1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 /// LimitFloatPrecision - Generate low-precision inline sequences for 67 /// some float libcalls (6, 8 or 12 bits). 68 static unsigned LimitFloatPrecision; 69 70 static cl::opt<unsigned, true> 71 LimitFPPrecision("limit-float-precision", 72 cl::desc("Generate low-precision inline sequences " 73 "for some float libcalls"), 74 cl::location(LimitFloatPrecision), 75 cl::init(0)); 76 77 // Limit the width of DAG chains. This is important in general to prevent 78 // prevent DAG-based analysis from blowing up. For example, alias analysis and 79 // load clustering may not complete in reasonable time. It is difficult to 80 // recognize and avoid this situation within each individual analysis, and 81 // future analyses are likely to have the same behavior. Limiting DAG width is 82 // the safe approach, and will be especially important with global DAGs. 83 // 84 // MaxParallelChains default is arbitrarily high to avoid affecting 85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 86 // sequence over this should have been converted to llvm.memcpy by the 87 // frontend. It easy to induce this behavior with .ll code such as: 88 // %buffer = alloca [4096 x i8] 89 // %data = load [4096 x i8]* %argPtr 90 // store [4096 x i8] %data, [4096 x i8]* %buffer 91 static const unsigned MaxParallelChains = 64; 92 93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 94 const SDValue *Parts, unsigned NumParts, 95 MVT PartVT, EVT ValueVT, const Value *V); 96 97 /// getCopyFromParts - Create a value that contains the specified legal parts 98 /// combined into the value they represent. If the parts combine to a type 99 /// larger then ValueVT then AssertOp can be used to specify whether the extra 100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 101 /// (ISD::AssertSext). 102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, 104 unsigned NumParts, MVT PartVT, EVT ValueVT, 105 const Value *V, 106 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 107 if (ValueVT.isVector()) 108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 109 PartVT, ValueVT, V); 110 111 assert(NumParts > 0 && "No parts to assemble!"); 112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 113 SDValue Val = Parts[0]; 114 115 if (NumParts > 1) { 116 // Assemble the value from multiple parts. 117 if (ValueVT.isInteger()) { 118 unsigned PartBits = PartVT.getSizeInBits(); 119 unsigned ValueBits = ValueVT.getSizeInBits(); 120 121 // Assemble the power of 2 part. 122 unsigned RoundParts = NumParts & (NumParts - 1) ? 123 1 << Log2_32(NumParts) : NumParts; 124 unsigned RoundBits = PartBits * RoundParts; 125 EVT RoundVT = RoundBits == ValueBits ? 126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 127 SDValue Lo, Hi; 128 129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 130 131 if (RoundParts > 2) { 132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 133 PartVT, HalfVT, V); 134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 135 RoundParts / 2, PartVT, HalfVT, V); 136 } else { 137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 139 } 140 141 if (TLI.isBigEndian()) 142 std::swap(Lo, Hi); 143 144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 145 146 if (RoundParts < NumParts) { 147 // Assemble the trailing non-power-of-2 part. 148 unsigned OddParts = NumParts - RoundParts; 149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 150 Hi = getCopyFromParts(DAG, DL, 151 Parts + RoundParts, OddParts, PartVT, OddVT, V); 152 153 // Combine the round and odd parts. 154 Lo = Val; 155 if (TLI.isBigEndian()) 156 std::swap(Lo, Hi); 157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 160 DAG.getConstant(Lo.getValueType().getSizeInBits(), 161 TLI.getPointerTy())); 162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 164 } 165 } else if (PartVT.isFloatingPoint()) { 166 // FP split into multiple FP parts (for ppcf128) 167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 168 "Unexpected split"); 169 SDValue Lo, Hi; 170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 172 if (TLI.isBigEndian()) 173 std::swap(Lo, Hi); 174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 175 } else { 176 // FP split into integer parts (soft fp) 177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 178 !PartVT.isVector() && "Unexpected split"); 179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 181 } 182 } 183 184 // There is now one part, held in Val. Correct it to match ValueVT. 185 EVT PartEVT = Val.getValueType(); 186 187 if (PartEVT == ValueVT) 188 return Val; 189 190 if (PartEVT.isInteger() && ValueVT.isInteger()) { 191 if (ValueVT.bitsLT(PartEVT)) { 192 // For a truncate, see if we have any information to 193 // indicate whether the truncated bits will always be 194 // zero or sign-extension. 195 if (AssertOp != ISD::DELETED_NODE) 196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 197 DAG.getValueType(ValueVT)); 198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 199 } 200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 201 } 202 203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 204 // FP_ROUND's are always exact here. 205 if (ValueVT.bitsLT(Val.getValueType())) 206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 207 DAG.getTargetConstant(1, TLI.getPointerTy())); 208 209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 llvm_unreachable("Unknown mismatch!"); 216 } 217 218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 219 const Twine &ErrMsg) { 220 const Instruction *I = dyn_cast_or_null<Instruction>(V); 221 if (!V) 222 return Ctx.emitError(ErrMsg); 223 224 const char *AsmError = ", possible invalid constraint for vector type"; 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) 226 if (isa<InlineAsm>(CI->getCalledValue())) 227 return Ctx.emitError(I, ErrMsg + AsmError); 228 229 return Ctx.emitError(I, ErrMsg); 230 } 231 232 /// getCopyFromPartsVector - Create a value that contains the specified legal 233 /// parts combined into the value they represent. If the parts combine to a 234 /// type larger then ValueVT then AssertOp can be used to specify whether the 235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 236 /// ValueVT (ISD::AssertSext). 237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 238 const SDValue *Parts, unsigned NumParts, 239 MVT PartVT, EVT ValueVT, const Value *V) { 240 assert(ValueVT.isVector() && "Not a vector value"); 241 assert(NumParts > 0 && "No parts to assemble!"); 242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 243 SDValue Val = Parts[0]; 244 245 // Handle a multi-element vector. 246 if (NumParts > 1) { 247 EVT IntermediateVT; 248 MVT RegisterVT; 249 unsigned NumIntermediates; 250 unsigned NumRegs = 251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 252 NumIntermediates, RegisterVT); 253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 254 NumParts = NumRegs; // Silence a compiler warning. 255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 256 assert(RegisterVT == Parts[0].getSimpleValueType() && 257 "Part type doesn't match part!"); 258 259 // Assemble the parts into intermediate operands. 260 SmallVector<SDValue, 8> Ops(NumIntermediates); 261 if (NumIntermediates == NumParts) { 262 // If the register was not expanded, truncate or copy the value, 263 // as appropriate. 264 for (unsigned i = 0; i != NumParts; ++i) 265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 266 PartVT, IntermediateVT, V); 267 } else if (NumParts > 0) { 268 // If the intermediate type was expanded, build the intermediate 269 // operands from the parts. 270 assert(NumParts % NumIntermediates == 0 && 271 "Must expand into a divisible number of parts!"); 272 unsigned Factor = NumParts / NumIntermediates; 273 for (unsigned i = 0; i != NumIntermediates; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 275 PartVT, IntermediateVT, V); 276 } 277 278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 279 // intermediate operands. 280 Val = DAG.getNode(IntermediateVT.isVector() ? 281 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 282 ValueVT, &Ops[0], NumIntermediates); 283 } 284 285 // There is now one part, held in Val. Correct it to match ValueVT. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isVector()) { 292 // If the element type of the source/dest vectors are the same, but the 293 // parts vector has more elements than the value vector, then we have a 294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 295 // elements we want. 296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 298 "Cannot narrow, it would be a lossy transformation"); 299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 300 DAG.getConstant(0, TLI.getVectorIdxTy())); 301 } 302 303 // Vector/Vector bitcast. 304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 308 "Cannot handle this kind of promotion"); 309 // Promoted vector extract 310 bool Smaller = ValueVT.bitsLE(PartEVT); 311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 312 DL, ValueVT, Val); 313 314 } 315 316 // Trivial bitcast if the types are the same size and the destination 317 // vector type is legal. 318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 319 TLI.isTypeLegal(ValueVT)) 320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 321 322 // Handle cases such as i8 -> <1 x i1> 323 if (ValueVT.getVectorNumElements() != 1) { 324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 325 "non-trivial scalar-to-vector conversion"); 326 return DAG.getUNDEF(ValueVT); 327 } 328 329 if (ValueVT.getVectorNumElements() == 1 && 330 ValueVT.getVectorElementType() != PartEVT) { 331 bool Smaller = ValueVT.bitsLE(PartEVT); 332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 333 DL, ValueVT.getScalarType(), Val); 334 } 335 336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 337 } 338 339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V); 342 343 /// getCopyToParts - Create a series of nodes that contain the specified value 344 /// split into legal parts. If the parts contain more bits than Val, then, for 345 /// integers, ExtendKind can be used to specify how to generate the extra bits. 346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V, 349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 350 EVT ValueVT = Val.getValueType(); 351 352 // Handle the vector case separately. 353 if (ValueVT.isVector()) 354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 355 356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 357 unsigned PartBits = PartVT.getSizeInBits(); 358 unsigned OrigNumParts = NumParts; 359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 360 361 if (NumParts == 0) 362 return; 363 364 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 365 EVT PartEVT = PartVT; 366 if (PartEVT == ValueVT) { 367 assert(NumParts == 1 && "No-op copy with multiple parts!"); 368 Parts[0] = Val; 369 return; 370 } 371 372 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 373 // If the parts cover more bits than the value has, promote the value. 374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 375 assert(NumParts == 1 && "Do not know what to promote to!"); 376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 377 } else { 378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 379 ValueVT.isInteger() && 380 "Unknown mismatch!"); 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 383 if (PartVT == MVT::x86mmx) 384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartEVT != ValueVT); 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 393 ValueVT.isInteger() && 394 "Unknown mismatch!"); 395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 397 if (PartVT == MVT::x86mmx) 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } 400 401 // The value may have changed - recompute ValueVT. 402 ValueVT = Val.getValueType(); 403 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 404 "Failed to tile the value with PartVT!"); 405 406 if (NumParts == 1) { 407 if (PartEVT != ValueVT) 408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 409 "scalar-to-vector conversion failed"); 410 411 Parts[0] = Val; 412 return; 413 } 414 415 // Expand the value into multiple parts. 416 if (NumParts & (NumParts - 1)) { 417 // The number of parts is not a power of 2. Split off and copy the tail. 418 assert(PartVT.isInteger() && ValueVT.isInteger() && 419 "Do not know what to expand to!"); 420 unsigned RoundParts = 1 << Log2_32(NumParts); 421 unsigned RoundBits = RoundParts * PartBits; 422 unsigned OddParts = NumParts - RoundParts; 423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 424 DAG.getIntPtrConstant(RoundBits)); 425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 426 427 if (TLI.isBigEndian()) 428 // The odd parts were reversed by getCopyToParts - unreverse them. 429 std::reverse(Parts + RoundParts, Parts + NumParts); 430 431 NumParts = RoundParts; 432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 434 } 435 436 // The number of parts is a power of 2. Repeatedly bisect the value using 437 // EXTRACT_ELEMENT. 438 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 439 EVT::getIntegerVT(*DAG.getContext(), 440 ValueVT.getSizeInBits()), 441 Val); 442 443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 444 for (unsigned i = 0; i < NumParts; i += StepSize) { 445 unsigned ThisBits = StepSize * PartBits / 2; 446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 447 SDValue &Part0 = Parts[i]; 448 SDValue &Part1 = Parts[i+StepSize/2]; 449 450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(1)); 452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(0)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 458 } 459 } 460 } 461 462 if (TLI.isBigEndian()) 463 std::reverse(Parts, Parts + OrigNumParts); 464 } 465 466 467 /// getCopyToPartsVector - Create a series of nodes that contain the specified 468 /// value split into legal parts. 469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 470 SDValue Val, SDValue *Parts, unsigned NumParts, 471 MVT PartVT, const Value *V) { 472 EVT ValueVT = Val.getValueType(); 473 assert(ValueVT.isVector() && "Not a vector"); 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 476 if (NumParts == 1) { 477 EVT PartEVT = PartVT; 478 if (PartEVT == ValueVT) { 479 // Nothing to do. 480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 481 // Bitconvert vector->vector case. 482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 483 } else if (PartVT.isVector() && 484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 486 EVT ElementVT = PartVT.getVectorElementType(); 487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 488 // undef elements. 489 SmallVector<SDValue, 16> Ops; 490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 ElementVT, Val, DAG.getConstant(i, 493 TLI.getVectorIdxTy()))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getConstant(i * (NumElements / NumIntermediates), 550 TLI.getVectorIdxTy())); 551 else 552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i, TLI.getVectorIdxTy())); 555 } 556 557 // Split the intermediate operands into legal parts. 558 if (NumParts == NumIntermediates) { 559 // If the register was not expanded, promote or copy the value, 560 // as appropriate. 561 for (unsigned i = 0; i != NumParts; ++i) 562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 563 } else if (NumParts > 0) { 564 // If the intermediate type was expanded, split each the value into 565 // legal parts. 566 assert(NumParts % NumIntermediates == 0 && 567 "Must expand into a divisible number of parts!"); 568 unsigned Factor = NumParts / NumIntermediates; 569 for (unsigned i = 0; i != NumIntermediates; ++i) 570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 571 } 572 } 573 574 namespace { 575 /// RegsForValue - This struct represents the registers (physical or virtual) 576 /// that a particular set of values is assigned, and the type information 577 /// about the value. The most common situation is to represent one value at a 578 /// time, but struct or array values are handled element-wise as multiple 579 /// values. The splitting of aggregates is performed recursively, so that we 580 /// never have aggregate-typed registers. The values at this point do not 581 /// necessarily have legal types, so each value may require one or more 582 /// registers of some legal type. 583 /// 584 struct RegsForValue { 585 /// ValueVTs - The value types of the values, which may not be legal, and 586 /// may need be promoted or synthesized from one or more registers. 587 /// 588 SmallVector<EVT, 4> ValueVTs; 589 590 /// RegVTs - The value types of the registers. This is the same size as 591 /// ValueVTs and it records, for each value, what the type of the assigned 592 /// register or registers are. (Individual values are never synthesized 593 /// from more than one type of register.) 594 /// 595 /// With virtual registers, the contents of RegVTs is redundant with TLI's 596 /// getRegisterType member function, however when with physical registers 597 /// it is necessary to have a separate record of the types. 598 /// 599 SmallVector<MVT, 4> RegVTs; 600 601 /// Regs - This list holds the registers assigned to the values. 602 /// Each legal or promoted value requires one register, and each 603 /// expanded value requires multiple registers. 604 /// 605 SmallVector<unsigned, 4> Regs; 606 607 RegsForValue() {} 608 609 RegsForValue(const SmallVector<unsigned, 4> ®s, 610 MVT regvt, EVT valuevt) 611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 612 613 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 614 unsigned Reg, Type *Ty) { 615 ComputeValueVTs(tli, Ty, ValueVTs); 616 617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 EVT ValueVT = ValueVTs[Value]; 619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 621 for (unsigned i = 0; i != NumRegs; ++i) 622 Regs.push_back(Reg + i); 623 RegVTs.push_back(RegisterVT); 624 Reg += NumRegs; 625 } 626 } 627 628 /// append - Add the specified values to this one. 629 void append(const RegsForValue &RHS) { 630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 632 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 633 } 634 635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 636 /// this value and returns the result as a ValueVTs value. This uses 637 /// Chain/Flag as the input and updates them for the output Chain/Flag. 638 /// If the Flag pointer is NULL, no flag is used. 639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V = nullptr) const; 643 644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 645 /// specified value into the registers specified by this object. This uses 646 /// Chain/Flag as the input and updates them for the output Chain/Flag. 647 /// If the Flag pointer is NULL, no flag is used. 648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 649 SDValue &Chain, SDValue *Flag, const Value *V) const; 650 651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 652 /// operand list. This adds the code marker, matching input operand index 653 /// (if applicable), and includes the number of values added into it. 654 void AddInlineAsmOperands(unsigned Kind, 655 bool HasMatching, unsigned MatchingIdx, 656 SelectionDAG &DAG, 657 std::vector<SDValue> &Ops) const; 658 }; 659 } 660 661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 662 /// this value and returns the result as a ValueVT value. This uses 663 /// Chain/Flag as the input and updates them for the output Chain/Flag. 664 /// If the Flag pointer is NULL, no flag is used. 665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 666 FunctionLoweringInfo &FuncInfo, 667 SDLoc dl, 668 SDValue &Chain, SDValue *Flag, 669 const Value *V) const { 670 // A Value with type {} or [0 x %t] needs no registers. 671 if (ValueVTs.empty()) 672 return SDValue(); 673 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 676 // Assemble the legal parts into the final values. 677 SmallVector<SDValue, 4> Values(ValueVTs.size()); 678 SmallVector<SDValue, 8> Parts; 679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 680 // Copy the legal parts from the registers. 681 EVT ValueVT = ValueVTs[Value]; 682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 683 MVT RegisterVT = RegVTs[Value]; 684 685 Parts.resize(NumRegs); 686 for (unsigned i = 0; i != NumRegs; ++i) { 687 SDValue P; 688 if (!Flag) { 689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 690 } else { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 692 *Flag = P.getValue(2); 693 } 694 695 Chain = P.getValue(1); 696 Parts[i] = P; 697 698 // If the source register was virtual and if we know something about it, 699 // add an assert node. 700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 701 !RegisterVT.isInteger() || RegisterVT.isVector()) 702 continue; 703 704 const FunctionLoweringInfo::LiveOutInfo *LOI = 705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 706 if (!LOI) 707 continue; 708 709 unsigned RegSize = RegisterVT.getSizeInBits(); 710 unsigned NumSignBits = LOI->NumSignBits; 711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 712 713 if (NumZeroBits == RegSize) { 714 // The current value is a zero. 715 // Explicitly express that as it would be easier for 716 // optimizations to kick in. 717 Parts[i] = DAG.getConstant(0, RegisterVT); 718 continue; 719 } 720 721 // FIXME: We capture more information than the dag can represent. For 722 // now, just use the tightest assertzext/assertsext possible. 723 bool isSExt = true; 724 EVT FromVT(MVT::Other); 725 if (NumSignBits == RegSize) 726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 727 else if (NumZeroBits >= RegSize-1) 728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 729 else if (NumSignBits > RegSize-8) 730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 731 else if (NumZeroBits >= RegSize-8) 732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 733 else if (NumSignBits > RegSize-16) 734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 735 else if (NumZeroBits >= RegSize-16) 736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 737 else if (NumSignBits > RegSize-32) 738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 739 else if (NumZeroBits >= RegSize-32) 740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 741 else 742 continue; 743 744 // Add an assertion node. 745 assert(FromVT != MVT::Other); 746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 747 RegisterVT, P, DAG.getValueType(FromVT)); 748 } 749 750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 751 NumRegs, RegisterVT, ValueVT, V); 752 Part += NumRegs; 753 Parts.clear(); 754 } 755 756 return DAG.getNode(ISD::MERGE_VALUES, dl, 757 DAG.getVTList(ValueVTs), 758 &Values[0], ValueVTs.size()); 759 } 760 761 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 762 /// specified value into the registers specified by this object. This uses 763 /// Chain/Flag as the input and updates them for the output Chain/Flag. 764 /// If the Flag pointer is NULL, no flag is used. 765 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 766 SDValue &Chain, SDValue *Flag, 767 const Value *V) const { 768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 769 770 // Get the list of the values's legal parts. 771 unsigned NumRegs = Regs.size(); 772 SmallVector<SDValue, 8> Parts(NumRegs); 773 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 774 EVT ValueVT = ValueVTs[Value]; 775 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 776 MVT RegisterVT = RegVTs[Value]; 777 ISD::NodeType ExtendKind = 778 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 779 780 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 781 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 782 Part += NumParts; 783 } 784 785 // Copy the parts into the registers. 786 SmallVector<SDValue, 8> Chains(NumRegs); 787 for (unsigned i = 0; i != NumRegs; ++i) { 788 SDValue Part; 789 if (!Flag) { 790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 791 } else { 792 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 793 *Flag = Part.getValue(1); 794 } 795 796 Chains[i] = Part.getValue(0); 797 } 798 799 if (NumRegs == 1 || Flag) 800 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 801 // flagged to it. That is the CopyToReg nodes and the user are considered 802 // a single scheduling unit. If we create a TokenFactor and return it as 803 // chain, then the TokenFactor is both a predecessor (operand) of the 804 // user as well as a successor (the TF operands are flagged to the user). 805 // c1, f1 = CopyToReg 806 // c2, f2 = CopyToReg 807 // c3 = TokenFactor c1, c2 808 // ... 809 // = op c3, ..., f2 810 Chain = Chains[NumRegs-1]; 811 else 812 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 813 } 814 815 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 816 /// operand list. This adds the code marker and includes the number of 817 /// values added into it. 818 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 819 unsigned MatchingIdx, 820 SelectionDAG &DAG, 821 std::vector<SDValue> &Ops) const { 822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 823 824 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 825 if (HasMatching) 826 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 827 else if (!Regs.empty() && 828 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 829 // Put the register class of the virtual registers in the flag word. That 830 // way, later passes can recompute register class constraints for inline 831 // assembly as well as normal instructions. 832 // Don't do this for tied operands that can use the regclass information 833 // from the def. 834 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 835 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 836 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 837 } 838 839 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 840 Ops.push_back(Res); 841 842 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 843 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 844 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 845 MVT RegisterVT = RegVTs[Value]; 846 for (unsigned i = 0; i != NumRegs; ++i) { 847 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 848 unsigned TheReg = Regs[Reg++]; 849 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 850 851 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 852 // If we clobbered the stack pointer, MFI should know about it. 853 assert(DAG.getMachineFunction().getFrameInfo()-> 854 hasInlineAsmWithSPAdjust()); 855 } 856 } 857 } 858 } 859 860 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 861 const TargetLibraryInfo *li) { 862 AA = &aa; 863 GFI = gfi; 864 LibInfo = li; 865 DL = DAG.getTarget().getDataLayout(); 866 Context = DAG.getContext(); 867 LPadToCallSiteMap.clear(); 868 } 869 870 /// clear - Clear out the current SelectionDAG and the associated 871 /// state and prepare this SelectionDAGBuilder object to be used 872 /// for a new block. This doesn't clear out information about 873 /// additional blocks that are needed to complete switch lowering 874 /// or PHI node updating; that information is cleared out as it is 875 /// consumed. 876 void SelectionDAGBuilder::clear() { 877 NodeMap.clear(); 878 UnusedArgNodeMap.clear(); 879 PendingLoads.clear(); 880 PendingExports.clear(); 881 CurInst = nullptr; 882 HasTailCall = false; 883 SDNodeOrder = LowestSDNodeOrder; 884 } 885 886 /// clearDanglingDebugInfo - Clear the dangling debug information 887 /// map. This function is separated from the clear so that debug 888 /// information that is dangling in a basic block can be properly 889 /// resolved in a different basic block. This allows the 890 /// SelectionDAG to resolve dangling debug information attached 891 /// to PHI nodes. 892 void SelectionDAGBuilder::clearDanglingDebugInfo() { 893 DanglingDebugInfoMap.clear(); 894 } 895 896 /// getRoot - Return the current virtual root of the Selection DAG, 897 /// flushing any PendingLoad items. This must be done before emitting 898 /// a store or any other node that may need to be ordered after any 899 /// prior load instructions. 900 /// 901 SDValue SelectionDAGBuilder::getRoot() { 902 if (PendingLoads.empty()) 903 return DAG.getRoot(); 904 905 if (PendingLoads.size() == 1) { 906 SDValue Root = PendingLoads[0]; 907 DAG.setRoot(Root); 908 PendingLoads.clear(); 909 return Root; 910 } 911 912 // Otherwise, we have to make a token factor node. 913 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 914 &PendingLoads[0], PendingLoads.size()); 915 PendingLoads.clear(); 916 DAG.setRoot(Root); 917 return Root; 918 } 919 920 /// getControlRoot - Similar to getRoot, but instead of flushing all the 921 /// PendingLoad items, flush all the PendingExports items. It is necessary 922 /// to do this before emitting a terminator instruction. 923 /// 924 SDValue SelectionDAGBuilder::getControlRoot() { 925 SDValue Root = DAG.getRoot(); 926 927 if (PendingExports.empty()) 928 return Root; 929 930 // Turn all of the CopyToReg chains into one factored node. 931 if (Root.getOpcode() != ISD::EntryToken) { 932 unsigned i = 0, e = PendingExports.size(); 933 for (; i != e; ++i) { 934 assert(PendingExports[i].getNode()->getNumOperands() > 1); 935 if (PendingExports[i].getNode()->getOperand(0) == Root) 936 break; // Don't add the root if we already indirectly depend on it. 937 } 938 939 if (i == e) 940 PendingExports.push_back(Root); 941 } 942 943 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 944 &PendingExports[0], 945 PendingExports.size()); 946 PendingExports.clear(); 947 DAG.setRoot(Root); 948 return Root; 949 } 950 951 void SelectionDAGBuilder::visit(const Instruction &I) { 952 // Set up outgoing PHI node register values before emitting the terminator. 953 if (isa<TerminatorInst>(&I)) 954 HandlePHINodesInSuccessorBlocks(I.getParent()); 955 956 ++SDNodeOrder; 957 958 CurInst = &I; 959 960 visit(I.getOpcode(), I); 961 962 if (!isa<TerminatorInst>(&I) && !HasTailCall) 963 CopyToExportRegsIfNeeded(&I); 964 965 CurInst = nullptr; 966 } 967 968 void SelectionDAGBuilder::visitPHI(const PHINode &) { 969 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 970 } 971 972 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 973 // Note: this doesn't use InstVisitor, because it has to work with 974 // ConstantExpr's in addition to instructions. 975 switch (Opcode) { 976 default: llvm_unreachable("Unknown instruction type encountered!"); 977 // Build the switch statement using the Instruction.def file. 978 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 979 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 980 #include "llvm/IR/Instruction.def" 981 } 982 } 983 984 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 985 // generate the debug data structures now that we've seen its definition. 986 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 987 SDValue Val) { 988 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 989 if (DDI.getDI()) { 990 const DbgValueInst *DI = DDI.getDI(); 991 DebugLoc dl = DDI.getdl(); 992 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 993 MDNode *Variable = DI->getVariable(); 994 uint64_t Offset = DI->getOffset(); 995 SDDbgValue *SDV; 996 if (Val.getNode()) { 997 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 998 SDV = DAG.getDbgValue(Variable, Val.getNode(), 999 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 1000 DAG.AddDbgValue(SDV, Val.getNode(), false); 1001 } 1002 } else 1003 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1004 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1005 } 1006 } 1007 1008 /// getValue - Return an SDValue for the given Value. 1009 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. It's important 1011 // to do this first, so that we don't create a CopyFromReg if we already 1012 // have a regular SDValue. 1013 SDValue &N = NodeMap[V]; 1014 if (N.getNode()) return N; 1015 1016 // If there's a virtual register allocated and initialized for this 1017 // value, use it. 1018 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1019 if (It != FuncInfo.ValueMap.end()) { 1020 unsigned InReg = It->second; 1021 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1022 InReg, V->getType()); 1023 SDValue Chain = DAG.getEntryNode(); 1024 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1025 resolveDanglingDebugInfo(V, N); 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getNonRegisterValue - Return an SDValue for the given Value, but 1037 /// don't look in FuncInfo.ValueMap for a virtual register. 1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. 1040 SDValue &N = NodeMap[V]; 1041 if (N.getNode()) return N; 1042 1043 // Otherwise create a new SDValue and remember it. 1044 SDValue Val = getValueImpl(V); 1045 NodeMap[V] = Val; 1046 resolveDanglingDebugInfo(V, Val); 1047 return Val; 1048 } 1049 1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1051 /// Create an SDValue for the given value. 1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1053 const TargetLowering *TLI = TM.getTargetLowering(); 1054 1055 if (const Constant *C = dyn_cast<Constant>(V)) { 1056 EVT VT = TLI->getValueType(V->getType(), true); 1057 1058 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1059 return DAG.getConstant(*CI, VT); 1060 1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1062 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1063 1064 if (isa<ConstantPointerNull>(C)) { 1065 unsigned AS = V->getType()->getPointerAddressSpace(); 1066 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1067 } 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(&Constants[0], Constants.size(), 1096 getCurSDLoc()); 1097 } 1098 1099 if (const ConstantDataSequential *CDS = 1100 dyn_cast<ConstantDataSequential>(C)) { 1101 SmallVector<SDValue, 4> Ops; 1102 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1103 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1104 // Add each leaf value from the operand to the Constants list 1105 // to form a flattened list of all the values. 1106 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1107 Ops.push_back(SDValue(Val, i)); 1108 } 1109 1110 if (isa<ArrayType>(CDS->getType())) 1111 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1112 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1113 VT, &Ops[0], Ops.size()); 1114 } 1115 1116 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1117 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1118 "Unknown struct or array constant!"); 1119 1120 SmallVector<EVT, 4> ValueVTs; 1121 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1122 unsigned NumElts = ValueVTs.size(); 1123 if (NumElts == 0) 1124 return SDValue(); // empty struct 1125 SmallVector<SDValue, 4> Constants(NumElts); 1126 for (unsigned i = 0; i != NumElts; ++i) { 1127 EVT EltVT = ValueVTs[i]; 1128 if (isa<UndefValue>(C)) 1129 Constants[i] = DAG.getUNDEF(EltVT); 1130 else if (EltVT.isFloatingPoint()) 1131 Constants[i] = DAG.getConstantFP(0, EltVT); 1132 else 1133 Constants[i] = DAG.getConstant(0, EltVT); 1134 } 1135 1136 return DAG.getMergeValues(&Constants[0], NumElts, 1137 getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1166 VT, &Ops[0], Ops.size()); 1167 } 1168 1169 // If this is a static alloca, generate it as the frameindex instead of 1170 // computation. 1171 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1172 DenseMap<const AllocaInst*, int>::iterator SI = 1173 FuncInfo.StaticAllocaMap.find(AI); 1174 if (SI != FuncInfo.StaticAllocaMap.end()) 1175 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1176 } 1177 1178 // If this is an instruction which fast-isel has deferred, select it now. 1179 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1180 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1181 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1182 SDValue Chain = DAG.getEntryNode(); 1183 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1184 } 1185 1186 llvm_unreachable("Can't get register for value!"); 1187 } 1188 1189 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1190 const TargetLowering *TLI = TM.getTargetLowering(); 1191 SDValue Chain = getControlRoot(); 1192 SmallVector<ISD::OutputArg, 8> Outs; 1193 SmallVector<SDValue, 8> OutVals; 1194 1195 if (!FuncInfo.CanLowerReturn) { 1196 unsigned DemoteReg = FuncInfo.DemoteRegister; 1197 const Function *F = I.getParent()->getParent(); 1198 1199 // Emit a store of the return value through the virtual register. 1200 // Leave Outs empty so that LowerReturn won't try to load return 1201 // registers the usual way. 1202 SmallVector<EVT, 1> PtrValueVTs; 1203 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1204 PtrValueVTs); 1205 1206 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1207 SDValue RetOp = getValue(I.getOperand(0)); 1208 1209 SmallVector<EVT, 4> ValueVTs; 1210 SmallVector<uint64_t, 4> Offsets; 1211 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1212 unsigned NumValues = ValueVTs.size(); 1213 1214 SmallVector<SDValue, 4> Chains(NumValues); 1215 for (unsigned i = 0; i != NumValues; ++i) { 1216 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1217 RetPtr.getValueType(), RetPtr, 1218 DAG.getIntPtrConstant(Offsets[i])); 1219 Chains[i] = 1220 DAG.getStore(Chain, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1222 // FIXME: better loc info would be nice. 1223 Add, MachinePointerInfo(), false, false, 0); 1224 } 1225 1226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1227 MVT::Other, &Chains[0], NumValues); 1228 } else if (I.getNumOperands() != 0) { 1229 SmallVector<EVT, 4> ValueVTs; 1230 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1231 unsigned NumValues = ValueVTs.size(); 1232 if (NumValues) { 1233 SDValue RetOp = getValue(I.getOperand(0)); 1234 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1235 EVT VT = ValueVTs[j]; 1236 1237 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1238 1239 const Function *F = I.getParent()->getParent(); 1240 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1241 Attribute::SExt)) 1242 ExtendKind = ISD::SIGN_EXTEND; 1243 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::ZExt)) 1245 ExtendKind = ISD::ZERO_EXTEND; 1246 1247 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1248 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1249 1250 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1251 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1252 SmallVector<SDValue, 4> Parts(NumParts); 1253 getCopyToParts(DAG, getCurSDLoc(), 1254 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1255 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1256 1257 // 'inreg' on function refers to return value 1258 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1259 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1260 Attribute::InReg)) 1261 Flags.setInReg(); 1262 1263 // Propagate extension type if any 1264 if (ExtendKind == ISD::SIGN_EXTEND) 1265 Flags.setSExt(); 1266 else if (ExtendKind == ISD::ZERO_EXTEND) 1267 Flags.setZExt(); 1268 1269 for (unsigned i = 0; i < NumParts; ++i) { 1270 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1271 VT, /*isfixed=*/true, 0, 0)); 1272 OutVals.push_back(Parts[i]); 1273 } 1274 } 1275 } 1276 } 1277 1278 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1279 CallingConv::ID CallConv = 1280 DAG.getMachineFunction().getFunction()->getCallingConv(); 1281 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1282 Outs, OutVals, getCurSDLoc(), 1283 DAG); 1284 1285 // Verify that the target's LowerReturn behaved as expected. 1286 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1287 "LowerReturn didn't return a valid chain!"); 1288 1289 // Update the DAG with the new chain value resulting from return lowering. 1290 DAG.setRoot(Chain); 1291 } 1292 1293 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1294 /// created for it, emit nodes to copy the value into the virtual 1295 /// registers. 1296 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1297 // Skip empty types 1298 if (V->getType()->isEmptyTy()) 1299 return; 1300 1301 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1302 if (VMI != FuncInfo.ValueMap.end()) { 1303 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1304 CopyValueToVirtualRegister(V, VMI->second); 1305 } 1306 } 1307 1308 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1309 /// the current basic block, add it to ValueMap now so that we'll get a 1310 /// CopyTo/FromReg. 1311 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1312 // No need to export constants. 1313 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1314 1315 // Already exported? 1316 if (FuncInfo.isExportedInst(V)) return; 1317 1318 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1319 CopyValueToVirtualRegister(V, Reg); 1320 } 1321 1322 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1323 const BasicBlock *FromBB) { 1324 // The operands of the setcc have to be in this block. We don't know 1325 // how to export them from some other block. 1326 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1327 // Can export from current BB. 1328 if (VI->getParent() == FromBB) 1329 return true; 1330 1331 // Is already exported, noop. 1332 return FuncInfo.isExportedInst(V); 1333 } 1334 1335 // If this is an argument, we can export it if the BB is the entry block or 1336 // if it is already exported. 1337 if (isa<Argument>(V)) { 1338 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1339 return true; 1340 1341 // Otherwise, can only export this if it is already exported. 1342 return FuncInfo.isExportedInst(V); 1343 } 1344 1345 // Otherwise, constants can always be exported. 1346 return true; 1347 } 1348 1349 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1350 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1351 const MachineBasicBlock *Dst) const { 1352 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1353 if (!BPI) 1354 return 0; 1355 const BasicBlock *SrcBB = Src->getBasicBlock(); 1356 const BasicBlock *DstBB = Dst->getBasicBlock(); 1357 return BPI->getEdgeWeight(SrcBB, DstBB); 1358 } 1359 1360 void SelectionDAGBuilder:: 1361 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1362 uint32_t Weight /* = 0 */) { 1363 if (!Weight) 1364 Weight = getEdgeWeight(Src, Dst); 1365 Src->addSuccessor(Dst, Weight); 1366 } 1367 1368 1369 static bool InBlock(const Value *V, const BasicBlock *BB) { 1370 if (const Instruction *I = dyn_cast<Instruction>(V)) 1371 return I->getParent() == BB; 1372 return true; 1373 } 1374 1375 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1376 /// This function emits a branch and is used at the leaves of an OR or an 1377 /// AND operator tree. 1378 /// 1379 void 1380 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1381 MachineBasicBlock *TBB, 1382 MachineBasicBlock *FBB, 1383 MachineBasicBlock *CurBB, 1384 MachineBasicBlock *SwitchBB, 1385 uint32_t TWeight, 1386 uint32_t FWeight) { 1387 const BasicBlock *BB = CurBB->getBasicBlock(); 1388 1389 // If the leaf of the tree is a comparison, merge the condition into 1390 // the caseblock. 1391 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1392 // The operands of the cmp have to be in this block. We don't know 1393 // how to export them from some other block. If this is the first block 1394 // of the sequence, no exporting is needed. 1395 if (CurBB == SwitchBB || 1396 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1397 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1398 ISD::CondCode Condition; 1399 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1400 Condition = getICmpCondCode(IC->getPredicate()); 1401 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1402 Condition = getFCmpCondCode(FC->getPredicate()); 1403 if (TM.Options.NoNaNsFPMath) 1404 Condition = getFCmpCodeWithoutNaN(Condition); 1405 } else { 1406 Condition = ISD::SETEQ; // silence warning. 1407 llvm_unreachable("Unknown compare instruction"); 1408 } 1409 1410 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1411 TBB, FBB, CurBB, TWeight, FWeight); 1412 SwitchCases.push_back(CB); 1413 return; 1414 } 1415 } 1416 1417 // Create a CaseBlock record representing this branch. 1418 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1419 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1420 SwitchCases.push_back(CB); 1421 } 1422 1423 /// Scale down both weights to fit into uint32_t. 1424 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1425 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1426 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1427 NewTrue = NewTrue / Scale; 1428 NewFalse = NewFalse / Scale; 1429 } 1430 1431 /// FindMergedConditions - If Cond is an expression like 1432 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1433 MachineBasicBlock *TBB, 1434 MachineBasicBlock *FBB, 1435 MachineBasicBlock *CurBB, 1436 MachineBasicBlock *SwitchBB, 1437 unsigned Opc, uint32_t TWeight, 1438 uint32_t FWeight) { 1439 // If this node is not part of the or/and tree, emit it as a branch. 1440 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1441 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1442 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1443 BOp->getParent() != CurBB->getBasicBlock() || 1444 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1445 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1446 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1447 TWeight, FWeight); 1448 return; 1449 } 1450 1451 // Create TmpBB after CurBB. 1452 MachineFunction::iterator BBI = CurBB; 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1455 CurBB->getParent()->insert(++BBI, TmpBB); 1456 1457 if (Opc == Instruction::Or) { 1458 // Codegen X | Y as: 1459 // BB1: 1460 // jmp_if_X TBB 1461 // jmp TmpBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 1467 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1468 // The requirement is that 1469 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1470 // = TrueProb for orignal BB. 1471 // Assuming the orignal weights are A and B, one choice is to set BB1's 1472 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1473 // assumes that 1474 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1475 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1476 // TmpBB, but the math is more complicated. 1477 1478 uint64_t NewTrueWeight = TWeight; 1479 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1480 ScaleWeights(NewTrueWeight, NewFalseWeight); 1481 // Emit the LHS condition. 1482 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1483 NewTrueWeight, NewFalseWeight); 1484 1485 NewTrueWeight = TWeight; 1486 NewFalseWeight = 2 * (uint64_t)FWeight; 1487 ScaleWeights(NewTrueWeight, NewFalseWeight); 1488 // Emit the RHS condition into TmpBB. 1489 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1490 NewTrueWeight, NewFalseWeight); 1491 } else { 1492 assert(Opc == Instruction::And && "Unknown merge op!"); 1493 // Codegen X & Y as: 1494 // BB1: 1495 // jmp_if_X TmpBB 1496 // jmp FBB 1497 // TmpBB: 1498 // jmp_if_Y TBB 1499 // jmp FBB 1500 // 1501 // This requires creation of TmpBB after CurBB. 1502 1503 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1504 // The requirement is that 1505 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1506 // = FalseProb for orignal BB. 1507 // Assuming the orignal weights are A and B, one choice is to set BB1's 1508 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1509 // assumes that 1510 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1511 1512 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1513 uint64_t NewFalseWeight = FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = 2 * (uint64_t)TWeight; 1520 NewFalseWeight = FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } 1526 } 1527 1528 /// If the set of cases should be emitted as a series of branches, return true. 1529 /// If we should emit this as a bunch of and/or'd together conditions, return 1530 /// false. 1531 bool 1532 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1533 if (Cases.size() != 2) return true; 1534 1535 // If this is two comparisons of the same values or'd or and'd together, they 1536 // will get folded into a single comparison, so don't emit two blocks. 1537 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1538 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1539 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1540 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1541 return false; 1542 } 1543 1544 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1545 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1546 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1547 Cases[0].CC == Cases[1].CC && 1548 isa<Constant>(Cases[0].CmpRHS) && 1549 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1550 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1551 return false; 1552 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1553 return false; 1554 } 1555 1556 return true; 1557 } 1558 1559 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1560 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1561 1562 // Update machine-CFG edges. 1563 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1564 1565 // Figure out which block is immediately after the current one. 1566 MachineBasicBlock *NextBlock = nullptr; 1567 MachineFunction::iterator BBI = BrMBB; 1568 if (++BBI != FuncInfo.MF->end()) 1569 NextBlock = BBI; 1570 1571 if (I.isUnconditional()) { 1572 // Update machine-CFG edges. 1573 BrMBB->addSuccessor(Succ0MBB); 1574 1575 // If this is not a fall-through branch or optimizations are switched off, 1576 // emit the branch. 1577 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1578 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1579 MVT::Other, getControlRoot(), 1580 DAG.getBasicBlock(Succ0MBB))); 1581 1582 return; 1583 } 1584 1585 // If this condition is one of the special cases we handle, do special stuff 1586 // now. 1587 const Value *CondVal = I.getCondition(); 1588 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1589 1590 // If this is a series of conditions that are or'd or and'd together, emit 1591 // this as a sequence of branches instead of setcc's with and/or operations. 1592 // As long as jumps are not expensive, this should improve performance. 1593 // For example, instead of something like: 1594 // cmp A, B 1595 // C = seteq 1596 // cmp D, E 1597 // F = setle 1598 // or C, F 1599 // jnz foo 1600 // Emit: 1601 // cmp A, B 1602 // je foo 1603 // cmp D, E 1604 // jle foo 1605 // 1606 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1607 if (!TM.getTargetLowering()->isJumpExpensive() && 1608 BOp->hasOneUse() && 1609 (BOp->getOpcode() == Instruction::And || 1610 BOp->getOpcode() == Instruction::Or)) { 1611 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1612 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1613 getEdgeWeight(BrMBB, Succ1MBB)); 1614 // If the compares in later blocks need to use values not currently 1615 // exported from this block, export them now. This block should always 1616 // be the first entry. 1617 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1618 1619 // Allow some cases to be rejected. 1620 if (ShouldEmitAsBranches(SwitchCases)) { 1621 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1622 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1623 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1624 } 1625 1626 // Emit the branch for this block. 1627 visitSwitchCase(SwitchCases[0], BrMBB); 1628 SwitchCases.erase(SwitchCases.begin()); 1629 return; 1630 } 1631 1632 // Okay, we decided not to do this, remove any inserted MBB's and clear 1633 // SwitchCases. 1634 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1635 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1636 1637 SwitchCases.clear(); 1638 } 1639 } 1640 1641 // Create a CaseBlock record representing this branch. 1642 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1643 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1644 1645 // Use visitSwitchCase to actually insert the fast branch sequence for this 1646 // cond branch. 1647 visitSwitchCase(CB, BrMBB); 1648 } 1649 1650 /// visitSwitchCase - Emits the necessary code to represent a single node in 1651 /// the binary search tree resulting from lowering a switch instruction. 1652 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1653 MachineBasicBlock *SwitchBB) { 1654 SDValue Cond; 1655 SDValue CondLHS = getValue(CB.CmpLHS); 1656 SDLoc dl = getCurSDLoc(); 1657 1658 // Build the setcc now. 1659 if (!CB.CmpMHS) { 1660 // Fold "(X == true)" to X and "(X == false)" to !X to 1661 // handle common cases produced by branch lowering. 1662 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) 1664 Cond = CondLHS; 1665 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1666 CB.CC == ISD::SETEQ) { 1667 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1668 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1669 } else 1670 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1671 } else { 1672 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1673 1674 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1675 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1676 1677 SDValue CmpOp = getValue(CB.CmpMHS); 1678 EVT VT = CmpOp.getValueType(); 1679 1680 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1681 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1682 ISD::SETLE); 1683 } else { 1684 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1685 VT, CmpOp, DAG.getConstant(Low, VT)); 1686 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1687 DAG.getConstant(High-Low, VT), ISD::SETULE); 1688 } 1689 } 1690 1691 // Update successor info 1692 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1693 // TrueBB and FalseBB are always different unless the incoming IR is 1694 // degenerate. This only happens when running llc on weird IR. 1695 if (CB.TrueBB != CB.FalseBB) 1696 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1697 1698 // Set NextBlock to be the MBB immediately after the current one, if any. 1699 // This is used to avoid emitting unnecessary branches to the next block. 1700 MachineBasicBlock *NextBlock = nullptr; 1701 MachineFunction::iterator BBI = SwitchBB; 1702 if (++BBI != FuncInfo.MF->end()) 1703 NextBlock = BBI; 1704 1705 // If the lhs block is the next block, invert the condition so that we can 1706 // fall through to the lhs instead of the rhs block. 1707 if (CB.TrueBB == NextBlock) { 1708 std::swap(CB.TrueBB, CB.FalseBB); 1709 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1710 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1711 } 1712 1713 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1714 MVT::Other, getControlRoot(), Cond, 1715 DAG.getBasicBlock(CB.TrueBB)); 1716 1717 // Insert the false branch. Do this even if it's a fall through branch, 1718 // this makes it easier to do DAG optimizations which require inverting 1719 // the branch condition. 1720 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1721 DAG.getBasicBlock(CB.FalseBB)); 1722 1723 DAG.setRoot(BrCond); 1724 } 1725 1726 /// visitJumpTable - Emit JumpTable node in the current MBB 1727 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1728 // Emit the code for the jump table 1729 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1730 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1731 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1732 JT.Reg, PTy); 1733 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1734 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1735 MVT::Other, Index.getValue(1), 1736 Table, Index); 1737 DAG.setRoot(BrJumpTable); 1738 } 1739 1740 /// visitJumpTableHeader - This function emits necessary code to produce index 1741 /// in the JumpTable from switch case. 1742 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1743 JumpTableHeader &JTH, 1744 MachineBasicBlock *SwitchBB) { 1745 // Subtract the lowest switch case value from the value being switched on and 1746 // conditional branch to default mbb if the result is greater than the 1747 // difference between smallest and largest cases. 1748 SDValue SwitchOp = getValue(JTH.SValue); 1749 EVT VT = SwitchOp.getValueType(); 1750 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1751 DAG.getConstant(JTH.First, VT)); 1752 1753 // The SDNode we just created, which holds the value being switched on minus 1754 // the smallest case value, needs to be copied to a virtual register so it 1755 // can be used as an index into the jump table in a subsequent basic block. 1756 // This value may be smaller or larger than the target's pointer type, and 1757 // therefore require extension or truncating. 1758 const TargetLowering *TLI = TM.getTargetLowering(); 1759 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1760 1761 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1762 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1763 JumpTableReg, SwitchOp); 1764 JT.Reg = JumpTableReg; 1765 1766 // Emit the range check for the jump table, and branch to the default block 1767 // for the switch statement if the value being switched on exceeds the largest 1768 // case in the switch. 1769 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1770 TLI->getSetCCResultType(*DAG.getContext(), 1771 Sub.getValueType()), 1772 Sub, 1773 DAG.getConstant(JTH.Last - JTH.First,VT), 1774 ISD::SETUGT); 1775 1776 // Set NextBlock to be the MBB immediately after the current one, if any. 1777 // This is used to avoid emitting unnecessary branches to the next block. 1778 MachineBasicBlock *NextBlock = nullptr; 1779 MachineFunction::iterator BBI = SwitchBB; 1780 1781 if (++BBI != FuncInfo.MF->end()) 1782 NextBlock = BBI; 1783 1784 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1785 MVT::Other, CopyTo, CMP, 1786 DAG.getBasicBlock(JT.Default)); 1787 1788 if (JT.MBB != NextBlock) 1789 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1790 DAG.getBasicBlock(JT.MBB)); 1791 1792 DAG.setRoot(BrCond); 1793 } 1794 1795 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1796 /// tail spliced into a stack protector check success bb. 1797 /// 1798 /// For a high level explanation of how this fits into the stack protector 1799 /// generation see the comment on the declaration of class 1800 /// StackProtectorDescriptor. 1801 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1802 MachineBasicBlock *ParentBB) { 1803 1804 // First create the loads to the guard/stack slot for the comparison. 1805 const TargetLowering *TLI = TM.getTargetLowering(); 1806 EVT PtrTy = TLI->getPointerTy(); 1807 1808 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1809 int FI = MFI->getStackProtectorIndex(); 1810 1811 const Value *IRGuard = SPD.getGuard(); 1812 SDValue GuardPtr = getValue(IRGuard); 1813 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1814 1815 unsigned Align = 1816 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1817 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1818 GuardPtr, MachinePointerInfo(IRGuard, 0), 1819 true, false, false, Align); 1820 1821 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1822 StackSlotPtr, 1823 MachinePointerInfo::getFixedStack(FI), 1824 true, false, false, Align); 1825 1826 // Perform the comparison via a subtract/getsetcc. 1827 EVT VT = Guard.getValueType(); 1828 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1829 1830 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1831 TLI->getSetCCResultType(*DAG.getContext(), 1832 Sub.getValueType()), 1833 Sub, DAG.getConstant(0, VT), 1834 ISD::SETNE); 1835 1836 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1837 // branch to failure MBB. 1838 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1839 MVT::Other, StackSlot.getOperand(0), 1840 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1841 // Otherwise branch to success MBB. 1842 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1843 MVT::Other, BrCond, 1844 DAG.getBasicBlock(SPD.getSuccessMBB())); 1845 1846 DAG.setRoot(Br); 1847 } 1848 1849 /// Codegen the failure basic block for a stack protector check. 1850 /// 1851 /// A failure stack protector machine basic block consists simply of a call to 1852 /// __stack_chk_fail(). 1853 /// 1854 /// For a high level explanation of how this fits into the stack protector 1855 /// generation see the comment on the declaration of class 1856 /// StackProtectorDescriptor. 1857 void 1858 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1859 const TargetLowering *TLI = TM.getTargetLowering(); 1860 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1861 MVT::isVoid, nullptr, 0, false, 1862 getCurSDLoc(), false, false).second; 1863 DAG.setRoot(Chain); 1864 } 1865 1866 /// visitBitTestHeader - This function emits necessary code to produce value 1867 /// suitable for "bit tests" 1868 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1869 MachineBasicBlock *SwitchBB) { 1870 // Subtract the minimum value 1871 SDValue SwitchOp = getValue(B.SValue); 1872 EVT VT = SwitchOp.getValueType(); 1873 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1874 DAG.getConstant(B.First, VT)); 1875 1876 // Check range 1877 const TargetLowering *TLI = TM.getTargetLowering(); 1878 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1879 TLI->getSetCCResultType(*DAG.getContext(), 1880 Sub.getValueType()), 1881 Sub, DAG.getConstant(B.Range, VT), 1882 ISD::SETUGT); 1883 1884 // Determine the type of the test operands. 1885 bool UsePtrType = false; 1886 if (!TLI->isTypeLegal(VT)) 1887 UsePtrType = true; 1888 else { 1889 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1890 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1891 // Switch table case range are encoded into series of masks. 1892 // Just use pointer type, it's guaranteed to fit. 1893 UsePtrType = true; 1894 break; 1895 } 1896 } 1897 if (UsePtrType) { 1898 VT = TLI->getPointerTy(); 1899 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1900 } 1901 1902 B.RegVT = VT.getSimpleVT(); 1903 B.Reg = FuncInfo.CreateReg(B.RegVT); 1904 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1905 B.Reg, Sub); 1906 1907 // Set NextBlock to be the MBB immediately after the current one, if any. 1908 // This is used to avoid emitting unnecessary branches to the next block. 1909 MachineBasicBlock *NextBlock = nullptr; 1910 MachineFunction::iterator BBI = SwitchBB; 1911 if (++BBI != FuncInfo.MF->end()) 1912 NextBlock = BBI; 1913 1914 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1915 1916 addSuccessorWithWeight(SwitchBB, B.Default); 1917 addSuccessorWithWeight(SwitchBB, MBB); 1918 1919 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1920 MVT::Other, CopyTo, RangeCmp, 1921 DAG.getBasicBlock(B.Default)); 1922 1923 if (MBB != NextBlock) 1924 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1925 DAG.getBasicBlock(MBB)); 1926 1927 DAG.setRoot(BrRange); 1928 } 1929 1930 /// visitBitTestCase - this function produces one "bit test" 1931 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1932 MachineBasicBlock* NextMBB, 1933 uint32_t BranchWeightToNext, 1934 unsigned Reg, 1935 BitTestCase &B, 1936 MachineBasicBlock *SwitchBB) { 1937 MVT VT = BB.RegVT; 1938 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1939 Reg, VT); 1940 SDValue Cmp; 1941 unsigned PopCount = CountPopulation_64(B.Mask); 1942 const TargetLowering *TLI = TM.getTargetLowering(); 1943 if (PopCount == 1) { 1944 // Testing for a single bit; just compare the shift count with what it 1945 // would need to be to shift a 1 bit in that position. 1946 Cmp = DAG.getSetCC(getCurSDLoc(), 1947 TLI->getSetCCResultType(*DAG.getContext(), VT), 1948 ShiftOp, 1949 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1950 ISD::SETEQ); 1951 } else if (PopCount == BB.Range) { 1952 // There is only one zero bit in the range, test for it directly. 1953 Cmp = DAG.getSetCC(getCurSDLoc(), 1954 TLI->getSetCCResultType(*DAG.getContext(), VT), 1955 ShiftOp, 1956 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1957 ISD::SETNE); 1958 } else { 1959 // Make desired shift 1960 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1961 DAG.getConstant(1, VT), ShiftOp); 1962 1963 // Emit bit tests and jumps 1964 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1965 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1966 Cmp = DAG.getSetCC(getCurSDLoc(), 1967 TLI->getSetCCResultType(*DAG.getContext(), VT), 1968 AndOp, DAG.getConstant(0, VT), 1969 ISD::SETNE); 1970 } 1971 1972 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1973 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1974 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1975 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1976 1977 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1978 MVT::Other, getControlRoot(), 1979 Cmp, DAG.getBasicBlock(B.TargetBB)); 1980 1981 // Set NextBlock to be the MBB immediately after the current one, if any. 1982 // This is used to avoid emitting unnecessary branches to the next block. 1983 MachineBasicBlock *NextBlock = nullptr; 1984 MachineFunction::iterator BBI = SwitchBB; 1985 if (++BBI != FuncInfo.MF->end()) 1986 NextBlock = BBI; 1987 1988 if (NextMBB != NextBlock) 1989 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1990 DAG.getBasicBlock(NextMBB)); 1991 1992 DAG.setRoot(BrAnd); 1993 } 1994 1995 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1996 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1997 1998 // Retrieve successors. 1999 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2000 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2001 2002 const Value *Callee(I.getCalledValue()); 2003 const Function *Fn = dyn_cast<Function>(Callee); 2004 if (isa<InlineAsm>(Callee)) 2005 visitInlineAsm(&I); 2006 else if (Fn && Fn->isIntrinsic()) { 2007 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2008 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2009 } else 2010 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2011 2012 // If the value of the invoke is used outside of its defining block, make it 2013 // available as a virtual register. 2014 CopyToExportRegsIfNeeded(&I); 2015 2016 // Update successor info 2017 addSuccessorWithWeight(InvokeMBB, Return); 2018 addSuccessorWithWeight(InvokeMBB, LandingPad); 2019 2020 // Drop into normal successor. 2021 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2022 MVT::Other, getControlRoot(), 2023 DAG.getBasicBlock(Return))); 2024 } 2025 2026 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2027 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2028 } 2029 2030 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2031 assert(FuncInfo.MBB->isLandingPad() && 2032 "Call to landingpad not in landing pad!"); 2033 2034 MachineBasicBlock *MBB = FuncInfo.MBB; 2035 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2036 AddLandingPadInfo(LP, MMI, MBB); 2037 2038 // If there aren't registers to copy the values into (e.g., during SjLj 2039 // exceptions), then don't bother to create these DAG nodes. 2040 const TargetLowering *TLI = TM.getTargetLowering(); 2041 if (TLI->getExceptionPointerRegister() == 0 && 2042 TLI->getExceptionSelectorRegister() == 0) 2043 return; 2044 2045 SmallVector<EVT, 2> ValueVTs; 2046 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2047 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2048 2049 // Get the two live-in registers as SDValues. The physregs have already been 2050 // copied into virtual registers. 2051 SDValue Ops[2]; 2052 Ops[0] = DAG.getZExtOrTrunc( 2053 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2054 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2055 getCurSDLoc(), ValueVTs[0]); 2056 Ops[1] = DAG.getZExtOrTrunc( 2057 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2058 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2059 getCurSDLoc(), ValueVTs[1]); 2060 2061 // Merge into one. 2062 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2063 DAG.getVTList(ValueVTs), 2064 &Ops[0], 2); 2065 setValue(&LP, Res); 2066 } 2067 2068 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2069 /// small case ranges). 2070 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2071 CaseRecVector& WorkList, 2072 const Value* SV, 2073 MachineBasicBlock *Default, 2074 MachineBasicBlock *SwitchBB) { 2075 // Size is the number of Cases represented by this range. 2076 size_t Size = CR.Range.second - CR.Range.first; 2077 if (Size > 3) 2078 return false; 2079 2080 // Get the MachineFunction which holds the current MBB. This is used when 2081 // inserting any additional MBBs necessary to represent the switch. 2082 MachineFunction *CurMF = FuncInfo.MF; 2083 2084 // Figure out which block is immediately after the current one. 2085 MachineBasicBlock *NextBlock = nullptr; 2086 MachineFunction::iterator BBI = CR.CaseBB; 2087 2088 if (++BBI != FuncInfo.MF->end()) 2089 NextBlock = BBI; 2090 2091 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2092 // If any two of the cases has the same destination, and if one value 2093 // is the same as the other, but has one bit unset that the other has set, 2094 // use bit manipulation to do two compares at once. For example: 2095 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2096 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2097 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2098 if (Size == 2 && CR.CaseBB == SwitchBB) { 2099 Case &Small = *CR.Range.first; 2100 Case &Big = *(CR.Range.second-1); 2101 2102 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2103 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2104 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2105 2106 // Check that there is only one bit different. 2107 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2108 (SmallValue | BigValue) == BigValue) { 2109 // Isolate the common bit. 2110 APInt CommonBit = BigValue & ~SmallValue; 2111 assert((SmallValue | CommonBit) == BigValue && 2112 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2113 2114 SDValue CondLHS = getValue(SV); 2115 EVT VT = CondLHS.getValueType(); 2116 SDLoc DL = getCurSDLoc(); 2117 2118 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2119 DAG.getConstant(CommonBit, VT)); 2120 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2121 Or, DAG.getConstant(BigValue, VT), 2122 ISD::SETEQ); 2123 2124 // Update successor info. 2125 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2126 addSuccessorWithWeight(SwitchBB, Small.BB, 2127 Small.ExtraWeight + Big.ExtraWeight); 2128 addSuccessorWithWeight(SwitchBB, Default, 2129 // The default destination is the first successor in IR. 2130 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2131 2132 // Insert the true branch. 2133 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2134 getControlRoot(), Cond, 2135 DAG.getBasicBlock(Small.BB)); 2136 2137 // Insert the false branch. 2138 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2139 DAG.getBasicBlock(Default)); 2140 2141 DAG.setRoot(BrCond); 2142 return true; 2143 } 2144 } 2145 } 2146 2147 // Order cases by weight so the most likely case will be checked first. 2148 uint32_t UnhandledWeights = 0; 2149 if (BPI) { 2150 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2151 uint32_t IWeight = I->ExtraWeight; 2152 UnhandledWeights += IWeight; 2153 for (CaseItr J = CR.Range.first; J < I; ++J) { 2154 uint32_t JWeight = J->ExtraWeight; 2155 if (IWeight > JWeight) 2156 std::swap(*I, *J); 2157 } 2158 } 2159 } 2160 // Rearrange the case blocks so that the last one falls through if possible. 2161 Case &BackCase = *(CR.Range.second-1); 2162 if (Size > 1 && 2163 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2164 // The last case block won't fall through into 'NextBlock' if we emit the 2165 // branches in this order. See if rearranging a case value would help. 2166 // We start at the bottom as it's the case with the least weight. 2167 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2168 if (I->BB == NextBlock) { 2169 std::swap(*I, BackCase); 2170 break; 2171 } 2172 } 2173 2174 // Create a CaseBlock record representing a conditional branch to 2175 // the Case's target mbb if the value being switched on SV is equal 2176 // to C. 2177 MachineBasicBlock *CurBlock = CR.CaseBB; 2178 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2179 MachineBasicBlock *FallThrough; 2180 if (I != E-1) { 2181 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2182 CurMF->insert(BBI, FallThrough); 2183 2184 // Put SV in a virtual register to make it available from the new blocks. 2185 ExportFromCurrentBlock(SV); 2186 } else { 2187 // If the last case doesn't match, go to the default block. 2188 FallThrough = Default; 2189 } 2190 2191 const Value *RHS, *LHS, *MHS; 2192 ISD::CondCode CC; 2193 if (I->High == I->Low) { 2194 // This is just small small case range :) containing exactly 1 case 2195 CC = ISD::SETEQ; 2196 LHS = SV; RHS = I->High; MHS = nullptr; 2197 } else { 2198 CC = ISD::SETLE; 2199 LHS = I->Low; MHS = SV; RHS = I->High; 2200 } 2201 2202 // The false weight should be sum of all un-handled cases. 2203 UnhandledWeights -= I->ExtraWeight; 2204 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2205 /* me */ CurBlock, 2206 /* trueweight */ I->ExtraWeight, 2207 /* falseweight */ UnhandledWeights); 2208 2209 // If emitting the first comparison, just call visitSwitchCase to emit the 2210 // code into the current block. Otherwise, push the CaseBlock onto the 2211 // vector to be later processed by SDISel, and insert the node's MBB 2212 // before the next MBB. 2213 if (CurBlock == SwitchBB) 2214 visitSwitchCase(CB, SwitchBB); 2215 else 2216 SwitchCases.push_back(CB); 2217 2218 CurBlock = FallThrough; 2219 } 2220 2221 return true; 2222 } 2223 2224 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2225 return TLI.supportJumpTables() && 2226 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2227 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2228 } 2229 2230 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2231 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2232 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2233 return (LastExt - FirstExt + 1ULL); 2234 } 2235 2236 /// handleJTSwitchCase - Emit jumptable for current switch case range 2237 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2238 CaseRecVector &WorkList, 2239 const Value *SV, 2240 MachineBasicBlock *Default, 2241 MachineBasicBlock *SwitchBB) { 2242 Case& FrontCase = *CR.Range.first; 2243 Case& BackCase = *(CR.Range.second-1); 2244 2245 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2246 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2247 2248 APInt TSize(First.getBitWidth(), 0); 2249 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2250 TSize += I->size(); 2251 2252 const TargetLowering *TLI = TM.getTargetLowering(); 2253 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2254 return false; 2255 2256 APInt Range = ComputeRange(First, Last); 2257 // The density is TSize / Range. Require at least 40%. 2258 // It should not be possible for IntTSize to saturate for sane code, but make 2259 // sure we handle Range saturation correctly. 2260 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2261 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2262 if (IntTSize * 10 < IntRange * 4) 2263 return false; 2264 2265 DEBUG(dbgs() << "Lowering jump table\n" 2266 << "First entry: " << First << ". Last entry: " << Last << '\n' 2267 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2268 2269 // Get the MachineFunction which holds the current MBB. This is used when 2270 // inserting any additional MBBs necessary to represent the switch. 2271 MachineFunction *CurMF = FuncInfo.MF; 2272 2273 // Figure out which block is immediately after the current one. 2274 MachineFunction::iterator BBI = CR.CaseBB; 2275 ++BBI; 2276 2277 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2278 2279 // Create a new basic block to hold the code for loading the address 2280 // of the jump table, and jumping to it. Update successor information; 2281 // we will either branch to the default case for the switch, or the jump 2282 // table. 2283 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2284 CurMF->insert(BBI, JumpTableBB); 2285 2286 addSuccessorWithWeight(CR.CaseBB, Default); 2287 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2288 2289 // Build a vector of destination BBs, corresponding to each target 2290 // of the jump table. If the value of the jump table slot corresponds to 2291 // a case statement, push the case's BB onto the vector, otherwise, push 2292 // the default BB. 2293 std::vector<MachineBasicBlock*> DestBBs; 2294 APInt TEI = First; 2295 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2296 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2297 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2298 2299 if (Low.sle(TEI) && TEI.sle(High)) { 2300 DestBBs.push_back(I->BB); 2301 if (TEI==High) 2302 ++I; 2303 } else { 2304 DestBBs.push_back(Default); 2305 } 2306 } 2307 2308 // Calculate weight for each unique destination in CR. 2309 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2310 if (FuncInfo.BPI) 2311 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2312 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2313 DestWeights.find(I->BB); 2314 if (Itr != DestWeights.end()) 2315 Itr->second += I->ExtraWeight; 2316 else 2317 DestWeights[I->BB] = I->ExtraWeight; 2318 } 2319 2320 // Update successor info. Add one edge to each unique successor. 2321 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2322 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2323 E = DestBBs.end(); I != E; ++I) { 2324 if (!SuccsHandled[(*I)->getNumber()]) { 2325 SuccsHandled[(*I)->getNumber()] = true; 2326 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2327 DestWeights.find(*I); 2328 addSuccessorWithWeight(JumpTableBB, *I, 2329 Itr != DestWeights.end() ? Itr->second : 0); 2330 } 2331 } 2332 2333 // Create a jump table index for this jump table. 2334 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2335 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2336 ->createJumpTableIndex(DestBBs); 2337 2338 // Set the jump table information so that we can codegen it as a second 2339 // MachineBasicBlock 2340 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2341 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2342 if (CR.CaseBB == SwitchBB) 2343 visitJumpTableHeader(JT, JTH, SwitchBB); 2344 2345 JTCases.push_back(JumpTableBlock(JTH, JT)); 2346 return true; 2347 } 2348 2349 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2350 /// 2 subtrees. 2351 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2352 CaseRecVector& WorkList, 2353 const Value* SV, 2354 MachineBasicBlock* Default, 2355 MachineBasicBlock* SwitchBB) { 2356 // Get the MachineFunction which holds the current MBB. This is used when 2357 // inserting any additional MBBs necessary to represent the switch. 2358 MachineFunction *CurMF = FuncInfo.MF; 2359 2360 // Figure out which block is immediately after the current one. 2361 MachineFunction::iterator BBI = CR.CaseBB; 2362 ++BBI; 2363 2364 Case& FrontCase = *CR.Range.first; 2365 Case& BackCase = *(CR.Range.second-1); 2366 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2367 2368 // Size is the number of Cases represented by this range. 2369 unsigned Size = CR.Range.second - CR.Range.first; 2370 2371 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2372 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2373 double FMetric = 0; 2374 CaseItr Pivot = CR.Range.first + Size/2; 2375 2376 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2377 // (heuristically) allow us to emit JumpTable's later. 2378 APInt TSize(First.getBitWidth(), 0); 2379 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2380 I!=E; ++I) 2381 TSize += I->size(); 2382 2383 APInt LSize = FrontCase.size(); 2384 APInt RSize = TSize-LSize; 2385 DEBUG(dbgs() << "Selecting best pivot: \n" 2386 << "First: " << First << ", Last: " << Last <<'\n' 2387 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2388 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2389 J!=E; ++I, ++J) { 2390 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2391 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2392 APInt Range = ComputeRange(LEnd, RBegin); 2393 assert((Range - 2ULL).isNonNegative() && 2394 "Invalid case distance"); 2395 // Use volatile double here to avoid excess precision issues on some hosts, 2396 // e.g. that use 80-bit X87 registers. 2397 volatile double LDensity = 2398 (double)LSize.roundToDouble() / 2399 (LEnd - First + 1ULL).roundToDouble(); 2400 volatile double RDensity = 2401 (double)RSize.roundToDouble() / 2402 (Last - RBegin + 1ULL).roundToDouble(); 2403 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2404 // Should always split in some non-trivial place 2405 DEBUG(dbgs() <<"=>Step\n" 2406 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2407 << "LDensity: " << LDensity 2408 << ", RDensity: " << RDensity << '\n' 2409 << "Metric: " << Metric << '\n'); 2410 if (FMetric < Metric) { 2411 Pivot = J; 2412 FMetric = Metric; 2413 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2414 } 2415 2416 LSize += J->size(); 2417 RSize -= J->size(); 2418 } 2419 2420 const TargetLowering *TLI = TM.getTargetLowering(); 2421 if (areJTsAllowed(*TLI)) { 2422 // If our case is dense we *really* should handle it earlier! 2423 assert((FMetric > 0) && "Should handle dense range earlier!"); 2424 } else { 2425 Pivot = CR.Range.first + Size/2; 2426 } 2427 2428 CaseRange LHSR(CR.Range.first, Pivot); 2429 CaseRange RHSR(Pivot, CR.Range.second); 2430 const Constant *C = Pivot->Low; 2431 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2432 2433 // We know that we branch to the LHS if the Value being switched on is 2434 // less than the Pivot value, C. We use this to optimize our binary 2435 // tree a bit, by recognizing that if SV is greater than or equal to the 2436 // LHS's Case Value, and that Case Value is exactly one less than the 2437 // Pivot's Value, then we can branch directly to the LHS's Target, 2438 // rather than creating a leaf node for it. 2439 if ((LHSR.second - LHSR.first) == 1 && 2440 LHSR.first->High == CR.GE && 2441 cast<ConstantInt>(C)->getValue() == 2442 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2443 TrueBB = LHSR.first->BB; 2444 } else { 2445 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2446 CurMF->insert(BBI, TrueBB); 2447 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2448 2449 // Put SV in a virtual register to make it available from the new blocks. 2450 ExportFromCurrentBlock(SV); 2451 } 2452 2453 // Similar to the optimization above, if the Value being switched on is 2454 // known to be less than the Constant CR.LT, and the current Case Value 2455 // is CR.LT - 1, then we can branch directly to the target block for 2456 // the current Case Value, rather than emitting a RHS leaf node for it. 2457 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2458 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2459 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2460 FalseBB = RHSR.first->BB; 2461 } else { 2462 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2463 CurMF->insert(BBI, FalseBB); 2464 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2465 2466 // Put SV in a virtual register to make it available from the new blocks. 2467 ExportFromCurrentBlock(SV); 2468 } 2469 2470 // Create a CaseBlock record representing a conditional branch to 2471 // the LHS node if the value being switched on SV is less than C. 2472 // Otherwise, branch to LHS. 2473 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2474 2475 if (CR.CaseBB == SwitchBB) 2476 visitSwitchCase(CB, SwitchBB); 2477 else 2478 SwitchCases.push_back(CB); 2479 2480 return true; 2481 } 2482 2483 /// handleBitTestsSwitchCase - if current case range has few destination and 2484 /// range span less, than machine word bitwidth, encode case range into series 2485 /// of masks and emit bit tests with these masks. 2486 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2487 CaseRecVector& WorkList, 2488 const Value* SV, 2489 MachineBasicBlock* Default, 2490 MachineBasicBlock* SwitchBB) { 2491 const TargetLowering *TLI = TM.getTargetLowering(); 2492 EVT PTy = TLI->getPointerTy(); 2493 unsigned IntPtrBits = PTy.getSizeInBits(); 2494 2495 Case& FrontCase = *CR.Range.first; 2496 Case& BackCase = *(CR.Range.second-1); 2497 2498 // Get the MachineFunction which holds the current MBB. This is used when 2499 // inserting any additional MBBs necessary to represent the switch. 2500 MachineFunction *CurMF = FuncInfo.MF; 2501 2502 // If target does not have legal shift left, do not emit bit tests at all. 2503 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2504 return false; 2505 2506 size_t numCmps = 0; 2507 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2508 I!=E; ++I) { 2509 // Single case counts one, case range - two. 2510 numCmps += (I->Low == I->High ? 1 : 2); 2511 } 2512 2513 // Count unique destinations 2514 SmallSet<MachineBasicBlock*, 4> Dests; 2515 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2516 Dests.insert(I->BB); 2517 if (Dests.size() > 3) 2518 // Don't bother the code below, if there are too much unique destinations 2519 return false; 2520 } 2521 DEBUG(dbgs() << "Total number of unique destinations: " 2522 << Dests.size() << '\n' 2523 << "Total number of comparisons: " << numCmps << '\n'); 2524 2525 // Compute span of values. 2526 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2527 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2528 APInt cmpRange = maxValue - minValue; 2529 2530 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2531 << "Low bound: " << minValue << '\n' 2532 << "High bound: " << maxValue << '\n'); 2533 2534 if (cmpRange.uge(IntPtrBits) || 2535 (!(Dests.size() == 1 && numCmps >= 3) && 2536 !(Dests.size() == 2 && numCmps >= 5) && 2537 !(Dests.size() >= 3 && numCmps >= 6))) 2538 return false; 2539 2540 DEBUG(dbgs() << "Emitting bit tests\n"); 2541 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2542 2543 // Optimize the case where all the case values fit in a 2544 // word without having to subtract minValue. In this case, 2545 // we can optimize away the subtraction. 2546 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2547 cmpRange = maxValue; 2548 } else { 2549 lowBound = minValue; 2550 } 2551 2552 CaseBitsVector CasesBits; 2553 unsigned i, count = 0; 2554 2555 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2556 MachineBasicBlock* Dest = I->BB; 2557 for (i = 0; i < count; ++i) 2558 if (Dest == CasesBits[i].BB) 2559 break; 2560 2561 if (i == count) { 2562 assert((count < 3) && "Too much destinations to test!"); 2563 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2564 count++; 2565 } 2566 2567 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2568 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2569 2570 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2571 uint64_t hi = (highValue - lowBound).getZExtValue(); 2572 CasesBits[i].ExtraWeight += I->ExtraWeight; 2573 2574 for (uint64_t j = lo; j <= hi; j++) { 2575 CasesBits[i].Mask |= 1ULL << j; 2576 CasesBits[i].Bits++; 2577 } 2578 2579 } 2580 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2581 2582 BitTestInfo BTC; 2583 2584 // Figure out which block is immediately after the current one. 2585 MachineFunction::iterator BBI = CR.CaseBB; 2586 ++BBI; 2587 2588 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2589 2590 DEBUG(dbgs() << "Cases:\n"); 2591 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2592 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2593 << ", Bits: " << CasesBits[i].Bits 2594 << ", BB: " << CasesBits[i].BB << '\n'); 2595 2596 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2597 CurMF->insert(BBI, CaseBB); 2598 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2599 CaseBB, 2600 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2601 2602 // Put SV in a virtual register to make it available from the new blocks. 2603 ExportFromCurrentBlock(SV); 2604 } 2605 2606 BitTestBlock BTB(lowBound, cmpRange, SV, 2607 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2608 CR.CaseBB, Default, BTC); 2609 2610 if (CR.CaseBB == SwitchBB) 2611 visitBitTestHeader(BTB, SwitchBB); 2612 2613 BitTestCases.push_back(BTB); 2614 2615 return true; 2616 } 2617 2618 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2619 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2620 const SwitchInst& SI) { 2621 size_t numCmps = 0; 2622 2623 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2624 // Start with "simple" cases 2625 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2626 i != e; ++i) { 2627 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2628 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2629 2630 uint32_t ExtraWeight = 2631 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2632 2633 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2634 SMBB, ExtraWeight)); 2635 } 2636 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2637 2638 // Merge case into clusters 2639 if (Cases.size() >= 2) 2640 // Must recompute end() each iteration because it may be 2641 // invalidated by erase if we hold on to it 2642 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2643 J != Cases.end(); ) { 2644 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2645 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2646 MachineBasicBlock* nextBB = J->BB; 2647 MachineBasicBlock* currentBB = I->BB; 2648 2649 // If the two neighboring cases go to the same destination, merge them 2650 // into a single case. 2651 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2652 I->High = J->High; 2653 I->ExtraWeight += J->ExtraWeight; 2654 J = Cases.erase(J); 2655 } else { 2656 I = J++; 2657 } 2658 } 2659 2660 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2661 if (I->Low != I->High) 2662 // A range counts double, since it requires two compares. 2663 ++numCmps; 2664 } 2665 2666 return numCmps; 2667 } 2668 2669 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2670 MachineBasicBlock *Last) { 2671 // Update JTCases. 2672 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2673 if (JTCases[i].first.HeaderBB == First) 2674 JTCases[i].first.HeaderBB = Last; 2675 2676 // Update BitTestCases. 2677 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2678 if (BitTestCases[i].Parent == First) 2679 BitTestCases[i].Parent = Last; 2680 } 2681 2682 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2683 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2684 2685 // Figure out which block is immediately after the current one. 2686 MachineBasicBlock *NextBlock = nullptr; 2687 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2688 2689 // If there is only the default destination, branch to it if it is not the 2690 // next basic block. Otherwise, just fall through. 2691 if (!SI.getNumCases()) { 2692 // Update machine-CFG edges. 2693 2694 // If this is not a fall-through branch, emit the branch. 2695 SwitchMBB->addSuccessor(Default); 2696 if (Default != NextBlock) 2697 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2698 MVT::Other, getControlRoot(), 2699 DAG.getBasicBlock(Default))); 2700 2701 return; 2702 } 2703 2704 // If there are any non-default case statements, create a vector of Cases 2705 // representing each one, and sort the vector so that we can efficiently 2706 // create a binary search tree from them. 2707 CaseVector Cases; 2708 size_t numCmps = Clusterify(Cases, SI); 2709 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2710 << ". Total compares: " << numCmps << '\n'); 2711 (void)numCmps; 2712 2713 // Get the Value to be switched on and default basic blocks, which will be 2714 // inserted into CaseBlock records, representing basic blocks in the binary 2715 // search tree. 2716 const Value *SV = SI.getCondition(); 2717 2718 // Push the initial CaseRec onto the worklist 2719 CaseRecVector WorkList; 2720 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2721 CaseRange(Cases.begin(),Cases.end()))); 2722 2723 while (!WorkList.empty()) { 2724 // Grab a record representing a case range to process off the worklist 2725 CaseRec CR = WorkList.back(); 2726 WorkList.pop_back(); 2727 2728 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2729 continue; 2730 2731 // If the range has few cases (two or less) emit a series of specific 2732 // tests. 2733 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2734 continue; 2735 2736 // If the switch has more than N blocks, and is at least 40% dense, and the 2737 // target supports indirect branches, then emit a jump table rather than 2738 // lowering the switch to a binary tree of conditional branches. 2739 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2740 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2741 continue; 2742 2743 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2744 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2745 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2746 } 2747 } 2748 2749 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2750 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2751 2752 // Update machine-CFG edges with unique successors. 2753 SmallSet<BasicBlock*, 32> Done; 2754 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2755 BasicBlock *BB = I.getSuccessor(i); 2756 bool Inserted = Done.insert(BB); 2757 if (!Inserted) 2758 continue; 2759 2760 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2761 addSuccessorWithWeight(IndirectBrMBB, Succ); 2762 } 2763 2764 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2765 MVT::Other, getControlRoot(), 2766 getValue(I.getAddress()))); 2767 } 2768 2769 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2770 if (DAG.getTarget().Options.TrapUnreachable) 2771 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2772 } 2773 2774 void SelectionDAGBuilder::visitFSub(const User &I) { 2775 // -0.0 - X --> fneg 2776 Type *Ty = I.getType(); 2777 if (isa<Constant>(I.getOperand(0)) && 2778 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2779 SDValue Op2 = getValue(I.getOperand(1)); 2780 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2781 Op2.getValueType(), Op2)); 2782 return; 2783 } 2784 2785 visitBinary(I, ISD::FSUB); 2786 } 2787 2788 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2789 SDValue Op1 = getValue(I.getOperand(0)); 2790 SDValue Op2 = getValue(I.getOperand(1)); 2791 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2792 Op1.getValueType(), Op1, Op2)); 2793 } 2794 2795 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2796 SDValue Op1 = getValue(I.getOperand(0)); 2797 SDValue Op2 = getValue(I.getOperand(1)); 2798 2799 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2800 2801 // Coerce the shift amount to the right type if we can. 2802 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2803 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2804 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2805 SDLoc DL = getCurSDLoc(); 2806 2807 // If the operand is smaller than the shift count type, promote it. 2808 if (ShiftSize > Op2Size) 2809 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2810 2811 // If the operand is larger than the shift count type but the shift 2812 // count type has enough bits to represent any shift value, truncate 2813 // it now. This is a common case and it exposes the truncate to 2814 // optimization early. 2815 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2816 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2817 // Otherwise we'll need to temporarily settle for some other convenient 2818 // type. Type legalization will make adjustments once the shiftee is split. 2819 else 2820 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2821 } 2822 2823 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2824 Op1.getValueType(), Op1, Op2)); 2825 } 2826 2827 void SelectionDAGBuilder::visitSDiv(const User &I) { 2828 SDValue Op1 = getValue(I.getOperand(0)); 2829 SDValue Op2 = getValue(I.getOperand(1)); 2830 2831 // Turn exact SDivs into multiplications. 2832 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2833 // exact bit. 2834 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2835 !isa<ConstantSDNode>(Op1) && 2836 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2837 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2838 getCurSDLoc(), DAG)); 2839 else 2840 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2841 Op1, Op2)); 2842 } 2843 2844 void SelectionDAGBuilder::visitICmp(const User &I) { 2845 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2846 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2847 predicate = IC->getPredicate(); 2848 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2849 predicate = ICmpInst::Predicate(IC->getPredicate()); 2850 SDValue Op1 = getValue(I.getOperand(0)); 2851 SDValue Op2 = getValue(I.getOperand(1)); 2852 ISD::CondCode Opcode = getICmpCondCode(predicate); 2853 2854 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2855 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2856 } 2857 2858 void SelectionDAGBuilder::visitFCmp(const User &I) { 2859 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2860 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2861 predicate = FC->getPredicate(); 2862 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2863 predicate = FCmpInst::Predicate(FC->getPredicate()); 2864 SDValue Op1 = getValue(I.getOperand(0)); 2865 SDValue Op2 = getValue(I.getOperand(1)); 2866 ISD::CondCode Condition = getFCmpCondCode(predicate); 2867 if (TM.Options.NoNaNsFPMath) 2868 Condition = getFCmpCodeWithoutNaN(Condition); 2869 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2870 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2871 } 2872 2873 void SelectionDAGBuilder::visitSelect(const User &I) { 2874 SmallVector<EVT, 4> ValueVTs; 2875 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2876 unsigned NumValues = ValueVTs.size(); 2877 if (NumValues == 0) return; 2878 2879 SmallVector<SDValue, 4> Values(NumValues); 2880 SDValue Cond = getValue(I.getOperand(0)); 2881 SDValue TrueVal = getValue(I.getOperand(1)); 2882 SDValue FalseVal = getValue(I.getOperand(2)); 2883 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2884 ISD::VSELECT : ISD::SELECT; 2885 2886 for (unsigned i = 0; i != NumValues; ++i) 2887 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2888 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2889 Cond, 2890 SDValue(TrueVal.getNode(), 2891 TrueVal.getResNo() + i), 2892 SDValue(FalseVal.getNode(), 2893 FalseVal.getResNo() + i)); 2894 2895 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2896 DAG.getVTList(ValueVTs), 2897 &Values[0], NumValues)); 2898 } 2899 2900 void SelectionDAGBuilder::visitTrunc(const User &I) { 2901 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2902 SDValue N = getValue(I.getOperand(0)); 2903 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2904 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2905 } 2906 2907 void SelectionDAGBuilder::visitZExt(const User &I) { 2908 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2909 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2910 SDValue N = getValue(I.getOperand(0)); 2911 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2912 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2913 } 2914 2915 void SelectionDAGBuilder::visitSExt(const User &I) { 2916 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2917 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2918 SDValue N = getValue(I.getOperand(0)); 2919 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2920 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2921 } 2922 2923 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2924 // FPTrunc is never a no-op cast, no need to check 2925 SDValue N = getValue(I.getOperand(0)); 2926 const TargetLowering *TLI = TM.getTargetLowering(); 2927 EVT DestVT = TLI->getValueType(I.getType()); 2928 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2929 DestVT, N, 2930 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2931 } 2932 2933 void SelectionDAGBuilder::visitFPExt(const User &I) { 2934 // FPExt is never a no-op cast, no need to check 2935 SDValue N = getValue(I.getOperand(0)); 2936 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2937 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2938 } 2939 2940 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2941 // FPToUI is never a no-op cast, no need to check 2942 SDValue N = getValue(I.getOperand(0)); 2943 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2944 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2945 } 2946 2947 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2948 // FPToSI is never a no-op cast, no need to check 2949 SDValue N = getValue(I.getOperand(0)); 2950 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2951 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2952 } 2953 2954 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2955 // UIToFP is never a no-op cast, no need to check 2956 SDValue N = getValue(I.getOperand(0)); 2957 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2958 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2959 } 2960 2961 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2962 // SIToFP is never a no-op cast, no need to check 2963 SDValue N = getValue(I.getOperand(0)); 2964 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2965 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2966 } 2967 2968 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2969 // What to do depends on the size of the integer and the size of the pointer. 2970 // We can either truncate, zero extend, or no-op, accordingly. 2971 SDValue N = getValue(I.getOperand(0)); 2972 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2973 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2974 } 2975 2976 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2977 // What to do depends on the size of the integer and the size of the pointer. 2978 // We can either truncate, zero extend, or no-op, accordingly. 2979 SDValue N = getValue(I.getOperand(0)); 2980 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2981 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2982 } 2983 2984 void SelectionDAGBuilder::visitBitCast(const User &I) { 2985 SDValue N = getValue(I.getOperand(0)); 2986 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2987 2988 // BitCast assures us that source and destination are the same size so this is 2989 // either a BITCAST or a no-op. 2990 if (DestVT != N.getValueType()) 2991 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2992 DestVT, N)); // convert types. 2993 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2994 // might fold any kind of constant expression to an integer constant and that 2995 // is not what we are looking for. Only regcognize a bitcast of a genuine 2996 // constant integer as an opaque constant. 2997 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2998 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2999 /*isOpaque*/true)); 3000 else 3001 setValue(&I, N); // noop cast. 3002 } 3003 3004 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3006 const Value *SV = I.getOperand(0); 3007 SDValue N = getValue(SV); 3008 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3009 3010 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3011 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3012 3013 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3014 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3015 3016 setValue(&I, N); 3017 } 3018 3019 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3021 SDValue InVec = getValue(I.getOperand(0)); 3022 SDValue InVal = getValue(I.getOperand(1)); 3023 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3024 getCurSDLoc(), TLI.getVectorIdxTy()); 3025 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3026 TM.getTargetLowering()->getValueType(I.getType()), 3027 InVec, InVal, InIdx)); 3028 } 3029 3030 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3032 SDValue InVec = getValue(I.getOperand(0)); 3033 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3034 getCurSDLoc(), TLI.getVectorIdxTy()); 3035 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3036 TM.getTargetLowering()->getValueType(I.getType()), 3037 InVec, InIdx)); 3038 } 3039 3040 // Utility for visitShuffleVector - Return true if every element in Mask, 3041 // beginning from position Pos and ending in Pos+Size, falls within the 3042 // specified sequential range [L, L+Pos). or is undef. 3043 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3044 unsigned Pos, unsigned Size, int Low) { 3045 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3046 if (Mask[i] >= 0 && Mask[i] != Low) 3047 return false; 3048 return true; 3049 } 3050 3051 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3052 SDValue Src1 = getValue(I.getOperand(0)); 3053 SDValue Src2 = getValue(I.getOperand(1)); 3054 3055 SmallVector<int, 8> Mask; 3056 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3057 unsigned MaskNumElts = Mask.size(); 3058 3059 const TargetLowering *TLI = TM.getTargetLowering(); 3060 EVT VT = TLI->getValueType(I.getType()); 3061 EVT SrcVT = Src1.getValueType(); 3062 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3063 3064 if (SrcNumElts == MaskNumElts) { 3065 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3066 &Mask[0])); 3067 return; 3068 } 3069 3070 // Normalize the shuffle vector since mask and vector length don't match. 3071 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3072 // Mask is longer than the source vectors and is a multiple of the source 3073 // vectors. We can use concatenate vector to make the mask and vectors 3074 // lengths match. 3075 if (SrcNumElts*2 == MaskNumElts) { 3076 // First check for Src1 in low and Src2 in high 3077 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3078 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3079 // The shuffle is concatenating two vectors together. 3080 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3081 VT, Src1, Src2)); 3082 return; 3083 } 3084 // Then check for Src2 in low and Src1 in high 3085 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3086 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3087 // The shuffle is concatenating two vectors together. 3088 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3089 VT, Src2, Src1)); 3090 return; 3091 } 3092 } 3093 3094 // Pad both vectors with undefs to make them the same length as the mask. 3095 unsigned NumConcat = MaskNumElts / SrcNumElts; 3096 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3097 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3098 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3099 3100 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3101 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3102 MOps1[0] = Src1; 3103 MOps2[0] = Src2; 3104 3105 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3106 getCurSDLoc(), VT, 3107 &MOps1[0], NumConcat); 3108 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3109 getCurSDLoc(), VT, 3110 &MOps2[0], NumConcat); 3111 3112 // Readjust mask for new input vector length. 3113 SmallVector<int, 8> MappedOps; 3114 for (unsigned i = 0; i != MaskNumElts; ++i) { 3115 int Idx = Mask[i]; 3116 if (Idx >= (int)SrcNumElts) 3117 Idx -= SrcNumElts - MaskNumElts; 3118 MappedOps.push_back(Idx); 3119 } 3120 3121 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3122 &MappedOps[0])); 3123 return; 3124 } 3125 3126 if (SrcNumElts > MaskNumElts) { 3127 // Analyze the access pattern of the vector to see if we can extract 3128 // two subvectors and do the shuffle. The analysis is done by calculating 3129 // the range of elements the mask access on both vectors. 3130 int MinRange[2] = { static_cast<int>(SrcNumElts), 3131 static_cast<int>(SrcNumElts)}; 3132 int MaxRange[2] = {-1, -1}; 3133 3134 for (unsigned i = 0; i != MaskNumElts; ++i) { 3135 int Idx = Mask[i]; 3136 unsigned Input = 0; 3137 if (Idx < 0) 3138 continue; 3139 3140 if (Idx >= (int)SrcNumElts) { 3141 Input = 1; 3142 Idx -= SrcNumElts; 3143 } 3144 if (Idx > MaxRange[Input]) 3145 MaxRange[Input] = Idx; 3146 if (Idx < MinRange[Input]) 3147 MinRange[Input] = Idx; 3148 } 3149 3150 // Check if the access is smaller than the vector size and can we find 3151 // a reasonable extract index. 3152 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3153 // Extract. 3154 int StartIdx[2]; // StartIdx to extract from 3155 for (unsigned Input = 0; Input < 2; ++Input) { 3156 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3157 RangeUse[Input] = 0; // Unused 3158 StartIdx[Input] = 0; 3159 continue; 3160 } 3161 3162 // Find a good start index that is a multiple of the mask length. Then 3163 // see if the rest of the elements are in range. 3164 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3165 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3166 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3167 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3168 } 3169 3170 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3171 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3172 return; 3173 } 3174 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3175 // Extract appropriate subvector and generate a vector shuffle 3176 for (unsigned Input = 0; Input < 2; ++Input) { 3177 SDValue &Src = Input == 0 ? Src1 : Src2; 3178 if (RangeUse[Input] == 0) 3179 Src = DAG.getUNDEF(VT); 3180 else 3181 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3182 Src, DAG.getConstant(StartIdx[Input], 3183 TLI->getVectorIdxTy())); 3184 } 3185 3186 // Calculate new mask. 3187 SmallVector<int, 8> MappedOps; 3188 for (unsigned i = 0; i != MaskNumElts; ++i) { 3189 int Idx = Mask[i]; 3190 if (Idx >= 0) { 3191 if (Idx < (int)SrcNumElts) 3192 Idx -= StartIdx[0]; 3193 else 3194 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3195 } 3196 MappedOps.push_back(Idx); 3197 } 3198 3199 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3200 &MappedOps[0])); 3201 return; 3202 } 3203 } 3204 3205 // We can't use either concat vectors or extract subvectors so fall back to 3206 // replacing the shuffle with extract and build vector. 3207 // to insert and build vector. 3208 EVT EltVT = VT.getVectorElementType(); 3209 EVT IdxVT = TLI->getVectorIdxTy(); 3210 SmallVector<SDValue,8> Ops; 3211 for (unsigned i = 0; i != MaskNumElts; ++i) { 3212 int Idx = Mask[i]; 3213 SDValue Res; 3214 3215 if (Idx < 0) { 3216 Res = DAG.getUNDEF(EltVT); 3217 } else { 3218 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3219 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3220 3221 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3222 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3223 } 3224 3225 Ops.push_back(Res); 3226 } 3227 3228 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3229 VT, &Ops[0], Ops.size())); 3230 } 3231 3232 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3233 const Value *Op0 = I.getOperand(0); 3234 const Value *Op1 = I.getOperand(1); 3235 Type *AggTy = I.getType(); 3236 Type *ValTy = Op1->getType(); 3237 bool IntoUndef = isa<UndefValue>(Op0); 3238 bool FromUndef = isa<UndefValue>(Op1); 3239 3240 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3241 3242 const TargetLowering *TLI = TM.getTargetLowering(); 3243 SmallVector<EVT, 4> AggValueVTs; 3244 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3245 SmallVector<EVT, 4> ValValueVTs; 3246 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3247 3248 unsigned NumAggValues = AggValueVTs.size(); 3249 unsigned NumValValues = ValValueVTs.size(); 3250 SmallVector<SDValue, 4> Values(NumAggValues); 3251 3252 SDValue Agg = getValue(Op0); 3253 unsigned i = 0; 3254 // Copy the beginning value(s) from the original aggregate. 3255 for (; i != LinearIndex; ++i) 3256 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3257 SDValue(Agg.getNode(), Agg.getResNo() + i); 3258 // Copy values from the inserted value(s). 3259 if (NumValValues) { 3260 SDValue Val = getValue(Op1); 3261 for (; i != LinearIndex + NumValValues; ++i) 3262 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3263 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3264 } 3265 // Copy remaining value(s) from the original aggregate. 3266 for (; i != NumAggValues; ++i) 3267 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3268 SDValue(Agg.getNode(), Agg.getResNo() + i); 3269 3270 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3271 DAG.getVTList(AggValueVTs), 3272 &Values[0], NumAggValues)); 3273 } 3274 3275 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3276 const Value *Op0 = I.getOperand(0); 3277 Type *AggTy = Op0->getType(); 3278 Type *ValTy = I.getType(); 3279 bool OutOfUndef = isa<UndefValue>(Op0); 3280 3281 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3282 3283 const TargetLowering *TLI = TM.getTargetLowering(); 3284 SmallVector<EVT, 4> ValValueVTs; 3285 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3286 3287 unsigned NumValValues = ValValueVTs.size(); 3288 3289 // Ignore a extractvalue that produces an empty object 3290 if (!NumValValues) { 3291 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3292 return; 3293 } 3294 3295 SmallVector<SDValue, 4> Values(NumValValues); 3296 3297 SDValue Agg = getValue(Op0); 3298 // Copy out the selected value(s). 3299 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3300 Values[i - LinearIndex] = 3301 OutOfUndef ? 3302 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3303 SDValue(Agg.getNode(), Agg.getResNo() + i); 3304 3305 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3306 DAG.getVTList(ValValueVTs), 3307 &Values[0], NumValValues)); 3308 } 3309 3310 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3311 Value *Op0 = I.getOperand(0); 3312 // Note that the pointer operand may be a vector of pointers. Take the scalar 3313 // element which holds a pointer. 3314 Type *Ty = Op0->getType()->getScalarType(); 3315 unsigned AS = Ty->getPointerAddressSpace(); 3316 SDValue N = getValue(Op0); 3317 3318 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3319 OI != E; ++OI) { 3320 const Value *Idx = *OI; 3321 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3322 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3323 if (Field) { 3324 // N = N + Offset 3325 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3326 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3327 DAG.getConstant(Offset, N.getValueType())); 3328 } 3329 3330 Ty = StTy->getElementType(Field); 3331 } else { 3332 Ty = cast<SequentialType>(Ty)->getElementType(); 3333 3334 // If this is a constant subscript, handle it quickly. 3335 const TargetLowering *TLI = TM.getTargetLowering(); 3336 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3337 if (CI->isZero()) continue; 3338 uint64_t Offs = 3339 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3340 SDValue OffsVal; 3341 EVT PTy = TLI->getPointerTy(AS); 3342 unsigned PtrBits = PTy.getSizeInBits(); 3343 if (PtrBits < 64) 3344 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3345 DAG.getConstant(Offs, MVT::i64)); 3346 else 3347 OffsVal = DAG.getConstant(Offs, PTy); 3348 3349 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3350 OffsVal); 3351 continue; 3352 } 3353 3354 // N = N + Idx * ElementSize; 3355 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3356 DL->getTypeAllocSize(Ty)); 3357 SDValue IdxN = getValue(Idx); 3358 3359 // If the index is smaller or larger than intptr_t, truncate or extend 3360 // it. 3361 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3362 3363 // If this is a multiply by a power of two, turn it into a shl 3364 // immediately. This is a very common case. 3365 if (ElementSize != 1) { 3366 if (ElementSize.isPowerOf2()) { 3367 unsigned Amt = ElementSize.logBase2(); 3368 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3369 N.getValueType(), IdxN, 3370 DAG.getConstant(Amt, IdxN.getValueType())); 3371 } else { 3372 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3373 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3374 N.getValueType(), IdxN, Scale); 3375 } 3376 } 3377 3378 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3379 N.getValueType(), N, IdxN); 3380 } 3381 } 3382 3383 setValue(&I, N); 3384 } 3385 3386 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3387 // If this is a fixed sized alloca in the entry block of the function, 3388 // allocate it statically on the stack. 3389 if (FuncInfo.StaticAllocaMap.count(&I)) 3390 return; // getValue will auto-populate this. 3391 3392 Type *Ty = I.getAllocatedType(); 3393 const TargetLowering *TLI = TM.getTargetLowering(); 3394 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3395 unsigned Align = 3396 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3397 I.getAlignment()); 3398 3399 SDValue AllocSize = getValue(I.getArraySize()); 3400 3401 EVT IntPtr = TLI->getPointerTy(); 3402 if (AllocSize.getValueType() != IntPtr) 3403 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3404 3405 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3406 AllocSize, 3407 DAG.getConstant(TySize, IntPtr)); 3408 3409 // Handle alignment. If the requested alignment is less than or equal to 3410 // the stack alignment, ignore it. If the size is greater than or equal to 3411 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3412 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3413 if (Align <= StackAlign) 3414 Align = 0; 3415 3416 // Round the size of the allocation up to the stack alignment size 3417 // by add SA-1 to the size. 3418 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3419 AllocSize.getValueType(), AllocSize, 3420 DAG.getIntPtrConstant(StackAlign-1)); 3421 3422 // Mask out the low bits for alignment purposes. 3423 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3424 AllocSize.getValueType(), AllocSize, 3425 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3426 3427 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3428 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3429 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3430 VTs, Ops, 3); 3431 setValue(&I, DSA); 3432 DAG.setRoot(DSA.getValue(1)); 3433 3434 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3435 } 3436 3437 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3438 if (I.isAtomic()) 3439 return visitAtomicLoad(I); 3440 3441 const Value *SV = I.getOperand(0); 3442 SDValue Ptr = getValue(SV); 3443 3444 Type *Ty = I.getType(); 3445 3446 bool isVolatile = I.isVolatile(); 3447 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3448 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3449 unsigned Alignment = I.getAlignment(); 3450 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3451 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3452 3453 SmallVector<EVT, 4> ValueVTs; 3454 SmallVector<uint64_t, 4> Offsets; 3455 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3456 unsigned NumValues = ValueVTs.size(); 3457 if (NumValues == 0) 3458 return; 3459 3460 SDValue Root; 3461 bool ConstantMemory = false; 3462 if (isVolatile || NumValues > MaxParallelChains) 3463 // Serialize volatile loads with other side effects. 3464 Root = getRoot(); 3465 else if (AA->pointsToConstantMemory( 3466 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3467 // Do not serialize (non-volatile) loads of constant memory with anything. 3468 Root = DAG.getEntryNode(); 3469 ConstantMemory = true; 3470 } else { 3471 // Do not serialize non-volatile loads against each other. 3472 Root = DAG.getRoot(); 3473 } 3474 3475 const TargetLowering *TLI = TM.getTargetLowering(); 3476 if (isVolatile) 3477 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3478 3479 SmallVector<SDValue, 4> Values(NumValues); 3480 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3481 NumValues)); 3482 EVT PtrVT = Ptr.getValueType(); 3483 unsigned ChainI = 0; 3484 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3485 // Serializing loads here may result in excessive register pressure, and 3486 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3487 // could recover a bit by hoisting nodes upward in the chain by recognizing 3488 // they are side-effect free or do not alias. The optimizer should really 3489 // avoid this case by converting large object/array copies to llvm.memcpy 3490 // (MaxParallelChains should always remain as failsafe). 3491 if (ChainI == MaxParallelChains) { 3492 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3493 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3494 MVT::Other, &Chains[0], ChainI); 3495 Root = Chain; 3496 ChainI = 0; 3497 } 3498 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3499 PtrVT, Ptr, 3500 DAG.getConstant(Offsets[i], PtrVT)); 3501 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3502 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3503 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3504 Ranges); 3505 3506 Values[i] = L; 3507 Chains[ChainI] = L.getValue(1); 3508 } 3509 3510 if (!ConstantMemory) { 3511 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3512 MVT::Other, &Chains[0], ChainI); 3513 if (isVolatile) 3514 DAG.setRoot(Chain); 3515 else 3516 PendingLoads.push_back(Chain); 3517 } 3518 3519 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3520 DAG.getVTList(ValueVTs), 3521 &Values[0], NumValues)); 3522 } 3523 3524 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3525 if (I.isAtomic()) 3526 return visitAtomicStore(I); 3527 3528 const Value *SrcV = I.getOperand(0); 3529 const Value *PtrV = I.getOperand(1); 3530 3531 SmallVector<EVT, 4> ValueVTs; 3532 SmallVector<uint64_t, 4> Offsets; 3533 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3534 unsigned NumValues = ValueVTs.size(); 3535 if (NumValues == 0) 3536 return; 3537 3538 // Get the lowered operands. Note that we do this after 3539 // checking if NumResults is zero, because with zero results 3540 // the operands won't have values in the map. 3541 SDValue Src = getValue(SrcV); 3542 SDValue Ptr = getValue(PtrV); 3543 3544 SDValue Root = getRoot(); 3545 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3546 NumValues)); 3547 EVT PtrVT = Ptr.getValueType(); 3548 bool isVolatile = I.isVolatile(); 3549 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3550 unsigned Alignment = I.getAlignment(); 3551 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3552 3553 unsigned ChainI = 0; 3554 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3555 // See visitLoad comments. 3556 if (ChainI == MaxParallelChains) { 3557 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3558 MVT::Other, &Chains[0], ChainI); 3559 Root = Chain; 3560 ChainI = 0; 3561 } 3562 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3563 DAG.getConstant(Offsets[i], PtrVT)); 3564 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3565 SDValue(Src.getNode(), Src.getResNo() + i), 3566 Add, MachinePointerInfo(PtrV, Offsets[i]), 3567 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3568 Chains[ChainI] = St; 3569 } 3570 3571 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3572 MVT::Other, &Chains[0], ChainI); 3573 DAG.setRoot(StoreNode); 3574 } 3575 3576 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3577 SynchronizationScope Scope, 3578 bool Before, SDLoc dl, 3579 SelectionDAG &DAG, 3580 const TargetLowering &TLI) { 3581 // Fence, if necessary 3582 if (Before) { 3583 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3584 Order = Release; 3585 else if (Order == Acquire || Order == Monotonic) 3586 return Chain; 3587 } else { 3588 if (Order == AcquireRelease) 3589 Order = Acquire; 3590 else if (Order == Release || Order == Monotonic) 3591 return Chain; 3592 } 3593 SDValue Ops[3]; 3594 Ops[0] = Chain; 3595 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3596 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3597 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3598 } 3599 3600 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3601 SDLoc dl = getCurSDLoc(); 3602 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3603 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3604 SynchronizationScope Scope = I.getSynchScope(); 3605 3606 SDValue InChain = getRoot(); 3607 3608 const TargetLowering *TLI = TM.getTargetLowering(); 3609 if (TLI->getInsertFencesForAtomic()) 3610 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3611 DAG, *TLI); 3612 3613 SDValue L = 3614 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3615 getValue(I.getCompareOperand()).getSimpleValueType(), 3616 InChain, 3617 getValue(I.getPointerOperand()), 3618 getValue(I.getCompareOperand()), 3619 getValue(I.getNewValOperand()), 3620 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3621 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3622 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, 3623 Scope); 3624 3625 SDValue OutChain = L.getValue(1); 3626 3627 if (TLI->getInsertFencesForAtomic()) 3628 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3629 DAG, *TLI); 3630 3631 setValue(&I, L); 3632 DAG.setRoot(OutChain); 3633 } 3634 3635 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3636 SDLoc dl = getCurSDLoc(); 3637 ISD::NodeType NT; 3638 switch (I.getOperation()) { 3639 default: llvm_unreachable("Unknown atomicrmw operation"); 3640 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3641 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3642 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3643 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3644 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3645 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3646 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3647 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3648 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3649 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3650 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3651 } 3652 AtomicOrdering Order = I.getOrdering(); 3653 SynchronizationScope Scope = I.getSynchScope(); 3654 3655 SDValue InChain = getRoot(); 3656 3657 const TargetLowering *TLI = TM.getTargetLowering(); 3658 if (TLI->getInsertFencesForAtomic()) 3659 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3660 DAG, *TLI); 3661 3662 SDValue L = 3663 DAG.getAtomic(NT, dl, 3664 getValue(I.getValOperand()).getSimpleValueType(), 3665 InChain, 3666 getValue(I.getPointerOperand()), 3667 getValue(I.getValOperand()), 3668 I.getPointerOperand(), 0 /* Alignment */, 3669 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3670 Scope); 3671 3672 SDValue OutChain = L.getValue(1); 3673 3674 if (TLI->getInsertFencesForAtomic()) 3675 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3676 DAG, *TLI); 3677 3678 setValue(&I, L); 3679 DAG.setRoot(OutChain); 3680 } 3681 3682 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3683 SDLoc dl = getCurSDLoc(); 3684 const TargetLowering *TLI = TM.getTargetLowering(); 3685 SDValue Ops[3]; 3686 Ops[0] = getRoot(); 3687 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3688 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3689 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3690 } 3691 3692 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3693 SDLoc dl = getCurSDLoc(); 3694 AtomicOrdering Order = I.getOrdering(); 3695 SynchronizationScope Scope = I.getSynchScope(); 3696 3697 SDValue InChain = getRoot(); 3698 3699 const TargetLowering *TLI = TM.getTargetLowering(); 3700 EVT VT = TLI->getValueType(I.getType()); 3701 3702 if (I.getAlignment() < VT.getSizeInBits() / 8) 3703 report_fatal_error("Cannot generate unaligned atomic load"); 3704 3705 MachineMemOperand *MMO = 3706 DAG.getMachineFunction(). 3707 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3708 MachineMemOperand::MOVolatile | 3709 MachineMemOperand::MOLoad, 3710 VT.getStoreSize(), 3711 I.getAlignment() ? I.getAlignment() : 3712 DAG.getEVTAlignment(VT)); 3713 3714 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3715 SDValue L = 3716 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3717 getValue(I.getPointerOperand()), MMO, 3718 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3719 Scope); 3720 3721 SDValue OutChain = L.getValue(1); 3722 3723 if (TLI->getInsertFencesForAtomic()) 3724 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3725 DAG, *TLI); 3726 3727 setValue(&I, L); 3728 DAG.setRoot(OutChain); 3729 } 3730 3731 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3732 SDLoc dl = getCurSDLoc(); 3733 3734 AtomicOrdering Order = I.getOrdering(); 3735 SynchronizationScope Scope = I.getSynchScope(); 3736 3737 SDValue InChain = getRoot(); 3738 3739 const TargetLowering *TLI = TM.getTargetLowering(); 3740 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3741 3742 if (I.getAlignment() < VT.getSizeInBits() / 8) 3743 report_fatal_error("Cannot generate unaligned atomic store"); 3744 3745 if (TLI->getInsertFencesForAtomic()) 3746 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3747 DAG, *TLI); 3748 3749 SDValue OutChain = 3750 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3751 InChain, 3752 getValue(I.getPointerOperand()), 3753 getValue(I.getValueOperand()), 3754 I.getPointerOperand(), I.getAlignment(), 3755 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3756 Scope); 3757 3758 if (TLI->getInsertFencesForAtomic()) 3759 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3760 DAG, *TLI); 3761 3762 DAG.setRoot(OutChain); 3763 } 3764 3765 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3766 /// node. 3767 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3768 unsigned Intrinsic) { 3769 bool HasChain = !I.doesNotAccessMemory(); 3770 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3771 3772 // Build the operand list. 3773 SmallVector<SDValue, 8> Ops; 3774 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3775 if (OnlyLoad) { 3776 // We don't need to serialize loads against other loads. 3777 Ops.push_back(DAG.getRoot()); 3778 } else { 3779 Ops.push_back(getRoot()); 3780 } 3781 } 3782 3783 // Info is set by getTgtMemInstrinsic 3784 TargetLowering::IntrinsicInfo Info; 3785 const TargetLowering *TLI = TM.getTargetLowering(); 3786 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3787 3788 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3789 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3790 Info.opc == ISD::INTRINSIC_W_CHAIN) 3791 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3792 3793 // Add all operands of the call to the operand list. 3794 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3795 SDValue Op = getValue(I.getArgOperand(i)); 3796 Ops.push_back(Op); 3797 } 3798 3799 SmallVector<EVT, 4> ValueVTs; 3800 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3801 3802 if (HasChain) 3803 ValueVTs.push_back(MVT::Other); 3804 3805 SDVTList VTs = DAG.getVTList(ValueVTs); 3806 3807 // Create the node. 3808 SDValue Result; 3809 if (IsTgtIntrinsic) { 3810 // This is target intrinsic that touches memory 3811 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3812 VTs, &Ops[0], Ops.size(), 3813 Info.memVT, 3814 MachinePointerInfo(Info.ptrVal, Info.offset), 3815 Info.align, Info.vol, 3816 Info.readMem, Info.writeMem); 3817 } else if (!HasChain) { 3818 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3819 VTs, &Ops[0], Ops.size()); 3820 } else if (!I.getType()->isVoidTy()) { 3821 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3822 VTs, &Ops[0], Ops.size()); 3823 } else { 3824 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3825 VTs, &Ops[0], Ops.size()); 3826 } 3827 3828 if (HasChain) { 3829 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3830 if (OnlyLoad) 3831 PendingLoads.push_back(Chain); 3832 else 3833 DAG.setRoot(Chain); 3834 } 3835 3836 if (!I.getType()->isVoidTy()) { 3837 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3838 EVT VT = TLI->getValueType(PTy); 3839 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3840 } 3841 3842 setValue(&I, Result); 3843 } 3844 } 3845 3846 /// GetSignificand - Get the significand and build it into a floating-point 3847 /// number with exponent of 1: 3848 /// 3849 /// Op = (Op & 0x007fffff) | 0x3f800000; 3850 /// 3851 /// where Op is the hexadecimal representation of floating point value. 3852 static SDValue 3853 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3854 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3855 DAG.getConstant(0x007fffff, MVT::i32)); 3856 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3857 DAG.getConstant(0x3f800000, MVT::i32)); 3858 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3859 } 3860 3861 /// GetExponent - Get the exponent: 3862 /// 3863 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3864 /// 3865 /// where Op is the hexadecimal representation of floating point value. 3866 static SDValue 3867 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3868 SDLoc dl) { 3869 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3870 DAG.getConstant(0x7f800000, MVT::i32)); 3871 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3872 DAG.getConstant(23, TLI.getPointerTy())); 3873 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3874 DAG.getConstant(127, MVT::i32)); 3875 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3876 } 3877 3878 /// getF32Constant - Get 32-bit floating point constant. 3879 static SDValue 3880 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3881 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3882 MVT::f32); 3883 } 3884 3885 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3886 /// limited-precision mode. 3887 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3888 const TargetLowering &TLI) { 3889 if (Op.getValueType() == MVT::f32 && 3890 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3891 3892 // Put the exponent in the right bit position for later addition to the 3893 // final result: 3894 // 3895 // #define LOG2OFe 1.4426950f 3896 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3897 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3898 getF32Constant(DAG, 0x3fb8aa3b)); 3899 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3900 3901 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3902 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3903 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3904 3905 // IntegerPartOfX <<= 23; 3906 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3907 DAG.getConstant(23, TLI.getPointerTy())); 3908 3909 SDValue TwoToFracPartOfX; 3910 if (LimitFloatPrecision <= 6) { 3911 // For floating-point precision of 6: 3912 // 3913 // TwoToFractionalPartOfX = 3914 // 0.997535578f + 3915 // (0.735607626f + 0.252464424f * x) * x; 3916 // 3917 // error 0.0144103317, which is 6 bits 3918 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3919 getF32Constant(DAG, 0x3e814304)); 3920 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3921 getF32Constant(DAG, 0x3f3c50c8)); 3922 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3923 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3924 getF32Constant(DAG, 0x3f7f5e7e)); 3925 } else if (LimitFloatPrecision <= 12) { 3926 // For floating-point precision of 12: 3927 // 3928 // TwoToFractionalPartOfX = 3929 // 0.999892986f + 3930 // (0.696457318f + 3931 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3932 // 3933 // 0.000107046256 error, which is 13 to 14 bits 3934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3935 getF32Constant(DAG, 0x3da235e3)); 3936 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3937 getF32Constant(DAG, 0x3e65b8f3)); 3938 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3939 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3940 getF32Constant(DAG, 0x3f324b07)); 3941 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3942 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3943 getF32Constant(DAG, 0x3f7ff8fd)); 3944 } else { // LimitFloatPrecision <= 18 3945 // For floating-point precision of 18: 3946 // 3947 // TwoToFractionalPartOfX = 3948 // 0.999999982f + 3949 // (0.693148872f + 3950 // (0.240227044f + 3951 // (0.554906021e-1f + 3952 // (0.961591928e-2f + 3953 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3954 // 3955 // error 2.47208000*10^(-7), which is better than 18 bits 3956 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3957 getF32Constant(DAG, 0x3924b03e)); 3958 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3959 getF32Constant(DAG, 0x3ab24b87)); 3960 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3961 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3962 getF32Constant(DAG, 0x3c1d8c17)); 3963 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3964 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3965 getF32Constant(DAG, 0x3d634a1d)); 3966 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3967 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3968 getF32Constant(DAG, 0x3e75fe14)); 3969 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3970 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3971 getF32Constant(DAG, 0x3f317234)); 3972 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3973 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3974 getF32Constant(DAG, 0x3f800000)); 3975 } 3976 3977 // Add the exponent into the result in integer domain. 3978 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3979 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3980 DAG.getNode(ISD::ADD, dl, MVT::i32, 3981 t13, IntegerPartOfX)); 3982 } 3983 3984 // No special expansion. 3985 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3986 } 3987 3988 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3989 /// limited-precision mode. 3990 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3991 const TargetLowering &TLI) { 3992 if (Op.getValueType() == MVT::f32 && 3993 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3994 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3995 3996 // Scale the exponent by log(2) [0.69314718f]. 3997 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3998 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3999 getF32Constant(DAG, 0x3f317218)); 4000 4001 // Get the significand and build it into a floating-point number with 4002 // exponent of 1. 4003 SDValue X = GetSignificand(DAG, Op1, dl); 4004 4005 SDValue LogOfMantissa; 4006 if (LimitFloatPrecision <= 6) { 4007 // For floating-point precision of 6: 4008 // 4009 // LogofMantissa = 4010 // -1.1609546f + 4011 // (1.4034025f - 0.23903021f * x) * x; 4012 // 4013 // error 0.0034276066, which is better than 8 bits 4014 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4015 getF32Constant(DAG, 0xbe74c456)); 4016 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4017 getF32Constant(DAG, 0x3fb3a2b1)); 4018 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4019 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4020 getF32Constant(DAG, 0x3f949a29)); 4021 } else if (LimitFloatPrecision <= 12) { 4022 // For floating-point precision of 12: 4023 // 4024 // LogOfMantissa = 4025 // -1.7417939f + 4026 // (2.8212026f + 4027 // (-1.4699568f + 4028 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4029 // 4030 // error 0.000061011436, which is 14 bits 4031 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4032 getF32Constant(DAG, 0xbd67b6d6)); 4033 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4034 getF32Constant(DAG, 0x3ee4f4b8)); 4035 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4036 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4037 getF32Constant(DAG, 0x3fbc278b)); 4038 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4039 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4040 getF32Constant(DAG, 0x40348e95)); 4041 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4042 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4043 getF32Constant(DAG, 0x3fdef31a)); 4044 } else { // LimitFloatPrecision <= 18 4045 // For floating-point precision of 18: 4046 // 4047 // LogOfMantissa = 4048 // -2.1072184f + 4049 // (4.2372794f + 4050 // (-3.7029485f + 4051 // (2.2781945f + 4052 // (-0.87823314f + 4053 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4054 // 4055 // error 0.0000023660568, which is better than 18 bits 4056 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4057 getF32Constant(DAG, 0xbc91e5ac)); 4058 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4059 getF32Constant(DAG, 0x3e4350aa)); 4060 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4061 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4062 getF32Constant(DAG, 0x3f60d3e3)); 4063 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4064 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4065 getF32Constant(DAG, 0x4011cdf0)); 4066 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4067 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4068 getF32Constant(DAG, 0x406cfd1c)); 4069 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4070 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4071 getF32Constant(DAG, 0x408797cb)); 4072 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4073 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4074 getF32Constant(DAG, 0x4006dcab)); 4075 } 4076 4077 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4078 } 4079 4080 // No special expansion. 4081 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4082 } 4083 4084 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4085 /// limited-precision mode. 4086 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4087 const TargetLowering &TLI) { 4088 if (Op.getValueType() == MVT::f32 && 4089 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4090 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4091 4092 // Get the exponent. 4093 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4094 4095 // Get the significand and build it into a floating-point number with 4096 // exponent of 1. 4097 SDValue X = GetSignificand(DAG, Op1, dl); 4098 4099 // Different possible minimax approximations of significand in 4100 // floating-point for various degrees of accuracy over [1,2]. 4101 SDValue Log2ofMantissa; 4102 if (LimitFloatPrecision <= 6) { 4103 // For floating-point precision of 6: 4104 // 4105 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4106 // 4107 // error 0.0049451742, which is more than 7 bits 4108 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4109 getF32Constant(DAG, 0xbeb08fe0)); 4110 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4111 getF32Constant(DAG, 0x40019463)); 4112 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4113 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4114 getF32Constant(DAG, 0x3fd6633d)); 4115 } else if (LimitFloatPrecision <= 12) { 4116 // For floating-point precision of 12: 4117 // 4118 // Log2ofMantissa = 4119 // -2.51285454f + 4120 // (4.07009056f + 4121 // (-2.12067489f + 4122 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4123 // 4124 // error 0.0000876136000, which is better than 13 bits 4125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4126 getF32Constant(DAG, 0xbda7262e)); 4127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4128 getF32Constant(DAG, 0x3f25280b)); 4129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4130 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4131 getF32Constant(DAG, 0x4007b923)); 4132 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4133 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4134 getF32Constant(DAG, 0x40823e2f)); 4135 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4136 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4137 getF32Constant(DAG, 0x4020d29c)); 4138 } else { // LimitFloatPrecision <= 18 4139 // For floating-point precision of 18: 4140 // 4141 // Log2ofMantissa = 4142 // -3.0400495f + 4143 // (6.1129976f + 4144 // (-5.3420409f + 4145 // (3.2865683f + 4146 // (-1.2669343f + 4147 // (0.27515199f - 4148 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4149 // 4150 // error 0.0000018516, which is better than 18 bits 4151 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4152 getF32Constant(DAG, 0xbcd2769e)); 4153 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4154 getF32Constant(DAG, 0x3e8ce0b9)); 4155 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4156 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4157 getF32Constant(DAG, 0x3fa22ae7)); 4158 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4159 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4160 getF32Constant(DAG, 0x40525723)); 4161 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4162 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4163 getF32Constant(DAG, 0x40aaf200)); 4164 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4165 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4166 getF32Constant(DAG, 0x40c39dad)); 4167 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4168 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4169 getF32Constant(DAG, 0x4042902c)); 4170 } 4171 4172 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4173 } 4174 4175 // No special expansion. 4176 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4177 } 4178 4179 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4180 /// limited-precision mode. 4181 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4182 const TargetLowering &TLI) { 4183 if (Op.getValueType() == MVT::f32 && 4184 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4185 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4186 4187 // Scale the exponent by log10(2) [0.30102999f]. 4188 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4189 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4190 getF32Constant(DAG, 0x3e9a209a)); 4191 4192 // Get the significand and build it into a floating-point number with 4193 // exponent of 1. 4194 SDValue X = GetSignificand(DAG, Op1, dl); 4195 4196 SDValue Log10ofMantissa; 4197 if (LimitFloatPrecision <= 6) { 4198 // For floating-point precision of 6: 4199 // 4200 // Log10ofMantissa = 4201 // -0.50419619f + 4202 // (0.60948995f - 0.10380950f * x) * x; 4203 // 4204 // error 0.0014886165, which is 6 bits 4205 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4206 getF32Constant(DAG, 0xbdd49a13)); 4207 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4208 getF32Constant(DAG, 0x3f1c0789)); 4209 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4210 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4211 getF32Constant(DAG, 0x3f011300)); 4212 } else if (LimitFloatPrecision <= 12) { 4213 // For floating-point precision of 12: 4214 // 4215 // Log10ofMantissa = 4216 // -0.64831180f + 4217 // (0.91751397f + 4218 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4219 // 4220 // error 0.00019228036, which is better than 12 bits 4221 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4222 getF32Constant(DAG, 0x3d431f31)); 4223 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4224 getF32Constant(DAG, 0x3ea21fb2)); 4225 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4226 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4227 getF32Constant(DAG, 0x3f6ae232)); 4228 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4229 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4230 getF32Constant(DAG, 0x3f25f7c3)); 4231 } else { // LimitFloatPrecision <= 18 4232 // For floating-point precision of 18: 4233 // 4234 // Log10ofMantissa = 4235 // -0.84299375f + 4236 // (1.5327582f + 4237 // (-1.0688956f + 4238 // (0.49102474f + 4239 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4240 // 4241 // error 0.0000037995730, which is better than 18 bits 4242 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4243 getF32Constant(DAG, 0x3c5d51ce)); 4244 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4245 getF32Constant(DAG, 0x3e00685a)); 4246 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4247 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4248 getF32Constant(DAG, 0x3efb6798)); 4249 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4250 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4251 getF32Constant(DAG, 0x3f88d192)); 4252 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4253 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4254 getF32Constant(DAG, 0x3fc4316c)); 4255 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4256 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4257 getF32Constant(DAG, 0x3f57ce70)); 4258 } 4259 4260 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4261 } 4262 4263 // No special expansion. 4264 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4265 } 4266 4267 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4268 /// limited-precision mode. 4269 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4270 const TargetLowering &TLI) { 4271 if (Op.getValueType() == MVT::f32 && 4272 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4273 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4274 4275 // FractionalPartOfX = x - (float)IntegerPartOfX; 4276 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4277 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4278 4279 // IntegerPartOfX <<= 23; 4280 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4281 DAG.getConstant(23, TLI.getPointerTy())); 4282 4283 SDValue TwoToFractionalPartOfX; 4284 if (LimitFloatPrecision <= 6) { 4285 // For floating-point precision of 6: 4286 // 4287 // TwoToFractionalPartOfX = 4288 // 0.997535578f + 4289 // (0.735607626f + 0.252464424f * x) * x; 4290 // 4291 // error 0.0144103317, which is 6 bits 4292 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4293 getF32Constant(DAG, 0x3e814304)); 4294 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4295 getF32Constant(DAG, 0x3f3c50c8)); 4296 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4297 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4298 getF32Constant(DAG, 0x3f7f5e7e)); 4299 } else if (LimitFloatPrecision <= 12) { 4300 // For floating-point precision of 12: 4301 // 4302 // TwoToFractionalPartOfX = 4303 // 0.999892986f + 4304 // (0.696457318f + 4305 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4306 // 4307 // error 0.000107046256, which is 13 to 14 bits 4308 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4309 getF32Constant(DAG, 0x3da235e3)); 4310 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4311 getF32Constant(DAG, 0x3e65b8f3)); 4312 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4313 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4314 getF32Constant(DAG, 0x3f324b07)); 4315 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4316 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4317 getF32Constant(DAG, 0x3f7ff8fd)); 4318 } else { // LimitFloatPrecision <= 18 4319 // For floating-point precision of 18: 4320 // 4321 // TwoToFractionalPartOfX = 4322 // 0.999999982f + 4323 // (0.693148872f + 4324 // (0.240227044f + 4325 // (0.554906021e-1f + 4326 // (0.961591928e-2f + 4327 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4328 // error 2.47208000*10^(-7), which is better than 18 bits 4329 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4330 getF32Constant(DAG, 0x3924b03e)); 4331 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4332 getF32Constant(DAG, 0x3ab24b87)); 4333 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4334 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4335 getF32Constant(DAG, 0x3c1d8c17)); 4336 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4337 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4338 getF32Constant(DAG, 0x3d634a1d)); 4339 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4340 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4341 getF32Constant(DAG, 0x3e75fe14)); 4342 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4343 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4344 getF32Constant(DAG, 0x3f317234)); 4345 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4346 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4347 getF32Constant(DAG, 0x3f800000)); 4348 } 4349 4350 // Add the exponent into the result in integer domain. 4351 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4352 TwoToFractionalPartOfX); 4353 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4354 DAG.getNode(ISD::ADD, dl, MVT::i32, 4355 t13, IntegerPartOfX)); 4356 } 4357 4358 // No special expansion. 4359 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4360 } 4361 4362 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4363 /// limited-precision mode with x == 10.0f. 4364 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4365 SelectionDAG &DAG, const TargetLowering &TLI) { 4366 bool IsExp10 = false; 4367 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4368 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4369 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4370 APFloat Ten(10.0f); 4371 IsExp10 = LHSC->isExactlyValue(Ten); 4372 } 4373 } 4374 4375 if (IsExp10) { 4376 // Put the exponent in the right bit position for later addition to the 4377 // final result: 4378 // 4379 // #define LOG2OF10 3.3219281f 4380 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4381 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4382 getF32Constant(DAG, 0x40549a78)); 4383 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4384 4385 // FractionalPartOfX = x - (float)IntegerPartOfX; 4386 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4387 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4388 4389 // IntegerPartOfX <<= 23; 4390 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4391 DAG.getConstant(23, TLI.getPointerTy())); 4392 4393 SDValue TwoToFractionalPartOfX; 4394 if (LimitFloatPrecision <= 6) { 4395 // For floating-point precision of 6: 4396 // 4397 // twoToFractionalPartOfX = 4398 // 0.997535578f + 4399 // (0.735607626f + 0.252464424f * x) * x; 4400 // 4401 // error 0.0144103317, which is 6 bits 4402 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4403 getF32Constant(DAG, 0x3e814304)); 4404 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4405 getF32Constant(DAG, 0x3f3c50c8)); 4406 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4407 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4408 getF32Constant(DAG, 0x3f7f5e7e)); 4409 } else if (LimitFloatPrecision <= 12) { 4410 // For floating-point precision of 12: 4411 // 4412 // TwoToFractionalPartOfX = 4413 // 0.999892986f + 4414 // (0.696457318f + 4415 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4416 // 4417 // error 0.000107046256, which is 13 to 14 bits 4418 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4419 getF32Constant(DAG, 0x3da235e3)); 4420 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4421 getF32Constant(DAG, 0x3e65b8f3)); 4422 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4423 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4424 getF32Constant(DAG, 0x3f324b07)); 4425 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4426 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4427 getF32Constant(DAG, 0x3f7ff8fd)); 4428 } else { // LimitFloatPrecision <= 18 4429 // For floating-point precision of 18: 4430 // 4431 // TwoToFractionalPartOfX = 4432 // 0.999999982f + 4433 // (0.693148872f + 4434 // (0.240227044f + 4435 // (0.554906021e-1f + 4436 // (0.961591928e-2f + 4437 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4438 // error 2.47208000*10^(-7), which is better than 18 bits 4439 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4440 getF32Constant(DAG, 0x3924b03e)); 4441 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4442 getF32Constant(DAG, 0x3ab24b87)); 4443 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4444 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4445 getF32Constant(DAG, 0x3c1d8c17)); 4446 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4447 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4448 getF32Constant(DAG, 0x3d634a1d)); 4449 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4450 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4451 getF32Constant(DAG, 0x3e75fe14)); 4452 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4453 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4454 getF32Constant(DAG, 0x3f317234)); 4455 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4456 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4457 getF32Constant(DAG, 0x3f800000)); 4458 } 4459 4460 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4461 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4462 DAG.getNode(ISD::ADD, dl, MVT::i32, 4463 t13, IntegerPartOfX)); 4464 } 4465 4466 // No special expansion. 4467 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4468 } 4469 4470 4471 /// ExpandPowI - Expand a llvm.powi intrinsic. 4472 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4473 SelectionDAG &DAG) { 4474 // If RHS is a constant, we can expand this out to a multiplication tree, 4475 // otherwise we end up lowering to a call to __powidf2 (for example). When 4476 // optimizing for size, we only want to do this if the expansion would produce 4477 // a small number of multiplies, otherwise we do the full expansion. 4478 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4479 // Get the exponent as a positive value. 4480 unsigned Val = RHSC->getSExtValue(); 4481 if ((int)Val < 0) Val = -Val; 4482 4483 // powi(x, 0) -> 1.0 4484 if (Val == 0) 4485 return DAG.getConstantFP(1.0, LHS.getValueType()); 4486 4487 const Function *F = DAG.getMachineFunction().getFunction(); 4488 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4489 Attribute::OptimizeForSize) || 4490 // If optimizing for size, don't insert too many multiplies. This 4491 // inserts up to 5 multiplies. 4492 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4493 // We use the simple binary decomposition method to generate the multiply 4494 // sequence. There are more optimal ways to do this (for example, 4495 // powi(x,15) generates one more multiply than it should), but this has 4496 // the benefit of being both really simple and much better than a libcall. 4497 SDValue Res; // Logically starts equal to 1.0 4498 SDValue CurSquare = LHS; 4499 while (Val) { 4500 if (Val & 1) { 4501 if (Res.getNode()) 4502 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4503 else 4504 Res = CurSquare; // 1.0*CurSquare. 4505 } 4506 4507 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4508 CurSquare, CurSquare); 4509 Val >>= 1; 4510 } 4511 4512 // If the original was negative, invert the result, producing 1/(x*x*x). 4513 if (RHSC->getSExtValue() < 0) 4514 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4515 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4516 return Res; 4517 } 4518 } 4519 4520 // Otherwise, expand to a libcall. 4521 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4522 } 4523 4524 // getTruncatedArgReg - Find underlying register used for an truncated 4525 // argument. 4526 static unsigned getTruncatedArgReg(const SDValue &N) { 4527 if (N.getOpcode() != ISD::TRUNCATE) 4528 return 0; 4529 4530 const SDValue &Ext = N.getOperand(0); 4531 if (Ext.getOpcode() == ISD::AssertZext || 4532 Ext.getOpcode() == ISD::AssertSext) { 4533 const SDValue &CFR = Ext.getOperand(0); 4534 if (CFR.getOpcode() == ISD::CopyFromReg) 4535 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4536 if (CFR.getOpcode() == ISD::TRUNCATE) 4537 return getTruncatedArgReg(CFR); 4538 } 4539 return 0; 4540 } 4541 4542 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4543 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4544 /// At the end of instruction selection, they will be inserted to the entry BB. 4545 bool 4546 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4547 int64_t Offset, 4548 const SDValue &N) { 4549 const Argument *Arg = dyn_cast<Argument>(V); 4550 if (!Arg) 4551 return false; 4552 4553 MachineFunction &MF = DAG.getMachineFunction(); 4554 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4555 4556 // Ignore inlined function arguments here. 4557 DIVariable DV(Variable); 4558 if (DV.isInlinedFnArgument(MF.getFunction())) 4559 return false; 4560 4561 Optional<MachineOperand> Op; 4562 // Some arguments' frame index is recorded during argument lowering. 4563 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4564 Op = MachineOperand::CreateFI(FI); 4565 4566 if (!Op && N.getNode()) { 4567 unsigned Reg; 4568 if (N.getOpcode() == ISD::CopyFromReg) 4569 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4570 else 4571 Reg = getTruncatedArgReg(N); 4572 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4573 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4574 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4575 if (PR) 4576 Reg = PR; 4577 } 4578 if (Reg) 4579 Op = MachineOperand::CreateReg(Reg, false); 4580 } 4581 4582 if (!Op) { 4583 // Check if ValueMap has reg number. 4584 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4585 if (VMI != FuncInfo.ValueMap.end()) 4586 Op = MachineOperand::CreateReg(VMI->second, false); 4587 } 4588 4589 if (!Op && N.getNode()) 4590 // Check if frame index is available. 4591 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4592 if (FrameIndexSDNode *FINode = 4593 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4594 Op = MachineOperand::CreateFI(FINode->getIndex()); 4595 4596 if (!Op) 4597 return false; 4598 4599 // FIXME: This does not handle register-indirect values at offset 0. 4600 bool IsIndirect = Offset != 0; 4601 if (Op->isReg()) 4602 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4603 TII->get(TargetOpcode::DBG_VALUE), 4604 IsIndirect, 4605 Op->getReg(), Offset, Variable)); 4606 else 4607 FuncInfo.ArgDbgValues.push_back( 4608 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4609 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4610 4611 return true; 4612 } 4613 4614 // VisualStudio defines setjmp as _setjmp 4615 #if defined(_MSC_VER) && defined(setjmp) && \ 4616 !defined(setjmp_undefined_for_msvc) 4617 # pragma push_macro("setjmp") 4618 # undef setjmp 4619 # define setjmp_undefined_for_msvc 4620 #endif 4621 4622 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4623 /// we want to emit this as a call to a named external function, return the name 4624 /// otherwise lower it and return null. 4625 const char * 4626 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4627 const TargetLowering *TLI = TM.getTargetLowering(); 4628 SDLoc sdl = getCurSDLoc(); 4629 DebugLoc dl = getCurDebugLoc(); 4630 SDValue Res; 4631 4632 switch (Intrinsic) { 4633 default: 4634 // By default, turn this into a target intrinsic node. 4635 visitTargetIntrinsic(I, Intrinsic); 4636 return nullptr; 4637 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4638 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4639 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4640 case Intrinsic::returnaddress: 4641 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4642 getValue(I.getArgOperand(0)))); 4643 return nullptr; 4644 case Intrinsic::frameaddress: 4645 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4646 getValue(I.getArgOperand(0)))); 4647 return nullptr; 4648 case Intrinsic::setjmp: 4649 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4650 case Intrinsic::longjmp: 4651 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4652 case Intrinsic::memcpy: { 4653 // Assert for address < 256 since we support only user defined address 4654 // spaces. 4655 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4656 < 256 && 4657 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4658 < 256 && 4659 "Unknown address space"); 4660 SDValue Op1 = getValue(I.getArgOperand(0)); 4661 SDValue Op2 = getValue(I.getArgOperand(1)); 4662 SDValue Op3 = getValue(I.getArgOperand(2)); 4663 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4664 if (!Align) 4665 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4666 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4667 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4668 MachinePointerInfo(I.getArgOperand(0)), 4669 MachinePointerInfo(I.getArgOperand(1)))); 4670 return nullptr; 4671 } 4672 case Intrinsic::memset: { 4673 // Assert for address < 256 since we support only user defined address 4674 // spaces. 4675 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4676 < 256 && 4677 "Unknown address space"); 4678 SDValue Op1 = getValue(I.getArgOperand(0)); 4679 SDValue Op2 = getValue(I.getArgOperand(1)); 4680 SDValue Op3 = getValue(I.getArgOperand(2)); 4681 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4682 if (!Align) 4683 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4684 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4685 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4686 MachinePointerInfo(I.getArgOperand(0)))); 4687 return nullptr; 4688 } 4689 case Intrinsic::memmove: { 4690 // Assert for address < 256 since we support only user defined address 4691 // spaces. 4692 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4693 < 256 && 4694 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4695 < 256 && 4696 "Unknown address space"); 4697 SDValue Op1 = getValue(I.getArgOperand(0)); 4698 SDValue Op2 = getValue(I.getArgOperand(1)); 4699 SDValue Op3 = getValue(I.getArgOperand(2)); 4700 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4701 if (!Align) 4702 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4703 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4704 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4705 MachinePointerInfo(I.getArgOperand(0)), 4706 MachinePointerInfo(I.getArgOperand(1)))); 4707 return nullptr; 4708 } 4709 case Intrinsic::dbg_declare: { 4710 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4711 MDNode *Variable = DI.getVariable(); 4712 const Value *Address = DI.getAddress(); 4713 DIVariable DIVar(Variable); 4714 assert((!DIVar || DIVar.isVariable()) && 4715 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4716 if (!Address || !DIVar) { 4717 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4718 return nullptr; 4719 } 4720 4721 // Check if address has undef value. 4722 if (isa<UndefValue>(Address) || 4723 (Address->use_empty() && !isa<Argument>(Address))) { 4724 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4725 return nullptr; 4726 } 4727 4728 SDValue &N = NodeMap[Address]; 4729 if (!N.getNode() && isa<Argument>(Address)) 4730 // Check unused arguments map. 4731 N = UnusedArgNodeMap[Address]; 4732 SDDbgValue *SDV; 4733 if (N.getNode()) { 4734 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4735 Address = BCI->getOperand(0); 4736 // Parameters are handled specially. 4737 bool isParameter = 4738 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4739 isa<Argument>(Address)); 4740 4741 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4742 4743 if (isParameter && !AI) { 4744 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4745 if (FINode) 4746 // Byval parameter. We have a frame index at this point. 4747 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4748 0, dl, SDNodeOrder); 4749 else { 4750 // Address is an argument, so try to emit its dbg value using 4751 // virtual register info from the FuncInfo.ValueMap. 4752 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4753 return nullptr; 4754 } 4755 } else if (AI) 4756 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4757 0, dl, SDNodeOrder); 4758 else { 4759 // Can't do anything with other non-AI cases yet. 4760 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4761 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4762 DEBUG(Address->dump()); 4763 return nullptr; 4764 } 4765 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4766 } else { 4767 // If Address is an argument then try to emit its dbg value using 4768 // virtual register info from the FuncInfo.ValueMap. 4769 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4770 // If variable is pinned by a alloca in dominating bb then 4771 // use StaticAllocaMap. 4772 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4773 if (AI->getParent() != DI.getParent()) { 4774 DenseMap<const AllocaInst*, int>::iterator SI = 4775 FuncInfo.StaticAllocaMap.find(AI); 4776 if (SI != FuncInfo.StaticAllocaMap.end()) { 4777 SDV = DAG.getDbgValue(Variable, SI->second, 4778 0, dl, SDNodeOrder); 4779 DAG.AddDbgValue(SDV, nullptr, false); 4780 return nullptr; 4781 } 4782 } 4783 } 4784 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4785 } 4786 } 4787 return nullptr; 4788 } 4789 case Intrinsic::dbg_value: { 4790 const DbgValueInst &DI = cast<DbgValueInst>(I); 4791 DIVariable DIVar(DI.getVariable()); 4792 assert((!DIVar || DIVar.isVariable()) && 4793 "Variable in DbgValueInst should be either null or a DIVariable."); 4794 if (!DIVar) 4795 return nullptr; 4796 4797 MDNode *Variable = DI.getVariable(); 4798 uint64_t Offset = DI.getOffset(); 4799 const Value *V = DI.getValue(); 4800 if (!V) 4801 return nullptr; 4802 4803 SDDbgValue *SDV; 4804 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4805 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4806 DAG.AddDbgValue(SDV, nullptr, false); 4807 } else { 4808 // Do not use getValue() in here; we don't want to generate code at 4809 // this point if it hasn't been done yet. 4810 SDValue N = NodeMap[V]; 4811 if (!N.getNode() && isa<Argument>(V)) 4812 // Check unused arguments map. 4813 N = UnusedArgNodeMap[V]; 4814 if (N.getNode()) { 4815 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4816 SDV = DAG.getDbgValue(Variable, N.getNode(), 4817 N.getResNo(), Offset, dl, SDNodeOrder); 4818 DAG.AddDbgValue(SDV, N.getNode(), false); 4819 } 4820 } else if (!V->use_empty() ) { 4821 // Do not call getValue(V) yet, as we don't want to generate code. 4822 // Remember it for later. 4823 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4824 DanglingDebugInfoMap[V] = DDI; 4825 } else { 4826 // We may expand this to cover more cases. One case where we have no 4827 // data available is an unreferenced parameter. 4828 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4829 } 4830 } 4831 4832 // Build a debug info table entry. 4833 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4834 V = BCI->getOperand(0); 4835 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4836 // Don't handle byval struct arguments or VLAs, for example. 4837 if (!AI) { 4838 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4839 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4840 return nullptr; 4841 } 4842 DenseMap<const AllocaInst*, int>::iterator SI = 4843 FuncInfo.StaticAllocaMap.find(AI); 4844 if (SI == FuncInfo.StaticAllocaMap.end()) 4845 return nullptr; // VLAs. 4846 int FI = SI->second; 4847 4848 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4849 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4850 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4851 return nullptr; 4852 } 4853 4854 case Intrinsic::eh_typeid_for: { 4855 // Find the type id for the given typeinfo. 4856 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4857 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4858 Res = DAG.getConstant(TypeID, MVT::i32); 4859 setValue(&I, Res); 4860 return nullptr; 4861 } 4862 4863 case Intrinsic::eh_return_i32: 4864 case Intrinsic::eh_return_i64: 4865 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4866 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4867 MVT::Other, 4868 getControlRoot(), 4869 getValue(I.getArgOperand(0)), 4870 getValue(I.getArgOperand(1)))); 4871 return nullptr; 4872 case Intrinsic::eh_unwind_init: 4873 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4874 return nullptr; 4875 case Intrinsic::eh_dwarf_cfa: { 4876 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4877 TLI->getPointerTy()); 4878 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4879 CfaArg.getValueType(), 4880 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4881 CfaArg.getValueType()), 4882 CfaArg); 4883 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4884 TLI->getPointerTy(), 4885 DAG.getConstant(0, TLI->getPointerTy())); 4886 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4887 FA, Offset)); 4888 return nullptr; 4889 } 4890 case Intrinsic::eh_sjlj_callsite: { 4891 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4892 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4893 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4894 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4895 4896 MMI.setCurrentCallSite(CI->getZExtValue()); 4897 return nullptr; 4898 } 4899 case Intrinsic::eh_sjlj_functioncontext: { 4900 // Get and store the index of the function context. 4901 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4902 AllocaInst *FnCtx = 4903 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4904 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4905 MFI->setFunctionContextIndex(FI); 4906 return nullptr; 4907 } 4908 case Intrinsic::eh_sjlj_setjmp: { 4909 SDValue Ops[2]; 4910 Ops[0] = getRoot(); 4911 Ops[1] = getValue(I.getArgOperand(0)); 4912 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4913 DAG.getVTList(MVT::i32, MVT::Other), 4914 Ops, 2); 4915 setValue(&I, Op.getValue(0)); 4916 DAG.setRoot(Op.getValue(1)); 4917 return nullptr; 4918 } 4919 case Intrinsic::eh_sjlj_longjmp: { 4920 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4921 getRoot(), getValue(I.getArgOperand(0)))); 4922 return nullptr; 4923 } 4924 4925 case Intrinsic::x86_mmx_pslli_w: 4926 case Intrinsic::x86_mmx_pslli_d: 4927 case Intrinsic::x86_mmx_pslli_q: 4928 case Intrinsic::x86_mmx_psrli_w: 4929 case Intrinsic::x86_mmx_psrli_d: 4930 case Intrinsic::x86_mmx_psrli_q: 4931 case Intrinsic::x86_mmx_psrai_w: 4932 case Intrinsic::x86_mmx_psrai_d: { 4933 SDValue ShAmt = getValue(I.getArgOperand(1)); 4934 if (isa<ConstantSDNode>(ShAmt)) { 4935 visitTargetIntrinsic(I, Intrinsic); 4936 return nullptr; 4937 } 4938 unsigned NewIntrinsic = 0; 4939 EVT ShAmtVT = MVT::v2i32; 4940 switch (Intrinsic) { 4941 case Intrinsic::x86_mmx_pslli_w: 4942 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4943 break; 4944 case Intrinsic::x86_mmx_pslli_d: 4945 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4946 break; 4947 case Intrinsic::x86_mmx_pslli_q: 4948 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4949 break; 4950 case Intrinsic::x86_mmx_psrli_w: 4951 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4952 break; 4953 case Intrinsic::x86_mmx_psrli_d: 4954 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4955 break; 4956 case Intrinsic::x86_mmx_psrli_q: 4957 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4958 break; 4959 case Intrinsic::x86_mmx_psrai_w: 4960 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4961 break; 4962 case Intrinsic::x86_mmx_psrai_d: 4963 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4964 break; 4965 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4966 } 4967 4968 // The vector shift intrinsics with scalars uses 32b shift amounts but 4969 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4970 // to be zero. 4971 // We must do this early because v2i32 is not a legal type. 4972 SDValue ShOps[2]; 4973 ShOps[0] = ShAmt; 4974 ShOps[1] = DAG.getConstant(0, MVT::i32); 4975 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4976 EVT DestVT = TLI->getValueType(I.getType()); 4977 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4978 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4979 DAG.getConstant(NewIntrinsic, MVT::i32), 4980 getValue(I.getArgOperand(0)), ShAmt); 4981 setValue(&I, Res); 4982 return nullptr; 4983 } 4984 case Intrinsic::x86_avx_vinsertf128_pd_256: 4985 case Intrinsic::x86_avx_vinsertf128_ps_256: 4986 case Intrinsic::x86_avx_vinsertf128_si_256: 4987 case Intrinsic::x86_avx2_vinserti128: { 4988 EVT DestVT = TLI->getValueType(I.getType()); 4989 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4990 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4991 ElVT.getVectorNumElements(); 4992 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4993 getValue(I.getArgOperand(0)), 4994 getValue(I.getArgOperand(1)), 4995 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4996 setValue(&I, Res); 4997 return nullptr; 4998 } 4999 case Intrinsic::x86_avx_vextractf128_pd_256: 5000 case Intrinsic::x86_avx_vextractf128_ps_256: 5001 case Intrinsic::x86_avx_vextractf128_si_256: 5002 case Intrinsic::x86_avx2_vextracti128: { 5003 EVT DestVT = TLI->getValueType(I.getType()); 5004 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5005 DestVT.getVectorNumElements(); 5006 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5007 getValue(I.getArgOperand(0)), 5008 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5009 setValue(&I, Res); 5010 return nullptr; 5011 } 5012 case Intrinsic::convertff: 5013 case Intrinsic::convertfsi: 5014 case Intrinsic::convertfui: 5015 case Intrinsic::convertsif: 5016 case Intrinsic::convertuif: 5017 case Intrinsic::convertss: 5018 case Intrinsic::convertsu: 5019 case Intrinsic::convertus: 5020 case Intrinsic::convertuu: { 5021 ISD::CvtCode Code = ISD::CVT_INVALID; 5022 switch (Intrinsic) { 5023 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5024 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5025 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5026 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5027 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5028 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5029 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5030 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5031 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5032 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5033 } 5034 EVT DestVT = TLI->getValueType(I.getType()); 5035 const Value *Op1 = I.getArgOperand(0); 5036 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5037 DAG.getValueType(DestVT), 5038 DAG.getValueType(getValue(Op1).getValueType()), 5039 getValue(I.getArgOperand(1)), 5040 getValue(I.getArgOperand(2)), 5041 Code); 5042 setValue(&I, Res); 5043 return nullptr; 5044 } 5045 case Intrinsic::powi: 5046 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5047 getValue(I.getArgOperand(1)), DAG)); 5048 return nullptr; 5049 case Intrinsic::log: 5050 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5051 return nullptr; 5052 case Intrinsic::log2: 5053 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5054 return nullptr; 5055 case Intrinsic::log10: 5056 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5057 return nullptr; 5058 case Intrinsic::exp: 5059 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5060 return nullptr; 5061 case Intrinsic::exp2: 5062 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5063 return nullptr; 5064 case Intrinsic::pow: 5065 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5066 getValue(I.getArgOperand(1)), DAG, *TLI)); 5067 return nullptr; 5068 case Intrinsic::sqrt: 5069 case Intrinsic::fabs: 5070 case Intrinsic::sin: 5071 case Intrinsic::cos: 5072 case Intrinsic::floor: 5073 case Intrinsic::ceil: 5074 case Intrinsic::trunc: 5075 case Intrinsic::rint: 5076 case Intrinsic::nearbyint: 5077 case Intrinsic::round: { 5078 unsigned Opcode; 5079 switch (Intrinsic) { 5080 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5081 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5082 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5083 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5084 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5085 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5086 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5087 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5088 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5089 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5090 case Intrinsic::round: Opcode = ISD::FROUND; break; 5091 } 5092 5093 setValue(&I, DAG.getNode(Opcode, sdl, 5094 getValue(I.getArgOperand(0)).getValueType(), 5095 getValue(I.getArgOperand(0)))); 5096 return nullptr; 5097 } 5098 case Intrinsic::copysign: 5099 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5100 getValue(I.getArgOperand(0)).getValueType(), 5101 getValue(I.getArgOperand(0)), 5102 getValue(I.getArgOperand(1)))); 5103 return nullptr; 5104 case Intrinsic::fma: 5105 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5106 getValue(I.getArgOperand(0)).getValueType(), 5107 getValue(I.getArgOperand(0)), 5108 getValue(I.getArgOperand(1)), 5109 getValue(I.getArgOperand(2)))); 5110 return nullptr; 5111 case Intrinsic::fmuladd: { 5112 EVT VT = TLI->getValueType(I.getType()); 5113 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5114 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5115 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5116 getValue(I.getArgOperand(0)).getValueType(), 5117 getValue(I.getArgOperand(0)), 5118 getValue(I.getArgOperand(1)), 5119 getValue(I.getArgOperand(2)))); 5120 } else { 5121 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5122 getValue(I.getArgOperand(0)).getValueType(), 5123 getValue(I.getArgOperand(0)), 5124 getValue(I.getArgOperand(1))); 5125 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5126 getValue(I.getArgOperand(0)).getValueType(), 5127 Mul, 5128 getValue(I.getArgOperand(2))); 5129 setValue(&I, Add); 5130 } 5131 return nullptr; 5132 } 5133 case Intrinsic::convert_to_fp16: 5134 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5135 MVT::i16, getValue(I.getArgOperand(0)))); 5136 return nullptr; 5137 case Intrinsic::convert_from_fp16: 5138 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5139 MVT::f32, getValue(I.getArgOperand(0)))); 5140 return nullptr; 5141 case Intrinsic::pcmarker: { 5142 SDValue Tmp = getValue(I.getArgOperand(0)); 5143 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5144 return nullptr; 5145 } 5146 case Intrinsic::readcyclecounter: { 5147 SDValue Op = getRoot(); 5148 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5149 DAG.getVTList(MVT::i64, MVT::Other), 5150 &Op, 1); 5151 setValue(&I, Res); 5152 DAG.setRoot(Res.getValue(1)); 5153 return nullptr; 5154 } 5155 case Intrinsic::bswap: 5156 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5157 getValue(I.getArgOperand(0)).getValueType(), 5158 getValue(I.getArgOperand(0)))); 5159 return nullptr; 5160 case Intrinsic::cttz: { 5161 SDValue Arg = getValue(I.getArgOperand(0)); 5162 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5163 EVT Ty = Arg.getValueType(); 5164 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5165 sdl, Ty, Arg)); 5166 return nullptr; 5167 } 5168 case Intrinsic::ctlz: { 5169 SDValue Arg = getValue(I.getArgOperand(0)); 5170 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5171 EVT Ty = Arg.getValueType(); 5172 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5173 sdl, Ty, Arg)); 5174 return nullptr; 5175 } 5176 case Intrinsic::ctpop: { 5177 SDValue Arg = getValue(I.getArgOperand(0)); 5178 EVT Ty = Arg.getValueType(); 5179 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5180 return nullptr; 5181 } 5182 case Intrinsic::stacksave: { 5183 SDValue Op = getRoot(); 5184 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5185 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5186 setValue(&I, Res); 5187 DAG.setRoot(Res.getValue(1)); 5188 return nullptr; 5189 } 5190 case Intrinsic::stackrestore: { 5191 Res = getValue(I.getArgOperand(0)); 5192 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5193 return nullptr; 5194 } 5195 case Intrinsic::stackprotector: { 5196 // Emit code into the DAG to store the stack guard onto the stack. 5197 MachineFunction &MF = DAG.getMachineFunction(); 5198 MachineFrameInfo *MFI = MF.getFrameInfo(); 5199 EVT PtrTy = TLI->getPointerTy(); 5200 5201 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5202 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5203 5204 int FI = FuncInfo.StaticAllocaMap[Slot]; 5205 MFI->setStackProtectorIndex(FI); 5206 5207 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5208 5209 // Store the stack protector onto the stack. 5210 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5211 MachinePointerInfo::getFixedStack(FI), 5212 true, false, 0); 5213 setValue(&I, Res); 5214 DAG.setRoot(Res); 5215 return nullptr; 5216 } 5217 case Intrinsic::objectsize: { 5218 // If we don't know by now, we're never going to know. 5219 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5220 5221 assert(CI && "Non-constant type in __builtin_object_size?"); 5222 5223 SDValue Arg = getValue(I.getCalledValue()); 5224 EVT Ty = Arg.getValueType(); 5225 5226 if (CI->isZero()) 5227 Res = DAG.getConstant(-1ULL, Ty); 5228 else 5229 Res = DAG.getConstant(0, Ty); 5230 5231 setValue(&I, Res); 5232 return nullptr; 5233 } 5234 case Intrinsic::annotation: 5235 case Intrinsic::ptr_annotation: 5236 // Drop the intrinsic, but forward the value 5237 setValue(&I, getValue(I.getOperand(0))); 5238 return nullptr; 5239 case Intrinsic::var_annotation: 5240 // Discard annotate attributes 5241 return nullptr; 5242 5243 case Intrinsic::init_trampoline: { 5244 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5245 5246 SDValue Ops[6]; 5247 Ops[0] = getRoot(); 5248 Ops[1] = getValue(I.getArgOperand(0)); 5249 Ops[2] = getValue(I.getArgOperand(1)); 5250 Ops[3] = getValue(I.getArgOperand(2)); 5251 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5252 Ops[5] = DAG.getSrcValue(F); 5253 5254 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5255 5256 DAG.setRoot(Res); 5257 return nullptr; 5258 } 5259 case Intrinsic::adjust_trampoline: { 5260 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5261 TLI->getPointerTy(), 5262 getValue(I.getArgOperand(0)))); 5263 return nullptr; 5264 } 5265 case Intrinsic::gcroot: 5266 if (GFI) { 5267 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5268 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5269 5270 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5271 GFI->addStackRoot(FI->getIndex(), TypeMap); 5272 } 5273 return nullptr; 5274 case Intrinsic::gcread: 5275 case Intrinsic::gcwrite: 5276 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5277 case Intrinsic::flt_rounds: 5278 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5279 return nullptr; 5280 5281 case Intrinsic::expect: { 5282 // Just replace __builtin_expect(exp, c) with EXP. 5283 setValue(&I, getValue(I.getArgOperand(0))); 5284 return nullptr; 5285 } 5286 5287 case Intrinsic::debugtrap: 5288 case Intrinsic::trap: { 5289 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5290 if (TrapFuncName.empty()) { 5291 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5292 ISD::TRAP : ISD::DEBUGTRAP; 5293 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5294 return nullptr; 5295 } 5296 TargetLowering::ArgListTy Args; 5297 TargetLowering:: 5298 CallLoweringInfo CLI(getRoot(), I.getType(), 5299 false, false, false, false, 0, CallingConv::C, 5300 /*isTailCall=*/false, 5301 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5302 DAG.getExternalSymbol(TrapFuncName.data(), 5303 TLI->getPointerTy()), 5304 Args, DAG, sdl); 5305 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5306 DAG.setRoot(Result.second); 5307 return nullptr; 5308 } 5309 5310 case Intrinsic::uadd_with_overflow: 5311 case Intrinsic::sadd_with_overflow: 5312 case Intrinsic::usub_with_overflow: 5313 case Intrinsic::ssub_with_overflow: 5314 case Intrinsic::umul_with_overflow: 5315 case Intrinsic::smul_with_overflow: { 5316 ISD::NodeType Op; 5317 switch (Intrinsic) { 5318 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5319 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5320 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5321 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5322 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5323 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5324 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5325 } 5326 SDValue Op1 = getValue(I.getArgOperand(0)); 5327 SDValue Op2 = getValue(I.getArgOperand(1)); 5328 5329 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5330 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5331 return nullptr; 5332 } 5333 case Intrinsic::prefetch: { 5334 SDValue Ops[5]; 5335 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5336 Ops[0] = getRoot(); 5337 Ops[1] = getValue(I.getArgOperand(0)); 5338 Ops[2] = getValue(I.getArgOperand(1)); 5339 Ops[3] = getValue(I.getArgOperand(2)); 5340 Ops[4] = getValue(I.getArgOperand(3)); 5341 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5342 DAG.getVTList(MVT::Other), 5343 &Ops[0], 5, 5344 EVT::getIntegerVT(*Context, 8), 5345 MachinePointerInfo(I.getArgOperand(0)), 5346 0, /* align */ 5347 false, /* volatile */ 5348 rw==0, /* read */ 5349 rw==1)); /* write */ 5350 return nullptr; 5351 } 5352 case Intrinsic::lifetime_start: 5353 case Intrinsic::lifetime_end: { 5354 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5355 // Stack coloring is not enabled in O0, discard region information. 5356 if (TM.getOptLevel() == CodeGenOpt::None) 5357 return nullptr; 5358 5359 SmallVector<Value *, 4> Allocas; 5360 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5361 5362 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5363 E = Allocas.end(); Object != E; ++Object) { 5364 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5365 5366 // Could not find an Alloca. 5367 if (!LifetimeObject) 5368 continue; 5369 5370 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5371 5372 SDValue Ops[2]; 5373 Ops[0] = getRoot(); 5374 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5375 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5376 5377 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5378 DAG.setRoot(Res); 5379 } 5380 return nullptr; 5381 } 5382 case Intrinsic::invariant_start: 5383 // Discard region information. 5384 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5385 return nullptr; 5386 case Intrinsic::invariant_end: 5387 // Discard region information. 5388 return nullptr; 5389 case Intrinsic::stackprotectorcheck: { 5390 // Do not actually emit anything for this basic block. Instead we initialize 5391 // the stack protector descriptor and export the guard variable so we can 5392 // access it in FinishBasicBlock. 5393 const BasicBlock *BB = I.getParent(); 5394 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5395 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5396 5397 // Flush our exports since we are going to process a terminator. 5398 (void)getControlRoot(); 5399 return nullptr; 5400 } 5401 case Intrinsic::clear_cache: 5402 return TLI->getClearCacheBuiltinName(); 5403 case Intrinsic::donothing: 5404 // ignore 5405 return nullptr; 5406 case Intrinsic::experimental_stackmap: { 5407 visitStackmap(I); 5408 return nullptr; 5409 } 5410 case Intrinsic::experimental_patchpoint_void: 5411 case Intrinsic::experimental_patchpoint_i64: { 5412 visitPatchpoint(I); 5413 return nullptr; 5414 } 5415 } 5416 } 5417 5418 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5419 bool isTailCall, 5420 MachineBasicBlock *LandingPad) { 5421 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5422 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5423 Type *RetTy = FTy->getReturnType(); 5424 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5425 MCSymbol *BeginLabel = nullptr; 5426 5427 TargetLowering::ArgListTy Args; 5428 TargetLowering::ArgListEntry Entry; 5429 Args.reserve(CS.arg_size()); 5430 5431 // Check whether the function can return without sret-demotion. 5432 SmallVector<ISD::OutputArg, 4> Outs; 5433 const TargetLowering *TLI = TM.getTargetLowering(); 5434 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5435 5436 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5437 DAG.getMachineFunction(), 5438 FTy->isVarArg(), Outs, 5439 FTy->getContext()); 5440 5441 SDValue DemoteStackSlot; 5442 int DemoteStackIdx = -100; 5443 5444 if (!CanLowerReturn) { 5445 assert(!CS.hasInAllocaArgument() && 5446 "sret demotion is incompatible with inalloca"); 5447 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5448 FTy->getReturnType()); 5449 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5450 FTy->getReturnType()); 5451 MachineFunction &MF = DAG.getMachineFunction(); 5452 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5453 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5454 5455 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5456 Entry.Node = DemoteStackSlot; 5457 Entry.Ty = StackSlotPtrType; 5458 Entry.isSExt = false; 5459 Entry.isZExt = false; 5460 Entry.isInReg = false; 5461 Entry.isSRet = true; 5462 Entry.isNest = false; 5463 Entry.isByVal = false; 5464 Entry.isReturned = false; 5465 Entry.Alignment = Align; 5466 Args.push_back(Entry); 5467 RetTy = Type::getVoidTy(FTy->getContext()); 5468 } 5469 5470 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5471 i != e; ++i) { 5472 const Value *V = *i; 5473 5474 // Skip empty types 5475 if (V->getType()->isEmptyTy()) 5476 continue; 5477 5478 SDValue ArgNode = getValue(V); 5479 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5480 5481 // Skip the first return-type Attribute to get to params. 5482 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5483 Args.push_back(Entry); 5484 } 5485 5486 if (LandingPad) { 5487 // Insert a label before the invoke call to mark the try range. This can be 5488 // used to detect deletion of the invoke via the MachineModuleInfo. 5489 BeginLabel = MMI.getContext().CreateTempSymbol(); 5490 5491 // For SjLj, keep track of which landing pads go with which invokes 5492 // so as to maintain the ordering of pads in the LSDA. 5493 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5494 if (CallSiteIndex) { 5495 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5496 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5497 5498 // Now that the call site is handled, stop tracking it. 5499 MMI.setCurrentCallSite(0); 5500 } 5501 5502 // Both PendingLoads and PendingExports must be flushed here; 5503 // this call might not return. 5504 (void)getRoot(); 5505 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5506 } 5507 5508 // Check if target-independent constraints permit a tail call here. 5509 // Target-dependent constraints are checked within TLI->LowerCallTo. 5510 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5511 isTailCall = false; 5512 5513 TargetLowering:: 5514 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5515 getCurSDLoc(), CS); 5516 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5517 assert((isTailCall || Result.second.getNode()) && 5518 "Non-null chain expected with non-tail call!"); 5519 assert((Result.second.getNode() || !Result.first.getNode()) && 5520 "Null value expected with tail call!"); 5521 if (Result.first.getNode()) { 5522 setValue(CS.getInstruction(), Result.first); 5523 } else if (!CanLowerReturn && Result.second.getNode()) { 5524 // The instruction result is the result of loading from the 5525 // hidden sret parameter. 5526 SmallVector<EVT, 1> PVTs; 5527 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5528 5529 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5530 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5531 EVT PtrVT = PVTs[0]; 5532 5533 SmallVector<EVT, 4> RetTys; 5534 SmallVector<uint64_t, 4> Offsets; 5535 RetTy = FTy->getReturnType(); 5536 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5537 5538 unsigned NumValues = RetTys.size(); 5539 SmallVector<SDValue, 4> Values(NumValues); 5540 SmallVector<SDValue, 4> Chains(NumValues); 5541 5542 for (unsigned i = 0; i < NumValues; ++i) { 5543 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5544 DemoteStackSlot, 5545 DAG.getConstant(Offsets[i], PtrVT)); 5546 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5547 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5548 false, false, false, 1); 5549 Values[i] = L; 5550 Chains[i] = L.getValue(1); 5551 } 5552 5553 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5554 MVT::Other, &Chains[0], NumValues); 5555 PendingLoads.push_back(Chain); 5556 5557 setValue(CS.getInstruction(), 5558 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5559 DAG.getVTList(RetTys), 5560 &Values[0], Values.size())); 5561 } 5562 5563 if (!Result.second.getNode()) { 5564 // As a special case, a null chain means that a tail call has been emitted 5565 // and the DAG root is already updated. 5566 HasTailCall = true; 5567 5568 // Since there's no actual continuation from this block, nothing can be 5569 // relying on us setting vregs for them. 5570 PendingExports.clear(); 5571 } else { 5572 DAG.setRoot(Result.second); 5573 } 5574 5575 if (LandingPad) { 5576 // Insert a label at the end of the invoke call to mark the try range. This 5577 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5578 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5579 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5580 5581 // Inform MachineModuleInfo of range. 5582 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5583 } 5584 } 5585 5586 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5587 /// value is equal or not-equal to zero. 5588 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5589 for (const User *U : V->users()) { 5590 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5591 if (IC->isEquality()) 5592 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5593 if (C->isNullValue()) 5594 continue; 5595 // Unknown instruction. 5596 return false; 5597 } 5598 return true; 5599 } 5600 5601 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5602 Type *LoadTy, 5603 SelectionDAGBuilder &Builder) { 5604 5605 // Check to see if this load can be trivially constant folded, e.g. if the 5606 // input is from a string literal. 5607 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5608 // Cast pointer to the type we really want to load. 5609 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5610 PointerType::getUnqual(LoadTy)); 5611 5612 if (const Constant *LoadCst = 5613 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5614 Builder.DL)) 5615 return Builder.getValue(LoadCst); 5616 } 5617 5618 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5619 // still constant memory, the input chain can be the entry node. 5620 SDValue Root; 5621 bool ConstantMemory = false; 5622 5623 // Do not serialize (non-volatile) loads of constant memory with anything. 5624 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5625 Root = Builder.DAG.getEntryNode(); 5626 ConstantMemory = true; 5627 } else { 5628 // Do not serialize non-volatile loads against each other. 5629 Root = Builder.DAG.getRoot(); 5630 } 5631 5632 SDValue Ptr = Builder.getValue(PtrVal); 5633 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5634 Ptr, MachinePointerInfo(PtrVal), 5635 false /*volatile*/, 5636 false /*nontemporal*/, 5637 false /*isinvariant*/, 1 /* align=1 */); 5638 5639 if (!ConstantMemory) 5640 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5641 return LoadVal; 5642 } 5643 5644 /// processIntegerCallValue - Record the value for an instruction that 5645 /// produces an integer result, converting the type where necessary. 5646 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5647 SDValue Value, 5648 bool IsSigned) { 5649 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5650 if (IsSigned) 5651 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5652 else 5653 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5654 setValue(&I, Value); 5655 } 5656 5657 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5658 /// If so, return true and lower it, otherwise return false and it will be 5659 /// lowered like a normal call. 5660 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5661 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5662 if (I.getNumArgOperands() != 3) 5663 return false; 5664 5665 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5666 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5667 !I.getArgOperand(2)->getType()->isIntegerTy() || 5668 !I.getType()->isIntegerTy()) 5669 return false; 5670 5671 const Value *Size = I.getArgOperand(2); 5672 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5673 if (CSize && CSize->getZExtValue() == 0) { 5674 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5675 setValue(&I, DAG.getConstant(0, CallVT)); 5676 return true; 5677 } 5678 5679 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5680 std::pair<SDValue, SDValue> Res = 5681 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5682 getValue(LHS), getValue(RHS), getValue(Size), 5683 MachinePointerInfo(LHS), 5684 MachinePointerInfo(RHS)); 5685 if (Res.first.getNode()) { 5686 processIntegerCallValue(I, Res.first, true); 5687 PendingLoads.push_back(Res.second); 5688 return true; 5689 } 5690 5691 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5692 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5693 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5694 bool ActuallyDoIt = true; 5695 MVT LoadVT; 5696 Type *LoadTy; 5697 switch (CSize->getZExtValue()) { 5698 default: 5699 LoadVT = MVT::Other; 5700 LoadTy = nullptr; 5701 ActuallyDoIt = false; 5702 break; 5703 case 2: 5704 LoadVT = MVT::i16; 5705 LoadTy = Type::getInt16Ty(CSize->getContext()); 5706 break; 5707 case 4: 5708 LoadVT = MVT::i32; 5709 LoadTy = Type::getInt32Ty(CSize->getContext()); 5710 break; 5711 case 8: 5712 LoadVT = MVT::i64; 5713 LoadTy = Type::getInt64Ty(CSize->getContext()); 5714 break; 5715 /* 5716 case 16: 5717 LoadVT = MVT::v4i32; 5718 LoadTy = Type::getInt32Ty(CSize->getContext()); 5719 LoadTy = VectorType::get(LoadTy, 4); 5720 break; 5721 */ 5722 } 5723 5724 // This turns into unaligned loads. We only do this if the target natively 5725 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5726 // we'll only produce a small number of byte loads. 5727 5728 // Require that we can find a legal MVT, and only do this if the target 5729 // supports unaligned loads of that type. Expanding into byte loads would 5730 // bloat the code. 5731 const TargetLowering *TLI = TM.getTargetLowering(); 5732 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5733 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5734 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5735 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5736 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5737 if (!TLI->isTypeLegal(LoadVT) || 5738 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5739 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5740 ActuallyDoIt = false; 5741 } 5742 5743 if (ActuallyDoIt) { 5744 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5745 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5746 5747 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5748 ISD::SETNE); 5749 processIntegerCallValue(I, Res, false); 5750 return true; 5751 } 5752 } 5753 5754 5755 return false; 5756 } 5757 5758 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5759 /// form. If so, return true and lower it, otherwise return false and it 5760 /// will be lowered like a normal call. 5761 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5762 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5763 if (I.getNumArgOperands() != 3) 5764 return false; 5765 5766 const Value *Src = I.getArgOperand(0); 5767 const Value *Char = I.getArgOperand(1); 5768 const Value *Length = I.getArgOperand(2); 5769 if (!Src->getType()->isPointerTy() || 5770 !Char->getType()->isIntegerTy() || 5771 !Length->getType()->isIntegerTy() || 5772 !I.getType()->isPointerTy()) 5773 return false; 5774 5775 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5776 std::pair<SDValue, SDValue> Res = 5777 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5778 getValue(Src), getValue(Char), getValue(Length), 5779 MachinePointerInfo(Src)); 5780 if (Res.first.getNode()) { 5781 setValue(&I, Res.first); 5782 PendingLoads.push_back(Res.second); 5783 return true; 5784 } 5785 5786 return false; 5787 } 5788 5789 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5790 /// optimized form. If so, return true and lower it, otherwise return false 5791 /// and it will be lowered like a normal call. 5792 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5793 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5794 if (I.getNumArgOperands() != 2) 5795 return false; 5796 5797 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5798 if (!Arg0->getType()->isPointerTy() || 5799 !Arg1->getType()->isPointerTy() || 5800 !I.getType()->isPointerTy()) 5801 return false; 5802 5803 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5804 std::pair<SDValue, SDValue> Res = 5805 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5806 getValue(Arg0), getValue(Arg1), 5807 MachinePointerInfo(Arg0), 5808 MachinePointerInfo(Arg1), isStpcpy); 5809 if (Res.first.getNode()) { 5810 setValue(&I, Res.first); 5811 DAG.setRoot(Res.second); 5812 return true; 5813 } 5814 5815 return false; 5816 } 5817 5818 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5819 /// If so, return true and lower it, otherwise return false and it will be 5820 /// lowered like a normal call. 5821 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5822 // Verify that the prototype makes sense. int strcmp(void*,void*) 5823 if (I.getNumArgOperands() != 2) 5824 return false; 5825 5826 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5827 if (!Arg0->getType()->isPointerTy() || 5828 !Arg1->getType()->isPointerTy() || 5829 !I.getType()->isIntegerTy()) 5830 return false; 5831 5832 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5833 std::pair<SDValue, SDValue> Res = 5834 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5835 getValue(Arg0), getValue(Arg1), 5836 MachinePointerInfo(Arg0), 5837 MachinePointerInfo(Arg1)); 5838 if (Res.first.getNode()) { 5839 processIntegerCallValue(I, Res.first, true); 5840 PendingLoads.push_back(Res.second); 5841 return true; 5842 } 5843 5844 return false; 5845 } 5846 5847 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5848 /// form. If so, return true and lower it, otherwise return false and it 5849 /// will be lowered like a normal call. 5850 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5851 // Verify that the prototype makes sense. size_t strlen(char *) 5852 if (I.getNumArgOperands() != 1) 5853 return false; 5854 5855 const Value *Arg0 = I.getArgOperand(0); 5856 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5857 return false; 5858 5859 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5860 std::pair<SDValue, SDValue> Res = 5861 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5862 getValue(Arg0), MachinePointerInfo(Arg0)); 5863 if (Res.first.getNode()) { 5864 processIntegerCallValue(I, Res.first, false); 5865 PendingLoads.push_back(Res.second); 5866 return true; 5867 } 5868 5869 return false; 5870 } 5871 5872 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5873 /// form. If so, return true and lower it, otherwise return false and it 5874 /// will be lowered like a normal call. 5875 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5876 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5877 if (I.getNumArgOperands() != 2) 5878 return false; 5879 5880 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5881 if (!Arg0->getType()->isPointerTy() || 5882 !Arg1->getType()->isIntegerTy() || 5883 !I.getType()->isIntegerTy()) 5884 return false; 5885 5886 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5887 std::pair<SDValue, SDValue> Res = 5888 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5889 getValue(Arg0), getValue(Arg1), 5890 MachinePointerInfo(Arg0)); 5891 if (Res.first.getNode()) { 5892 processIntegerCallValue(I, Res.first, false); 5893 PendingLoads.push_back(Res.second); 5894 return true; 5895 } 5896 5897 return false; 5898 } 5899 5900 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5901 /// operation (as expected), translate it to an SDNode with the specified opcode 5902 /// and return true. 5903 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5904 unsigned Opcode) { 5905 // Sanity check that it really is a unary floating-point call. 5906 if (I.getNumArgOperands() != 1 || 5907 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5908 I.getType() != I.getArgOperand(0)->getType() || 5909 !I.onlyReadsMemory()) 5910 return false; 5911 5912 SDValue Tmp = getValue(I.getArgOperand(0)); 5913 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5914 return true; 5915 } 5916 5917 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5918 // Handle inline assembly differently. 5919 if (isa<InlineAsm>(I.getCalledValue())) { 5920 visitInlineAsm(&I); 5921 return; 5922 } 5923 5924 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5925 ComputeUsesVAFloatArgument(I, &MMI); 5926 5927 const char *RenameFn = nullptr; 5928 if (Function *F = I.getCalledFunction()) { 5929 if (F->isDeclaration()) { 5930 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5931 if (unsigned IID = II->getIntrinsicID(F)) { 5932 RenameFn = visitIntrinsicCall(I, IID); 5933 if (!RenameFn) 5934 return; 5935 } 5936 } 5937 if (unsigned IID = F->getIntrinsicID()) { 5938 RenameFn = visitIntrinsicCall(I, IID); 5939 if (!RenameFn) 5940 return; 5941 } 5942 } 5943 5944 // Check for well-known libc/libm calls. If the function is internal, it 5945 // can't be a library call. 5946 LibFunc::Func Func; 5947 if (!F->hasLocalLinkage() && F->hasName() && 5948 LibInfo->getLibFunc(F->getName(), Func) && 5949 LibInfo->hasOptimizedCodeGen(Func)) { 5950 switch (Func) { 5951 default: break; 5952 case LibFunc::copysign: 5953 case LibFunc::copysignf: 5954 case LibFunc::copysignl: 5955 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5956 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5957 I.getType() == I.getArgOperand(0)->getType() && 5958 I.getType() == I.getArgOperand(1)->getType() && 5959 I.onlyReadsMemory()) { 5960 SDValue LHS = getValue(I.getArgOperand(0)); 5961 SDValue RHS = getValue(I.getArgOperand(1)); 5962 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5963 LHS.getValueType(), LHS, RHS)); 5964 return; 5965 } 5966 break; 5967 case LibFunc::fabs: 5968 case LibFunc::fabsf: 5969 case LibFunc::fabsl: 5970 if (visitUnaryFloatCall(I, ISD::FABS)) 5971 return; 5972 break; 5973 case LibFunc::sin: 5974 case LibFunc::sinf: 5975 case LibFunc::sinl: 5976 if (visitUnaryFloatCall(I, ISD::FSIN)) 5977 return; 5978 break; 5979 case LibFunc::cos: 5980 case LibFunc::cosf: 5981 case LibFunc::cosl: 5982 if (visitUnaryFloatCall(I, ISD::FCOS)) 5983 return; 5984 break; 5985 case LibFunc::sqrt: 5986 case LibFunc::sqrtf: 5987 case LibFunc::sqrtl: 5988 case LibFunc::sqrt_finite: 5989 case LibFunc::sqrtf_finite: 5990 case LibFunc::sqrtl_finite: 5991 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5992 return; 5993 break; 5994 case LibFunc::floor: 5995 case LibFunc::floorf: 5996 case LibFunc::floorl: 5997 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5998 return; 5999 break; 6000 case LibFunc::nearbyint: 6001 case LibFunc::nearbyintf: 6002 case LibFunc::nearbyintl: 6003 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6004 return; 6005 break; 6006 case LibFunc::ceil: 6007 case LibFunc::ceilf: 6008 case LibFunc::ceill: 6009 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6010 return; 6011 break; 6012 case LibFunc::rint: 6013 case LibFunc::rintf: 6014 case LibFunc::rintl: 6015 if (visitUnaryFloatCall(I, ISD::FRINT)) 6016 return; 6017 break; 6018 case LibFunc::round: 6019 case LibFunc::roundf: 6020 case LibFunc::roundl: 6021 if (visitUnaryFloatCall(I, ISD::FROUND)) 6022 return; 6023 break; 6024 case LibFunc::trunc: 6025 case LibFunc::truncf: 6026 case LibFunc::truncl: 6027 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6028 return; 6029 break; 6030 case LibFunc::log2: 6031 case LibFunc::log2f: 6032 case LibFunc::log2l: 6033 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6034 return; 6035 break; 6036 case LibFunc::exp2: 6037 case LibFunc::exp2f: 6038 case LibFunc::exp2l: 6039 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6040 return; 6041 break; 6042 case LibFunc::memcmp: 6043 if (visitMemCmpCall(I)) 6044 return; 6045 break; 6046 case LibFunc::memchr: 6047 if (visitMemChrCall(I)) 6048 return; 6049 break; 6050 case LibFunc::strcpy: 6051 if (visitStrCpyCall(I, false)) 6052 return; 6053 break; 6054 case LibFunc::stpcpy: 6055 if (visitStrCpyCall(I, true)) 6056 return; 6057 break; 6058 case LibFunc::strcmp: 6059 if (visitStrCmpCall(I)) 6060 return; 6061 break; 6062 case LibFunc::strlen: 6063 if (visitStrLenCall(I)) 6064 return; 6065 break; 6066 case LibFunc::strnlen: 6067 if (visitStrNLenCall(I)) 6068 return; 6069 break; 6070 } 6071 } 6072 } 6073 6074 SDValue Callee; 6075 if (!RenameFn) 6076 Callee = getValue(I.getCalledValue()); 6077 else 6078 Callee = DAG.getExternalSymbol(RenameFn, 6079 TM.getTargetLowering()->getPointerTy()); 6080 6081 // Check if we can potentially perform a tail call. More detailed checking is 6082 // be done within LowerCallTo, after more information about the call is known. 6083 LowerCallTo(&I, Callee, I.isTailCall()); 6084 } 6085 6086 namespace { 6087 6088 /// AsmOperandInfo - This contains information for each constraint that we are 6089 /// lowering. 6090 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6091 public: 6092 /// CallOperand - If this is the result output operand or a clobber 6093 /// this is null, otherwise it is the incoming operand to the CallInst. 6094 /// This gets modified as the asm is processed. 6095 SDValue CallOperand; 6096 6097 /// AssignedRegs - If this is a register or register class operand, this 6098 /// contains the set of register corresponding to the operand. 6099 RegsForValue AssignedRegs; 6100 6101 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6102 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6103 } 6104 6105 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6106 /// corresponds to. If there is no Value* for this operand, it returns 6107 /// MVT::Other. 6108 EVT getCallOperandValEVT(LLVMContext &Context, 6109 const TargetLowering &TLI, 6110 const DataLayout *DL) const { 6111 if (!CallOperandVal) return MVT::Other; 6112 6113 if (isa<BasicBlock>(CallOperandVal)) 6114 return TLI.getPointerTy(); 6115 6116 llvm::Type *OpTy = CallOperandVal->getType(); 6117 6118 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6119 // If this is an indirect operand, the operand is a pointer to the 6120 // accessed type. 6121 if (isIndirect) { 6122 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6123 if (!PtrTy) 6124 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6125 OpTy = PtrTy->getElementType(); 6126 } 6127 6128 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6129 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6130 if (STy->getNumElements() == 1) 6131 OpTy = STy->getElementType(0); 6132 6133 // If OpTy is not a single value, it may be a struct/union that we 6134 // can tile with integers. 6135 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6136 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6137 switch (BitSize) { 6138 default: break; 6139 case 1: 6140 case 8: 6141 case 16: 6142 case 32: 6143 case 64: 6144 case 128: 6145 OpTy = IntegerType::get(Context, BitSize); 6146 break; 6147 } 6148 } 6149 6150 return TLI.getValueType(OpTy, true); 6151 } 6152 }; 6153 6154 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6155 6156 } // end anonymous namespace 6157 6158 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6159 /// specified operand. We prefer to assign virtual registers, to allow the 6160 /// register allocator to handle the assignment process. However, if the asm 6161 /// uses features that we can't model on machineinstrs, we have SDISel do the 6162 /// allocation. This produces generally horrible, but correct, code. 6163 /// 6164 /// OpInfo describes the operand. 6165 /// 6166 static void GetRegistersForValue(SelectionDAG &DAG, 6167 const TargetLowering &TLI, 6168 SDLoc DL, 6169 SDISelAsmOperandInfo &OpInfo) { 6170 LLVMContext &Context = *DAG.getContext(); 6171 6172 MachineFunction &MF = DAG.getMachineFunction(); 6173 SmallVector<unsigned, 4> Regs; 6174 6175 // If this is a constraint for a single physreg, or a constraint for a 6176 // register class, find it. 6177 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6178 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6179 OpInfo.ConstraintVT); 6180 6181 unsigned NumRegs = 1; 6182 if (OpInfo.ConstraintVT != MVT::Other) { 6183 // If this is a FP input in an integer register (or visa versa) insert a bit 6184 // cast of the input value. More generally, handle any case where the input 6185 // value disagrees with the register class we plan to stick this in. 6186 if (OpInfo.Type == InlineAsm::isInput && 6187 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6188 // Try to convert to the first EVT that the reg class contains. If the 6189 // types are identical size, use a bitcast to convert (e.g. two differing 6190 // vector types). 6191 MVT RegVT = *PhysReg.second->vt_begin(); 6192 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6193 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6194 RegVT, OpInfo.CallOperand); 6195 OpInfo.ConstraintVT = RegVT; 6196 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6197 // If the input is a FP value and we want it in FP registers, do a 6198 // bitcast to the corresponding integer type. This turns an f64 value 6199 // into i64, which can be passed with two i32 values on a 32-bit 6200 // machine. 6201 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6202 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6203 RegVT, OpInfo.CallOperand); 6204 OpInfo.ConstraintVT = RegVT; 6205 } 6206 } 6207 6208 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6209 } 6210 6211 MVT RegVT; 6212 EVT ValueVT = OpInfo.ConstraintVT; 6213 6214 // If this is a constraint for a specific physical register, like {r17}, 6215 // assign it now. 6216 if (unsigned AssignedReg = PhysReg.first) { 6217 const TargetRegisterClass *RC = PhysReg.second; 6218 if (OpInfo.ConstraintVT == MVT::Other) 6219 ValueVT = *RC->vt_begin(); 6220 6221 // Get the actual register value type. This is important, because the user 6222 // may have asked for (e.g.) the AX register in i32 type. We need to 6223 // remember that AX is actually i16 to get the right extension. 6224 RegVT = *RC->vt_begin(); 6225 6226 // This is a explicit reference to a physical register. 6227 Regs.push_back(AssignedReg); 6228 6229 // If this is an expanded reference, add the rest of the regs to Regs. 6230 if (NumRegs != 1) { 6231 TargetRegisterClass::iterator I = RC->begin(); 6232 for (; *I != AssignedReg; ++I) 6233 assert(I != RC->end() && "Didn't find reg!"); 6234 6235 // Already added the first reg. 6236 --NumRegs; ++I; 6237 for (; NumRegs; --NumRegs, ++I) { 6238 assert(I != RC->end() && "Ran out of registers to allocate!"); 6239 Regs.push_back(*I); 6240 } 6241 } 6242 6243 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6244 return; 6245 } 6246 6247 // Otherwise, if this was a reference to an LLVM register class, create vregs 6248 // for this reference. 6249 if (const TargetRegisterClass *RC = PhysReg.second) { 6250 RegVT = *RC->vt_begin(); 6251 if (OpInfo.ConstraintVT == MVT::Other) 6252 ValueVT = RegVT; 6253 6254 // Create the appropriate number of virtual registers. 6255 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6256 for (; NumRegs; --NumRegs) 6257 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6258 6259 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6260 return; 6261 } 6262 6263 // Otherwise, we couldn't allocate enough registers for this. 6264 } 6265 6266 /// visitInlineAsm - Handle a call to an InlineAsm object. 6267 /// 6268 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6269 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6270 6271 /// ConstraintOperands - Information about all of the constraints. 6272 SDISelAsmOperandInfoVector ConstraintOperands; 6273 6274 const TargetLowering *TLI = TM.getTargetLowering(); 6275 TargetLowering::AsmOperandInfoVector 6276 TargetConstraints = TLI->ParseConstraints(CS); 6277 6278 bool hasMemory = false; 6279 6280 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6281 unsigned ResNo = 0; // ResNo - The result number of the next output. 6282 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6283 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6284 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6285 6286 MVT OpVT = MVT::Other; 6287 6288 // Compute the value type for each operand. 6289 switch (OpInfo.Type) { 6290 case InlineAsm::isOutput: 6291 // Indirect outputs just consume an argument. 6292 if (OpInfo.isIndirect) { 6293 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6294 break; 6295 } 6296 6297 // The return value of the call is this value. As such, there is no 6298 // corresponding argument. 6299 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6300 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6301 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6302 } else { 6303 assert(ResNo == 0 && "Asm only has one result!"); 6304 OpVT = TLI->getSimpleValueType(CS.getType()); 6305 } 6306 ++ResNo; 6307 break; 6308 case InlineAsm::isInput: 6309 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6310 break; 6311 case InlineAsm::isClobber: 6312 // Nothing to do. 6313 break; 6314 } 6315 6316 // If this is an input or an indirect output, process the call argument. 6317 // BasicBlocks are labels, currently appearing only in asm's. 6318 if (OpInfo.CallOperandVal) { 6319 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6320 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6321 } else { 6322 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6323 } 6324 6325 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6326 getSimpleVT(); 6327 } 6328 6329 OpInfo.ConstraintVT = OpVT; 6330 6331 // Indirect operand accesses access memory. 6332 if (OpInfo.isIndirect) 6333 hasMemory = true; 6334 else { 6335 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6336 TargetLowering::ConstraintType 6337 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6338 if (CType == TargetLowering::C_Memory) { 6339 hasMemory = true; 6340 break; 6341 } 6342 } 6343 } 6344 } 6345 6346 SDValue Chain, Flag; 6347 6348 // We won't need to flush pending loads if this asm doesn't touch 6349 // memory and is nonvolatile. 6350 if (hasMemory || IA->hasSideEffects()) 6351 Chain = getRoot(); 6352 else 6353 Chain = DAG.getRoot(); 6354 6355 // Second pass over the constraints: compute which constraint option to use 6356 // and assign registers to constraints that want a specific physreg. 6357 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6358 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6359 6360 // If this is an output operand with a matching input operand, look up the 6361 // matching input. If their types mismatch, e.g. one is an integer, the 6362 // other is floating point, or their sizes are different, flag it as an 6363 // error. 6364 if (OpInfo.hasMatchingInput()) { 6365 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6366 6367 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6368 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6369 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6370 OpInfo.ConstraintVT); 6371 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6372 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6373 Input.ConstraintVT); 6374 if ((OpInfo.ConstraintVT.isInteger() != 6375 Input.ConstraintVT.isInteger()) || 6376 (MatchRC.second != InputRC.second)) { 6377 report_fatal_error("Unsupported asm: input constraint" 6378 " with a matching output constraint of" 6379 " incompatible type!"); 6380 } 6381 Input.ConstraintVT = OpInfo.ConstraintVT; 6382 } 6383 } 6384 6385 // Compute the constraint code and ConstraintType to use. 6386 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6387 6388 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6389 OpInfo.Type == InlineAsm::isClobber) 6390 continue; 6391 6392 // If this is a memory input, and if the operand is not indirect, do what we 6393 // need to to provide an address for the memory input. 6394 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6395 !OpInfo.isIndirect) { 6396 assert((OpInfo.isMultipleAlternative || 6397 (OpInfo.Type == InlineAsm::isInput)) && 6398 "Can only indirectify direct input operands!"); 6399 6400 // Memory operands really want the address of the value. If we don't have 6401 // an indirect input, put it in the constpool if we can, otherwise spill 6402 // it to a stack slot. 6403 // TODO: This isn't quite right. We need to handle these according to 6404 // the addressing mode that the constraint wants. Also, this may take 6405 // an additional register for the computation and we don't want that 6406 // either. 6407 6408 // If the operand is a float, integer, or vector constant, spill to a 6409 // constant pool entry to get its address. 6410 const Value *OpVal = OpInfo.CallOperandVal; 6411 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6412 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6413 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6414 TLI->getPointerTy()); 6415 } else { 6416 // Otherwise, create a stack slot and emit a store to it before the 6417 // asm. 6418 Type *Ty = OpVal->getType(); 6419 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6420 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6421 MachineFunction &MF = DAG.getMachineFunction(); 6422 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6423 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6424 Chain = DAG.getStore(Chain, getCurSDLoc(), 6425 OpInfo.CallOperand, StackSlot, 6426 MachinePointerInfo::getFixedStack(SSFI), 6427 false, false, 0); 6428 OpInfo.CallOperand = StackSlot; 6429 } 6430 6431 // There is no longer a Value* corresponding to this operand. 6432 OpInfo.CallOperandVal = nullptr; 6433 6434 // It is now an indirect operand. 6435 OpInfo.isIndirect = true; 6436 } 6437 6438 // If this constraint is for a specific register, allocate it before 6439 // anything else. 6440 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6441 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6442 } 6443 6444 // Second pass - Loop over all of the operands, assigning virtual or physregs 6445 // to register class operands. 6446 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6447 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6448 6449 // C_Register operands have already been allocated, Other/Memory don't need 6450 // to be. 6451 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6452 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6453 } 6454 6455 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6456 std::vector<SDValue> AsmNodeOperands; 6457 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6458 AsmNodeOperands.push_back( 6459 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6460 TLI->getPointerTy())); 6461 6462 // If we have a !srcloc metadata node associated with it, we want to attach 6463 // this to the ultimately generated inline asm machineinstr. To do this, we 6464 // pass in the third operand as this (potentially null) inline asm MDNode. 6465 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6466 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6467 6468 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6469 // bits as operand 3. 6470 unsigned ExtraInfo = 0; 6471 if (IA->hasSideEffects()) 6472 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6473 if (IA->isAlignStack()) 6474 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6475 // Set the asm dialect. 6476 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6477 6478 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6479 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6480 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6481 6482 // Compute the constraint code and ConstraintType to use. 6483 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6484 6485 // Ideally, we would only check against memory constraints. However, the 6486 // meaning of an other constraint can be target-specific and we can't easily 6487 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6488 // for other constriants as well. 6489 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6490 OpInfo.ConstraintType == TargetLowering::C_Other) { 6491 if (OpInfo.Type == InlineAsm::isInput) 6492 ExtraInfo |= InlineAsm::Extra_MayLoad; 6493 else if (OpInfo.Type == InlineAsm::isOutput) 6494 ExtraInfo |= InlineAsm::Extra_MayStore; 6495 else if (OpInfo.Type == InlineAsm::isClobber) 6496 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6497 } 6498 } 6499 6500 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6501 TLI->getPointerTy())); 6502 6503 // Loop over all of the inputs, copying the operand values into the 6504 // appropriate registers and processing the output regs. 6505 RegsForValue RetValRegs; 6506 6507 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6508 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6509 6510 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6511 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6512 6513 switch (OpInfo.Type) { 6514 case InlineAsm::isOutput: { 6515 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6516 OpInfo.ConstraintType != TargetLowering::C_Register) { 6517 // Memory output, or 'other' output (e.g. 'X' constraint). 6518 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6519 6520 // Add information to the INLINEASM node to know about this output. 6521 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6522 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6523 TLI->getPointerTy())); 6524 AsmNodeOperands.push_back(OpInfo.CallOperand); 6525 break; 6526 } 6527 6528 // Otherwise, this is a register or register class output. 6529 6530 // Copy the output from the appropriate register. Find a register that 6531 // we can use. 6532 if (OpInfo.AssignedRegs.Regs.empty()) { 6533 LLVMContext &Ctx = *DAG.getContext(); 6534 Ctx.emitError(CS.getInstruction(), 6535 "couldn't allocate output register for constraint '" + 6536 Twine(OpInfo.ConstraintCode) + "'"); 6537 return; 6538 } 6539 6540 // If this is an indirect operand, store through the pointer after the 6541 // asm. 6542 if (OpInfo.isIndirect) { 6543 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6544 OpInfo.CallOperandVal)); 6545 } else { 6546 // This is the result value of the call. 6547 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6548 // Concatenate this output onto the outputs list. 6549 RetValRegs.append(OpInfo.AssignedRegs); 6550 } 6551 6552 // Add information to the INLINEASM node to know that this register is 6553 // set. 6554 OpInfo.AssignedRegs 6555 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6556 ? InlineAsm::Kind_RegDefEarlyClobber 6557 : InlineAsm::Kind_RegDef, 6558 false, 0, DAG, AsmNodeOperands); 6559 break; 6560 } 6561 case InlineAsm::isInput: { 6562 SDValue InOperandVal = OpInfo.CallOperand; 6563 6564 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6565 // If this is required to match an output register we have already set, 6566 // just use its register. 6567 unsigned OperandNo = OpInfo.getMatchedOperand(); 6568 6569 // Scan until we find the definition we already emitted of this operand. 6570 // When we find it, create a RegsForValue operand. 6571 unsigned CurOp = InlineAsm::Op_FirstOperand; 6572 for (; OperandNo; --OperandNo) { 6573 // Advance to the next operand. 6574 unsigned OpFlag = 6575 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6576 assert((InlineAsm::isRegDefKind(OpFlag) || 6577 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6578 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6579 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6580 } 6581 6582 unsigned OpFlag = 6583 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6584 if (InlineAsm::isRegDefKind(OpFlag) || 6585 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6586 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6587 if (OpInfo.isIndirect) { 6588 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6589 LLVMContext &Ctx = *DAG.getContext(); 6590 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6591 " don't know how to handle tied " 6592 "indirect register inputs"); 6593 return; 6594 } 6595 6596 RegsForValue MatchedRegs; 6597 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6598 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6599 MatchedRegs.RegVTs.push_back(RegVT); 6600 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6601 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6602 i != e; ++i) { 6603 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6604 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6605 else { 6606 LLVMContext &Ctx = *DAG.getContext(); 6607 Ctx.emitError(CS.getInstruction(), 6608 "inline asm error: This value" 6609 " type register class is not natively supported!"); 6610 return; 6611 } 6612 } 6613 // Use the produced MatchedRegs object to 6614 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6615 Chain, &Flag, CS.getInstruction()); 6616 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6617 true, OpInfo.getMatchedOperand(), 6618 DAG, AsmNodeOperands); 6619 break; 6620 } 6621 6622 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6623 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6624 "Unexpected number of operands"); 6625 // Add information to the INLINEASM node to know about this input. 6626 // See InlineAsm.h isUseOperandTiedToDef. 6627 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6628 OpInfo.getMatchedOperand()); 6629 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6630 TLI->getPointerTy())); 6631 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6632 break; 6633 } 6634 6635 // Treat indirect 'X' constraint as memory. 6636 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6637 OpInfo.isIndirect) 6638 OpInfo.ConstraintType = TargetLowering::C_Memory; 6639 6640 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6641 std::vector<SDValue> Ops; 6642 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6643 Ops, DAG); 6644 if (Ops.empty()) { 6645 LLVMContext &Ctx = *DAG.getContext(); 6646 Ctx.emitError(CS.getInstruction(), 6647 "invalid operand for inline asm constraint '" + 6648 Twine(OpInfo.ConstraintCode) + "'"); 6649 return; 6650 } 6651 6652 // Add information to the INLINEASM node to know about this input. 6653 unsigned ResOpType = 6654 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6655 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6656 TLI->getPointerTy())); 6657 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6658 break; 6659 } 6660 6661 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6662 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6663 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6664 "Memory operands expect pointer values"); 6665 6666 // Add information to the INLINEASM node to know about this input. 6667 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6668 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6669 TLI->getPointerTy())); 6670 AsmNodeOperands.push_back(InOperandVal); 6671 break; 6672 } 6673 6674 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6675 OpInfo.ConstraintType == TargetLowering::C_Register) && 6676 "Unknown constraint type!"); 6677 6678 // TODO: Support this. 6679 if (OpInfo.isIndirect) { 6680 LLVMContext &Ctx = *DAG.getContext(); 6681 Ctx.emitError(CS.getInstruction(), 6682 "Don't know how to handle indirect register inputs yet " 6683 "for constraint '" + 6684 Twine(OpInfo.ConstraintCode) + "'"); 6685 return; 6686 } 6687 6688 // Copy the input into the appropriate registers. 6689 if (OpInfo.AssignedRegs.Regs.empty()) { 6690 LLVMContext &Ctx = *DAG.getContext(); 6691 Ctx.emitError(CS.getInstruction(), 6692 "couldn't allocate input reg for constraint '" + 6693 Twine(OpInfo.ConstraintCode) + "'"); 6694 return; 6695 } 6696 6697 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6698 Chain, &Flag, CS.getInstruction()); 6699 6700 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6701 DAG, AsmNodeOperands); 6702 break; 6703 } 6704 case InlineAsm::isClobber: { 6705 // Add the clobbered value to the operand list, so that the register 6706 // allocator is aware that the physreg got clobbered. 6707 if (!OpInfo.AssignedRegs.Regs.empty()) 6708 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6709 false, 0, DAG, 6710 AsmNodeOperands); 6711 break; 6712 } 6713 } 6714 } 6715 6716 // Finish up input operands. Set the input chain and add the flag last. 6717 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6718 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6719 6720 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6721 DAG.getVTList(MVT::Other, MVT::Glue), 6722 &AsmNodeOperands[0], AsmNodeOperands.size()); 6723 Flag = Chain.getValue(1); 6724 6725 // If this asm returns a register value, copy the result from that register 6726 // and set it as the value of the call. 6727 if (!RetValRegs.Regs.empty()) { 6728 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6729 Chain, &Flag, CS.getInstruction()); 6730 6731 // FIXME: Why don't we do this for inline asms with MRVs? 6732 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6733 EVT ResultType = TLI->getValueType(CS.getType()); 6734 6735 // If any of the results of the inline asm is a vector, it may have the 6736 // wrong width/num elts. This can happen for register classes that can 6737 // contain multiple different value types. The preg or vreg allocated may 6738 // not have the same VT as was expected. Convert it to the right type 6739 // with bit_convert. 6740 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6741 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6742 ResultType, Val); 6743 6744 } else if (ResultType != Val.getValueType() && 6745 ResultType.isInteger() && Val.getValueType().isInteger()) { 6746 // If a result value was tied to an input value, the computed result may 6747 // have a wider width than the expected result. Extract the relevant 6748 // portion. 6749 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6750 } 6751 6752 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6753 } 6754 6755 setValue(CS.getInstruction(), Val); 6756 // Don't need to use this as a chain in this case. 6757 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6758 return; 6759 } 6760 6761 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6762 6763 // Process indirect outputs, first output all of the flagged copies out of 6764 // physregs. 6765 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6766 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6767 const Value *Ptr = IndirectStoresToEmit[i].second; 6768 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6769 Chain, &Flag, IA); 6770 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6771 } 6772 6773 // Emit the non-flagged stores from the physregs. 6774 SmallVector<SDValue, 8> OutChains; 6775 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6776 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6777 StoresToEmit[i].first, 6778 getValue(StoresToEmit[i].second), 6779 MachinePointerInfo(StoresToEmit[i].second), 6780 false, false, 0); 6781 OutChains.push_back(Val); 6782 } 6783 6784 if (!OutChains.empty()) 6785 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6786 &OutChains[0], OutChains.size()); 6787 6788 DAG.setRoot(Chain); 6789 } 6790 6791 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6792 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6793 MVT::Other, getRoot(), 6794 getValue(I.getArgOperand(0)), 6795 DAG.getSrcValue(I.getArgOperand(0)))); 6796 } 6797 6798 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6799 const TargetLowering *TLI = TM.getTargetLowering(); 6800 const DataLayout &DL = *TLI->getDataLayout(); 6801 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6802 getRoot(), getValue(I.getOperand(0)), 6803 DAG.getSrcValue(I.getOperand(0)), 6804 DL.getABITypeAlignment(I.getType())); 6805 setValue(&I, V); 6806 DAG.setRoot(V.getValue(1)); 6807 } 6808 6809 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6810 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6811 MVT::Other, getRoot(), 6812 getValue(I.getArgOperand(0)), 6813 DAG.getSrcValue(I.getArgOperand(0)))); 6814 } 6815 6816 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6817 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6818 MVT::Other, getRoot(), 6819 getValue(I.getArgOperand(0)), 6820 getValue(I.getArgOperand(1)), 6821 DAG.getSrcValue(I.getArgOperand(0)), 6822 DAG.getSrcValue(I.getArgOperand(1)))); 6823 } 6824 6825 /// \brief Lower an argument list according to the target calling convention. 6826 /// 6827 /// \return A tuple of <return-value, token-chain> 6828 /// 6829 /// This is a helper for lowering intrinsics that follow a target calling 6830 /// convention or require stack pointer adjustment. Only a subset of the 6831 /// intrinsic's operands need to participate in the calling convention. 6832 std::pair<SDValue, SDValue> 6833 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6834 unsigned NumArgs, SDValue Callee, 6835 bool useVoidTy) { 6836 TargetLowering::ArgListTy Args; 6837 Args.reserve(NumArgs); 6838 6839 // Populate the argument list. 6840 // Attributes for args start at offset 1, after the return attribute. 6841 ImmutableCallSite CS(&CI); 6842 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6843 ArgI != ArgE; ++ArgI) { 6844 const Value *V = CI.getOperand(ArgI); 6845 6846 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6847 6848 TargetLowering::ArgListEntry Entry; 6849 Entry.Node = getValue(V); 6850 Entry.Ty = V->getType(); 6851 Entry.setAttributes(&CS, AttrI); 6852 Args.push_back(Entry); 6853 } 6854 6855 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6856 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6857 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6858 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6859 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6860 6861 const TargetLowering *TLI = TM.getTargetLowering(); 6862 return TLI->LowerCallTo(CLI); 6863 } 6864 6865 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6866 /// or patchpoint target node's operand list. 6867 /// 6868 /// Constants are converted to TargetConstants purely as an optimization to 6869 /// avoid constant materialization and register allocation. 6870 /// 6871 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6872 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6873 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6874 /// address materialization and register allocation, but may also be required 6875 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6876 /// alloca in the entry block, then the runtime may assume that the alloca's 6877 /// StackMap location can be read immediately after compilation and that the 6878 /// location is valid at any point during execution (this is similar to the 6879 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6880 /// only available in a register, then the runtime would need to trap when 6881 /// execution reaches the StackMap in order to read the alloca's location. 6882 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6883 SmallVectorImpl<SDValue> &Ops, 6884 SelectionDAGBuilder &Builder) { 6885 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6886 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6887 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6888 Ops.push_back( 6889 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6890 Ops.push_back( 6891 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6892 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6893 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6894 Ops.push_back( 6895 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6896 } else 6897 Ops.push_back(OpVal); 6898 } 6899 } 6900 6901 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6902 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6903 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6904 // [live variables...]) 6905 6906 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6907 6908 SDValue Chain, InFlag, Callee, NullPtr; 6909 SmallVector<SDValue, 32> Ops; 6910 6911 SDLoc DL = getCurSDLoc(); 6912 Callee = getValue(CI.getCalledValue()); 6913 NullPtr = DAG.getIntPtrConstant(0, true); 6914 6915 // The stackmap intrinsic only records the live variables (the arguemnts 6916 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6917 // intrinsic, this won't be lowered to a function call. This means we don't 6918 // have to worry about calling conventions and target specific lowering code. 6919 // Instead we perform the call lowering right here. 6920 // 6921 // chain, flag = CALLSEQ_START(chain, 0) 6922 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6923 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6924 // 6925 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6926 InFlag = Chain.getValue(1); 6927 6928 // Add the <id> and <numBytes> constants. 6929 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6930 Ops.push_back(DAG.getTargetConstant( 6931 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6932 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6933 Ops.push_back(DAG.getTargetConstant( 6934 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6935 6936 // Push live variables for the stack map. 6937 addStackMapLiveVars(CI, 2, Ops, *this); 6938 6939 // We are not pushing any register mask info here on the operands list, 6940 // because the stackmap doesn't clobber anything. 6941 6942 // Push the chain and the glue flag. 6943 Ops.push_back(Chain); 6944 Ops.push_back(InFlag); 6945 6946 // Create the STACKMAP node. 6947 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6948 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6949 Chain = SDValue(SM, 0); 6950 InFlag = Chain.getValue(1); 6951 6952 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6953 6954 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6955 6956 // Set the root to the target-lowered call chain. 6957 DAG.setRoot(Chain); 6958 6959 // Inform the Frame Information that we have a stackmap in this function. 6960 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6961 } 6962 6963 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6964 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6965 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6966 // i32 <numBytes>, 6967 // i8* <target>, 6968 // i32 <numArgs>, 6969 // [Args...], 6970 // [live variables...]) 6971 6972 CallingConv::ID CC = CI.getCallingConv(); 6973 bool isAnyRegCC = CC == CallingConv::AnyReg; 6974 bool hasDef = !CI.getType()->isVoidTy(); 6975 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6976 6977 // Get the real number of arguments participating in the call <numArgs> 6978 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6979 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6980 6981 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6982 // Intrinsics include all meta-operands up to but not including CC. 6983 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6984 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6985 "Not enough arguments provided to the patchpoint intrinsic"); 6986 6987 // For AnyRegCC the arguments are lowered later on manually. 6988 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6989 std::pair<SDValue, SDValue> Result = 6990 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6991 6992 // Set the root to the target-lowered call chain. 6993 SDValue Chain = Result.second; 6994 DAG.setRoot(Chain); 6995 6996 SDNode *CallEnd = Chain.getNode(); 6997 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6998 CallEnd = CallEnd->getOperand(0).getNode(); 6999 7000 /// Get a call instruction from the call sequence chain. 7001 /// Tail calls are not allowed. 7002 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7003 "Expected a callseq node."); 7004 SDNode *Call = CallEnd->getOperand(0).getNode(); 7005 bool hasGlue = Call->getGluedNode(); 7006 7007 // Replace the target specific call node with the patchable intrinsic. 7008 SmallVector<SDValue, 8> Ops; 7009 7010 // Add the <id> and <numBytes> constants. 7011 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7012 Ops.push_back(DAG.getTargetConstant( 7013 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7014 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7015 Ops.push_back(DAG.getTargetConstant( 7016 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7017 7018 // Assume that the Callee is a constant address. 7019 // FIXME: handle function symbols in the future. 7020 Ops.push_back( 7021 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7022 /*isTarget=*/true)); 7023 7024 // Adjust <numArgs> to account for any arguments that have been passed on the 7025 // stack instead. 7026 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7027 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7028 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7029 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7030 7031 // Add the calling convention 7032 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7033 7034 // Add the arguments we omitted previously. The register allocator should 7035 // place these in any free register. 7036 if (isAnyRegCC) 7037 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7038 Ops.push_back(getValue(CI.getArgOperand(i))); 7039 7040 // Push the arguments from the call instruction up to the register mask. 7041 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7042 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7043 Ops.push_back(*i); 7044 7045 // Push live variables for the stack map. 7046 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7047 7048 // Push the register mask info. 7049 if (hasGlue) 7050 Ops.push_back(*(Call->op_end()-2)); 7051 else 7052 Ops.push_back(*(Call->op_end()-1)); 7053 7054 // Push the chain (this is originally the first operand of the call, but 7055 // becomes now the last or second to last operand). 7056 Ops.push_back(*(Call->op_begin())); 7057 7058 // Push the glue flag (last operand). 7059 if (hasGlue) 7060 Ops.push_back(*(Call->op_end()-1)); 7061 7062 SDVTList NodeTys; 7063 if (isAnyRegCC && hasDef) { 7064 // Create the return types based on the intrinsic definition 7065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7066 SmallVector<EVT, 3> ValueVTs; 7067 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7068 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7069 7070 // There is always a chain and a glue type at the end 7071 ValueVTs.push_back(MVT::Other); 7072 ValueVTs.push_back(MVT::Glue); 7073 NodeTys = DAG.getVTList(ValueVTs); 7074 } else 7075 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7076 7077 // Replace the target specific call node with a PATCHPOINT node. 7078 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7079 getCurSDLoc(), NodeTys, Ops); 7080 7081 // Update the NodeMap. 7082 if (hasDef) { 7083 if (isAnyRegCC) 7084 setValue(&CI, SDValue(MN, 0)); 7085 else 7086 setValue(&CI, Result.first); 7087 } 7088 7089 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7090 // call sequence. Furthermore the location of the chain and glue can change 7091 // when the AnyReg calling convention is used and the intrinsic returns a 7092 // value. 7093 if (isAnyRegCC && hasDef) { 7094 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7095 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7096 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7097 } else 7098 DAG.ReplaceAllUsesWith(Call, MN); 7099 DAG.DeleteNode(Call); 7100 7101 // Inform the Frame Information that we have a patchpoint in this function. 7102 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7103 } 7104 7105 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7106 /// implementation, which just calls LowerCall. 7107 /// FIXME: When all targets are 7108 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7109 std::pair<SDValue, SDValue> 7110 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7111 // Handle the incoming return values from the call. 7112 CLI.Ins.clear(); 7113 SmallVector<EVT, 4> RetTys; 7114 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7115 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7116 EVT VT = RetTys[I]; 7117 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7118 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7119 for (unsigned i = 0; i != NumRegs; ++i) { 7120 ISD::InputArg MyFlags; 7121 MyFlags.VT = RegisterVT; 7122 MyFlags.ArgVT = VT; 7123 MyFlags.Used = CLI.IsReturnValueUsed; 7124 if (CLI.RetSExt) 7125 MyFlags.Flags.setSExt(); 7126 if (CLI.RetZExt) 7127 MyFlags.Flags.setZExt(); 7128 if (CLI.IsInReg) 7129 MyFlags.Flags.setInReg(); 7130 CLI.Ins.push_back(MyFlags); 7131 } 7132 } 7133 7134 // Handle all of the outgoing arguments. 7135 CLI.Outs.clear(); 7136 CLI.OutVals.clear(); 7137 ArgListTy &Args = CLI.Args; 7138 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7139 SmallVector<EVT, 4> ValueVTs; 7140 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7141 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7142 Value != NumValues; ++Value) { 7143 EVT VT = ValueVTs[Value]; 7144 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7145 SDValue Op = SDValue(Args[i].Node.getNode(), 7146 Args[i].Node.getResNo() + Value); 7147 ISD::ArgFlagsTy Flags; 7148 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7149 7150 if (Args[i].isZExt) 7151 Flags.setZExt(); 7152 if (Args[i].isSExt) 7153 Flags.setSExt(); 7154 if (Args[i].isInReg) 7155 Flags.setInReg(); 7156 if (Args[i].isSRet) 7157 Flags.setSRet(); 7158 if (Args[i].isByVal) 7159 Flags.setByVal(); 7160 if (Args[i].isInAlloca) { 7161 Flags.setInAlloca(); 7162 // Set the byval flag for CCAssignFn callbacks that don't know about 7163 // inalloca. This way we can know how many bytes we should've allocated 7164 // and how many bytes a callee cleanup function will pop. If we port 7165 // inalloca to more targets, we'll have to add custom inalloca handling 7166 // in the various CC lowering callbacks. 7167 Flags.setByVal(); 7168 } 7169 if (Args[i].isByVal || Args[i].isInAlloca) { 7170 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7171 Type *ElementTy = Ty->getElementType(); 7172 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7173 // For ByVal, alignment should come from FE. BE will guess if this 7174 // info is not there but there are cases it cannot get right. 7175 unsigned FrameAlign; 7176 if (Args[i].Alignment) 7177 FrameAlign = Args[i].Alignment; 7178 else 7179 FrameAlign = getByValTypeAlignment(ElementTy); 7180 Flags.setByValAlign(FrameAlign); 7181 } 7182 if (Args[i].isNest) 7183 Flags.setNest(); 7184 Flags.setOrigAlign(OriginalAlignment); 7185 7186 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7187 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7188 SmallVector<SDValue, 4> Parts(NumParts); 7189 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7190 7191 if (Args[i].isSExt) 7192 ExtendKind = ISD::SIGN_EXTEND; 7193 else if (Args[i].isZExt) 7194 ExtendKind = ISD::ZERO_EXTEND; 7195 7196 // Conservatively only handle 'returned' on non-vectors for now 7197 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7198 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7199 "unexpected use of 'returned'"); 7200 // Before passing 'returned' to the target lowering code, ensure that 7201 // either the register MVT and the actual EVT are the same size or that 7202 // the return value and argument are extended in the same way; in these 7203 // cases it's safe to pass the argument register value unchanged as the 7204 // return register value (although it's at the target's option whether 7205 // to do so) 7206 // TODO: allow code generation to take advantage of partially preserved 7207 // registers rather than clobbering the entire register when the 7208 // parameter extension method is not compatible with the return 7209 // extension method 7210 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7211 (ExtendKind != ISD::ANY_EXTEND && 7212 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7213 Flags.setReturned(); 7214 } 7215 7216 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7217 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7218 7219 for (unsigned j = 0; j != NumParts; ++j) { 7220 // if it isn't first piece, alignment must be 1 7221 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7222 i < CLI.NumFixedArgs, 7223 i, j*Parts[j].getValueType().getStoreSize()); 7224 if (NumParts > 1 && j == 0) 7225 MyFlags.Flags.setSplit(); 7226 else if (j != 0) 7227 MyFlags.Flags.setOrigAlign(1); 7228 7229 CLI.Outs.push_back(MyFlags); 7230 CLI.OutVals.push_back(Parts[j]); 7231 } 7232 } 7233 } 7234 7235 SmallVector<SDValue, 4> InVals; 7236 CLI.Chain = LowerCall(CLI, InVals); 7237 7238 // Verify that the target's LowerCall behaved as expected. 7239 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7240 "LowerCall didn't return a valid chain!"); 7241 assert((!CLI.IsTailCall || InVals.empty()) && 7242 "LowerCall emitted a return value for a tail call!"); 7243 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7244 "LowerCall didn't emit the correct number of values!"); 7245 7246 // For a tail call, the return value is merely live-out and there aren't 7247 // any nodes in the DAG representing it. Return a special value to 7248 // indicate that a tail call has been emitted and no more Instructions 7249 // should be processed in the current block. 7250 if (CLI.IsTailCall) { 7251 CLI.DAG.setRoot(CLI.Chain); 7252 return std::make_pair(SDValue(), SDValue()); 7253 } 7254 7255 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7256 assert(InVals[i].getNode() && 7257 "LowerCall emitted a null value!"); 7258 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7259 "LowerCall emitted a value with the wrong type!"); 7260 }); 7261 7262 // Collect the legal value parts into potentially illegal values 7263 // that correspond to the original function's return values. 7264 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7265 if (CLI.RetSExt) 7266 AssertOp = ISD::AssertSext; 7267 else if (CLI.RetZExt) 7268 AssertOp = ISD::AssertZext; 7269 SmallVector<SDValue, 4> ReturnValues; 7270 unsigned CurReg = 0; 7271 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7272 EVT VT = RetTys[I]; 7273 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7274 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7275 7276 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7277 NumRegs, RegisterVT, VT, nullptr, 7278 AssertOp)); 7279 CurReg += NumRegs; 7280 } 7281 7282 // For a function returning void, there is no return value. We can't create 7283 // such a node, so we just return a null return value in that case. In 7284 // that case, nothing will actually look at the value. 7285 if (ReturnValues.empty()) 7286 return std::make_pair(SDValue(), CLI.Chain); 7287 7288 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7289 CLI.DAG.getVTList(RetTys), 7290 &ReturnValues[0], ReturnValues.size()); 7291 return std::make_pair(Res, CLI.Chain); 7292 } 7293 7294 void TargetLowering::LowerOperationWrapper(SDNode *N, 7295 SmallVectorImpl<SDValue> &Results, 7296 SelectionDAG &DAG) const { 7297 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7298 if (Res.getNode()) 7299 Results.push_back(Res); 7300 } 7301 7302 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7303 llvm_unreachable("LowerOperation not implemented for this target!"); 7304 } 7305 7306 void 7307 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7308 SDValue Op = getNonRegisterValue(V); 7309 assert((Op.getOpcode() != ISD::CopyFromReg || 7310 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7311 "Copy from a reg to the same reg!"); 7312 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7313 7314 const TargetLowering *TLI = TM.getTargetLowering(); 7315 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7316 SDValue Chain = DAG.getEntryNode(); 7317 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7318 PendingExports.push_back(Chain); 7319 } 7320 7321 #include "llvm/CodeGen/SelectionDAGISel.h" 7322 7323 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7324 /// entry block, return true. This includes arguments used by switches, since 7325 /// the switch may expand into multiple basic blocks. 7326 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7327 // With FastISel active, we may be splitting blocks, so force creation 7328 // of virtual registers for all non-dead arguments. 7329 if (FastISel) 7330 return A->use_empty(); 7331 7332 const BasicBlock *Entry = A->getParent()->begin(); 7333 for (const User *U : A->users()) 7334 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7335 return false; // Use not in entry block. 7336 7337 return true; 7338 } 7339 7340 void SelectionDAGISel::LowerArguments(const Function &F) { 7341 SelectionDAG &DAG = SDB->DAG; 7342 SDLoc dl = SDB->getCurSDLoc(); 7343 const TargetLowering *TLI = getTargetLowering(); 7344 const DataLayout *DL = TLI->getDataLayout(); 7345 SmallVector<ISD::InputArg, 16> Ins; 7346 7347 if (!FuncInfo->CanLowerReturn) { 7348 // Put in an sret pointer parameter before all the other parameters. 7349 SmallVector<EVT, 1> ValueVTs; 7350 ComputeValueVTs(*getTargetLowering(), 7351 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7352 7353 // NOTE: Assuming that a pointer will never break down to more than one VT 7354 // or one register. 7355 ISD::ArgFlagsTy Flags; 7356 Flags.setSRet(); 7357 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7358 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7359 Ins.push_back(RetArg); 7360 } 7361 7362 // Set up the incoming argument description vector. 7363 unsigned Idx = 1; 7364 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7365 I != E; ++I, ++Idx) { 7366 SmallVector<EVT, 4> ValueVTs; 7367 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7368 bool isArgValueUsed = !I->use_empty(); 7369 unsigned PartBase = 0; 7370 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7371 Value != NumValues; ++Value) { 7372 EVT VT = ValueVTs[Value]; 7373 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7374 ISD::ArgFlagsTy Flags; 7375 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7376 7377 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7378 Flags.setZExt(); 7379 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7380 Flags.setSExt(); 7381 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7382 Flags.setInReg(); 7383 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7384 Flags.setSRet(); 7385 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7386 Flags.setByVal(); 7387 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7388 Flags.setInAlloca(); 7389 // Set the byval flag for CCAssignFn callbacks that don't know about 7390 // inalloca. This way we can know how many bytes we should've allocated 7391 // and how many bytes a callee cleanup function will pop. If we port 7392 // inalloca to more targets, we'll have to add custom inalloca handling 7393 // in the various CC lowering callbacks. 7394 Flags.setByVal(); 7395 } 7396 if (Flags.isByVal() || Flags.isInAlloca()) { 7397 PointerType *Ty = cast<PointerType>(I->getType()); 7398 Type *ElementTy = Ty->getElementType(); 7399 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7400 // For ByVal, alignment should be passed from FE. BE will guess if 7401 // this info is not there but there are cases it cannot get right. 7402 unsigned FrameAlign; 7403 if (F.getParamAlignment(Idx)) 7404 FrameAlign = F.getParamAlignment(Idx); 7405 else 7406 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7407 Flags.setByValAlign(FrameAlign); 7408 } 7409 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7410 Flags.setNest(); 7411 Flags.setOrigAlign(OriginalAlignment); 7412 7413 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7414 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7415 for (unsigned i = 0; i != NumRegs; ++i) { 7416 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7417 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7418 if (NumRegs > 1 && i == 0) 7419 MyFlags.Flags.setSplit(); 7420 // if it isn't first piece, alignment must be 1 7421 else if (i > 0) 7422 MyFlags.Flags.setOrigAlign(1); 7423 Ins.push_back(MyFlags); 7424 } 7425 PartBase += VT.getStoreSize(); 7426 } 7427 } 7428 7429 // Call the target to set up the argument values. 7430 SmallVector<SDValue, 8> InVals; 7431 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7432 F.isVarArg(), Ins, 7433 dl, DAG, InVals); 7434 7435 // Verify that the target's LowerFormalArguments behaved as expected. 7436 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7437 "LowerFormalArguments didn't return a valid chain!"); 7438 assert(InVals.size() == Ins.size() && 7439 "LowerFormalArguments didn't emit the correct number of values!"); 7440 DEBUG({ 7441 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7442 assert(InVals[i].getNode() && 7443 "LowerFormalArguments emitted a null value!"); 7444 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7445 "LowerFormalArguments emitted a value with the wrong type!"); 7446 } 7447 }); 7448 7449 // Update the DAG with the new chain value resulting from argument lowering. 7450 DAG.setRoot(NewRoot); 7451 7452 // Set up the argument values. 7453 unsigned i = 0; 7454 Idx = 1; 7455 if (!FuncInfo->CanLowerReturn) { 7456 // Create a virtual register for the sret pointer, and put in a copy 7457 // from the sret argument into it. 7458 SmallVector<EVT, 1> ValueVTs; 7459 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7460 MVT VT = ValueVTs[0].getSimpleVT(); 7461 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7462 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7463 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7464 RegVT, VT, nullptr, AssertOp); 7465 7466 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7467 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7468 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7469 FuncInfo->DemoteRegister = SRetReg; 7470 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7471 SRetReg, ArgValue); 7472 DAG.setRoot(NewRoot); 7473 7474 // i indexes lowered arguments. Bump it past the hidden sret argument. 7475 // Idx indexes LLVM arguments. Don't touch it. 7476 ++i; 7477 } 7478 7479 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7480 ++I, ++Idx) { 7481 SmallVector<SDValue, 4> ArgValues; 7482 SmallVector<EVT, 4> ValueVTs; 7483 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7484 unsigned NumValues = ValueVTs.size(); 7485 7486 // If this argument is unused then remember its value. It is used to generate 7487 // debugging information. 7488 if (I->use_empty() && NumValues) { 7489 SDB->setUnusedArgValue(I, InVals[i]); 7490 7491 // Also remember any frame index for use in FastISel. 7492 if (FrameIndexSDNode *FI = 7493 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7494 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7495 } 7496 7497 for (unsigned Val = 0; Val != NumValues; ++Val) { 7498 EVT VT = ValueVTs[Val]; 7499 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7500 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7501 7502 if (!I->use_empty()) { 7503 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7504 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7505 AssertOp = ISD::AssertSext; 7506 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7507 AssertOp = ISD::AssertZext; 7508 7509 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7510 NumParts, PartVT, VT, 7511 nullptr, AssertOp)); 7512 } 7513 7514 i += NumParts; 7515 } 7516 7517 // We don't need to do anything else for unused arguments. 7518 if (ArgValues.empty()) 7519 continue; 7520 7521 // Note down frame index. 7522 if (FrameIndexSDNode *FI = 7523 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7524 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7525 7526 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7527 SDB->getCurSDLoc()); 7528 7529 SDB->setValue(I, Res); 7530 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7531 if (LoadSDNode *LNode = 7532 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7533 if (FrameIndexSDNode *FI = 7534 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7535 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7536 } 7537 7538 // If this argument is live outside of the entry block, insert a copy from 7539 // wherever we got it to the vreg that other BB's will reference it as. 7540 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7541 // If we can, though, try to skip creating an unnecessary vreg. 7542 // FIXME: This isn't very clean... it would be nice to make this more 7543 // general. It's also subtly incompatible with the hacks FastISel 7544 // uses with vregs. 7545 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7546 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7547 FuncInfo->ValueMap[I] = Reg; 7548 continue; 7549 } 7550 } 7551 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7552 FuncInfo->InitializeRegForValue(I); 7553 SDB->CopyToExportRegsIfNeeded(I); 7554 } 7555 } 7556 7557 assert(i == InVals.size() && "Argument register count mismatch!"); 7558 7559 // Finally, if the target has anything special to do, allow it to do so. 7560 // FIXME: this should insert code into the DAG! 7561 EmitFunctionEntryCode(); 7562 } 7563 7564 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7565 /// ensure constants are generated when needed. Remember the virtual registers 7566 /// that need to be added to the Machine PHI nodes as input. We cannot just 7567 /// directly add them, because expansion might result in multiple MBB's for one 7568 /// BB. As such, the start of the BB might correspond to a different MBB than 7569 /// the end. 7570 /// 7571 void 7572 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7573 const TerminatorInst *TI = LLVMBB->getTerminator(); 7574 7575 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7576 7577 // Check successor nodes' PHI nodes that expect a constant to be available 7578 // from this block. 7579 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7580 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7581 if (!isa<PHINode>(SuccBB->begin())) continue; 7582 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7583 7584 // If this terminator has multiple identical successors (common for 7585 // switches), only handle each succ once. 7586 if (!SuccsHandled.insert(SuccMBB)) continue; 7587 7588 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7589 7590 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7591 // nodes and Machine PHI nodes, but the incoming operands have not been 7592 // emitted yet. 7593 for (BasicBlock::const_iterator I = SuccBB->begin(); 7594 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7595 // Ignore dead phi's. 7596 if (PN->use_empty()) continue; 7597 7598 // Skip empty types 7599 if (PN->getType()->isEmptyTy()) 7600 continue; 7601 7602 unsigned Reg; 7603 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7604 7605 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7606 unsigned &RegOut = ConstantsOut[C]; 7607 if (RegOut == 0) { 7608 RegOut = FuncInfo.CreateRegs(C->getType()); 7609 CopyValueToVirtualRegister(C, RegOut); 7610 } 7611 Reg = RegOut; 7612 } else { 7613 DenseMap<const Value *, unsigned>::iterator I = 7614 FuncInfo.ValueMap.find(PHIOp); 7615 if (I != FuncInfo.ValueMap.end()) 7616 Reg = I->second; 7617 else { 7618 assert(isa<AllocaInst>(PHIOp) && 7619 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7620 "Didn't codegen value into a register!??"); 7621 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7622 CopyValueToVirtualRegister(PHIOp, Reg); 7623 } 7624 } 7625 7626 // Remember that this register needs to added to the machine PHI node as 7627 // the input for this MBB. 7628 SmallVector<EVT, 4> ValueVTs; 7629 const TargetLowering *TLI = TM.getTargetLowering(); 7630 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7631 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7632 EVT VT = ValueVTs[vti]; 7633 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7634 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7635 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7636 Reg += NumRegisters; 7637 } 7638 } 7639 } 7640 7641 ConstantsOut.clear(); 7642 } 7643 7644 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7645 /// is 0. 7646 MachineBasicBlock * 7647 SelectionDAGBuilder::StackProtectorDescriptor:: 7648 AddSuccessorMBB(const BasicBlock *BB, 7649 MachineBasicBlock *ParentMBB, 7650 MachineBasicBlock *SuccMBB) { 7651 // If SuccBB has not been created yet, create it. 7652 if (!SuccMBB) { 7653 MachineFunction *MF = ParentMBB->getParent(); 7654 MachineFunction::iterator BBI = ParentMBB; 7655 SuccMBB = MF->CreateMachineBasicBlock(BB); 7656 MF->insert(++BBI, SuccMBB); 7657 } 7658 // Add it as a successor of ParentMBB. 7659 ParentMBB->addSuccessor(SuccMBB); 7660 return SuccMBB; 7661 } 7662