_with_overflow: 6515 case Intrinsic::sadd_with_overflow: 6516 case Intrinsic::usub_with_overflow: 6517 case Intrinsic::ssub_with_overflow: 6518 case Intrinsic::umul_with_overflow: 6519 case Intrinsic::smul_with_overflow: { 6520 ISD::NodeType Op; 6521 switch (Intrinsic) { 6522 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6523 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6524 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6525 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6526 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6527 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6528 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6529 } 6530 SDValue Op1 = getValue(I.getArgOperand(0)); 6531 SDValue Op2 = getValue(I.getArgOperand(1)); 6532 6533 EVT ResultVT = Op1.getValueType(); 6534 EVT OverflowVT = MVT::i1; 6535 if (ResultVT.isVector()) 6536 OverflowVT = EVT::getVectorVT( 6537 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6538 6539 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6540 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6541 return; 6542 } 6543 case Intrinsic::prefetch: { 6544 SDValue Ops[5]; 6545 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6546 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6547 Ops[0] = DAG.getRoot(); 6548 Ops[1] = getValue(I.getArgOperand(0)); 6549 Ops[2] = getValue(I.getArgOperand(1)); 6550 Ops[3] = getValue(I.getArgOperand(2)); 6551 Ops[4] = getValue(I.getArgOperand(3)); 6552 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6553 DAG.getVTList(MVT::Other), Ops, 6554 EVT::getIntegerVT(*Context, 8), 6555 MachinePointerInfo(I.getArgOperand(0)), 6556 0, /* align */ 6557 Flags); 6558 6559 // Chain the prefetch in parallell with any pending loads, to stay out of 6560 // the way of later optimizations. 6561 PendingLoads.push_back(Result); 6562 Result = getRoot(); 6563 DAG.setRoot(Result); 6564 return; 6565 } 6566 case Intrinsic::lifetime_start: 6567 case Intrinsic::lifetime_end: { 6568 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6569 // Stack coloring is not enabled in O0, discard region information. 6570 if (TM.getOptLevel() == CodeGenOpt::None) 6571 return; 6572 6573 const int64_t ObjectSize = 6574 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6575 Value *const ObjectPtr = I.getArgOperand(1); 6576 SmallVector<const Value *, 4> Allocas; 6577 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6578 6579 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6580 E = Allocas.end(); Object != E; ++Object) { 6581 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6582 6583 // Could not find an Alloca. 6584 if (!LifetimeObject) 6585 continue; 6586 6587 // First check that the Alloca is static, otherwise it won't have a 6588 // valid frame index. 6589 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6590 if (SI == FuncInfo.StaticAllocaMap.end()) 6591 return; 6592 6593 const int FrameIndex = SI->second; 6594 int64_t Offset; 6595 if (GetPointerBaseWithConstantOffset( 6596 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6597 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6598 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6599 Offset); 6600 DAG.setRoot(Res); 6601 } 6602 return; 6603 } 6604 case Intrinsic::invariant_start: 6605 // Discard region information. 6606 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6607 return; 6608 case Intrinsic::invariant_end: 6609 // Discard region information. 6610 return; 6611 case Intrinsic::clear_cache: 6612 /// FunctionName may be null. 6613 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6614 lowerCallToExternalSymbol(I, FunctionName); 6615 return; 6616 case Intrinsic::donothing: 6617 // ignore 6618 return; 6619 case Intrinsic::experimental_stackmap: 6620 visitStackmap(I); 6621 return; 6622 case Intrinsic::experimental_patchpoint_void: 6623 case Intrinsic::experimental_patchpoint_i64: 6624 visitPatchpoint(&I); 6625 return; 6626 case Intrinsic::experimental_gc_statepoint: 6627 LowerStatepoint(ImmutableStatepoint(&I)); 6628 return; 6629 case Intrinsic::experimental_gc_result: 6630 visitGCResult(cast<GCResultInst>(I)); 6631 return; 6632 case Intrinsic::experimental_gc_relocate: 6633 visitGCRelocate(cast<GCRelocateInst>(I)); 6634 return; 6635 case Intrinsic::instrprof_increment: 6636 llvm_unreachable("instrprof failed to lower an increment"); 6637 case Intrinsic::instrprof_value_profile: 6638 llvm_unreachable("instrprof failed to lower a value profiling call"); 6639 case Intrinsic::localescape: { 6640 MachineFunction &MF = DAG.getMachineFunction(); 6641 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6642 6643 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6644 // is the same on all targets. 6645 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6646 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6647 if (isa<ConstantPointerNull>(Arg)) 6648 continue; // Skip null pointers. They represent a hole in index space. 6649 AllocaInst *Slot = cast<AllocaInst>(Arg); 6650 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6651 "can only escape static allocas"); 6652 int FI = FuncInfo.StaticAllocaMap[Slot]; 6653 MCSymbol *FrameAllocSym = 6654 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6655 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6657 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6658 .addSym(FrameAllocSym) 6659 .addFrameIndex(FI); 6660 } 6661 6662 return; 6663 } 6664 6665 case Intrinsic::localrecover: { 6666 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6667 MachineFunction &MF = DAG.getMachineFunction(); 6668 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6669 6670 // Get the symbol that defines the frame offset. 6671 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6672 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6673 unsigned IdxVal = 6674 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6675 MCSymbol *FrameAllocSym = 6676 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6677 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6678 6679 // Create a MCSymbol for the label to avoid any target lowering 6680 // that would make this PC relative. 6681 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6682 SDValue OffsetVal = 6683 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6684 6685 // Add the offset to the FP. 6686 Value *FP = I.getArgOperand(1); 6687 SDValue FPVal = getValue(FP); 6688 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6689 setValue(&I, Add); 6690 6691 return; 6692 } 6693 6694 case Intrinsic::eh_exceptionpointer: 6695 case Intrinsic::eh_exceptioncode: { 6696 // Get the exception pointer vreg, copy from it, and resize it to fit. 6697 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6698 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6699 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6700 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6701 SDValue N = 6702 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6703 if (Intrinsic == Intrinsic::eh_exceptioncode) 6704 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6705 setValue(&I, N); 6706 return; 6707 } 6708 case Intrinsic::xray_customevent: { 6709 // Here we want to make sure that the intrinsic behaves as if it has a 6710 // specific calling convention, and only for x86_64. 6711 // FIXME: Support other platforms later. 6712 const auto &Triple = DAG.getTarget().getTargetTriple(); 6713 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6714 return; 6715 6716 SDLoc DL = getCurSDLoc(); 6717 SmallVector<SDValue, 8> Ops; 6718 6719 // We want to say that we always want the arguments in registers. 6720 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6721 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6722 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6723 SDValue Chain = getRoot(); 6724 Ops.push_back(LogEntryVal); 6725 Ops.push_back(StrSizeVal); 6726 Ops.push_back(Chain); 6727 6728 // We need to enforce the calling convention for the callsite, so that 6729 // argument ordering is enforced correctly, and that register allocation can 6730 // see that some registers may be assumed clobbered and have to preserve 6731 // them across calls to the intrinsic. 6732 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6733 DL, NodeTys, Ops); 6734 SDValue patchableNode = SDValue(MN, 0); 6735 DAG.setRoot(patchableNode); 6736 setValue(&I, patchableNode); 6737 return; 6738 } 6739 case Intrinsic::xray_typedevent: { 6740 // Here we want to make sure that the intrinsic behaves as if it has a 6741 // specific calling convention, and only for x86_64. 6742 // FIXME: Support other platforms later. 6743 const auto &Triple = DAG.getTarget().getTargetTriple(); 6744 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6745 return; 6746 6747 SDLoc DL = getCurSDLoc(); 6748 SmallVector<SDValue, 8> Ops; 6749 6750 // We want to say that we always want the arguments in registers. 6751 // It's unclear to me how manipulating the selection DAG here forces callers 6752 // to provide arguments in registers instead of on the stack. 6753 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6754 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6755 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6756 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6757 SDValue Chain = getRoot(); 6758 Ops.push_back(LogTypeId); 6759 Ops.push_back(LogEntryVal); 6760 Ops.push_back(StrSizeVal); 6761 Ops.push_back(Chain); 6762 6763 // We need to enforce the calling convention for the callsite, so that 6764 // argument ordering is enforced correctly, and that register allocation can 6765 // see that some registers may be assumed clobbered and have to preserve 6766 // them across calls to the intrinsic. 6767 MachineSDNode *MN = DAG.getMachineNode( 6768 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6769 SDValue patchableNode = SDValue(MN, 0); 6770 DAG.setRoot(patchableNode); 6771 setValue(&I, patchableNode); 6772 return; 6773 } 6774 case Intrinsic::experimental_deoptimize: 6775 LowerDeoptimizeCall(&I); 6776 return; 6777 6778 case Intrinsic::experimental_vector_reduce_v2_fadd: 6779 case Intrinsic::experimental_vector_reduce_v2_fmul: 6780 case Intrinsic::experimental_vector_reduce_add: 6781 case Intrinsic::experimental_vector_reduce_mul: 6782 case Intrinsic::experimental_vector_reduce_and: 6783 case Intrinsic::experimental_vector_reduce_or: 6784 case Intrinsic::experimental_vector_reduce_xor: 6785 case Intrinsic::experimental_vector_reduce_smax: 6786 case Intrinsic::experimental_vector_reduce_smin: 6787 case Intrinsic::experimental_vector_reduce_umax: 6788 case Intrinsic::experimental_vector_reduce_umin: 6789 case Intrinsic::experimental_vector_reduce_fmax: 6790 case Intrinsic::experimental_vector_reduce_fmin: 6791 visitVectorReduce(I, Intrinsic); 6792 return; 6793 6794 case Intrinsic::icall_branch_funnel: { 6795 SmallVector<SDValue, 16> Ops; 6796 Ops.push_back(getValue(I.getArgOperand(0))); 6797 6798 int64_t Offset; 6799 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6800 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6801 if (!Base) 6802 report_fatal_error( 6803 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6804 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6805 6806 struct BranchFunnelTarget { 6807 int64_t Offset; 6808 SDValue Target; 6809 }; 6810 SmallVector<BranchFunnelTarget, 8> Targets; 6811 6812 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6813 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6814 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6815 if (ElemBase != Base) 6816 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6817 "to the same GlobalValue"); 6818 6819 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6820 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6821 if (!GA) 6822 report_fatal_error( 6823 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6824 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6825 GA->getGlobal(), getCurSDLoc(), 6826 Val.getValueType(), GA->getOffset())}); 6827 } 6828 llvm::sort(Targets, 6829 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6830 return T1.Offset < T2.Offset; 6831 }); 6832 6833 for (auto &T : Targets) { 6834 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6835 Ops.push_back(T.Target); 6836 } 6837 6838 Ops.push_back(DAG.getRoot()); // Chain 6839 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6840 getCurSDLoc(), MVT::Other, Ops), 6841 0); 6842 DAG.setRoot(N); 6843 setValue(&I, N); 6844 HasTailCall = true; 6845 return; 6846 } 6847 6848 case Intrinsic::wasm_landingpad_index: 6849 // Information this intrinsic contained has been transferred to 6850 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6851 // delete it now. 6852 return; 6853 6854 case Intrinsic::aarch64_settag: 6855 case Intrinsic::aarch64_settag_zero: { 6856 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6857 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6858 SDValue Val = TSI.EmitTargetCodeForSetTag( 6859 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6860 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6861 ZeroMemory); 6862 DAG.setRoot(Val); 6863 setValue(&I, Val); 6864 return; 6865 } 6866 case Intrinsic::ptrmask: { 6867 SDValue Ptr = getValue(I.getOperand(0)); 6868 SDValue Const = getValue(I.getOperand(1)); 6869 6870 EVT DestVT = 6871 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6872 6873 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6874 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6875 return; 6876 } 6877 } 6878 } 6879 6880 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6881 const ConstrainedFPIntrinsic &FPI) { 6882 SDLoc sdl = getCurSDLoc(); 6883 unsigned Opcode; 6884 switch (FPI.getIntrinsicID()) { 6885 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6886 case Intrinsic::experimental_constrained_fadd: 6887 Opcode = ISD::STRICT_FADD; 6888 break; 6889 case Intrinsic::experimental_constrained_fsub: 6890 Opcode = ISD::STRICT_FSUB; 6891 break; 6892 case Intrinsic::experimental_constrained_fmul: 6893 Opcode = ISD::STRICT_FMUL; 6894 break; 6895 case Intrinsic::experimental_constrained_fdiv: 6896 Opcode = ISD::STRICT_FDIV; 6897 break; 6898 case Intrinsic::experimental_constrained_frem: 6899 Opcode = ISD::STRICT_FREM; 6900 break; 6901 case Intrinsic::experimental_constrained_fma: 6902 Opcode = ISD::STRICT_FMA; 6903 break; 6904 case Intrinsic::experimental_constrained_fptosi: 6905 Opcode = ISD::STRICT_FP_TO_SINT; 6906 break; 6907 case Intrinsic::experimental_constrained_fptoui: 6908 Opcode = ISD::STRICT_FP_TO_UINT; 6909 break; 6910 case Intrinsic::experimental_constrained_fptrunc: 6911 Opcode = ISD::STRICT_FP_ROUND; 6912 break; 6913 case Intrinsic::experimental_constrained_fpext: 6914 Opcode = ISD::STRICT_FP_EXTEND; 6915 break; 6916 case Intrinsic::experimental_constrained_sqrt: 6917 Opcode = ISD::STRICT_FSQRT; 6918 break; 6919 case Intrinsic::experimental_constrained_pow: 6920 Opcode = ISD::STRICT_FPOW; 6921 break; 6922 case Intrinsic::experimental_constrained_powi: 6923 Opcode = ISD::STRICT_FPOWI; 6924 break; 6925 case Intrinsic::experimental_constrained_sin: 6926 Opcode = ISD::STRICT_FSIN; 6927 break; 6928 case Intrinsic::experimental_constrained_cos: 6929 Opcode = ISD::STRICT_FCOS; 6930 break; 6931 case Intrinsic::experimental_constrained_exp: 6932 Opcode = ISD::STRICT_FEXP; 6933 break; 6934 case Intrinsic::experimental_constrained_exp2: 6935 Opcode = ISD::STRICT_FEXP2; 6936 break; 6937 case Intrinsic::experimental_constrained_log: 6938 Opcode = ISD::STRICT_FLOG; 6939 break; 6940 case Intrinsic::experimental_constrained_log10: 6941 Opcode = ISD::STRICT_FLOG10; 6942 break; 6943 case Intrinsic::experimental_constrained_log2: 6944 Opcode = ISD::STRICT_FLOG2; 6945 break; 6946 case Intrinsic::experimental_constrained_lrint: 6947 Opcode = ISD::STRICT_LRINT; 6948 break; 6949 case Intrinsic::experimental_constrained_llrint: 6950 Opcode = ISD::STRICT_LLRINT; 6951 break; 6952 case Intrinsic::experimental_constrained_rint: 6953 Opcode = ISD::STRICT_FRINT; 6954 break; 6955 case Intrinsic::experimental_constrained_nearbyint: 6956 Opcode = ISD::STRICT_FNEARBYINT; 6957 break; 6958 case Intrinsic::experimental_constrained_maxnum: 6959 Opcode = ISD::STRICT_FMAXNUM; 6960 break; 6961 case Intrinsic::experimental_constrained_minnum: 6962 Opcode = ISD::STRICT_FMINNUM; 6963 break; 6964 case Intrinsic::experimental_constrained_ceil: 6965 Opcode = ISD::STRICT_FCEIL; 6966 break; 6967 case Intrinsic::experimental_constrained_floor: 6968 Opcode = ISD::STRICT_FFLOOR; 6969 break; 6970 case Intrinsic::experimental_constrained_lround: 6971 Opcode = ISD::STRICT_LROUND; 6972 break; 6973 case Intrinsic::experimental_constrained_llround: 6974 Opcode = ISD::STRICT_LLROUND; 6975 break; 6976 case Intrinsic::experimental_constrained_round: 6977 Opcode = ISD::STRICT_FROUND; 6978 break; 6979 case Intrinsic::experimental_constrained_trunc: 6980 Opcode = ISD::STRICT_FTRUNC; 6981 break; 6982 } 6983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6984 SDValue Chain = getRoot(); 6985 SmallVector<EVT, 4> ValueVTs; 6986 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6987 ValueVTs.push_back(MVT::Other); // Out chain 6988 6989 SDVTList VTs = DAG.getVTList(ValueVTs); 6990 SDValue Result; 6991 if (Opcode == ISD::STRICT_FP_ROUND) 6992 Result = DAG.getNode(Opcode, sdl, VTs, 6993 { Chain, getValue(FPI.getArgOperand(0)), 6994 DAG.getTargetConstant(0, sdl, 6995 TLI.getPointerTy(DAG.getDataLayout())) }); 6996 else if (FPI.isUnaryOp()) 6997 Result = DAG.getNode(Opcode, sdl, VTs, 6998 { Chain, getValue(FPI.getArgOperand(0)) }); 6999 else if (FPI.isTernaryOp()) 7000 Result = DAG.getNode(Opcode, sdl, VTs, 7001 { Chain, getValue(FPI.getArgOperand(0)), 7002 getValue(FPI.getArgOperand(1)), 7003 getValue(FPI.getArgOperand(2)) }); 7004 else 7005 Result = DAG.getNode(Opcode, sdl, VTs, 7006 { Chain, getValue(FPI.getArgOperand(0)), 7007 getValue(FPI.getArgOperand(1)) }); 7008 7009 if (FPI.getExceptionBehavior() != 7010 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { 7011 SDNodeFlags Flags; 7012 Flags.setFPExcept(true); 7013 Result->setFlags(Flags); 7014 } 7015 7016 assert(Result.getNode()->getNumValues() == 2); 7017 SDValue OutChain = Result.getValue(1); 7018 DAG.setRoot(OutChain); 7019 SDValue FPResult = Result.getValue(0); 7020 setValue(&FPI, FPResult); 7021 } 7022 7023 std::pair<SDValue, SDValue> 7024 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7025 const BasicBlock *EHPadBB) { 7026 MachineFunction &MF = DAG.getMachineFunction(); 7027 MachineModuleInfo &MMI = MF.getMMI(); 7028 MCSymbol *BeginLabel = nullptr; 7029 7030 if (EHPadBB) { 7031 // Insert a label before the invoke call to mark the try range. This can be 7032 // used to detect deletion of the invoke via the MachineModuleInfo. 7033 BeginLabel = MMI.getContext().createTempSymbol(); 7034 7035 // For SjLj, keep track of which landing pads go with which invokes 7036 // so as to maintain the ordering of pads in the LSDA. 7037 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7038 if (CallSiteIndex) { 7039 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7040 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7041 7042 // Now that the call site is handled, stop tracking it. 7043 MMI.setCurrentCallSite(0); 7044 } 7045 7046 // Both PendingLoads and PendingExports must be flushed here; 7047 // this call might not return. 7048 (void)getRoot(); 7049 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7050 7051 CLI.setChain(getRoot()); 7052 } 7053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7054 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7055 7056 assert((CLI.IsTailCall || Result.second.getNode()) && 7057 "Non-null chain expected with non-tail call!"); 7058 assert((Result.second.getNode() || !Result.first.getNode()) && 7059 "Null value expected with tail call!"); 7060 7061 if (!Result.second.getNode()) { 7062 // As a special case, a null chain means that a tail call has been emitted 7063 // and the DAG root is already updated. 7064 HasTailCall = true; 7065 7066 // Since there's no actual continuation from this block, nothing can be 7067 // relying on us setting vregs for them. 7068 PendingExports.clear(); 7069 } else { 7070 DAG.setRoot(Result.second); 7071 } 7072 7073 if (EHPadBB) { 7074 // Insert a label at the end of the invoke call to mark the try range. This 7075 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7076 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7077 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7078 7079 // Inform MachineModuleInfo of range. 7080 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7081 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7082 // actually use outlined funclets and their LSDA info style. 7083 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7084 assert(CLI.CS); 7085 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7086 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7087 BeginLabel, EndLabel); 7088 } else if (!isScopedEHPersonality(Pers)) { 7089 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7090 } 7091 } 7092 7093 return Result; 7094 } 7095 7096 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7097 bool isTailCall, 7098 const BasicBlock *EHPadBB) { 7099 auto &DL = DAG.getDataLayout(); 7100 FunctionType *FTy = CS.getFunctionType(); 7101 Type *RetTy = CS.getType(); 7102 7103 TargetLowering::ArgListTy Args; 7104 Args.reserve(CS.arg_size()); 7105 7106 const Value *SwiftErrorVal = nullptr; 7107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7108 7109 // We can't tail call inside a function with a swifterror argument. Lowering 7110 // does not support this yet. It would have to move into the swifterror 7111 // register before the call. 7112 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7113 if (TLI.supportSwiftError() && 7114 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7115 isTailCall = false; 7116 7117 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7118 i != e; ++i) { 7119 TargetLowering::ArgListEntry Entry; 7120 const Value *V = *i; 7121 7122 // Skip empty types 7123 if (V->getType()->isEmptyTy()) 7124 continue; 7125 7126 SDValue ArgNode = getValue(V); 7127 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7128 7129 Entry.setAttributes(&CS, i - CS.arg_begin()); 7130 7131 // Use swifterror virtual register as input to the call. 7132 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7133 SwiftErrorVal = V; 7134 // We find the virtual register for the actual swifterror argument. 7135 // Instead of using the Value, we use the virtual register instead. 7136 Entry.Node = DAG.getRegister( 7137 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7138 EVT(TLI.getPointerTy(DL))); 7139 } 7140 7141 Args.push_back(Entry); 7142 7143 // If we have an explicit sret argument that is an Instruction, (i.e., it 7144 // might point to function-local memory), we can't meaningfully tail-call. 7145 if (Entry.IsSRet && isa<Instruction>(V)) 7146 isTailCall = false; 7147 } 7148 7149 // If call site has a cfguardtarget operand bundle, create and add an 7150 // additional ArgListEntry. 7151 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7152 TargetLowering::ArgListEntry Entry; 7153 Value *V = Bundle->Inputs[0]; 7154 SDValue ArgNode = getValue(V); 7155 Entry.Node = ArgNode; 7156 Entry.Ty = V->getType(); 7157 Entry.IsCFGuardTarget = true; 7158 Args.push_back(Entry); 7159 } 7160 7161 // Check if target-independent constraints permit a tail call here. 7162 // Target-dependent constraints are checked within TLI->LowerCallTo. 7163 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7164 isTailCall = false; 7165 7166 // Disable tail calls if there is an swifterror argument. Targets have not 7167 // been updated to support tail calls. 7168 if (TLI.supportSwiftError() && SwiftErrorVal) 7169 isTailCall = false; 7170 7171 TargetLowering::CallLoweringInfo CLI(DAG); 7172 CLI.setDebugLoc(getCurSDLoc()) 7173 .setChain(getRoot()) 7174 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7175 .setTailCall(isTailCall) 7176 .setConvergent(CS.isConvergent()); 7177 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7178 7179 if (Result.first.getNode()) { 7180 const Instruction *Inst = CS.getInstruction(); 7181 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7182 setValue(Inst, Result.first); 7183 } 7184 7185 // The last element of CLI.InVals has the SDValue for swifterror return. 7186 // Here we copy it to a virtual register and update SwiftErrorMap for 7187 // book-keeping. 7188 if (SwiftErrorVal && TLI.supportSwiftError()) { 7189 // Get the last element of InVals. 7190 SDValue Src = CLI.InVals.back(); 7191 Register VReg = SwiftError.getOrCreateVRegDefAt( 7192 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7193 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7194 DAG.setRoot(CopyNode); 7195 } 7196 } 7197 7198 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7199 SelectionDAGBuilder &Builder) { 7200 // Check to see if this load can be trivially constant folded, e.g. if the 7201 // input is from a string literal. 7202 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7203 // Cast pointer to the type we really want to load. 7204 Type *LoadTy = 7205 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7206 if (LoadVT.isVector()) 7207 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7208 7209 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7210 PointerType::getUnqual(LoadTy)); 7211 7212 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7213 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7214 return Builder.getValue(LoadCst); 7215 } 7216 7217 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7218 // still constant memory, the input chain can be the entry node. 7219 SDValue Root; 7220 bool ConstantMemory = false; 7221 7222 // Do not serialize (non-volatile) loads of constant memory with anything. 7223 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7224 Root = Builder.DAG.getEntryNode(); 7225 ConstantMemory = true; 7226 } else { 7227 // Do not serialize non-volatile loads against each other. 7228 Root = Builder.DAG.getRoot(); 7229 } 7230 7231 SDValue Ptr = Builder.getValue(PtrVal); 7232 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7233 Ptr, MachinePointerInfo(PtrVal), 7234 /* Alignment = */ 1); 7235 7236 if (!ConstantMemory) 7237 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7238 return LoadVal; 7239 } 7240 7241 /// Record the value for an instruction that produces an integer result, 7242 /// converting the type where necessary. 7243 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7244 SDValue Value, 7245 bool IsSigned) { 7246 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7247 I.getType(), true); 7248 if (IsSigned) 7249 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7250 else 7251 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7252 setValue(&I, Value); 7253 } 7254 7255 /// See if we can lower a memcmp call into an optimized form. If so, return 7256 /// true and lower it. Otherwise return false, and it will be lowered like a 7257 /// normal call. 7258 /// The caller already checked that \p I calls the appropriate LibFunc with a 7259 /// correct prototype. 7260 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7261 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7262 const Value *Size = I.getArgOperand(2); 7263 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7264 if (CSize && CSize->getZExtValue() == 0) { 7265 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7266 I.getType(), true); 7267 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7268 return true; 7269 } 7270 7271 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7272 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7273 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7274 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7275 if (Res.first.getNode()) { 7276 processIntegerCallValue(I, Res.first, true); 7277 PendingLoads.push_back(Res.second); 7278 return true; 7279 } 7280 7281 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7282 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7283 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7284 return false; 7285 7286 // If the target has a fast compare for the given size, it will return a 7287 // preferred load type for that size. Require that the load VT is legal and 7288 // that the target supports unaligned loads of that type. Otherwise, return 7289 // INVALID. 7290 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7292 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7293 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7294 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7295 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7296 // TODO: Check alignment of src and dest ptrs. 7297 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7298 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7299 if (!TLI.isTypeLegal(LVT) || 7300 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7301 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7302 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7303 } 7304 7305 return LVT; 7306 }; 7307 7308 // This turns into unaligned loads. We only do this if the target natively 7309 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7310 // we'll only produce a small number of byte loads. 7311 MVT LoadVT; 7312 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7313 switch (NumBitsToCompare) { 7314 default: 7315 return false; 7316 case 16: 7317 LoadVT = MVT::i16; 7318 break; 7319 case 32: 7320 LoadVT = MVT::i32; 7321 break; 7322 case 64: 7323 case 128: 7324 case 256: 7325 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7326 break; 7327 } 7328 7329 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7330 return false; 7331 7332 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7333 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7334 7335 // Bitcast to a wide integer type if the loads are vectors. 7336 if (LoadVT.isVector()) { 7337 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7338 LoadL = DAG.getBitcast(CmpVT, LoadL); 7339 LoadR = DAG.getBitcast(CmpVT, LoadR); 7340 } 7341 7342 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7343 processIntegerCallValue(I, Cmp, false); 7344 return true; 7345 } 7346 7347 /// See if we can lower a memchr call into an optimized form. If so, return 7348 /// true and lower it. Otherwise return false, and it will be lowered like a 7349 /// normal call. 7350 /// The caller already checked that \p I calls the appropriate LibFunc with a 7351 /// correct prototype. 7352 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7353 const Value *Src = I.getArgOperand(0); 7354 const Value *Char = I.getArgOperand(1); 7355 const Value *Length = I.getArgOperand(2); 7356 7357 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7358 std::pair<SDValue, SDValue> Res = 7359 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7360 getValue(Src), getValue(Char), getValue(Length), 7361 MachinePointerInfo(Src)); 7362 if (Res.first.getNode()) { 7363 setValue(&I, Res.first); 7364 PendingLoads.push_back(Res.second); 7365 return true; 7366 } 7367 7368 return false; 7369 } 7370 7371 /// See if we can lower a mempcpy call into an optimized form. If so, return 7372 /// true and lower it. Otherwise return false, and it will be lowered like a 7373 /// normal call. 7374 /// The caller already checked that \p I calls the appropriate LibFunc with a 7375 /// correct prototype. 7376 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7377 SDValue Dst = getValue(I.getArgOperand(0)); 7378 SDValue Src = getValue(I.getArgOperand(1)); 7379 SDValue Size = getValue(I.getArgOperand(2)); 7380 7381 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7382 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7383 unsigned Align = std::min(DstAlign, SrcAlign); 7384 if (Align == 0) // Alignment of one or both could not be inferred. 7385 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7386 7387 bool isVol = false; 7388 SDLoc sdl = getCurSDLoc(); 7389 7390 // In the mempcpy context we need to pass in a false value for isTailCall 7391 // because the return pointer needs to be adjusted by the size of 7392 // the copied memory. 7393 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7394 false, /*isTailCall=*/false, 7395 MachinePointerInfo(I.getArgOperand(0)), 7396 MachinePointerInfo(I.getArgOperand(1))); 7397 assert(MC.getNode() != nullptr && 7398 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7399 DAG.setRoot(MC); 7400 7401 // Check if Size needs to be truncated or extended. 7402 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7403 7404 // Adjust return pointer to point just past the last dst byte. 7405 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7406 Dst, Size); 7407 setValue(&I, DstPlusSize); 7408 return true; 7409 } 7410 7411 /// See if we can lower a strcpy call into an optimized form. If so, return 7412 /// true and lower it, otherwise return false and it will be lowered like a 7413 /// normal call. 7414 /// The caller already checked that \p I calls the appropriate LibFunc with a 7415 /// correct prototype. 7416 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7417 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7418 7419 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7420 std::pair<SDValue, SDValue> Res = 7421 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7422 getValue(Arg0), getValue(Arg1), 7423 MachinePointerInfo(Arg0), 7424 MachinePointerInfo(Arg1), isStpcpy); 7425 if (Res.first.getNode()) { 7426 setValue(&I, Res.first); 7427 DAG.setRoot(Res.second); 7428 return true; 7429 } 7430 7431 return false; 7432 } 7433 7434 /// See if we can lower a strcmp call into an optimized form. If so, return 7435 /// true and lower it, otherwise return false and it will be lowered like a 7436 /// normal call. 7437 /// The caller already checked that \p I calls the appropriate LibFunc with a 7438 /// correct prototype. 7439 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7440 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7441 7442 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7443 std::pair<SDValue, SDValue> Res = 7444 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7445 getValue(Arg0), getValue(Arg1), 7446 MachinePointerInfo(Arg0), 7447 MachinePointerInfo(Arg1)); 7448 if (Res.first.getNode()) { 7449 processIntegerCallValue(I, Res.first, true); 7450 PendingLoads.push_back(Res.second); 7451 return true; 7452 } 7453 7454 return false; 7455 } 7456 7457 /// See if we can lower a strlen call into an optimized form. If so, return 7458 /// true and lower it, otherwise return false and it will be lowered like a 7459 /// normal call. 7460 /// The caller already checked that \p I calls the appropriate LibFunc with a 7461 /// correct prototype. 7462 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7463 const Value *Arg0 = I.getArgOperand(0); 7464 7465 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7466 std::pair<SDValue, SDValue> Res = 7467 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7468 getValue(Arg0), MachinePointerInfo(Arg0)); 7469 if (Res.first.getNode()) { 7470 processIntegerCallValue(I, Res.first, false); 7471 PendingLoads.push_back(Res.second); 7472 return true; 7473 } 7474 7475 return false; 7476 } 7477 7478 /// See if we can lower a strnlen call into an optimized form. If so, return 7479 /// true and lower it, otherwise return false and it will be lowered like a 7480 /// normal call. 7481 /// The caller already checked that \p I calls the appropriate LibFunc with a 7482 /// correct prototype. 7483 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7484 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7485 7486 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7487 std::pair<SDValue, SDValue> Res = 7488 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7489 getValue(Arg0), getValue(Arg1), 7490 MachinePointerInfo(Arg0)); 7491 if (Res.first.getNode()) { 7492 processIntegerCallValue(I, Res.first, false); 7493 PendingLoads.push_back(Res.second); 7494 return true; 7495 } 7496 7497 return false; 7498 } 7499 7500 /// See if we can lower a unary floating-point operation into an SDNode with 7501 /// the specified Opcode. If so, return true and lower it, otherwise return 7502 /// false and it will be lowered like a normal call. 7503 /// The caller already checked that \p I calls the appropriate LibFunc with a 7504 /// correct prototype. 7505 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7506 unsigned Opcode) { 7507 // We already checked this call's prototype; verify it doesn't modify errno. 7508 if (!I.onlyReadsMemory()) 7509 return false; 7510 7511 SDValue Tmp = getValue(I.getArgOperand(0)); 7512 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7513 return true; 7514 } 7515 7516 /// See if we can lower a binary floating-point operation into an SDNode with 7517 /// the specified Opcode. If so, return true and lower it. Otherwise return 7518 /// false, and it will be lowered like a normal call. 7519 /// The caller already checked that \p I calls the appropriate LibFunc with a 7520 /// correct prototype. 7521 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7522 unsigned Opcode) { 7523 // We already checked this call's prototype; verify it doesn't modify errno. 7524 if (!I.onlyReadsMemory()) 7525 return false; 7526 7527 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7528 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7529 EVT VT = Tmp0.getValueType(); 7530 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7531 return true; 7532 } 7533 7534 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7535 // Handle inline assembly differently. 7536 if (isa<InlineAsm>(I.getCalledValue())) { 7537 visitInlineAsm(&I); 7538 return; 7539 } 7540 7541 if (Function *F = I.getCalledFunction()) { 7542 if (F->isDeclaration()) { 7543 // Is this an LLVM intrinsic or a target-specific intrinsic? 7544 unsigned IID = F->getIntrinsicID(); 7545 if (!IID) 7546 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7547 IID = II->getIntrinsicID(F); 7548 7549 if (IID) { 7550 visitIntrinsicCall(I, IID); 7551 return; 7552 } 7553 } 7554 7555 // Check for well-known libc/libm calls. If the function is internal, it 7556 // can't be a library call. Don't do the check if marked as nobuiltin for 7557 // some reason or the call site requires strict floating point semantics. 7558 LibFunc Func; 7559 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7560 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7561 LibInfo->hasOptimizedCodeGen(Func)) { 7562 switch (Func) { 7563 default: break; 7564 case LibFunc_copysign: 7565 case LibFunc_copysignf: 7566 case LibFunc_copysignl: 7567 // We already checked this call's prototype; verify it doesn't modify 7568 // errno. 7569 if (I.onlyReadsMemory()) { 7570 SDValue LHS = getValue(I.getArgOperand(0)); 7571 SDValue RHS = getValue(I.getArgOperand(1)); 7572 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7573 LHS.getValueType(), LHS, RHS)); 7574 return; 7575 } 7576 break; 7577 case LibFunc_fabs: 7578 case LibFunc_fabsf: 7579 case LibFunc_fabsl: 7580 if (visitUnaryFloatCall(I, ISD::FABS)) 7581 return; 7582 break; 7583 case LibFunc_fmin: 7584 case LibFunc_fminf: 7585 case LibFunc_fminl: 7586 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7587 return; 7588 break; 7589 case LibFunc_fmax: 7590 case LibFunc_fmaxf: 7591 case LibFunc_fmaxl: 7592 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7593 return; 7594 break; 7595 case LibFunc_sin: 7596 case LibFunc_sinf: 7597 case LibFunc_sinl: 7598 if (visitUnaryFloatCall(I, ISD::FSIN)) 7599 return; 7600 break; 7601 case LibFunc_cos: 7602 case LibFunc_cosf: 7603 case LibFunc_cosl: 7604 if (visitUnaryFloatCall(I, ISD::FCOS)) 7605 return; 7606 break; 7607 case LibFunc_sqrt: 7608 case LibFunc_sqrtf: 7609 case LibFunc_sqrtl: 7610 case LibFunc_sqrt_finite: 7611 case LibFunc_sqrtf_finite: 7612 case LibFunc_sqrtl_finite: 7613 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7614 return; 7615 break; 7616 case LibFunc_floor: 7617 case LibFunc_floorf: 7618 case LibFunc_floorl: 7619 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7620 return; 7621 break; 7622 case LibFunc_nearbyint: 7623 case LibFunc_nearbyintf: 7624 case LibFunc_nearbyintl: 7625 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7626 return; 7627 break; 7628 case LibFunc_ceil: 7629 case LibFunc_ceilf: 7630 case LibFunc_ceill: 7631 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7632 return; 7633 break; 7634 case LibFunc_rint: 7635 case LibFunc_rintf: 7636 case LibFunc_rintl: 7637 if (visitUnaryFloatCall(I, ISD::FRINT)) 7638 return; 7639 break; 7640 case LibFunc_round: 7641 case LibFunc_roundf: 7642 case LibFunc_roundl: 7643 if (visitUnaryFloatCall(I, ISD::FROUND)) 7644 return; 7645 break; 7646 case LibFunc_trunc: 7647 case LibFunc_truncf: 7648 case LibFunc_truncl: 7649 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7650 return; 7651 break; 7652 case LibFunc_log2: 7653 case LibFunc_log2f: 7654 case LibFunc_log2l: 7655 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7656 return; 7657 break; 7658 case LibFunc_exp2: 7659 case LibFunc_exp2f: 7660 case LibFunc_exp2l: 7661 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7662 return; 7663 break; 7664 case LibFunc_memcmp: 7665 if (visitMemCmpCall(I)) 7666 return; 7667 break; 7668 case LibFunc_mempcpy: 7669 if (visitMemPCpyCall(I)) 7670 return; 7671 break; 7672 case LibFunc_memchr: 7673 if (visitMemChrCall(I)) 7674 return; 7675 break; 7676 case LibFunc_strcpy: 7677 if (visitStrCpyCall(I, false)) 7678 return; 7679 break; 7680 case LibFunc_stpcpy: 7681 if (visitStrCpyCall(I, true)) 7682 return; 7683 break; 7684 case LibFunc_strcmp: 7685 if (visitStrCmpCall(I)) 7686 return; 7687 break; 7688 case LibFunc_strlen: 7689 if (visitStrLenCall(I)) 7690 return; 7691 break; 7692 case LibFunc_strnlen: 7693 if (visitStrNLenCall(I)) 7694 return; 7695 break; 7696 } 7697 } 7698 } 7699 7700 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7701 // have to do anything here to lower funclet bundles. 7702 // CFGuardTarget bundles are lowered in LowerCallTo. 7703 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7704 LLVMContext::OB_funclet, 7705 LLVMContext::OB_cfguardtarget}) && 7706 "Cannot lower calls with arbitrary operand bundles!"); 7707 7708 SDValue Callee = getValue(I.getCalledValue()); 7709 7710 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7711 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7712 else 7713 // Check if we can potentially perform a tail call. More detailed checking 7714 // is be done within LowerCallTo, after more information about the call is 7715 // known. 7716 LowerCallTo(&I, Callee, I.isTailCall()); 7717 } 7718 7719 namespace { 7720 7721 /// AsmOperandInfo - This contains information for each constraint that we are 7722 /// lowering. 7723 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7724 public: 7725 /// CallOperand - If this is the result output operand or a clobber 7726 /// this is null, otherwise it is the incoming operand to the CallInst. 7727 /// This gets modified as the asm is processed. 7728 SDValue CallOperand; 7729 7730 /// AssignedRegs - If this is a register or register class operand, this 7731 /// contains the set of register corresponding to the operand. 7732 RegsForValue AssignedRegs; 7733 7734 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7735 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7736 } 7737 7738 /// Whether or not this operand accesses memory 7739 bool hasMemory(const TargetLowering &TLI) const { 7740 // Indirect operand accesses access memory. 7741 if (isIndirect) 7742 return true; 7743 7744 for (const auto &Code : Codes) 7745 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7746 return true; 7747 7748 return false; 7749 } 7750 7751 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7752 /// corresponds to. If there is no Value* for this operand, it returns 7753 /// MVT::Other. 7754 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7755 const DataLayout &DL) const { 7756 if (!CallOperandVal) return MVT::Other; 7757 7758 if (isa<BasicBlock>(CallOperandVal)) 7759 return TLI.getPointerTy(DL); 7760 7761 llvm::Type *OpTy = CallOperandVal->getType(); 7762 7763 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7764 // If this is an indirect operand, the operand is a pointer to the 7765 // accessed type. 7766 if (isIndirect) { 7767 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7768 if (!PtrTy) 7769 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7770 OpTy = PtrTy->getElementType(); 7771 } 7772 7773 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7774 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7775 if (STy->getNumElements() == 1) 7776 OpTy = STy->getElementType(0); 7777 7778 // If OpTy is not a single value, it may be a struct/union that we 7779 // can tile with integers. 7780 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7781 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7782 switch (BitSize) { 7783 default: break; 7784 case 1: 7785 case 8: 7786 case 16: 7787 case 32: 7788 case 64: 7789 case 128: 7790 OpTy = IntegerType::get(Context, BitSize); 7791 break; 7792 } 7793 } 7794 7795 return TLI.getValueType(DL, OpTy, true); 7796 } 7797 }; 7798 7799 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7800 7801 } // end anonymous namespace 7802 7803 /// Make sure that the output operand \p OpInfo and its corresponding input 7804 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7805 /// out). 7806 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7807 SDISelAsmOperandInfo &MatchingOpInfo, 7808 SelectionDAG &DAG) { 7809 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7810 return; 7811 7812 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7813 const auto &TLI = DAG.getTargetLoweringInfo(); 7814 7815 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7816 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7817 OpInfo.ConstraintVT); 7818 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7819 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7820 MatchingOpInfo.ConstraintVT); 7821 if ((OpInfo.ConstraintVT.isInteger() != 7822 MatchingOpInfo.ConstraintVT.isInteger()) || 7823 (MatchRC.second != InputRC.second)) { 7824 // FIXME: error out in a more elegant fashion 7825 report_fatal_error("Unsupported asm: input constraint" 7826 " with a matching output constraint of" 7827 " incompatible type!"); 7828 } 7829 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7830 } 7831 7832 /// Get a direct memory input to behave well as an indirect operand. 7833 /// This may introduce stores, hence the need for a \p Chain. 7834 /// \return The (possibly updated) chain. 7835 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7836 SDISelAsmOperandInfo &OpInfo, 7837 SelectionDAG &DAG) { 7838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7839 7840 // If we don't have an indirect input, put it in the constpool if we can, 7841 // otherwise spill it to a stack slot. 7842 // TODO: This isn't quite right. We need to handle these according to 7843 // the addressing mode that the constraint wants. Also, this may take 7844 // an additional register for the computation and we don't want that 7845 // either. 7846 7847 // If the operand is a float, integer, or vector constant, spill to a 7848 // constant pool entry to get its address. 7849 const Value *OpVal = OpInfo.CallOperandVal; 7850 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7851 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7852 OpInfo.CallOperand = DAG.getConstantPool( 7853 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7854 return Chain; 7855 } 7856 7857 // Otherwise, create a stack slot and emit a store to it before the asm. 7858 Type *Ty = OpVal->getType(); 7859 auto &DL = DAG.getDataLayout(); 7860 uint64_t TySize = DL.getTypeAllocSize(Ty); 7861 unsigned Align = DL.getPrefTypeAlignment(Ty); 7862 MachineFunction &MF = DAG.getMachineFunction(); 7863 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7864 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7865 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7866 MachinePointerInfo::getFixedStack(MF, SSFI), 7867 TLI.getMemValueType(DL, Ty)); 7868 OpInfo.CallOperand = StackSlot; 7869 7870 return Chain; 7871 } 7872 7873 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7874 /// specified operand. We prefer to assign virtual registers, to allow the 7875 /// register allocator to handle the assignment process. However, if the asm 7876 /// uses features that we can't model on machineinstrs, we have SDISel do the 7877 /// allocation. This produces generally horrible, but correct, code. 7878 /// 7879 /// OpInfo describes the operand 7880 /// RefOpInfo describes the matching operand if any, the operand otherwise 7881 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7882 SDISelAsmOperandInfo &OpInfo, 7883 SDISelAsmOperandInfo &RefOpInfo) { 7884 LLVMContext &Context = *DAG.getContext(); 7885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7886 7887 MachineFunction &MF = DAG.getMachineFunction(); 7888 SmallVector<unsigned, 4> Regs; 7889 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7890 7891 // No work to do for memory operations. 7892 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7893 return; 7894 7895 // If this is a constraint for a single physreg, or a constraint for a 7896 // register class, find it. 7897 unsigned AssignedReg; 7898 const TargetRegisterClass *RC; 7899 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7900 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7901 // RC is unset only on failure. Return immediately. 7902 if (!RC) 7903 return; 7904 7905 // Get the actual register value type. This is important, because the user 7906 // may have asked for (e.g.) the AX register in i32 type. We need to 7907 // remember that AX is actually i16 to get the right extension. 7908 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7909 7910 if (OpInfo.ConstraintVT != MVT::Other) { 7911 // If this is an FP operand in an integer register (or visa versa), or more 7912 // generally if the operand value disagrees with the register class we plan 7913 // to stick it in, fix the operand type. 7914 // 7915 // If this is an input value, the bitcast to the new type is done now. 7916 // Bitcast for output value is done at the end of visitInlineAsm(). 7917 if ((OpInfo.Type == InlineAsm::isOutput || 7918 OpInfo.Type == InlineAsm::isInput) && 7919 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7920 // Try to convert to the first EVT that the reg class contains. If the 7921 // types are identical size, use a bitcast to convert (e.g. two differing 7922 // vector types). Note: output bitcast is done at the end of 7923 // visitInlineAsm(). 7924 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7925 // Exclude indirect inputs while they are unsupported because the code 7926 // to perform the load is missing and thus OpInfo.CallOperand still 7927 // refers to the input address rather than the pointed-to value. 7928 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7929 OpInfo.CallOperand = 7930 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7931 OpInfo.ConstraintVT = RegVT; 7932 // If the operand is an FP value and we want it in integer registers, 7933 // use the corresponding integer type. This turns an f64 value into 7934 // i64, which can be passed with two i32 values on a 32-bit machine. 7935 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7936 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7937 if (OpInfo.Type == InlineAsm::isInput) 7938 OpInfo.CallOperand = 7939 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7940 OpInfo.ConstraintVT = VT; 7941 } 7942 } 7943 } 7944 7945 // No need to allocate a matching input constraint since the constraint it's 7946 // matching to has already been allocated. 7947 if (OpInfo.isMatchingInputConstraint()) 7948 return; 7949 7950 EVT ValueVT = OpInfo.ConstraintVT; 7951 if (OpInfo.ConstraintVT == MVT::Other) 7952 ValueVT = RegVT; 7953 7954 // Initialize NumRegs. 7955 unsigned NumRegs = 1; 7956 if (OpInfo.ConstraintVT != MVT::Other) 7957 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7958 7959 // If this is a constraint for a specific physical register, like {r17}, 7960 // assign it now. 7961 7962 // If this associated to a specific register, initialize iterator to correct 7963 // place. If virtual, make sure we have enough registers 7964 7965 // Initialize iterator if necessary 7966 TargetRegisterClass::iterator I = RC->begin(); 7967 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7968 7969 // Do not check for single registers. 7970 if (AssignedReg) { 7971 for (; *I != AssignedReg; ++I) 7972 assert(I != RC->end() && "AssignedReg should be member of RC"); 7973 } 7974 7975 for (; NumRegs; --NumRegs, ++I) { 7976 assert(I != RC->end() && "Ran out of registers to allocate!"); 7977 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7978 Regs.push_back(R); 7979 } 7980 7981 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7982 } 7983 7984 static unsigned 7985 findMatchingInlineAsmOperand(unsigned OperandNo, 7986 const std::vector<SDValue> &AsmNodeOperands) { 7987 // Scan until we find the definition we already emitted of this operand. 7988 unsigned CurOp = InlineAsm::Op_FirstOperand; 7989 for (; OperandNo; --OperandNo) { 7990 // Advance to the next operand. 7991 unsigned OpFlag = 7992 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7993 assert((InlineAsm::isRegDefKind(OpFlag) || 7994 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7995 InlineAsm::isMemKind(OpFlag)) && 7996 "Skipped past definitions?"); 7997 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7998 } 7999 return CurOp; 8000 } 8001 8002 namespace { 8003 8004 class ExtraFlags { 8005 unsigned Flags = 0; 8006 8007 public: 8008 explicit ExtraFlags(ImmutableCallSite CS) { 8009 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8010 if (IA->hasSideEffects()) 8011 Flags |= InlineAsm::Extra_HasSideEffects; 8012 if (IA->isAlignStack()) 8013 Flags |= InlineAsm::Extra_IsAlignStack; 8014 if (CS.isConvergent()) 8015 Flags |= InlineAsm::Extra_IsConvergent; 8016 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8017 } 8018 8019 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8020 // Ideally, we would only check against memory constraints. However, the 8021 // meaning of an Other constraint can be target-specific and we can't easily 8022 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8023 // for Other constraints as well. 8024 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8025 OpInfo.ConstraintType == TargetLowering::C_Other) { 8026 if (OpInfo.Type == InlineAsm::isInput) 8027 Flags |= InlineAsm::Extra_MayLoad; 8028 else if (OpInfo.Type == InlineAsm::isOutput) 8029 Flags |= InlineAsm::Extra_MayStore; 8030 else if (OpInfo.Type == InlineAsm::isClobber) 8031 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8032 } 8033 } 8034 8035 unsigned get() const { return Flags; } 8036 }; 8037 8038 } // end anonymous namespace 8039 8040 /// visitInlineAsm - Handle a call to an InlineAsm object. 8041 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8042 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8043 8044 /// ConstraintOperands - Information about all of the constraints. 8045 SDISelAsmOperandInfoVector ConstraintOperands; 8046 8047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8048 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8049 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8050 8051 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8052 // AsmDialect, MayLoad, MayStore). 8053 bool HasSideEffect = IA->hasSideEffects(); 8054 ExtraFlags ExtraInfo(CS); 8055 8056 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8057 unsigned ResNo = 0; // ResNo - The result number of the next output. 8058 for (auto &T : TargetConstraints) { 8059 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8060 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8061 8062 // Compute the value type for each operand. 8063 if (OpInfo.Type == InlineAsm::isInput || 8064 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8065 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8066 8067 // Process the call argument. BasicBlocks are labels, currently appearing 8068 // only in asm's. 8069 const Instruction *I = CS.getInstruction(); 8070 if (isa<CallBrInst>(I) && 8071 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8072 cast<CallBrInst>(I)->getNumIndirectDests())) { 8073 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8074 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8075 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8076 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8077 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8078 } else { 8079 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8080 } 8081 8082 OpInfo.ConstraintVT = 8083 OpInfo 8084 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8085 .getSimpleVT(); 8086 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8087 // The return value of the call is this value. As such, there is no 8088 // corresponding argument. 8089 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8090 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8091 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8092 DAG.getDataLayout(), STy->getElementType(ResNo)); 8093 } else { 8094 assert(ResNo == 0 && "Asm only has one result!"); 8095 OpInfo.ConstraintVT = 8096 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8097 } 8098 ++ResNo; 8099 } else { 8100 OpInfo.ConstraintVT = MVT::Other; 8101 } 8102 8103 if (!HasSideEffect) 8104 HasSideEffect = OpInfo.hasMemory(TLI); 8105 8106 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8107 // FIXME: Could we compute this on OpInfo rather than T? 8108 8109 // Compute the constraint code and ConstraintType to use. 8110 TLI.ComputeConstraintToUse(T, SDValue()); 8111 8112 if (T.ConstraintType == TargetLowering::C_Immediate && 8113 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8114 // We've delayed emitting a diagnostic like the "n" constraint because 8115 // inlining could cause an integer showing up. 8116 return emitInlineAsmError( 8117 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8118 "integer constant expression"); 8119 8120 ExtraInfo.update(T); 8121 } 8122 8123 8124 // We won't need to flush pending loads if this asm doesn't touch 8125 // memory and is nonvolatile. 8126 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8127 8128 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8129 if (IsCallBr) { 8130 // If this is a callbr we need to flush pending exports since inlineasm_br 8131 // is a terminator. We need to do this before nodes are glued to 8132 // the inlineasm_br node. 8133 Chain = getControlRoot(); 8134 } 8135 8136 // Second pass over the constraints: compute which constraint option to use. 8137 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8138 // If this is an output operand with a matching input operand, look up the 8139 // matching input. If their types mismatch, e.g. one is an integer, the 8140 // other is floating point, or their sizes are different, flag it as an 8141 // error. 8142 if (OpInfo.hasMatchingInput()) { 8143 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8144 patchMatchingInput(OpInfo, Input, DAG); 8145 } 8146 8147 // Compute the constraint code and ConstraintType to use. 8148 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8149 8150 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8151 OpInfo.Type == InlineAsm::isClobber) 8152 continue; 8153 8154 // If this is a memory input, and if the operand is not indirect, do what we 8155 // need to provide an address for the memory input. 8156 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8157 !OpInfo.isIndirect) { 8158 assert((OpInfo.isMultipleAlternative || 8159 (OpInfo.Type == InlineAsm::isInput)) && 8160 "Can only indirectify direct input operands!"); 8161 8162 // Memory operands really want the address of the value. 8163 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8164 8165 // There is no longer a Value* corresponding to this operand. 8166 OpInfo.CallOperandVal = nullptr; 8167 8168 // It is now an indirect operand. 8169 OpInfo.isIndirect = true; 8170 } 8171 8172 } 8173 8174 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8175 std::vector<SDValue> AsmNodeOperands; 8176 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8177 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8178 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8179 8180 // If we have a !srcloc metadata node associated with it, we want to attach 8181 // this to the ultimately generated inline asm machineinstr. To do this, we 8182 // pass in the third operand as this (potentially null) inline asm MDNode. 8183 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8184 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8185 8186 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8187 // bits as operand 3. 8188 AsmNodeOperands.push_back(DAG.getTargetConstant( 8189 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8190 8191 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8192 // this, assign virtual and physical registers for inputs and otput. 8193 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8194 // Assign Registers. 8195 SDISelAsmOperandInfo &RefOpInfo = 8196 OpInfo.isMatchingInputConstraint() 8197 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8198 : OpInfo; 8199 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8200 8201 switch (OpInfo.Type) { 8202 case InlineAsm::isOutput: 8203 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8204 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8205 OpInfo.ConstraintType == TargetLowering::C_Other) && 8206 OpInfo.isIndirect)) { 8207 unsigned ConstraintID = 8208 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8209 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8210 "Failed to convert memory constraint code to constraint id."); 8211 8212 // Add information to the INLINEASM node to know about this output. 8213 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8214 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8215 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8216 MVT::i32)); 8217 AsmNodeOperands.push_back(OpInfo.CallOperand); 8218 break; 8219 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8220 OpInfo.ConstraintType == TargetLowering::C_Other) && 8221 !OpInfo.isIndirect) || 8222 OpInfo.ConstraintType == TargetLowering::C_Register || 8223 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8224 // Otherwise, this outputs to a register (directly for C_Register / 8225 // C_RegisterClass, and a target-defined fashion for 8226 // C_Immediate/C_Other). Find a register that we can use. 8227 if (OpInfo.AssignedRegs.Regs.empty()) { 8228 emitInlineAsmError( 8229 CS, "couldn't allocate output register for constraint '" + 8230 Twine(OpInfo.ConstraintCode) + "'"); 8231 return; 8232 } 8233 8234 // Add information to the INLINEASM node to know that this register is 8235 // set. 8236 OpInfo.AssignedRegs.AddInlineAsmOperands( 8237 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8238 : InlineAsm::Kind_RegDef, 8239 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8240 } 8241 break; 8242 8243 case InlineAsm::isInput: { 8244 SDValue InOperandVal = OpInfo.CallOperand; 8245 8246 if (OpInfo.isMatchingInputConstraint()) { 8247 // If this is required to match an output register we have already set, 8248 // just use its register. 8249 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8250 AsmNodeOperands); 8251 unsigned OpFlag = 8252 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8253 if (InlineAsm::isRegDefKind(OpFlag) || 8254 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8255 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8256 if (OpInfo.isIndirect) { 8257 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8258 emitInlineAsmError(CS, "inline asm not supported yet:" 8259 " don't know how to handle tied " 8260 "indirect register inputs"); 8261 return; 8262 } 8263 8264 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8265 SmallVector<unsigned, 4> Regs; 8266 8267 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8268 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8269 MachineRegisterInfo &RegInfo = 8270 DAG.getMachineFunction().getRegInfo(); 8271 for (unsigned i = 0; i != NumRegs; ++i) 8272 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8273 } else { 8274 emitInlineAsmError(CS, "inline asm error: This value type register " 8275 "class is not natively supported!"); 8276 return; 8277 } 8278 8279 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8280 8281 SDLoc dl = getCurSDLoc(); 8282 // Use the produced MatchedRegs object to 8283 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8284 CS.getInstruction()); 8285 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8286 true, OpInfo.getMatchedOperand(), dl, 8287 DAG, AsmNodeOperands); 8288 break; 8289 } 8290 8291 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8292 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8293 "Unexpected number of operands"); 8294 // Add information to the INLINEASM node to know about this input. 8295 // See InlineAsm.h isUseOperandTiedToDef. 8296 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8297 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8298 OpInfo.getMatchedOperand()); 8299 AsmNodeOperands.push_back(DAG.getTargetConstant( 8300 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8301 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8302 break; 8303 } 8304 8305 // Treat indirect 'X' constraint as memory. 8306 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8307 OpInfo.ConstraintType == TargetLowering::C_Other) && 8308 OpInfo.isIndirect) 8309 OpInfo.ConstraintType = TargetLowering::C_Memory; 8310 8311 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8312 OpInfo.ConstraintType == TargetLowering::C_Other) { 8313 std::vector<SDValue> Ops; 8314 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8315 Ops, DAG); 8316 if (Ops.empty()) { 8317 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8318 if (isa<ConstantSDNode>(InOperandVal)) { 8319 emitInlineAsmError(CS, "value out of range for constraint '" + 8320 Twine(OpInfo.ConstraintCode) + "'"); 8321 return; 8322 } 8323 8324 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8325 Twine(OpInfo.ConstraintCode) + "'"); 8326 return; 8327 } 8328 8329 // Add information to the INLINEASM node to know about this input. 8330 unsigned ResOpType = 8331 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8332 AsmNodeOperands.push_back(DAG.getTargetConstant( 8333 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8334 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8335 break; 8336 } 8337 8338 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8339 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8340 assert(InOperandVal.getValueType() == 8341 TLI.getPointerTy(DAG.getDataLayout()) && 8342 "Memory operands expect pointer values"); 8343 8344 unsigned ConstraintID = 8345 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8346 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8347 "Failed to convert memory constraint code to constraint id."); 8348 8349 // Add information to the INLINEASM node to know about this input. 8350 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8351 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8352 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8353 getCurSDLoc(), 8354 MVT::i32)); 8355 AsmNodeOperands.push_back(InOperandVal); 8356 break; 8357 } 8358 8359 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8360 OpInfo.ConstraintType == TargetLowering::C_Register || 8361 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8362 "Unknown constraint type!"); 8363 8364 // TODO: Support this. 8365 if (OpInfo.isIndirect) { 8366 emitInlineAsmError( 8367 CS, "Don't know how to handle indirect register inputs yet " 8368 "for constraint '" + 8369 Twine(OpInfo.ConstraintCode) + "'"); 8370 return; 8371 } 8372 8373 // Copy the input into the appropriate registers. 8374 if (OpInfo.AssignedRegs.Regs.empty()) { 8375 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8376 Twine(OpInfo.ConstraintCode) + "'"); 8377 return; 8378 } 8379 8380 SDLoc dl = getCurSDLoc(); 8381 8382 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8383 Chain, &Flag, CS.getInstruction()); 8384 8385 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8386 dl, DAG, AsmNodeOperands); 8387 break; 8388 } 8389 case InlineAsm::isClobber: 8390 // Add the clobbered value to the operand list, so that the register 8391 // allocator is aware that the physreg got clobbered. 8392 if (!OpInfo.AssignedRegs.Regs.empty()) 8393 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8394 false, 0, getCurSDLoc(), DAG, 8395 AsmNodeOperands); 8396 break; 8397 } 8398 } 8399 8400 // Finish up input operands. Set the input chain and add the flag last. 8401 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8402 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8403 8404 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8405 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8406 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8407 Flag = Chain.getValue(1); 8408 8409 // Do additional work to generate outputs. 8410 8411 SmallVector<EVT, 1> ResultVTs; 8412 SmallVector<SDValue, 1> ResultValues; 8413 SmallVector<SDValue, 8> OutChains; 8414 8415 llvm::Type *CSResultType = CS.getType(); 8416 ArrayRef<Type *> ResultTypes; 8417 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8418 ResultTypes = StructResult->elements(); 8419 else if (!CSResultType->isVoidTy()) 8420 ResultTypes = makeArrayRef(CSResultType); 8421 8422 auto CurResultType = ResultTypes.begin(); 8423 auto handleRegAssign = [&](SDValue V) { 8424 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8425 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8426 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8427 ++CurResultType; 8428 // If the type of the inline asm call site return value is different but has 8429 // same size as the type of the asm output bitcast it. One example of this 8430 // is for vectors with different width / number of elements. This can 8431 // happen for register classes that can contain multiple different value 8432 // types. The preg or vreg allocated may not have the same VT as was 8433 // expected. 8434 // 8435 // This can also happen for a return value that disagrees with the register 8436 // class it is put in, eg. a double in a general-purpose register on a 8437 // 32-bit machine. 8438 if (ResultVT != V.getValueType() && 8439 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8440 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8441 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8442 V.getValueType().isInteger()) { 8443 // If a result value was tied to an input value, the computed result 8444 // may have a wider width than the expected result. Extract the 8445 // relevant portion. 8446 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8447 } 8448 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8449 ResultVTs.push_back(ResultVT); 8450 ResultValues.push_back(V); 8451 }; 8452 8453 // Deal with output operands. 8454 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8455 if (OpInfo.Type == InlineAsm::isOutput) { 8456 SDValue Val; 8457 // Skip trivial output operands. 8458 if (OpInfo.AssignedRegs.Regs.empty()) 8459 continue; 8460 8461 switch (OpInfo.ConstraintType) { 8462 case TargetLowering::C_Register: 8463 case TargetLowering::C_RegisterClass: 8464 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8465 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8466 break; 8467 case TargetLowering::C_Immediate: 8468 case TargetLowering::C_Other: 8469 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8470 OpInfo, DAG); 8471 break; 8472 case TargetLowering::C_Memory: 8473 break; // Already handled. 8474 case TargetLowering::C_Unknown: 8475 assert(false && "Unexpected unknown constraint"); 8476 } 8477 8478 // Indirect output manifest as stores. Record output chains. 8479 if (OpInfo.isIndirect) { 8480 const Value *Ptr = OpInfo.CallOperandVal; 8481 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8482 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8483 MachinePointerInfo(Ptr)); 8484 OutChains.push_back(Store); 8485 } else { 8486 // generate CopyFromRegs to associated registers. 8487 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8488 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8489 for (const SDValue &V : Val->op_values()) 8490 handleRegAssign(V); 8491 } else 8492 handleRegAssign(Val); 8493 } 8494 } 8495 } 8496 8497 // Set results. 8498 if (!ResultValues.empty()) { 8499 assert(CurResultType == ResultTypes.end() && 8500 "Mismatch in number of ResultTypes"); 8501 assert(ResultValues.size() == ResultTypes.size() && 8502 "Mismatch in number of output operands in asm result"); 8503 8504 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8505 DAG.getVTList(ResultVTs), ResultValues); 8506 setValue(CS.getInstruction(), V); 8507 } 8508 8509 // Collect store chains. 8510 if (!OutChains.empty()) 8511 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8512 8513 // Only Update Root if inline assembly has a memory effect. 8514 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8515 DAG.setRoot(Chain); 8516 } 8517 8518 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8519 const Twine &Message) { 8520 LLVMContext &Ctx = *DAG.getContext(); 8521 Ctx.emitError(CS.getInstruction(), Message); 8522 8523 // Make sure we leave the DAG in a valid state 8524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8525 SmallVector<EVT, 1> ValueVTs; 8526 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8527 8528 if (ValueVTs.empty()) 8529 return; 8530 8531 SmallVector<SDValue, 1> Ops; 8532 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8533 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8534 8535 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8536 } 8537 8538 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8539 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8540 MVT::Other, getRoot(), 8541 getValue(I.getArgOperand(0)), 8542 DAG.getSrcValue(I.getArgOperand(0)))); 8543 } 8544 8545 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8547 const DataLayout &DL = DAG.getDataLayout(); 8548 SDValue V = DAG.getVAArg( 8549 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8550 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8551 DL.getABITypeAlignment(I.getType())); 8552 DAG.setRoot(V.getValue(1)); 8553 8554 if (I.getType()->isPointerTy()) 8555 V = DAG.getPtrExtOrTrunc( 8556 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8557 setValue(&I, V); 8558 } 8559 8560 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8561 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8562 MVT::Other, getRoot(), 8563 getValue(I.getArgOperand(0)), 8564 DAG.getSrcValue(I.getArgOperand(0)))); 8565 } 8566 8567 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8568 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8569 MVT::Other, getRoot(), 8570 getValue(I.getArgOperand(0)), 8571 getValue(I.getArgOperand(1)), 8572 DAG.getSrcValue(I.getArgOperand(0)), 8573 DAG.getSrcValue(I.getArgOperand(1)))); 8574 } 8575 8576 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8577 const Instruction &I, 8578 SDValue Op) { 8579 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8580 if (!Range) 8581 return Op; 8582 8583 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8584 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8585 return Op; 8586 8587 APInt Lo = CR.getUnsignedMin(); 8588 if (!Lo.isMinValue()) 8589 return Op; 8590 8591 APInt Hi = CR.getUnsignedMax(); 8592 unsigned Bits = std::max(Hi.getActiveBits(), 8593 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8594 8595 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8596 8597 SDLoc SL = getCurSDLoc(); 8598 8599 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8600 DAG.getValueType(SmallVT)); 8601 unsigned NumVals = Op.getNode()->getNumValues(); 8602 if (NumVals == 1) 8603 return ZExt; 8604 8605 SmallVector<SDValue, 4> Ops; 8606 8607 Ops.push_back(ZExt); 8608 for (unsigned I = 1; I != NumVals; ++I) 8609 Ops.push_back(Op.getValue(I)); 8610 8611 return DAG.getMergeValues(Ops, SL); 8612 } 8613 8614 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8615 /// the call being lowered. 8616 /// 8617 /// This is a helper for lowering intrinsics that follow a target calling 8618 /// convention or require stack pointer adjustment. Only a subset of the 8619 /// intrinsic's operands need to participate in the calling convention. 8620 void SelectionDAGBuilder::populateCallLoweringInfo( 8621 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8622 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8623 bool IsPatchPoint) { 8624 TargetLowering::ArgListTy Args; 8625 Args.reserve(NumArgs); 8626 8627 // Populate the argument list. 8628 // Attributes for args start at offset 1, after the return attribute. 8629 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8630 ArgI != ArgE; ++ArgI) { 8631 const Value *V = Call->getOperand(ArgI); 8632 8633 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8634 8635 TargetLowering::ArgListEntry Entry; 8636 Entry.Node = getValue(V); 8637 Entry.Ty = V->getType(); 8638 Entry.setAttributes(Call, ArgI); 8639 Args.push_back(Entry); 8640 } 8641 8642 CLI.setDebugLoc(getCurSDLoc()) 8643 .setChain(getRoot()) 8644 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8645 .setDiscardResult(Call->use_empty()) 8646 .setIsPatchPoint(IsPatchPoint); 8647 } 8648 8649 /// Add a stack map intrinsic call's live variable operands to a stackmap 8650 /// or patchpoint target node's operand list. 8651 /// 8652 /// Constants are converted to TargetConstants purely as an optimization to 8653 /// avoid constant materialization and register allocation. 8654 /// 8655 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8656 /// generate addess computation nodes, and so FinalizeISel can convert the 8657 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8658 /// address materialization and register allocation, but may also be required 8659 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8660 /// alloca in the entry block, then the runtime may assume that the alloca's 8661 /// StackMap location can be read immediately after compilation and that the 8662 /// location is valid at any point during execution (this is similar to the 8663 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8664 /// only available in a register, then the runtime would need to trap when 8665 /// execution reaches the StackMap in order to read the alloca's location. 8666 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8667 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8668 SelectionDAGBuilder &Builder) { 8669 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8670 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8671 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8672 Ops.push_back( 8673 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8674 Ops.push_back( 8675 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8676 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8677 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8678 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8679 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8680 } else 8681 Ops.push_back(OpVal); 8682 } 8683 } 8684 8685 /// Lower llvm.experimental.stackmap directly to its target opcode. 8686 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8687 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8688 // [live variables...]) 8689 8690 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8691 8692 SDValue Chain, InFlag, Callee, NullPtr; 8693 SmallVector<SDValue, 32> Ops; 8694 8695 SDLoc DL = getCurSDLoc(); 8696 Callee = getValue(CI.getCalledValue()); 8697 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8698 8699 // The stackmap intrinsic only records the live variables (the arguments 8700 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8701 // intrinsic, this won't be lowered to a function call. This means we don't 8702 // have to worry about calling conventions and target specific lowering code. 8703 // Instead we perform the call lowering right here. 8704 // 8705 // chain, flag = CALLSEQ_START(chain, 0, 0) 8706 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8707 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8708 // 8709 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8710 InFlag = Chain.getValue(1); 8711 8712 // Add the <id> and <numBytes> constants. 8713 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8714 Ops.push_back(DAG.getTargetConstant( 8715 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8716 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8717 Ops.push_back(DAG.getTargetConstant( 8718 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8719 MVT::i32)); 8720 8721 // Push live variables for the stack map. 8722 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8723 8724 // We are not pushing any register mask info here on the operands list, 8725 // because the stackmap doesn't clobber anything. 8726 8727 // Push the chain and the glue flag. 8728 Ops.push_back(Chain); 8729 Ops.push_back(InFlag); 8730 8731 // Create the STACKMAP node. 8732 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8733 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8734 Chain = SDValue(SM, 0); 8735 InFlag = Chain.getValue(1); 8736 8737 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8738 8739 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8740 8741 // Set the root to the target-lowered call chain. 8742 DAG.setRoot(Chain); 8743 8744 // Inform the Frame Information that we have a stackmap in this function. 8745 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8746 } 8747 8748 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8749 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8750 const BasicBlock *EHPadBB) { 8751 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8752 // i32 <numBytes>, 8753 // i8* <target>, 8754 // i32 <numArgs>, 8755 // [Args...], 8756 // [live variables...]) 8757 8758 CallingConv::ID CC = CS.getCallingConv(); 8759 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8760 bool HasDef = !CS->getType()->isVoidTy(); 8761 SDLoc dl = getCurSDLoc(); 8762 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8763 8764 // Handle immediate and symbolic callees. 8765 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8766 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8767 /*isTarget=*/true); 8768 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8769 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8770 SDLoc(SymbolicCallee), 8771 SymbolicCallee->getValueType(0)); 8772 8773 // Get the real number of arguments participating in the call <numArgs> 8774 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8775 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8776 8777 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8778 // Intrinsics include all meta-operands up to but not including CC. 8779 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8780 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8781 "Not enough arguments provided to the patchpoint intrinsic"); 8782 8783 // For AnyRegCC the arguments are lowered later on manually. 8784 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8785 Type *ReturnTy = 8786 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8787 8788 TargetLowering::CallLoweringInfo CLI(DAG); 8789 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8790 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8791 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8792 8793 SDNode *CallEnd = Result.second.getNode(); 8794 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8795 CallEnd = CallEnd->getOperand(0).getNode(); 8796 8797 /// Get a call instruction from the call sequence chain. 8798 /// Tail calls are not allowed. 8799 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8800 "Expected a callseq node."); 8801 SDNode *Call = CallEnd->getOperand(0).getNode(); 8802 bool HasGlue = Call->getGluedNode(); 8803 8804 // Replace the target specific call node with the patchable intrinsic. 8805 SmallVector<SDValue, 8> Ops; 8806 8807 // Add the <id> and <numBytes> constants. 8808 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8809 Ops.push_back(DAG.getTargetConstant( 8810 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8811 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8812 Ops.push_back(DAG.getTargetConstant( 8813 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8814 MVT::i32)); 8815 8816 // Add the callee. 8817 Ops.push_back(Callee); 8818 8819 // Adjust <numArgs> to account for any arguments that have been passed on the 8820 // stack instead. 8821 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8822 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8823 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8824 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8825 8826 // Add the calling convention 8827 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8828 8829 // Add the arguments we omitted previously. The register allocator should 8830 // place these in any free register. 8831 if (IsAnyRegCC) 8832 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8833 Ops.push_back(getValue(CS.getArgument(i))); 8834 8835 // Push the arguments from the call instruction up to the register mask. 8836 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8837 Ops.append(Call->op_begin() + 2, e); 8838 8839 // Push live variables for the stack map. 8840 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8841 8842 // Push the register mask info. 8843 if (HasGlue) 8844 Ops.push_back(*(Call->op_end()-2)); 8845 else 8846 Ops.push_back(*(Call->op_end()-1)); 8847 8848 // Push the chain (this is originally the first operand of the call, but 8849 // becomes now the last or second to last operand). 8850 Ops.push_back(*(Call->op_begin())); 8851 8852 // Push the glue flag (last operand). 8853 if (HasGlue) 8854 Ops.push_back(*(Call->op_end()-1)); 8855 8856 SDVTList NodeTys; 8857 if (IsAnyRegCC && HasDef) { 8858 // Create the return types based on the intrinsic definition 8859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8860 SmallVector<EVT, 3> ValueVTs; 8861 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8862 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8863 8864 // There is always a chain and a glue type at the end 8865 ValueVTs.push_back(MVT::Other); 8866 ValueVTs.push_back(MVT::Glue); 8867 NodeTys = DAG.getVTList(ValueVTs); 8868 } else 8869 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8870 8871 // Replace the target specific call node with a PATCHPOINT node. 8872 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8873 dl, NodeTys, Ops); 8874 8875 // Update the NodeMap. 8876 if (HasDef) { 8877 if (IsAnyRegCC) 8878 setValue(CS.getInstruction(), SDValue(MN, 0)); 8879 else 8880 setValue(CS.getInstruction(), Result.first); 8881 } 8882 8883 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8884 // call sequence. Furthermore the location of the chain and glue can change 8885 // when the AnyReg calling convention is used and the intrinsic returns a 8886 // value. 8887 if (IsAnyRegCC && HasDef) { 8888 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8889 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8890 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8891 } else 8892 DAG.ReplaceAllUsesWith(Call, MN); 8893 DAG.DeleteNode(Call); 8894 8895 // Inform the Frame Information that we have a patchpoint in this function. 8896 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8897 } 8898 8899 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8900 unsigned Intrinsic) { 8901 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8902 SDValue Op1 = getValue(I.getArgOperand(0)); 8903 SDValue Op2; 8904 if (I.getNumArgOperands() > 1) 8905 Op2 = getValue(I.getArgOperand(1)); 8906 SDLoc dl = getCurSDLoc(); 8907 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8908 SDValue Res; 8909 FastMathFlags FMF; 8910 if (isa<FPMathOperator>(I)) 8911 FMF = I.getFastMathFlags(); 8912 8913 switch (Intrinsic) { 8914 case Intrinsic::experimental_vector_reduce_v2_fadd: 8915 if (FMF.allowReassoc()) 8916 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8917 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8918 else 8919 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8920 break; 8921 case Intrinsic::experimental_vector_reduce_v2_fmul: 8922 if (FMF.allowReassoc()) 8923 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8924 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8925 else 8926 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8927 break; 8928 case Intrinsic::experimental_vector_reduce_add: 8929 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8930 break; 8931 case Intrinsic::experimental_vector_reduce_mul: 8932 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8933 break; 8934 case Intrinsic::experimental_vector_reduce_and: 8935 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8936 break; 8937 case Intrinsic::experimental_vector_reduce_or: 8938 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8939 break; 8940 case Intrinsic::experimental_vector_reduce_xor: 8941 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8942 break; 8943 case Intrinsic::experimental_vector_reduce_smax: 8944 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8945 break; 8946 case Intrinsic::experimental_vector_reduce_smin: 8947 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8948 break; 8949 case Intrinsic::experimental_vector_reduce_umax: 8950 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8951 break; 8952 case Intrinsic::experimental_vector_reduce_umin: 8953 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8954 break; 8955 case Intrinsic::experimental_vector_reduce_fmax: 8956 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8957 break; 8958 case Intrinsic::experimental_vector_reduce_fmin: 8959 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8960 break; 8961 default: 8962 llvm_unreachable("Unhandled vector reduce intrinsic"); 8963 } 8964 setValue(&I, Res); 8965 } 8966 8967 /// Returns an AttributeList representing the attributes applied to the return 8968 /// value of the given call. 8969 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8970 SmallVector<Attribute::AttrKind, 2> Attrs; 8971 if (CLI.RetSExt) 8972 Attrs.push_back(Attribute::SExt); 8973 if (CLI.RetZExt) 8974 Attrs.push_back(Attribute::ZExt); 8975 if (CLI.IsInReg) 8976 Attrs.push_back(Attribute::InReg); 8977 8978 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8979 Attrs); 8980 } 8981 8982 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8983 /// implementation, which just calls LowerCall. 8984 /// FIXME: When all targets are 8985 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8986 std::pair<SDValue, SDValue> 8987 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8988 // Handle the incoming return values from the call. 8989 CLI.Ins.clear(); 8990 Type *OrigRetTy = CLI.RetTy; 8991 SmallVector<EVT, 4> RetTys; 8992 SmallVector<uint64_t, 4> Offsets; 8993 auto &DL = CLI.DAG.getDataLayout(); 8994 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8995 8996 if (CLI.IsPostTypeLegalization) { 8997 // If we are lowering a libcall after legalization, split the return type. 8998 SmallVector<EVT, 4> OldRetTys; 8999 SmallVector<uint64_t, 4> OldOffsets; 9000 RetTys.swap(OldRetTys); 9001 Offsets.swap(OldOffsets); 9002 9003 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9004 EVT RetVT = OldRetTys[i]; 9005 uint64_t Offset = OldOffsets[i]; 9006 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9007 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9008 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9009 RetTys.append(NumRegs, RegisterVT); 9010 for (unsigned j = 0; j != NumRegs; ++j) 9011 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9012 } 9013 } 9014 9015 SmallVector<ISD::OutputArg, 4> Outs; 9016 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9017 9018 bool CanLowerReturn = 9019 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9020 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9021 9022 SDValue DemoteStackSlot; 9023 int DemoteStackIdx = -100; 9024 if (!CanLowerReturn) { 9025 // FIXME: equivalent assert? 9026 // assert(!CS.hasInAllocaArgument() && 9027 // "sret demotion is incompatible with inalloca"); 9028 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9029 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9030 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9031 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9032 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9033 DL.getAllocaAddrSpace()); 9034 9035 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9036 ArgListEntry Entry; 9037 Entry.Node = DemoteStackSlot; 9038 Entry.Ty = StackSlotPtrType; 9039 Entry.IsSExt = false; 9040 Entry.IsZExt = false; 9041 Entry.IsInReg = false; 9042 Entry.IsSRet = true; 9043 Entry.IsNest = false; 9044 Entry.IsByVal = false; 9045 Entry.IsReturned = false; 9046 Entry.IsSwiftSelf = false; 9047 Entry.IsSwiftError = false; 9048 Entry.IsCFGuardTarget = false; 9049 Entry.Alignment = Align; 9050 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9051 CLI.NumFixedArgs += 1; 9052 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9053 9054 // sret demotion isn't compatible with tail-calls, since the sret argument 9055 // points into the callers stack frame. 9056 CLI.IsTailCall = false; 9057 } else { 9058 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9059 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9060 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9061 ISD::ArgFlagsTy Flags; 9062 if (NeedsRegBlock) { 9063 Flags.setInConsecutiveRegs(); 9064 if (I == RetTys.size() - 1) 9065 Flags.setInConsecutiveRegsLast(); 9066 } 9067 EVT VT = RetTys[I]; 9068 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9069 CLI.CallConv, VT); 9070 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9071 CLI.CallConv, VT); 9072 for (unsigned i = 0; i != NumRegs; ++i) { 9073 ISD::InputArg MyFlags; 9074 MyFlags.Flags = Flags; 9075 MyFlags.VT = RegisterVT; 9076 MyFlags.ArgVT = VT; 9077 MyFlags.Used = CLI.IsReturnValueUsed; 9078 if (CLI.RetTy->isPointerTy()) { 9079 MyFlags.Flags.setPointer(); 9080 MyFlags.Flags.setPointerAddrSpace( 9081 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9082 } 9083 if (CLI.RetSExt) 9084 MyFlags.Flags.setSExt(); 9085 if (CLI.RetZExt) 9086 MyFlags.Flags.setZExt(); 9087 if (CLI.IsInReg) 9088 MyFlags.Flags.setInReg(); 9089 CLI.Ins.push_back(MyFlags); 9090 } 9091 } 9092 } 9093 9094 // We push in swifterror return as the last element of CLI.Ins. 9095 ArgListTy &Args = CLI.getArgs(); 9096 if (supportSwiftError()) { 9097 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9098 if (Args[i].IsSwiftError) { 9099 ISD::InputArg MyFlags; 9100 MyFlags.VT = getPointerTy(DL); 9101 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9102 MyFlags.Flags.setSwiftError(); 9103 CLI.Ins.push_back(MyFlags); 9104 } 9105 } 9106 } 9107 9108 // Handle all of the outgoing arguments. 9109 CLI.Outs.clear(); 9110 CLI.OutVals.clear(); 9111 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9112 SmallVector<EVT, 4> ValueVTs; 9113 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9114 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9115 Type *FinalType = Args[i].Ty; 9116 if (Args[i].IsByVal) 9117 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9118 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9119 FinalType, CLI.CallConv, CLI.IsVarArg); 9120 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9121 ++Value) { 9122 EVT VT = ValueVTs[Value]; 9123 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9124 SDValue Op = SDValue(Args[i].Node.getNode(), 9125 Args[i].Node.getResNo() + Value); 9126 ISD::ArgFlagsTy Flags; 9127 9128 // Certain targets (such as MIPS), may have a different ABI alignment 9129 // for a type depending on the context. Give the target a chance to 9130 // specify the alignment it wants. 9131 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9132 9133 if (Args[i].Ty->isPointerTy()) { 9134 Flags.setPointer(); 9135 Flags.setPointerAddrSpace( 9136 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9137 } 9138 if (Args[i].IsZExt) 9139 Flags.setZExt(); 9140 if (Args[i].IsSExt) 9141 Flags.setSExt(); 9142 if (Args[i].IsInReg) { 9143 // If we are using vectorcall calling convention, a structure that is 9144 // passed InReg - is surely an HVA 9145 if (CLI.CallConv == CallingConv::X86_VectorCall && 9146 isa<StructType>(FinalType)) { 9147 // The first value of a structure is marked 9148 if (0 == Value) 9149 Flags.setHvaStart(); 9150 Flags.setHva(); 9151 } 9152 // Set InReg Flag 9153 Flags.setInReg(); 9154 } 9155 if (Args[i].IsSRet) 9156 Flags.setSRet(); 9157 if (Args[i].IsSwiftSelf) 9158 Flags.setSwiftSelf(); 9159 if (Args[i].IsSwiftError) 9160 Flags.setSwiftError(); 9161 if (Args[i].IsCFGuardTarget) 9162 Flags.setCFGuardTarget(); 9163 if (Args[i].IsByVal) 9164 Flags.setByVal(); 9165 if (Args[i].IsInAlloca) { 9166 Flags.setInAlloca(); 9167 // Set the byval flag for CCAssignFn callbacks that don't know about 9168 // inalloca. This way we can know how many bytes we should've allocated 9169 // and how many bytes a callee cleanup function will pop. If we port 9170 // inalloca to more targets, we'll have to add custom inalloca handling 9171 // in the various CC lowering callbacks. 9172 Flags.setByVal(); 9173 } 9174 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9175 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9176 Type *ElementTy = Ty->getElementType(); 9177 9178 unsigned FrameSize = DL.getTypeAllocSize( 9179 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9180 Flags.setByValSize(FrameSize); 9181 9182 // info is not there but there are cases it cannot get right. 9183 unsigned FrameAlign; 9184 if (Args[i].Alignment) 9185 FrameAlign = Args[i].Alignment; 9186 else 9187 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9188 Flags.setByValAlign(Align(FrameAlign)); 9189 } 9190 if (Args[i].IsNest) 9191 Flags.setNest(); 9192 if (NeedsRegBlock) 9193 Flags.setInConsecutiveRegs(); 9194 Flags.setOrigAlign(OriginalAlignment); 9195 9196 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9197 CLI.CallConv, VT); 9198 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9199 CLI.CallConv, VT); 9200 SmallVector<SDValue, 4> Parts(NumParts); 9201 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9202 9203 if (Args[i].IsSExt) 9204 ExtendKind = ISD::SIGN_EXTEND; 9205 else if (Args[i].IsZExt) 9206 ExtendKind = ISD::ZERO_EXTEND; 9207 9208 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9209 // for now. 9210 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9211 CanLowerReturn) { 9212 assert((CLI.RetTy == Args[i].Ty || 9213 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9214 CLI.RetTy->getPointerAddressSpace() == 9215 Args[i].Ty->getPointerAddressSpace())) && 9216 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9217 // Before passing 'returned' to the target lowering code, ensure that 9218 // either the register MVT and the actual EVT are the same size or that 9219 // the return value and argument are extended in the same way; in these 9220 // cases it's safe to pass the argument register value unchanged as the 9221 // return register value (although it's at the target's option whether 9222 // to do so) 9223 // TODO: allow code generation to take advantage of partially preserved 9224 // registers rather than clobbering the entire register when the 9225 // parameter extension method is not compatible with the return 9226 // extension method 9227 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9228 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9229 CLI.RetZExt == Args[i].IsZExt)) 9230 Flags.setReturned(); 9231 } 9232 9233 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9234 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9235 9236 for (unsigned j = 0; j != NumParts; ++j) { 9237 // if it isn't first piece, alignment must be 1 9238 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9239 i < CLI.NumFixedArgs, 9240 i, j*Parts[j].getValueType().getStoreSize()); 9241 if (NumParts > 1 && j == 0) 9242 MyFlags.Flags.setSplit(); 9243 else if (j != 0) { 9244 MyFlags.Flags.setOrigAlign(Align::None()); 9245 if (j == NumParts - 1) 9246 MyFlags.Flags.setSplitEnd(); 9247 } 9248 9249 CLI.Outs.push_back(MyFlags); 9250 CLI.OutVals.push_back(Parts[j]); 9251 } 9252 9253 if (NeedsRegBlock && Value == NumValues - 1) 9254 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9255 } 9256 } 9257 9258 SmallVector<SDValue, 4> InVals; 9259 CLI.Chain = LowerCall(CLI, InVals); 9260 9261 // Update CLI.InVals to use outside of this function. 9262 CLI.InVals = InVals; 9263 9264 // Verify that the target's LowerCall behaved as expected. 9265 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9266 "LowerCall didn't return a valid chain!"); 9267 assert((!CLI.IsTailCall || InVals.empty()) && 9268 "LowerCall emitted a return value for a tail call!"); 9269 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9270 "LowerCall didn't emit the correct number of values!"); 9271 9272 // For a tail call, the return value is merely live-out and there aren't 9273 // any nodes in the DAG representing it. Return a special value to 9274 // indicate that a tail call has been emitted and no more Instructions 9275 // should be processed in the current block. 9276 if (CLI.IsTailCall) { 9277 CLI.DAG.setRoot(CLI.Chain); 9278 return std::make_pair(SDValue(), SDValue()); 9279 } 9280 9281 #ifndef NDEBUG 9282 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9283 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9284 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9285 "LowerCall emitted a value with the wrong type!"); 9286 } 9287 #endif 9288 9289 SmallVector<SDValue, 4> ReturnValues; 9290 if (!CanLowerReturn) { 9291 // The instruction result is the result of loading from the 9292 // hidden sret parameter. 9293 SmallVector<EVT, 1> PVTs; 9294 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9295 9296 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9297 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9298 EVT PtrVT = PVTs[0]; 9299 9300 unsigned NumValues = RetTys.size(); 9301 ReturnValues.resize(NumValues); 9302 SmallVector<SDValue, 4> Chains(NumValues); 9303 9304 // An aggregate return value cannot wrap around the address space, so 9305 // offsets to its parts don't wrap either. 9306 SDNodeFlags Flags; 9307 Flags.setNoUnsignedWrap(true); 9308 9309 for (unsigned i = 0; i < NumValues; ++i) { 9310 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9311 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9312 PtrVT), Flags); 9313 SDValue L = CLI.DAG.getLoad( 9314 RetTys[i], CLI.DL, CLI.Chain, Add, 9315 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9316 DemoteStackIdx, Offsets[i]), 9317 /* Alignment = */ 1); 9318 ReturnValues[i] = L; 9319 Chains[i] = L.getValue(1); 9320 } 9321 9322 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9323 } else { 9324 // Collect the legal value parts into potentially illegal values 9325 // that correspond to the original function's return values. 9326 Optional<ISD::NodeType> AssertOp; 9327 if (CLI.RetSExt) 9328 AssertOp = ISD::AssertSext; 9329 else if (CLI.RetZExt) 9330 AssertOp = ISD::AssertZext; 9331 unsigned CurReg = 0; 9332 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9333 EVT VT = RetTys[I]; 9334 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9335 CLI.CallConv, VT); 9336 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9337 CLI.CallConv, VT); 9338 9339 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9340 NumRegs, RegisterVT, VT, nullptr, 9341 CLI.CallConv, AssertOp)); 9342 CurReg += NumRegs; 9343 } 9344 9345 // For a function returning void, there is no return value. We can't create 9346 // such a node, so we just return a null return value in that case. In 9347 // that case, nothing will actually look at the value. 9348 if (ReturnValues.empty()) 9349 return std::make_pair(SDValue(), CLI.Chain); 9350 } 9351 9352 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9353 CLI.DAG.getVTList(RetTys), ReturnValues); 9354 return std::make_pair(Res, CLI.Chain); 9355 } 9356 9357 void TargetLowering::LowerOperationWrapper(SDNode *N, 9358 SmallVectorImpl<SDValue> &Results, 9359 SelectionDAG &DAG) const { 9360 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9361 Results.push_back(Res); 9362 } 9363 9364 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9365 llvm_unreachable("LowerOperation not implemented for this target!"); 9366 } 9367 9368 void 9369 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9370 SDValue Op = getNonRegisterValue(V); 9371 assert((Op.getOpcode() != ISD::CopyFromReg || 9372 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9373 "Copy from a reg to the same reg!"); 9374 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9375 9376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9377 // If this is an InlineAsm we have to match the registers required, not the 9378 // notional registers required by the type. 9379 9380 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9381 None); // This is not an ABI copy. 9382 SDValue Chain = DAG.getEntryNode(); 9383 9384 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9385 FuncInfo.PreferredExtendType.end()) 9386 ? ISD::ANY_EXTEND 9387 : FuncInfo.PreferredExtendType[V]; 9388 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9389 PendingExports.push_back(Chain); 9390 } 9391 9392 #include "llvm/CodeGen/SelectionDAGISel.h" 9393 9394 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9395 /// entry block, return true. This includes arguments used by switches, since 9396 /// the switch may expand into multiple basic blocks. 9397 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9398 // With FastISel active, we may be splitting blocks, so force creation 9399 // of virtual registers for all non-dead arguments. 9400 if (FastISel) 9401 return A->use_empty(); 9402 9403 const BasicBlock &Entry = A->getParent()->front(); 9404 for (const User *U : A->users()) 9405 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9406 return false; // Use not in entry block. 9407 9408 return true; 9409 } 9410 9411 using ArgCopyElisionMapTy = 9412 DenseMap<const Argument *, 9413 std::pair<const AllocaInst *, const StoreInst *>>; 9414 9415 /// Scan the entry block of the function in FuncInfo for arguments that look 9416 /// like copies into a local alloca. Record any copied arguments in 9417 /// ArgCopyElisionCandidates. 9418 static void 9419 findArgumentCopyElisionCandidates(const DataLayout &DL, 9420 FunctionLoweringInfo *FuncInfo, 9421 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9422 // Record the state of every static alloca used in the entry block. Argument 9423 // allocas are all used in the entry block, so we need approximately as many 9424 // entries as we have arguments. 9425 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9426 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9427 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9428 StaticAllocas.reserve(NumArgs * 2); 9429 9430 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9431 if (!V) 9432 return nullptr; 9433 V = V->stripPointerCasts(); 9434 const auto *AI = dyn_cast<AllocaInst>(V); 9435 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9436 return nullptr; 9437 auto Iter = StaticAllocas.insert({AI, Unknown}); 9438 return &Iter.first->second; 9439 }; 9440 9441 // Look for stores of arguments to static allocas. Look through bitcasts and 9442 // GEPs to handle type coercions, as long as the alloca is fully initialized 9443 // by the store. Any non-store use of an alloca escapes it and any subsequent 9444 // unanalyzed store might write it. 9445 // FIXME: Handle structs initialized with multiple stores. 9446 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9447 // Look for stores, and handle non-store uses conservatively. 9448 const auto *SI = dyn_cast<StoreInst>(&I); 9449 if (!SI) { 9450 // We will look through cast uses, so ignore them completely. 9451 if (I.isCast()) 9452 continue; 9453 // Ignore debug info intrinsics, they don't escape or store to allocas. 9454 if (isa<DbgInfoIntrinsic>(I)) 9455 continue; 9456 // This is an unknown instruction. Assume it escapes or writes to all 9457 // static alloca operands. 9458 for (const Use &U : I.operands()) { 9459 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9460 *Info = StaticAllocaInfo::Clobbered; 9461 } 9462 continue; 9463 } 9464 9465 // If the stored value is a static alloca, mark it as escaped. 9466 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9467 *Info = StaticAllocaInfo::Clobbered; 9468 9469 // Check if the destination is a static alloca. 9470 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9471 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9472 if (!Info) 9473 continue; 9474 const AllocaInst *AI = cast<AllocaInst>(Dst); 9475 9476 // Skip allocas that have been initialized or clobbered. 9477 if (*Info != StaticAllocaInfo::Unknown) 9478 continue; 9479 9480 // Check if the stored value is an argument, and that this store fully 9481 // initializes the alloca. Don't elide copies from the same argument twice. 9482 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9483 const auto *Arg = dyn_cast<Argument>(Val); 9484 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9485 Arg->getType()->isEmptyTy() || 9486 DL.getTypeStoreSize(Arg->getType()) != 9487 DL.getTypeAllocSize(AI->getAllocatedType()) || 9488 ArgCopyElisionCandidates.count(Arg)) { 9489 *Info = StaticAllocaInfo::Clobbered; 9490 continue; 9491 } 9492 9493 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9494 << '\n'); 9495 9496 // Mark this alloca and store for argument copy elision. 9497 *Info = StaticAllocaInfo::Elidable; 9498 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9499 9500 // Stop scanning if we've seen all arguments. This will happen early in -O0 9501 // builds, which is useful, because -O0 builds have large entry blocks and 9502 // many allocas. 9503 if (ArgCopyElisionCandidates.size() == NumArgs) 9504 break; 9505 } 9506 } 9507 9508 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9509 /// ArgVal is a load from a suitable fixed stack object. 9510 static void tryToElideArgumentCopy( 9511 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9512 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9513 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9514 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9515 SDValue ArgVal, bool &ArgHasUses) { 9516 // Check if this is a load from a fixed stack object. 9517 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9518 if (!LNode) 9519 return; 9520 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9521 if (!FINode) 9522 return; 9523 9524 // Check that the fixed stack object is the right size and alignment. 9525 // Look at the alignment that the user wrote on the alloca instead of looking 9526 // at the stack object. 9527 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9528 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9529 const AllocaInst *AI = ArgCopyIter->second.first; 9530 int FixedIndex = FINode->getIndex(); 9531 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9532 int OldIndex = AllocaIndex; 9533 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9534 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9535 LLVM_DEBUG( 9536 dbgs() << " argument copy elision failed due to bad fixed stack " 9537 "object size\n"); 9538 return; 9539 } 9540 unsigned RequiredAlignment = AI->getAlignment(); 9541 if (!RequiredAlignment) { 9542 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9543 AI->getAllocatedType()); 9544 } 9545 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9546 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9547 "greater than stack argument alignment (" 9548 << RequiredAlignment << " vs " 9549 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9550 return; 9551 } 9552 9553 // Perform the elision. Delete the old stack object and replace its only use 9554 // in the variable info map. Mark the stack object as mutable. 9555 LLVM_DEBUG({ 9556 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9557 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9558 << '\n'; 9559 }); 9560 MFI.RemoveStackObject(OldIndex); 9561 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9562 AllocaIndex = FixedIndex; 9563 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9564 Chains.push_back(ArgVal.getValue(1)); 9565 9566 // Avoid emitting code for the store implementing the copy. 9567 const StoreInst *SI = ArgCopyIter->second.second; 9568 ElidedArgCopyInstrs.insert(SI); 9569 9570 // Check for uses of the argument again so that we can avoid exporting ArgVal 9571 // if it is't used by anything other than the store. 9572 for (const Value *U : Arg.users()) { 9573 if (U != SI) { 9574 ArgHasUses = true; 9575 break; 9576 } 9577 } 9578 } 9579 9580 void SelectionDAGISel::LowerArguments(const Function &F) { 9581 SelectionDAG &DAG = SDB->DAG; 9582 SDLoc dl = SDB->getCurSDLoc(); 9583 const DataLayout &DL = DAG.getDataLayout(); 9584 SmallVector<ISD::InputArg, 16> Ins; 9585 9586 if (!FuncInfo->CanLowerReturn) { 9587 // Put in an sret pointer parameter before all the other parameters. 9588 SmallVector<EVT, 1> ValueVTs; 9589 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9590 F.getReturnType()->getPointerTo( 9591 DAG.getDataLayout().getAllocaAddrSpace()), 9592 ValueVTs); 9593 9594 // NOTE: Assuming that a pointer will never break down to more than one VT 9595 // or one register. 9596 ISD::ArgFlagsTy Flags; 9597 Flags.setSRet(); 9598 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9599 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9600 ISD::InputArg::NoArgIndex, 0); 9601 Ins.push_back(RetArg); 9602 } 9603 9604 // Look for stores of arguments to static allocas. Mark such arguments with a 9605 // flag to ask the target to give us the memory location of that argument if 9606 // available. 9607 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9608 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9609 9610 // Set up the incoming argument description vector. 9611 for (const Argument &Arg : F.args()) { 9612 unsigned ArgNo = Arg.getArgNo(); 9613 SmallVector<EVT, 4> ValueVTs; 9614 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9615 bool isArgValueUsed = !Arg.use_empty(); 9616 unsigned PartBase = 0; 9617 Type *FinalType = Arg.getType(); 9618 if (Arg.hasAttribute(Attribute::ByVal)) 9619 FinalType = Arg.getParamByValType(); 9620 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9621 FinalType, F.getCallingConv(), F.isVarArg()); 9622 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9623 Value != NumValues; ++Value) { 9624 EVT VT = ValueVTs[Value]; 9625 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9626 ISD::ArgFlagsTy Flags; 9627 9628 // Certain targets (such as MIPS), may have a different ABI alignment 9629 // for a type depending on the context. Give the target a chance to 9630 // specify the alignment it wants. 9631 const Align OriginalAlignment( 9632 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9633 9634 if (Arg.getType()->isPointerTy()) { 9635 Flags.setPointer(); 9636 Flags.setPointerAddrSpace( 9637 cast<PointerType>(Arg.getType())->getAddressSpace()); 9638 } 9639 if (Arg.hasAttribute(Attribute::ZExt)) 9640 Flags.setZExt(); 9641 if (Arg.hasAttribute(Attribute::SExt)) 9642 Flags.setSExt(); 9643 if (Arg.hasAttribute(Attribute::InReg)) { 9644 // If we are using vectorcall calling convention, a structure that is 9645 // passed InReg - is surely an HVA 9646 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9647 isa<StructType>(Arg.getType())) { 9648 // The first value of a structure is marked 9649 if (0 == Value) 9650 Flags.setHvaStart(); 9651 Flags.setHva(); 9652 } 9653 // Set InReg Flag 9654 Flags.setInReg(); 9655 } 9656 if (Arg.hasAttribute(Attribute::StructRet)) 9657 Flags.setSRet(); 9658 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9659 Flags.setSwiftSelf(); 9660 if (Arg.hasAttribute(Attribute::SwiftError)) 9661 Flags.setSwiftError(); 9662 if (Arg.hasAttribute(Attribute::ByVal)) 9663 Flags.setByVal(); 9664 if (Arg.hasAttribute(Attribute::InAlloca)) { 9665 Flags.setInAlloca(); 9666 // Set the byval flag for CCAssignFn callbacks that don't know about 9667 // inalloca. This way we can know how many bytes we should've allocated 9668 // and how many bytes a callee cleanup function will pop. If we port 9669 // inalloca to more targets, we'll have to add custom inalloca handling 9670 // in the various CC lowering callbacks. 9671 Flags.setByVal(); 9672 } 9673 if (F.getCallingConv() == CallingConv::X86_INTR) { 9674 // IA Interrupt passes frame (1st parameter) by value in the stack. 9675 if (ArgNo == 0) 9676 Flags.setByVal(); 9677 } 9678 if (Flags.isByVal() || Flags.isInAlloca()) { 9679 Type *ElementTy = Arg.getParamByValType(); 9680 9681 // For ByVal, size and alignment should be passed from FE. BE will 9682 // guess if this info is not there but there are cases it cannot get 9683 // right. 9684 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9685 Flags.setByValSize(FrameSize); 9686 9687 unsigned FrameAlign; 9688 if (Arg.getParamAlignment()) 9689 FrameAlign = Arg.getParamAlignment(); 9690 else 9691 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9692 Flags.setByValAlign(Align(FrameAlign)); 9693 } 9694 if (Arg.hasAttribute(Attribute::Nest)) 9695 Flags.setNest(); 9696 if (NeedsRegBlock) 9697 Flags.setInConsecutiveRegs(); 9698 Flags.setOrigAlign(OriginalAlignment); 9699 if (ArgCopyElisionCandidates.count(&Arg)) 9700 Flags.setCopyElisionCandidate(); 9701 if (Arg.hasAttribute(Attribute::Returned)) 9702 Flags.setReturned(); 9703 9704 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9705 *CurDAG->getContext(), F.getCallingConv(), VT); 9706 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9707 *CurDAG->getContext(), F.getCallingConv(), VT); 9708 for (unsigned i = 0; i != NumRegs; ++i) { 9709 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9710 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9711 if (NumRegs > 1 && i == 0) 9712 MyFlags.Flags.setSplit(); 9713 // if it isn't first piece, alignment must be 1 9714 else if (i > 0) { 9715 MyFlags.Flags.setOrigAlign(Align::None()); 9716 if (i == NumRegs - 1) 9717 MyFlags.Flags.setSplitEnd(); 9718 } 9719 Ins.push_back(MyFlags); 9720 } 9721 if (NeedsRegBlock && Value == NumValues - 1) 9722 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9723 PartBase += VT.getStoreSize(); 9724 } 9725 } 9726 9727 // Call the target to set up the argument values. 9728 SmallVector<SDValue, 8> InVals; 9729 SDValue NewRoot = TLI->LowerFormalArguments( 9730 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9731 9732 // Verify that the target's LowerFormalArguments behaved as expected. 9733 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9734 "LowerFormalArguments didn't return a valid chain!"); 9735 assert(InVals.size() == Ins.size() && 9736 "LowerFormalArguments didn't emit the correct number of values!"); 9737 LLVM_DEBUG({ 9738 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9739 assert(InVals[i].getNode() && 9740 "LowerFormalArguments emitted a null value!"); 9741 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9742 "LowerFormalArguments emitted a value with the wrong type!"); 9743 } 9744 }); 9745 9746 // Update the DAG with the new chain value resulting from argument lowering. 9747 DAG.setRoot(NewRoot); 9748 9749 // Set up the argument values. 9750 unsigned i = 0; 9751 if (!FuncInfo->CanLowerReturn) { 9752 // Create a virtual register for the sret pointer, and put in a copy 9753 // from the sret argument into it. 9754 SmallVector<EVT, 1> ValueVTs; 9755 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9756 F.getReturnType()->getPointerTo( 9757 DAG.getDataLayout().getAllocaAddrSpace()), 9758 ValueVTs); 9759 MVT VT = ValueVTs[0].getSimpleVT(); 9760 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9761 Optional<ISD::NodeType> AssertOp = None; 9762 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9763 nullptr, F.getCallingConv(), AssertOp); 9764 9765 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9766 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9767 Register SRetReg = 9768 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9769 FuncInfo->DemoteRegister = SRetReg; 9770 NewRoot = 9771 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9772 DAG.setRoot(NewRoot); 9773 9774 // i indexes lowered arguments. Bump it past the hidden sret argument. 9775 ++i; 9776 } 9777 9778 SmallVector<SDValue, 4> Chains; 9779 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9780 for (const Argument &Arg : F.args()) { 9781 SmallVector<SDValue, 4> ArgValues; 9782 SmallVector<EVT, 4> ValueVTs; 9783 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9784 unsigned NumValues = ValueVTs.size(); 9785 if (NumValues == 0) 9786 continue; 9787 9788 bool ArgHasUses = !Arg.use_empty(); 9789 9790 // Elide the copying store if the target loaded this argument from a 9791 // suitable fixed stack object. 9792 if (Ins[i].Flags.isCopyElisionCandidate()) { 9793 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9794 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9795 InVals[i], ArgHasUses); 9796 } 9797 9798 // If this argument is unused then remember its value. It is used to generate 9799 // debugging information. 9800 bool isSwiftErrorArg = 9801 TLI->supportSwiftError() && 9802 Arg.hasAttribute(Attribute::SwiftError); 9803 if (!ArgHasUses && !isSwiftErrorArg) { 9804 SDB->setUnusedArgValue(&Arg, InVals[i]); 9805 9806 // Also remember any frame index for use in FastISel. 9807 if (FrameIndexSDNode *FI = 9808 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9809 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9810 } 9811 9812 for (unsigned Val = 0; Val != NumValues; ++Val) { 9813 EVT VT = ValueVTs[Val]; 9814 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9815 F.getCallingConv(), VT); 9816 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9817 *CurDAG->getContext(), F.getCallingConv(), VT); 9818 9819 // Even an apparent 'unused' swifterror argument needs to be returned. So 9820 // we do generate a copy for it that can be used on return from the 9821 // function. 9822 if (ArgHasUses || isSwiftErrorArg) { 9823 Optional<ISD::NodeType> AssertOp; 9824 if (Arg.hasAttribute(Attribute::SExt)) 9825 AssertOp = ISD::AssertSext; 9826 else if (Arg.hasAttribute(Attribute::ZExt)) 9827 AssertOp = ISD::AssertZext; 9828 9829 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9830 PartVT, VT, nullptr, 9831 F.getCallingConv(), AssertOp)); 9832 } 9833 9834 i += NumParts; 9835 } 9836 9837 // We don't need to do anything else for unused arguments. 9838 if (ArgValues.empty()) 9839 continue; 9840 9841 // Note down frame index. 9842 if (FrameIndexSDNode *FI = 9843 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9844 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9845 9846 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9847 SDB->getCurSDLoc()); 9848 9849 SDB->setValue(&Arg, Res); 9850 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9851 // We want to associate the argument with the frame index, among 9852 // involved operands, that correspond to the lowest address. The 9853 // getCopyFromParts function, called earlier, is swapping the order of 9854 // the operands to BUILD_PAIR depending on endianness. The result of 9855 // that swapping is that the least significant bits of the argument will 9856 // be in the first operand of the BUILD_PAIR node, and the most 9857 // significant bits will be in the second operand. 9858 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9859 if (LoadSDNode *LNode = 9860 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9861 if (FrameIndexSDNode *FI = 9862 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9863 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9864 } 9865 9866 // Analyses past this point are naive and don't expect an assertion. 9867 if (Res.getOpcode() == ISD::AssertZext) 9868 Res = Res.getOperand(0); 9869 9870 // Update the SwiftErrorVRegDefMap. 9871 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9872 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9873 if (Register::isVirtualRegister(Reg)) 9874 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9875 Reg); 9876 } 9877 9878 // If this argument is live outside of the entry block, insert a copy from 9879 // wherever we got it to the vreg that other BB's will reference it as. 9880 if (Res.getOpcode() == ISD::CopyFromReg) { 9881 // If we can, though, try to skip creating an unnecessary vreg. 9882 // FIXME: This isn't very clean... it would be nice to make this more 9883 // general. 9884 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9885 if (Register::isVirtualRegister(Reg)) { 9886 FuncInfo->ValueMap[&Arg] = Reg; 9887 continue; 9888 } 9889 } 9890 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9891 FuncInfo->InitializeRegForValue(&Arg); 9892 SDB->CopyToExportRegsIfNeeded(&Arg); 9893 } 9894 } 9895 9896 if (!Chains.empty()) { 9897 Chains.push_back(NewRoot); 9898 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9899 } 9900 9901 DAG.setRoot(NewRoot); 9902 9903 assert(i == InVals.size() && "Argument register count mismatch!"); 9904 9905 // If any argument copy elisions occurred and we have debug info, update the 9906 // stale frame indices used in the dbg.declare variable info table. 9907 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9908 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9909 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9910 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9911 if (I != ArgCopyElisionFrameIndexMap.end()) 9912 VI.Slot = I->second; 9913 } 9914 } 9915 9916 // Finally, if the target has anything special to do, allow it to do so. 9917 EmitFunctionEntryCode(); 9918 } 9919 9920 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9921 /// ensure constants are generated when needed. Remember the virtual registers 9922 /// that need to be added to the Machine PHI nodes as input. We cannot just 9923 /// directly add them, because expansion might result in multiple MBB's for one 9924 /// BB. As such, the start of the BB might correspond to a different MBB than 9925 /// the end. 9926 void 9927 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9928 const Instruction *TI = LLVMBB->getTerminator(); 9929 9930 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9931 9932 // Check PHI nodes in successors that expect a value to be available from this 9933 // block. 9934 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9935 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9936 if (!isa<PHINode>(SuccBB->begin())) continue; 9937 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9938 9939 // If this terminator has multiple identical successors (common for 9940 // switches), only handle each succ once. 9941 if (!SuccsHandled.insert(SuccMBB).second) 9942 continue; 9943 9944 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9945 9946 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9947 // nodes and Machine PHI nodes, but the incoming operands have not been 9948 // emitted yet. 9949 for (const PHINode &PN : SuccBB->phis()) { 9950 // Ignore dead phi's. 9951 if (PN.use_empty()) 9952 continue; 9953 9954 // Skip empty types 9955 if (PN.getType()->isEmptyTy()) 9956 continue; 9957 9958 unsigned Reg; 9959 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9960 9961 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9962 unsigned &RegOut = ConstantsOut[C]; 9963 if (RegOut == 0) { 9964 RegOut = FuncInfo.CreateRegs(C); 9965 CopyValueToVirtualRegister(C, RegOut); 9966 } 9967 Reg = RegOut; 9968 } else { 9969 DenseMap<const Value *, unsigned>::iterator I = 9970 FuncInfo.ValueMap.find(PHIOp); 9971 if (I != FuncInfo.ValueMap.end()) 9972 Reg = I->second; 9973 else { 9974 assert(isa<AllocaInst>(PHIOp) && 9975 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9976 "Didn't codegen value into a register!??"); 9977 Reg = FuncInfo.CreateRegs(PHIOp); 9978 CopyValueToVirtualRegister(PHIOp, Reg); 9979 } 9980 } 9981 9982 // Remember that this register needs to added to the machine PHI node as 9983 // the input for this MBB. 9984 SmallVector<EVT, 4> ValueVTs; 9985 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9986 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9987 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9988 EVT VT = ValueVTs[vti]; 9989 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9990 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9991 FuncInfo.PHINodesToUpdate.push_back( 9992 std::make_pair(&*MBBI++, Reg + i)); 9993 Reg += NumRegisters; 9994 } 9995 } 9996 } 9997 9998 ConstantsOut.clear(); 9999 } 10000 10001 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10002 /// is 0. 10003 MachineBasicBlock * 10004 SelectionDAGBuilder::StackProtectorDescriptor:: 10005 AddSuccessorMBB(const BasicBlock *BB, 10006 MachineBasicBlock *ParentMBB, 10007 bool IsLikely, 10008 MachineBasicBlock *SuccMBB) { 10009 // If SuccBB has not been created yet, create it. 10010 if (!SuccMBB) { 10011 MachineFunction *MF = ParentMBB->getParent(); 10012 MachineFunction::iterator BBI(ParentMBB); 10013 SuccMBB = MF->CreateMachineBasicBlock(BB); 10014 MF->insert(++BBI, SuccMBB); 10015 } 10016 // Add it as a successor of ParentMBB. 10017 ParentMBB->addSuccessor( 10018 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10019 return SuccMBB; 10020 } 10021 10022 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10023 MachineFunction::iterator I(MBB); 10024 if (++I == FuncInfo.MF->end()) 10025 return nullptr; 10026 return &*I; 10027 } 10028 10029 /// During lowering new call nodes can be created (such as memset, etc.). 10030 /// Those will become new roots of the current DAG, but complications arise 10031 /// when they are tail calls. In such cases, the call lowering will update 10032 /// the root, but the builder still needs to know that a tail call has been 10033 /// lowered in order to avoid generating an additional return. 10034 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10035 // If the node is null, we do have a tail call. 10036 if (MaybeTC.getNode() != nullptr) 10037 DAG.setRoot(MaybeTC); 10038 else 10039 HasTailCall = true; 10040 } 10041 10042 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10043 MachineBasicBlock *SwitchMBB, 10044 MachineBasicBlock *DefaultMBB) { 10045 MachineFunction *CurMF = FuncInfo.MF; 10046 MachineBasicBlock *NextMBB = nullptr; 10047 MachineFunction::iterator BBI(W.MBB); 10048 if (++BBI != FuncInfo.MF->end()) 10049 NextMBB = &*BBI; 10050 10051 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10052 10053 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10054 10055 if (Size == 2 && W.MBB == SwitchMBB) { 10056 // If any two of the cases has the same destination, and if one value 10057 // is the same as the other, but has one bit unset that the other has set, 10058 // use bit manipulation to do two compares at once. For example: 10059 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10060 // TODO: This could be extended to merge any 2 cases in switches with 3 10061 // cases. 10062 // TODO: Handle cases where W.CaseBB != SwitchBB. 10063 CaseCluster &Small = *W.FirstCluster; 10064 CaseCluster &Big = *W.LastCluster; 10065 10066 if (Small.Low == Small.High && Big.Low == Big.High && 10067 Small.MBB == Big.MBB) { 10068 const APInt &SmallValue = Small.Low->getValue(); 10069 const APInt &BigValue = Big.Low->getValue(); 10070 10071 // Check that there is only one bit different. 10072 APInt CommonBit = BigValue ^ SmallValue; 10073 if (CommonBit.isPowerOf2()) { 10074 SDValue CondLHS = getValue(Cond); 10075 EVT VT = CondLHS.getValueType(); 10076 SDLoc DL = getCurSDLoc(); 10077 10078 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10079 DAG.getConstant(CommonBit, DL, VT)); 10080 SDValue Cond = DAG.getSetCC( 10081 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10082 ISD::SETEQ); 10083 10084 // Update successor info. 10085 // Both Small and Big will jump to Small.BB, so we sum up the 10086 // probabilities. 10087 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10088 if (BPI) 10089 addSuccessorWithProb( 10090 SwitchMBB, DefaultMBB, 10091 // The default destination is the first successor in IR. 10092 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10093 else 10094 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10095 10096 // Insert the true branch. 10097 SDValue BrCond = 10098 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10099 DAG.getBasicBlock(Small.MBB)); 10100 // Insert the false branch. 10101 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10102 DAG.getBasicBlock(DefaultMBB)); 10103 10104 DAG.setRoot(BrCond); 10105 return; 10106 } 10107 } 10108 } 10109 10110 if (TM.getOptLevel() != CodeGenOpt::None) { 10111 // Here, we order cases by probability so the most likely case will be 10112 // checked first. However, two clusters can have the same probability in 10113 // which case their relative ordering is non-deterministic. So we use Low 10114 // as a tie-breaker as clusters are guaranteed to never overlap. 10115 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10116 [](const CaseCluster &a, const CaseCluster &b) { 10117 return a.Prob != b.Prob ? 10118 a.Prob > b.Prob : 10119 a.Low->getValue().slt(b.Low->getValue()); 10120 }); 10121 10122 // Rearrange the case blocks so that the last one falls through if possible 10123 // without changing the order of probabilities. 10124 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10125 --I; 10126 if (I->Prob > W.LastCluster->Prob) 10127 break; 10128 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10129 std::swap(*I, *W.LastCluster); 10130 break; 10131 } 10132 } 10133 } 10134 10135 // Compute total probability. 10136 BranchProbability DefaultProb = W.DefaultProb; 10137 BranchProbability UnhandledProbs = DefaultProb; 10138 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10139 UnhandledProbs += I->Prob; 10140 10141 MachineBasicBlock *CurMBB = W.MBB; 10142 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10143 bool FallthroughUnreachable = false; 10144 MachineBasicBlock *Fallthrough; 10145 if (I == W.LastCluster) { 10146 // For the last cluster, fall through to the default destination. 10147 Fallthrough = DefaultMBB; 10148 FallthroughUnreachable = isa<UnreachableInst>( 10149 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10150 } else { 10151 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10152 CurMF->insert(BBI, Fallthrough); 10153 // Put Cond in a virtual register to make it available from the new blocks. 10154 ExportFromCurrentBlock(Cond); 10155 } 10156 UnhandledProbs -= I->Prob; 10157 10158 switch (I->Kind) { 10159 case CC_JumpTable: { 10160 // FIXME: Optimize away range check based on pivot comparisons. 10161 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10162 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10163 10164 // The jump block hasn't been inserted yet; insert it here. 10165 MachineBasicBlock *JumpMBB = JT->MBB; 10166 CurMF->insert(BBI, JumpMBB); 10167 10168 auto JumpProb = I->Prob; 10169 auto FallthroughProb = UnhandledProbs; 10170 10171 // If the default statement is a target of the jump table, we evenly 10172 // distribute the default probability to successors of CurMBB. Also 10173 // update the probability on the edge from JumpMBB to Fallthrough. 10174 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10175 SE = JumpMBB->succ_end(); 10176 SI != SE; ++SI) { 10177 if (*SI == DefaultMBB) { 10178 JumpProb += DefaultProb / 2; 10179 FallthroughProb -= DefaultProb / 2; 10180 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10181 JumpMBB->normalizeSuccProbs(); 10182 break; 10183 } 10184 } 10185 10186 if (FallthroughUnreachable) { 10187 // Skip the range check if the fallthrough block is unreachable. 10188 JTH->OmitRangeCheck = true; 10189 } 10190 10191 if (!JTH->OmitRangeCheck) 10192 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10193 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10194 CurMBB->normalizeSuccProbs(); 10195 10196 // The jump table header will be inserted in our current block, do the 10197 // range check, and fall through to our fallthrough block. 10198 JTH->HeaderBB = CurMBB; 10199 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10200 10201 // If we're in the right place, emit the jump table header right now. 10202 if (CurMBB == SwitchMBB) { 10203 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10204 JTH->Emitted = true; 10205 } 10206 break; 10207 } 10208 case CC_BitTests: { 10209 // FIXME: Optimize away range check based on pivot comparisons. 10210 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10211 10212 // The bit test blocks haven't been inserted yet; insert them here. 10213 for (BitTestCase &BTC : BTB->Cases) 10214 CurMF->insert(BBI, BTC.ThisBB); 10215 10216 // Fill in fields of the BitTestBlock. 10217 BTB->Parent = CurMBB; 10218 BTB->Default = Fallthrough; 10219 10220 BTB->DefaultProb = UnhandledProbs; 10221 // If the cases in bit test don't form a contiguous range, we evenly 10222 // distribute the probability on the edge to Fallthrough to two 10223 // successors of CurMBB. 10224 if (!BTB->ContiguousRange) { 10225 BTB->Prob += DefaultProb / 2; 10226 BTB->DefaultProb -= DefaultProb / 2; 10227 } 10228 10229 if (FallthroughUnreachable) { 10230 // Skip the range check if the fallthrough block is unreachable. 10231 BTB->OmitRangeCheck = true; 10232 } 10233 10234 // If we're in the right place, emit the bit test header right now. 10235 if (CurMBB == SwitchMBB) { 10236 visitBitTestHeader(*BTB, SwitchMBB); 10237 BTB->Emitted = true; 10238 } 10239 break; 10240 } 10241 case CC_Range: { 10242 const Value *RHS, *LHS, *MHS; 10243 ISD::CondCode CC; 10244 if (I->Low == I->High) { 10245 // Check Cond == I->Low. 10246 CC = ISD::SETEQ; 10247 LHS = Cond; 10248 RHS=I->Low; 10249 MHS = nullptr; 10250 } else { 10251 // Check I->Low <= Cond <= I->High. 10252 CC = ISD::SETLE; 10253 LHS = I->Low; 10254 MHS = Cond; 10255 RHS = I->High; 10256 } 10257 10258 // If Fallthrough is unreachable, fold away the comparison. 10259 if (FallthroughUnreachable) 10260 CC = ISD::SETTRUE; 10261 10262 // The false probability is the sum of all unhandled cases. 10263 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10264 getCurSDLoc(), I->Prob, UnhandledProbs); 10265 10266 if (CurMBB == SwitchMBB) 10267 visitSwitchCase(CB, SwitchMBB); 10268 else 10269 SL->SwitchCases.push_back(CB); 10270 10271 break; 10272 } 10273 } 10274 CurMBB = Fallthrough; 10275 } 10276 } 10277 10278 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10279 CaseClusterIt First, 10280 CaseClusterIt Last) { 10281 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10282 if (X.Prob != CC.Prob) 10283 return X.Prob > CC.Prob; 10284 10285 // Ties are broken by comparing the case value. 10286 return X.Low->getValue().slt(CC.Low->getValue()); 10287 }); 10288 } 10289 10290 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10291 const SwitchWorkListItem &W, 10292 Value *Cond, 10293 MachineBasicBlock *SwitchMBB) { 10294 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10295 "Clusters not sorted?"); 10296 10297 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10298 10299 // Balance the tree based on branch probabilities to create a near-optimal (in 10300 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10301 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10302 CaseClusterIt LastLeft = W.FirstCluster; 10303 CaseClusterIt FirstRight = W.LastCluster; 10304 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10305 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10306 10307 // Move LastLeft and FirstRight towards each other from opposite directions to 10308 // find a partitioning of the clusters which balances the probability on both 10309 // sides. If LeftProb and RightProb are equal, alternate which side is 10310 // taken to ensure 0-probability nodes are distributed evenly. 10311 unsigned I = 0; 10312 while (LastLeft + 1 < FirstRight) { 10313 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10314 LeftProb += (++LastLeft)->Prob; 10315 else 10316 RightProb += (--FirstRight)->Prob; 10317 I++; 10318 } 10319 10320 while (true) { 10321 // Our binary search tree differs from a typical BST in that ours can have up 10322 // to three values in each leaf. The pivot selection above doesn't take that 10323 // into account, which means the tree might require more nodes and be less 10324 // efficient. We compensate for this here. 10325 10326 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10327 unsigned NumRight = W.LastCluster - FirstRight + 1; 10328 10329 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10330 // If one side has less than 3 clusters, and the other has more than 3, 10331 // consider taking a cluster from the other side. 10332 10333 if (NumLeft < NumRight) { 10334 // Consider moving the first cluster on the right to the left side. 10335 CaseCluster &CC = *FirstRight; 10336 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10337 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10338 if (LeftSideRank <= RightSideRank) { 10339 // Moving the cluster to the left does not demote it. 10340 ++LastLeft; 10341 ++FirstRight; 10342 continue; 10343 } 10344 } else { 10345 assert(NumRight < NumLeft); 10346 // Consider moving the last element on the left to the right side. 10347 CaseCluster &CC = *LastLeft; 10348 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10349 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10350 if (RightSideRank <= LeftSideRank) { 10351 // Moving the cluster to the right does not demot it. 10352 --LastLeft; 10353 --FirstRight; 10354 continue; 10355 } 10356 } 10357 } 10358 break; 10359 } 10360 10361 assert(LastLeft + 1 == FirstRight); 10362 assert(LastLeft >= W.FirstCluster); 10363 assert(FirstRight <= W.LastCluster); 10364 10365 // Use the first element on the right as pivot since we will make less-than 10366 // comparisons against it. 10367 CaseClusterIt PivotCluster = FirstRight; 10368 assert(PivotCluster > W.FirstCluster); 10369 assert(PivotCluster <= W.LastCluster); 10370 10371 CaseClusterIt FirstLeft = W.FirstCluster; 10372 CaseClusterIt LastRight = W.LastCluster; 10373 10374 const ConstantInt *Pivot = PivotCluster->Low; 10375 10376 // New blocks will be inserted immediately after the current one. 10377 MachineFunction::iterator BBI(W.MBB); 10378 ++BBI; 10379 10380 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10381 // we can branch to its destination directly if it's squeezed exactly in 10382 // between the known lower bound and Pivot - 1. 10383 MachineBasicBlock *LeftMBB; 10384 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10385 FirstLeft->Low == W.GE && 10386 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10387 LeftMBB = FirstLeft->MBB; 10388 } else { 10389 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10390 FuncInfo.MF->insert(BBI, LeftMBB); 10391 WorkList.push_back( 10392 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10393 // Put Cond in a virtual register to make it available from the new blocks. 10394 ExportFromCurrentBlock(Cond); 10395 } 10396 10397 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10398 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10399 // directly if RHS.High equals the current upper bound. 10400 MachineBasicBlock *RightMBB; 10401 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10402 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10403 RightMBB = FirstRight->MBB; 10404 } else { 10405 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10406 FuncInfo.MF->insert(BBI, RightMBB); 10407 WorkList.push_back( 10408 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10409 // Put Cond in a virtual register to make it available from the new blocks. 10410 ExportFromCurrentBlock(Cond); 10411 } 10412 10413 // Create the CaseBlock record that will be used to lower the branch. 10414 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10415 getCurSDLoc(), LeftProb, RightProb); 10416 10417 if (W.MBB == SwitchMBB) 10418 visitSwitchCase(CB, SwitchMBB); 10419 else 10420 SL->SwitchCases.push_back(CB); 10421 } 10422 10423 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10424 // from the swith statement. 10425 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10426 BranchProbability PeeledCaseProb) { 10427 if (PeeledCaseProb == BranchProbability::getOne()) 10428 return BranchProbability::getZero(); 10429 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10430 10431 uint32_t Numerator = CaseProb.getNumerator(); 10432 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10433 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10434 } 10435 10436 // Try to peel the top probability case if it exceeds the threshold. 10437 // Return current MachineBasicBlock for the switch statement if the peeling 10438 // does not occur. 10439 // If the peeling is performed, return the newly created MachineBasicBlock 10440 // for the peeled switch statement. Also update Clusters to remove the peeled 10441 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10442 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10443 const SwitchInst &SI, CaseClusterVector &Clusters, 10444 BranchProbability &PeeledCaseProb) { 10445 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10446 // Don't perform if there is only one cluster or optimizing for size. 10447 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10448 TM.getOptLevel() == CodeGenOpt::None || 10449 SwitchMBB->getParent()->getFunction().hasMinSize()) 10450 return SwitchMBB; 10451 10452 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10453 unsigned PeeledCaseIndex = 0; 10454 bool SwitchPeeled = false; 10455 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10456 CaseCluster &CC = Clusters[Index]; 10457 if (CC.Prob < TopCaseProb) 10458 continue; 10459 TopCaseProb = CC.Prob; 10460 PeeledCaseIndex = Index; 10461 SwitchPeeled = true; 10462 } 10463 if (!SwitchPeeled) 10464 return SwitchMBB; 10465 10466 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10467 << TopCaseProb << "\n"); 10468 10469 // Record the MBB for the peeled switch statement. 10470 MachineFunction::iterator BBI(SwitchMBB); 10471 ++BBI; 10472 MachineBasicBlock *PeeledSwitchMBB = 10473 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10474 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10475 10476 ExportFromCurrentBlock(SI.getCondition()); 10477 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10478 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10479 nullptr, nullptr, TopCaseProb.getCompl()}; 10480 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10481 10482 Clusters.erase(PeeledCaseIt); 10483 for (CaseCluster &CC : Clusters) { 10484 LLVM_DEBUG( 10485 dbgs() << "Scale the probablity for one cluster, before scaling: " 10486 << CC.Prob << "\n"); 10487 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10488 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10489 } 10490 PeeledCaseProb = TopCaseProb; 10491 return PeeledSwitchMBB; 10492 } 10493 10494 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10495 // Extract cases from the switch. 10496 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10497 CaseClusterVector Clusters; 10498 Clusters.reserve(SI.getNumCases()); 10499 for (auto I : SI.cases()) { 10500 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10501 const ConstantInt *CaseVal = I.getCaseValue(); 10502 BranchProbability Prob = 10503 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10504 : BranchProbability(1, SI.getNumCases() + 1); 10505 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10506 } 10507 10508 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10509 10510 // Cluster adjacent cases with the same destination. We do this at all 10511 // optimization levels because it's cheap to do and will make codegen faster 10512 // if there are many clusters. 10513 sortAndRangeify(Clusters); 10514 10515 // The branch probablity of the peeled case. 10516 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10517 MachineBasicBlock *PeeledSwitchMBB = 10518 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10519 10520 // If there is only the default destination, jump there directly. 10521 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10522 if (Clusters.empty()) { 10523 assert(PeeledSwitchMBB == SwitchMBB); 10524 SwitchMBB->addSuccessor(DefaultMBB); 10525 if (DefaultMBB != NextBlock(SwitchMBB)) { 10526 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10527 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10528 } 10529 return; 10530 } 10531 10532 SL->findJumpTables(Clusters, &SI, DefaultMBB); 10533 SL->findBitTestClusters(Clusters, &SI); 10534 10535 LLVM_DEBUG({ 10536 dbgs() << "Case clusters: "; 10537 for (const CaseCluster &C : Clusters) { 10538 if (C.Kind == CC_JumpTable) 10539 dbgs() << "JT:"; 10540 if (C.Kind == CC_BitTests) 10541 dbgs() << "BT:"; 10542 10543 C.Low->getValue().print(dbgs(), true); 10544 if (C.Low != C.High) { 10545 dbgs() << '-'; 10546 C.High->getValue().print(dbgs(), true); 10547 } 10548 dbgs() << ' '; 10549 } 10550 dbgs() << '\n'; 10551 }); 10552 10553 assert(!Clusters.empty()); 10554 SwitchWorkList WorkList; 10555 CaseClusterIt First = Clusters.begin(); 10556 CaseClusterIt Last = Clusters.end() - 1; 10557 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10558 // Scale the branchprobability for DefaultMBB if the peel occurs and 10559 // DefaultMBB is not replaced. 10560 if (PeeledCaseProb != BranchProbability::getZero() && 10561 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10562 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10563 WorkList.push_back( 10564 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10565 10566 while (!WorkList.empty()) { 10567 SwitchWorkListItem W = WorkList.back(); 10568 WorkList.pop_back(); 10569 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10570 10571 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10572 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10573 // For optimized builds, lower large range as a balanced binary tree. 10574 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10575 continue; 10576 } 10577 10578 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10579 } 10580 } 10581