xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 1ba72a81cac8ac158986b83e8a87cdb97f4d1d3a)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstddef>
116 #include <cstdint>
117 #include <cstring>
118 #include <iterator>
119 #include <limits>
120 #include <numeric>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace PatternMatch;
127 using namespace SwitchCG;
128 
129 #define DEBUG_TYPE "isel"
130 
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision;
134 
135 static cl::opt<unsigned, true>
136     LimitFPPrecision("limit-float-precision",
137                      cl::desc("Generate low-precision inline sequences "
138                               "for some float libcalls"),
139                      cl::location(LimitFloatPrecision), cl::Hidden,
140                      cl::init(0));
141 
142 static cl::opt<unsigned> SwitchPeelThreshold(
143     "switch-peel-threshold", cl::Hidden, cl::init(66),
144     cl::desc("Set the case probability threshold for peeling the case from a "
145              "switch statement. A value greater than 100 will void this "
146              "optimization"));
147 
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
154 //
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains = 64;
163 
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
166 // an intrinsic.
167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
168   if (auto *R = dyn_cast<ReturnInst>(V))
169     return R->getParent()->getParent()->getCallingConv();
170 
171   if (auto *CI = dyn_cast<CallInst>(V)) {
172     const bool IsInlineAsm = CI->isInlineAsm();
173     const bool IsIndirectFunctionCall =
174         !IsInlineAsm && !CI->getCalledFunction();
175 
176     // It is possible that the call instruction is an inline asm statement or an
177     // indirect function call in which case the return value of
178     // getCalledFunction() would be nullptr.
179     const bool IsInstrinsicCall =
180         !IsInlineAsm && !IsIndirectFunctionCall &&
181         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
182 
183     if (!IsInlineAsm && !IsInstrinsicCall)
184       return CI->getCallingConv();
185   }
186 
187   return None;
188 }
189 
190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
191                                       const SDValue *Parts, unsigned NumParts,
192                                       MVT PartVT, EVT ValueVT, const Value *V,
193                                       Optional<CallingConv::ID> CC);
194 
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent.  If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
201                                 const SDValue *Parts, unsigned NumParts,
202                                 MVT PartVT, EVT ValueVT, const Value *V,
203                                 Optional<CallingConv::ID> CC = None,
204                                 Optional<ISD::NodeType> AssertOp = None) {
205   if (ValueVT.isVector())
206     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
207                                   CC);
208 
209   assert(NumParts > 0 && "No parts to assemble!");
210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
211   SDValue Val = Parts[0];
212 
213   if (NumParts > 1) {
214     // Assemble the value from multiple parts.
215     if (ValueVT.isInteger()) {
216       unsigned PartBits = PartVT.getSizeInBits();
217       unsigned ValueBits = ValueVT.getSizeInBits();
218 
219       // Assemble the power of 2 part.
220       unsigned RoundParts =
221           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
222       unsigned RoundBits = PartBits * RoundParts;
223       EVT RoundVT = RoundBits == ValueBits ?
224         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
225       SDValue Lo, Hi;
226 
227       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
228 
229       if (RoundParts > 2) {
230         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
231                               PartVT, HalfVT, V);
232         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
233                               RoundParts / 2, PartVT, HalfVT, V);
234       } else {
235         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
236         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
237       }
238 
239       if (DAG.getDataLayout().isBigEndian())
240         std::swap(Lo, Hi);
241 
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
243 
244       if (RoundParts < NumParts) {
245         // Assemble the trailing non-power-of-2 part.
246         unsigned OddParts = NumParts - RoundParts;
247         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
248         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
249                               OddVT, V, CC);
250 
251         // Combine the round and odd parts.
252         Lo = Val;
253         if (DAG.getDataLayout().isBigEndian())
254           std::swap(Lo, Hi);
255         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
256         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
257         Hi =
258             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
259                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
260                                         TLI.getPointerTy(DAG.getDataLayout())));
261         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
262         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
263       }
264     } else if (PartVT.isFloatingPoint()) {
265       // FP split into multiple FP parts (for ppcf128)
266       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
267              "Unexpected split");
268       SDValue Lo, Hi;
269       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
270       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
271       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
272         std::swap(Lo, Hi);
273       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
274     } else {
275       // FP split into integer parts (soft fp)
276       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
277              !PartVT.isVector() && "Unexpected split");
278       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
279       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
280     }
281   }
282 
283   // There is now one part, held in Val.  Correct it to match ValueVT.
284   // PartEVT is the type of the register class that holds the value.
285   // ValueVT is the type of the inline asm operation.
286   EVT PartEVT = Val.getValueType();
287 
288   if (PartEVT == ValueVT)
289     return Val;
290 
291   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
292       ValueVT.bitsLT(PartEVT)) {
293     // For an FP value in an integer part, we need to truncate to the right
294     // width first.
295     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
296     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
297   }
298 
299   // Handle types that have the same size.
300   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
301     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
302 
303   // Handle types with different sizes.
304   if (PartEVT.isInteger() && ValueVT.isInteger()) {
305     if (ValueVT.bitsLT(PartEVT)) {
306       // For a truncate, see if we have any information to
307       // indicate whether the truncated bits will always be
308       // zero or sign-extension.
309       if (AssertOp.hasValue())
310         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
311                           DAG.getValueType(ValueVT));
312       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313     }
314     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
315   }
316 
317   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
318     // FP_ROUND's are always exact here.
319     if (ValueVT.bitsLT(Val.getValueType()))
320       return DAG.getNode(
321           ISD::FP_ROUND, DL, ValueVT, Val,
322           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
323 
324     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
325   }
326 
327   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
328   // then truncating.
329   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
330       ValueVT.bitsLT(PartEVT)) {
331     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
332     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333   }
334 
335   report_fatal_error("Unknown mismatch in getCopyFromParts!");
336 }
337 
338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
339                                               const Twine &ErrMsg) {
340   const Instruction *I = dyn_cast_or_null<Instruction>(V);
341   if (!V)
342     return Ctx.emitError(ErrMsg);
343 
344   const char *AsmError = ", possible invalid constraint for vector type";
345   if (const CallInst *CI = dyn_cast<CallInst>(I))
346     if (isa<InlineAsm>(CI->getCalledValue()))
347       return Ctx.emitError(I, ErrMsg + AsmError);
348 
349   return Ctx.emitError(I, ErrMsg);
350 }
351 
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent.  If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
358                                       const SDValue *Parts, unsigned NumParts,
359                                       MVT PartVT, EVT ValueVT, const Value *V,
360                                       Optional<CallingConv::ID> CallConv) {
361   assert(ValueVT.isVector() && "Not a vector value");
362   assert(NumParts > 0 && "No parts to assemble!");
363   const bool IsABIRegCopy = CallConv.hasValue();
364 
365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
366   SDValue Val = Parts[0];
367 
368   // Handle a multi-element vector.
369   if (NumParts > 1) {
370     EVT IntermediateVT;
371     MVT RegisterVT;
372     unsigned NumIntermediates;
373     unsigned NumRegs;
374 
375     if (IsABIRegCopy) {
376       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
377           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
378           NumIntermediates, RegisterVT);
379     } else {
380       NumRegs =
381           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
382                                      NumIntermediates, RegisterVT);
383     }
384 
385     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
386     NumParts = NumRegs; // Silence a compiler warning.
387     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
388     assert(RegisterVT.getSizeInBits() ==
389            Parts[0].getSimpleValueType().getSizeInBits() &&
390            "Part type sizes don't match!");
391 
392     // Assemble the parts into intermediate operands.
393     SmallVector<SDValue, 8> Ops(NumIntermediates);
394     if (NumIntermediates == NumParts) {
395       // If the register was not expanded, truncate or copy the value,
396       // as appropriate.
397       for (unsigned i = 0; i != NumParts; ++i)
398         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
399                                   PartVT, IntermediateVT, V);
400     } else if (NumParts > 0) {
401       // If the intermediate type was expanded, build the intermediate
402       // operands from the parts.
403       assert(NumParts % NumIntermediates == 0 &&
404              "Must expand into a divisible number of parts!");
405       unsigned Factor = NumParts / NumIntermediates;
406       for (unsigned i = 0; i != NumIntermediates; ++i)
407         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
408                                   PartVT, IntermediateVT, V);
409     }
410 
411     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412     // intermediate operands.
413     EVT BuiltVectorTy =
414         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
415                          (IntermediateVT.isVector()
416                               ? IntermediateVT.getVectorNumElements() * NumParts
417                               : NumIntermediates));
418     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
419                                                 : ISD::BUILD_VECTOR,
420                       DL, BuiltVectorTy, Ops);
421   }
422 
423   // There is now one part, held in Val.  Correct it to match ValueVT.
424   EVT PartEVT = Val.getValueType();
425 
426   if (PartEVT == ValueVT)
427     return Val;
428 
429   if (PartEVT.isVector()) {
430     // If the element type of the source/dest vectors are the same, but the
431     // parts vector has more elements than the value vector, then we have a
432     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
433     // elements we want.
434     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
435       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
436              "Cannot narrow, it would be a lossy transformation");
437       return DAG.getNode(
438           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
439           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
440     }
441 
442     // Vector/Vector bitcast.
443     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
444       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445 
446     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
447       "Cannot handle this kind of promotion");
448     // Promoted vector extract
449     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
450 
451   }
452 
453   // Trivial bitcast if the types are the same size and the destination
454   // vector type is legal.
455   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
456       TLI.isTypeLegal(ValueVT))
457     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 
459   if (ValueVT.getVectorNumElements() != 1) {
460      // Certain ABIs require that vectors are passed as integers. For vectors
461      // are the same size, this is an obvious bitcast.
462      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
463        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
465        // Bitcast Val back the original type and extract the corresponding
466        // vector we want.
467        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
468        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
469                                            ValueVT.getVectorElementType(), Elts);
470        Val = DAG.getBitcast(WiderVecType, Val);
471        return DAG.getNode(
472            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
473            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
474      }
475 
476      diagnosePossiblyInvalidConstraint(
477          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
478      return DAG.getUNDEF(ValueVT);
479   }
480 
481   // Handle cases such as i8 -> <1 x i1>
482   EVT ValueSVT = ValueVT.getVectorElementType();
483   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
484     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
485                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
486 
487   return DAG.getBuildVector(ValueVT, DL, Val);
488 }
489 
490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
491                                  SDValue Val, SDValue *Parts, unsigned NumParts,
492                                  MVT PartVT, const Value *V,
493                                  Optional<CallingConv::ID> CallConv);
494 
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts.  If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
499                            SDValue *Parts, unsigned NumParts, MVT PartVT,
500                            const Value *V,
501                            Optional<CallingConv::ID> CallConv = None,
502                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
503   EVT ValueVT = Val.getValueType();
504 
505   // Handle the vector case separately.
506   if (ValueVT.isVector())
507     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
508                                 CallConv);
509 
510   unsigned PartBits = PartVT.getSizeInBits();
511   unsigned OrigNumParts = NumParts;
512   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
513          "Copying to an illegal type!");
514 
515   if (NumParts == 0)
516     return;
517 
518   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
519   EVT PartEVT = PartVT;
520   if (PartEVT == ValueVT) {
521     assert(NumParts == 1 && "No-op copy with multiple parts!");
522     Parts[0] = Val;
523     return;
524   }
525 
526   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
527     // If the parts cover more bits than the value has, promote the value.
528     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
529       assert(NumParts == 1 && "Do not know what to promote to!");
530       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
531     } else {
532       if (ValueVT.isFloatingPoint()) {
533         // FP values need to be bitcast, then extended if they are being put
534         // into a larger container.
535         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
536         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
537       }
538       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
539              ValueVT.isInteger() &&
540              "Unknown mismatch!");
541       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
542       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
543       if (PartVT == MVT::x86mmx)
544         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
545     }
546   } else if (PartBits == ValueVT.getSizeInBits()) {
547     // Different types of the same size.
548     assert(NumParts == 1 && PartEVT != ValueVT);
549     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
551     // If the parts cover less bits than value has, truncate the value.
552     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
553            ValueVT.isInteger() &&
554            "Unknown mismatch!");
555     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
556     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
557     if (PartVT == MVT::x86mmx)
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   }
560 
561   // The value may have changed - recompute ValueVT.
562   ValueVT = Val.getValueType();
563   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
564          "Failed to tile the value with PartVT!");
565 
566   if (NumParts == 1) {
567     if (PartEVT != ValueVT) {
568       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
569                                         "scalar-to-vector conversion failed");
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571     }
572 
573     Parts[0] = Val;
574     return;
575   }
576 
577   // Expand the value into multiple parts.
578   if (NumParts & (NumParts - 1)) {
579     // The number of parts is not a power of 2.  Split off and copy the tail.
580     assert(PartVT.isInteger() && ValueVT.isInteger() &&
581            "Do not know what to expand to!");
582     unsigned RoundParts = 1 << Log2_32(NumParts);
583     unsigned RoundBits = RoundParts * PartBits;
584     unsigned OddParts = NumParts - RoundParts;
585     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
586       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
587 
588     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
589                    CallConv);
590 
591     if (DAG.getDataLayout().isBigEndian())
592       // The odd parts were reversed by getCopyToParts - unreverse them.
593       std::reverse(Parts + RoundParts, Parts + NumParts);
594 
595     NumParts = RoundParts;
596     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
597     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
598   }
599 
600   // The number of parts is a power of 2.  Repeatedly bisect the value using
601   // EXTRACT_ELEMENT.
602   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
603                          EVT::getIntegerVT(*DAG.getContext(),
604                                            ValueVT.getSizeInBits()),
605                          Val);
606 
607   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
608     for (unsigned i = 0; i < NumParts; i += StepSize) {
609       unsigned ThisBits = StepSize * PartBits / 2;
610       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
611       SDValue &Part0 = Parts[i];
612       SDValue &Part1 = Parts[i+StepSize/2];
613 
614       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
616       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
617                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
618 
619       if (ThisBits == PartBits && ThisVT != PartVT) {
620         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
621         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
622       }
623     }
624   }
625 
626   if (DAG.getDataLayout().isBigEndian())
627     std::reverse(Parts, Parts + OrigNumParts);
628 }
629 
630 static SDValue widenVectorToPartType(SelectionDAG &DAG,
631                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
632   if (!PartVT.isVector())
633     return SDValue();
634 
635   EVT ValueVT = Val.getValueType();
636   unsigned PartNumElts = PartVT.getVectorNumElements();
637   unsigned ValueNumElts = ValueVT.getVectorNumElements();
638   if (PartNumElts > ValueNumElts &&
639       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
640     EVT ElementVT = PartVT.getVectorElementType();
641     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
642     // undef elements.
643     SmallVector<SDValue, 16> Ops;
644     DAG.ExtractVectorElements(Val, Ops);
645     SDValue EltUndef = DAG.getUNDEF(ElementVT);
646     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
647       Ops.push_back(EltUndef);
648 
649     // FIXME: Use CONCAT for 2x -> 4x.
650     return DAG.getBuildVector(PartVT, DL, Ops);
651   }
652 
653   return SDValue();
654 }
655 
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
659                                  SDValue Val, SDValue *Parts, unsigned NumParts,
660                                  MVT PartVT, const Value *V,
661                                  Optional<CallingConv::ID> CallConv) {
662   EVT ValueVT = Val.getValueType();
663   assert(ValueVT.isVector() && "Not a vector");
664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
665   const bool IsABIRegCopy = CallConv.hasValue();
666 
667   if (NumParts == 1) {
668     EVT PartEVT = PartVT;
669     if (PartEVT == ValueVT) {
670       // Nothing to do.
671     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
672       // Bitconvert vector->vector case.
673       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
674     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
675       Val = Widened;
676     } else if (PartVT.isVector() &&
677                PartEVT.getVectorElementType().bitsGE(
678                  ValueVT.getVectorElementType()) &&
679                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
680 
681       // Promoted vector extract
682       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683     } else {
684       if (ValueVT.getVectorNumElements() == 1) {
685         Val = DAG.getNode(
686             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
687             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
688       } else {
689         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
690                "lossy conversion of vector to scalar type");
691         EVT IntermediateType =
692             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
693         Val = DAG.getBitcast(IntermediateType, Val);
694         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
695       }
696     }
697 
698     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
699     Parts[0] = Val;
700     return;
701   }
702 
703   // Handle a multi-element vector.
704   EVT IntermediateVT;
705   MVT RegisterVT;
706   unsigned NumIntermediates;
707   unsigned NumRegs;
708   if (IsABIRegCopy) {
709     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
710         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
711         NumIntermediates, RegisterVT);
712   } else {
713     NumRegs =
714         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
715                                    NumIntermediates, RegisterVT);
716   }
717 
718   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
719   NumParts = NumRegs; // Silence a compiler warning.
720   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
721 
722   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
723     IntermediateVT.getVectorNumElements() : 1;
724 
725   // Convert the vector to the appropriate type if necessary.
726   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
730   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
731   if (ValueVT != BuiltVectorTy) {
732     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
733       Val = Widened;
734 
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   }
737 
738   // Split the vector into intermediate operands.
739   SmallVector<SDValue, 8> Ops(NumIntermediates);
740   for (unsigned i = 0; i != NumIntermediates; ++i) {
741     if (IntermediateVT.isVector()) {
742       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
743                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
744     } else {
745       Ops[i] = DAG.getNode(
746           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
747           DAG.getConstant(i, DL, IdxVT));
748     }
749   }
750 
751   // Split the intermediate operands into legal parts.
752   if (NumParts == NumIntermediates) {
753     // If the register was not expanded, promote or copy the value,
754     // as appropriate.
755     for (unsigned i = 0; i != NumParts; ++i)
756       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
757   } else if (NumParts > 0) {
758     // If the intermediate type was expanded, split each the value into
759     // legal parts.
760     assert(NumIntermediates != 0 && "division by zero");
761     assert(NumParts % NumIntermediates == 0 &&
762            "Must expand into a divisible number of parts!");
763     unsigned Factor = NumParts / NumIntermediates;
764     for (unsigned i = 0; i != NumIntermediates; ++i)
765       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
766                      CallConv);
767   }
768 }
769 
770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
771                            EVT valuevt, Optional<CallingConv::ID> CC)
772     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
773       RegCount(1, regs.size()), CallConv(CC) {}
774 
775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
776                            const DataLayout &DL, unsigned Reg, Type *Ty,
777                            Optional<CallingConv::ID> CC) {
778   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
779 
780   CallConv = CC;
781 
782   for (EVT ValueVT : ValueVTs) {
783     unsigned NumRegs =
784         isABIMangled()
785             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
786             : TLI.getNumRegisters(Context, ValueVT);
787     MVT RegisterVT =
788         isABIMangled()
789             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getRegisterType(Context, ValueVT);
791     for (unsigned i = 0; i != NumRegs; ++i)
792       Regs.push_back(Reg + i);
793     RegVTs.push_back(RegisterVT);
794     RegCount.push_back(NumRegs);
795     Reg += NumRegs;
796   }
797 }
798 
799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
800                                       FunctionLoweringInfo &FuncInfo,
801                                       const SDLoc &dl, SDValue &Chain,
802                                       SDValue *Flag, const Value *V) const {
803   // A Value with type {} or [0 x %t] needs no registers.
804   if (ValueVTs.empty())
805     return SDValue();
806 
807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
808 
809   // Assemble the legal parts into the final values.
810   SmallVector<SDValue, 4> Values(ValueVTs.size());
811   SmallVector<SDValue, 8> Parts;
812   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
813     // Copy the legal parts from the registers.
814     EVT ValueVT = ValueVTs[Value];
815     unsigned NumRegs = RegCount[Value];
816     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
817                                           *DAG.getContext(),
818                                           CallConv.getValue(), RegVTs[Value])
819                                     : RegVTs[Value];
820 
821     Parts.resize(NumRegs);
822     for (unsigned i = 0; i != NumRegs; ++i) {
823       SDValue P;
824       if (!Flag) {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
826       } else {
827         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
828         *Flag = P.getValue(2);
829       }
830 
831       Chain = P.getValue(1);
832       Parts[i] = P;
833 
834       // If the source register was virtual and if we know something about it,
835       // add an assert node.
836       if (!Register::isVirtualRegister(Regs[Part + i]) ||
837           !RegisterVT.isInteger())
838         continue;
839 
840       const FunctionLoweringInfo::LiveOutInfo *LOI =
841         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
842       if (!LOI)
843         continue;
844 
845       unsigned RegSize = RegisterVT.getScalarSizeInBits();
846       unsigned NumSignBits = LOI->NumSignBits;
847       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
848 
849       if (NumZeroBits == RegSize) {
850         // The current value is a zero.
851         // Explicitly express that as it would be easier for
852         // optimizations to kick in.
853         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
854         continue;
855       }
856 
857       // FIXME: We capture more information than the dag can represent.  For
858       // now, just use the tightest assertzext/assertsext possible.
859       bool isSExt;
860       EVT FromVT(MVT::Other);
861       if (NumZeroBits) {
862         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
863         isSExt = false;
864       } else if (NumSignBits > 1) {
865         FromVT =
866             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
867         isSExt = true;
868       } else {
869         continue;
870       }
871       // Add an assertion node.
872       assert(FromVT != MVT::Other);
873       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
874                              RegisterVT, P, DAG.getValueType(FromVT));
875     }
876 
877     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
878                                      RegisterVT, ValueVT, V, CallConv);
879     Part += NumRegs;
880     Parts.clear();
881   }
882 
883   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
884 }
885 
886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
887                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
888                                  const Value *V,
889                                  ISD::NodeType PreferredExtendType) const {
890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
891   ISD::NodeType ExtendKind = PreferredExtendType;
892 
893   // Get the list of the values's legal parts.
894   unsigned NumRegs = Regs.size();
895   SmallVector<SDValue, 8> Parts(NumRegs);
896   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
897     unsigned NumParts = RegCount[Value];
898 
899     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
900                                           *DAG.getContext(),
901                                           CallConv.getValue(), RegVTs[Value])
902                                     : RegVTs[Value];
903 
904     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
905       ExtendKind = ISD::ZERO_EXTEND;
906 
907     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
908                    NumParts, RegisterVT, V, CallConv, ExtendKind);
909     Part += NumParts;
910   }
911 
912   // Copy the parts into the registers.
913   SmallVector<SDValue, 8> Chains(NumRegs);
914   for (unsigned i = 0; i != NumRegs; ++i) {
915     SDValue Part;
916     if (!Flag) {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
918     } else {
919       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
920       *Flag = Part.getValue(1);
921     }
922 
923     Chains[i] = Part.getValue(0);
924   }
925 
926   if (NumRegs == 1 || Flag)
927     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928     // flagged to it. That is the CopyToReg nodes and the user are considered
929     // a single scheduling unit. If we create a TokenFactor and return it as
930     // chain, then the TokenFactor is both a predecessor (operand) of the
931     // user as well as a successor (the TF operands are flagged to the user).
932     // c1, f1 = CopyToReg
933     // c2, f2 = CopyToReg
934     // c3     = TokenFactor c1, c2
935     // ...
936     //        = op c3, ..., f2
937     Chain = Chains[NumRegs-1];
938   else
939     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
940 }
941 
942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
943                                         unsigned MatchingIdx, const SDLoc &dl,
944                                         SelectionDAG &DAG,
945                                         std::vector<SDValue> &Ops) const {
946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
947 
948   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
949   if (HasMatching)
950     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
951   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
952     // Put the register class of the virtual registers in the flag word.  That
953     // way, later passes can recompute register class constraints for inline
954     // assembly as well as normal instructions.
955     // Don't do this for tied operands that can use the regclass information
956     // from the def.
957     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
958     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
959     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
960   }
961 
962   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
963   Ops.push_back(Res);
964 
965   if (Code == InlineAsm::Kind_Clobber) {
966     // Clobbers should always have a 1:1 mapping with registers, and may
967     // reference registers that have illegal (e.g. vector) types. Hence, we
968     // shouldn't try to apply any sort of splitting logic to them.
969     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
970            "No 1:1 mapping from clobbers to regs?");
971     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
972     (void)SP;
973     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
974       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
975       assert(
976           (Regs[I] != SP ||
977            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978           "If we clobbered the stack pointer, MFI should know about it.");
979     }
980     return;
981   }
982 
983   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
984     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
985     MVT RegisterVT = RegVTs[Value];
986     for (unsigned i = 0; i != NumRegs; ++i) {
987       assert(Reg < Regs.size() && "Mismatch in # registers expected");
988       unsigned TheReg = Regs[Reg++];
989       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
990     }
991   }
992 }
993 
994 SmallVector<std::pair<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
997   unsigned I = 0;
998   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
999     unsigned RegCount = std::get<0>(CountAndVT);
1000     MVT RegisterVT = std::get<1>(CountAndVT);
1001     unsigned RegisterSize = RegisterVT.getSizeInBits();
1002     for (unsigned E = I + RegCount; I != E; ++I)
1003       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1004   }
1005   return OutVec;
1006 }
1007 
1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1009                                const TargetLibraryInfo *li) {
1010   AA = aa;
1011   GFI = gfi;
1012   LibInfo = li;
1013   DL = &DAG.getDataLayout();
1014   Context = DAG.getContext();
1015   LPadToCallSiteMap.clear();
1016   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1017 }
1018 
1019 void SelectionDAGBuilder::clear() {
1020   NodeMap.clear();
1021   UnusedArgNodeMap.clear();
1022   PendingLoads.clear();
1023   PendingExports.clear();
1024   CurInst = nullptr;
1025   HasTailCall = false;
1026   SDNodeOrder = LowestSDNodeOrder;
1027   StatepointLowering.clear();
1028 }
1029 
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031   DanglingDebugInfoMap.clear();
1032 }
1033 
1034 SDValue SelectionDAGBuilder::getRoot() {
1035   if (PendingLoads.empty())
1036     return DAG.getRoot();
1037 
1038   if (PendingLoads.size() == 1) {
1039     SDValue Root = PendingLoads[0];
1040     DAG.setRoot(Root);
1041     PendingLoads.clear();
1042     return Root;
1043   }
1044 
1045   // Otherwise, we have to make a token factor node.
1046   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1047   PendingLoads.clear();
1048   DAG.setRoot(Root);
1049   return Root;
1050 }
1051 
1052 SDValue SelectionDAGBuilder::getControlRoot() {
1053   SDValue Root = DAG.getRoot();
1054 
1055   if (PendingExports.empty())
1056     return Root;
1057 
1058   // Turn all of the CopyToReg chains into one factored node.
1059   if (Root.getOpcode() != ISD::EntryToken) {
1060     unsigned i = 0, e = PendingExports.size();
1061     for (; i != e; ++i) {
1062       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1063       if (PendingExports[i].getNode()->getOperand(0) == Root)
1064         break;  // Don't add the root if we already indirectly depend on it.
1065     }
1066 
1067     if (i == e)
1068       PendingExports.push_back(Root);
1069   }
1070 
1071   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1072                      PendingExports);
1073   PendingExports.clear();
1074   DAG.setRoot(Root);
1075   return Root;
1076 }
1077 
1078 void SelectionDAGBuilder::visit(const Instruction &I) {
1079   // Set up outgoing PHI node register values before emitting the terminator.
1080   if (I.isTerminator()) {
1081     HandlePHINodesInSuccessorBlocks(I.getParent());
1082   }
1083 
1084   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085   if (!isa<DbgInfoIntrinsic>(I))
1086     ++SDNodeOrder;
1087 
1088   CurInst = &I;
1089 
1090   visit(I.getOpcode(), I);
1091 
1092   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1093     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094     // maps to this instruction.
1095     // TODO: We could handle all flags (nsw, etc) here.
1096     // TODO: If an IR instruction maps to >1 node, only the final node will have
1097     //       flags set.
1098     if (SDNode *Node = getNodeForIRValue(&I)) {
1099       SDNodeFlags IncomingFlags;
1100       IncomingFlags.copyFMF(*FPMO);
1101       if (!Node->getFlags().isDefined())
1102         Node->setFlags(IncomingFlags);
1103       else
1104         Node->intersectFlagsWith(IncomingFlags);
1105     }
1106   }
1107 
1108   if (!I.isTerminator() && !HasTailCall &&
1109       !isStatepoint(&I)) // statepoints handle their exports internally
1110     CopyToExportRegsIfNeeded(&I);
1111 
1112   CurInst = nullptr;
1113 }
1114 
1115 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1116   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1117 }
1118 
1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1120   // Note: this doesn't use InstVisitor, because it has to work with
1121   // ConstantExpr's in addition to instructions.
1122   switch (Opcode) {
1123   default: llvm_unreachable("Unknown instruction type encountered!");
1124     // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1128   }
1129 }
1130 
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1132                                                 const DIExpression *Expr) {
1133   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1134     const DbgValueInst *DI = DDI.getDI();
1135     DIVariable *DanglingVariable = DI->getVariable();
1136     DIExpression *DanglingExpr = DI->getExpression();
1137     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1138       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1139       return true;
1140     }
1141     return false;
1142   };
1143 
1144   for (auto &DDIMI : DanglingDebugInfoMap) {
1145     DanglingDebugInfoVector &DDIV = DDIMI.second;
1146 
1147     // If debug info is to be dropped, run it through final checks to see
1148     // whether it can be salvaged.
1149     for (auto &DDI : DDIV)
1150       if (isMatchingDbgValue(DDI))
1151         salvageUnresolvedDbgValue(DDI);
1152 
1153     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1154   }
1155 }
1156 
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1160                                                    SDValue Val) {
1161   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1162   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1163     return;
1164 
1165   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1166   for (auto &DDI : DDIV) {
1167     const DbgValueInst *DI = DDI.getDI();
1168     assert(DI && "Ill-formed DanglingDebugInfo");
1169     DebugLoc dl = DDI.getdl();
1170     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1171     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1172     DILocalVariable *Variable = DI->getVariable();
1173     DIExpression *Expr = DI->getExpression();
1174     assert(Variable->isValidLocationForIntrinsic(dl) &&
1175            "Expected inlined-at fields to agree");
1176     SDDbgValue *SDV;
1177     if (Val.getNode()) {
1178       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180       // we couldn't resolve it directly when examining the DbgValue intrinsic
1181       // in the first place we should not be more successful here). Unless we
1182       // have some test case that prove this to be correct we should avoid
1183       // calling EmitFuncArgumentDbgValue here.
1184       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1185         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1187         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1188         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189         // inserted after the definition of Val when emitting the instructions
1190         // after ISel. An alternative could be to teach
1191         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1193                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1194                    << ValSDNodeOrder << "\n");
1195         SDV = getDbgValue(Val, Variable, Expr, dl,
1196                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1197         DAG.AddDbgValue(SDV, Val.getNode(), false);
1198       } else
1199         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200                           << "in EmitFuncArgumentDbgValue\n");
1201     } else {
1202       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1203       auto Undef =
1204           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1205       auto SDV =
1206           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1207       DAG.AddDbgValue(SDV, nullptr, false);
1208     }
1209   }
1210   DDIV.clear();
1211 }
1212 
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1214   Value *V = DDI.getDI()->getValue();
1215   DILocalVariable *Var = DDI.getDI()->getVariable();
1216   DIExpression *Expr = DDI.getDI()->getExpression();
1217   DebugLoc DL = DDI.getdl();
1218   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1219   unsigned SDOrder = DDI.getSDNodeOrder();
1220 
1221   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222   // that DW_OP_stack_value is desired.
1223   assert(isa<DbgValueInst>(DDI.getDI()));
1224   bool StackValue = true;
1225 
1226   // Can this Value can be encoded without any further work?
1227   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1228     return;
1229 
1230   // Attempt to salvage back through as many instructions as possible. Bail if
1231   // a non-instruction is seen, such as a constant expression or global
1232   // variable. FIXME: Further work could recover those too.
1233   while (isa<Instruction>(V)) {
1234     Instruction &VAsInst = *cast<Instruction>(V);
1235     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1236 
1237     // If we cannot salvage any further, and haven't yet found a suitable debug
1238     // expression, bail out.
1239     if (!NewExpr)
1240       break;
1241 
1242     // New value and expr now represent this debuginfo.
1243     V = VAsInst.getOperand(0);
1244     Expr = NewExpr;
1245 
1246     // Some kind of simplification occurred: check whether the operand of the
1247     // salvaged debug expression can be encoded in this DAG.
1248     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1249       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1250                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1251       return;
1252     }
1253   }
1254 
1255   // This was the final opportunity to salvage this debug information, and it
1256   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257   // any earlier variable location.
1258   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1259   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1260   DAG.AddDbgValue(SDV, nullptr, false);
1261 
1262   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1263                     << "\n");
1264   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1265                     << "\n");
1266 }
1267 
1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1269                                            DIExpression *Expr, DebugLoc dl,
1270                                            DebugLoc InstDL, unsigned Order) {
1271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1272   SDDbgValue *SDV;
1273   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1274       isa<ConstantPointerNull>(V)) {
1275     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1276     DAG.AddDbgValue(SDV, nullptr, false);
1277     return true;
1278   }
1279 
1280   // If the Value is a frame index, we can create a FrameIndex debug value
1281   // without relying on the DAG at all.
1282   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1283     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1284     if (SI != FuncInfo.StaticAllocaMap.end()) {
1285       auto SDV =
1286           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1287                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1288       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289       // is still available even if the SDNode gets optimized out.
1290       DAG.AddDbgValue(SDV, nullptr, false);
1291       return true;
1292     }
1293   }
1294 
1295   // Do not use getValue() in here; we don't want to generate code at
1296   // this point if it hasn't been done yet.
1297   SDValue N = NodeMap[V];
1298   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1299     N = UnusedArgNodeMap[V];
1300   if (N.getNode()) {
1301     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1302       return true;
1303     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1304     DAG.AddDbgValue(SDV, N.getNode(), false);
1305     return true;
1306   }
1307 
1308   // Special rules apply for the first dbg.values of parameter variables in a
1309   // function. Identify them by the fact they reference Argument Values, that
1310   // they're parameters, and they are parameters of the current function. We
1311   // need to let them dangle until they get an SDNode.
1312   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1313                        !InstDL.getInlinedAt();
1314   if (!IsParamOfFunc) {
1315     // The value is not used in this block yet (or it would have an SDNode).
1316     // We still want the value to appear for the user if possible -- if it has
1317     // an associated VReg, we can refer to that instead.
1318     auto VMI = FuncInfo.ValueMap.find(V);
1319     if (VMI != FuncInfo.ValueMap.end()) {
1320       unsigned Reg = VMI->second;
1321       // If this is a PHI node, it may be split up into several MI PHI nodes
1322       // (in FunctionLoweringInfo::set).
1323       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1324                        V->getType(), None);
1325       if (RFV.occupiesMultipleRegs()) {
1326         unsigned Offset = 0;
1327         unsigned BitsToDescribe = 0;
1328         if (auto VarSize = Var->getSizeInBits())
1329           BitsToDescribe = *VarSize;
1330         if (auto Fragment = Expr->getFragmentInfo())
1331           BitsToDescribe = Fragment->SizeInBits;
1332         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1333           unsigned RegisterSize = RegAndSize.second;
1334           // Bail out if all bits are described already.
1335           if (Offset >= BitsToDescribe)
1336             break;
1337           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1338               ? BitsToDescribe - Offset
1339               : RegisterSize;
1340           auto FragmentExpr = DIExpression::createFragmentExpression(
1341               Expr, Offset, FragmentSize);
1342           if (!FragmentExpr)
1343               continue;
1344           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1345                                     false, dl, SDNodeOrder);
1346           DAG.AddDbgValue(SDV, nullptr, false);
1347           Offset += RegisterSize;
1348         }
1349       } else {
1350         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1351         DAG.AddDbgValue(SDV, nullptr, false);
1352       }
1353       return true;
1354     }
1355   }
1356 
1357   return false;
1358 }
1359 
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362   for (auto &Pair : DanglingDebugInfoMap)
1363     for (auto &DDI : Pair.second)
1364       salvageUnresolvedDbgValue(DDI);
1365   clearDanglingDebugInfo();
1366 }
1367 
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1371   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1372   SDValue Result;
1373 
1374   if (It != FuncInfo.ValueMap.end()) {
1375     unsigned InReg = It->second;
1376 
1377     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1378                      DAG.getDataLayout(), InReg, Ty,
1379                      None); // This is not an ABI copy.
1380     SDValue Chain = DAG.getEntryNode();
1381     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1382                                  V);
1383     resolveDanglingDebugInfo(V, Result);
1384   }
1385 
1386   return Result;
1387 }
1388 
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1391   // If we already have an SDValue for this value, use it. It's important
1392   // to do this first, so that we don't create a CopyFromReg if we already
1393   // have a regular SDValue.
1394   SDValue &N = NodeMap[V];
1395   if (N.getNode()) return N;
1396 
1397   // If there's a virtual register allocated and initialized for this
1398   // value, use it.
1399   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1400     return copyFromReg;
1401 
1402   // Otherwise create a new SDValue and remember it.
1403   SDValue Val = getValueImpl(V);
1404   NodeMap[V] = Val;
1405   resolveDanglingDebugInfo(V, Val);
1406   return Val;
1407 }
1408 
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value *V) const {
1411   return (NodeMap.find(V) != NodeMap.end()) ||
1412     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1413 }
1414 
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1418   // If we already have an SDValue for this value, use it.
1419   SDValue &N = NodeMap[V];
1420   if (N.getNode()) {
1421     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1422       // Remove the debug location from the node as the node is about to be used
1423       // in a location which may differ from the original debug location.  This
1424       // is relevant to Constant and ConstantFP nodes because they can appear
1425       // as constant expressions inside PHI nodes.
1426       N->setDebugLoc(DebugLoc());
1427     }
1428     return N;
1429   }
1430 
1431   // Otherwise create a new SDValue and remember it.
1432   SDValue Val = getValueImpl(V);
1433   NodeMap[V] = Val;
1434   resolveDanglingDebugInfo(V, Val);
1435   return Val;
1436 }
1437 
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1442 
1443   if (const Constant *C = dyn_cast<Constant>(V)) {
1444     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1445 
1446     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1447       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1448 
1449     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1450       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1451 
1452     if (isa<ConstantPointerNull>(C)) {
1453       unsigned AS = V->getType()->getPointerAddressSpace();
1454       return DAG.getConstant(0, getCurSDLoc(),
1455                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1456     }
1457 
1458     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1459       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1460 
1461     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1462       return DAG.getUNDEF(VT);
1463 
1464     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1465       visit(CE->getOpcode(), *CE);
1466       SDValue N1 = NodeMap[V];
1467       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1468       return N1;
1469     }
1470 
1471     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1472       SmallVector<SDValue, 4> Constants;
1473       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1474            OI != OE; ++OI) {
1475         SDNode *Val = getValue(*OI).getNode();
1476         // If the operand is an empty aggregate, there are no values.
1477         if (!Val) continue;
1478         // Add each leaf value from the operand to the Constants list
1479         // to form a flattened list of all the values.
1480         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1481           Constants.push_back(SDValue(Val, i));
1482       }
1483 
1484       return DAG.getMergeValues(Constants, getCurSDLoc());
1485     }
1486 
1487     if (const ConstantDataSequential *CDS =
1488           dyn_cast<ConstantDataSequential>(C)) {
1489       SmallVector<SDValue, 4> Ops;
1490       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1491         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1492         // Add each leaf value from the operand to the Constants list
1493         // to form a flattened list of all the values.
1494         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1495           Ops.push_back(SDValue(Val, i));
1496       }
1497 
1498       if (isa<ArrayType>(CDS->getType()))
1499         return DAG.getMergeValues(Ops, getCurSDLoc());
1500       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1501     }
1502 
1503     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1504       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1505              "Unknown struct or array constant!");
1506 
1507       SmallVector<EVT, 4> ValueVTs;
1508       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1509       unsigned NumElts = ValueVTs.size();
1510       if (NumElts == 0)
1511         return SDValue(); // empty struct
1512       SmallVector<SDValue, 4> Constants(NumElts);
1513       for (unsigned i = 0; i != NumElts; ++i) {
1514         EVT EltVT = ValueVTs[i];
1515         if (isa<UndefValue>(C))
1516           Constants[i] = DAG.getUNDEF(EltVT);
1517         else if (EltVT.isFloatingPoint())
1518           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1519         else
1520           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1521       }
1522 
1523       return DAG.getMergeValues(Constants, getCurSDLoc());
1524     }
1525 
1526     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1527       return DAG.getBlockAddress(BA, VT);
1528 
1529     VectorType *VecTy = cast<VectorType>(V->getType());
1530     unsigned NumElements = VecTy->getNumElements();
1531 
1532     // Now that we know the number and type of the elements, get that number of
1533     // elements into the Ops array based on what kind of constant it is.
1534     SmallVector<SDValue, 16> Ops;
1535     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1536       for (unsigned i = 0; i != NumElements; ++i)
1537         Ops.push_back(getValue(CV->getOperand(i)));
1538     } else {
1539       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1540       EVT EltVT =
1541           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1542 
1543       SDValue Op;
1544       if (EltVT.isFloatingPoint())
1545         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1546       else
1547         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1548       Ops.assign(NumElements, Op);
1549     }
1550 
1551     // Create a BUILD_VECTOR node.
1552     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1553   }
1554 
1555   // If this is a static alloca, generate it as the frameindex instead of
1556   // computation.
1557   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558     DenseMap<const AllocaInst*, int>::iterator SI =
1559       FuncInfo.StaticAllocaMap.find(AI);
1560     if (SI != FuncInfo.StaticAllocaMap.end())
1561       return DAG.getFrameIndex(SI->second,
1562                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1563   }
1564 
1565   // If this is an instruction which fast-isel has deferred, select it now.
1566   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1567     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1568 
1569     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1570                      Inst->getType(), getABIRegCopyCC(V));
1571     SDValue Chain = DAG.getEntryNode();
1572     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1573   }
1574 
1575   llvm_unreachable("Can't get register for value!");
1576 }
1577 
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582   bool IsSEH = isAsynchronousEHPersonality(Pers);
1583   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1584   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1585   if (!IsSEH)
1586     CatchPadMBB->setIsEHScopeEntry();
1587   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588   if (IsMSVCCXX || IsCoreCLR)
1589     CatchPadMBB->setIsEHFuncletEntry();
1590   // Wasm does not need catchpads anymore
1591   if (!IsWasmCXX)
1592     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1593                             getControlRoot()));
1594 }
1595 
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1597   // Update machine-CFG edge.
1598   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1599   FuncInfo.MBB->addSuccessor(TargetMBB);
1600 
1601   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1602   bool IsSEH = isAsynchronousEHPersonality(Pers);
1603   if (IsSEH) {
1604     // If this is not a fall-through branch or optimizations are switched off,
1605     // emit the branch.
1606     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1607         TM.getOptLevel() == CodeGenOpt::None)
1608       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1609                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1610     return;
1611   }
1612 
1613   // Figure out the funclet membership for the catchret's successor.
1614   // This will be used by the FuncletLayout pass to determine how to order the
1615   // BB's.
1616   // A 'catchret' returns to the outer scope's color.
1617   Value *ParentPad = I.getCatchSwitchParentPad();
1618   const BasicBlock *SuccessorColor;
1619   if (isa<ConstantTokenNone>(ParentPad))
1620     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1621   else
1622     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1623   assert(SuccessorColor && "No parent funclet for catchret!");
1624   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1625   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1626 
1627   // Create the terminator node.
1628   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1629                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1630                             DAG.getBasicBlock(SuccessorColorMBB));
1631   DAG.setRoot(Ret);
1632 }
1633 
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1635   // Don't emit any special code for the cleanuppad instruction. It just marks
1636   // the start of an EH scope/funclet.
1637   FuncInfo.MBB->setIsEHScopeEntry();
1638   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639   if (Pers != EHPersonality::Wasm_CXX) {
1640     FuncInfo.MBB->setIsEHFuncletEntry();
1641     FuncInfo.MBB->setIsCleanupFuncletEntry();
1642   }
1643 }
1644 
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1651     BranchProbability Prob,
1652     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1653         &UnwindDests) {
1654   while (EHPadBB) {
1655     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1656     if (isa<CleanupPadInst>(Pad)) {
1657       // Stop on cleanup pads.
1658       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1659       UnwindDests.back().first->setIsEHScopeEntry();
1660       break;
1661     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1662       // Add the catchpad handlers to the possible destinations. We don't
1663       // continue to the unwind destination of the catchswitch for wasm.
1664       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1665         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1666         UnwindDests.back().first->setIsEHScopeEntry();
1667       }
1668       break;
1669     } else {
1670       continue;
1671     }
1672   }
1673 }
1674 
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1685     BranchProbability Prob,
1686     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1687         &UnwindDests) {
1688   EHPersonality Personality =
1689     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1690   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1691   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1692   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1693   bool IsSEH = isAsynchronousEHPersonality(Personality);
1694 
1695   if (IsWasmCXX) {
1696     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1697     assert(UnwindDests.size() <= 1 &&
1698            "There should be at most one unwind destination for wasm");
1699     return;
1700   }
1701 
1702   while (EHPadBB) {
1703     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1704     BasicBlock *NewEHPadBB = nullptr;
1705     if (isa<LandingPadInst>(Pad)) {
1706       // Stop on landingpads. They are not funclets.
1707       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708       break;
1709     } else if (isa<CleanupPadInst>(Pad)) {
1710       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1711       // personalities.
1712       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1713       UnwindDests.back().first->setIsEHScopeEntry();
1714       UnwindDests.back().first->setIsEHFuncletEntry();
1715       break;
1716     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1717       // Add the catchpad handlers to the possible destinations.
1718       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1719         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1720         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721         if (IsMSVCCXX || IsCoreCLR)
1722           UnwindDests.back().first->setIsEHFuncletEntry();
1723         if (!IsSEH)
1724           UnwindDests.back().first->setIsEHScopeEntry();
1725       }
1726       NewEHPadBB = CatchSwitch->getUnwindDest();
1727     } else {
1728       continue;
1729     }
1730 
1731     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1732     if (BPI && NewEHPadBB)
1733       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1734     EHPadBB = NewEHPadBB;
1735   }
1736 }
1737 
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1739   // Update successor info.
1740   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1741   auto UnwindDest = I.getUnwindDest();
1742   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1743   BranchProbability UnwindDestProb =
1744       (BPI && UnwindDest)
1745           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1746           : BranchProbability::getZero();
1747   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1748   for (auto &UnwindDest : UnwindDests) {
1749     UnwindDest.first->setIsEHPad();
1750     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1751   }
1752   FuncInfo.MBB->normalizeSuccProbs();
1753 
1754   // Create the terminator node.
1755   SDValue Ret =
1756       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1757   DAG.setRoot(Ret);
1758 }
1759 
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1761   report_fatal_error("visitCatchSwitch not yet implemented!");
1762 }
1763 
1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1766   auto &DL = DAG.getDataLayout();
1767   SDValue Chain = getControlRoot();
1768   SmallVector<ISD::OutputArg, 8> Outs;
1769   SmallVector<SDValue, 8> OutVals;
1770 
1771   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1772   // lower
1773   //
1774   //   %val = call <ty> @llvm.experimental.deoptimize()
1775   //   ret <ty> %val
1776   //
1777   // differently.
1778   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1779     LowerDeoptimizingReturn();
1780     return;
1781   }
1782 
1783   if (!FuncInfo.CanLowerReturn) {
1784     unsigned DemoteReg = FuncInfo.DemoteRegister;
1785     const Function *F = I.getParent()->getParent();
1786 
1787     // Emit a store of the return value through the virtual register.
1788     // Leave Outs empty so that LowerReturn won't try to load return
1789     // registers the usual way.
1790     SmallVector<EVT, 1> PtrValueVTs;
1791     ComputeValueVTs(TLI, DL,
1792                     F->getReturnType()->getPointerTo(
1793                         DAG.getDataLayout().getAllocaAddrSpace()),
1794                     PtrValueVTs);
1795 
1796     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1797                                         DemoteReg, PtrValueVTs[0]);
1798     SDValue RetOp = getValue(I.getOperand(0));
1799 
1800     SmallVector<EVT, 4> ValueVTs, MemVTs;
1801     SmallVector<uint64_t, 4> Offsets;
1802     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1803                     &Offsets);
1804     unsigned NumValues = ValueVTs.size();
1805 
1806     SmallVector<SDValue, 4> Chains(NumValues);
1807     for (unsigned i = 0; i != NumValues; ++i) {
1808       // An aggregate return value cannot wrap around the address space, so
1809       // offsets to its parts don't wrap either.
1810       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1811 
1812       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1813       if (MemVTs[i] != ValueVTs[i])
1814         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1815       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1816           // FIXME: better loc info would be nice.
1817           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1818     }
1819 
1820     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1821                         MVT::Other, Chains);
1822   } else if (I.getNumOperands() != 0) {
1823     SmallVector<EVT, 4> ValueVTs;
1824     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1825     unsigned NumValues = ValueVTs.size();
1826     if (NumValues) {
1827       SDValue RetOp = getValue(I.getOperand(0));
1828 
1829       const Function *F = I.getParent()->getParent();
1830 
1831       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1832           I.getOperand(0)->getType(), F->getCallingConv(),
1833           /*IsVarArg*/ false);
1834 
1835       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1836       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1837                                           Attribute::SExt))
1838         ExtendKind = ISD::SIGN_EXTEND;
1839       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1840                                                Attribute::ZExt))
1841         ExtendKind = ISD::ZERO_EXTEND;
1842 
1843       LLVMContext &Context = F->getContext();
1844       bool RetInReg = F->getAttributes().hasAttribute(
1845           AttributeList::ReturnIndex, Attribute::InReg);
1846 
1847       for (unsigned j = 0; j != NumValues; ++j) {
1848         EVT VT = ValueVTs[j];
1849 
1850         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1851           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1852 
1853         CallingConv::ID CC = F->getCallingConv();
1854 
1855         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1856         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1857         SmallVector<SDValue, 4> Parts(NumParts);
1858         getCopyToParts(DAG, getCurSDLoc(),
1859                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1860                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1861 
1862         // 'inreg' on function refers to return value
1863         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1864         if (RetInReg)
1865           Flags.setInReg();
1866 
1867         if (I.getOperand(0)->getType()->isPointerTy()) {
1868           Flags.setPointer();
1869           Flags.setPointerAddrSpace(
1870               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1871         }
1872 
1873         if (NeedsRegBlock) {
1874           Flags.setInConsecutiveRegs();
1875           if (j == NumValues - 1)
1876             Flags.setInConsecutiveRegsLast();
1877         }
1878 
1879         // Propagate extension type if any
1880         if (ExtendKind == ISD::SIGN_EXTEND)
1881           Flags.setSExt();
1882         else if (ExtendKind == ISD::ZERO_EXTEND)
1883           Flags.setZExt();
1884 
1885         for (unsigned i = 0; i < NumParts; ++i) {
1886           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1887                                         VT, /*isfixed=*/true, 0, 0));
1888           OutVals.push_back(Parts[i]);
1889         }
1890       }
1891     }
1892   }
1893 
1894   // Push in swifterror virtual register as the last element of Outs. This makes
1895   // sure swifterror virtual register will be returned in the swifterror
1896   // physical register.
1897   const Function *F = I.getParent()->getParent();
1898   if (TLI.supportSwiftError() &&
1899       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1900     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1901     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902     Flags.setSwiftError();
1903     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1904                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1905                                   true /*isfixed*/, 1 /*origidx*/,
1906                                   0 /*partOffs*/));
1907     // Create SDNode for the swifterror virtual register.
1908     OutVals.push_back(
1909         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1910                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1911                         EVT(TLI.getPointerTy(DL))));
1912   }
1913 
1914   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1915   CallingConv::ID CallConv =
1916     DAG.getMachineFunction().getFunction().getCallingConv();
1917   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1918       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1919 
1920   // Verify that the target's LowerReturn behaved as expected.
1921   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1922          "LowerReturn didn't return a valid chain!");
1923 
1924   // Update the DAG with the new chain value resulting from return lowering.
1925   DAG.setRoot(Chain);
1926 }
1927 
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1930 /// registers.
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1932   // Skip empty types
1933   if (V->getType()->isEmptyTy())
1934     return;
1935 
1936   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1937   if (VMI != FuncInfo.ValueMap.end()) {
1938     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1939     CopyValueToVirtualRegister(V, VMI->second);
1940   }
1941 }
1942 
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1945 /// CopyTo/FromReg.
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1947   // No need to export constants.
1948   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1949 
1950   // Already exported?
1951   if (FuncInfo.isExportedInst(V)) return;
1952 
1953   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1954   CopyValueToVirtualRegister(V, Reg);
1955 }
1956 
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1958                                                      const BasicBlock *FromBB) {
1959   // The operands of the setcc have to be in this block.  We don't know
1960   // how to export them from some other block.
1961   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1962     // Can export from current BB.
1963     if (VI->getParent() == FromBB)
1964       return true;
1965 
1966     // Is already exported, noop.
1967     return FuncInfo.isExportedInst(V);
1968   }
1969 
1970   // If this is an argument, we can export it if the BB is the entry block or
1971   // if it is already exported.
1972   if (isa<Argument>(V)) {
1973     if (FromBB == &FromBB->getParent()->getEntryBlock())
1974       return true;
1975 
1976     // Otherwise, can only export this if it is already exported.
1977     return FuncInfo.isExportedInst(V);
1978   }
1979 
1980   // Otherwise, constants can always be exported.
1981   return true;
1982 }
1983 
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1985 BranchProbability
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1987                                         const MachineBasicBlock *Dst) const {
1988   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1989   const BasicBlock *SrcBB = Src->getBasicBlock();
1990   const BasicBlock *DstBB = Dst->getBasicBlock();
1991   if (!BPI) {
1992     // If BPI is not available, set the default probability as 1 / N, where N is
1993     // the number of successors.
1994     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1995     return BranchProbability(1, SuccSize);
1996   }
1997   return BPI->getEdgeProbability(SrcBB, DstBB);
1998 }
1999 
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2001                                                MachineBasicBlock *Dst,
2002                                                BranchProbability Prob) {
2003   if (!FuncInfo.BPI)
2004     Src->addSuccessorWithoutProb(Dst);
2005   else {
2006     if (Prob.isUnknown())
2007       Prob = getEdgeProbability(Src, Dst);
2008     Src->addSuccessor(Dst, Prob);
2009   }
2010 }
2011 
2012 static bool InBlock(const Value *V, const BasicBlock *BB) {
2013   if (const Instruction *I = dyn_cast<Instruction>(V))
2014     return I->getParent() == BB;
2015   return true;
2016 }
2017 
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2021 void
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2023                                                   MachineBasicBlock *TBB,
2024                                                   MachineBasicBlock *FBB,
2025                                                   MachineBasicBlock *CurBB,
2026                                                   MachineBasicBlock *SwitchBB,
2027                                                   BranchProbability TProb,
2028                                                   BranchProbability FProb,
2029                                                   bool InvertCond) {
2030   const BasicBlock *BB = CurBB->getBasicBlock();
2031 
2032   // If the leaf of the tree is a comparison, merge the condition into
2033   // the caseblock.
2034   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2035     // The operands of the cmp have to be in this block.  We don't know
2036     // how to export them from some other block.  If this is the first block
2037     // of the sequence, no exporting is needed.
2038     if (CurBB == SwitchBB ||
2039         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2040          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2041       ISD::CondCode Condition;
2042       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2043         ICmpInst::Predicate Pred =
2044             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2045         Condition = getICmpCondCode(Pred);
2046       } else {
2047         const FCmpInst *FC = cast<FCmpInst>(Cond);
2048         FCmpInst::Predicate Pred =
2049             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2050         Condition = getFCmpCondCode(Pred);
2051         if (TM.Options.NoNaNsFPMath)
2052           Condition = getFCmpCodeWithoutNaN(Condition);
2053       }
2054 
2055       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2056                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2057       SL->SwitchCases.push_back(CB);
2058       return;
2059     }
2060   }
2061 
2062   // Create a CaseBlock record representing this branch.
2063   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2064   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2065                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2066   SL->SwitchCases.push_back(CB);
2067 }
2068 
2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2070                                                MachineBasicBlock *TBB,
2071                                                MachineBasicBlock *FBB,
2072                                                MachineBasicBlock *CurBB,
2073                                                MachineBasicBlock *SwitchBB,
2074                                                Instruction::BinaryOps Opc,
2075                                                BranchProbability TProb,
2076                                                BranchProbability FProb,
2077                                                bool InvertCond) {
2078   // Skip over not part of the tree and remember to invert op and operands at
2079   // next level.
2080   Value *NotCond;
2081   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2082       InBlock(NotCond, CurBB->getBasicBlock())) {
2083     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2084                          !InvertCond);
2085     return;
2086   }
2087 
2088   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2089   // Compute the effective opcode for Cond, taking into account whether it needs
2090   // to be inverted, e.g.
2091   //   and (not (or A, B)), C
2092   // gets lowered as
2093   //   and (and (not A, not B), C)
2094   unsigned BOpc = 0;
2095   if (BOp) {
2096     BOpc = BOp->getOpcode();
2097     if (InvertCond) {
2098       if (BOpc == Instruction::And)
2099         BOpc = Instruction::Or;
2100       else if (BOpc == Instruction::Or)
2101         BOpc = Instruction::And;
2102     }
2103   }
2104 
2105   // If this node is not part of the or/and tree, emit it as a branch.
2106   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2107       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2108       BOp->getParent() != CurBB->getBasicBlock() ||
2109       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2110       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2111     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2112                                  TProb, FProb, InvertCond);
2113     return;
2114   }
2115 
2116   //  Create TmpBB after CurBB.
2117   MachineFunction::iterator BBI(CurBB);
2118   MachineFunction &MF = DAG.getMachineFunction();
2119   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2120   CurBB->getParent()->insert(++BBI, TmpBB);
2121 
2122   if (Opc == Instruction::Or) {
2123     // Codegen X | Y as:
2124     // BB1:
2125     //   jmp_if_X TBB
2126     //   jmp TmpBB
2127     // TmpBB:
2128     //   jmp_if_Y TBB
2129     //   jmp FBB
2130     //
2131 
2132     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133     // The requirement is that
2134     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135     //     = TrueProb for original BB.
2136     // Assuming the original probabilities are A and B, one choice is to set
2137     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138     // A/(1+B) and 2B/(1+B). This choice assumes that
2139     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141     // TmpBB, but the math is more complicated.
2142 
2143     auto NewTrueProb = TProb / 2;
2144     auto NewFalseProb = TProb / 2 + FProb;
2145     // Emit the LHS condition.
2146     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2147                          NewTrueProb, NewFalseProb, InvertCond);
2148 
2149     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2151     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2152     // Emit the RHS condition into TmpBB.
2153     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2154                          Probs[0], Probs[1], InvertCond);
2155   } else {
2156     assert(Opc == Instruction::And && "Unknown merge op!");
2157     // Codegen X & Y as:
2158     // BB1:
2159     //   jmp_if_X TmpBB
2160     //   jmp FBB
2161     // TmpBB:
2162     //   jmp_if_Y TBB
2163     //   jmp FBB
2164     //
2165     //  This requires creation of TmpBB after CurBB.
2166 
2167     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168     // The requirement is that
2169     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170     //     = FalseProb for original BB.
2171     // Assuming the original probabilities are A and B, one choice is to set
2172     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174     // TrueProb for BB1 * FalseProb for TmpBB.
2175 
2176     auto NewTrueProb = TProb + FProb / 2;
2177     auto NewFalseProb = FProb / 2;
2178     // Emit the LHS condition.
2179     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2180                          NewTrueProb, NewFalseProb, InvertCond);
2181 
2182     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2184     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2185     // Emit the RHS condition into TmpBB.
2186     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2187                          Probs[0], Probs[1], InvertCond);
2188   }
2189 }
2190 
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2193 /// false.
2194 bool
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2196   if (Cases.size() != 2) return true;
2197 
2198   // If this is two comparisons of the same values or'd or and'd together, they
2199   // will get folded into a single comparison, so don't emit two blocks.
2200   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2201        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2202       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2203        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2204     return false;
2205   }
2206 
2207   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2210       Cases[0].CC == Cases[1].CC &&
2211       isa<Constant>(Cases[0].CmpRHS) &&
2212       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2213     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2214       return false;
2215     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2216       return false;
2217   }
2218 
2219   return true;
2220 }
2221 
2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2223   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2224 
2225   // Update machine-CFG edges.
2226   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2227 
2228   if (I.isUnconditional()) {
2229     // Update machine-CFG edges.
2230     BrMBB->addSuccessor(Succ0MBB);
2231 
2232     // If this is not a fall-through branch or optimizations are switched off,
2233     // emit the branch.
2234     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2235       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2236                               MVT::Other, getControlRoot(),
2237                               DAG.getBasicBlock(Succ0MBB)));
2238 
2239     return;
2240   }
2241 
2242   // If this condition is one of the special cases we handle, do special stuff
2243   // now.
2244   const Value *CondVal = I.getCondition();
2245   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2246 
2247   // If this is a series of conditions that are or'd or and'd together, emit
2248   // this as a sequence of branches instead of setcc's with and/or operations.
2249   // As long as jumps are not expensive, this should improve performance.
2250   // For example, instead of something like:
2251   //     cmp A, B
2252   //     C = seteq
2253   //     cmp D, E
2254   //     F = setle
2255   //     or C, F
2256   //     jnz foo
2257   // Emit:
2258   //     cmp A, B
2259   //     je foo
2260   //     cmp D, E
2261   //     jle foo
2262   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2263     Instruction::BinaryOps Opcode = BOp->getOpcode();
2264     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2265         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2266         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2267       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2268                            Opcode,
2269                            getEdgeProbability(BrMBB, Succ0MBB),
2270                            getEdgeProbability(BrMBB, Succ1MBB),
2271                            /*InvertCond=*/false);
2272       // If the compares in later blocks need to use values not currently
2273       // exported from this block, export them now.  This block should always
2274       // be the first entry.
2275       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2276 
2277       // Allow some cases to be rejected.
2278       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2279         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2280           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2281           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2282         }
2283 
2284         // Emit the branch for this block.
2285         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2286         SL->SwitchCases.erase(SL->SwitchCases.begin());
2287         return;
2288       }
2289 
2290       // Okay, we decided not to do this, remove any inserted MBB's and clear
2291       // SwitchCases.
2292       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2293         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2294 
2295       SL->SwitchCases.clear();
2296     }
2297   }
2298 
2299   // Create a CaseBlock record representing this branch.
2300   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2301                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2302 
2303   // Use visitSwitchCase to actually insert the fast branch sequence for this
2304   // cond branch.
2305   visitSwitchCase(CB, BrMBB);
2306 }
2307 
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2311                                           MachineBasicBlock *SwitchBB) {
2312   SDValue Cond;
2313   SDValue CondLHS = getValue(CB.CmpLHS);
2314   SDLoc dl = CB.DL;
2315 
2316   if (CB.CC == ISD::SETTRUE) {
2317     // Branch or fall through to TrueBB.
2318     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2319     SwitchBB->normalizeSuccProbs();
2320     if (CB.TrueBB != NextBlock(SwitchBB)) {
2321       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2322                               DAG.getBasicBlock(CB.TrueBB)));
2323     }
2324     return;
2325   }
2326 
2327   auto &TLI = DAG.getTargetLoweringInfo();
2328   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2329 
2330   // Build the setcc now.
2331   if (!CB.CmpMHS) {
2332     // Fold "(X == true)" to X and "(X == false)" to !X to
2333     // handle common cases produced by branch lowering.
2334     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2335         CB.CC == ISD::SETEQ)
2336       Cond = CondLHS;
2337     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2338              CB.CC == ISD::SETEQ) {
2339       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2340       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2341     } else {
2342       SDValue CondRHS = getValue(CB.CmpRHS);
2343 
2344       // If a pointer's DAG type is larger than its memory type then the DAG
2345       // values are zero-extended. This breaks signed comparisons so truncate
2346       // back to the underlying type before doing the compare.
2347       if (CondLHS.getValueType() != MemVT) {
2348         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2349         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2350       }
2351       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2352     }
2353   } else {
2354     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2355 
2356     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2357     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2358 
2359     SDValue CmpOp = getValue(CB.CmpMHS);
2360     EVT VT = CmpOp.getValueType();
2361 
2362     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2363       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2364                           ISD::SETLE);
2365     } else {
2366       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2367                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2368       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2369                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2370     }
2371   }
2372 
2373   // Update successor info
2374   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2375   // TrueBB and FalseBB are always different unless the incoming IR is
2376   // degenerate. This only happens when running llc on weird IR.
2377   if (CB.TrueBB != CB.FalseBB)
2378     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2379   SwitchBB->normalizeSuccProbs();
2380 
2381   // If the lhs block is the next block, invert the condition so that we can
2382   // fall through to the lhs instead of the rhs block.
2383   if (CB.TrueBB == NextBlock(SwitchBB)) {
2384     std::swap(CB.TrueBB, CB.FalseBB);
2385     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2386     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2387   }
2388 
2389   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2390                                MVT::Other, getControlRoot(), Cond,
2391                                DAG.getBasicBlock(CB.TrueBB));
2392 
2393   // Insert the false branch. Do this even if it's a fall through branch,
2394   // this makes it easier to do DAG optimizations which require inverting
2395   // the branch condition.
2396   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2397                        DAG.getBasicBlock(CB.FalseBB));
2398 
2399   DAG.setRoot(BrCond);
2400 }
2401 
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2404   // Emit the code for the jump table
2405   assert(JT.Reg != -1U && "Should lower JT Header first!");
2406   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2407   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2408                                      JT.Reg, PTy);
2409   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2410   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2411                                     MVT::Other, Index.getValue(1),
2412                                     Table, Index);
2413   DAG.setRoot(BrJumpTable);
2414 }
2415 
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2419                                                JumpTableHeader &JTH,
2420                                                MachineBasicBlock *SwitchBB) {
2421   SDLoc dl = getCurSDLoc();
2422 
2423   // Subtract the lowest switch case value from the value being switched on.
2424   SDValue SwitchOp = getValue(JTH.SValue);
2425   EVT VT = SwitchOp.getValueType();
2426   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2427                             DAG.getConstant(JTH.First, dl, VT));
2428 
2429   // The SDNode we just created, which holds the value being switched on minus
2430   // the smallest case value, needs to be copied to a virtual register so it
2431   // can be used as an index into the jump table in a subsequent basic block.
2432   // This value may be smaller or larger than the target's pointer type, and
2433   // therefore require extension or truncating.
2434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2435   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2436 
2437   unsigned JumpTableReg =
2438       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2439   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2440                                     JumpTableReg, SwitchOp);
2441   JT.Reg = JumpTableReg;
2442 
2443   if (!JTH.OmitRangeCheck) {
2444     // Emit the range check for the jump table, and branch to the default block
2445     // for the switch statement if the value being switched on exceeds the
2446     // largest case in the switch.
2447     SDValue CMP = DAG.getSetCC(
2448         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2449                                    Sub.getValueType()),
2450         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2451 
2452     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2453                                  MVT::Other, CopyTo, CMP,
2454                                  DAG.getBasicBlock(JT.Default));
2455 
2456     // Avoid emitting unnecessary branches to the next block.
2457     if (JT.MBB != NextBlock(SwitchBB))
2458       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2459                            DAG.getBasicBlock(JT.MBB));
2460 
2461     DAG.setRoot(BrCond);
2462   } else {
2463     // Avoid emitting unnecessary branches to the next block.
2464     if (JT.MBB != NextBlock(SwitchBB))
2465       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2466                               DAG.getBasicBlock(JT.MBB)));
2467     else
2468       DAG.setRoot(CopyTo);
2469   }
2470 }
2471 
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2475                                  SDValue &Chain) {
2476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2477   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2478   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2479   MachineFunction &MF = DAG.getMachineFunction();
2480   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2481   MachineSDNode *Node =
2482       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2483   if (Global) {
2484     MachinePointerInfo MPInfo(Global);
2485     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2486                  MachineMemOperand::MODereferenceable;
2487     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2488         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2489     DAG.setNodeMemRefs(Node, {MemRef});
2490   }
2491   if (PtrTy != PtrMemTy)
2492     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2493   return SDValue(Node, 0);
2494 }
2495 
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2498 ///
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2503                                                   MachineBasicBlock *ParentBB) {
2504 
2505   // First create the loads to the guard/stack slot for the comparison.
2506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2509 
2510   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2511   int FI = MFI.getStackProtectorIndex();
2512 
2513   SDValue Guard;
2514   SDLoc dl = getCurSDLoc();
2515   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2516   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2517   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2518 
2519   // Generate code to load the content of the guard slot.
2520   SDValue GuardVal = DAG.getLoad(
2521       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2522       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2523       MachineMemOperand::MOVolatile);
2524 
2525   if (TLI.useStackGuardXorFP())
2526     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2527 
2528   // Retrieve guard check function, nullptr if instrumentation is inlined.
2529   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2530     // The target provides a guard check function to validate the guard value.
2531     // Generate a call to that function with the content of the guard slot as
2532     // argument.
2533     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2534     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2535 
2536     TargetLowering::ArgListTy Args;
2537     TargetLowering::ArgListEntry Entry;
2538     Entry.Node = GuardVal;
2539     Entry.Ty = FnTy->getParamType(0);
2540     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2541       Entry.IsInReg = true;
2542     Args.push_back(Entry);
2543 
2544     TargetLowering::CallLoweringInfo CLI(DAG);
2545     CLI.setDebugLoc(getCurSDLoc())
2546         .setChain(DAG.getEntryNode())
2547         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2548                    getValue(GuardCheckFn), std::move(Args));
2549 
2550     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2551     DAG.setRoot(Result.second);
2552     return;
2553   }
2554 
2555   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556   // Otherwise, emit a volatile load to retrieve the stack guard value.
2557   SDValue Chain = DAG.getEntryNode();
2558   if (TLI.useLoadStackGuardNode()) {
2559     Guard = getLoadStackGuard(DAG, dl, Chain);
2560   } else {
2561     const Value *IRGuard = TLI.getSDagStackGuard(M);
2562     SDValue GuardPtr = getValue(IRGuard);
2563 
2564     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2565                         MachinePointerInfo(IRGuard, 0), Align,
2566                         MachineMemOperand::MOVolatile);
2567   }
2568 
2569   // Perform the comparison via a subtract/getsetcc.
2570   EVT VT = Guard.getValueType();
2571   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2572 
2573   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2574                                                         *DAG.getContext(),
2575                                                         Sub.getValueType()),
2576                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2577 
2578   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579   // branch to failure MBB.
2580   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581                                MVT::Other, GuardVal.getOperand(0),
2582                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583   // Otherwise branch to success MBB.
2584   SDValue Br = DAG.getNode(ISD::BR, dl,
2585                            MVT::Other, BrCond,
2586                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2587 
2588   DAG.setRoot(Br);
2589 }
2590 
2591 /// Codegen the failure basic block for a stack protector check.
2592 ///
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2595 ///
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602   TargetLowering::MakeLibCallOptions CallOptions;
2603   CallOptions.setDiscardResult(true);
2604   SDValue Chain =
2605       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2606                       None, CallOptions, getCurSDLoc()).second;
2607   // On PS4, the "return address" must still be within the calling function,
2608   // even if it's at the very end, so emit an explicit TRAP here.
2609   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610   if (TM.getTargetTriple().isPS4CPU())
2611     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2612 
2613   DAG.setRoot(Chain);
2614 }
2615 
2616 /// visitBitTestHeader - This function emits necessary code to produce value
2617 /// suitable for "bit tests"
2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2619                                              MachineBasicBlock *SwitchBB) {
2620   SDLoc dl = getCurSDLoc();
2621 
2622   // Subtract the minimum value.
2623   SDValue SwitchOp = getValue(B.SValue);
2624   EVT VT = SwitchOp.getValueType();
2625   SDValue RangeSub =
2626       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2627 
2628   // Determine the type of the test operands.
2629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630   bool UsePtrType = false;
2631   if (!TLI.isTypeLegal(VT)) {
2632     UsePtrType = true;
2633   } else {
2634     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2635       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2636         // Switch table case range are encoded into series of masks.
2637         // Just use pointer type, it's guaranteed to fit.
2638         UsePtrType = true;
2639         break;
2640       }
2641   }
2642   SDValue Sub = RangeSub;
2643   if (UsePtrType) {
2644     VT = TLI.getPointerTy(DAG.getDataLayout());
2645     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2646   }
2647 
2648   B.RegVT = VT.getSimpleVT();
2649   B.Reg = FuncInfo.CreateReg(B.RegVT);
2650   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2651 
2652   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2653 
2654   if (!B.OmitRangeCheck)
2655     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2656   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2657   SwitchBB->normalizeSuccProbs();
2658 
2659   SDValue Root = CopyTo;
2660   if (!B.OmitRangeCheck) {
2661     // Conditional branch to the default block.
2662     SDValue RangeCmp = DAG.getSetCC(dl,
2663         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2664                                RangeSub.getValueType()),
2665         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2666         ISD::SETUGT);
2667 
2668     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2669                        DAG.getBasicBlock(B.Default));
2670   }
2671 
2672   // Avoid emitting unnecessary branches to the next block.
2673   if (MBB != NextBlock(SwitchBB))
2674     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2675 
2676   DAG.setRoot(Root);
2677 }
2678 
2679 /// visitBitTestCase - this function produces one "bit test"
2680 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2681                                            MachineBasicBlock* NextMBB,
2682                                            BranchProbability BranchProbToNext,
2683                                            unsigned Reg,
2684                                            BitTestCase &B,
2685                                            MachineBasicBlock *SwitchBB) {
2686   SDLoc dl = getCurSDLoc();
2687   MVT VT = BB.RegVT;
2688   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2689   SDValue Cmp;
2690   unsigned PopCount = countPopulation(B.Mask);
2691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2692   if (PopCount == 1) {
2693     // Testing for a single bit; just compare the shift count with what it
2694     // would need to be to shift a 1 bit in that position.
2695     Cmp = DAG.getSetCC(
2696         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2697         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2698         ISD::SETEQ);
2699   } else if (PopCount == BB.Range) {
2700     // There is only one zero bit in the range, test for it directly.
2701     Cmp = DAG.getSetCC(
2702         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2703         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2704         ISD::SETNE);
2705   } else {
2706     // Make desired shift
2707     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2708                                     DAG.getConstant(1, dl, VT), ShiftOp);
2709 
2710     // Emit bit tests and jumps
2711     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2712                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2713     Cmp = DAG.getSetCC(
2714         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2715         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2716   }
2717 
2718   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2719   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2720   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2721   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2722   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2723   // one as they are relative probabilities (and thus work more like weights),
2724   // and hence we need to normalize them to let the sum of them become one.
2725   SwitchBB->normalizeSuccProbs();
2726 
2727   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2728                               MVT::Other, getControlRoot(),
2729                               Cmp, DAG.getBasicBlock(B.TargetBB));
2730 
2731   // Avoid emitting unnecessary branches to the next block.
2732   if (NextMBB != NextBlock(SwitchBB))
2733     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2734                         DAG.getBasicBlock(NextMBB));
2735 
2736   DAG.setRoot(BrAnd);
2737 }
2738 
2739 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2740   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2741 
2742   // Retrieve successors. Look through artificial IR level blocks like
2743   // catchswitch for successors.
2744   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2745   const BasicBlock *EHPadBB = I.getSuccessor(1);
2746 
2747   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2748   // have to do anything here to lower funclet bundles.
2749   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2750                                         LLVMContext::OB_funclet,
2751                                         LLVMContext::OB_cfguardtarget}) &&
2752          "Cannot lower invokes with arbitrary operand bundles yet!");
2753 
2754   const Value *Callee(I.getCalledValue());
2755   const Function *Fn = dyn_cast<Function>(Callee);
2756   if (isa<InlineAsm>(Callee))
2757     visitInlineAsm(&I);
2758   else if (Fn && Fn->isIntrinsic()) {
2759     switch (Fn->getIntrinsicID()) {
2760     default:
2761       llvm_unreachable("Cannot invoke this intrinsic");
2762     case Intrinsic::donothing:
2763       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2764       break;
2765     case Intrinsic::experimental_patchpoint_void:
2766     case Intrinsic::experimental_patchpoint_i64:
2767       visitPatchpoint(&I, EHPadBB);
2768       break;
2769     case Intrinsic::experimental_gc_statepoint:
2770       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2771       break;
2772     case Intrinsic::wasm_rethrow_in_catch: {
2773       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2774       // special because it can be invoked, so we manually lower it to a DAG
2775       // node here.
2776       SmallVector<SDValue, 8> Ops;
2777       Ops.push_back(getRoot()); // inchain
2778       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2779       Ops.push_back(
2780           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2781                                 TLI.getPointerTy(DAG.getDataLayout())));
2782       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2783       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2784       break;
2785     }
2786     }
2787   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2788     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2789     // Eventually we will support lowering the @llvm.experimental.deoptimize
2790     // intrinsic, and right now there are no plans to support other intrinsics
2791     // with deopt state.
2792     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2793   } else {
2794     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2795   }
2796 
2797   // If the value of the invoke is used outside of its defining block, make it
2798   // available as a virtual register.
2799   // We already took care of the exported value for the statepoint instruction
2800   // during call to the LowerStatepoint.
2801   if (!isStatepoint(I)) {
2802     CopyToExportRegsIfNeeded(&I);
2803   }
2804 
2805   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2806   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2807   BranchProbability EHPadBBProb =
2808       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2809           : BranchProbability::getZero();
2810   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2811 
2812   // Update successor info.
2813   addSuccessorWithProb(InvokeMBB, Return);
2814   for (auto &UnwindDest : UnwindDests) {
2815     UnwindDest.first->setIsEHPad();
2816     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2817   }
2818   InvokeMBB->normalizeSuccProbs();
2819 
2820   // Drop into normal successor.
2821   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2822                           DAG.getBasicBlock(Return)));
2823 }
2824 
2825 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2826   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2827 
2828   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2829   // have to do anything here to lower funclet bundles.
2830   assert(!I.hasOperandBundlesOtherThan(
2831              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2832          "Cannot lower callbrs with arbitrary operand bundles yet!");
2833 
2834   assert(isa<InlineAsm>(I.getCalledValue()) &&
2835          "Only know how to handle inlineasm callbr");
2836   visitInlineAsm(&I);
2837 
2838   // Retrieve successors.
2839   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2840 
2841   // Update successor info.
2842   addSuccessorWithProb(CallBrMBB, Return);
2843   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2844     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2845     addSuccessorWithProb(CallBrMBB, Target);
2846   }
2847   CallBrMBB->normalizeSuccProbs();
2848 
2849   // Drop into default successor.
2850   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2851                           MVT::Other, getControlRoot(),
2852                           DAG.getBasicBlock(Return)));
2853 }
2854 
2855 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2856   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2857 }
2858 
2859 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2860   assert(FuncInfo.MBB->isEHPad() &&
2861          "Call to landingpad not in landing pad!");
2862 
2863   // If there aren't registers to copy the values into (e.g., during SjLj
2864   // exceptions), then don't bother to create these DAG nodes.
2865   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2866   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2867   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2868       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2869     return;
2870 
2871   // If landingpad's return type is token type, we don't create DAG nodes
2872   // for its exception pointer and selector value. The extraction of exception
2873   // pointer or selector value from token type landingpads is not currently
2874   // supported.
2875   if (LP.getType()->isTokenTy())
2876     return;
2877 
2878   SmallVector<EVT, 2> ValueVTs;
2879   SDLoc dl = getCurSDLoc();
2880   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2881   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2882 
2883   // Get the two live-in registers as SDValues. The physregs have already been
2884   // copied into virtual registers.
2885   SDValue Ops[2];
2886   if (FuncInfo.ExceptionPointerVirtReg) {
2887     Ops[0] = DAG.getZExtOrTrunc(
2888         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2889                            FuncInfo.ExceptionPointerVirtReg,
2890                            TLI.getPointerTy(DAG.getDataLayout())),
2891         dl, ValueVTs[0]);
2892   } else {
2893     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2894   }
2895   Ops[1] = DAG.getZExtOrTrunc(
2896       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2897                          FuncInfo.ExceptionSelectorVirtReg,
2898                          TLI.getPointerTy(DAG.getDataLayout())),
2899       dl, ValueVTs[1]);
2900 
2901   // Merge into one.
2902   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2903                             DAG.getVTList(ValueVTs), Ops);
2904   setValue(&LP, Res);
2905 }
2906 
2907 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2908                                            MachineBasicBlock *Last) {
2909   // Update JTCases.
2910   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2911     if (SL->JTCases[i].first.HeaderBB == First)
2912       SL->JTCases[i].first.HeaderBB = Last;
2913 
2914   // Update BitTestCases.
2915   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2916     if (SL->BitTestCases[i].Parent == First)
2917       SL->BitTestCases[i].Parent = Last;
2918 }
2919 
2920 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2921   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2922 
2923   // Update machine-CFG edges with unique successors.
2924   SmallSet<BasicBlock*, 32> Done;
2925   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2926     BasicBlock *BB = I.getSuccessor(i);
2927     bool Inserted = Done.insert(BB).second;
2928     if (!Inserted)
2929         continue;
2930 
2931     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2932     addSuccessorWithProb(IndirectBrMBB, Succ);
2933   }
2934   IndirectBrMBB->normalizeSuccProbs();
2935 
2936   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2937                           MVT::Other, getControlRoot(),
2938                           getValue(I.getAddress())));
2939 }
2940 
2941 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2942   if (!DAG.getTarget().Options.TrapUnreachable)
2943     return;
2944 
2945   // We may be able to ignore unreachable behind a noreturn call.
2946   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2947     const BasicBlock &BB = *I.getParent();
2948     if (&I != &BB.front()) {
2949       BasicBlock::const_iterator PredI =
2950         std::prev(BasicBlock::const_iterator(&I));
2951       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2952         if (Call->doesNotReturn())
2953           return;
2954       }
2955     }
2956   }
2957 
2958   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2959 }
2960 
2961 void SelectionDAGBuilder::visitFSub(const User &I) {
2962   // -0.0 - X --> fneg
2963   Type *Ty = I.getType();
2964   if (isa<Constant>(I.getOperand(0)) &&
2965       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2966     SDValue Op2 = getValue(I.getOperand(1));
2967     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2968                              Op2.getValueType(), Op2));
2969     return;
2970   }
2971 
2972   visitBinary(I, ISD::FSUB);
2973 }
2974 
2975 /// Checks if the given instruction performs a vector reduction, in which case
2976 /// we have the freedom to alter the elements in the result as long as the
2977 /// reduction of them stays unchanged.
2978 static bool isVectorReductionOp(const User *I) {
2979   const Instruction *Inst = dyn_cast<Instruction>(I);
2980   if (!Inst || !Inst->getType()->isVectorTy())
2981     return false;
2982 
2983   auto OpCode = Inst->getOpcode();
2984   switch (OpCode) {
2985   case Instruction::Add:
2986   case Instruction::Mul:
2987   case Instruction::And:
2988   case Instruction::Or:
2989   case Instruction::Xor:
2990     break;
2991   case Instruction::FAdd:
2992   case Instruction::FMul:
2993     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2994       if (FPOp->getFastMathFlags().isFast())
2995         break;
2996     LLVM_FALLTHROUGH;
2997   default:
2998     return false;
2999   }
3000 
3001   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3002   // Ensure the reduction size is a power of 2.
3003   if (!isPowerOf2_32(ElemNum))
3004     return false;
3005 
3006   unsigned ElemNumToReduce = ElemNum;
3007 
3008   // Do DFS search on the def-use chain from the given instruction. We only
3009   // allow four kinds of operations during the search until we reach the
3010   // instruction that extracts the first element from the vector:
3011   //
3012   //   1. The reduction operation of the same opcode as the given instruction.
3013   //
3014   //   2. PHI node.
3015   //
3016   //   3. ShuffleVector instruction together with a reduction operation that
3017   //      does a partial reduction.
3018   //
3019   //   4. ExtractElement that extracts the first element from the vector, and we
3020   //      stop searching the def-use chain here.
3021   //
3022   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3023   // from 1-3 to the stack to continue the DFS. The given instruction is not
3024   // a reduction operation if we meet any other instructions other than those
3025   // listed above.
3026 
3027   SmallVector<const User *, 16> UsersToVisit{Inst};
3028   SmallPtrSet<const User *, 16> Visited;
3029   bool ReduxExtracted = false;
3030 
3031   while (!UsersToVisit.empty()) {
3032     auto User = UsersToVisit.back();
3033     UsersToVisit.pop_back();
3034     if (!Visited.insert(User).second)
3035       continue;
3036 
3037     for (const auto &U : User->users()) {
3038       auto Inst = dyn_cast<Instruction>(U);
3039       if (!Inst)
3040         return false;
3041 
3042       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3043         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3044           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3045             return false;
3046         UsersToVisit.push_back(U);
3047       } else if (const ShuffleVectorInst *ShufInst =
3048                      dyn_cast<ShuffleVectorInst>(U)) {
3049         // Detect the following pattern: A ShuffleVector instruction together
3050         // with a reduction that do partial reduction on the first and second
3051         // ElemNumToReduce / 2 elements, and store the result in
3052         // ElemNumToReduce / 2 elements in another vector.
3053 
3054         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3055         if (ResultElements < ElemNum)
3056           return false;
3057 
3058         if (ElemNumToReduce == 1)
3059           return false;
3060         if (!isa<UndefValue>(U->getOperand(1)))
3061           return false;
3062         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3063           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3064             return false;
3065         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3066           if (ShufInst->getMaskValue(i) != -1)
3067             return false;
3068 
3069         // There is only one user of this ShuffleVector instruction, which
3070         // must be a reduction operation.
3071         if (!U->hasOneUse())
3072           return false;
3073 
3074         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3075         if (!U2 || U2->getOpcode() != OpCode)
3076           return false;
3077 
3078         // Check operands of the reduction operation.
3079         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3080             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3081           UsersToVisit.push_back(U2);
3082           ElemNumToReduce /= 2;
3083         } else
3084           return false;
3085       } else if (isa<ExtractElementInst>(U)) {
3086         // At this moment we should have reduced all elements in the vector.
3087         if (ElemNumToReduce != 1)
3088           return false;
3089 
3090         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3091         if (!Val || !Val->isZero())
3092           return false;
3093 
3094         ReduxExtracted = true;
3095       } else
3096         return false;
3097     }
3098   }
3099   return ReduxExtracted;
3100 }
3101 
3102 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3103   SDNodeFlags Flags;
3104 
3105   SDValue Op = getValue(I.getOperand(0));
3106   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3107                                     Op, Flags);
3108   setValue(&I, UnNodeValue);
3109 }
3110 
3111 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3112   SDNodeFlags Flags;
3113   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3114     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3115     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3116   }
3117   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3118     Flags.setExact(ExactOp->isExact());
3119   }
3120   if (isVectorReductionOp(&I)) {
3121     Flags.setVectorReduction(true);
3122     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3123   }
3124 
3125   SDValue Op1 = getValue(I.getOperand(0));
3126   SDValue Op2 = getValue(I.getOperand(1));
3127   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3128                                      Op1, Op2, Flags);
3129   setValue(&I, BinNodeValue);
3130 }
3131 
3132 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3133   SDValue Op1 = getValue(I.getOperand(0));
3134   SDValue Op2 = getValue(I.getOperand(1));
3135 
3136   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3137       Op1.getValueType(), DAG.getDataLayout());
3138 
3139   // Coerce the shift amount to the right type if we can.
3140   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3141     unsigned ShiftSize = ShiftTy.getSizeInBits();
3142     unsigned Op2Size = Op2.getValueSizeInBits();
3143     SDLoc DL = getCurSDLoc();
3144 
3145     // If the operand is smaller than the shift count type, promote it.
3146     if (ShiftSize > Op2Size)
3147       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3148 
3149     // If the operand is larger than the shift count type but the shift
3150     // count type has enough bits to represent any shift value, truncate
3151     // it now. This is a common case and it exposes the truncate to
3152     // optimization early.
3153     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3154       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3155     // Otherwise we'll need to temporarily settle for some other convenient
3156     // type.  Type legalization will make adjustments once the shiftee is split.
3157     else
3158       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3159   }
3160 
3161   bool nuw = false;
3162   bool nsw = false;
3163   bool exact = false;
3164 
3165   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3166 
3167     if (const OverflowingBinaryOperator *OFBinOp =
3168             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3169       nuw = OFBinOp->hasNoUnsignedWrap();
3170       nsw = OFBinOp->hasNoSignedWrap();
3171     }
3172     if (const PossiblyExactOperator *ExactOp =
3173             dyn_cast<const PossiblyExactOperator>(&I))
3174       exact = ExactOp->isExact();
3175   }
3176   SDNodeFlags Flags;
3177   Flags.setExact(exact);
3178   Flags.setNoSignedWrap(nsw);
3179   Flags.setNoUnsignedWrap(nuw);
3180   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3181                             Flags);
3182   setValue(&I, Res);
3183 }
3184 
3185 void SelectionDAGBuilder::visitSDiv(const User &I) {
3186   SDValue Op1 = getValue(I.getOperand(0));
3187   SDValue Op2 = getValue(I.getOperand(1));
3188 
3189   SDNodeFlags Flags;
3190   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3191                  cast<PossiblyExactOperator>(&I)->isExact());
3192   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3193                            Op2, Flags));
3194 }
3195 
3196 void SelectionDAGBuilder::visitICmp(const User &I) {
3197   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3198   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3199     predicate = IC->getPredicate();
3200   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3201     predicate = ICmpInst::Predicate(IC->getPredicate());
3202   SDValue Op1 = getValue(I.getOperand(0));
3203   SDValue Op2 = getValue(I.getOperand(1));
3204   ISD::CondCode Opcode = getICmpCondCode(predicate);
3205 
3206   auto &TLI = DAG.getTargetLoweringInfo();
3207   EVT MemVT =
3208       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3209 
3210   // If a pointer's DAG type is larger than its memory type then the DAG values
3211   // are zero-extended. This breaks signed comparisons so truncate back to the
3212   // underlying type before doing the compare.
3213   if (Op1.getValueType() != MemVT) {
3214     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3215     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3216   }
3217 
3218   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3219                                                         I.getType());
3220   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3221 }
3222 
3223 void SelectionDAGBuilder::visitFCmp(const User &I) {
3224   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3225   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3226     predicate = FC->getPredicate();
3227   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3228     predicate = FCmpInst::Predicate(FC->getPredicate());
3229   SDValue Op1 = getValue(I.getOperand(0));
3230   SDValue Op2 = getValue(I.getOperand(1));
3231 
3232   ISD::CondCode Condition = getFCmpCondCode(predicate);
3233   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3234   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3235     Condition = getFCmpCodeWithoutNaN(Condition);
3236 
3237   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3238                                                         I.getType());
3239   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3240 }
3241 
3242 // Check if the condition of the select has one use or two users that are both
3243 // selects with the same condition.
3244 static bool hasOnlySelectUsers(const Value *Cond) {
3245   return llvm::all_of(Cond->users(), [](const Value *V) {
3246     return isa<SelectInst>(V);
3247   });
3248 }
3249 
3250 void SelectionDAGBuilder::visitSelect(const User &I) {
3251   SmallVector<EVT, 4> ValueVTs;
3252   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3253                   ValueVTs);
3254   unsigned NumValues = ValueVTs.size();
3255   if (NumValues == 0) return;
3256 
3257   SmallVector<SDValue, 4> Values(NumValues);
3258   SDValue Cond     = getValue(I.getOperand(0));
3259   SDValue LHSVal   = getValue(I.getOperand(1));
3260   SDValue RHSVal   = getValue(I.getOperand(2));
3261   auto BaseOps = {Cond};
3262   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3263     ISD::VSELECT : ISD::SELECT;
3264 
3265   bool IsUnaryAbs = false;
3266 
3267   // Min/max matching is only viable if all output VTs are the same.
3268   if (is_splat(ValueVTs)) {
3269     EVT VT = ValueVTs[0];
3270     LLVMContext &Ctx = *DAG.getContext();
3271     auto &TLI = DAG.getTargetLoweringInfo();
3272 
3273     // We care about the legality of the operation after it has been type
3274     // legalized.
3275     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3276       VT = TLI.getTypeToTransformTo(Ctx, VT);
3277 
3278     // If the vselect is legal, assume we want to leave this as a vector setcc +
3279     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3280     // min/max is legal on the scalar type.
3281     bool UseScalarMinMax = VT.isVector() &&
3282       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3283 
3284     Value *LHS, *RHS;
3285     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3286     ISD::NodeType Opc = ISD::DELETED_NODE;
3287     switch (SPR.Flavor) {
3288     case SPF_UMAX:    Opc = ISD::UMAX; break;
3289     case SPF_UMIN:    Opc = ISD::UMIN; break;
3290     case SPF_SMAX:    Opc = ISD::SMAX; break;
3291     case SPF_SMIN:    Opc = ISD::SMIN; break;
3292     case SPF_FMINNUM:
3293       switch (SPR.NaNBehavior) {
3294       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3295       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3296       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3297       case SPNB_RETURNS_ANY: {
3298         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3299           Opc = ISD::FMINNUM;
3300         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3301           Opc = ISD::FMINIMUM;
3302         else if (UseScalarMinMax)
3303           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3304             ISD::FMINNUM : ISD::FMINIMUM;
3305         break;
3306       }
3307       }
3308       break;
3309     case SPF_FMAXNUM:
3310       switch (SPR.NaNBehavior) {
3311       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3312       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3313       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3314       case SPNB_RETURNS_ANY:
3315 
3316         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3317           Opc = ISD::FMAXNUM;
3318         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3319           Opc = ISD::FMAXIMUM;
3320         else if (UseScalarMinMax)
3321           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3322             ISD::FMAXNUM : ISD::FMAXIMUM;
3323         break;
3324       }
3325       break;
3326     case SPF_ABS:
3327       IsUnaryAbs = true;
3328       Opc = ISD::ABS;
3329       break;
3330     case SPF_NABS:
3331       // TODO: we need to produce sub(0, abs(X)).
3332     default: break;
3333     }
3334 
3335     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3336         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3337          (UseScalarMinMax &&
3338           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3339         // If the underlying comparison instruction is used by any other
3340         // instruction, the consumed instructions won't be destroyed, so it is
3341         // not profitable to convert to a min/max.
3342         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3343       OpCode = Opc;
3344       LHSVal = getValue(LHS);
3345       RHSVal = getValue(RHS);
3346       BaseOps = {};
3347     }
3348 
3349     if (IsUnaryAbs) {
3350       OpCode = Opc;
3351       LHSVal = getValue(LHS);
3352       BaseOps = {};
3353     }
3354   }
3355 
3356   if (IsUnaryAbs) {
3357     for (unsigned i = 0; i != NumValues; ++i) {
3358       Values[i] =
3359           DAG.getNode(OpCode, getCurSDLoc(),
3360                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3361                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3362     }
3363   } else {
3364     for (unsigned i = 0; i != NumValues; ++i) {
3365       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3366       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3367       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3368       Values[i] = DAG.getNode(
3369           OpCode, getCurSDLoc(),
3370           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3371     }
3372   }
3373 
3374   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3375                            DAG.getVTList(ValueVTs), Values));
3376 }
3377 
3378 void SelectionDAGBuilder::visitTrunc(const User &I) {
3379   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3380   SDValue N = getValue(I.getOperand(0));
3381   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3382                                                         I.getType());
3383   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3384 }
3385 
3386 void SelectionDAGBuilder::visitZExt(const User &I) {
3387   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3388   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3389   SDValue N = getValue(I.getOperand(0));
3390   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3391                                                         I.getType());
3392   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3393 }
3394 
3395 void SelectionDAGBuilder::visitSExt(const User &I) {
3396   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3397   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3398   SDValue N = getValue(I.getOperand(0));
3399   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3400                                                         I.getType());
3401   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3402 }
3403 
3404 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3405   // FPTrunc is never a no-op cast, no need to check
3406   SDValue N = getValue(I.getOperand(0));
3407   SDLoc dl = getCurSDLoc();
3408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3409   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3410   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3411                            DAG.getTargetConstant(
3412                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3413 }
3414 
3415 void SelectionDAGBuilder::visitFPExt(const User &I) {
3416   // FPExt is never a no-op cast, no need to check
3417   SDValue N = getValue(I.getOperand(0));
3418   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3419                                                         I.getType());
3420   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3421 }
3422 
3423 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3424   // FPToUI is never a no-op cast, no need to check
3425   SDValue N = getValue(I.getOperand(0));
3426   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3427                                                         I.getType());
3428   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3429 }
3430 
3431 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3432   // FPToSI is never a no-op cast, no need to check
3433   SDValue N = getValue(I.getOperand(0));
3434   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3435                                                         I.getType());
3436   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3437 }
3438 
3439 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3440   // UIToFP is never a no-op cast, no need to check
3441   SDValue N = getValue(I.getOperand(0));
3442   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3443                                                         I.getType());
3444   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3445 }
3446 
3447 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3448   // SIToFP is never a no-op cast, no need to check
3449   SDValue N = getValue(I.getOperand(0));
3450   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3451                                                         I.getType());
3452   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3453 }
3454 
3455 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3456   // What to do depends on the size of the integer and the size of the pointer.
3457   // We can either truncate, zero extend, or no-op, accordingly.
3458   SDValue N = getValue(I.getOperand(0));
3459   auto &TLI = DAG.getTargetLoweringInfo();
3460   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3461                                                         I.getType());
3462   EVT PtrMemVT =
3463       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3464   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3465   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3466   setValue(&I, N);
3467 }
3468 
3469 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3470   // What to do depends on the size of the integer and the size of the pointer.
3471   // We can either truncate, zero extend, or no-op, accordingly.
3472   SDValue N = getValue(I.getOperand(0));
3473   auto &TLI = DAG.getTargetLoweringInfo();
3474   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3475   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3476   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3477   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3478   setValue(&I, N);
3479 }
3480 
3481 void SelectionDAGBuilder::visitBitCast(const User &I) {
3482   SDValue N = getValue(I.getOperand(0));
3483   SDLoc dl = getCurSDLoc();
3484   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3485                                                         I.getType());
3486 
3487   // BitCast assures us that source and destination are the same size so this is
3488   // either a BITCAST or a no-op.
3489   if (DestVT != N.getValueType())
3490     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3491                              DestVT, N)); // convert types.
3492   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3493   // might fold any kind of constant expression to an integer constant and that
3494   // is not what we are looking for. Only recognize a bitcast of a genuine
3495   // constant integer as an opaque constant.
3496   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3497     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3498                                  /*isOpaque*/true));
3499   else
3500     setValue(&I, N);            // noop cast.
3501 }
3502 
3503 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3505   const Value *SV = I.getOperand(0);
3506   SDValue N = getValue(SV);
3507   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3508 
3509   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3510   unsigned DestAS = I.getType()->getPointerAddressSpace();
3511 
3512   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3513     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3514 
3515   setValue(&I, N);
3516 }
3517 
3518 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3520   SDValue InVec = getValue(I.getOperand(0));
3521   SDValue InVal = getValue(I.getOperand(1));
3522   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3523                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3524   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3525                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3526                            InVec, InVal, InIdx));
3527 }
3528 
3529 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3531   SDValue InVec = getValue(I.getOperand(0));
3532   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3533                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3534   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3535                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3536                            InVec, InIdx));
3537 }
3538 
3539 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3540   SDValue Src1 = getValue(I.getOperand(0));
3541   SDValue Src2 = getValue(I.getOperand(1));
3542   Constant *MaskV = cast<Constant>(I.getOperand(2));
3543   SDLoc DL = getCurSDLoc();
3544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3545   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3546   EVT SrcVT = Src1.getValueType();
3547   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3548 
3549   if (MaskV->isNullValue() && VT.isScalableVector()) {
3550     // Canonical splat form of first element of first input vector.
3551     SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3552                                    SrcVT.getScalarType(), Src1,
3553                                    DAG.getConstant(0, DL,
3554                                    TLI.getVectorIdxTy(DAG.getDataLayout())));
3555     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3556     return;
3557   }
3558 
3559   // For now, we only handle splats for scalable vectors.
3560   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3561   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3562   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3563 
3564   SmallVector<int, 8> Mask;
3565   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3566   unsigned MaskNumElts = Mask.size();
3567 
3568   if (SrcNumElts == MaskNumElts) {
3569     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3570     return;
3571   }
3572 
3573   // Normalize the shuffle vector since mask and vector length don't match.
3574   if (SrcNumElts < MaskNumElts) {
3575     // Mask is longer than the source vectors. We can use concatenate vector to
3576     // make the mask and vectors lengths match.
3577 
3578     if (MaskNumElts % SrcNumElts == 0) {
3579       // Mask length is a multiple of the source vector length.
3580       // Check if the shuffle is some kind of concatenation of the input
3581       // vectors.
3582       unsigned NumConcat = MaskNumElts / SrcNumElts;
3583       bool IsConcat = true;
3584       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3585       for (unsigned i = 0; i != MaskNumElts; ++i) {
3586         int Idx = Mask[i];
3587         if (Idx < 0)
3588           continue;
3589         // Ensure the indices in each SrcVT sized piece are sequential and that
3590         // the same source is used for the whole piece.
3591         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3592             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3593              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3594           IsConcat = false;
3595           break;
3596         }
3597         // Remember which source this index came from.
3598         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3599       }
3600 
3601       // The shuffle is concatenating multiple vectors together. Just emit
3602       // a CONCAT_VECTORS operation.
3603       if (IsConcat) {
3604         SmallVector<SDValue, 8> ConcatOps;
3605         for (auto Src : ConcatSrcs) {
3606           if (Src < 0)
3607             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3608           else if (Src == 0)
3609             ConcatOps.push_back(Src1);
3610           else
3611             ConcatOps.push_back(Src2);
3612         }
3613         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3614         return;
3615       }
3616     }
3617 
3618     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3619     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3620     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3621                                     PaddedMaskNumElts);
3622 
3623     // Pad both vectors with undefs to make them the same length as the mask.
3624     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3625 
3626     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3627     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3628     MOps1[0] = Src1;
3629     MOps2[0] = Src2;
3630 
3631     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3632     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3633 
3634     // Readjust mask for new input vector length.
3635     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3636     for (unsigned i = 0; i != MaskNumElts; ++i) {
3637       int Idx = Mask[i];
3638       if (Idx >= (int)SrcNumElts)
3639         Idx -= SrcNumElts - PaddedMaskNumElts;
3640       MappedOps[i] = Idx;
3641     }
3642 
3643     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3644 
3645     // If the concatenated vector was padded, extract a subvector with the
3646     // correct number of elements.
3647     if (MaskNumElts != PaddedMaskNumElts)
3648       Result = DAG.getNode(
3649           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3650           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3651 
3652     setValue(&I, Result);
3653     return;
3654   }
3655 
3656   if (SrcNumElts > MaskNumElts) {
3657     // Analyze the access pattern of the vector to see if we can extract
3658     // two subvectors and do the shuffle.
3659     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3660     bool CanExtract = true;
3661     for (int Idx : Mask) {
3662       unsigned Input = 0;
3663       if (Idx < 0)
3664         continue;
3665 
3666       if (Idx >= (int)SrcNumElts) {
3667         Input = 1;
3668         Idx -= SrcNumElts;
3669       }
3670 
3671       // If all the indices come from the same MaskNumElts sized portion of
3672       // the sources we can use extract. Also make sure the extract wouldn't
3673       // extract past the end of the source.
3674       int NewStartIdx = alignDown(Idx, MaskNumElts);
3675       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3676           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3677         CanExtract = false;
3678       // Make sure we always update StartIdx as we use it to track if all
3679       // elements are undef.
3680       StartIdx[Input] = NewStartIdx;
3681     }
3682 
3683     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3684       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3685       return;
3686     }
3687     if (CanExtract) {
3688       // Extract appropriate subvector and generate a vector shuffle
3689       for (unsigned Input = 0; Input < 2; ++Input) {
3690         SDValue &Src = Input == 0 ? Src1 : Src2;
3691         if (StartIdx[Input] < 0)
3692           Src = DAG.getUNDEF(VT);
3693         else {
3694           Src = DAG.getNode(
3695               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3696               DAG.getConstant(StartIdx[Input], DL,
3697                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3698         }
3699       }
3700 
3701       // Calculate new mask.
3702       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3703       for (int &Idx : MappedOps) {
3704         if (Idx >= (int)SrcNumElts)
3705           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3706         else if (Idx >= 0)
3707           Idx -= StartIdx[0];
3708       }
3709 
3710       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3711       return;
3712     }
3713   }
3714 
3715   // We can't use either concat vectors or extract subvectors so fall back to
3716   // replacing the shuffle with extract and build vector.
3717   // to insert and build vector.
3718   EVT EltVT = VT.getVectorElementType();
3719   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3720   SmallVector<SDValue,8> Ops;
3721   for (int Idx : Mask) {
3722     SDValue Res;
3723 
3724     if (Idx < 0) {
3725       Res = DAG.getUNDEF(EltVT);
3726     } else {
3727       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3728       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3729 
3730       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3731                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3732     }
3733 
3734     Ops.push_back(Res);
3735   }
3736 
3737   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3738 }
3739 
3740 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3741   ArrayRef<unsigned> Indices;
3742   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3743     Indices = IV->getIndices();
3744   else
3745     Indices = cast<ConstantExpr>(&I)->getIndices();
3746 
3747   const Value *Op0 = I.getOperand(0);
3748   const Value *Op1 = I.getOperand(1);
3749   Type *AggTy = I.getType();
3750   Type *ValTy = Op1->getType();
3751   bool IntoUndef = isa<UndefValue>(Op0);
3752   bool FromUndef = isa<UndefValue>(Op1);
3753 
3754   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3755 
3756   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3757   SmallVector<EVT, 4> AggValueVTs;
3758   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3759   SmallVector<EVT, 4> ValValueVTs;
3760   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3761 
3762   unsigned NumAggValues = AggValueVTs.size();
3763   unsigned NumValValues = ValValueVTs.size();
3764   SmallVector<SDValue, 4> Values(NumAggValues);
3765 
3766   // Ignore an insertvalue that produces an empty object
3767   if (!NumAggValues) {
3768     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3769     return;
3770   }
3771 
3772   SDValue Agg = getValue(Op0);
3773   unsigned i = 0;
3774   // Copy the beginning value(s) from the original aggregate.
3775   for (; i != LinearIndex; ++i)
3776     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3777                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3778   // Copy values from the inserted value(s).
3779   if (NumValValues) {
3780     SDValue Val = getValue(Op1);
3781     for (; i != LinearIndex + NumValValues; ++i)
3782       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3783                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3784   }
3785   // Copy remaining value(s) from the original aggregate.
3786   for (; i != NumAggValues; ++i)
3787     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3788                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3789 
3790   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3791                            DAG.getVTList(AggValueVTs), Values));
3792 }
3793 
3794 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3795   ArrayRef<unsigned> Indices;
3796   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3797     Indices = EV->getIndices();
3798   else
3799     Indices = cast<ConstantExpr>(&I)->getIndices();
3800 
3801   const Value *Op0 = I.getOperand(0);
3802   Type *AggTy = Op0->getType();
3803   Type *ValTy = I.getType();
3804   bool OutOfUndef = isa<UndefValue>(Op0);
3805 
3806   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3807 
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809   SmallVector<EVT, 4> ValValueVTs;
3810   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3811 
3812   unsigned NumValValues = ValValueVTs.size();
3813 
3814   // Ignore a extractvalue that produces an empty object
3815   if (!NumValValues) {
3816     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3817     return;
3818   }
3819 
3820   SmallVector<SDValue, 4> Values(NumValValues);
3821 
3822   SDValue Agg = getValue(Op0);
3823   // Copy out the selected value(s).
3824   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3825     Values[i - LinearIndex] =
3826       OutOfUndef ?
3827         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3828         SDValue(Agg.getNode(), Agg.getResNo() + i);
3829 
3830   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3831                            DAG.getVTList(ValValueVTs), Values));
3832 }
3833 
3834 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3835   Value *Op0 = I.getOperand(0);
3836   // Note that the pointer operand may be a vector of pointers. Take the scalar
3837   // element which holds a pointer.
3838   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3839   SDValue N = getValue(Op0);
3840   SDLoc dl = getCurSDLoc();
3841   auto &TLI = DAG.getTargetLoweringInfo();
3842   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3843   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3844 
3845   // Normalize Vector GEP - all scalar operands should be converted to the
3846   // splat vector.
3847   unsigned VectorWidth = I.getType()->isVectorTy() ?
3848     I.getType()->getVectorNumElements() : 0;
3849 
3850   if (VectorWidth && !N.getValueType().isVector()) {
3851     LLVMContext &Context = *DAG.getContext();
3852     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3853     N = DAG.getSplatBuildVector(VT, dl, N);
3854   }
3855 
3856   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3857        GTI != E; ++GTI) {
3858     const Value *Idx = GTI.getOperand();
3859     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3860       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3861       if (Field) {
3862         // N = N + Offset
3863         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3864 
3865         // In an inbounds GEP with an offset that is nonnegative even when
3866         // interpreted as signed, assume there is no unsigned overflow.
3867         SDNodeFlags Flags;
3868         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3869           Flags.setNoUnsignedWrap(true);
3870 
3871         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3872                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3873       }
3874     } else {
3875       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3876       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3877       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3878 
3879       // If this is a scalar constant or a splat vector of constants,
3880       // handle it quickly.
3881       const auto *C = dyn_cast<Constant>(Idx);
3882       if (C && isa<VectorType>(C->getType()))
3883         C = C->getSplatValue();
3884 
3885       if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3886         if (CI->isZero())
3887           continue;
3888         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3889         LLVMContext &Context = *DAG.getContext();
3890         SDValue OffsVal = VectorWidth ?
3891           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3892           DAG.getConstant(Offs, dl, IdxTy);
3893 
3894         // In an inbounds GEP with an offset that is nonnegative even when
3895         // interpreted as signed, assume there is no unsigned overflow.
3896         SDNodeFlags Flags;
3897         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3898           Flags.setNoUnsignedWrap(true);
3899 
3900         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3901 
3902         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3903         continue;
3904       }
3905 
3906       // N = N + Idx * ElementSize;
3907       SDValue IdxN = getValue(Idx);
3908 
3909       if (!IdxN.getValueType().isVector() && VectorWidth) {
3910         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3911         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3912       }
3913 
3914       // If the index is smaller or larger than intptr_t, truncate or extend
3915       // it.
3916       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3917 
3918       // If this is a multiply by a power of two, turn it into a shl
3919       // immediately.  This is a very common case.
3920       if (ElementSize != 1) {
3921         if (ElementSize.isPowerOf2()) {
3922           unsigned Amt = ElementSize.logBase2();
3923           IdxN = DAG.getNode(ISD::SHL, dl,
3924                              N.getValueType(), IdxN,
3925                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3926         } else {
3927           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3928                                           IdxN.getValueType());
3929           IdxN = DAG.getNode(ISD::MUL, dl,
3930                              N.getValueType(), IdxN, Scale);
3931         }
3932       }
3933 
3934       N = DAG.getNode(ISD::ADD, dl,
3935                       N.getValueType(), N, IdxN);
3936     }
3937   }
3938 
3939   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3940     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3941 
3942   setValue(&I, N);
3943 }
3944 
3945 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3946   // If this is a fixed sized alloca in the entry block of the function,
3947   // allocate it statically on the stack.
3948   if (FuncInfo.StaticAllocaMap.count(&I))
3949     return;   // getValue will auto-populate this.
3950 
3951   SDLoc dl = getCurSDLoc();
3952   Type *Ty = I.getAllocatedType();
3953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3954   auto &DL = DAG.getDataLayout();
3955   uint64_t TySize = DL.getTypeAllocSize(Ty);
3956   unsigned Align =
3957       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3958 
3959   SDValue AllocSize = getValue(I.getArraySize());
3960 
3961   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3962   if (AllocSize.getValueType() != IntPtr)
3963     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3964 
3965   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3966                           AllocSize,
3967                           DAG.getConstant(TySize, dl, IntPtr));
3968 
3969   // Handle alignment.  If the requested alignment is less than or equal to
3970   // the stack alignment, ignore it.  If the size is greater than or equal to
3971   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3972   unsigned StackAlign =
3973       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3974   if (Align <= StackAlign)
3975     Align = 0;
3976 
3977   // Round the size of the allocation up to the stack alignment size
3978   // by add SA-1 to the size. This doesn't overflow because we're computing
3979   // an address inside an alloca.
3980   SDNodeFlags Flags;
3981   Flags.setNoUnsignedWrap(true);
3982   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3983                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3984 
3985   // Mask out the low bits for alignment purposes.
3986   AllocSize =
3987       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3988                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3989 
3990   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3991   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3992   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3993   setValue(&I, DSA);
3994   DAG.setRoot(DSA.getValue(1));
3995 
3996   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3997 }
3998 
3999 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4000   if (I.isAtomic())
4001     return visitAtomicLoad(I);
4002 
4003   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4004   const Value *SV = I.getOperand(0);
4005   if (TLI.supportSwiftError()) {
4006     // Swifterror values can come from either a function parameter with
4007     // swifterror attribute or an alloca with swifterror attribute.
4008     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4009       if (Arg->hasSwiftErrorAttr())
4010         return visitLoadFromSwiftError(I);
4011     }
4012 
4013     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4014       if (Alloca->isSwiftError())
4015         return visitLoadFromSwiftError(I);
4016     }
4017   }
4018 
4019   SDValue Ptr = getValue(SV);
4020 
4021   Type *Ty = I.getType();
4022 
4023   bool isVolatile = I.isVolatile();
4024   bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4025   bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4026   bool isDereferenceable =
4027       isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4028   unsigned Alignment = I.getAlignment();
4029 
4030   AAMDNodes AAInfo;
4031   I.getAAMetadata(AAInfo);
4032   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4033 
4034   SmallVector<EVT, 4> ValueVTs, MemVTs;
4035   SmallVector<uint64_t, 4> Offsets;
4036   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4037   unsigned NumValues = ValueVTs.size();
4038   if (NumValues == 0)
4039     return;
4040 
4041   SDValue Root;
4042   bool ConstantMemory = false;
4043   if (isVolatile || NumValues > MaxParallelChains)
4044     // Serialize volatile loads with other side effects.
4045     Root = getRoot();
4046   else if (AA &&
4047            AA->pointsToConstantMemory(MemoryLocation(
4048                SV,
4049                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4050                AAInfo))) {
4051     // Do not serialize (non-volatile) loads of constant memory with anything.
4052     Root = DAG.getEntryNode();
4053     ConstantMemory = true;
4054   } else {
4055     // Do not serialize non-volatile loads against each other.
4056     Root = DAG.getRoot();
4057   }
4058 
4059   SDLoc dl = getCurSDLoc();
4060 
4061   if (isVolatile)
4062     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4063 
4064   // An aggregate load cannot wrap around the address space, so offsets to its
4065   // parts don't wrap either.
4066   SDNodeFlags Flags;
4067   Flags.setNoUnsignedWrap(true);
4068 
4069   SmallVector<SDValue, 4> Values(NumValues);
4070   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4071   EVT PtrVT = Ptr.getValueType();
4072   unsigned ChainI = 0;
4073   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4074     // Serializing loads here may result in excessive register pressure, and
4075     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4076     // could recover a bit by hoisting nodes upward in the chain by recognizing
4077     // they are side-effect free or do not alias. The optimizer should really
4078     // avoid this case by converting large object/array copies to llvm.memcpy
4079     // (MaxParallelChains should always remain as failsafe).
4080     if (ChainI == MaxParallelChains) {
4081       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4082       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4083                                   makeArrayRef(Chains.data(), ChainI));
4084       Root = Chain;
4085       ChainI = 0;
4086     }
4087     SDValue A = DAG.getNode(ISD::ADD, dl,
4088                             PtrVT, Ptr,
4089                             DAG.getConstant(Offsets[i], dl, PtrVT),
4090                             Flags);
4091     auto MMOFlags = MachineMemOperand::MONone;
4092     if (isVolatile)
4093       MMOFlags |= MachineMemOperand::MOVolatile;
4094     if (isNonTemporal)
4095       MMOFlags |= MachineMemOperand::MONonTemporal;
4096     if (isInvariant)
4097       MMOFlags |= MachineMemOperand::MOInvariant;
4098     if (isDereferenceable)
4099       MMOFlags |= MachineMemOperand::MODereferenceable;
4100     MMOFlags |= TLI.getMMOFlags(I);
4101 
4102     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4103                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4104                             MMOFlags, AAInfo, Ranges);
4105     Chains[ChainI] = L.getValue(1);
4106 
4107     if (MemVTs[i] != ValueVTs[i])
4108       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4109 
4110     Values[i] = L;
4111   }
4112 
4113   if (!ConstantMemory) {
4114     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4115                                 makeArrayRef(Chains.data(), ChainI));
4116     if (isVolatile)
4117       DAG.setRoot(Chain);
4118     else
4119       PendingLoads.push_back(Chain);
4120   }
4121 
4122   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4123                            DAG.getVTList(ValueVTs), Values));
4124 }
4125 
4126 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4127   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4128          "call visitStoreToSwiftError when backend supports swifterror");
4129 
4130   SmallVector<EVT, 4> ValueVTs;
4131   SmallVector<uint64_t, 4> Offsets;
4132   const Value *SrcV = I.getOperand(0);
4133   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4134                   SrcV->getType(), ValueVTs, &Offsets);
4135   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4136          "expect a single EVT for swifterror");
4137 
4138   SDValue Src = getValue(SrcV);
4139   // Create a virtual register, then update the virtual register.
4140   Register VReg =
4141       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4142   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4143   // Chain can be getRoot or getControlRoot.
4144   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4145                                       SDValue(Src.getNode(), Src.getResNo()));
4146   DAG.setRoot(CopyNode);
4147 }
4148 
4149 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4150   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4151          "call visitLoadFromSwiftError when backend supports swifterror");
4152 
4153   assert(!I.isVolatile() &&
4154          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4155          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4156          "Support volatile, non temporal, invariant for load_from_swift_error");
4157 
4158   const Value *SV = I.getOperand(0);
4159   Type *Ty = I.getType();
4160   AAMDNodes AAInfo;
4161   I.getAAMetadata(AAInfo);
4162   assert(
4163       (!AA ||
4164        !AA->pointsToConstantMemory(MemoryLocation(
4165            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4166            AAInfo))) &&
4167       "load_from_swift_error should not be constant memory");
4168 
4169   SmallVector<EVT, 4> ValueVTs;
4170   SmallVector<uint64_t, 4> Offsets;
4171   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4172                   ValueVTs, &Offsets);
4173   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4174          "expect a single EVT for swifterror");
4175 
4176   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4177   SDValue L = DAG.getCopyFromReg(
4178       getRoot(), getCurSDLoc(),
4179       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4180 
4181   setValue(&I, L);
4182 }
4183 
4184 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4185   if (I.isAtomic())
4186     return visitAtomicStore(I);
4187 
4188   const Value *SrcV = I.getOperand(0);
4189   const Value *PtrV = I.getOperand(1);
4190 
4191   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4192   if (TLI.supportSwiftError()) {
4193     // Swifterror values can come from either a function parameter with
4194     // swifterror attribute or an alloca with swifterror attribute.
4195     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4196       if (Arg->hasSwiftErrorAttr())
4197         return visitStoreToSwiftError(I);
4198     }
4199 
4200     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4201       if (Alloca->isSwiftError())
4202         return visitStoreToSwiftError(I);
4203     }
4204   }
4205 
4206   SmallVector<EVT, 4> ValueVTs, MemVTs;
4207   SmallVector<uint64_t, 4> Offsets;
4208   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4209                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4210   unsigned NumValues = ValueVTs.size();
4211   if (NumValues == 0)
4212     return;
4213 
4214   // Get the lowered operands. Note that we do this after
4215   // checking if NumResults is zero, because with zero results
4216   // the operands won't have values in the map.
4217   SDValue Src = getValue(SrcV);
4218   SDValue Ptr = getValue(PtrV);
4219 
4220   SDValue Root = getRoot();
4221   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4222   SDLoc dl = getCurSDLoc();
4223   EVT PtrVT = Ptr.getValueType();
4224   unsigned Alignment = I.getAlignment();
4225   AAMDNodes AAInfo;
4226   I.getAAMetadata(AAInfo);
4227 
4228   auto MMOFlags = MachineMemOperand::MONone;
4229   if (I.isVolatile())
4230     MMOFlags |= MachineMemOperand::MOVolatile;
4231   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4232     MMOFlags |= MachineMemOperand::MONonTemporal;
4233   MMOFlags |= TLI.getMMOFlags(I);
4234 
4235   // An aggregate load cannot wrap around the address space, so offsets to its
4236   // parts don't wrap either.
4237   SDNodeFlags Flags;
4238   Flags.setNoUnsignedWrap(true);
4239 
4240   unsigned ChainI = 0;
4241   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4242     // See visitLoad comments.
4243     if (ChainI == MaxParallelChains) {
4244       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4245                                   makeArrayRef(Chains.data(), ChainI));
4246       Root = Chain;
4247       ChainI = 0;
4248     }
4249     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4250                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4251     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4252     if (MemVTs[i] != ValueVTs[i])
4253       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4254     SDValue St =
4255         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4256                      Alignment, MMOFlags, AAInfo);
4257     Chains[ChainI] = St;
4258   }
4259 
4260   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4261                                   makeArrayRef(Chains.data(), ChainI));
4262   DAG.setRoot(StoreNode);
4263 }
4264 
4265 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4266                                            bool IsCompressing) {
4267   SDLoc sdl = getCurSDLoc();
4268 
4269   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4270                            unsigned& Alignment) {
4271     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4272     Src0 = I.getArgOperand(0);
4273     Ptr = I.getArgOperand(1);
4274     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4275     Mask = I.getArgOperand(3);
4276   };
4277   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4278                            unsigned& Alignment) {
4279     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4280     Src0 = I.getArgOperand(0);
4281     Ptr = I.getArgOperand(1);
4282     Mask = I.getArgOperand(2);
4283     Alignment = 0;
4284   };
4285 
4286   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4287   unsigned Alignment;
4288   if (IsCompressing)
4289     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4290   else
4291     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4292 
4293   SDValue Ptr = getValue(PtrOperand);
4294   SDValue Src0 = getValue(Src0Operand);
4295   SDValue Mask = getValue(MaskOperand);
4296 
4297   EVT VT = Src0.getValueType();
4298   if (!Alignment)
4299     Alignment = DAG.getEVTAlignment(VT);
4300 
4301   AAMDNodes AAInfo;
4302   I.getAAMetadata(AAInfo);
4303 
4304   MachineMemOperand *MMO =
4305     DAG.getMachineFunction().
4306     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4307                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4308                           Alignment, AAInfo);
4309   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4310                                          MMO, false /* Truncating */,
4311                                          IsCompressing);
4312   DAG.setRoot(StoreNode);
4313   setValue(&I, StoreNode);
4314 }
4315 
4316 // Get a uniform base for the Gather/Scatter intrinsic.
4317 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4318 // We try to represent it as a base pointer + vector of indices.
4319 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4320 // The first operand of the GEP may be a single pointer or a vector of pointers
4321 // Example:
4322 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4323 //  or
4324 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4325 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4326 //
4327 // When the first GEP operand is a single pointer - it is the uniform base we
4328 // are looking for. If first operand of the GEP is a splat vector - we
4329 // extract the splat value and use it as a uniform base.
4330 // In all other cases the function returns 'false'.
4331 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4332                            ISD::MemIndexType &IndexType, SDValue &Scale,
4333                            SelectionDAGBuilder *SDB) {
4334   SelectionDAG& DAG = SDB->DAG;
4335   LLVMContext &Context = *DAG.getContext();
4336 
4337   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4338   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4339   if (!GEP)
4340     return false;
4341 
4342   const Value *GEPPtr = GEP->getPointerOperand();
4343   if (!GEPPtr->getType()->isVectorTy())
4344     Ptr = GEPPtr;
4345   else if (!(Ptr = getSplatValue(GEPPtr)))
4346     return false;
4347 
4348   unsigned FinalIndex = GEP->getNumOperands() - 1;
4349   Value *IndexVal = GEP->getOperand(FinalIndex);
4350 
4351   // Ensure all the other indices are 0.
4352   for (unsigned i = 1; i < FinalIndex; ++i) {
4353     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4354     if (!C)
4355       return false;
4356     if (isa<VectorType>(C->getType()))
4357       C = C->getSplatValue();
4358     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4359     if (!CI || !CI->isZero())
4360       return false;
4361   }
4362 
4363   // The operands of the GEP may be defined in another basic block.
4364   // In this case we'll not find nodes for the operands.
4365   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4366     return false;
4367 
4368   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4369   const DataLayout &DL = DAG.getDataLayout();
4370   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4371                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4372   Base = SDB->getValue(Ptr);
4373   Index = SDB->getValue(IndexVal);
4374   IndexType = ISD::SIGNED_SCALED;
4375 
4376   if (!Index.getValueType().isVector()) {
4377     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4378     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4379     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4380   }
4381   return true;
4382 }
4383 
4384 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4385   SDLoc sdl = getCurSDLoc();
4386 
4387   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4388   const Value *Ptr = I.getArgOperand(1);
4389   SDValue Src0 = getValue(I.getArgOperand(0));
4390   SDValue Mask = getValue(I.getArgOperand(3));
4391   EVT VT = Src0.getValueType();
4392   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4393   if (!Alignment)
4394     Alignment = DAG.getEVTAlignment(VT);
4395   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4396 
4397   AAMDNodes AAInfo;
4398   I.getAAMetadata(AAInfo);
4399 
4400   SDValue Base;
4401   SDValue Index;
4402   ISD::MemIndexType IndexType;
4403   SDValue Scale;
4404   const Value *BasePtr = Ptr;
4405   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4406                                     this);
4407 
4408   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4409   MachineMemOperand *MMO = DAG.getMachineFunction().
4410     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4411                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4412                          Alignment, AAInfo);
4413   if (!UniformBase) {
4414     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4415     Index = getValue(Ptr);
4416     IndexType = ISD::SIGNED_SCALED;
4417     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4418   }
4419   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4420   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4421                                          Ops, MMO, IndexType);
4422   DAG.setRoot(Scatter);
4423   setValue(&I, Scatter);
4424 }
4425 
4426 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4427   SDLoc sdl = getCurSDLoc();
4428 
4429   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4430                            unsigned& Alignment) {
4431     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4432     Ptr = I.getArgOperand(0);
4433     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4434     Mask = I.getArgOperand(2);
4435     Src0 = I.getArgOperand(3);
4436   };
4437   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4438                            unsigned& Alignment) {
4439     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4440     Ptr = I.getArgOperand(0);
4441     Alignment = 0;
4442     Mask = I.getArgOperand(1);
4443     Src0 = I.getArgOperand(2);
4444   };
4445 
4446   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4447   unsigned Alignment;
4448   if (IsExpanding)
4449     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4450   else
4451     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4452 
4453   SDValue Ptr = getValue(PtrOperand);
4454   SDValue Src0 = getValue(Src0Operand);
4455   SDValue Mask = getValue(MaskOperand);
4456 
4457   EVT VT = Src0.getValueType();
4458   if (!Alignment)
4459     Alignment = DAG.getEVTAlignment(VT);
4460 
4461   AAMDNodes AAInfo;
4462   I.getAAMetadata(AAInfo);
4463   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4464 
4465   // Do not serialize masked loads of constant memory with anything.
4466   MemoryLocation ML;
4467   if (VT.isScalableVector())
4468     ML = MemoryLocation(PtrOperand);
4469   else
4470     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4471                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4472                            AAInfo);
4473   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4474 
4475   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4476 
4477   MachineMemOperand *MMO =
4478     DAG.getMachineFunction().
4479     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4480                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4481                           Alignment, AAInfo, Ranges);
4482 
4483   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4484                                    ISD::NON_EXTLOAD, IsExpanding);
4485   if (AddToChain)
4486     PendingLoads.push_back(Load.getValue(1));
4487   setValue(&I, Load);
4488 }
4489 
4490 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4491   SDLoc sdl = getCurSDLoc();
4492 
4493   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4494   const Value *Ptr = I.getArgOperand(0);
4495   SDValue Src0 = getValue(I.getArgOperand(3));
4496   SDValue Mask = getValue(I.getArgOperand(2));
4497 
4498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4499   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4500   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4501   if (!Alignment)
4502     Alignment = DAG.getEVTAlignment(VT);
4503 
4504   AAMDNodes AAInfo;
4505   I.getAAMetadata(AAInfo);
4506   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4507 
4508   SDValue Root = DAG.getRoot();
4509   SDValue Base;
4510   SDValue Index;
4511   ISD::MemIndexType IndexType;
4512   SDValue Scale;
4513   const Value *BasePtr = Ptr;
4514   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4515                                     this);
4516   bool ConstantMemory = false;
4517   if (UniformBase && AA &&
4518       AA->pointsToConstantMemory(
4519           MemoryLocation(BasePtr,
4520                          LocationSize::precise(
4521                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4522                          AAInfo))) {
4523     // Do not serialize (non-volatile) loads of constant memory with anything.
4524     Root = DAG.getEntryNode();
4525     ConstantMemory = true;
4526   }
4527 
4528   MachineMemOperand *MMO =
4529     DAG.getMachineFunction().
4530     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4531                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4532                          Alignment, AAInfo, Ranges);
4533 
4534   if (!UniformBase) {
4535     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4536     Index = getValue(Ptr);
4537     IndexType = ISD::SIGNED_SCALED;
4538     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4539   }
4540   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4541   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4542                                        Ops, MMO, IndexType);
4543 
4544   SDValue OutChain = Gather.getValue(1);
4545   if (!ConstantMemory)
4546     PendingLoads.push_back(OutChain);
4547   setValue(&I, Gather);
4548 }
4549 
4550 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4551   SDLoc dl = getCurSDLoc();
4552   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4553   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4554   SyncScope::ID SSID = I.getSyncScopeID();
4555 
4556   SDValue InChain = getRoot();
4557 
4558   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4559   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4560 
4561   auto Alignment = DAG.getEVTAlignment(MemVT);
4562 
4563   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4564   if (I.isVolatile())
4565     Flags |= MachineMemOperand::MOVolatile;
4566   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4567 
4568   MachineFunction &MF = DAG.getMachineFunction();
4569   MachineMemOperand *MMO =
4570     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4571                             Flags, MemVT.getStoreSize(), Alignment,
4572                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4573                             FailureOrdering);
4574 
4575   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4576                                    dl, MemVT, VTs, InChain,
4577                                    getValue(I.getPointerOperand()),
4578                                    getValue(I.getCompareOperand()),
4579                                    getValue(I.getNewValOperand()), MMO);
4580 
4581   SDValue OutChain = L.getValue(2);
4582 
4583   setValue(&I, L);
4584   DAG.setRoot(OutChain);
4585 }
4586 
4587 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4588   SDLoc dl = getCurSDLoc();
4589   ISD::NodeType NT;
4590   switch (I.getOperation()) {
4591   default: llvm_unreachable("Unknown atomicrmw operation");
4592   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4593   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4594   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4595   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4596   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4597   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4598   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4599   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4600   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4601   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4602   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4603   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4604   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4605   }
4606   AtomicOrdering Ordering = I.getOrdering();
4607   SyncScope::ID SSID = I.getSyncScopeID();
4608 
4609   SDValue InChain = getRoot();
4610 
4611   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4612   auto Alignment = DAG.getEVTAlignment(MemVT);
4613 
4614   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4615   if (I.isVolatile())
4616     Flags |= MachineMemOperand::MOVolatile;
4617   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4618 
4619   MachineFunction &MF = DAG.getMachineFunction();
4620   MachineMemOperand *MMO =
4621     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4622                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4623                             nullptr, SSID, Ordering);
4624 
4625   SDValue L =
4626     DAG.getAtomic(NT, dl, MemVT, InChain,
4627                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4628                   MMO);
4629 
4630   SDValue OutChain = L.getValue(1);
4631 
4632   setValue(&I, L);
4633   DAG.setRoot(OutChain);
4634 }
4635 
4636 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4637   SDLoc dl = getCurSDLoc();
4638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4639   SDValue Ops[3];
4640   Ops[0] = getRoot();
4641   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4642                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4643   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4644                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4645   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4646 }
4647 
4648 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4649   SDLoc dl = getCurSDLoc();
4650   AtomicOrdering Order = I.getOrdering();
4651   SyncScope::ID SSID = I.getSyncScopeID();
4652 
4653   SDValue InChain = getRoot();
4654 
4655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4656   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4657   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4658 
4659   if (!TLI.supportsUnalignedAtomics() &&
4660       I.getAlignment() < MemVT.getSizeInBits() / 8)
4661     report_fatal_error("Cannot generate unaligned atomic load");
4662 
4663   auto Flags = MachineMemOperand::MOLoad;
4664   if (I.isVolatile())
4665     Flags |= MachineMemOperand::MOVolatile;
4666   if (I.hasMetadata(LLVMContext::MD_invariant_load))
4667     Flags |= MachineMemOperand::MOInvariant;
4668   if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4669                                DAG.getDataLayout()))
4670     Flags |= MachineMemOperand::MODereferenceable;
4671 
4672   Flags |= TLI.getMMOFlags(I);
4673 
4674   MachineMemOperand *MMO =
4675       DAG.getMachineFunction().
4676       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4677                            Flags, MemVT.getStoreSize(),
4678                            I.getAlignment() ? I.getAlignment() :
4679                                               DAG.getEVTAlignment(MemVT),
4680                            AAMDNodes(), nullptr, SSID, Order);
4681 
4682   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4683 
4684   SDValue Ptr = getValue(I.getPointerOperand());
4685 
4686   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4687     // TODO: Once this is better exercised by tests, it should be merged with
4688     // the normal path for loads to prevent future divergence.
4689     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4690     if (MemVT != VT)
4691       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4692 
4693     setValue(&I, L);
4694     SDValue OutChain = L.getValue(1);
4695     if (!I.isUnordered())
4696       DAG.setRoot(OutChain);
4697     else
4698       PendingLoads.push_back(OutChain);
4699     return;
4700   }
4701 
4702   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4703                             Ptr, MMO);
4704 
4705   SDValue OutChain = L.getValue(1);
4706   if (MemVT != VT)
4707     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4708 
4709   setValue(&I, L);
4710   DAG.setRoot(OutChain);
4711 }
4712 
4713 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4714   SDLoc dl = getCurSDLoc();
4715 
4716   AtomicOrdering Ordering = I.getOrdering();
4717   SyncScope::ID SSID = I.getSyncScopeID();
4718 
4719   SDValue InChain = getRoot();
4720 
4721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4722   EVT MemVT =
4723       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4724 
4725   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4726     report_fatal_error("Cannot generate unaligned atomic store");
4727 
4728   auto Flags = MachineMemOperand::MOStore;
4729   if (I.isVolatile())
4730     Flags |= MachineMemOperand::MOVolatile;
4731   Flags |= TLI.getMMOFlags(I);
4732 
4733   MachineFunction &MF = DAG.getMachineFunction();
4734   MachineMemOperand *MMO =
4735     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4736                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4737                             nullptr, SSID, Ordering);
4738 
4739   SDValue Val = getValue(I.getValueOperand());
4740   if (Val.getValueType() != MemVT)
4741     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4742   SDValue Ptr = getValue(I.getPointerOperand());
4743 
4744   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4745     // TODO: Once this is better exercised by tests, it should be merged with
4746     // the normal path for stores to prevent future divergence.
4747     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4748     DAG.setRoot(S);
4749     return;
4750   }
4751   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4752                                    Ptr, Val, MMO);
4753 
4754 
4755   DAG.setRoot(OutChain);
4756 }
4757 
4758 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4759 /// node.
4760 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4761                                                unsigned Intrinsic) {
4762   // Ignore the callsite's attributes. A specific call site may be marked with
4763   // readnone, but the lowering code will expect the chain based on the
4764   // definition.
4765   const Function *F = I.getCalledFunction();
4766   bool HasChain = !F->doesNotAccessMemory();
4767   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4768 
4769   // Build the operand list.
4770   SmallVector<SDValue, 8> Ops;
4771   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4772     if (OnlyLoad) {
4773       // We don't need to serialize loads against other loads.
4774       Ops.push_back(DAG.getRoot());
4775     } else {
4776       Ops.push_back(getRoot());
4777     }
4778   }
4779 
4780   // Info is set by getTgtMemInstrinsic
4781   TargetLowering::IntrinsicInfo Info;
4782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4783   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4784                                                DAG.getMachineFunction(),
4785                                                Intrinsic);
4786 
4787   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4788   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4789       Info.opc == ISD::INTRINSIC_W_CHAIN)
4790     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4791                                         TLI.getPointerTy(DAG.getDataLayout())));
4792 
4793   // Add all operands of the call to the operand list.
4794   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4795     const Value *Arg = I.getArgOperand(i);
4796     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4797       Ops.push_back(getValue(Arg));
4798       continue;
4799     }
4800 
4801     // Use TargetConstant instead of a regular constant for immarg.
4802     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4803     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4804       assert(CI->getBitWidth() <= 64 &&
4805              "large intrinsic immediates not handled");
4806       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4807     } else {
4808       Ops.push_back(
4809           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4810     }
4811   }
4812 
4813   SmallVector<EVT, 4> ValueVTs;
4814   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4815 
4816   if (HasChain)
4817     ValueVTs.push_back(MVT::Other);
4818 
4819   SDVTList VTs = DAG.getVTList(ValueVTs);
4820 
4821   // Create the node.
4822   SDValue Result;
4823   if (IsTgtIntrinsic) {
4824     // This is target intrinsic that touches memory
4825     AAMDNodes AAInfo;
4826     I.getAAMetadata(AAInfo);
4827     Result = DAG.getMemIntrinsicNode(
4828         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4829         MachinePointerInfo(Info.ptrVal, Info.offset),
4830         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4831   } else if (!HasChain) {
4832     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4833   } else if (!I.getType()->isVoidTy()) {
4834     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4835   } else {
4836     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4837   }
4838 
4839   if (HasChain) {
4840     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4841     if (OnlyLoad)
4842       PendingLoads.push_back(Chain);
4843     else
4844       DAG.setRoot(Chain);
4845   }
4846 
4847   if (!I.getType()->isVoidTy()) {
4848     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4849       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4850       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4851     } else
4852       Result = lowerRangeToAssertZExt(DAG, I, Result);
4853 
4854     setValue(&I, Result);
4855   }
4856 }
4857 
4858 /// GetSignificand - Get the significand and build it into a floating-point
4859 /// number with exponent of 1:
4860 ///
4861 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4862 ///
4863 /// where Op is the hexadecimal representation of floating point value.
4864 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4865   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4866                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4867   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4868                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4869   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4870 }
4871 
4872 /// GetExponent - Get the exponent:
4873 ///
4874 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4875 ///
4876 /// where Op is the hexadecimal representation of floating point value.
4877 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4878                            const TargetLowering &TLI, const SDLoc &dl) {
4879   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4880                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4881   SDValue t1 = DAG.getNode(
4882       ISD::SRL, dl, MVT::i32, t0,
4883       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4884   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4885                            DAG.getConstant(127, dl, MVT::i32));
4886   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4887 }
4888 
4889 /// getF32Constant - Get 32-bit floating point constant.
4890 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4891                               const SDLoc &dl) {
4892   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4893                            MVT::f32);
4894 }
4895 
4896 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4897                                        SelectionDAG &DAG) {
4898   // TODO: What fast-math-flags should be set on the floating-point nodes?
4899 
4900   //   IntegerPartOfX = ((int32_t)(t0);
4901   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4902 
4903   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4904   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4905   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4906 
4907   //   IntegerPartOfX <<= 23;
4908   IntegerPartOfX = DAG.getNode(
4909       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4910       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4911                                   DAG.getDataLayout())));
4912 
4913   SDValue TwoToFractionalPartOfX;
4914   if (LimitFloatPrecision <= 6) {
4915     // For floating-point precision of 6:
4916     //
4917     //   TwoToFractionalPartOfX =
4918     //     0.997535578f +
4919     //       (0.735607626f + 0.252464424f * x) * x;
4920     //
4921     // error 0.0144103317, which is 6 bits
4922     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4923                              getF32Constant(DAG, 0x3e814304, dl));
4924     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4925                              getF32Constant(DAG, 0x3f3c50c8, dl));
4926     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4927     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4928                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4929   } else if (LimitFloatPrecision <= 12) {
4930     // For floating-point precision of 12:
4931     //
4932     //   TwoToFractionalPartOfX =
4933     //     0.999892986f +
4934     //       (0.696457318f +
4935     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4936     //
4937     // error 0.000107046256, which is 13 to 14 bits
4938     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4939                              getF32Constant(DAG, 0x3da235e3, dl));
4940     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4941                              getF32Constant(DAG, 0x3e65b8f3, dl));
4942     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4943     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4944                              getF32Constant(DAG, 0x3f324b07, dl));
4945     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4946     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4947                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4948   } else { // LimitFloatPrecision <= 18
4949     // For floating-point precision of 18:
4950     //
4951     //   TwoToFractionalPartOfX =
4952     //     0.999999982f +
4953     //       (0.693148872f +
4954     //         (0.240227044f +
4955     //           (0.554906021e-1f +
4956     //             (0.961591928e-2f +
4957     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4958     // error 2.47208000*10^(-7), which is better than 18 bits
4959     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4960                              getF32Constant(DAG, 0x3924b03e, dl));
4961     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4962                              getF32Constant(DAG, 0x3ab24b87, dl));
4963     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4964     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4965                              getF32Constant(DAG, 0x3c1d8c17, dl));
4966     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4967     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4968                              getF32Constant(DAG, 0x3d634a1d, dl));
4969     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4970     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4971                              getF32Constant(DAG, 0x3e75fe14, dl));
4972     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4973     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4974                               getF32Constant(DAG, 0x3f317234, dl));
4975     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4976     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4977                                          getF32Constant(DAG, 0x3f800000, dl));
4978   }
4979 
4980   // Add the exponent into the result in integer domain.
4981   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4982   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4983                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4984 }
4985 
4986 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4987 /// limited-precision mode.
4988 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4989                          const TargetLowering &TLI) {
4990   if (Op.getValueType() == MVT::f32 &&
4991       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4992 
4993     // Put the exponent in the right bit position for later addition to the
4994     // final result:
4995     //
4996     // t0 = Op * log2(e)
4997 
4998     // TODO: What fast-math-flags should be set here?
4999     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5000                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5001     return getLimitedPrecisionExp2(t0, dl, DAG);
5002   }
5003 
5004   // No special expansion.
5005   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5006 }
5007 
5008 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5009 /// limited-precision mode.
5010 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5011                          const TargetLowering &TLI) {
5012   // TODO: What fast-math-flags should be set on the floating-point nodes?
5013 
5014   if (Op.getValueType() == MVT::f32 &&
5015       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5016     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5017 
5018     // Scale the exponent by log(2).
5019     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5020     SDValue LogOfExponent =
5021         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5022                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5023 
5024     // Get the significand and build it into a floating-point number with
5025     // exponent of 1.
5026     SDValue X = GetSignificand(DAG, Op1, dl);
5027 
5028     SDValue LogOfMantissa;
5029     if (LimitFloatPrecision <= 6) {
5030       // For floating-point precision of 6:
5031       //
5032       //   LogofMantissa =
5033       //     -1.1609546f +
5034       //       (1.4034025f - 0.23903021f * x) * x;
5035       //
5036       // error 0.0034276066, which is better than 8 bits
5037       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5038                                getF32Constant(DAG, 0xbe74c456, dl));
5039       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5040                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5041       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5042       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5043                                   getF32Constant(DAG, 0x3f949a29, dl));
5044     } else if (LimitFloatPrecision <= 12) {
5045       // For floating-point precision of 12:
5046       //
5047       //   LogOfMantissa =
5048       //     -1.7417939f +
5049       //       (2.8212026f +
5050       //         (-1.4699568f +
5051       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5052       //
5053       // error 0.000061011436, which is 14 bits
5054       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5055                                getF32Constant(DAG, 0xbd67b6d6, dl));
5056       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5057                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5058       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5059       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5060                                getF32Constant(DAG, 0x3fbc278b, dl));
5061       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5062       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5063                                getF32Constant(DAG, 0x40348e95, dl));
5064       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5065       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5066                                   getF32Constant(DAG, 0x3fdef31a, dl));
5067     } else { // LimitFloatPrecision <= 18
5068       // For floating-point precision of 18:
5069       //
5070       //   LogOfMantissa =
5071       //     -2.1072184f +
5072       //       (4.2372794f +
5073       //         (-3.7029485f +
5074       //           (2.2781945f +
5075       //             (-0.87823314f +
5076       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5077       //
5078       // error 0.0000023660568, which is better than 18 bits
5079       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5080                                getF32Constant(DAG, 0xbc91e5ac, dl));
5081       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5082                                getF32Constant(DAG, 0x3e4350aa, dl));
5083       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5084       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5085                                getF32Constant(DAG, 0x3f60d3e3, dl));
5086       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5087       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5088                                getF32Constant(DAG, 0x4011cdf0, dl));
5089       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5090       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5091                                getF32Constant(DAG, 0x406cfd1c, dl));
5092       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5093       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5094                                getF32Constant(DAG, 0x408797cb, dl));
5095       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5096       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5097                                   getF32Constant(DAG, 0x4006dcab, dl));
5098     }
5099 
5100     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5101   }
5102 
5103   // No special expansion.
5104   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5105 }
5106 
5107 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5108 /// limited-precision mode.
5109 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5110                           const TargetLowering &TLI) {
5111   // TODO: What fast-math-flags should be set on the floating-point nodes?
5112 
5113   if (Op.getValueType() == MVT::f32 &&
5114       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5115     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5116 
5117     // Get the exponent.
5118     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5119 
5120     // Get the significand and build it into a floating-point number with
5121     // exponent of 1.
5122     SDValue X = GetSignificand(DAG, Op1, dl);
5123 
5124     // Different possible minimax approximations of significand in
5125     // floating-point for various degrees of accuracy over [1,2].
5126     SDValue Log2ofMantissa;
5127     if (LimitFloatPrecision <= 6) {
5128       // For floating-point precision of 6:
5129       //
5130       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5131       //
5132       // error 0.0049451742, which is more than 7 bits
5133       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5134                                getF32Constant(DAG, 0xbeb08fe0, dl));
5135       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5136                                getF32Constant(DAG, 0x40019463, dl));
5137       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5138       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5139                                    getF32Constant(DAG, 0x3fd6633d, dl));
5140     } else if (LimitFloatPrecision <= 12) {
5141       // For floating-point precision of 12:
5142       //
5143       //   Log2ofMantissa =
5144       //     -2.51285454f +
5145       //       (4.07009056f +
5146       //         (-2.12067489f +
5147       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5148       //
5149       // error 0.0000876136000, which is better than 13 bits
5150       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5151                                getF32Constant(DAG, 0xbda7262e, dl));
5152       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5153                                getF32Constant(DAG, 0x3f25280b, dl));
5154       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5155       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5156                                getF32Constant(DAG, 0x4007b923, dl));
5157       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5158       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5159                                getF32Constant(DAG, 0x40823e2f, dl));
5160       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5161       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5162                                    getF32Constant(DAG, 0x4020d29c, dl));
5163     } else { // LimitFloatPrecision <= 18
5164       // For floating-point precision of 18:
5165       //
5166       //   Log2ofMantissa =
5167       //     -3.0400495f +
5168       //       (6.1129976f +
5169       //         (-5.3420409f +
5170       //           (3.2865683f +
5171       //             (-1.2669343f +
5172       //               (0.27515199f -
5173       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5174       //
5175       // error 0.0000018516, which is better than 18 bits
5176       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5177                                getF32Constant(DAG, 0xbcd2769e, dl));
5178       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5179                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5180       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5181       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5182                                getF32Constant(DAG, 0x3fa22ae7, dl));
5183       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5184       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5185                                getF32Constant(DAG, 0x40525723, dl));
5186       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5187       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5188                                getF32Constant(DAG, 0x40aaf200, dl));
5189       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5190       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5191                                getF32Constant(DAG, 0x40c39dad, dl));
5192       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5193       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5194                                    getF32Constant(DAG, 0x4042902c, dl));
5195     }
5196 
5197     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5198   }
5199 
5200   // No special expansion.
5201   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5202 }
5203 
5204 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5205 /// limited-precision mode.
5206 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5207                            const TargetLowering &TLI) {
5208   // TODO: What fast-math-flags should be set on the floating-point nodes?
5209 
5210   if (Op.getValueType() == MVT::f32 &&
5211       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5212     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5213 
5214     // Scale the exponent by log10(2) [0.30102999f].
5215     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5216     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5217                                         getF32Constant(DAG, 0x3e9a209a, dl));
5218 
5219     // Get the significand and build it into a floating-point number with
5220     // exponent of 1.
5221     SDValue X = GetSignificand(DAG, Op1, dl);
5222 
5223     SDValue Log10ofMantissa;
5224     if (LimitFloatPrecision <= 6) {
5225       // For floating-point precision of 6:
5226       //
5227       //   Log10ofMantissa =
5228       //     -0.50419619f +
5229       //       (0.60948995f - 0.10380950f * x) * x;
5230       //
5231       // error 0.0014886165, which is 6 bits
5232       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5233                                getF32Constant(DAG, 0xbdd49a13, dl));
5234       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5235                                getF32Constant(DAG, 0x3f1c0789, dl));
5236       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5237       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5238                                     getF32Constant(DAG, 0x3f011300, dl));
5239     } else if (LimitFloatPrecision <= 12) {
5240       // For floating-point precision of 12:
5241       //
5242       //   Log10ofMantissa =
5243       //     -0.64831180f +
5244       //       (0.91751397f +
5245       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5246       //
5247       // error 0.00019228036, which is better than 12 bits
5248       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5249                                getF32Constant(DAG, 0x3d431f31, dl));
5250       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5251                                getF32Constant(DAG, 0x3ea21fb2, dl));
5252       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5253       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5254                                getF32Constant(DAG, 0x3f6ae232, dl));
5255       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5256       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5257                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5258     } else { // LimitFloatPrecision <= 18
5259       // For floating-point precision of 18:
5260       //
5261       //   Log10ofMantissa =
5262       //     -0.84299375f +
5263       //       (1.5327582f +
5264       //         (-1.0688956f +
5265       //           (0.49102474f +
5266       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5267       //
5268       // error 0.0000037995730, which is better than 18 bits
5269       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5270                                getF32Constant(DAG, 0x3c5d51ce, dl));
5271       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5272                                getF32Constant(DAG, 0x3e00685a, dl));
5273       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5274       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5275                                getF32Constant(DAG, 0x3efb6798, dl));
5276       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5277       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5278                                getF32Constant(DAG, 0x3f88d192, dl));
5279       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5280       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5281                                getF32Constant(DAG, 0x3fc4316c, dl));
5282       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5283       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5284                                     getF32Constant(DAG, 0x3f57ce70, dl));
5285     }
5286 
5287     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5288   }
5289 
5290   // No special expansion.
5291   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5292 }
5293 
5294 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5295 /// limited-precision mode.
5296 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5297                           const TargetLowering &TLI) {
5298   if (Op.getValueType() == MVT::f32 &&
5299       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5300     return getLimitedPrecisionExp2(Op, dl, DAG);
5301 
5302   // No special expansion.
5303   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5304 }
5305 
5306 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5307 /// limited-precision mode with x == 10.0f.
5308 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5309                          SelectionDAG &DAG, const TargetLowering &TLI) {
5310   bool IsExp10 = false;
5311   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5312       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5313     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5314       APFloat Ten(10.0f);
5315       IsExp10 = LHSC->isExactlyValue(Ten);
5316     }
5317   }
5318 
5319   // TODO: What fast-math-flags should be set on the FMUL node?
5320   if (IsExp10) {
5321     // Put the exponent in the right bit position for later addition to the
5322     // final result:
5323     //
5324     //   #define LOG2OF10 3.3219281f
5325     //   t0 = Op * LOG2OF10;
5326     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5327                              getF32Constant(DAG, 0x40549a78, dl));
5328     return getLimitedPrecisionExp2(t0, dl, DAG);
5329   }
5330 
5331   // No special expansion.
5332   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5333 }
5334 
5335 /// ExpandPowI - Expand a llvm.powi intrinsic.
5336 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5337                           SelectionDAG &DAG) {
5338   // If RHS is a constant, we can expand this out to a multiplication tree,
5339   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5340   // optimizing for size, we only want to do this if the expansion would produce
5341   // a small number of multiplies, otherwise we do the full expansion.
5342   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5343     // Get the exponent as a positive value.
5344     unsigned Val = RHSC->getSExtValue();
5345     if ((int)Val < 0) Val = -Val;
5346 
5347     // powi(x, 0) -> 1.0
5348     if (Val == 0)
5349       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5350 
5351     const Function &F = DAG.getMachineFunction().getFunction();
5352     if (!F.hasOptSize() ||
5353         // If optimizing for size, don't insert too many multiplies.
5354         // This inserts up to 5 multiplies.
5355         countPopulation(Val) + Log2_32(Val) < 7) {
5356       // We use the simple binary decomposition method to generate the multiply
5357       // sequence.  There are more optimal ways to do this (for example,
5358       // powi(x,15) generates one more multiply than it should), but this has
5359       // the benefit of being both really simple and much better than a libcall.
5360       SDValue Res;  // Logically starts equal to 1.0
5361       SDValue CurSquare = LHS;
5362       // TODO: Intrinsics should have fast-math-flags that propagate to these
5363       // nodes.
5364       while (Val) {
5365         if (Val & 1) {
5366           if (Res.getNode())
5367             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5368           else
5369             Res = CurSquare;  // 1.0*CurSquare.
5370         }
5371 
5372         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5373                                 CurSquare, CurSquare);
5374         Val >>= 1;
5375       }
5376 
5377       // If the original was negative, invert the result, producing 1/(x*x*x).
5378       if (RHSC->getSExtValue() < 0)
5379         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5380                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5381       return Res;
5382     }
5383   }
5384 
5385   // Otherwise, expand to a libcall.
5386   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5387 }
5388 
5389 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5390 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5391 static void
5392 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5393                      const SDValue &N) {
5394   switch (N.getOpcode()) {
5395   case ISD::CopyFromReg: {
5396     SDValue Op = N.getOperand(1);
5397     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5398                       Op.getValueType().getSizeInBits());
5399     return;
5400   }
5401   case ISD::BITCAST:
5402   case ISD::AssertZext:
5403   case ISD::AssertSext:
5404   case ISD::TRUNCATE:
5405     getUnderlyingArgRegs(Regs, N.getOperand(0));
5406     return;
5407   case ISD::BUILD_PAIR:
5408   case ISD::BUILD_VECTOR:
5409   case ISD::CONCAT_VECTORS:
5410     for (SDValue Op : N->op_values())
5411       getUnderlyingArgRegs(Regs, Op);
5412     return;
5413   default:
5414     return;
5415   }
5416 }
5417 
5418 /// If the DbgValueInst is a dbg_value of a function argument, create the
5419 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5420 /// instruction selection, they will be inserted to the entry BB.
5421 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5422     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5423     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5424   const Argument *Arg = dyn_cast<Argument>(V);
5425   if (!Arg)
5426     return false;
5427 
5428   if (!IsDbgDeclare) {
5429     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5430     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5431     // the entry block.
5432     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5433     if (!IsInEntryBlock)
5434       return false;
5435 
5436     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5437     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5438     // variable that also is a param.
5439     //
5440     // Although, if we are at the top of the entry block already, we can still
5441     // emit using ArgDbgValue. This might catch some situations when the
5442     // dbg.value refers to an argument that isn't used in the entry block, so
5443     // any CopyToReg node would be optimized out and the only way to express
5444     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5445     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5446     // we should only emit as ArgDbgValue if the Variable is an argument to the
5447     // current function, and the dbg.value intrinsic is found in the entry
5448     // block.
5449     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5450         !DL->getInlinedAt();
5451     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5452     if (!IsInPrologue && !VariableIsFunctionInputArg)
5453       return false;
5454 
5455     // Here we assume that a function argument on IR level only can be used to
5456     // describe one input parameter on source level. If we for example have
5457     // source code like this
5458     //
5459     //    struct A { long x, y; };
5460     //    void foo(struct A a, long b) {
5461     //      ...
5462     //      b = a.x;
5463     //      ...
5464     //    }
5465     //
5466     // and IR like this
5467     //
5468     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5469     //  entry:
5470     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5471     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5472     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5473     //    ...
5474     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5475     //    ...
5476     //
5477     // then the last dbg.value is describing a parameter "b" using a value that
5478     // is an argument. But since we already has used %a1 to describe a parameter
5479     // we should not handle that last dbg.value here (that would result in an
5480     // incorrect hoisting of the DBG_VALUE to the function entry).
5481     // Notice that we allow one dbg.value per IR level argument, to accommodate
5482     // for the situation with fragments above.
5483     if (VariableIsFunctionInputArg) {
5484       unsigned ArgNo = Arg->getArgNo();
5485       if (ArgNo >= FuncInfo.DescribedArgs.size())
5486         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5487       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5488         return false;
5489       FuncInfo.DescribedArgs.set(ArgNo);
5490     }
5491   }
5492 
5493   MachineFunction &MF = DAG.getMachineFunction();
5494   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5495 
5496   bool IsIndirect = false;
5497   Optional<MachineOperand> Op;
5498   // Some arguments' frame index is recorded during argument lowering.
5499   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5500   if (FI != std::numeric_limits<int>::max())
5501     Op = MachineOperand::CreateFI(FI);
5502 
5503   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5504   if (!Op && N.getNode()) {
5505     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5506     Register Reg;
5507     if (ArgRegsAndSizes.size() == 1)
5508       Reg = ArgRegsAndSizes.front().first;
5509 
5510     if (Reg && Reg.isVirtual()) {
5511       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5512       Register PR = RegInfo.getLiveInPhysReg(Reg);
5513       if (PR)
5514         Reg = PR;
5515     }
5516     if (Reg) {
5517       Op = MachineOperand::CreateReg(Reg, false);
5518       IsIndirect = IsDbgDeclare;
5519     }
5520   }
5521 
5522   if (!Op && N.getNode()) {
5523     // Check if frame index is available.
5524     SDValue LCandidate = peekThroughBitcasts(N);
5525     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5526       if (FrameIndexSDNode *FINode =
5527           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5528         Op = MachineOperand::CreateFI(FINode->getIndex());
5529   }
5530 
5531   if (!Op) {
5532     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5533     auto splitMultiRegDbgValue
5534       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5535       unsigned Offset = 0;
5536       for (auto RegAndSize : SplitRegs) {
5537         auto FragmentExpr = DIExpression::createFragmentExpression(
5538           Expr, Offset, RegAndSize.second);
5539         if (!FragmentExpr)
5540           continue;
5541         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5542         FuncInfo.ArgDbgValues.push_back(
5543           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5544                   RegAndSize.first, Variable, *FragmentExpr));
5545         Offset += RegAndSize.second;
5546       }
5547     };
5548 
5549     // Check if ValueMap has reg number.
5550     DenseMap<const Value *, unsigned>::const_iterator
5551       VMI = FuncInfo.ValueMap.find(V);
5552     if (VMI != FuncInfo.ValueMap.end()) {
5553       const auto &TLI = DAG.getTargetLoweringInfo();
5554       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5555                        V->getType(), getABIRegCopyCC(V));
5556       if (RFV.occupiesMultipleRegs()) {
5557         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5558         return true;
5559       }
5560 
5561       Op = MachineOperand::CreateReg(VMI->second, false);
5562       IsIndirect = IsDbgDeclare;
5563     } else if (ArgRegsAndSizes.size() > 1) {
5564       // This was split due to the calling convention, and no virtual register
5565       // mapping exists for the value.
5566       splitMultiRegDbgValue(ArgRegsAndSizes);
5567       return true;
5568     }
5569   }
5570 
5571   if (!Op)
5572     return false;
5573 
5574   assert(Variable->isValidLocationForIntrinsic(DL) &&
5575          "Expected inlined-at fields to agree");
5576   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5577   if (IsIndirect)
5578     Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
5579   FuncInfo.ArgDbgValues.push_back(
5580       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5581               *Op, Variable, Expr));
5582 
5583   return true;
5584 }
5585 
5586 /// Return the appropriate SDDbgValue based on N.
5587 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5588                                              DILocalVariable *Variable,
5589                                              DIExpression *Expr,
5590                                              const DebugLoc &dl,
5591                                              unsigned DbgSDNodeOrder) {
5592   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5593     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5594     // stack slot locations.
5595     //
5596     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5597     // debug values here after optimization:
5598     //
5599     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5600     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5601     //
5602     // Both describe the direct values of their associated variables.
5603     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5604                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5605   }
5606   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5607                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5608 }
5609 
5610 // VisualStudio defines setjmp as _setjmp
5611 #if defined(_MSC_VER) && defined(setjmp) && \
5612                          !defined(setjmp_undefined_for_msvc)
5613 #  pragma push_macro("setjmp")
5614 #  undef setjmp
5615 #  define setjmp_undefined_for_msvc
5616 #endif
5617 
5618 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5619   switch (Intrinsic) {
5620   case Intrinsic::smul_fix:
5621     return ISD::SMULFIX;
5622   case Intrinsic::umul_fix:
5623     return ISD::UMULFIX;
5624   default:
5625     llvm_unreachable("Unhandled fixed point intrinsic");
5626   }
5627 }
5628 
5629 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5630                                            const char *FunctionName) {
5631   assert(FunctionName && "FunctionName must not be nullptr");
5632   SDValue Callee = DAG.getExternalSymbol(
5633       FunctionName,
5634       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5635   LowerCallTo(&I, Callee, I.isTailCall());
5636 }
5637 
5638 /// Lower the call to the specified intrinsic function.
5639 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5640                                              unsigned Intrinsic) {
5641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5642   SDLoc sdl = getCurSDLoc();
5643   DebugLoc dl = getCurDebugLoc();
5644   SDValue Res;
5645 
5646   switch (Intrinsic) {
5647   default:
5648     // By default, turn this into a target intrinsic node.
5649     visitTargetIntrinsic(I, Intrinsic);
5650     return;
5651   case Intrinsic::vastart:  visitVAStart(I); return;
5652   case Intrinsic::vaend:    visitVAEnd(I); return;
5653   case Intrinsic::vacopy:   visitVACopy(I); return;
5654   case Intrinsic::returnaddress:
5655     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5656                              TLI.getPointerTy(DAG.getDataLayout()),
5657                              getValue(I.getArgOperand(0))));
5658     return;
5659   case Intrinsic::addressofreturnaddress:
5660     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5661                              TLI.getPointerTy(DAG.getDataLayout())));
5662     return;
5663   case Intrinsic::sponentry:
5664     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5665                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5666     return;
5667   case Intrinsic::frameaddress:
5668     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5669                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5670                              getValue(I.getArgOperand(0))));
5671     return;
5672   case Intrinsic::read_register: {
5673     Value *Reg = I.getArgOperand(0);
5674     SDValue Chain = getRoot();
5675     SDValue RegName =
5676         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5677     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5678     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5679       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5680     setValue(&I, Res);
5681     DAG.setRoot(Res.getValue(1));
5682     return;
5683   }
5684   case Intrinsic::write_register: {
5685     Value *Reg = I.getArgOperand(0);
5686     Value *RegValue = I.getArgOperand(1);
5687     SDValue Chain = getRoot();
5688     SDValue RegName =
5689         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5690     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5691                             RegName, getValue(RegValue)));
5692     return;
5693   }
5694   case Intrinsic::setjmp:
5695     lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5696     return;
5697   case Intrinsic::longjmp:
5698     lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5699     return;
5700   case Intrinsic::memcpy: {
5701     const auto &MCI = cast<MemCpyInst>(I);
5702     SDValue Op1 = getValue(I.getArgOperand(0));
5703     SDValue Op2 = getValue(I.getArgOperand(1));
5704     SDValue Op3 = getValue(I.getArgOperand(2));
5705     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5706     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5707     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5708     unsigned Align = MinAlign(DstAlign, SrcAlign);
5709     bool isVol = MCI.isVolatile();
5710     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5711     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5712     // node.
5713     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5714                                false, isTC,
5715                                MachinePointerInfo(I.getArgOperand(0)),
5716                                MachinePointerInfo(I.getArgOperand(1)));
5717     updateDAGForMaybeTailCall(MC);
5718     return;
5719   }
5720   case Intrinsic::memset: {
5721     const auto &MSI = cast<MemSetInst>(I);
5722     SDValue Op1 = getValue(I.getArgOperand(0));
5723     SDValue Op2 = getValue(I.getArgOperand(1));
5724     SDValue Op3 = getValue(I.getArgOperand(2));
5725     // @llvm.memset defines 0 and 1 to both mean no alignment.
5726     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5727     bool isVol = MSI.isVolatile();
5728     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5729     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5730                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5731     updateDAGForMaybeTailCall(MS);
5732     return;
5733   }
5734   case Intrinsic::memmove: {
5735     const auto &MMI = cast<MemMoveInst>(I);
5736     SDValue Op1 = getValue(I.getArgOperand(0));
5737     SDValue Op2 = getValue(I.getArgOperand(1));
5738     SDValue Op3 = getValue(I.getArgOperand(2));
5739     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5740     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5741     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5742     unsigned Align = MinAlign(DstAlign, SrcAlign);
5743     bool isVol = MMI.isVolatile();
5744     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5745     // FIXME: Support passing different dest/src alignments to the memmove DAG
5746     // node.
5747     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5748                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5749                                 MachinePointerInfo(I.getArgOperand(1)));
5750     updateDAGForMaybeTailCall(MM);
5751     return;
5752   }
5753   case Intrinsic::memcpy_element_unordered_atomic: {
5754     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5755     SDValue Dst = getValue(MI.getRawDest());
5756     SDValue Src = getValue(MI.getRawSource());
5757     SDValue Length = getValue(MI.getLength());
5758 
5759     unsigned DstAlign = MI.getDestAlignment();
5760     unsigned SrcAlign = MI.getSourceAlignment();
5761     Type *LengthTy = MI.getLength()->getType();
5762     unsigned ElemSz = MI.getElementSizeInBytes();
5763     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5764     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5765                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5766                                      MachinePointerInfo(MI.getRawDest()),
5767                                      MachinePointerInfo(MI.getRawSource()));
5768     updateDAGForMaybeTailCall(MC);
5769     return;
5770   }
5771   case Intrinsic::memmove_element_unordered_atomic: {
5772     auto &MI = cast<AtomicMemMoveInst>(I);
5773     SDValue Dst = getValue(MI.getRawDest());
5774     SDValue Src = getValue(MI.getRawSource());
5775     SDValue Length = getValue(MI.getLength());
5776 
5777     unsigned DstAlign = MI.getDestAlignment();
5778     unsigned SrcAlign = MI.getSourceAlignment();
5779     Type *LengthTy = MI.getLength()->getType();
5780     unsigned ElemSz = MI.getElementSizeInBytes();
5781     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5782     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5783                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5784                                       MachinePointerInfo(MI.getRawDest()),
5785                                       MachinePointerInfo(MI.getRawSource()));
5786     updateDAGForMaybeTailCall(MC);
5787     return;
5788   }
5789   case Intrinsic::memset_element_unordered_atomic: {
5790     auto &MI = cast<AtomicMemSetInst>(I);
5791     SDValue Dst = getValue(MI.getRawDest());
5792     SDValue Val = getValue(MI.getValue());
5793     SDValue Length = getValue(MI.getLength());
5794 
5795     unsigned DstAlign = MI.getDestAlignment();
5796     Type *LengthTy = MI.getLength()->getType();
5797     unsigned ElemSz = MI.getElementSizeInBytes();
5798     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5799     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5800                                      LengthTy, ElemSz, isTC,
5801                                      MachinePointerInfo(MI.getRawDest()));
5802     updateDAGForMaybeTailCall(MC);
5803     return;
5804   }
5805   case Intrinsic::dbg_addr:
5806   case Intrinsic::dbg_declare: {
5807     const auto &DI = cast<DbgVariableIntrinsic>(I);
5808     DILocalVariable *Variable = DI.getVariable();
5809     DIExpression *Expression = DI.getExpression();
5810     dropDanglingDebugInfo(Variable, Expression);
5811     assert(Variable && "Missing variable");
5812 
5813     // Check if address has undef value.
5814     const Value *Address = DI.getVariableLocation();
5815     if (!Address || isa<UndefValue>(Address) ||
5816         (Address->use_empty() && !isa<Argument>(Address))) {
5817       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5818       return;
5819     }
5820 
5821     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5822 
5823     // Check if this variable can be described by a frame index, typically
5824     // either as a static alloca or a byval parameter.
5825     int FI = std::numeric_limits<int>::max();
5826     if (const auto *AI =
5827             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5828       if (AI->isStaticAlloca()) {
5829         auto I = FuncInfo.StaticAllocaMap.find(AI);
5830         if (I != FuncInfo.StaticAllocaMap.end())
5831           FI = I->second;
5832       }
5833     } else if (const auto *Arg = dyn_cast<Argument>(
5834                    Address->stripInBoundsConstantOffsets())) {
5835       FI = FuncInfo.getArgumentFrameIndex(Arg);
5836     }
5837 
5838     // llvm.dbg.addr is control dependent and always generates indirect
5839     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5840     // the MachineFunction variable table.
5841     if (FI != std::numeric_limits<int>::max()) {
5842       if (Intrinsic == Intrinsic::dbg_addr) {
5843         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5844             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5845         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5846       }
5847       return;
5848     }
5849 
5850     SDValue &N = NodeMap[Address];
5851     if (!N.getNode() && isa<Argument>(Address))
5852       // Check unused arguments map.
5853       N = UnusedArgNodeMap[Address];
5854     SDDbgValue *SDV;
5855     if (N.getNode()) {
5856       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5857         Address = BCI->getOperand(0);
5858       // Parameters are handled specially.
5859       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5860       if (isParameter && FINode) {
5861         // Byval parameter. We have a frame index at this point.
5862         SDV =
5863             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5864                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5865       } else if (isa<Argument>(Address)) {
5866         // Address is an argument, so try to emit its dbg value using
5867         // virtual register info from the FuncInfo.ValueMap.
5868         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5869         return;
5870       } else {
5871         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5872                               true, dl, SDNodeOrder);
5873       }
5874       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5875     } else {
5876       // If Address is an argument then try to emit its dbg value using
5877       // virtual register info from the FuncInfo.ValueMap.
5878       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5879                                     N)) {
5880         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5881       }
5882     }
5883     return;
5884   }
5885   case Intrinsic::dbg_label: {
5886     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5887     DILabel *Label = DI.getLabel();
5888     assert(Label && "Missing label");
5889 
5890     SDDbgLabel *SDV;
5891     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5892     DAG.AddDbgLabel(SDV);
5893     return;
5894   }
5895   case Intrinsic::dbg_value: {
5896     const DbgValueInst &DI = cast<DbgValueInst>(I);
5897     assert(DI.getVariable() && "Missing variable");
5898 
5899     DILocalVariable *Variable = DI.getVariable();
5900     DIExpression *Expression = DI.getExpression();
5901     dropDanglingDebugInfo(Variable, Expression);
5902     const Value *V = DI.getValue();
5903     if (!V)
5904       return;
5905 
5906     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5907         SDNodeOrder))
5908       return;
5909 
5910     // TODO: Dangling debug info will eventually either be resolved or produce
5911     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5912     // between the original dbg.value location and its resolved DBG_VALUE, which
5913     // we should ideally fill with an extra Undef DBG_VALUE.
5914 
5915     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5916     return;
5917   }
5918 
5919   case Intrinsic::eh_typeid_for: {
5920     // Find the type id for the given typeinfo.
5921     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5922     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5923     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5924     setValue(&I, Res);
5925     return;
5926   }
5927 
5928   case Intrinsic::eh_return_i32:
5929   case Intrinsic::eh_return_i64:
5930     DAG.getMachineFunction().setCallsEHReturn(true);
5931     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5932                             MVT::Other,
5933                             getControlRoot(),
5934                             getValue(I.getArgOperand(0)),
5935                             getValue(I.getArgOperand(1))));
5936     return;
5937   case Intrinsic::eh_unwind_init:
5938     DAG.getMachineFunction().setCallsUnwindInit(true);
5939     return;
5940   case Intrinsic::eh_dwarf_cfa:
5941     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5942                              TLI.getPointerTy(DAG.getDataLayout()),
5943                              getValue(I.getArgOperand(0))));
5944     return;
5945   case Intrinsic::eh_sjlj_callsite: {
5946     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5947     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5948     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5949     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5950 
5951     MMI.setCurrentCallSite(CI->getZExtValue());
5952     return;
5953   }
5954   case Intrinsic::eh_sjlj_functioncontext: {
5955     // Get and store the index of the function context.
5956     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5957     AllocaInst *FnCtx =
5958       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5959     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5960     MFI.setFunctionContextIndex(FI);
5961     return;
5962   }
5963   case Intrinsic::eh_sjlj_setjmp: {
5964     SDValue Ops[2];
5965     Ops[0] = getRoot();
5966     Ops[1] = getValue(I.getArgOperand(0));
5967     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5968                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5969     setValue(&I, Op.getValue(0));
5970     DAG.setRoot(Op.getValue(1));
5971     return;
5972   }
5973   case Intrinsic::eh_sjlj_longjmp:
5974     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5975                             getRoot(), getValue(I.getArgOperand(0))));
5976     return;
5977   case Intrinsic::eh_sjlj_setup_dispatch:
5978     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5979                             getRoot()));
5980     return;
5981   case Intrinsic::masked_gather:
5982     visitMaskedGather(I);
5983     return;
5984   case Intrinsic::masked_load:
5985     visitMaskedLoad(I);
5986     return;
5987   case Intrinsic::masked_scatter:
5988     visitMaskedScatter(I);
5989     return;
5990   case Intrinsic::masked_store:
5991     visitMaskedStore(I);
5992     return;
5993   case Intrinsic::masked_expandload:
5994     visitMaskedLoad(I, true /* IsExpanding */);
5995     return;
5996   case Intrinsic::masked_compressstore:
5997     visitMaskedStore(I, true /* IsCompressing */);
5998     return;
5999   case Intrinsic::powi:
6000     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6001                             getValue(I.getArgOperand(1)), DAG));
6002     return;
6003   case Intrinsic::log:
6004     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6005     return;
6006   case Intrinsic::log2:
6007     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6008     return;
6009   case Intrinsic::log10:
6010     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6011     return;
6012   case Intrinsic::exp:
6013     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6014     return;
6015   case Intrinsic::exp2:
6016     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6017     return;
6018   case Intrinsic::pow:
6019     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6020                            getValue(I.getArgOperand(1)), DAG, TLI));
6021     return;
6022   case Intrinsic::sqrt:
6023   case Intrinsic::fabs:
6024   case Intrinsic::sin:
6025   case Intrinsic::cos:
6026   case Intrinsic::floor:
6027   case Intrinsic::ceil:
6028   case Intrinsic::trunc:
6029   case Intrinsic::rint:
6030   case Intrinsic::nearbyint:
6031   case Intrinsic::round:
6032   case Intrinsic::canonicalize: {
6033     unsigned Opcode;
6034     switch (Intrinsic) {
6035     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6036     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6037     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6038     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6039     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6040     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6041     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6042     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6043     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6044     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6045     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6046     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6047     }
6048 
6049     setValue(&I, DAG.getNode(Opcode, sdl,
6050                              getValue(I.getArgOperand(0)).getValueType(),
6051                              getValue(I.getArgOperand(0))));
6052     return;
6053   }
6054   case Intrinsic::lround:
6055   case Intrinsic::llround:
6056   case Intrinsic::lrint:
6057   case Intrinsic::llrint: {
6058     unsigned Opcode;
6059     switch (Intrinsic) {
6060     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6061     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6062     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6063     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6064     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6065     }
6066 
6067     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6068     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6069                              getValue(I.getArgOperand(0))));
6070     return;
6071   }
6072   case Intrinsic::minnum:
6073     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6074                              getValue(I.getArgOperand(0)).getValueType(),
6075                              getValue(I.getArgOperand(0)),
6076                              getValue(I.getArgOperand(1))));
6077     return;
6078   case Intrinsic::maxnum:
6079     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6080                              getValue(I.getArgOperand(0)).getValueType(),
6081                              getValue(I.getArgOperand(0)),
6082                              getValue(I.getArgOperand(1))));
6083     return;
6084   case Intrinsic::minimum:
6085     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6086                              getValue(I.getArgOperand(0)).getValueType(),
6087                              getValue(I.getArgOperand(0)),
6088                              getValue(I.getArgOperand(1))));
6089     return;
6090   case Intrinsic::maximum:
6091     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6092                              getValue(I.getArgOperand(0)).getValueType(),
6093                              getValue(I.getArgOperand(0)),
6094                              getValue(I.getArgOperand(1))));
6095     return;
6096   case Intrinsic::copysign:
6097     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6098                              getValue(I.getArgOperand(0)).getValueType(),
6099                              getValue(I.getArgOperand(0)),
6100                              getValue(I.getArgOperand(1))));
6101     return;
6102   case Intrinsic::fma:
6103     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6104                              getValue(I.getArgOperand(0)).getValueType(),
6105                              getValue(I.getArgOperand(0)),
6106                              getValue(I.getArgOperand(1)),
6107                              getValue(I.getArgOperand(2))));
6108     return;
6109   case Intrinsic::experimental_constrained_fadd:
6110   case Intrinsic::experimental_constrained_fsub:
6111   case Intrinsic::experimental_constrained_fmul:
6112   case Intrinsic::experimental_constrained_fdiv:
6113   case Intrinsic::experimental_constrained_frem:
6114   case Intrinsic::experimental_constrained_fma:
6115   case Intrinsic::experimental_constrained_fptosi:
6116   case Intrinsic::experimental_constrained_fptoui:
6117   case Intrinsic::experimental_constrained_fptrunc:
6118   case Intrinsic::experimental_constrained_fpext:
6119   case Intrinsic::experimental_constrained_sqrt:
6120   case Intrinsic::experimental_constrained_pow:
6121   case Intrinsic::experimental_constrained_powi:
6122   case Intrinsic::experimental_constrained_sin:
6123   case Intrinsic::experimental_constrained_cos:
6124   case Intrinsic::experimental_constrained_exp:
6125   case Intrinsic::experimental_constrained_exp2:
6126   case Intrinsic::experimental_constrained_log:
6127   case Intrinsic::experimental_constrained_log10:
6128   case Intrinsic::experimental_constrained_log2:
6129   case Intrinsic::experimental_constrained_lrint:
6130   case Intrinsic::experimental_constrained_llrint:
6131   case Intrinsic::experimental_constrained_rint:
6132   case Intrinsic::experimental_constrained_nearbyint:
6133   case Intrinsic::experimental_constrained_maxnum:
6134   case Intrinsic::experimental_constrained_minnum:
6135   case Intrinsic::experimental_constrained_ceil:
6136   case Intrinsic::experimental_constrained_floor:
6137   case Intrinsic::experimental_constrained_lround:
6138   case Intrinsic::experimental_constrained_llround:
6139   case Intrinsic::experimental_constrained_round:
6140   case Intrinsic::experimental_constrained_trunc:
6141     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6142     return;
6143   case Intrinsic::fmuladd: {
6144     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6145     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6146         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6147       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6148                                getValue(I.getArgOperand(0)).getValueType(),
6149                                getValue(I.getArgOperand(0)),
6150                                getValue(I.getArgOperand(1)),
6151                                getValue(I.getArgOperand(2))));
6152     } else {
6153       // TODO: Intrinsic calls should have fast-math-flags.
6154       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6155                                 getValue(I.getArgOperand(0)).getValueType(),
6156                                 getValue(I.getArgOperand(0)),
6157                                 getValue(I.getArgOperand(1)));
6158       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6159                                 getValue(I.getArgOperand(0)).getValueType(),
6160                                 Mul,
6161                                 getValue(I.getArgOperand(2)));
6162       setValue(&I, Add);
6163     }
6164     return;
6165   }
6166   case Intrinsic::convert_to_fp16:
6167     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6168                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6169                                          getValue(I.getArgOperand(0)),
6170                                          DAG.getTargetConstant(0, sdl,
6171                                                                MVT::i32))));
6172     return;
6173   case Intrinsic::convert_from_fp16:
6174     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6175                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6176                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6177                                          getValue(I.getArgOperand(0)))));
6178     return;
6179   case Intrinsic::pcmarker: {
6180     SDValue Tmp = getValue(I.getArgOperand(0));
6181     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6182     return;
6183   }
6184   case Intrinsic::readcyclecounter: {
6185     SDValue Op = getRoot();
6186     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6187                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6188     setValue(&I, Res);
6189     DAG.setRoot(Res.getValue(1));
6190     return;
6191   }
6192   case Intrinsic::bitreverse:
6193     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6194                              getValue(I.getArgOperand(0)).getValueType(),
6195                              getValue(I.getArgOperand(0))));
6196     return;
6197   case Intrinsic::bswap:
6198     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6199                              getValue(I.getArgOperand(0)).getValueType(),
6200                              getValue(I.getArgOperand(0))));
6201     return;
6202   case Intrinsic::cttz: {
6203     SDValue Arg = getValue(I.getArgOperand(0));
6204     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6205     EVT Ty = Arg.getValueType();
6206     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6207                              sdl, Ty, Arg));
6208     return;
6209   }
6210   case Intrinsic::ctlz: {
6211     SDValue Arg = getValue(I.getArgOperand(0));
6212     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6213     EVT Ty = Arg.getValueType();
6214     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6215                              sdl, Ty, Arg));
6216     return;
6217   }
6218   case Intrinsic::ctpop: {
6219     SDValue Arg = getValue(I.getArgOperand(0));
6220     EVT Ty = Arg.getValueType();
6221     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6222     return;
6223   }
6224   case Intrinsic::fshl:
6225   case Intrinsic::fshr: {
6226     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6227     SDValue X = getValue(I.getArgOperand(0));
6228     SDValue Y = getValue(I.getArgOperand(1));
6229     SDValue Z = getValue(I.getArgOperand(2));
6230     EVT VT = X.getValueType();
6231     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6232     SDValue Zero = DAG.getConstant(0, sdl, VT);
6233     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6234 
6235     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6236     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6237       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6238       return;
6239     }
6240 
6241     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6242     // avoid the select that is necessary in the general case to filter out
6243     // the 0-shift possibility that leads to UB.
6244     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6245       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6246       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6247         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6248         return;
6249       }
6250 
6251       // Some targets only rotate one way. Try the opposite direction.
6252       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6253       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6254         // Negate the shift amount because it is safe to ignore the high bits.
6255         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6256         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6257         return;
6258       }
6259 
6260       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6261       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6262       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6263       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6264       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6265       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6266       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6267       return;
6268     }
6269 
6270     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6271     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6272     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6273     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6274     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6275     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6276 
6277     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6278     // and that is undefined. We must compare and select to avoid UB.
6279     EVT CCVT = MVT::i1;
6280     if (VT.isVector())
6281       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6282 
6283     // For fshl, 0-shift returns the 1st arg (X).
6284     // For fshr, 0-shift returns the 2nd arg (Y).
6285     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6286     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6287     return;
6288   }
6289   case Intrinsic::sadd_sat: {
6290     SDValue Op1 = getValue(I.getArgOperand(0));
6291     SDValue Op2 = getValue(I.getArgOperand(1));
6292     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6293     return;
6294   }
6295   case Intrinsic::uadd_sat: {
6296     SDValue Op1 = getValue(I.getArgOperand(0));
6297     SDValue Op2 = getValue(I.getArgOperand(1));
6298     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6299     return;
6300   }
6301   case Intrinsic::ssub_sat: {
6302     SDValue Op1 = getValue(I.getArgOperand(0));
6303     SDValue Op2 = getValue(I.getArgOperand(1));
6304     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6305     return;
6306   }
6307   case Intrinsic::usub_sat: {
6308     SDValue Op1 = getValue(I.getArgOperand(0));
6309     SDValue Op2 = getValue(I.getArgOperand(1));
6310     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6311     return;
6312   }
6313   case Intrinsic::smul_fix:
6314   case Intrinsic::umul_fix: {
6315     SDValue Op1 = getValue(I.getArgOperand(0));
6316     SDValue Op2 = getValue(I.getArgOperand(1));
6317     SDValue Op3 = getValue(I.getArgOperand(2));
6318     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6319                              Op1.getValueType(), Op1, Op2, Op3));
6320     return;
6321   }
6322   case Intrinsic::smul_fix_sat: {
6323     SDValue Op1 = getValue(I.getArgOperand(0));
6324     SDValue Op2 = getValue(I.getArgOperand(1));
6325     SDValue Op3 = getValue(I.getArgOperand(2));
6326     setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6327                              Op3));
6328     return;
6329   }
6330   case Intrinsic::umul_fix_sat: {
6331     SDValue Op1 = getValue(I.getArgOperand(0));
6332     SDValue Op2 = getValue(I.getArgOperand(1));
6333     SDValue Op3 = getValue(I.getArgOperand(2));
6334     setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6335                              Op3));
6336     return;
6337   }
6338   case Intrinsic::stacksave: {
6339     SDValue Op = getRoot();
6340     Res = DAG.getNode(
6341         ISD::STACKSAVE, sdl,
6342         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6343     setValue(&I, Res);
6344     DAG.setRoot(Res.getValue(1));
6345     return;
6346   }
6347   case Intrinsic::stackrestore:
6348     Res = getValue(I.getArgOperand(0));
6349     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6350     return;
6351   case Intrinsic::get_dynamic_area_offset: {
6352     SDValue Op = getRoot();
6353     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6354     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6355     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6356     // target.
6357     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6358       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6359                          " intrinsic!");
6360     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6361                       Op);
6362     DAG.setRoot(Op);
6363     setValue(&I, Res);
6364     return;
6365   }
6366   case Intrinsic::stackguard: {
6367     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6368     MachineFunction &MF = DAG.getMachineFunction();
6369     const Module &M = *MF.getFunction().getParent();
6370     SDValue Chain = getRoot();
6371     if (TLI.useLoadStackGuardNode()) {
6372       Res = getLoadStackGuard(DAG, sdl, Chain);
6373     } else {
6374       const Value *Global = TLI.getSDagStackGuard(M);
6375       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6376       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6377                         MachinePointerInfo(Global, 0), Align,
6378                         MachineMemOperand::MOVolatile);
6379     }
6380     if (TLI.useStackGuardXorFP())
6381       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6382     DAG.setRoot(Chain);
6383     setValue(&I, Res);
6384     return;
6385   }
6386   case Intrinsic::stackprotector: {
6387     // Emit code into the DAG to store the stack guard onto the stack.
6388     MachineFunction &MF = DAG.getMachineFunction();
6389     MachineFrameInfo &MFI = MF.getFrameInfo();
6390     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6391     SDValue Src, Chain = getRoot();
6392 
6393     if (TLI.useLoadStackGuardNode())
6394       Src = getLoadStackGuard(DAG, sdl, Chain);
6395     else
6396       Src = getValue(I.getArgOperand(0));   // The guard's value.
6397 
6398     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6399 
6400     int FI = FuncInfo.StaticAllocaMap[Slot];
6401     MFI.setStackProtectorIndex(FI);
6402 
6403     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6404 
6405     // Store the stack protector onto the stack.
6406     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6407                                                  DAG.getMachineFunction(), FI),
6408                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6409     setValue(&I, Res);
6410     DAG.setRoot(Res);
6411     return;
6412   }
6413   case Intrinsic::objectsize:
6414     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6415 
6416   case Intrinsic::is_constant:
6417     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6418 
6419   case Intrinsic::annotation:
6420   case Intrinsic::ptr_annotation:
6421   case Intrinsic::launder_invariant_group:
6422   case Intrinsic::strip_invariant_group:
6423     // Drop the intrinsic, but forward the value
6424     setValue(&I, getValue(I.getOperand(0)));
6425     return;
6426   case Intrinsic::assume:
6427   case Intrinsic::var_annotation:
6428   case Intrinsic::sideeffect:
6429     // Discard annotate attributes, assumptions, and artificial side-effects.
6430     return;
6431 
6432   case Intrinsic::codeview_annotation: {
6433     // Emit a label associated with this metadata.
6434     MachineFunction &MF = DAG.getMachineFunction();
6435     MCSymbol *Label =
6436         MF.getMMI().getContext().createTempSymbol("annotation", true);
6437     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6438     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6439     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6440     DAG.setRoot(Res);
6441     return;
6442   }
6443 
6444   case Intrinsic::init_trampoline: {
6445     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6446 
6447     SDValue Ops[6];
6448     Ops[0] = getRoot();
6449     Ops[1] = getValue(I.getArgOperand(0));
6450     Ops[2] = getValue(I.getArgOperand(1));
6451     Ops[3] = getValue(I.getArgOperand(2));
6452     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6453     Ops[5] = DAG.getSrcValue(F);
6454 
6455     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6456 
6457     DAG.setRoot(Res);
6458     return;
6459   }
6460   case Intrinsic::adjust_trampoline:
6461     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6462                              TLI.getPointerTy(DAG.getDataLayout()),
6463                              getValue(I.getArgOperand(0))));
6464     return;
6465   case Intrinsic::gcroot: {
6466     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6467            "only valid in functions with gc specified, enforced by Verifier");
6468     assert(GFI && "implied by previous");
6469     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6470     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6471 
6472     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6473     GFI->addStackRoot(FI->getIndex(), TypeMap);
6474     return;
6475   }
6476   case Intrinsic::gcread:
6477   case Intrinsic::gcwrite:
6478     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6479   case Intrinsic::flt_rounds:
6480     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6481     return;
6482 
6483   case Intrinsic::expect:
6484     // Just replace __builtin_expect(exp, c) with EXP.
6485     setValue(&I, getValue(I.getArgOperand(0)));
6486     return;
6487 
6488   case Intrinsic::debugtrap:
6489   case Intrinsic::trap: {
6490     StringRef TrapFuncName =
6491         I.getAttributes()
6492             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6493             .getValueAsString();
6494     if (TrapFuncName.empty()) {
6495       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6496         ISD::TRAP : ISD::DEBUGTRAP;
6497       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6498       return;
6499     }
6500     TargetLowering::ArgListTy Args;
6501 
6502     TargetLowering::CallLoweringInfo CLI(DAG);
6503     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6504         CallingConv::C, I.getType(),
6505         DAG.getExternalSymbol(TrapFuncName.data(),
6506                               TLI.getPointerTy(DAG.getDataLayout())),
6507         std::move(Args));
6508 
6509     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6510     DAG.setRoot(Result.second);
6511     return;
6512   }
6513 
6514   case Intrinsic::uadd_with_overflow:
6515   case Intrinsic::sadd_with_overflow:
6516   case Intrinsic::usub_with_overflow:
6517   case Intrinsic::ssub_with_overflow:
6518   case Intrinsic::umul_with_overflow:
6519   case Intrinsic::smul_with_overflow: {
6520     ISD::NodeType Op;
6521     switch (Intrinsic) {
6522     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6523     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6524     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6525     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6526     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6527     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6528     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6529     }
6530     SDValue Op1 = getValue(I.getArgOperand(0));
6531     SDValue Op2 = getValue(I.getArgOperand(1));
6532 
6533     EVT ResultVT = Op1.getValueType();
6534     EVT OverflowVT = MVT::i1;
6535     if (ResultVT.isVector())
6536       OverflowVT = EVT::getVectorVT(
6537           *Context, OverflowVT, ResultVT.getVectorNumElements());
6538 
6539     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6540     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6541     return;
6542   }
6543   case Intrinsic::prefetch: {
6544     SDValue Ops[5];
6545     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6546     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6547     Ops[0] = DAG.getRoot();
6548     Ops[1] = getValue(I.getArgOperand(0));
6549     Ops[2] = getValue(I.getArgOperand(1));
6550     Ops[3] = getValue(I.getArgOperand(2));
6551     Ops[4] = getValue(I.getArgOperand(3));
6552     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6553                                              DAG.getVTList(MVT::Other), Ops,
6554                                              EVT::getIntegerVT(*Context, 8),
6555                                              MachinePointerInfo(I.getArgOperand(0)),
6556                                              0, /* align */
6557                                              Flags);
6558 
6559     // Chain the prefetch in parallell with any pending loads, to stay out of
6560     // the way of later optimizations.
6561     PendingLoads.push_back(Result);
6562     Result = getRoot();
6563     DAG.setRoot(Result);
6564     return;
6565   }
6566   case Intrinsic::lifetime_start:
6567   case Intrinsic::lifetime_end: {
6568     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6569     // Stack coloring is not enabled in O0, discard region information.
6570     if (TM.getOptLevel() == CodeGenOpt::None)
6571       return;
6572 
6573     const int64_t ObjectSize =
6574         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6575     Value *const ObjectPtr = I.getArgOperand(1);
6576     SmallVector<const Value *, 4> Allocas;
6577     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6578 
6579     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6580            E = Allocas.end(); Object != E; ++Object) {
6581       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6582 
6583       // Could not find an Alloca.
6584       if (!LifetimeObject)
6585         continue;
6586 
6587       // First check that the Alloca is static, otherwise it won't have a
6588       // valid frame index.
6589       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6590       if (SI == FuncInfo.StaticAllocaMap.end())
6591         return;
6592 
6593       const int FrameIndex = SI->second;
6594       int64_t Offset;
6595       if (GetPointerBaseWithConstantOffset(
6596               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6597         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6598       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6599                                 Offset);
6600       DAG.setRoot(Res);
6601     }
6602     return;
6603   }
6604   case Intrinsic::invariant_start:
6605     // Discard region information.
6606     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6607     return;
6608   case Intrinsic::invariant_end:
6609     // Discard region information.
6610     return;
6611   case Intrinsic::clear_cache:
6612     /// FunctionName may be null.
6613     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6614       lowerCallToExternalSymbol(I, FunctionName);
6615     return;
6616   case Intrinsic::donothing:
6617     // ignore
6618     return;
6619   case Intrinsic::experimental_stackmap:
6620     visitStackmap(I);
6621     return;
6622   case Intrinsic::experimental_patchpoint_void:
6623   case Intrinsic::experimental_patchpoint_i64:
6624     visitPatchpoint(&I);
6625     return;
6626   case Intrinsic::experimental_gc_statepoint:
6627     LowerStatepoint(ImmutableStatepoint(&I));
6628     return;
6629   case Intrinsic::experimental_gc_result:
6630     visitGCResult(cast<GCResultInst>(I));
6631     return;
6632   case Intrinsic::experimental_gc_relocate:
6633     visitGCRelocate(cast<GCRelocateInst>(I));
6634     return;
6635   case Intrinsic::instrprof_increment:
6636     llvm_unreachable("instrprof failed to lower an increment");
6637   case Intrinsic::instrprof_value_profile:
6638     llvm_unreachable("instrprof failed to lower a value profiling call");
6639   case Intrinsic::localescape: {
6640     MachineFunction &MF = DAG.getMachineFunction();
6641     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6642 
6643     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6644     // is the same on all targets.
6645     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6646       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6647       if (isa<ConstantPointerNull>(Arg))
6648         continue; // Skip null pointers. They represent a hole in index space.
6649       AllocaInst *Slot = cast<AllocaInst>(Arg);
6650       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6651              "can only escape static allocas");
6652       int FI = FuncInfo.StaticAllocaMap[Slot];
6653       MCSymbol *FrameAllocSym =
6654           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6655               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6656       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6657               TII->get(TargetOpcode::LOCAL_ESCAPE))
6658           .addSym(FrameAllocSym)
6659           .addFrameIndex(FI);
6660     }
6661 
6662     return;
6663   }
6664 
6665   case Intrinsic::localrecover: {
6666     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6667     MachineFunction &MF = DAG.getMachineFunction();
6668     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6669 
6670     // Get the symbol that defines the frame offset.
6671     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6672     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6673     unsigned IdxVal =
6674         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6675     MCSymbol *FrameAllocSym =
6676         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6677             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6678 
6679     // Create a MCSymbol for the label to avoid any target lowering
6680     // that would make this PC relative.
6681     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6682     SDValue OffsetVal =
6683         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6684 
6685     // Add the offset to the FP.
6686     Value *FP = I.getArgOperand(1);
6687     SDValue FPVal = getValue(FP);
6688     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6689     setValue(&I, Add);
6690 
6691     return;
6692   }
6693 
6694   case Intrinsic::eh_exceptionpointer:
6695   case Intrinsic::eh_exceptioncode: {
6696     // Get the exception pointer vreg, copy from it, and resize it to fit.
6697     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6698     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6699     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6700     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6701     SDValue N =
6702         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6703     if (Intrinsic == Intrinsic::eh_exceptioncode)
6704       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6705     setValue(&I, N);
6706     return;
6707   }
6708   case Intrinsic::xray_customevent: {
6709     // Here we want to make sure that the intrinsic behaves as if it has a
6710     // specific calling convention, and only for x86_64.
6711     // FIXME: Support other platforms later.
6712     const auto &Triple = DAG.getTarget().getTargetTriple();
6713     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6714       return;
6715 
6716     SDLoc DL = getCurSDLoc();
6717     SmallVector<SDValue, 8> Ops;
6718 
6719     // We want to say that we always want the arguments in registers.
6720     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6721     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6722     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6723     SDValue Chain = getRoot();
6724     Ops.push_back(LogEntryVal);
6725     Ops.push_back(StrSizeVal);
6726     Ops.push_back(Chain);
6727 
6728     // We need to enforce the calling convention for the callsite, so that
6729     // argument ordering is enforced correctly, and that register allocation can
6730     // see that some registers may be assumed clobbered and have to preserve
6731     // them across calls to the intrinsic.
6732     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6733                                            DL, NodeTys, Ops);
6734     SDValue patchableNode = SDValue(MN, 0);
6735     DAG.setRoot(patchableNode);
6736     setValue(&I, patchableNode);
6737     return;
6738   }
6739   case Intrinsic::xray_typedevent: {
6740     // Here we want to make sure that the intrinsic behaves as if it has a
6741     // specific calling convention, and only for x86_64.
6742     // FIXME: Support other platforms later.
6743     const auto &Triple = DAG.getTarget().getTargetTriple();
6744     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6745       return;
6746 
6747     SDLoc DL = getCurSDLoc();
6748     SmallVector<SDValue, 8> Ops;
6749 
6750     // We want to say that we always want the arguments in registers.
6751     // It's unclear to me how manipulating the selection DAG here forces callers
6752     // to provide arguments in registers instead of on the stack.
6753     SDValue LogTypeId = getValue(I.getArgOperand(0));
6754     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6755     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6756     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6757     SDValue Chain = getRoot();
6758     Ops.push_back(LogTypeId);
6759     Ops.push_back(LogEntryVal);
6760     Ops.push_back(StrSizeVal);
6761     Ops.push_back(Chain);
6762 
6763     // We need to enforce the calling convention for the callsite, so that
6764     // argument ordering is enforced correctly, and that register allocation can
6765     // see that some registers may be assumed clobbered and have to preserve
6766     // them across calls to the intrinsic.
6767     MachineSDNode *MN = DAG.getMachineNode(
6768         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6769     SDValue patchableNode = SDValue(MN, 0);
6770     DAG.setRoot(patchableNode);
6771     setValue(&I, patchableNode);
6772     return;
6773   }
6774   case Intrinsic::experimental_deoptimize:
6775     LowerDeoptimizeCall(&I);
6776     return;
6777 
6778   case Intrinsic::experimental_vector_reduce_v2_fadd:
6779   case Intrinsic::experimental_vector_reduce_v2_fmul:
6780   case Intrinsic::experimental_vector_reduce_add:
6781   case Intrinsic::experimental_vector_reduce_mul:
6782   case Intrinsic::experimental_vector_reduce_and:
6783   case Intrinsic::experimental_vector_reduce_or:
6784   case Intrinsic::experimental_vector_reduce_xor:
6785   case Intrinsic::experimental_vector_reduce_smax:
6786   case Intrinsic::experimental_vector_reduce_smin:
6787   case Intrinsic::experimental_vector_reduce_umax:
6788   case Intrinsic::experimental_vector_reduce_umin:
6789   case Intrinsic::experimental_vector_reduce_fmax:
6790   case Intrinsic::experimental_vector_reduce_fmin:
6791     visitVectorReduce(I, Intrinsic);
6792     return;
6793 
6794   case Intrinsic::icall_branch_funnel: {
6795     SmallVector<SDValue, 16> Ops;
6796     Ops.push_back(getValue(I.getArgOperand(0)));
6797 
6798     int64_t Offset;
6799     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6800         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6801     if (!Base)
6802       report_fatal_error(
6803           "llvm.icall.branch.funnel operand must be a GlobalValue");
6804     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6805 
6806     struct BranchFunnelTarget {
6807       int64_t Offset;
6808       SDValue Target;
6809     };
6810     SmallVector<BranchFunnelTarget, 8> Targets;
6811 
6812     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6813       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6814           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6815       if (ElemBase != Base)
6816         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6817                            "to the same GlobalValue");
6818 
6819       SDValue Val = getValue(I.getArgOperand(Op + 1));
6820       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6821       if (!GA)
6822         report_fatal_error(
6823             "llvm.icall.branch.funnel operand must be a GlobalValue");
6824       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6825                                      GA->getGlobal(), getCurSDLoc(),
6826                                      Val.getValueType(), GA->getOffset())});
6827     }
6828     llvm::sort(Targets,
6829                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6830                  return T1.Offset < T2.Offset;
6831                });
6832 
6833     for (auto &T : Targets) {
6834       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6835       Ops.push_back(T.Target);
6836     }
6837 
6838     Ops.push_back(DAG.getRoot()); // Chain
6839     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6840                                  getCurSDLoc(), MVT::Other, Ops),
6841               0);
6842     DAG.setRoot(N);
6843     setValue(&I, N);
6844     HasTailCall = true;
6845     return;
6846   }
6847 
6848   case Intrinsic::wasm_landingpad_index:
6849     // Information this intrinsic contained has been transferred to
6850     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6851     // delete it now.
6852     return;
6853 
6854   case Intrinsic::aarch64_settag:
6855   case Intrinsic::aarch64_settag_zero: {
6856     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6857     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6858     SDValue Val = TSI.EmitTargetCodeForSetTag(
6859         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6860         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6861         ZeroMemory);
6862     DAG.setRoot(Val);
6863     setValue(&I, Val);
6864     return;
6865   }
6866   case Intrinsic::ptrmask: {
6867     SDValue Ptr = getValue(I.getOperand(0));
6868     SDValue Const = getValue(I.getOperand(1));
6869 
6870     EVT DestVT =
6871         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6872 
6873     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6874                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6875     return;
6876   }
6877   }
6878 }
6879 
6880 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6881     const ConstrainedFPIntrinsic &FPI) {
6882   SDLoc sdl = getCurSDLoc();
6883   unsigned Opcode;
6884   switch (FPI.getIntrinsicID()) {
6885   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6886   case Intrinsic::experimental_constrained_fadd:
6887     Opcode = ISD::STRICT_FADD;
6888     break;
6889   case Intrinsic::experimental_constrained_fsub:
6890     Opcode = ISD::STRICT_FSUB;
6891     break;
6892   case Intrinsic::experimental_constrained_fmul:
6893     Opcode = ISD::STRICT_FMUL;
6894     break;
6895   case Intrinsic::experimental_constrained_fdiv:
6896     Opcode = ISD::STRICT_FDIV;
6897     break;
6898   case Intrinsic::experimental_constrained_frem:
6899     Opcode = ISD::STRICT_FREM;
6900     break;
6901   case Intrinsic::experimental_constrained_fma:
6902     Opcode = ISD::STRICT_FMA;
6903     break;
6904   case Intrinsic::experimental_constrained_fptosi:
6905     Opcode = ISD::STRICT_FP_TO_SINT;
6906     break;
6907   case Intrinsic::experimental_constrained_fptoui:
6908     Opcode = ISD::STRICT_FP_TO_UINT;
6909     break;
6910   case Intrinsic::experimental_constrained_fptrunc:
6911     Opcode = ISD::STRICT_FP_ROUND;
6912     break;
6913   case Intrinsic::experimental_constrained_fpext:
6914     Opcode = ISD::STRICT_FP_EXTEND;
6915     break;
6916   case Intrinsic::experimental_constrained_sqrt:
6917     Opcode = ISD::STRICT_FSQRT;
6918     break;
6919   case Intrinsic::experimental_constrained_pow:
6920     Opcode = ISD::STRICT_FPOW;
6921     break;
6922   case Intrinsic::experimental_constrained_powi:
6923     Opcode = ISD::STRICT_FPOWI;
6924     break;
6925   case Intrinsic::experimental_constrained_sin:
6926     Opcode = ISD::STRICT_FSIN;
6927     break;
6928   case Intrinsic::experimental_constrained_cos:
6929     Opcode = ISD::STRICT_FCOS;
6930     break;
6931   case Intrinsic::experimental_constrained_exp:
6932     Opcode = ISD::STRICT_FEXP;
6933     break;
6934   case Intrinsic::experimental_constrained_exp2:
6935     Opcode = ISD::STRICT_FEXP2;
6936     break;
6937   case Intrinsic::experimental_constrained_log:
6938     Opcode = ISD::STRICT_FLOG;
6939     break;
6940   case Intrinsic::experimental_constrained_log10:
6941     Opcode = ISD::STRICT_FLOG10;
6942     break;
6943   case Intrinsic::experimental_constrained_log2:
6944     Opcode = ISD::STRICT_FLOG2;
6945     break;
6946   case Intrinsic::experimental_constrained_lrint:
6947     Opcode = ISD::STRICT_LRINT;
6948     break;
6949   case Intrinsic::experimental_constrained_llrint:
6950     Opcode = ISD::STRICT_LLRINT;
6951     break;
6952   case Intrinsic::experimental_constrained_rint:
6953     Opcode = ISD::STRICT_FRINT;
6954     break;
6955   case Intrinsic::experimental_constrained_nearbyint:
6956     Opcode = ISD::STRICT_FNEARBYINT;
6957     break;
6958   case Intrinsic::experimental_constrained_maxnum:
6959     Opcode = ISD::STRICT_FMAXNUM;
6960     break;
6961   case Intrinsic::experimental_constrained_minnum:
6962     Opcode = ISD::STRICT_FMINNUM;
6963     break;
6964   case Intrinsic::experimental_constrained_ceil:
6965     Opcode = ISD::STRICT_FCEIL;
6966     break;
6967   case Intrinsic::experimental_constrained_floor:
6968     Opcode = ISD::STRICT_FFLOOR;
6969     break;
6970   case Intrinsic::experimental_constrained_lround:
6971     Opcode = ISD::STRICT_LROUND;
6972     break;
6973   case Intrinsic::experimental_constrained_llround:
6974     Opcode = ISD::STRICT_LLROUND;
6975     break;
6976   case Intrinsic::experimental_constrained_round:
6977     Opcode = ISD::STRICT_FROUND;
6978     break;
6979   case Intrinsic::experimental_constrained_trunc:
6980     Opcode = ISD::STRICT_FTRUNC;
6981     break;
6982   }
6983   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6984   SDValue Chain = getRoot();
6985   SmallVector<EVT, 4> ValueVTs;
6986   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6987   ValueVTs.push_back(MVT::Other); // Out chain
6988 
6989   SDVTList VTs = DAG.getVTList(ValueVTs);
6990   SDValue Result;
6991   if (Opcode == ISD::STRICT_FP_ROUND)
6992     Result = DAG.getNode(Opcode, sdl, VTs,
6993                           { Chain, getValue(FPI.getArgOperand(0)),
6994                                DAG.getTargetConstant(0, sdl,
6995                                TLI.getPointerTy(DAG.getDataLayout())) });
6996   else if (FPI.isUnaryOp())
6997     Result = DAG.getNode(Opcode, sdl, VTs,
6998                          { Chain, getValue(FPI.getArgOperand(0)) });
6999   else if (FPI.isTernaryOp())
7000     Result = DAG.getNode(Opcode, sdl, VTs,
7001                          { Chain, getValue(FPI.getArgOperand(0)),
7002                                   getValue(FPI.getArgOperand(1)),
7003                                   getValue(FPI.getArgOperand(2)) });
7004   else
7005     Result = DAG.getNode(Opcode, sdl, VTs,
7006                          { Chain, getValue(FPI.getArgOperand(0)),
7007                            getValue(FPI.getArgOperand(1))  });
7008 
7009   if (FPI.getExceptionBehavior() !=
7010       ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) {
7011     SDNodeFlags Flags;
7012     Flags.setFPExcept(true);
7013     Result->setFlags(Flags);
7014   }
7015 
7016   assert(Result.getNode()->getNumValues() == 2);
7017   SDValue OutChain = Result.getValue(1);
7018   DAG.setRoot(OutChain);
7019   SDValue FPResult = Result.getValue(0);
7020   setValue(&FPI, FPResult);
7021 }
7022 
7023 std::pair<SDValue, SDValue>
7024 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7025                                     const BasicBlock *EHPadBB) {
7026   MachineFunction &MF = DAG.getMachineFunction();
7027   MachineModuleInfo &MMI = MF.getMMI();
7028   MCSymbol *BeginLabel = nullptr;
7029 
7030   if (EHPadBB) {
7031     // Insert a label before the invoke call to mark the try range.  This can be
7032     // used to detect deletion of the invoke via the MachineModuleInfo.
7033     BeginLabel = MMI.getContext().createTempSymbol();
7034 
7035     // For SjLj, keep track of which landing pads go with which invokes
7036     // so as to maintain the ordering of pads in the LSDA.
7037     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7038     if (CallSiteIndex) {
7039       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7040       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7041 
7042       // Now that the call site is handled, stop tracking it.
7043       MMI.setCurrentCallSite(0);
7044     }
7045 
7046     // Both PendingLoads and PendingExports must be flushed here;
7047     // this call might not return.
7048     (void)getRoot();
7049     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7050 
7051     CLI.setChain(getRoot());
7052   }
7053   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7054   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7055 
7056   assert((CLI.IsTailCall || Result.second.getNode()) &&
7057          "Non-null chain expected with non-tail call!");
7058   assert((Result.second.getNode() || !Result.first.getNode()) &&
7059          "Null value expected with tail call!");
7060 
7061   if (!Result.second.getNode()) {
7062     // As a special case, a null chain means that a tail call has been emitted
7063     // and the DAG root is already updated.
7064     HasTailCall = true;
7065 
7066     // Since there's no actual continuation from this block, nothing can be
7067     // relying on us setting vregs for them.
7068     PendingExports.clear();
7069   } else {
7070     DAG.setRoot(Result.second);
7071   }
7072 
7073   if (EHPadBB) {
7074     // Insert a label at the end of the invoke call to mark the try range.  This
7075     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7076     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7077     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7078 
7079     // Inform MachineModuleInfo of range.
7080     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7081     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7082     // actually use outlined funclets and their LSDA info style.
7083     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7084       assert(CLI.CS);
7085       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7086       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7087                                 BeginLabel, EndLabel);
7088     } else if (!isScopedEHPersonality(Pers)) {
7089       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7090     }
7091   }
7092 
7093   return Result;
7094 }
7095 
7096 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7097                                       bool isTailCall,
7098                                       const BasicBlock *EHPadBB) {
7099   auto &DL = DAG.getDataLayout();
7100   FunctionType *FTy = CS.getFunctionType();
7101   Type *RetTy = CS.getType();
7102 
7103   TargetLowering::ArgListTy Args;
7104   Args.reserve(CS.arg_size());
7105 
7106   const Value *SwiftErrorVal = nullptr;
7107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7108 
7109   // We can't tail call inside a function with a swifterror argument. Lowering
7110   // does not support this yet. It would have to move into the swifterror
7111   // register before the call.
7112   auto *Caller = CS.getInstruction()->getParent()->getParent();
7113   if (TLI.supportSwiftError() &&
7114       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7115     isTailCall = false;
7116 
7117   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7118        i != e; ++i) {
7119     TargetLowering::ArgListEntry Entry;
7120     const Value *V = *i;
7121 
7122     // Skip empty types
7123     if (V->getType()->isEmptyTy())
7124       continue;
7125 
7126     SDValue ArgNode = getValue(V);
7127     Entry.Node = ArgNode; Entry.Ty = V->getType();
7128 
7129     Entry.setAttributes(&CS, i - CS.arg_begin());
7130 
7131     // Use swifterror virtual register as input to the call.
7132     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7133       SwiftErrorVal = V;
7134       // We find the virtual register for the actual swifterror argument.
7135       // Instead of using the Value, we use the virtual register instead.
7136       Entry.Node = DAG.getRegister(
7137           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7138           EVT(TLI.getPointerTy(DL)));
7139     }
7140 
7141     Args.push_back(Entry);
7142 
7143     // If we have an explicit sret argument that is an Instruction, (i.e., it
7144     // might point to function-local memory), we can't meaningfully tail-call.
7145     if (Entry.IsSRet && isa<Instruction>(V))
7146       isTailCall = false;
7147   }
7148 
7149   // If call site has a cfguardtarget operand bundle, create and add an
7150   // additional ArgListEntry.
7151   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7152     TargetLowering::ArgListEntry Entry;
7153     Value *V = Bundle->Inputs[0];
7154     SDValue ArgNode = getValue(V);
7155     Entry.Node = ArgNode;
7156     Entry.Ty = V->getType();
7157     Entry.IsCFGuardTarget = true;
7158     Args.push_back(Entry);
7159   }
7160 
7161   // Check if target-independent constraints permit a tail call here.
7162   // Target-dependent constraints are checked within TLI->LowerCallTo.
7163   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7164     isTailCall = false;
7165 
7166   // Disable tail calls if there is an swifterror argument. Targets have not
7167   // been updated to support tail calls.
7168   if (TLI.supportSwiftError() && SwiftErrorVal)
7169     isTailCall = false;
7170 
7171   TargetLowering::CallLoweringInfo CLI(DAG);
7172   CLI.setDebugLoc(getCurSDLoc())
7173       .setChain(getRoot())
7174       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7175       .setTailCall(isTailCall)
7176       .setConvergent(CS.isConvergent());
7177   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7178 
7179   if (Result.first.getNode()) {
7180     const Instruction *Inst = CS.getInstruction();
7181     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7182     setValue(Inst, Result.first);
7183   }
7184 
7185   // The last element of CLI.InVals has the SDValue for swifterror return.
7186   // Here we copy it to a virtual register and update SwiftErrorMap for
7187   // book-keeping.
7188   if (SwiftErrorVal && TLI.supportSwiftError()) {
7189     // Get the last element of InVals.
7190     SDValue Src = CLI.InVals.back();
7191     Register VReg = SwiftError.getOrCreateVRegDefAt(
7192         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7193     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7194     DAG.setRoot(CopyNode);
7195   }
7196 }
7197 
7198 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7199                              SelectionDAGBuilder &Builder) {
7200   // Check to see if this load can be trivially constant folded, e.g. if the
7201   // input is from a string literal.
7202   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7203     // Cast pointer to the type we really want to load.
7204     Type *LoadTy =
7205         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7206     if (LoadVT.isVector())
7207       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7208 
7209     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7210                                          PointerType::getUnqual(LoadTy));
7211 
7212     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7213             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7214       return Builder.getValue(LoadCst);
7215   }
7216 
7217   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7218   // still constant memory, the input chain can be the entry node.
7219   SDValue Root;
7220   bool ConstantMemory = false;
7221 
7222   // Do not serialize (non-volatile) loads of constant memory with anything.
7223   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7224     Root = Builder.DAG.getEntryNode();
7225     ConstantMemory = true;
7226   } else {
7227     // Do not serialize non-volatile loads against each other.
7228     Root = Builder.DAG.getRoot();
7229   }
7230 
7231   SDValue Ptr = Builder.getValue(PtrVal);
7232   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7233                                         Ptr, MachinePointerInfo(PtrVal),
7234                                         /* Alignment = */ 1);
7235 
7236   if (!ConstantMemory)
7237     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7238   return LoadVal;
7239 }
7240 
7241 /// Record the value for an instruction that produces an integer result,
7242 /// converting the type where necessary.
7243 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7244                                                   SDValue Value,
7245                                                   bool IsSigned) {
7246   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7247                                                     I.getType(), true);
7248   if (IsSigned)
7249     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7250   else
7251     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7252   setValue(&I, Value);
7253 }
7254 
7255 /// See if we can lower a memcmp call into an optimized form. If so, return
7256 /// true and lower it. Otherwise return false, and it will be lowered like a
7257 /// normal call.
7258 /// The caller already checked that \p I calls the appropriate LibFunc with a
7259 /// correct prototype.
7260 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7261   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7262   const Value *Size = I.getArgOperand(2);
7263   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7264   if (CSize && CSize->getZExtValue() == 0) {
7265     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7266                                                           I.getType(), true);
7267     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7268     return true;
7269   }
7270 
7271   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7272   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7273       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7274       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7275   if (Res.first.getNode()) {
7276     processIntegerCallValue(I, Res.first, true);
7277     PendingLoads.push_back(Res.second);
7278     return true;
7279   }
7280 
7281   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7282   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7283   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7284     return false;
7285 
7286   // If the target has a fast compare for the given size, it will return a
7287   // preferred load type for that size. Require that the load VT is legal and
7288   // that the target supports unaligned loads of that type. Otherwise, return
7289   // INVALID.
7290   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7291     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7292     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7293     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7294       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7295       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7296       // TODO: Check alignment of src and dest ptrs.
7297       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7298       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7299       if (!TLI.isTypeLegal(LVT) ||
7300           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7301           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7302         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7303     }
7304 
7305     return LVT;
7306   };
7307 
7308   // This turns into unaligned loads. We only do this if the target natively
7309   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7310   // we'll only produce a small number of byte loads.
7311   MVT LoadVT;
7312   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7313   switch (NumBitsToCompare) {
7314   default:
7315     return false;
7316   case 16:
7317     LoadVT = MVT::i16;
7318     break;
7319   case 32:
7320     LoadVT = MVT::i32;
7321     break;
7322   case 64:
7323   case 128:
7324   case 256:
7325     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7326     break;
7327   }
7328 
7329   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7330     return false;
7331 
7332   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7333   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7334 
7335   // Bitcast to a wide integer type if the loads are vectors.
7336   if (LoadVT.isVector()) {
7337     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7338     LoadL = DAG.getBitcast(CmpVT, LoadL);
7339     LoadR = DAG.getBitcast(CmpVT, LoadR);
7340   }
7341 
7342   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7343   processIntegerCallValue(I, Cmp, false);
7344   return true;
7345 }
7346 
7347 /// See if we can lower a memchr call into an optimized form. If so, return
7348 /// true and lower it. Otherwise return false, and it will be lowered like a
7349 /// normal call.
7350 /// The caller already checked that \p I calls the appropriate LibFunc with a
7351 /// correct prototype.
7352 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7353   const Value *Src = I.getArgOperand(0);
7354   const Value *Char = I.getArgOperand(1);
7355   const Value *Length = I.getArgOperand(2);
7356 
7357   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7358   std::pair<SDValue, SDValue> Res =
7359     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7360                                 getValue(Src), getValue(Char), getValue(Length),
7361                                 MachinePointerInfo(Src));
7362   if (Res.first.getNode()) {
7363     setValue(&I, Res.first);
7364     PendingLoads.push_back(Res.second);
7365     return true;
7366   }
7367 
7368   return false;
7369 }
7370 
7371 /// See if we can lower a mempcpy call into an optimized form. If so, return
7372 /// true and lower it. Otherwise return false, and it will be lowered like a
7373 /// normal call.
7374 /// The caller already checked that \p I calls the appropriate LibFunc with a
7375 /// correct prototype.
7376 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7377   SDValue Dst = getValue(I.getArgOperand(0));
7378   SDValue Src = getValue(I.getArgOperand(1));
7379   SDValue Size = getValue(I.getArgOperand(2));
7380 
7381   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7382   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7383   unsigned Align = std::min(DstAlign, SrcAlign);
7384   if (Align == 0) // Alignment of one or both could not be inferred.
7385     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7386 
7387   bool isVol = false;
7388   SDLoc sdl = getCurSDLoc();
7389 
7390   // In the mempcpy context we need to pass in a false value for isTailCall
7391   // because the return pointer needs to be adjusted by the size of
7392   // the copied memory.
7393   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7394                              false, /*isTailCall=*/false,
7395                              MachinePointerInfo(I.getArgOperand(0)),
7396                              MachinePointerInfo(I.getArgOperand(1)));
7397   assert(MC.getNode() != nullptr &&
7398          "** memcpy should not be lowered as TailCall in mempcpy context **");
7399   DAG.setRoot(MC);
7400 
7401   // Check if Size needs to be truncated or extended.
7402   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7403 
7404   // Adjust return pointer to point just past the last dst byte.
7405   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7406                                     Dst, Size);
7407   setValue(&I, DstPlusSize);
7408   return true;
7409 }
7410 
7411 /// See if we can lower a strcpy call into an optimized form.  If so, return
7412 /// true and lower it, otherwise return false and it will be lowered like a
7413 /// normal call.
7414 /// The caller already checked that \p I calls the appropriate LibFunc with a
7415 /// correct prototype.
7416 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7417   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7418 
7419   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7420   std::pair<SDValue, SDValue> Res =
7421     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7422                                 getValue(Arg0), getValue(Arg1),
7423                                 MachinePointerInfo(Arg0),
7424                                 MachinePointerInfo(Arg1), isStpcpy);
7425   if (Res.first.getNode()) {
7426     setValue(&I, Res.first);
7427     DAG.setRoot(Res.second);
7428     return true;
7429   }
7430 
7431   return false;
7432 }
7433 
7434 /// See if we can lower a strcmp call into an optimized form.  If so, return
7435 /// true and lower it, otherwise return false and it will be lowered like a
7436 /// normal call.
7437 /// The caller already checked that \p I calls the appropriate LibFunc with a
7438 /// correct prototype.
7439 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7440   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7441 
7442   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7443   std::pair<SDValue, SDValue> Res =
7444     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7445                                 getValue(Arg0), getValue(Arg1),
7446                                 MachinePointerInfo(Arg0),
7447                                 MachinePointerInfo(Arg1));
7448   if (Res.first.getNode()) {
7449     processIntegerCallValue(I, Res.first, true);
7450     PendingLoads.push_back(Res.second);
7451     return true;
7452   }
7453 
7454   return false;
7455 }
7456 
7457 /// See if we can lower a strlen call into an optimized form.  If so, return
7458 /// true and lower it, otherwise return false and it will be lowered like a
7459 /// normal call.
7460 /// The caller already checked that \p I calls the appropriate LibFunc with a
7461 /// correct prototype.
7462 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7463   const Value *Arg0 = I.getArgOperand(0);
7464 
7465   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7466   std::pair<SDValue, SDValue> Res =
7467     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7468                                 getValue(Arg0), MachinePointerInfo(Arg0));
7469   if (Res.first.getNode()) {
7470     processIntegerCallValue(I, Res.first, false);
7471     PendingLoads.push_back(Res.second);
7472     return true;
7473   }
7474 
7475   return false;
7476 }
7477 
7478 /// See if we can lower a strnlen call into an optimized form.  If so, return
7479 /// true and lower it, otherwise return false and it will be lowered like a
7480 /// normal call.
7481 /// The caller already checked that \p I calls the appropriate LibFunc with a
7482 /// correct prototype.
7483 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7484   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7485 
7486   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7487   std::pair<SDValue, SDValue> Res =
7488     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7489                                  getValue(Arg0), getValue(Arg1),
7490                                  MachinePointerInfo(Arg0));
7491   if (Res.first.getNode()) {
7492     processIntegerCallValue(I, Res.first, false);
7493     PendingLoads.push_back(Res.second);
7494     return true;
7495   }
7496 
7497   return false;
7498 }
7499 
7500 /// See if we can lower a unary floating-point operation into an SDNode with
7501 /// the specified Opcode.  If so, return true and lower it, otherwise return
7502 /// false and it will be lowered like a normal call.
7503 /// The caller already checked that \p I calls the appropriate LibFunc with a
7504 /// correct prototype.
7505 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7506                                               unsigned Opcode) {
7507   // We already checked this call's prototype; verify it doesn't modify errno.
7508   if (!I.onlyReadsMemory())
7509     return false;
7510 
7511   SDValue Tmp = getValue(I.getArgOperand(0));
7512   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7513   return true;
7514 }
7515 
7516 /// See if we can lower a binary floating-point operation into an SDNode with
7517 /// the specified Opcode. If so, return true and lower it. Otherwise return
7518 /// false, and it will be lowered like a normal call.
7519 /// The caller already checked that \p I calls the appropriate LibFunc with a
7520 /// correct prototype.
7521 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7522                                                unsigned Opcode) {
7523   // We already checked this call's prototype; verify it doesn't modify errno.
7524   if (!I.onlyReadsMemory())
7525     return false;
7526 
7527   SDValue Tmp0 = getValue(I.getArgOperand(0));
7528   SDValue Tmp1 = getValue(I.getArgOperand(1));
7529   EVT VT = Tmp0.getValueType();
7530   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7531   return true;
7532 }
7533 
7534 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7535   // Handle inline assembly differently.
7536   if (isa<InlineAsm>(I.getCalledValue())) {
7537     visitInlineAsm(&I);
7538     return;
7539   }
7540 
7541   if (Function *F = I.getCalledFunction()) {
7542     if (F->isDeclaration()) {
7543       // Is this an LLVM intrinsic or a target-specific intrinsic?
7544       unsigned IID = F->getIntrinsicID();
7545       if (!IID)
7546         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7547           IID = II->getIntrinsicID(F);
7548 
7549       if (IID) {
7550         visitIntrinsicCall(I, IID);
7551         return;
7552       }
7553     }
7554 
7555     // Check for well-known libc/libm calls.  If the function is internal, it
7556     // can't be a library call.  Don't do the check if marked as nobuiltin for
7557     // some reason or the call site requires strict floating point semantics.
7558     LibFunc Func;
7559     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7560         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7561         LibInfo->hasOptimizedCodeGen(Func)) {
7562       switch (Func) {
7563       default: break;
7564       case LibFunc_copysign:
7565       case LibFunc_copysignf:
7566       case LibFunc_copysignl:
7567         // We already checked this call's prototype; verify it doesn't modify
7568         // errno.
7569         if (I.onlyReadsMemory()) {
7570           SDValue LHS = getValue(I.getArgOperand(0));
7571           SDValue RHS = getValue(I.getArgOperand(1));
7572           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7573                                    LHS.getValueType(), LHS, RHS));
7574           return;
7575         }
7576         break;
7577       case LibFunc_fabs:
7578       case LibFunc_fabsf:
7579       case LibFunc_fabsl:
7580         if (visitUnaryFloatCall(I, ISD::FABS))
7581           return;
7582         break;
7583       case LibFunc_fmin:
7584       case LibFunc_fminf:
7585       case LibFunc_fminl:
7586         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7587           return;
7588         break;
7589       case LibFunc_fmax:
7590       case LibFunc_fmaxf:
7591       case LibFunc_fmaxl:
7592         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7593           return;
7594         break;
7595       case LibFunc_sin:
7596       case LibFunc_sinf:
7597       case LibFunc_sinl:
7598         if (visitUnaryFloatCall(I, ISD::FSIN))
7599           return;
7600         break;
7601       case LibFunc_cos:
7602       case LibFunc_cosf:
7603       case LibFunc_cosl:
7604         if (visitUnaryFloatCall(I, ISD::FCOS))
7605           return;
7606         break;
7607       case LibFunc_sqrt:
7608       case LibFunc_sqrtf:
7609       case LibFunc_sqrtl:
7610       case LibFunc_sqrt_finite:
7611       case LibFunc_sqrtf_finite:
7612       case LibFunc_sqrtl_finite:
7613         if (visitUnaryFloatCall(I, ISD::FSQRT))
7614           return;
7615         break;
7616       case LibFunc_floor:
7617       case LibFunc_floorf:
7618       case LibFunc_floorl:
7619         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7620           return;
7621         break;
7622       case LibFunc_nearbyint:
7623       case LibFunc_nearbyintf:
7624       case LibFunc_nearbyintl:
7625         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7626           return;
7627         break;
7628       case LibFunc_ceil:
7629       case LibFunc_ceilf:
7630       case LibFunc_ceill:
7631         if (visitUnaryFloatCall(I, ISD::FCEIL))
7632           return;
7633         break;
7634       case LibFunc_rint:
7635       case LibFunc_rintf:
7636       case LibFunc_rintl:
7637         if (visitUnaryFloatCall(I, ISD::FRINT))
7638           return;
7639         break;
7640       case LibFunc_round:
7641       case LibFunc_roundf:
7642       case LibFunc_roundl:
7643         if (visitUnaryFloatCall(I, ISD::FROUND))
7644           return;
7645         break;
7646       case LibFunc_trunc:
7647       case LibFunc_truncf:
7648       case LibFunc_truncl:
7649         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7650           return;
7651         break;
7652       case LibFunc_log2:
7653       case LibFunc_log2f:
7654       case LibFunc_log2l:
7655         if (visitUnaryFloatCall(I, ISD::FLOG2))
7656           return;
7657         break;
7658       case LibFunc_exp2:
7659       case LibFunc_exp2f:
7660       case LibFunc_exp2l:
7661         if (visitUnaryFloatCall(I, ISD::FEXP2))
7662           return;
7663         break;
7664       case LibFunc_memcmp:
7665         if (visitMemCmpCall(I))
7666           return;
7667         break;
7668       case LibFunc_mempcpy:
7669         if (visitMemPCpyCall(I))
7670           return;
7671         break;
7672       case LibFunc_memchr:
7673         if (visitMemChrCall(I))
7674           return;
7675         break;
7676       case LibFunc_strcpy:
7677         if (visitStrCpyCall(I, false))
7678           return;
7679         break;
7680       case LibFunc_stpcpy:
7681         if (visitStrCpyCall(I, true))
7682           return;
7683         break;
7684       case LibFunc_strcmp:
7685         if (visitStrCmpCall(I))
7686           return;
7687         break;
7688       case LibFunc_strlen:
7689         if (visitStrLenCall(I))
7690           return;
7691         break;
7692       case LibFunc_strnlen:
7693         if (visitStrNLenCall(I))
7694           return;
7695         break;
7696       }
7697     }
7698   }
7699 
7700   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7701   // have to do anything here to lower funclet bundles.
7702   // CFGuardTarget bundles are lowered in LowerCallTo.
7703   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7704                                         LLVMContext::OB_funclet,
7705                                         LLVMContext::OB_cfguardtarget}) &&
7706          "Cannot lower calls with arbitrary operand bundles!");
7707 
7708   SDValue Callee = getValue(I.getCalledValue());
7709 
7710   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7711     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7712   else
7713     // Check if we can potentially perform a tail call. More detailed checking
7714     // is be done within LowerCallTo, after more information about the call is
7715     // known.
7716     LowerCallTo(&I, Callee, I.isTailCall());
7717 }
7718 
7719 namespace {
7720 
7721 /// AsmOperandInfo - This contains information for each constraint that we are
7722 /// lowering.
7723 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7724 public:
7725   /// CallOperand - If this is the result output operand or a clobber
7726   /// this is null, otherwise it is the incoming operand to the CallInst.
7727   /// This gets modified as the asm is processed.
7728   SDValue CallOperand;
7729 
7730   /// AssignedRegs - If this is a register or register class operand, this
7731   /// contains the set of register corresponding to the operand.
7732   RegsForValue AssignedRegs;
7733 
7734   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7735     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7736   }
7737 
7738   /// Whether or not this operand accesses memory
7739   bool hasMemory(const TargetLowering &TLI) const {
7740     // Indirect operand accesses access memory.
7741     if (isIndirect)
7742       return true;
7743 
7744     for (const auto &Code : Codes)
7745       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7746         return true;
7747 
7748     return false;
7749   }
7750 
7751   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7752   /// corresponds to.  If there is no Value* for this operand, it returns
7753   /// MVT::Other.
7754   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7755                            const DataLayout &DL) const {
7756     if (!CallOperandVal) return MVT::Other;
7757 
7758     if (isa<BasicBlock>(CallOperandVal))
7759       return TLI.getPointerTy(DL);
7760 
7761     llvm::Type *OpTy = CallOperandVal->getType();
7762 
7763     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7764     // If this is an indirect operand, the operand is a pointer to the
7765     // accessed type.
7766     if (isIndirect) {
7767       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7768       if (!PtrTy)
7769         report_fatal_error("Indirect operand for inline asm not a pointer!");
7770       OpTy = PtrTy->getElementType();
7771     }
7772 
7773     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7774     if (StructType *STy = dyn_cast<StructType>(OpTy))
7775       if (STy->getNumElements() == 1)
7776         OpTy = STy->getElementType(0);
7777 
7778     // If OpTy is not a single value, it may be a struct/union that we
7779     // can tile with integers.
7780     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7781       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7782       switch (BitSize) {
7783       default: break;
7784       case 1:
7785       case 8:
7786       case 16:
7787       case 32:
7788       case 64:
7789       case 128:
7790         OpTy = IntegerType::get(Context, BitSize);
7791         break;
7792       }
7793     }
7794 
7795     return TLI.getValueType(DL, OpTy, true);
7796   }
7797 };
7798 
7799 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7800 
7801 } // end anonymous namespace
7802 
7803 /// Make sure that the output operand \p OpInfo and its corresponding input
7804 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7805 /// out).
7806 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7807                                SDISelAsmOperandInfo &MatchingOpInfo,
7808                                SelectionDAG &DAG) {
7809   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7810     return;
7811 
7812   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7813   const auto &TLI = DAG.getTargetLoweringInfo();
7814 
7815   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7816       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7817                                        OpInfo.ConstraintVT);
7818   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7819       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7820                                        MatchingOpInfo.ConstraintVT);
7821   if ((OpInfo.ConstraintVT.isInteger() !=
7822        MatchingOpInfo.ConstraintVT.isInteger()) ||
7823       (MatchRC.second != InputRC.second)) {
7824     // FIXME: error out in a more elegant fashion
7825     report_fatal_error("Unsupported asm: input constraint"
7826                        " with a matching output constraint of"
7827                        " incompatible type!");
7828   }
7829   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7830 }
7831 
7832 /// Get a direct memory input to behave well as an indirect operand.
7833 /// This may introduce stores, hence the need for a \p Chain.
7834 /// \return The (possibly updated) chain.
7835 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7836                                         SDISelAsmOperandInfo &OpInfo,
7837                                         SelectionDAG &DAG) {
7838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7839 
7840   // If we don't have an indirect input, put it in the constpool if we can,
7841   // otherwise spill it to a stack slot.
7842   // TODO: This isn't quite right. We need to handle these according to
7843   // the addressing mode that the constraint wants. Also, this may take
7844   // an additional register for the computation and we don't want that
7845   // either.
7846 
7847   // If the operand is a float, integer, or vector constant, spill to a
7848   // constant pool entry to get its address.
7849   const Value *OpVal = OpInfo.CallOperandVal;
7850   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7851       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7852     OpInfo.CallOperand = DAG.getConstantPool(
7853         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7854     return Chain;
7855   }
7856 
7857   // Otherwise, create a stack slot and emit a store to it before the asm.
7858   Type *Ty = OpVal->getType();
7859   auto &DL = DAG.getDataLayout();
7860   uint64_t TySize = DL.getTypeAllocSize(Ty);
7861   unsigned Align = DL.getPrefTypeAlignment(Ty);
7862   MachineFunction &MF = DAG.getMachineFunction();
7863   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7864   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7865   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7866                             MachinePointerInfo::getFixedStack(MF, SSFI),
7867                             TLI.getMemValueType(DL, Ty));
7868   OpInfo.CallOperand = StackSlot;
7869 
7870   return Chain;
7871 }
7872 
7873 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7874 /// specified operand.  We prefer to assign virtual registers, to allow the
7875 /// register allocator to handle the assignment process.  However, if the asm
7876 /// uses features that we can't model on machineinstrs, we have SDISel do the
7877 /// allocation.  This produces generally horrible, but correct, code.
7878 ///
7879 ///   OpInfo describes the operand
7880 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7881 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7882                                  SDISelAsmOperandInfo &OpInfo,
7883                                  SDISelAsmOperandInfo &RefOpInfo) {
7884   LLVMContext &Context = *DAG.getContext();
7885   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7886 
7887   MachineFunction &MF = DAG.getMachineFunction();
7888   SmallVector<unsigned, 4> Regs;
7889   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7890 
7891   // No work to do for memory operations.
7892   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7893     return;
7894 
7895   // If this is a constraint for a single physreg, or a constraint for a
7896   // register class, find it.
7897   unsigned AssignedReg;
7898   const TargetRegisterClass *RC;
7899   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7900       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7901   // RC is unset only on failure. Return immediately.
7902   if (!RC)
7903     return;
7904 
7905   // Get the actual register value type.  This is important, because the user
7906   // may have asked for (e.g.) the AX register in i32 type.  We need to
7907   // remember that AX is actually i16 to get the right extension.
7908   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7909 
7910   if (OpInfo.ConstraintVT != MVT::Other) {
7911     // If this is an FP operand in an integer register (or visa versa), or more
7912     // generally if the operand value disagrees with the register class we plan
7913     // to stick it in, fix the operand type.
7914     //
7915     // If this is an input value, the bitcast to the new type is done now.
7916     // Bitcast for output value is done at the end of visitInlineAsm().
7917     if ((OpInfo.Type == InlineAsm::isOutput ||
7918          OpInfo.Type == InlineAsm::isInput) &&
7919         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7920       // Try to convert to the first EVT that the reg class contains.  If the
7921       // types are identical size, use a bitcast to convert (e.g. two differing
7922       // vector types).  Note: output bitcast is done at the end of
7923       // visitInlineAsm().
7924       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7925         // Exclude indirect inputs while they are unsupported because the code
7926         // to perform the load is missing and thus OpInfo.CallOperand still
7927         // refers to the input address rather than the pointed-to value.
7928         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7929           OpInfo.CallOperand =
7930               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7931         OpInfo.ConstraintVT = RegVT;
7932         // If the operand is an FP value and we want it in integer registers,
7933         // use the corresponding integer type. This turns an f64 value into
7934         // i64, which can be passed with two i32 values on a 32-bit machine.
7935       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7936         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7937         if (OpInfo.Type == InlineAsm::isInput)
7938           OpInfo.CallOperand =
7939               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7940         OpInfo.ConstraintVT = VT;
7941       }
7942     }
7943   }
7944 
7945   // No need to allocate a matching input constraint since the constraint it's
7946   // matching to has already been allocated.
7947   if (OpInfo.isMatchingInputConstraint())
7948     return;
7949 
7950   EVT ValueVT = OpInfo.ConstraintVT;
7951   if (OpInfo.ConstraintVT == MVT::Other)
7952     ValueVT = RegVT;
7953 
7954   // Initialize NumRegs.
7955   unsigned NumRegs = 1;
7956   if (OpInfo.ConstraintVT != MVT::Other)
7957     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7958 
7959   // If this is a constraint for a specific physical register, like {r17},
7960   // assign it now.
7961 
7962   // If this associated to a specific register, initialize iterator to correct
7963   // place. If virtual, make sure we have enough registers
7964 
7965   // Initialize iterator if necessary
7966   TargetRegisterClass::iterator I = RC->begin();
7967   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7968 
7969   // Do not check for single registers.
7970   if (AssignedReg) {
7971       for (; *I != AssignedReg; ++I)
7972         assert(I != RC->end() && "AssignedReg should be member of RC");
7973   }
7974 
7975   for (; NumRegs; --NumRegs, ++I) {
7976     assert(I != RC->end() && "Ran out of registers to allocate!");
7977     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7978     Regs.push_back(R);
7979   }
7980 
7981   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7982 }
7983 
7984 static unsigned
7985 findMatchingInlineAsmOperand(unsigned OperandNo,
7986                              const std::vector<SDValue> &AsmNodeOperands) {
7987   // Scan until we find the definition we already emitted of this operand.
7988   unsigned CurOp = InlineAsm::Op_FirstOperand;
7989   for (; OperandNo; --OperandNo) {
7990     // Advance to the next operand.
7991     unsigned OpFlag =
7992         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7993     assert((InlineAsm::isRegDefKind(OpFlag) ||
7994             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7995             InlineAsm::isMemKind(OpFlag)) &&
7996            "Skipped past definitions?");
7997     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7998   }
7999   return CurOp;
8000 }
8001 
8002 namespace {
8003 
8004 class ExtraFlags {
8005   unsigned Flags = 0;
8006 
8007 public:
8008   explicit ExtraFlags(ImmutableCallSite CS) {
8009     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8010     if (IA->hasSideEffects())
8011       Flags |= InlineAsm::Extra_HasSideEffects;
8012     if (IA->isAlignStack())
8013       Flags |= InlineAsm::Extra_IsAlignStack;
8014     if (CS.isConvergent())
8015       Flags |= InlineAsm::Extra_IsConvergent;
8016     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8017   }
8018 
8019   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8020     // Ideally, we would only check against memory constraints.  However, the
8021     // meaning of an Other constraint can be target-specific and we can't easily
8022     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8023     // for Other constraints as well.
8024     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8025         OpInfo.ConstraintType == TargetLowering::C_Other) {
8026       if (OpInfo.Type == InlineAsm::isInput)
8027         Flags |= InlineAsm::Extra_MayLoad;
8028       else if (OpInfo.Type == InlineAsm::isOutput)
8029         Flags |= InlineAsm::Extra_MayStore;
8030       else if (OpInfo.Type == InlineAsm::isClobber)
8031         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8032     }
8033   }
8034 
8035   unsigned get() const { return Flags; }
8036 };
8037 
8038 } // end anonymous namespace
8039 
8040 /// visitInlineAsm - Handle a call to an InlineAsm object.
8041 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8042   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8043 
8044   /// ConstraintOperands - Information about all of the constraints.
8045   SDISelAsmOperandInfoVector ConstraintOperands;
8046 
8047   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8048   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8049       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8050 
8051   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8052   // AsmDialect, MayLoad, MayStore).
8053   bool HasSideEffect = IA->hasSideEffects();
8054   ExtraFlags ExtraInfo(CS);
8055 
8056   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8057   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8058   for (auto &T : TargetConstraints) {
8059     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8060     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8061 
8062     // Compute the value type for each operand.
8063     if (OpInfo.Type == InlineAsm::isInput ||
8064         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8065       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8066 
8067       // Process the call argument. BasicBlocks are labels, currently appearing
8068       // only in asm's.
8069       const Instruction *I = CS.getInstruction();
8070       if (isa<CallBrInst>(I) &&
8071           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8072                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8073         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8074         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8075         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8076       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8077         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8078       } else {
8079         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8080       }
8081 
8082       OpInfo.ConstraintVT =
8083           OpInfo
8084               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8085               .getSimpleVT();
8086     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8087       // The return value of the call is this value.  As such, there is no
8088       // corresponding argument.
8089       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8090       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8091         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8092             DAG.getDataLayout(), STy->getElementType(ResNo));
8093       } else {
8094         assert(ResNo == 0 && "Asm only has one result!");
8095         OpInfo.ConstraintVT =
8096             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8097       }
8098       ++ResNo;
8099     } else {
8100       OpInfo.ConstraintVT = MVT::Other;
8101     }
8102 
8103     if (!HasSideEffect)
8104       HasSideEffect = OpInfo.hasMemory(TLI);
8105 
8106     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8107     // FIXME: Could we compute this on OpInfo rather than T?
8108 
8109     // Compute the constraint code and ConstraintType to use.
8110     TLI.ComputeConstraintToUse(T, SDValue());
8111 
8112     if (T.ConstraintType == TargetLowering::C_Immediate &&
8113         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8114       // We've delayed emitting a diagnostic like the "n" constraint because
8115       // inlining could cause an integer showing up.
8116       return emitInlineAsmError(
8117           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8118                   "integer constant expression");
8119 
8120     ExtraInfo.update(T);
8121   }
8122 
8123 
8124   // We won't need to flush pending loads if this asm doesn't touch
8125   // memory and is nonvolatile.
8126   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8127 
8128   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8129   if (IsCallBr) {
8130     // If this is a callbr we need to flush pending exports since inlineasm_br
8131     // is a terminator. We need to do this before nodes are glued to
8132     // the inlineasm_br node.
8133     Chain = getControlRoot();
8134   }
8135 
8136   // Second pass over the constraints: compute which constraint option to use.
8137   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8138     // If this is an output operand with a matching input operand, look up the
8139     // matching input. If their types mismatch, e.g. one is an integer, the
8140     // other is floating point, or their sizes are different, flag it as an
8141     // error.
8142     if (OpInfo.hasMatchingInput()) {
8143       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8144       patchMatchingInput(OpInfo, Input, DAG);
8145     }
8146 
8147     // Compute the constraint code and ConstraintType to use.
8148     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8149 
8150     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8151         OpInfo.Type == InlineAsm::isClobber)
8152       continue;
8153 
8154     // If this is a memory input, and if the operand is not indirect, do what we
8155     // need to provide an address for the memory input.
8156     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8157         !OpInfo.isIndirect) {
8158       assert((OpInfo.isMultipleAlternative ||
8159               (OpInfo.Type == InlineAsm::isInput)) &&
8160              "Can only indirectify direct input operands!");
8161 
8162       // Memory operands really want the address of the value.
8163       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8164 
8165       // There is no longer a Value* corresponding to this operand.
8166       OpInfo.CallOperandVal = nullptr;
8167 
8168       // It is now an indirect operand.
8169       OpInfo.isIndirect = true;
8170     }
8171 
8172   }
8173 
8174   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8175   std::vector<SDValue> AsmNodeOperands;
8176   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8177   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8178       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8179 
8180   // If we have a !srcloc metadata node associated with it, we want to attach
8181   // this to the ultimately generated inline asm machineinstr.  To do this, we
8182   // pass in the third operand as this (potentially null) inline asm MDNode.
8183   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8184   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8185 
8186   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8187   // bits as operand 3.
8188   AsmNodeOperands.push_back(DAG.getTargetConstant(
8189       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8190 
8191   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8192   // this, assign virtual and physical registers for inputs and otput.
8193   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8194     // Assign Registers.
8195     SDISelAsmOperandInfo &RefOpInfo =
8196         OpInfo.isMatchingInputConstraint()
8197             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8198             : OpInfo;
8199     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8200 
8201     switch (OpInfo.Type) {
8202     case InlineAsm::isOutput:
8203       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8204           ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8205             OpInfo.ConstraintType == TargetLowering::C_Other) &&
8206            OpInfo.isIndirect)) {
8207         unsigned ConstraintID =
8208             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8209         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8210                "Failed to convert memory constraint code to constraint id.");
8211 
8212         // Add information to the INLINEASM node to know about this output.
8213         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8214         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8215         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8216                                                         MVT::i32));
8217         AsmNodeOperands.push_back(OpInfo.CallOperand);
8218         break;
8219       } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8220                    OpInfo.ConstraintType == TargetLowering::C_Other) &&
8221                   !OpInfo.isIndirect) ||
8222                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8223                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8224         // Otherwise, this outputs to a register (directly for C_Register /
8225         // C_RegisterClass, and a target-defined fashion for
8226         // C_Immediate/C_Other). Find a register that we can use.
8227         if (OpInfo.AssignedRegs.Regs.empty()) {
8228           emitInlineAsmError(
8229               CS, "couldn't allocate output register for constraint '" +
8230                       Twine(OpInfo.ConstraintCode) + "'");
8231           return;
8232         }
8233 
8234         // Add information to the INLINEASM node to know that this register is
8235         // set.
8236         OpInfo.AssignedRegs.AddInlineAsmOperands(
8237             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8238                                   : InlineAsm::Kind_RegDef,
8239             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8240       }
8241       break;
8242 
8243     case InlineAsm::isInput: {
8244       SDValue InOperandVal = OpInfo.CallOperand;
8245 
8246       if (OpInfo.isMatchingInputConstraint()) {
8247         // If this is required to match an output register we have already set,
8248         // just use its register.
8249         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8250                                                   AsmNodeOperands);
8251         unsigned OpFlag =
8252           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8253         if (InlineAsm::isRegDefKind(OpFlag) ||
8254             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8255           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8256           if (OpInfo.isIndirect) {
8257             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8258             emitInlineAsmError(CS, "inline asm not supported yet:"
8259                                    " don't know how to handle tied "
8260                                    "indirect register inputs");
8261             return;
8262           }
8263 
8264           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8265           SmallVector<unsigned, 4> Regs;
8266 
8267           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8268             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8269             MachineRegisterInfo &RegInfo =
8270                 DAG.getMachineFunction().getRegInfo();
8271             for (unsigned i = 0; i != NumRegs; ++i)
8272               Regs.push_back(RegInfo.createVirtualRegister(RC));
8273           } else {
8274             emitInlineAsmError(CS, "inline asm error: This value type register "
8275                                    "class is not natively supported!");
8276             return;
8277           }
8278 
8279           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8280 
8281           SDLoc dl = getCurSDLoc();
8282           // Use the produced MatchedRegs object to
8283           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8284                                     CS.getInstruction());
8285           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8286                                            true, OpInfo.getMatchedOperand(), dl,
8287                                            DAG, AsmNodeOperands);
8288           break;
8289         }
8290 
8291         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8292         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8293                "Unexpected number of operands");
8294         // Add information to the INLINEASM node to know about this input.
8295         // See InlineAsm.h isUseOperandTiedToDef.
8296         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8297         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8298                                                     OpInfo.getMatchedOperand());
8299         AsmNodeOperands.push_back(DAG.getTargetConstant(
8300             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8301         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8302         break;
8303       }
8304 
8305       // Treat indirect 'X' constraint as memory.
8306       if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8307            OpInfo.ConstraintType == TargetLowering::C_Other) &&
8308           OpInfo.isIndirect)
8309         OpInfo.ConstraintType = TargetLowering::C_Memory;
8310 
8311       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8312           OpInfo.ConstraintType == TargetLowering::C_Other) {
8313         std::vector<SDValue> Ops;
8314         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8315                                           Ops, DAG);
8316         if (Ops.empty()) {
8317           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8318             if (isa<ConstantSDNode>(InOperandVal)) {
8319               emitInlineAsmError(CS, "value out of range for constraint '" +
8320                                  Twine(OpInfo.ConstraintCode) + "'");
8321               return;
8322             }
8323 
8324           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8325                                      Twine(OpInfo.ConstraintCode) + "'");
8326           return;
8327         }
8328 
8329         // Add information to the INLINEASM node to know about this input.
8330         unsigned ResOpType =
8331           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8332         AsmNodeOperands.push_back(DAG.getTargetConstant(
8333             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8334         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8335         break;
8336       }
8337 
8338       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8339         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8340         assert(InOperandVal.getValueType() ==
8341                    TLI.getPointerTy(DAG.getDataLayout()) &&
8342                "Memory operands expect pointer values");
8343 
8344         unsigned ConstraintID =
8345             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8346         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8347                "Failed to convert memory constraint code to constraint id.");
8348 
8349         // Add information to the INLINEASM node to know about this input.
8350         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8351         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8352         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8353                                                         getCurSDLoc(),
8354                                                         MVT::i32));
8355         AsmNodeOperands.push_back(InOperandVal);
8356         break;
8357       }
8358 
8359       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8360               OpInfo.ConstraintType == TargetLowering::C_Register ||
8361               OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8362              "Unknown constraint type!");
8363 
8364       // TODO: Support this.
8365       if (OpInfo.isIndirect) {
8366         emitInlineAsmError(
8367             CS, "Don't know how to handle indirect register inputs yet "
8368                 "for constraint '" +
8369                     Twine(OpInfo.ConstraintCode) + "'");
8370         return;
8371       }
8372 
8373       // Copy the input into the appropriate registers.
8374       if (OpInfo.AssignedRegs.Regs.empty()) {
8375         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8376                                    Twine(OpInfo.ConstraintCode) + "'");
8377         return;
8378       }
8379 
8380       SDLoc dl = getCurSDLoc();
8381 
8382       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8383                                         Chain, &Flag, CS.getInstruction());
8384 
8385       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8386                                                dl, DAG, AsmNodeOperands);
8387       break;
8388     }
8389     case InlineAsm::isClobber:
8390       // Add the clobbered value to the operand list, so that the register
8391       // allocator is aware that the physreg got clobbered.
8392       if (!OpInfo.AssignedRegs.Regs.empty())
8393         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8394                                                  false, 0, getCurSDLoc(), DAG,
8395                                                  AsmNodeOperands);
8396       break;
8397     }
8398   }
8399 
8400   // Finish up input operands.  Set the input chain and add the flag last.
8401   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8402   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8403 
8404   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8405   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8406                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8407   Flag = Chain.getValue(1);
8408 
8409   // Do additional work to generate outputs.
8410 
8411   SmallVector<EVT, 1> ResultVTs;
8412   SmallVector<SDValue, 1> ResultValues;
8413   SmallVector<SDValue, 8> OutChains;
8414 
8415   llvm::Type *CSResultType = CS.getType();
8416   ArrayRef<Type *> ResultTypes;
8417   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8418     ResultTypes = StructResult->elements();
8419   else if (!CSResultType->isVoidTy())
8420     ResultTypes = makeArrayRef(CSResultType);
8421 
8422   auto CurResultType = ResultTypes.begin();
8423   auto handleRegAssign = [&](SDValue V) {
8424     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8425     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8426     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8427     ++CurResultType;
8428     // If the type of the inline asm call site return value is different but has
8429     // same size as the type of the asm output bitcast it.  One example of this
8430     // is for vectors with different width / number of elements.  This can
8431     // happen for register classes that can contain multiple different value
8432     // types.  The preg or vreg allocated may not have the same VT as was
8433     // expected.
8434     //
8435     // This can also happen for a return value that disagrees with the register
8436     // class it is put in, eg. a double in a general-purpose register on a
8437     // 32-bit machine.
8438     if (ResultVT != V.getValueType() &&
8439         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8440       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8441     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8442              V.getValueType().isInteger()) {
8443       // If a result value was tied to an input value, the computed result
8444       // may have a wider width than the expected result.  Extract the
8445       // relevant portion.
8446       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8447     }
8448     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8449     ResultVTs.push_back(ResultVT);
8450     ResultValues.push_back(V);
8451   };
8452 
8453   // Deal with output operands.
8454   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8455     if (OpInfo.Type == InlineAsm::isOutput) {
8456       SDValue Val;
8457       // Skip trivial output operands.
8458       if (OpInfo.AssignedRegs.Regs.empty())
8459         continue;
8460 
8461       switch (OpInfo.ConstraintType) {
8462       case TargetLowering::C_Register:
8463       case TargetLowering::C_RegisterClass:
8464         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8465             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8466         break;
8467       case TargetLowering::C_Immediate:
8468       case TargetLowering::C_Other:
8469         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8470                                               OpInfo, DAG);
8471         break;
8472       case TargetLowering::C_Memory:
8473         break; // Already handled.
8474       case TargetLowering::C_Unknown:
8475         assert(false && "Unexpected unknown constraint");
8476       }
8477 
8478       // Indirect output manifest as stores. Record output chains.
8479       if (OpInfo.isIndirect) {
8480         const Value *Ptr = OpInfo.CallOperandVal;
8481         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8482         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8483                                      MachinePointerInfo(Ptr));
8484         OutChains.push_back(Store);
8485       } else {
8486         // generate CopyFromRegs to associated registers.
8487         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8488         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8489           for (const SDValue &V : Val->op_values())
8490             handleRegAssign(V);
8491         } else
8492           handleRegAssign(Val);
8493       }
8494     }
8495   }
8496 
8497   // Set results.
8498   if (!ResultValues.empty()) {
8499     assert(CurResultType == ResultTypes.end() &&
8500            "Mismatch in number of ResultTypes");
8501     assert(ResultValues.size() == ResultTypes.size() &&
8502            "Mismatch in number of output operands in asm result");
8503 
8504     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8505                             DAG.getVTList(ResultVTs), ResultValues);
8506     setValue(CS.getInstruction(), V);
8507   }
8508 
8509   // Collect store chains.
8510   if (!OutChains.empty())
8511     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8512 
8513   // Only Update Root if inline assembly has a memory effect.
8514   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8515     DAG.setRoot(Chain);
8516 }
8517 
8518 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8519                                              const Twine &Message) {
8520   LLVMContext &Ctx = *DAG.getContext();
8521   Ctx.emitError(CS.getInstruction(), Message);
8522 
8523   // Make sure we leave the DAG in a valid state
8524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8525   SmallVector<EVT, 1> ValueVTs;
8526   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8527 
8528   if (ValueVTs.empty())
8529     return;
8530 
8531   SmallVector<SDValue, 1> Ops;
8532   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8533     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8534 
8535   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8536 }
8537 
8538 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8539   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8540                           MVT::Other, getRoot(),
8541                           getValue(I.getArgOperand(0)),
8542                           DAG.getSrcValue(I.getArgOperand(0))));
8543 }
8544 
8545 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8547   const DataLayout &DL = DAG.getDataLayout();
8548   SDValue V = DAG.getVAArg(
8549       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8550       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8551       DL.getABITypeAlignment(I.getType()));
8552   DAG.setRoot(V.getValue(1));
8553 
8554   if (I.getType()->isPointerTy())
8555     V = DAG.getPtrExtOrTrunc(
8556         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8557   setValue(&I, V);
8558 }
8559 
8560 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8561   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8562                           MVT::Other, getRoot(),
8563                           getValue(I.getArgOperand(0)),
8564                           DAG.getSrcValue(I.getArgOperand(0))));
8565 }
8566 
8567 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8568   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8569                           MVT::Other, getRoot(),
8570                           getValue(I.getArgOperand(0)),
8571                           getValue(I.getArgOperand(1)),
8572                           DAG.getSrcValue(I.getArgOperand(0)),
8573                           DAG.getSrcValue(I.getArgOperand(1))));
8574 }
8575 
8576 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8577                                                     const Instruction &I,
8578                                                     SDValue Op) {
8579   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8580   if (!Range)
8581     return Op;
8582 
8583   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8584   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8585     return Op;
8586 
8587   APInt Lo = CR.getUnsignedMin();
8588   if (!Lo.isMinValue())
8589     return Op;
8590 
8591   APInt Hi = CR.getUnsignedMax();
8592   unsigned Bits = std::max(Hi.getActiveBits(),
8593                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8594 
8595   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8596 
8597   SDLoc SL = getCurSDLoc();
8598 
8599   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8600                              DAG.getValueType(SmallVT));
8601   unsigned NumVals = Op.getNode()->getNumValues();
8602   if (NumVals == 1)
8603     return ZExt;
8604 
8605   SmallVector<SDValue, 4> Ops;
8606 
8607   Ops.push_back(ZExt);
8608   for (unsigned I = 1; I != NumVals; ++I)
8609     Ops.push_back(Op.getValue(I));
8610 
8611   return DAG.getMergeValues(Ops, SL);
8612 }
8613 
8614 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8615 /// the call being lowered.
8616 ///
8617 /// This is a helper for lowering intrinsics that follow a target calling
8618 /// convention or require stack pointer adjustment. Only a subset of the
8619 /// intrinsic's operands need to participate in the calling convention.
8620 void SelectionDAGBuilder::populateCallLoweringInfo(
8621     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8622     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8623     bool IsPatchPoint) {
8624   TargetLowering::ArgListTy Args;
8625   Args.reserve(NumArgs);
8626 
8627   // Populate the argument list.
8628   // Attributes for args start at offset 1, after the return attribute.
8629   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8630        ArgI != ArgE; ++ArgI) {
8631     const Value *V = Call->getOperand(ArgI);
8632 
8633     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8634 
8635     TargetLowering::ArgListEntry Entry;
8636     Entry.Node = getValue(V);
8637     Entry.Ty = V->getType();
8638     Entry.setAttributes(Call, ArgI);
8639     Args.push_back(Entry);
8640   }
8641 
8642   CLI.setDebugLoc(getCurSDLoc())
8643       .setChain(getRoot())
8644       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8645       .setDiscardResult(Call->use_empty())
8646       .setIsPatchPoint(IsPatchPoint);
8647 }
8648 
8649 /// Add a stack map intrinsic call's live variable operands to a stackmap
8650 /// or patchpoint target node's operand list.
8651 ///
8652 /// Constants are converted to TargetConstants purely as an optimization to
8653 /// avoid constant materialization and register allocation.
8654 ///
8655 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8656 /// generate addess computation nodes, and so FinalizeISel can convert the
8657 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8658 /// address materialization and register allocation, but may also be required
8659 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8660 /// alloca in the entry block, then the runtime may assume that the alloca's
8661 /// StackMap location can be read immediately after compilation and that the
8662 /// location is valid at any point during execution (this is similar to the
8663 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8664 /// only available in a register, then the runtime would need to trap when
8665 /// execution reaches the StackMap in order to read the alloca's location.
8666 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8667                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8668                                 SelectionDAGBuilder &Builder) {
8669   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8670     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8671     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8672       Ops.push_back(
8673         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8674       Ops.push_back(
8675         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8676     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8677       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8678       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8679           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8680     } else
8681       Ops.push_back(OpVal);
8682   }
8683 }
8684 
8685 /// Lower llvm.experimental.stackmap directly to its target opcode.
8686 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8687   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8688   //                                  [live variables...])
8689 
8690   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8691 
8692   SDValue Chain, InFlag, Callee, NullPtr;
8693   SmallVector<SDValue, 32> Ops;
8694 
8695   SDLoc DL = getCurSDLoc();
8696   Callee = getValue(CI.getCalledValue());
8697   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8698 
8699   // The stackmap intrinsic only records the live variables (the arguments
8700   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8701   // intrinsic, this won't be lowered to a function call. This means we don't
8702   // have to worry about calling conventions and target specific lowering code.
8703   // Instead we perform the call lowering right here.
8704   //
8705   // chain, flag = CALLSEQ_START(chain, 0, 0)
8706   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8707   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8708   //
8709   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8710   InFlag = Chain.getValue(1);
8711 
8712   // Add the <id> and <numBytes> constants.
8713   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8714   Ops.push_back(DAG.getTargetConstant(
8715                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8716   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8717   Ops.push_back(DAG.getTargetConstant(
8718                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8719                   MVT::i32));
8720 
8721   // Push live variables for the stack map.
8722   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8723 
8724   // We are not pushing any register mask info here on the operands list,
8725   // because the stackmap doesn't clobber anything.
8726 
8727   // Push the chain and the glue flag.
8728   Ops.push_back(Chain);
8729   Ops.push_back(InFlag);
8730 
8731   // Create the STACKMAP node.
8732   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8733   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8734   Chain = SDValue(SM, 0);
8735   InFlag = Chain.getValue(1);
8736 
8737   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8738 
8739   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8740 
8741   // Set the root to the target-lowered call chain.
8742   DAG.setRoot(Chain);
8743 
8744   // Inform the Frame Information that we have a stackmap in this function.
8745   FuncInfo.MF->getFrameInfo().setHasStackMap();
8746 }
8747 
8748 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8749 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8750                                           const BasicBlock *EHPadBB) {
8751   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8752   //                                                 i32 <numBytes>,
8753   //                                                 i8* <target>,
8754   //                                                 i32 <numArgs>,
8755   //                                                 [Args...],
8756   //                                                 [live variables...])
8757 
8758   CallingConv::ID CC = CS.getCallingConv();
8759   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8760   bool HasDef = !CS->getType()->isVoidTy();
8761   SDLoc dl = getCurSDLoc();
8762   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8763 
8764   // Handle immediate and symbolic callees.
8765   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8766     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8767                                    /*isTarget=*/true);
8768   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8769     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8770                                          SDLoc(SymbolicCallee),
8771                                          SymbolicCallee->getValueType(0));
8772 
8773   // Get the real number of arguments participating in the call <numArgs>
8774   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8775   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8776 
8777   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8778   // Intrinsics include all meta-operands up to but not including CC.
8779   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8780   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8781          "Not enough arguments provided to the patchpoint intrinsic");
8782 
8783   // For AnyRegCC the arguments are lowered later on manually.
8784   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8785   Type *ReturnTy =
8786     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8787 
8788   TargetLowering::CallLoweringInfo CLI(DAG);
8789   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8790                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8791   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8792 
8793   SDNode *CallEnd = Result.second.getNode();
8794   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8795     CallEnd = CallEnd->getOperand(0).getNode();
8796 
8797   /// Get a call instruction from the call sequence chain.
8798   /// Tail calls are not allowed.
8799   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8800          "Expected a callseq node.");
8801   SDNode *Call = CallEnd->getOperand(0).getNode();
8802   bool HasGlue = Call->getGluedNode();
8803 
8804   // Replace the target specific call node with the patchable intrinsic.
8805   SmallVector<SDValue, 8> Ops;
8806 
8807   // Add the <id> and <numBytes> constants.
8808   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8809   Ops.push_back(DAG.getTargetConstant(
8810                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8811   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8812   Ops.push_back(DAG.getTargetConstant(
8813                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8814                   MVT::i32));
8815 
8816   // Add the callee.
8817   Ops.push_back(Callee);
8818 
8819   // Adjust <numArgs> to account for any arguments that have been passed on the
8820   // stack instead.
8821   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8822   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8823   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8824   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8825 
8826   // Add the calling convention
8827   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8828 
8829   // Add the arguments we omitted previously. The register allocator should
8830   // place these in any free register.
8831   if (IsAnyRegCC)
8832     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8833       Ops.push_back(getValue(CS.getArgument(i)));
8834 
8835   // Push the arguments from the call instruction up to the register mask.
8836   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8837   Ops.append(Call->op_begin() + 2, e);
8838 
8839   // Push live variables for the stack map.
8840   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8841 
8842   // Push the register mask info.
8843   if (HasGlue)
8844     Ops.push_back(*(Call->op_end()-2));
8845   else
8846     Ops.push_back(*(Call->op_end()-1));
8847 
8848   // Push the chain (this is originally the first operand of the call, but
8849   // becomes now the last or second to last operand).
8850   Ops.push_back(*(Call->op_begin()));
8851 
8852   // Push the glue flag (last operand).
8853   if (HasGlue)
8854     Ops.push_back(*(Call->op_end()-1));
8855 
8856   SDVTList NodeTys;
8857   if (IsAnyRegCC && HasDef) {
8858     // Create the return types based on the intrinsic definition
8859     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8860     SmallVector<EVT, 3> ValueVTs;
8861     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8862     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8863 
8864     // There is always a chain and a glue type at the end
8865     ValueVTs.push_back(MVT::Other);
8866     ValueVTs.push_back(MVT::Glue);
8867     NodeTys = DAG.getVTList(ValueVTs);
8868   } else
8869     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8870 
8871   // Replace the target specific call node with a PATCHPOINT node.
8872   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8873                                          dl, NodeTys, Ops);
8874 
8875   // Update the NodeMap.
8876   if (HasDef) {
8877     if (IsAnyRegCC)
8878       setValue(CS.getInstruction(), SDValue(MN, 0));
8879     else
8880       setValue(CS.getInstruction(), Result.first);
8881   }
8882 
8883   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8884   // call sequence. Furthermore the location of the chain and glue can change
8885   // when the AnyReg calling convention is used and the intrinsic returns a
8886   // value.
8887   if (IsAnyRegCC && HasDef) {
8888     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8889     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8890     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8891   } else
8892     DAG.ReplaceAllUsesWith(Call, MN);
8893   DAG.DeleteNode(Call);
8894 
8895   // Inform the Frame Information that we have a patchpoint in this function.
8896   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8897 }
8898 
8899 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8900                                             unsigned Intrinsic) {
8901   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8902   SDValue Op1 = getValue(I.getArgOperand(0));
8903   SDValue Op2;
8904   if (I.getNumArgOperands() > 1)
8905     Op2 = getValue(I.getArgOperand(1));
8906   SDLoc dl = getCurSDLoc();
8907   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8908   SDValue Res;
8909   FastMathFlags FMF;
8910   if (isa<FPMathOperator>(I))
8911     FMF = I.getFastMathFlags();
8912 
8913   switch (Intrinsic) {
8914   case Intrinsic::experimental_vector_reduce_v2_fadd:
8915     if (FMF.allowReassoc())
8916       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8917                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8918     else
8919       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8920     break;
8921   case Intrinsic::experimental_vector_reduce_v2_fmul:
8922     if (FMF.allowReassoc())
8923       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8924                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8925     else
8926       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8927     break;
8928   case Intrinsic::experimental_vector_reduce_add:
8929     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8930     break;
8931   case Intrinsic::experimental_vector_reduce_mul:
8932     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8933     break;
8934   case Intrinsic::experimental_vector_reduce_and:
8935     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8936     break;
8937   case Intrinsic::experimental_vector_reduce_or:
8938     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8939     break;
8940   case Intrinsic::experimental_vector_reduce_xor:
8941     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8942     break;
8943   case Intrinsic::experimental_vector_reduce_smax:
8944     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8945     break;
8946   case Intrinsic::experimental_vector_reduce_smin:
8947     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8948     break;
8949   case Intrinsic::experimental_vector_reduce_umax:
8950     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8951     break;
8952   case Intrinsic::experimental_vector_reduce_umin:
8953     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8954     break;
8955   case Intrinsic::experimental_vector_reduce_fmax:
8956     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8957     break;
8958   case Intrinsic::experimental_vector_reduce_fmin:
8959     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8960     break;
8961   default:
8962     llvm_unreachable("Unhandled vector reduce intrinsic");
8963   }
8964   setValue(&I, Res);
8965 }
8966 
8967 /// Returns an AttributeList representing the attributes applied to the return
8968 /// value of the given call.
8969 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8970   SmallVector<Attribute::AttrKind, 2> Attrs;
8971   if (CLI.RetSExt)
8972     Attrs.push_back(Attribute::SExt);
8973   if (CLI.RetZExt)
8974     Attrs.push_back(Attribute::ZExt);
8975   if (CLI.IsInReg)
8976     Attrs.push_back(Attribute::InReg);
8977 
8978   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8979                             Attrs);
8980 }
8981 
8982 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8983 /// implementation, which just calls LowerCall.
8984 /// FIXME: When all targets are
8985 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8986 std::pair<SDValue, SDValue>
8987 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8988   // Handle the incoming return values from the call.
8989   CLI.Ins.clear();
8990   Type *OrigRetTy = CLI.RetTy;
8991   SmallVector<EVT, 4> RetTys;
8992   SmallVector<uint64_t, 4> Offsets;
8993   auto &DL = CLI.DAG.getDataLayout();
8994   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8995 
8996   if (CLI.IsPostTypeLegalization) {
8997     // If we are lowering a libcall after legalization, split the return type.
8998     SmallVector<EVT, 4> OldRetTys;
8999     SmallVector<uint64_t, 4> OldOffsets;
9000     RetTys.swap(OldRetTys);
9001     Offsets.swap(OldOffsets);
9002 
9003     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9004       EVT RetVT = OldRetTys[i];
9005       uint64_t Offset = OldOffsets[i];
9006       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9007       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9008       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9009       RetTys.append(NumRegs, RegisterVT);
9010       for (unsigned j = 0; j != NumRegs; ++j)
9011         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9012     }
9013   }
9014 
9015   SmallVector<ISD::OutputArg, 4> Outs;
9016   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9017 
9018   bool CanLowerReturn =
9019       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9020                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9021 
9022   SDValue DemoteStackSlot;
9023   int DemoteStackIdx = -100;
9024   if (!CanLowerReturn) {
9025     // FIXME: equivalent assert?
9026     // assert(!CS.hasInAllocaArgument() &&
9027     //        "sret demotion is incompatible with inalloca");
9028     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9029     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9030     MachineFunction &MF = CLI.DAG.getMachineFunction();
9031     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9032     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9033                                               DL.getAllocaAddrSpace());
9034 
9035     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9036     ArgListEntry Entry;
9037     Entry.Node = DemoteStackSlot;
9038     Entry.Ty = StackSlotPtrType;
9039     Entry.IsSExt = false;
9040     Entry.IsZExt = false;
9041     Entry.IsInReg = false;
9042     Entry.IsSRet = true;
9043     Entry.IsNest = false;
9044     Entry.IsByVal = false;
9045     Entry.IsReturned = false;
9046     Entry.IsSwiftSelf = false;
9047     Entry.IsSwiftError = false;
9048     Entry.IsCFGuardTarget = false;
9049     Entry.Alignment = Align;
9050     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9051     CLI.NumFixedArgs += 1;
9052     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9053 
9054     // sret demotion isn't compatible with tail-calls, since the sret argument
9055     // points into the callers stack frame.
9056     CLI.IsTailCall = false;
9057   } else {
9058     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9059         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9060     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9061       ISD::ArgFlagsTy Flags;
9062       if (NeedsRegBlock) {
9063         Flags.setInConsecutiveRegs();
9064         if (I == RetTys.size() - 1)
9065           Flags.setInConsecutiveRegsLast();
9066       }
9067       EVT VT = RetTys[I];
9068       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9069                                                      CLI.CallConv, VT);
9070       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9071                                                        CLI.CallConv, VT);
9072       for (unsigned i = 0; i != NumRegs; ++i) {
9073         ISD::InputArg MyFlags;
9074         MyFlags.Flags = Flags;
9075         MyFlags.VT = RegisterVT;
9076         MyFlags.ArgVT = VT;
9077         MyFlags.Used = CLI.IsReturnValueUsed;
9078         if (CLI.RetTy->isPointerTy()) {
9079           MyFlags.Flags.setPointer();
9080           MyFlags.Flags.setPointerAddrSpace(
9081               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9082         }
9083         if (CLI.RetSExt)
9084           MyFlags.Flags.setSExt();
9085         if (CLI.RetZExt)
9086           MyFlags.Flags.setZExt();
9087         if (CLI.IsInReg)
9088           MyFlags.Flags.setInReg();
9089         CLI.Ins.push_back(MyFlags);
9090       }
9091     }
9092   }
9093 
9094   // We push in swifterror return as the last element of CLI.Ins.
9095   ArgListTy &Args = CLI.getArgs();
9096   if (supportSwiftError()) {
9097     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9098       if (Args[i].IsSwiftError) {
9099         ISD::InputArg MyFlags;
9100         MyFlags.VT = getPointerTy(DL);
9101         MyFlags.ArgVT = EVT(getPointerTy(DL));
9102         MyFlags.Flags.setSwiftError();
9103         CLI.Ins.push_back(MyFlags);
9104       }
9105     }
9106   }
9107 
9108   // Handle all of the outgoing arguments.
9109   CLI.Outs.clear();
9110   CLI.OutVals.clear();
9111   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9112     SmallVector<EVT, 4> ValueVTs;
9113     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9114     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9115     Type *FinalType = Args[i].Ty;
9116     if (Args[i].IsByVal)
9117       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9118     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9119         FinalType, CLI.CallConv, CLI.IsVarArg);
9120     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9121          ++Value) {
9122       EVT VT = ValueVTs[Value];
9123       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9124       SDValue Op = SDValue(Args[i].Node.getNode(),
9125                            Args[i].Node.getResNo() + Value);
9126       ISD::ArgFlagsTy Flags;
9127 
9128       // Certain targets (such as MIPS), may have a different ABI alignment
9129       // for a type depending on the context. Give the target a chance to
9130       // specify the alignment it wants.
9131       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9132 
9133       if (Args[i].Ty->isPointerTy()) {
9134         Flags.setPointer();
9135         Flags.setPointerAddrSpace(
9136             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9137       }
9138       if (Args[i].IsZExt)
9139         Flags.setZExt();
9140       if (Args[i].IsSExt)
9141         Flags.setSExt();
9142       if (Args[i].IsInReg) {
9143         // If we are using vectorcall calling convention, a structure that is
9144         // passed InReg - is surely an HVA
9145         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9146             isa<StructType>(FinalType)) {
9147           // The first value of a structure is marked
9148           if (0 == Value)
9149             Flags.setHvaStart();
9150           Flags.setHva();
9151         }
9152         // Set InReg Flag
9153         Flags.setInReg();
9154       }
9155       if (Args[i].IsSRet)
9156         Flags.setSRet();
9157       if (Args[i].IsSwiftSelf)
9158         Flags.setSwiftSelf();
9159       if (Args[i].IsSwiftError)
9160         Flags.setSwiftError();
9161       if (Args[i].IsCFGuardTarget)
9162         Flags.setCFGuardTarget();
9163       if (Args[i].IsByVal)
9164         Flags.setByVal();
9165       if (Args[i].IsInAlloca) {
9166         Flags.setInAlloca();
9167         // Set the byval flag for CCAssignFn callbacks that don't know about
9168         // inalloca.  This way we can know how many bytes we should've allocated
9169         // and how many bytes a callee cleanup function will pop.  If we port
9170         // inalloca to more targets, we'll have to add custom inalloca handling
9171         // in the various CC lowering callbacks.
9172         Flags.setByVal();
9173       }
9174       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9175         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9176         Type *ElementTy = Ty->getElementType();
9177 
9178         unsigned FrameSize = DL.getTypeAllocSize(
9179             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9180         Flags.setByValSize(FrameSize);
9181 
9182         // info is not there but there are cases it cannot get right.
9183         unsigned FrameAlign;
9184         if (Args[i].Alignment)
9185           FrameAlign = Args[i].Alignment;
9186         else
9187           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9188         Flags.setByValAlign(Align(FrameAlign));
9189       }
9190       if (Args[i].IsNest)
9191         Flags.setNest();
9192       if (NeedsRegBlock)
9193         Flags.setInConsecutiveRegs();
9194       Flags.setOrigAlign(OriginalAlignment);
9195 
9196       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9197                                                  CLI.CallConv, VT);
9198       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9199                                                         CLI.CallConv, VT);
9200       SmallVector<SDValue, 4> Parts(NumParts);
9201       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9202 
9203       if (Args[i].IsSExt)
9204         ExtendKind = ISD::SIGN_EXTEND;
9205       else if (Args[i].IsZExt)
9206         ExtendKind = ISD::ZERO_EXTEND;
9207 
9208       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9209       // for now.
9210       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9211           CanLowerReturn) {
9212         assert((CLI.RetTy == Args[i].Ty ||
9213                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9214                  CLI.RetTy->getPointerAddressSpace() ==
9215                      Args[i].Ty->getPointerAddressSpace())) &&
9216                RetTys.size() == NumValues && "unexpected use of 'returned'");
9217         // Before passing 'returned' to the target lowering code, ensure that
9218         // either the register MVT and the actual EVT are the same size or that
9219         // the return value and argument are extended in the same way; in these
9220         // cases it's safe to pass the argument register value unchanged as the
9221         // return register value (although it's at the target's option whether
9222         // to do so)
9223         // TODO: allow code generation to take advantage of partially preserved
9224         // registers rather than clobbering the entire register when the
9225         // parameter extension method is not compatible with the return
9226         // extension method
9227         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9228             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9229              CLI.RetZExt == Args[i].IsZExt))
9230           Flags.setReturned();
9231       }
9232 
9233       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9234                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9235 
9236       for (unsigned j = 0; j != NumParts; ++j) {
9237         // if it isn't first piece, alignment must be 1
9238         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9239                                i < CLI.NumFixedArgs,
9240                                i, j*Parts[j].getValueType().getStoreSize());
9241         if (NumParts > 1 && j == 0)
9242           MyFlags.Flags.setSplit();
9243         else if (j != 0) {
9244           MyFlags.Flags.setOrigAlign(Align::None());
9245           if (j == NumParts - 1)
9246             MyFlags.Flags.setSplitEnd();
9247         }
9248 
9249         CLI.Outs.push_back(MyFlags);
9250         CLI.OutVals.push_back(Parts[j]);
9251       }
9252 
9253       if (NeedsRegBlock && Value == NumValues - 1)
9254         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9255     }
9256   }
9257 
9258   SmallVector<SDValue, 4> InVals;
9259   CLI.Chain = LowerCall(CLI, InVals);
9260 
9261   // Update CLI.InVals to use outside of this function.
9262   CLI.InVals = InVals;
9263 
9264   // Verify that the target's LowerCall behaved as expected.
9265   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9266          "LowerCall didn't return a valid chain!");
9267   assert((!CLI.IsTailCall || InVals.empty()) &&
9268          "LowerCall emitted a return value for a tail call!");
9269   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9270          "LowerCall didn't emit the correct number of values!");
9271 
9272   // For a tail call, the return value is merely live-out and there aren't
9273   // any nodes in the DAG representing it. Return a special value to
9274   // indicate that a tail call has been emitted and no more Instructions
9275   // should be processed in the current block.
9276   if (CLI.IsTailCall) {
9277     CLI.DAG.setRoot(CLI.Chain);
9278     return std::make_pair(SDValue(), SDValue());
9279   }
9280 
9281 #ifndef NDEBUG
9282   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9283     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9284     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9285            "LowerCall emitted a value with the wrong type!");
9286   }
9287 #endif
9288 
9289   SmallVector<SDValue, 4> ReturnValues;
9290   if (!CanLowerReturn) {
9291     // The instruction result is the result of loading from the
9292     // hidden sret parameter.
9293     SmallVector<EVT, 1> PVTs;
9294     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9295 
9296     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9297     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9298     EVT PtrVT = PVTs[0];
9299 
9300     unsigned NumValues = RetTys.size();
9301     ReturnValues.resize(NumValues);
9302     SmallVector<SDValue, 4> Chains(NumValues);
9303 
9304     // An aggregate return value cannot wrap around the address space, so
9305     // offsets to its parts don't wrap either.
9306     SDNodeFlags Flags;
9307     Flags.setNoUnsignedWrap(true);
9308 
9309     for (unsigned i = 0; i < NumValues; ++i) {
9310       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9311                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9312                                                         PtrVT), Flags);
9313       SDValue L = CLI.DAG.getLoad(
9314           RetTys[i], CLI.DL, CLI.Chain, Add,
9315           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9316                                             DemoteStackIdx, Offsets[i]),
9317           /* Alignment = */ 1);
9318       ReturnValues[i] = L;
9319       Chains[i] = L.getValue(1);
9320     }
9321 
9322     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9323   } else {
9324     // Collect the legal value parts into potentially illegal values
9325     // that correspond to the original function's return values.
9326     Optional<ISD::NodeType> AssertOp;
9327     if (CLI.RetSExt)
9328       AssertOp = ISD::AssertSext;
9329     else if (CLI.RetZExt)
9330       AssertOp = ISD::AssertZext;
9331     unsigned CurReg = 0;
9332     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9333       EVT VT = RetTys[I];
9334       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9335                                                      CLI.CallConv, VT);
9336       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9337                                                        CLI.CallConv, VT);
9338 
9339       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9340                                               NumRegs, RegisterVT, VT, nullptr,
9341                                               CLI.CallConv, AssertOp));
9342       CurReg += NumRegs;
9343     }
9344 
9345     // For a function returning void, there is no return value. We can't create
9346     // such a node, so we just return a null return value in that case. In
9347     // that case, nothing will actually look at the value.
9348     if (ReturnValues.empty())
9349       return std::make_pair(SDValue(), CLI.Chain);
9350   }
9351 
9352   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9353                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9354   return std::make_pair(Res, CLI.Chain);
9355 }
9356 
9357 void TargetLowering::LowerOperationWrapper(SDNode *N,
9358                                            SmallVectorImpl<SDValue> &Results,
9359                                            SelectionDAG &DAG) const {
9360   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9361     Results.push_back(Res);
9362 }
9363 
9364 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9365   llvm_unreachable("LowerOperation not implemented for this target!");
9366 }
9367 
9368 void
9369 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9370   SDValue Op = getNonRegisterValue(V);
9371   assert((Op.getOpcode() != ISD::CopyFromReg ||
9372           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9373          "Copy from a reg to the same reg!");
9374   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9375 
9376   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9377   // If this is an InlineAsm we have to match the registers required, not the
9378   // notional registers required by the type.
9379 
9380   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9381                    None); // This is not an ABI copy.
9382   SDValue Chain = DAG.getEntryNode();
9383 
9384   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9385                               FuncInfo.PreferredExtendType.end())
9386                                  ? ISD::ANY_EXTEND
9387                                  : FuncInfo.PreferredExtendType[V];
9388   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9389   PendingExports.push_back(Chain);
9390 }
9391 
9392 #include "llvm/CodeGen/SelectionDAGISel.h"
9393 
9394 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9395 /// entry block, return true.  This includes arguments used by switches, since
9396 /// the switch may expand into multiple basic blocks.
9397 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9398   // With FastISel active, we may be splitting blocks, so force creation
9399   // of virtual registers for all non-dead arguments.
9400   if (FastISel)
9401     return A->use_empty();
9402 
9403   const BasicBlock &Entry = A->getParent()->front();
9404   for (const User *U : A->users())
9405     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9406       return false;  // Use not in entry block.
9407 
9408   return true;
9409 }
9410 
9411 using ArgCopyElisionMapTy =
9412     DenseMap<const Argument *,
9413              std::pair<const AllocaInst *, const StoreInst *>>;
9414 
9415 /// Scan the entry block of the function in FuncInfo for arguments that look
9416 /// like copies into a local alloca. Record any copied arguments in
9417 /// ArgCopyElisionCandidates.
9418 static void
9419 findArgumentCopyElisionCandidates(const DataLayout &DL,
9420                                   FunctionLoweringInfo *FuncInfo,
9421                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9422   // Record the state of every static alloca used in the entry block. Argument
9423   // allocas are all used in the entry block, so we need approximately as many
9424   // entries as we have arguments.
9425   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9426   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9427   unsigned NumArgs = FuncInfo->Fn->arg_size();
9428   StaticAllocas.reserve(NumArgs * 2);
9429 
9430   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9431     if (!V)
9432       return nullptr;
9433     V = V->stripPointerCasts();
9434     const auto *AI = dyn_cast<AllocaInst>(V);
9435     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9436       return nullptr;
9437     auto Iter = StaticAllocas.insert({AI, Unknown});
9438     return &Iter.first->second;
9439   };
9440 
9441   // Look for stores of arguments to static allocas. Look through bitcasts and
9442   // GEPs to handle type coercions, as long as the alloca is fully initialized
9443   // by the store. Any non-store use of an alloca escapes it and any subsequent
9444   // unanalyzed store might write it.
9445   // FIXME: Handle structs initialized with multiple stores.
9446   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9447     // Look for stores, and handle non-store uses conservatively.
9448     const auto *SI = dyn_cast<StoreInst>(&I);
9449     if (!SI) {
9450       // We will look through cast uses, so ignore them completely.
9451       if (I.isCast())
9452         continue;
9453       // Ignore debug info intrinsics, they don't escape or store to allocas.
9454       if (isa<DbgInfoIntrinsic>(I))
9455         continue;
9456       // This is an unknown instruction. Assume it escapes or writes to all
9457       // static alloca operands.
9458       for (const Use &U : I.operands()) {
9459         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9460           *Info = StaticAllocaInfo::Clobbered;
9461       }
9462       continue;
9463     }
9464 
9465     // If the stored value is a static alloca, mark it as escaped.
9466     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9467       *Info = StaticAllocaInfo::Clobbered;
9468 
9469     // Check if the destination is a static alloca.
9470     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9471     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9472     if (!Info)
9473       continue;
9474     const AllocaInst *AI = cast<AllocaInst>(Dst);
9475 
9476     // Skip allocas that have been initialized or clobbered.
9477     if (*Info != StaticAllocaInfo::Unknown)
9478       continue;
9479 
9480     // Check if the stored value is an argument, and that this store fully
9481     // initializes the alloca. Don't elide copies from the same argument twice.
9482     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9483     const auto *Arg = dyn_cast<Argument>(Val);
9484     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9485         Arg->getType()->isEmptyTy() ||
9486         DL.getTypeStoreSize(Arg->getType()) !=
9487             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9488         ArgCopyElisionCandidates.count(Arg)) {
9489       *Info = StaticAllocaInfo::Clobbered;
9490       continue;
9491     }
9492 
9493     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9494                       << '\n');
9495 
9496     // Mark this alloca and store for argument copy elision.
9497     *Info = StaticAllocaInfo::Elidable;
9498     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9499 
9500     // Stop scanning if we've seen all arguments. This will happen early in -O0
9501     // builds, which is useful, because -O0 builds have large entry blocks and
9502     // many allocas.
9503     if (ArgCopyElisionCandidates.size() == NumArgs)
9504       break;
9505   }
9506 }
9507 
9508 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9509 /// ArgVal is a load from a suitable fixed stack object.
9510 static void tryToElideArgumentCopy(
9511     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9512     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9513     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9514     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9515     SDValue ArgVal, bool &ArgHasUses) {
9516   // Check if this is a load from a fixed stack object.
9517   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9518   if (!LNode)
9519     return;
9520   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9521   if (!FINode)
9522     return;
9523 
9524   // Check that the fixed stack object is the right size and alignment.
9525   // Look at the alignment that the user wrote on the alloca instead of looking
9526   // at the stack object.
9527   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9528   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9529   const AllocaInst *AI = ArgCopyIter->second.first;
9530   int FixedIndex = FINode->getIndex();
9531   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9532   int OldIndex = AllocaIndex;
9533   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9534   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9535     LLVM_DEBUG(
9536         dbgs() << "  argument copy elision failed due to bad fixed stack "
9537                   "object size\n");
9538     return;
9539   }
9540   unsigned RequiredAlignment = AI->getAlignment();
9541   if (!RequiredAlignment) {
9542     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9543         AI->getAllocatedType());
9544   }
9545   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9546     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9547                          "greater than stack argument alignment ("
9548                       << RequiredAlignment << " vs "
9549                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9550     return;
9551   }
9552 
9553   // Perform the elision. Delete the old stack object and replace its only use
9554   // in the variable info map. Mark the stack object as mutable.
9555   LLVM_DEBUG({
9556     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9557            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9558            << '\n';
9559   });
9560   MFI.RemoveStackObject(OldIndex);
9561   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9562   AllocaIndex = FixedIndex;
9563   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9564   Chains.push_back(ArgVal.getValue(1));
9565 
9566   // Avoid emitting code for the store implementing the copy.
9567   const StoreInst *SI = ArgCopyIter->second.second;
9568   ElidedArgCopyInstrs.insert(SI);
9569 
9570   // Check for uses of the argument again so that we can avoid exporting ArgVal
9571   // if it is't used by anything other than the store.
9572   for (const Value *U : Arg.users()) {
9573     if (U != SI) {
9574       ArgHasUses = true;
9575       break;
9576     }
9577   }
9578 }
9579 
9580 void SelectionDAGISel::LowerArguments(const Function &F) {
9581   SelectionDAG &DAG = SDB->DAG;
9582   SDLoc dl = SDB->getCurSDLoc();
9583   const DataLayout &DL = DAG.getDataLayout();
9584   SmallVector<ISD::InputArg, 16> Ins;
9585 
9586   if (!FuncInfo->CanLowerReturn) {
9587     // Put in an sret pointer parameter before all the other parameters.
9588     SmallVector<EVT, 1> ValueVTs;
9589     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9590                     F.getReturnType()->getPointerTo(
9591                         DAG.getDataLayout().getAllocaAddrSpace()),
9592                     ValueVTs);
9593 
9594     // NOTE: Assuming that a pointer will never break down to more than one VT
9595     // or one register.
9596     ISD::ArgFlagsTy Flags;
9597     Flags.setSRet();
9598     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9599     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9600                          ISD::InputArg::NoArgIndex, 0);
9601     Ins.push_back(RetArg);
9602   }
9603 
9604   // Look for stores of arguments to static allocas. Mark such arguments with a
9605   // flag to ask the target to give us the memory location of that argument if
9606   // available.
9607   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9608   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9609 
9610   // Set up the incoming argument description vector.
9611   for (const Argument &Arg : F.args()) {
9612     unsigned ArgNo = Arg.getArgNo();
9613     SmallVector<EVT, 4> ValueVTs;
9614     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9615     bool isArgValueUsed = !Arg.use_empty();
9616     unsigned PartBase = 0;
9617     Type *FinalType = Arg.getType();
9618     if (Arg.hasAttribute(Attribute::ByVal))
9619       FinalType = Arg.getParamByValType();
9620     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9621         FinalType, F.getCallingConv(), F.isVarArg());
9622     for (unsigned Value = 0, NumValues = ValueVTs.size();
9623          Value != NumValues; ++Value) {
9624       EVT VT = ValueVTs[Value];
9625       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9626       ISD::ArgFlagsTy Flags;
9627 
9628       // Certain targets (such as MIPS), may have a different ABI alignment
9629       // for a type depending on the context. Give the target a chance to
9630       // specify the alignment it wants.
9631       const Align OriginalAlignment(
9632           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9633 
9634       if (Arg.getType()->isPointerTy()) {
9635         Flags.setPointer();
9636         Flags.setPointerAddrSpace(
9637             cast<PointerType>(Arg.getType())->getAddressSpace());
9638       }
9639       if (Arg.hasAttribute(Attribute::ZExt))
9640         Flags.setZExt();
9641       if (Arg.hasAttribute(Attribute::SExt))
9642         Flags.setSExt();
9643       if (Arg.hasAttribute(Attribute::InReg)) {
9644         // If we are using vectorcall calling convention, a structure that is
9645         // passed InReg - is surely an HVA
9646         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9647             isa<StructType>(Arg.getType())) {
9648           // The first value of a structure is marked
9649           if (0 == Value)
9650             Flags.setHvaStart();
9651           Flags.setHva();
9652         }
9653         // Set InReg Flag
9654         Flags.setInReg();
9655       }
9656       if (Arg.hasAttribute(Attribute::StructRet))
9657         Flags.setSRet();
9658       if (Arg.hasAttribute(Attribute::SwiftSelf))
9659         Flags.setSwiftSelf();
9660       if (Arg.hasAttribute(Attribute::SwiftError))
9661         Flags.setSwiftError();
9662       if (Arg.hasAttribute(Attribute::ByVal))
9663         Flags.setByVal();
9664       if (Arg.hasAttribute(Attribute::InAlloca)) {
9665         Flags.setInAlloca();
9666         // Set the byval flag for CCAssignFn callbacks that don't know about
9667         // inalloca.  This way we can know how many bytes we should've allocated
9668         // and how many bytes a callee cleanup function will pop.  If we port
9669         // inalloca to more targets, we'll have to add custom inalloca handling
9670         // in the various CC lowering callbacks.
9671         Flags.setByVal();
9672       }
9673       if (F.getCallingConv() == CallingConv::X86_INTR) {
9674         // IA Interrupt passes frame (1st parameter) by value in the stack.
9675         if (ArgNo == 0)
9676           Flags.setByVal();
9677       }
9678       if (Flags.isByVal() || Flags.isInAlloca()) {
9679         Type *ElementTy = Arg.getParamByValType();
9680 
9681         // For ByVal, size and alignment should be passed from FE.  BE will
9682         // guess if this info is not there but there are cases it cannot get
9683         // right.
9684         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9685         Flags.setByValSize(FrameSize);
9686 
9687         unsigned FrameAlign;
9688         if (Arg.getParamAlignment())
9689           FrameAlign = Arg.getParamAlignment();
9690         else
9691           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9692         Flags.setByValAlign(Align(FrameAlign));
9693       }
9694       if (Arg.hasAttribute(Attribute::Nest))
9695         Flags.setNest();
9696       if (NeedsRegBlock)
9697         Flags.setInConsecutiveRegs();
9698       Flags.setOrigAlign(OriginalAlignment);
9699       if (ArgCopyElisionCandidates.count(&Arg))
9700         Flags.setCopyElisionCandidate();
9701       if (Arg.hasAttribute(Attribute::Returned))
9702         Flags.setReturned();
9703 
9704       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9705           *CurDAG->getContext(), F.getCallingConv(), VT);
9706       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9707           *CurDAG->getContext(), F.getCallingConv(), VT);
9708       for (unsigned i = 0; i != NumRegs; ++i) {
9709         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9710                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9711         if (NumRegs > 1 && i == 0)
9712           MyFlags.Flags.setSplit();
9713         // if it isn't first piece, alignment must be 1
9714         else if (i > 0) {
9715           MyFlags.Flags.setOrigAlign(Align::None());
9716           if (i == NumRegs - 1)
9717             MyFlags.Flags.setSplitEnd();
9718         }
9719         Ins.push_back(MyFlags);
9720       }
9721       if (NeedsRegBlock && Value == NumValues - 1)
9722         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9723       PartBase += VT.getStoreSize();
9724     }
9725   }
9726 
9727   // Call the target to set up the argument values.
9728   SmallVector<SDValue, 8> InVals;
9729   SDValue NewRoot = TLI->LowerFormalArguments(
9730       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9731 
9732   // Verify that the target's LowerFormalArguments behaved as expected.
9733   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9734          "LowerFormalArguments didn't return a valid chain!");
9735   assert(InVals.size() == Ins.size() &&
9736          "LowerFormalArguments didn't emit the correct number of values!");
9737   LLVM_DEBUG({
9738     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9739       assert(InVals[i].getNode() &&
9740              "LowerFormalArguments emitted a null value!");
9741       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9742              "LowerFormalArguments emitted a value with the wrong type!");
9743     }
9744   });
9745 
9746   // Update the DAG with the new chain value resulting from argument lowering.
9747   DAG.setRoot(NewRoot);
9748 
9749   // Set up the argument values.
9750   unsigned i = 0;
9751   if (!FuncInfo->CanLowerReturn) {
9752     // Create a virtual register for the sret pointer, and put in a copy
9753     // from the sret argument into it.
9754     SmallVector<EVT, 1> ValueVTs;
9755     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9756                     F.getReturnType()->getPointerTo(
9757                         DAG.getDataLayout().getAllocaAddrSpace()),
9758                     ValueVTs);
9759     MVT VT = ValueVTs[0].getSimpleVT();
9760     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9761     Optional<ISD::NodeType> AssertOp = None;
9762     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9763                                         nullptr, F.getCallingConv(), AssertOp);
9764 
9765     MachineFunction& MF = SDB->DAG.getMachineFunction();
9766     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9767     Register SRetReg =
9768         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9769     FuncInfo->DemoteRegister = SRetReg;
9770     NewRoot =
9771         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9772     DAG.setRoot(NewRoot);
9773 
9774     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9775     ++i;
9776   }
9777 
9778   SmallVector<SDValue, 4> Chains;
9779   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9780   for (const Argument &Arg : F.args()) {
9781     SmallVector<SDValue, 4> ArgValues;
9782     SmallVector<EVT, 4> ValueVTs;
9783     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9784     unsigned NumValues = ValueVTs.size();
9785     if (NumValues == 0)
9786       continue;
9787 
9788     bool ArgHasUses = !Arg.use_empty();
9789 
9790     // Elide the copying store if the target loaded this argument from a
9791     // suitable fixed stack object.
9792     if (Ins[i].Flags.isCopyElisionCandidate()) {
9793       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9794                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9795                              InVals[i], ArgHasUses);
9796     }
9797 
9798     // If this argument is unused then remember its value. It is used to generate
9799     // debugging information.
9800     bool isSwiftErrorArg =
9801         TLI->supportSwiftError() &&
9802         Arg.hasAttribute(Attribute::SwiftError);
9803     if (!ArgHasUses && !isSwiftErrorArg) {
9804       SDB->setUnusedArgValue(&Arg, InVals[i]);
9805 
9806       // Also remember any frame index for use in FastISel.
9807       if (FrameIndexSDNode *FI =
9808           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9809         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9810     }
9811 
9812     for (unsigned Val = 0; Val != NumValues; ++Val) {
9813       EVT VT = ValueVTs[Val];
9814       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9815                                                       F.getCallingConv(), VT);
9816       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9817           *CurDAG->getContext(), F.getCallingConv(), VT);
9818 
9819       // Even an apparent 'unused' swifterror argument needs to be returned. So
9820       // we do generate a copy for it that can be used on return from the
9821       // function.
9822       if (ArgHasUses || isSwiftErrorArg) {
9823         Optional<ISD::NodeType> AssertOp;
9824         if (Arg.hasAttribute(Attribute::SExt))
9825           AssertOp = ISD::AssertSext;
9826         else if (Arg.hasAttribute(Attribute::ZExt))
9827           AssertOp = ISD::AssertZext;
9828 
9829         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9830                                              PartVT, VT, nullptr,
9831                                              F.getCallingConv(), AssertOp));
9832       }
9833 
9834       i += NumParts;
9835     }
9836 
9837     // We don't need to do anything else for unused arguments.
9838     if (ArgValues.empty())
9839       continue;
9840 
9841     // Note down frame index.
9842     if (FrameIndexSDNode *FI =
9843         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9844       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9845 
9846     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9847                                      SDB->getCurSDLoc());
9848 
9849     SDB->setValue(&Arg, Res);
9850     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9851       // We want to associate the argument with the frame index, among
9852       // involved operands, that correspond to the lowest address. The
9853       // getCopyFromParts function, called earlier, is swapping the order of
9854       // the operands to BUILD_PAIR depending on endianness. The result of
9855       // that swapping is that the least significant bits of the argument will
9856       // be in the first operand of the BUILD_PAIR node, and the most
9857       // significant bits will be in the second operand.
9858       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9859       if (LoadSDNode *LNode =
9860           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9861         if (FrameIndexSDNode *FI =
9862             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9863           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9864     }
9865 
9866     // Analyses past this point are naive and don't expect an assertion.
9867     if (Res.getOpcode() == ISD::AssertZext)
9868       Res = Res.getOperand(0);
9869 
9870     // Update the SwiftErrorVRegDefMap.
9871     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9872       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9873       if (Register::isVirtualRegister(Reg))
9874         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9875                                    Reg);
9876     }
9877 
9878     // If this argument is live outside of the entry block, insert a copy from
9879     // wherever we got it to the vreg that other BB's will reference it as.
9880     if (Res.getOpcode() == ISD::CopyFromReg) {
9881       // If we can, though, try to skip creating an unnecessary vreg.
9882       // FIXME: This isn't very clean... it would be nice to make this more
9883       // general.
9884       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9885       if (Register::isVirtualRegister(Reg)) {
9886         FuncInfo->ValueMap[&Arg] = Reg;
9887         continue;
9888       }
9889     }
9890     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9891       FuncInfo->InitializeRegForValue(&Arg);
9892       SDB->CopyToExportRegsIfNeeded(&Arg);
9893     }
9894   }
9895 
9896   if (!Chains.empty()) {
9897     Chains.push_back(NewRoot);
9898     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9899   }
9900 
9901   DAG.setRoot(NewRoot);
9902 
9903   assert(i == InVals.size() && "Argument register count mismatch!");
9904 
9905   // If any argument copy elisions occurred and we have debug info, update the
9906   // stale frame indices used in the dbg.declare variable info table.
9907   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9908   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9909     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9910       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9911       if (I != ArgCopyElisionFrameIndexMap.end())
9912         VI.Slot = I->second;
9913     }
9914   }
9915 
9916   // Finally, if the target has anything special to do, allow it to do so.
9917   EmitFunctionEntryCode();
9918 }
9919 
9920 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9921 /// ensure constants are generated when needed.  Remember the virtual registers
9922 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9923 /// directly add them, because expansion might result in multiple MBB's for one
9924 /// BB.  As such, the start of the BB might correspond to a different MBB than
9925 /// the end.
9926 void
9927 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9928   const Instruction *TI = LLVMBB->getTerminator();
9929 
9930   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9931 
9932   // Check PHI nodes in successors that expect a value to be available from this
9933   // block.
9934   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9935     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9936     if (!isa<PHINode>(SuccBB->begin())) continue;
9937     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9938 
9939     // If this terminator has multiple identical successors (common for
9940     // switches), only handle each succ once.
9941     if (!SuccsHandled.insert(SuccMBB).second)
9942       continue;
9943 
9944     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9945 
9946     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9947     // nodes and Machine PHI nodes, but the incoming operands have not been
9948     // emitted yet.
9949     for (const PHINode &PN : SuccBB->phis()) {
9950       // Ignore dead phi's.
9951       if (PN.use_empty())
9952         continue;
9953 
9954       // Skip empty types
9955       if (PN.getType()->isEmptyTy())
9956         continue;
9957 
9958       unsigned Reg;
9959       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9960 
9961       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9962         unsigned &RegOut = ConstantsOut[C];
9963         if (RegOut == 0) {
9964           RegOut = FuncInfo.CreateRegs(C);
9965           CopyValueToVirtualRegister(C, RegOut);
9966         }
9967         Reg = RegOut;
9968       } else {
9969         DenseMap<const Value *, unsigned>::iterator I =
9970           FuncInfo.ValueMap.find(PHIOp);
9971         if (I != FuncInfo.ValueMap.end())
9972           Reg = I->second;
9973         else {
9974           assert(isa<AllocaInst>(PHIOp) &&
9975                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9976                  "Didn't codegen value into a register!??");
9977           Reg = FuncInfo.CreateRegs(PHIOp);
9978           CopyValueToVirtualRegister(PHIOp, Reg);
9979         }
9980       }
9981 
9982       // Remember that this register needs to added to the machine PHI node as
9983       // the input for this MBB.
9984       SmallVector<EVT, 4> ValueVTs;
9985       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9986       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9987       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9988         EVT VT = ValueVTs[vti];
9989         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9990         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9991           FuncInfo.PHINodesToUpdate.push_back(
9992               std::make_pair(&*MBBI++, Reg + i));
9993         Reg += NumRegisters;
9994       }
9995     }
9996   }
9997 
9998   ConstantsOut.clear();
9999 }
10000 
10001 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10002 /// is 0.
10003 MachineBasicBlock *
10004 SelectionDAGBuilder::StackProtectorDescriptor::
10005 AddSuccessorMBB(const BasicBlock *BB,
10006                 MachineBasicBlock *ParentMBB,
10007                 bool IsLikely,
10008                 MachineBasicBlock *SuccMBB) {
10009   // If SuccBB has not been created yet, create it.
10010   if (!SuccMBB) {
10011     MachineFunction *MF = ParentMBB->getParent();
10012     MachineFunction::iterator BBI(ParentMBB);
10013     SuccMBB = MF->CreateMachineBasicBlock(BB);
10014     MF->insert(++BBI, SuccMBB);
10015   }
10016   // Add it as a successor of ParentMBB.
10017   ParentMBB->addSuccessor(
10018       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10019   return SuccMBB;
10020 }
10021 
10022 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10023   MachineFunction::iterator I(MBB);
10024   if (++I == FuncInfo.MF->end())
10025     return nullptr;
10026   return &*I;
10027 }
10028 
10029 /// During lowering new call nodes can be created (such as memset, etc.).
10030 /// Those will become new roots of the current DAG, but complications arise
10031 /// when they are tail calls. In such cases, the call lowering will update
10032 /// the root, but the builder still needs to know that a tail call has been
10033 /// lowered in order to avoid generating an additional return.
10034 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10035   // If the node is null, we do have a tail call.
10036   if (MaybeTC.getNode() != nullptr)
10037     DAG.setRoot(MaybeTC);
10038   else
10039     HasTailCall = true;
10040 }
10041 
10042 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10043                                         MachineBasicBlock *SwitchMBB,
10044                                         MachineBasicBlock *DefaultMBB) {
10045   MachineFunction *CurMF = FuncInfo.MF;
10046   MachineBasicBlock *NextMBB = nullptr;
10047   MachineFunction::iterator BBI(W.MBB);
10048   if (++BBI != FuncInfo.MF->end())
10049     NextMBB = &*BBI;
10050 
10051   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10052 
10053   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10054 
10055   if (Size == 2 && W.MBB == SwitchMBB) {
10056     // If any two of the cases has the same destination, and if one value
10057     // is the same as the other, but has one bit unset that the other has set,
10058     // use bit manipulation to do two compares at once.  For example:
10059     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10060     // TODO: This could be extended to merge any 2 cases in switches with 3
10061     // cases.
10062     // TODO: Handle cases where W.CaseBB != SwitchBB.
10063     CaseCluster &Small = *W.FirstCluster;
10064     CaseCluster &Big = *W.LastCluster;
10065 
10066     if (Small.Low == Small.High && Big.Low == Big.High &&
10067         Small.MBB == Big.MBB) {
10068       const APInt &SmallValue = Small.Low->getValue();
10069       const APInt &BigValue = Big.Low->getValue();
10070 
10071       // Check that there is only one bit different.
10072       APInt CommonBit = BigValue ^ SmallValue;
10073       if (CommonBit.isPowerOf2()) {
10074         SDValue CondLHS = getValue(Cond);
10075         EVT VT = CondLHS.getValueType();
10076         SDLoc DL = getCurSDLoc();
10077 
10078         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10079                                  DAG.getConstant(CommonBit, DL, VT));
10080         SDValue Cond = DAG.getSetCC(
10081             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10082             ISD::SETEQ);
10083 
10084         // Update successor info.
10085         // Both Small and Big will jump to Small.BB, so we sum up the
10086         // probabilities.
10087         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10088         if (BPI)
10089           addSuccessorWithProb(
10090               SwitchMBB, DefaultMBB,
10091               // The default destination is the first successor in IR.
10092               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10093         else
10094           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10095 
10096         // Insert the true branch.
10097         SDValue BrCond =
10098             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10099                         DAG.getBasicBlock(Small.MBB));
10100         // Insert the false branch.
10101         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10102                              DAG.getBasicBlock(DefaultMBB));
10103 
10104         DAG.setRoot(BrCond);
10105         return;
10106       }
10107     }
10108   }
10109 
10110   if (TM.getOptLevel() != CodeGenOpt::None) {
10111     // Here, we order cases by probability so the most likely case will be
10112     // checked first. However, two clusters can have the same probability in
10113     // which case their relative ordering is non-deterministic. So we use Low
10114     // as a tie-breaker as clusters are guaranteed to never overlap.
10115     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10116                [](const CaseCluster &a, const CaseCluster &b) {
10117       return a.Prob != b.Prob ?
10118              a.Prob > b.Prob :
10119              a.Low->getValue().slt(b.Low->getValue());
10120     });
10121 
10122     // Rearrange the case blocks so that the last one falls through if possible
10123     // without changing the order of probabilities.
10124     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10125       --I;
10126       if (I->Prob > W.LastCluster->Prob)
10127         break;
10128       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10129         std::swap(*I, *W.LastCluster);
10130         break;
10131       }
10132     }
10133   }
10134 
10135   // Compute total probability.
10136   BranchProbability DefaultProb = W.DefaultProb;
10137   BranchProbability UnhandledProbs = DefaultProb;
10138   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10139     UnhandledProbs += I->Prob;
10140 
10141   MachineBasicBlock *CurMBB = W.MBB;
10142   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10143     bool FallthroughUnreachable = false;
10144     MachineBasicBlock *Fallthrough;
10145     if (I == W.LastCluster) {
10146       // For the last cluster, fall through to the default destination.
10147       Fallthrough = DefaultMBB;
10148       FallthroughUnreachable = isa<UnreachableInst>(
10149           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10150     } else {
10151       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10152       CurMF->insert(BBI, Fallthrough);
10153       // Put Cond in a virtual register to make it available from the new blocks.
10154       ExportFromCurrentBlock(Cond);
10155     }
10156     UnhandledProbs -= I->Prob;
10157 
10158     switch (I->Kind) {
10159       case CC_JumpTable: {
10160         // FIXME: Optimize away range check based on pivot comparisons.
10161         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10162         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10163 
10164         // The jump block hasn't been inserted yet; insert it here.
10165         MachineBasicBlock *JumpMBB = JT->MBB;
10166         CurMF->insert(BBI, JumpMBB);
10167 
10168         auto JumpProb = I->Prob;
10169         auto FallthroughProb = UnhandledProbs;
10170 
10171         // If the default statement is a target of the jump table, we evenly
10172         // distribute the default probability to successors of CurMBB. Also
10173         // update the probability on the edge from JumpMBB to Fallthrough.
10174         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10175                                               SE = JumpMBB->succ_end();
10176              SI != SE; ++SI) {
10177           if (*SI == DefaultMBB) {
10178             JumpProb += DefaultProb / 2;
10179             FallthroughProb -= DefaultProb / 2;
10180             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10181             JumpMBB->normalizeSuccProbs();
10182             break;
10183           }
10184         }
10185 
10186         if (FallthroughUnreachable) {
10187           // Skip the range check if the fallthrough block is unreachable.
10188           JTH->OmitRangeCheck = true;
10189         }
10190 
10191         if (!JTH->OmitRangeCheck)
10192           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10193         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10194         CurMBB->normalizeSuccProbs();
10195 
10196         // The jump table header will be inserted in our current block, do the
10197         // range check, and fall through to our fallthrough block.
10198         JTH->HeaderBB = CurMBB;
10199         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10200 
10201         // If we're in the right place, emit the jump table header right now.
10202         if (CurMBB == SwitchMBB) {
10203           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10204           JTH->Emitted = true;
10205         }
10206         break;
10207       }
10208       case CC_BitTests: {
10209         // FIXME: Optimize away range check based on pivot comparisons.
10210         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10211 
10212         // The bit test blocks haven't been inserted yet; insert them here.
10213         for (BitTestCase &BTC : BTB->Cases)
10214           CurMF->insert(BBI, BTC.ThisBB);
10215 
10216         // Fill in fields of the BitTestBlock.
10217         BTB->Parent = CurMBB;
10218         BTB->Default = Fallthrough;
10219 
10220         BTB->DefaultProb = UnhandledProbs;
10221         // If the cases in bit test don't form a contiguous range, we evenly
10222         // distribute the probability on the edge to Fallthrough to two
10223         // successors of CurMBB.
10224         if (!BTB->ContiguousRange) {
10225           BTB->Prob += DefaultProb / 2;
10226           BTB->DefaultProb -= DefaultProb / 2;
10227         }
10228 
10229         if (FallthroughUnreachable) {
10230           // Skip the range check if the fallthrough block is unreachable.
10231           BTB->OmitRangeCheck = true;
10232         }
10233 
10234         // If we're in the right place, emit the bit test header right now.
10235         if (CurMBB == SwitchMBB) {
10236           visitBitTestHeader(*BTB, SwitchMBB);
10237           BTB->Emitted = true;
10238         }
10239         break;
10240       }
10241       case CC_Range: {
10242         const Value *RHS, *LHS, *MHS;
10243         ISD::CondCode CC;
10244         if (I->Low == I->High) {
10245           // Check Cond == I->Low.
10246           CC = ISD::SETEQ;
10247           LHS = Cond;
10248           RHS=I->Low;
10249           MHS = nullptr;
10250         } else {
10251           // Check I->Low <= Cond <= I->High.
10252           CC = ISD::SETLE;
10253           LHS = I->Low;
10254           MHS = Cond;
10255           RHS = I->High;
10256         }
10257 
10258         // If Fallthrough is unreachable, fold away the comparison.
10259         if (FallthroughUnreachable)
10260           CC = ISD::SETTRUE;
10261 
10262         // The false probability is the sum of all unhandled cases.
10263         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10264                      getCurSDLoc(), I->Prob, UnhandledProbs);
10265 
10266         if (CurMBB == SwitchMBB)
10267           visitSwitchCase(CB, SwitchMBB);
10268         else
10269           SL->SwitchCases.push_back(CB);
10270 
10271         break;
10272       }
10273     }
10274     CurMBB = Fallthrough;
10275   }
10276 }
10277 
10278 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10279                                               CaseClusterIt First,
10280                                               CaseClusterIt Last) {
10281   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10282     if (X.Prob != CC.Prob)
10283       return X.Prob > CC.Prob;
10284 
10285     // Ties are broken by comparing the case value.
10286     return X.Low->getValue().slt(CC.Low->getValue());
10287   });
10288 }
10289 
10290 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10291                                         const SwitchWorkListItem &W,
10292                                         Value *Cond,
10293                                         MachineBasicBlock *SwitchMBB) {
10294   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10295          "Clusters not sorted?");
10296 
10297   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10298 
10299   // Balance the tree based on branch probabilities to create a near-optimal (in
10300   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10301   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10302   CaseClusterIt LastLeft = W.FirstCluster;
10303   CaseClusterIt FirstRight = W.LastCluster;
10304   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10305   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10306 
10307   // Move LastLeft and FirstRight towards each other from opposite directions to
10308   // find a partitioning of the clusters which balances the probability on both
10309   // sides. If LeftProb and RightProb are equal, alternate which side is
10310   // taken to ensure 0-probability nodes are distributed evenly.
10311   unsigned I = 0;
10312   while (LastLeft + 1 < FirstRight) {
10313     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10314       LeftProb += (++LastLeft)->Prob;
10315     else
10316       RightProb += (--FirstRight)->Prob;
10317     I++;
10318   }
10319 
10320   while (true) {
10321     // Our binary search tree differs from a typical BST in that ours can have up
10322     // to three values in each leaf. The pivot selection above doesn't take that
10323     // into account, which means the tree might require more nodes and be less
10324     // efficient. We compensate for this here.
10325 
10326     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10327     unsigned NumRight = W.LastCluster - FirstRight + 1;
10328 
10329     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10330       // If one side has less than 3 clusters, and the other has more than 3,
10331       // consider taking a cluster from the other side.
10332 
10333       if (NumLeft < NumRight) {
10334         // Consider moving the first cluster on the right to the left side.
10335         CaseCluster &CC = *FirstRight;
10336         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10337         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10338         if (LeftSideRank <= RightSideRank) {
10339           // Moving the cluster to the left does not demote it.
10340           ++LastLeft;
10341           ++FirstRight;
10342           continue;
10343         }
10344       } else {
10345         assert(NumRight < NumLeft);
10346         // Consider moving the last element on the left to the right side.
10347         CaseCluster &CC = *LastLeft;
10348         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10349         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10350         if (RightSideRank <= LeftSideRank) {
10351           // Moving the cluster to the right does not demot it.
10352           --LastLeft;
10353           --FirstRight;
10354           continue;
10355         }
10356       }
10357     }
10358     break;
10359   }
10360 
10361   assert(LastLeft + 1 == FirstRight);
10362   assert(LastLeft >= W.FirstCluster);
10363   assert(FirstRight <= W.LastCluster);
10364 
10365   // Use the first element on the right as pivot since we will make less-than
10366   // comparisons against it.
10367   CaseClusterIt PivotCluster = FirstRight;
10368   assert(PivotCluster > W.FirstCluster);
10369   assert(PivotCluster <= W.LastCluster);
10370 
10371   CaseClusterIt FirstLeft = W.FirstCluster;
10372   CaseClusterIt LastRight = W.LastCluster;
10373 
10374   const ConstantInt *Pivot = PivotCluster->Low;
10375 
10376   // New blocks will be inserted immediately after the current one.
10377   MachineFunction::iterator BBI(W.MBB);
10378   ++BBI;
10379 
10380   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10381   // we can branch to its destination directly if it's squeezed exactly in
10382   // between the known lower bound and Pivot - 1.
10383   MachineBasicBlock *LeftMBB;
10384   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10385       FirstLeft->Low == W.GE &&
10386       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10387     LeftMBB = FirstLeft->MBB;
10388   } else {
10389     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10390     FuncInfo.MF->insert(BBI, LeftMBB);
10391     WorkList.push_back(
10392         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10393     // Put Cond in a virtual register to make it available from the new blocks.
10394     ExportFromCurrentBlock(Cond);
10395   }
10396 
10397   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10398   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10399   // directly if RHS.High equals the current upper bound.
10400   MachineBasicBlock *RightMBB;
10401   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10402       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10403     RightMBB = FirstRight->MBB;
10404   } else {
10405     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10406     FuncInfo.MF->insert(BBI, RightMBB);
10407     WorkList.push_back(
10408         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10409     // Put Cond in a virtual register to make it available from the new blocks.
10410     ExportFromCurrentBlock(Cond);
10411   }
10412 
10413   // Create the CaseBlock record that will be used to lower the branch.
10414   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10415                getCurSDLoc(), LeftProb, RightProb);
10416 
10417   if (W.MBB == SwitchMBB)
10418     visitSwitchCase(CB, SwitchMBB);
10419   else
10420     SL->SwitchCases.push_back(CB);
10421 }
10422 
10423 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10424 // from the swith statement.
10425 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10426                                             BranchProbability PeeledCaseProb) {
10427   if (PeeledCaseProb == BranchProbability::getOne())
10428     return BranchProbability::getZero();
10429   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10430 
10431   uint32_t Numerator = CaseProb.getNumerator();
10432   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10433   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10434 }
10435 
10436 // Try to peel the top probability case if it exceeds the threshold.
10437 // Return current MachineBasicBlock for the switch statement if the peeling
10438 // does not occur.
10439 // If the peeling is performed, return the newly created MachineBasicBlock
10440 // for the peeled switch statement. Also update Clusters to remove the peeled
10441 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10442 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10443     const SwitchInst &SI, CaseClusterVector &Clusters,
10444     BranchProbability &PeeledCaseProb) {
10445   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10446   // Don't perform if there is only one cluster or optimizing for size.
10447   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10448       TM.getOptLevel() == CodeGenOpt::None ||
10449       SwitchMBB->getParent()->getFunction().hasMinSize())
10450     return SwitchMBB;
10451 
10452   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10453   unsigned PeeledCaseIndex = 0;
10454   bool SwitchPeeled = false;
10455   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10456     CaseCluster &CC = Clusters[Index];
10457     if (CC.Prob < TopCaseProb)
10458       continue;
10459     TopCaseProb = CC.Prob;
10460     PeeledCaseIndex = Index;
10461     SwitchPeeled = true;
10462   }
10463   if (!SwitchPeeled)
10464     return SwitchMBB;
10465 
10466   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10467                     << TopCaseProb << "\n");
10468 
10469   // Record the MBB for the peeled switch statement.
10470   MachineFunction::iterator BBI(SwitchMBB);
10471   ++BBI;
10472   MachineBasicBlock *PeeledSwitchMBB =
10473       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10474   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10475 
10476   ExportFromCurrentBlock(SI.getCondition());
10477   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10478   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10479                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10480   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10481 
10482   Clusters.erase(PeeledCaseIt);
10483   for (CaseCluster &CC : Clusters) {
10484     LLVM_DEBUG(
10485         dbgs() << "Scale the probablity for one cluster, before scaling: "
10486                << CC.Prob << "\n");
10487     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10488     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10489   }
10490   PeeledCaseProb = TopCaseProb;
10491   return PeeledSwitchMBB;
10492 }
10493 
10494 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10495   // Extract cases from the switch.
10496   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10497   CaseClusterVector Clusters;
10498   Clusters.reserve(SI.getNumCases());
10499   for (auto I : SI.cases()) {
10500     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10501     const ConstantInt *CaseVal = I.getCaseValue();
10502     BranchProbability Prob =
10503         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10504             : BranchProbability(1, SI.getNumCases() + 1);
10505     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10506   }
10507 
10508   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10509 
10510   // Cluster adjacent cases with the same destination. We do this at all
10511   // optimization levels because it's cheap to do and will make codegen faster
10512   // if there are many clusters.
10513   sortAndRangeify(Clusters);
10514 
10515   // The branch probablity of the peeled case.
10516   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10517   MachineBasicBlock *PeeledSwitchMBB =
10518       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10519 
10520   // If there is only the default destination, jump there directly.
10521   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10522   if (Clusters.empty()) {
10523     assert(PeeledSwitchMBB == SwitchMBB);
10524     SwitchMBB->addSuccessor(DefaultMBB);
10525     if (DefaultMBB != NextBlock(SwitchMBB)) {
10526       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10527                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10528     }
10529     return;
10530   }
10531 
10532   SL->findJumpTables(Clusters, &SI, DefaultMBB);
10533   SL->findBitTestClusters(Clusters, &SI);
10534 
10535   LLVM_DEBUG({
10536     dbgs() << "Case clusters: ";
10537     for (const CaseCluster &C : Clusters) {
10538       if (C.Kind == CC_JumpTable)
10539         dbgs() << "JT:";
10540       if (C.Kind == CC_BitTests)
10541         dbgs() << "BT:";
10542 
10543       C.Low->getValue().print(dbgs(), true);
10544       if (C.Low != C.High) {
10545         dbgs() << '-';
10546         C.High->getValue().print(dbgs(), true);
10547       }
10548       dbgs() << ' ';
10549     }
10550     dbgs() << '\n';
10551   });
10552 
10553   assert(!Clusters.empty());
10554   SwitchWorkList WorkList;
10555   CaseClusterIt First = Clusters.begin();
10556   CaseClusterIt Last = Clusters.end() - 1;
10557   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10558   // Scale the branchprobability for DefaultMBB if the peel occurs and
10559   // DefaultMBB is not replaced.
10560   if (PeeledCaseProb != BranchProbability::getZero() &&
10561       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10562     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10563   WorkList.push_back(
10564       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10565 
10566   while (!WorkList.empty()) {
10567     SwitchWorkListItem W = WorkList.back();
10568     WorkList.pop_back();
10569     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10570 
10571     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10572         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10573       // For optimized builds, lower large range as a balanced binary tree.
10574       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10575       continue;
10576     }
10577 
10578     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10579   }
10580 }
10581