xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 1b9d6914d3cbe3a3cc26194e565c12e8eb729ec3)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/WinEHFuncInfo.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetFrameLowering.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetOptions.h"
64 #include "llvm/Target/TargetSelectionDAGInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "isel"
70 
71 /// LimitFloatPrecision - Generate low-precision inline sequences for
72 /// some float libcalls (6, 8 or 12 bits).
73 static unsigned LimitFloatPrecision;
74 
75 static cl::opt<unsigned, true>
76 LimitFPPrecision("limit-float-precision",
77                  cl::desc("Generate low-precision inline sequences "
78                           "for some float libcalls"),
79                  cl::location(LimitFloatPrecision),
80                  cl::init(0));
81 
82 static cl::opt<bool>
83 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden,
84                 cl::desc("Enable fast-math-flags for DAG nodes"));
85 
86 // Limit the width of DAG chains. This is important in general to prevent
87 // DAG-based analysis from blowing up. For example, alias analysis and
88 // load clustering may not complete in reasonable time. It is difficult to
89 // recognize and avoid this situation within each individual analysis, and
90 // future analyses are likely to have the same behavior. Limiting DAG width is
91 // the safe approach and will be especially important with global DAGs.
92 //
93 // MaxParallelChains default is arbitrarily high to avoid affecting
94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
95 // sequence over this should have been converted to llvm.memcpy by the
96 // frontend. It easy to induce this behavior with .ll code such as:
97 // %buffer = alloca [4096 x i8]
98 // %data = load [4096 x i8]* %argPtr
99 // store [4096 x i8] %data, [4096 x i8]* %buffer
100 static const unsigned MaxParallelChains = 64;
101 
102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
103                                       const SDValue *Parts, unsigned NumParts,
104                                       MVT PartVT, EVT ValueVT, const Value *V);
105 
106 /// getCopyFromParts - Create a value that contains the specified legal parts
107 /// combined into the value they represent.  If the parts combine to a type
108 /// larger then ValueVT then AssertOp can be used to specify whether the extra
109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
110 /// (ISD::AssertSext).
111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
112                                 const SDValue *Parts,
113                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
114                                 const Value *V,
115                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
116   if (ValueVT.isVector())
117     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
118                                   PartVT, ValueVT, V);
119 
120   assert(NumParts > 0 && "No parts to assemble!");
121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
122   SDValue Val = Parts[0];
123 
124   if (NumParts > 1) {
125     // Assemble the value from multiple parts.
126     if (ValueVT.isInteger()) {
127       unsigned PartBits = PartVT.getSizeInBits();
128       unsigned ValueBits = ValueVT.getSizeInBits();
129 
130       // Assemble the power of 2 part.
131       unsigned RoundParts = NumParts & (NumParts - 1) ?
132         1 << Log2_32(NumParts) : NumParts;
133       unsigned RoundBits = PartBits * RoundParts;
134       EVT RoundVT = RoundBits == ValueBits ?
135         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
136       SDValue Lo, Hi;
137 
138       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
139 
140       if (RoundParts > 2) {
141         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
142                               PartVT, HalfVT, V);
143         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
144                               RoundParts / 2, PartVT, HalfVT, V);
145       } else {
146         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
147         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
148       }
149 
150       if (DAG.getDataLayout().isBigEndian())
151         std::swap(Lo, Hi);
152 
153       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
154 
155       if (RoundParts < NumParts) {
156         // Assemble the trailing non-power-of-2 part.
157         unsigned OddParts = NumParts - RoundParts;
158         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
159         Hi = getCopyFromParts(DAG, DL,
160                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
161 
162         // Combine the round and odd parts.
163         Lo = Val;
164         if (DAG.getDataLayout().isBigEndian())
165           std::swap(Lo, Hi);
166         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
167         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
168         Hi =
169             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
170                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
171                                         TLI.getPointerTy(DAG.getDataLayout())));
172         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
173         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
174       }
175     } else if (PartVT.isFloatingPoint()) {
176       // FP split into multiple FP parts (for ppcf128)
177       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
178              "Unexpected split");
179       SDValue Lo, Hi;
180       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
181       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
182       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
183         std::swap(Lo, Hi);
184       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
185     } else {
186       // FP split into integer parts (soft fp)
187       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188              !PartVT.isVector() && "Unexpected split");
189       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
191     }
192   }
193 
194   // There is now one part, held in Val.  Correct it to match ValueVT.
195   EVT PartEVT = Val.getValueType();
196 
197   if (PartEVT == ValueVT)
198     return Val;
199 
200   if (PartEVT.isInteger() && ValueVT.isInteger()) {
201     if (ValueVT.bitsLT(PartEVT)) {
202       // For a truncate, see if we have any information to
203       // indicate whether the truncated bits will always be
204       // zero or sign-extension.
205       if (AssertOp != ISD::DELETED_NODE)
206         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
207                           DAG.getValueType(ValueVT));
208       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
209     }
210     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
211   }
212 
213   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
214     // FP_ROUND's are always exact here.
215     if (ValueVT.bitsLT(Val.getValueType()))
216       return DAG.getNode(
217           ISD::FP_ROUND, DL, ValueVT, Val,
218           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
219 
220     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
221   }
222 
223   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
224     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
225 
226   llvm_unreachable("Unknown mismatch!");
227 }
228 
229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
230                                               const Twine &ErrMsg) {
231   const Instruction *I = dyn_cast_or_null<Instruction>(V);
232   if (!V)
233     return Ctx.emitError(ErrMsg);
234 
235   const char *AsmError = ", possible invalid constraint for vector type";
236   if (const CallInst *CI = dyn_cast<CallInst>(I))
237     if (isa<InlineAsm>(CI->getCalledValue()))
238       return Ctx.emitError(I, ErrMsg + AsmError);
239 
240   return Ctx.emitError(I, ErrMsg);
241 }
242 
243 /// getCopyFromPartsVector - Create a value that contains the specified legal
244 /// parts combined into the value they represent.  If the parts combine to a
245 /// type larger then ValueVT then AssertOp can be used to specify whether the
246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
247 /// ValueVT (ISD::AssertSext).
248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
249                                       const SDValue *Parts, unsigned NumParts,
250                                       MVT PartVT, EVT ValueVT, const Value *V) {
251   assert(ValueVT.isVector() && "Not a vector value");
252   assert(NumParts > 0 && "No parts to assemble!");
253   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
254   SDValue Val = Parts[0];
255 
256   // Handle a multi-element vector.
257   if (NumParts > 1) {
258     EVT IntermediateVT;
259     MVT RegisterVT;
260     unsigned NumIntermediates;
261     unsigned NumRegs =
262     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
263                                NumIntermediates, RegisterVT);
264     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
265     NumParts = NumRegs; // Silence a compiler warning.
266     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
267     assert(RegisterVT.getSizeInBits() ==
268            Parts[0].getSimpleValueType().getSizeInBits() &&
269            "Part type sizes don't match!");
270 
271     // Assemble the parts into intermediate operands.
272     SmallVector<SDValue, 8> Ops(NumIntermediates);
273     if (NumIntermediates == NumParts) {
274       // If the register was not expanded, truncate or copy the value,
275       // as appropriate.
276       for (unsigned i = 0; i != NumParts; ++i)
277         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
278                                   PartVT, IntermediateVT, V);
279     } else if (NumParts > 0) {
280       // If the intermediate type was expanded, build the intermediate
281       // operands from the parts.
282       assert(NumParts % NumIntermediates == 0 &&
283              "Must expand into a divisible number of parts!");
284       unsigned Factor = NumParts / NumIntermediates;
285       for (unsigned i = 0; i != NumIntermediates; ++i)
286         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
287                                   PartVT, IntermediateVT, V);
288     }
289 
290     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
291     // intermediate operands.
292     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
293                                                 : ISD::BUILD_VECTOR,
294                       DL, ValueVT, Ops);
295   }
296 
297   // There is now one part, held in Val.  Correct it to match ValueVT.
298   EVT PartEVT = Val.getValueType();
299 
300   if (PartEVT == ValueVT)
301     return Val;
302 
303   if (PartEVT.isVector()) {
304     // If the element type of the source/dest vectors are the same, but the
305     // parts vector has more elements than the value vector, then we have a
306     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
307     // elements we want.
308     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
309       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
310              "Cannot narrow, it would be a lossy transformation");
311       return DAG.getNode(
312           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
313           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
314     }
315 
316     // Vector/Vector bitcast.
317     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
318       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
319 
320     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
321       "Cannot handle this kind of promotion");
322     // Promoted vector extract
323     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
324 
325   }
326 
327   // Trivial bitcast if the types are the same size and the destination
328   // vector type is legal.
329   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
330       TLI.isTypeLegal(ValueVT))
331     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
332 
333   // Handle cases such as i8 -> <1 x i1>
334   if (ValueVT.getVectorNumElements() != 1) {
335     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
336                                       "non-trivial scalar-to-vector conversion");
337     return DAG.getUNDEF(ValueVT);
338   }
339 
340   if (ValueVT.getVectorNumElements() == 1 &&
341       ValueVT.getVectorElementType() != PartEVT)
342     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
343 
344   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
345 }
346 
347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
348                                  SDValue Val, SDValue *Parts, unsigned NumParts,
349                                  MVT PartVT, const Value *V);
350 
351 /// getCopyToParts - Create a series of nodes that contain the specified value
352 /// split into legal parts.  If the parts contain more bits than Val, then, for
353 /// integers, ExtendKind can be used to specify how to generate the extra bits.
354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
355                            SDValue Val, SDValue *Parts, unsigned NumParts,
356                            MVT PartVT, const Value *V,
357                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
358   EVT ValueVT = Val.getValueType();
359 
360   // Handle the vector case separately.
361   if (ValueVT.isVector())
362     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
363 
364   unsigned PartBits = PartVT.getSizeInBits();
365   unsigned OrigNumParts = NumParts;
366   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
367          "Copying to an illegal type!");
368 
369   if (NumParts == 0)
370     return;
371 
372   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
373   EVT PartEVT = PartVT;
374   if (PartEVT == ValueVT) {
375     assert(NumParts == 1 && "No-op copy with multiple parts!");
376     Parts[0] = Val;
377     return;
378   }
379 
380   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
381     // If the parts cover more bits than the value has, promote the value.
382     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
383       assert(NumParts == 1 && "Do not know what to promote to!");
384       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
385     } else {
386       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
387              ValueVT.isInteger() &&
388              "Unknown mismatch!");
389       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
390       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
391       if (PartVT == MVT::x86mmx)
392         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
393     }
394   } else if (PartBits == ValueVT.getSizeInBits()) {
395     // Different types of the same size.
396     assert(NumParts == 1 && PartEVT != ValueVT);
397     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
398   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
399     // If the parts cover less bits than value has, truncate the value.
400     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
401            ValueVT.isInteger() &&
402            "Unknown mismatch!");
403     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
404     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
405     if (PartVT == MVT::x86mmx)
406       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
407   }
408 
409   // The value may have changed - recompute ValueVT.
410   ValueVT = Val.getValueType();
411   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
412          "Failed to tile the value with PartVT!");
413 
414   if (NumParts == 1) {
415     if (PartEVT != ValueVT)
416       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
417                                         "scalar-to-vector conversion failed");
418 
419     Parts[0] = Val;
420     return;
421   }
422 
423   // Expand the value into multiple parts.
424   if (NumParts & (NumParts - 1)) {
425     // The number of parts is not a power of 2.  Split off and copy the tail.
426     assert(PartVT.isInteger() && ValueVT.isInteger() &&
427            "Do not know what to expand to!");
428     unsigned RoundParts = 1 << Log2_32(NumParts);
429     unsigned RoundBits = RoundParts * PartBits;
430     unsigned OddParts = NumParts - RoundParts;
431     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
432                                  DAG.getIntPtrConstant(RoundBits, DL));
433     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
434 
435     if (DAG.getDataLayout().isBigEndian())
436       // The odd parts were reversed by getCopyToParts - unreverse them.
437       std::reverse(Parts + RoundParts, Parts + NumParts);
438 
439     NumParts = RoundParts;
440     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
441     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
442   }
443 
444   // The number of parts is a power of 2.  Repeatedly bisect the value using
445   // EXTRACT_ELEMENT.
446   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
447                          EVT::getIntegerVT(*DAG.getContext(),
448                                            ValueVT.getSizeInBits()),
449                          Val);
450 
451   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
452     for (unsigned i = 0; i < NumParts; i += StepSize) {
453       unsigned ThisBits = StepSize * PartBits / 2;
454       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
455       SDValue &Part0 = Parts[i];
456       SDValue &Part1 = Parts[i+StepSize/2];
457 
458       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
459                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
460       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
461                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
462 
463       if (ThisBits == PartBits && ThisVT != PartVT) {
464         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
465         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
466       }
467     }
468   }
469 
470   if (DAG.getDataLayout().isBigEndian())
471     std::reverse(Parts, Parts + OrigNumParts);
472 }
473 
474 
475 /// getCopyToPartsVector - Create a series of nodes that contain the specified
476 /// value split into legal parts.
477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
478                                  SDValue Val, SDValue *Parts, unsigned NumParts,
479                                  MVT PartVT, const Value *V) {
480   EVT ValueVT = Val.getValueType();
481   assert(ValueVT.isVector() && "Not a vector");
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483 
484   if (NumParts == 1) {
485     EVT PartEVT = PartVT;
486     if (PartEVT == ValueVT) {
487       // Nothing to do.
488     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
489       // Bitconvert vector->vector case.
490       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
491     } else if (PartVT.isVector() &&
492                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
493                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
494       EVT ElementVT = PartVT.getVectorElementType();
495       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
496       // undef elements.
497       SmallVector<SDValue, 16> Ops;
498       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
499         Ops.push_back(DAG.getNode(
500             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
501             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
502 
503       for (unsigned i = ValueVT.getVectorNumElements(),
504            e = PartVT.getVectorNumElements(); i != e; ++i)
505         Ops.push_back(DAG.getUNDEF(ElementVT));
506 
507       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
508 
509       // FIXME: Use CONCAT for 2x -> 4x.
510 
511       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
512       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
513     } else if (PartVT.isVector() &&
514                PartEVT.getVectorElementType().bitsGE(
515                  ValueVT.getVectorElementType()) &&
516                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
517 
518       // Promoted vector extract
519       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
520     } else{
521       // Vector -> scalar conversion.
522       assert(ValueVT.getVectorNumElements() == 1 &&
523              "Only trivial vector-to-scalar conversions should get here!");
524       Val = DAG.getNode(
525           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
526           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
527 
528       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
529     }
530 
531     Parts[0] = Val;
532     return;
533   }
534 
535   // Handle a multi-element vector.
536   EVT IntermediateVT;
537   MVT RegisterVT;
538   unsigned NumIntermediates;
539   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
540                                                 IntermediateVT,
541                                                 NumIntermediates, RegisterVT);
542   unsigned NumElements = ValueVT.getVectorNumElements();
543 
544   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
545   NumParts = NumRegs; // Silence a compiler warning.
546   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
547 
548   // Split the vector into intermediate operands.
549   SmallVector<SDValue, 8> Ops(NumIntermediates);
550   for (unsigned i = 0; i != NumIntermediates; ++i) {
551     if (IntermediateVT.isVector())
552       Ops[i] =
553           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
554                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
555                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
556     else
557       Ops[i] = DAG.getNode(
558           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
559           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
560   }
561 
562   // Split the intermediate operands into legal parts.
563   if (NumParts == NumIntermediates) {
564     // If the register was not expanded, promote or copy the value,
565     // as appropriate.
566     for (unsigned i = 0; i != NumParts; ++i)
567       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
568   } else if (NumParts > 0) {
569     // If the intermediate type was expanded, split each the value into
570     // legal parts.
571     assert(NumIntermediates != 0 && "division by zero");
572     assert(NumParts % NumIntermediates == 0 &&
573            "Must expand into a divisible number of parts!");
574     unsigned Factor = NumParts / NumIntermediates;
575     for (unsigned i = 0; i != NumIntermediates; ++i)
576       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
577   }
578 }
579 
580 RegsForValue::RegsForValue() {}
581 
582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
583                            EVT valuevt)
584     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
585 
586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
587                            const DataLayout &DL, unsigned Reg, Type *Ty) {
588   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
589 
590   for (EVT ValueVT : ValueVTs) {
591     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
592     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
593     for (unsigned i = 0; i != NumRegs; ++i)
594       Regs.push_back(Reg + i);
595     RegVTs.push_back(RegisterVT);
596     Reg += NumRegs;
597   }
598 }
599 
600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
601 /// this value and returns the result as a ValueVT value.  This uses
602 /// Chain/Flag as the input and updates them for the output Chain/Flag.
603 /// If the Flag pointer is NULL, no flag is used.
604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
605                                       FunctionLoweringInfo &FuncInfo,
606                                       SDLoc dl,
607                                       SDValue &Chain, SDValue *Flag,
608                                       const Value *V) const {
609   // A Value with type {} or [0 x %t] needs no registers.
610   if (ValueVTs.empty())
611     return SDValue();
612 
613   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
614 
615   // Assemble the legal parts into the final values.
616   SmallVector<SDValue, 4> Values(ValueVTs.size());
617   SmallVector<SDValue, 8> Parts;
618   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
619     // Copy the legal parts from the registers.
620     EVT ValueVT = ValueVTs[Value];
621     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
622     MVT RegisterVT = RegVTs[Value];
623 
624     Parts.resize(NumRegs);
625     for (unsigned i = 0; i != NumRegs; ++i) {
626       SDValue P;
627       if (!Flag) {
628         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
629       } else {
630         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
631         *Flag = P.getValue(2);
632       }
633 
634       Chain = P.getValue(1);
635       Parts[i] = P;
636 
637       // If the source register was virtual and if we know something about it,
638       // add an assert node.
639       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
640           !RegisterVT.isInteger() || RegisterVT.isVector())
641         continue;
642 
643       const FunctionLoweringInfo::LiveOutInfo *LOI =
644         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
645       if (!LOI)
646         continue;
647 
648       unsigned RegSize = RegisterVT.getSizeInBits();
649       unsigned NumSignBits = LOI->NumSignBits;
650       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
651 
652       if (NumZeroBits == RegSize) {
653         // The current value is a zero.
654         // Explicitly express that as it would be easier for
655         // optimizations to kick in.
656         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
657         continue;
658       }
659 
660       // FIXME: We capture more information than the dag can represent.  For
661       // now, just use the tightest assertzext/assertsext possible.
662       bool isSExt = true;
663       EVT FromVT(MVT::Other);
664       if (NumSignBits == RegSize)
665         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
666       else if (NumZeroBits >= RegSize-1)
667         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
668       else if (NumSignBits > RegSize-8)
669         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
670       else if (NumZeroBits >= RegSize-8)
671         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
672       else if (NumSignBits > RegSize-16)
673         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
674       else if (NumZeroBits >= RegSize-16)
675         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
676       else if (NumSignBits > RegSize-32)
677         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
678       else if (NumZeroBits >= RegSize-32)
679         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
680       else
681         continue;
682 
683       // Add an assertion node.
684       assert(FromVT != MVT::Other);
685       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
686                              RegisterVT, P, DAG.getValueType(FromVT));
687     }
688 
689     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
690                                      NumRegs, RegisterVT, ValueVT, V);
691     Part += NumRegs;
692     Parts.clear();
693   }
694 
695   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
696 }
697 
698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
699 /// specified value into the registers specified by this object.  This uses
700 /// Chain/Flag as the input and updates them for the output Chain/Flag.
701 /// If the Flag pointer is NULL, no flag is used.
702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
703                                  SDValue &Chain, SDValue *Flag, const Value *V,
704                                  ISD::NodeType PreferredExtendType) const {
705   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
706   ISD::NodeType ExtendKind = PreferredExtendType;
707 
708   // Get the list of the values's legal parts.
709   unsigned NumRegs = Regs.size();
710   SmallVector<SDValue, 8> Parts(NumRegs);
711   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
712     EVT ValueVT = ValueVTs[Value];
713     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
714     MVT RegisterVT = RegVTs[Value];
715 
716     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
717       ExtendKind = ISD::ZERO_EXTEND;
718 
719     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
720                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
721     Part += NumParts;
722   }
723 
724   // Copy the parts into the registers.
725   SmallVector<SDValue, 8> Chains(NumRegs);
726   for (unsigned i = 0; i != NumRegs; ++i) {
727     SDValue Part;
728     if (!Flag) {
729       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
730     } else {
731       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
732       *Flag = Part.getValue(1);
733     }
734 
735     Chains[i] = Part.getValue(0);
736   }
737 
738   if (NumRegs == 1 || Flag)
739     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
740     // flagged to it. That is the CopyToReg nodes and the user are considered
741     // a single scheduling unit. If we create a TokenFactor and return it as
742     // chain, then the TokenFactor is both a predecessor (operand) of the
743     // user as well as a successor (the TF operands are flagged to the user).
744     // c1, f1 = CopyToReg
745     // c2, f2 = CopyToReg
746     // c3     = TokenFactor c1, c2
747     // ...
748     //        = op c3, ..., f2
749     Chain = Chains[NumRegs-1];
750   else
751     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
752 }
753 
754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
755 /// operand list.  This adds the code marker and includes the number of
756 /// values added into it.
757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
758                                         unsigned MatchingIdx, SDLoc dl,
759                                         SelectionDAG &DAG,
760                                         std::vector<SDValue> &Ops) const {
761   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
762 
763   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
764   if (HasMatching)
765     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
766   else if (!Regs.empty() &&
767            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
768     // Put the register class of the virtual registers in the flag word.  That
769     // way, later passes can recompute register class constraints for inline
770     // assembly as well as normal instructions.
771     // Don't do this for tied operands that can use the regclass information
772     // from the def.
773     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
774     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
775     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
776   }
777 
778   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
779   Ops.push_back(Res);
780 
781   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
782   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
783     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
784     MVT RegisterVT = RegVTs[Value];
785     for (unsigned i = 0; i != NumRegs; ++i) {
786       assert(Reg < Regs.size() && "Mismatch in # registers expected");
787       unsigned TheReg = Regs[Reg++];
788       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
789 
790       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
791         // If we clobbered the stack pointer, MFI should know about it.
792         assert(DAG.getMachineFunction().getFrameInfo()->
793             hasOpaqueSPAdjustment());
794       }
795     }
796   }
797 }
798 
799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
800                                const TargetLibraryInfo *li) {
801   AA = &aa;
802   GFI = gfi;
803   LibInfo = li;
804   DL = &DAG.getDataLayout();
805   Context = DAG.getContext();
806   LPadToCallSiteMap.clear();
807 }
808 
809 /// clear - Clear out the current SelectionDAG and the associated
810 /// state and prepare this SelectionDAGBuilder object to be used
811 /// for a new block. This doesn't clear out information about
812 /// additional blocks that are needed to complete switch lowering
813 /// or PHI node updating; that information is cleared out as it is
814 /// consumed.
815 void SelectionDAGBuilder::clear() {
816   NodeMap.clear();
817   UnusedArgNodeMap.clear();
818   PendingLoads.clear();
819   PendingExports.clear();
820   CurInst = nullptr;
821   HasTailCall = false;
822   SDNodeOrder = LowestSDNodeOrder;
823   StatepointLowering.clear();
824 }
825 
826 /// clearDanglingDebugInfo - Clear the dangling debug information
827 /// map. This function is separated from the clear so that debug
828 /// information that is dangling in a basic block can be properly
829 /// resolved in a different basic block. This allows the
830 /// SelectionDAG to resolve dangling debug information attached
831 /// to PHI nodes.
832 void SelectionDAGBuilder::clearDanglingDebugInfo() {
833   DanglingDebugInfoMap.clear();
834 }
835 
836 /// getRoot - Return the current virtual root of the Selection DAG,
837 /// flushing any PendingLoad items. This must be done before emitting
838 /// a store or any other node that may need to be ordered after any
839 /// prior load instructions.
840 ///
841 SDValue SelectionDAGBuilder::getRoot() {
842   if (PendingLoads.empty())
843     return DAG.getRoot();
844 
845   if (PendingLoads.size() == 1) {
846     SDValue Root = PendingLoads[0];
847     DAG.setRoot(Root);
848     PendingLoads.clear();
849     return Root;
850   }
851 
852   // Otherwise, we have to make a token factor node.
853   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
854                              PendingLoads);
855   PendingLoads.clear();
856   DAG.setRoot(Root);
857   return Root;
858 }
859 
860 /// getControlRoot - Similar to getRoot, but instead of flushing all the
861 /// PendingLoad items, flush all the PendingExports items. It is necessary
862 /// to do this before emitting a terminator instruction.
863 ///
864 SDValue SelectionDAGBuilder::getControlRoot() {
865   SDValue Root = DAG.getRoot();
866 
867   if (PendingExports.empty())
868     return Root;
869 
870   // Turn all of the CopyToReg chains into one factored node.
871   if (Root.getOpcode() != ISD::EntryToken) {
872     unsigned i = 0, e = PendingExports.size();
873     for (; i != e; ++i) {
874       assert(PendingExports[i].getNode()->getNumOperands() > 1);
875       if (PendingExports[i].getNode()->getOperand(0) == Root)
876         break;  // Don't add the root if we already indirectly depend on it.
877     }
878 
879     if (i == e)
880       PendingExports.push_back(Root);
881   }
882 
883   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
884                      PendingExports);
885   PendingExports.clear();
886   DAG.setRoot(Root);
887   return Root;
888 }
889 
890 void SelectionDAGBuilder::visit(const Instruction &I) {
891   // Set up outgoing PHI node register values before emitting the terminator.
892   if (isa<TerminatorInst>(&I))
893     HandlePHINodesInSuccessorBlocks(I.getParent());
894 
895   ++SDNodeOrder;
896 
897   CurInst = &I;
898 
899   visit(I.getOpcode(), I);
900 
901   if (!isa<TerminatorInst>(&I) && !HasTailCall)
902     CopyToExportRegsIfNeeded(&I);
903 
904   CurInst = nullptr;
905 }
906 
907 void SelectionDAGBuilder::visitPHI(const PHINode &) {
908   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
909 }
910 
911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
912   // Note: this doesn't use InstVisitor, because it has to work with
913   // ConstantExpr's in addition to instructions.
914   switch (Opcode) {
915   default: llvm_unreachable("Unknown instruction type encountered!");
916     // Build the switch statement using the Instruction.def file.
917 #define HANDLE_INST(NUM, OPCODE, CLASS) \
918     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
919 #include "llvm/IR/Instruction.def"
920   }
921 }
922 
923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
924 // generate the debug data structures now that we've seen its definition.
925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
926                                                    SDValue Val) {
927   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
928   if (DDI.getDI()) {
929     const DbgValueInst *DI = DDI.getDI();
930     DebugLoc dl = DDI.getdl();
931     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
932     DILocalVariable *Variable = DI->getVariable();
933     DIExpression *Expr = DI->getExpression();
934     assert(Variable->isValidLocationForIntrinsic(dl) &&
935            "Expected inlined-at fields to agree");
936     uint64_t Offset = DI->getOffset();
937     // A dbg.value for an alloca is always indirect.
938     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
939     SDDbgValue *SDV;
940     if (Val.getNode()) {
941       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
942                                     Val)) {
943         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
944                               IsIndirect, Offset, dl, DbgSDNodeOrder);
945         DAG.AddDbgValue(SDV, Val.getNode(), false);
946       }
947     } else
948       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
949     DanglingDebugInfoMap[V] = DanglingDebugInfo();
950   }
951 }
952 
953 /// getCopyFromRegs - If there was virtual register allocated for the value V
954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
956   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
957   SDValue Result;
958 
959   if (It != FuncInfo.ValueMap.end()) {
960     unsigned InReg = It->second;
961     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
962                      DAG.getDataLayout(), InReg, Ty);
963     SDValue Chain = DAG.getEntryNode();
964     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
965     resolveDanglingDebugInfo(V, Result);
966   }
967 
968   return Result;
969 }
970 
971 /// getValue - Return an SDValue for the given Value.
972 SDValue SelectionDAGBuilder::getValue(const Value *V) {
973   // If we already have an SDValue for this value, use it. It's important
974   // to do this first, so that we don't create a CopyFromReg if we already
975   // have a regular SDValue.
976   SDValue &N = NodeMap[V];
977   if (N.getNode()) return N;
978 
979   // If there's a virtual register allocated and initialized for this
980   // value, use it.
981   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
982   if (copyFromReg.getNode()) {
983     return copyFromReg;
984   }
985 
986   // Otherwise create a new SDValue and remember it.
987   SDValue Val = getValueImpl(V);
988   NodeMap[V] = Val;
989   resolveDanglingDebugInfo(V, Val);
990   return Val;
991 }
992 
993 // Return true if SDValue exists for the given Value
994 bool SelectionDAGBuilder::findValue(const Value *V) const {
995   return (NodeMap.find(V) != NodeMap.end()) ||
996     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
997 }
998 
999 /// getNonRegisterValue - Return an SDValue for the given Value, but
1000 /// don't look in FuncInfo.ValueMap for a virtual register.
1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1002   // If we already have an SDValue for this value, use it.
1003   SDValue &N = NodeMap[V];
1004   if (N.getNode()) {
1005     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1006       // Remove the debug location from the node as the node is about to be used
1007       // in a location which may differ from the original debug location.  This
1008       // is relevant to Constant and ConstantFP nodes because they can appear
1009       // as constant expressions inside PHI nodes.
1010       N->setDebugLoc(DebugLoc());
1011     }
1012     return N;
1013   }
1014 
1015   // Otherwise create a new SDValue and remember it.
1016   SDValue Val = getValueImpl(V);
1017   NodeMap[V] = Val;
1018   resolveDanglingDebugInfo(V, Val);
1019   return Val;
1020 }
1021 
1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1023 /// Create an SDValue for the given value.
1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1025   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1026 
1027   if (const Constant *C = dyn_cast<Constant>(V)) {
1028     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1029 
1030     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1031       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1032 
1033     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1034       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1035 
1036     if (isa<ConstantPointerNull>(C)) {
1037       unsigned AS = V->getType()->getPointerAddressSpace();
1038       return DAG.getConstant(0, getCurSDLoc(),
1039                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1040     }
1041 
1042     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1043       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1044 
1045     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1046       return DAG.getUNDEF(VT);
1047 
1048     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1049       visit(CE->getOpcode(), *CE);
1050       SDValue N1 = NodeMap[V];
1051       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1052       return N1;
1053     }
1054 
1055     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1056       SmallVector<SDValue, 4> Constants;
1057       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1058            OI != OE; ++OI) {
1059         SDNode *Val = getValue(*OI).getNode();
1060         // If the operand is an empty aggregate, there are no values.
1061         if (!Val) continue;
1062         // Add each leaf value from the operand to the Constants list
1063         // to form a flattened list of all the values.
1064         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1065           Constants.push_back(SDValue(Val, i));
1066       }
1067 
1068       return DAG.getMergeValues(Constants, getCurSDLoc());
1069     }
1070 
1071     if (const ConstantDataSequential *CDS =
1072           dyn_cast<ConstantDataSequential>(C)) {
1073       SmallVector<SDValue, 4> Ops;
1074       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1075         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1076         // Add each leaf value from the operand to the Constants list
1077         // to form a flattened list of all the values.
1078         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1079           Ops.push_back(SDValue(Val, i));
1080       }
1081 
1082       if (isa<ArrayType>(CDS->getType()))
1083         return DAG.getMergeValues(Ops, getCurSDLoc());
1084       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1085                                       VT, Ops);
1086     }
1087 
1088     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1089       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1090              "Unknown struct or array constant!");
1091 
1092       SmallVector<EVT, 4> ValueVTs;
1093       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1094       unsigned NumElts = ValueVTs.size();
1095       if (NumElts == 0)
1096         return SDValue(); // empty struct
1097       SmallVector<SDValue, 4> Constants(NumElts);
1098       for (unsigned i = 0; i != NumElts; ++i) {
1099         EVT EltVT = ValueVTs[i];
1100         if (isa<UndefValue>(C))
1101           Constants[i] = DAG.getUNDEF(EltVT);
1102         else if (EltVT.isFloatingPoint())
1103           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1104         else
1105           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1106       }
1107 
1108       return DAG.getMergeValues(Constants, getCurSDLoc());
1109     }
1110 
1111     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1112       return DAG.getBlockAddress(BA, VT);
1113 
1114     VectorType *VecTy = cast<VectorType>(V->getType());
1115     unsigned NumElements = VecTy->getNumElements();
1116 
1117     // Now that we know the number and type of the elements, get that number of
1118     // elements into the Ops array based on what kind of constant it is.
1119     SmallVector<SDValue, 16> Ops;
1120     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1121       for (unsigned i = 0; i != NumElements; ++i)
1122         Ops.push_back(getValue(CV->getOperand(i)));
1123     } else {
1124       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1125       EVT EltVT =
1126           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1127 
1128       SDValue Op;
1129       if (EltVT.isFloatingPoint())
1130         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1131       else
1132         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1133       Ops.assign(NumElements, Op);
1134     }
1135 
1136     // Create a BUILD_VECTOR node.
1137     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1138   }
1139 
1140   // If this is a static alloca, generate it as the frameindex instead of
1141   // computation.
1142   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1143     DenseMap<const AllocaInst*, int>::iterator SI =
1144       FuncInfo.StaticAllocaMap.find(AI);
1145     if (SI != FuncInfo.StaticAllocaMap.end())
1146       return DAG.getFrameIndex(SI->second,
1147                                TLI.getPointerTy(DAG.getDataLayout()));
1148   }
1149 
1150   // If this is an instruction which fast-isel has deferred, select it now.
1151   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1152     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1153     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1154                      Inst->getType());
1155     SDValue Chain = DAG.getEntryNode();
1156     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1157   }
1158 
1159   llvm_unreachable("Can't get register for value!");
1160 }
1161 
1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1163   // Update machine-CFG edges.
1164   MachineBasicBlock *PadMBB = FuncInfo.MBB;
1165   MachineBasicBlock *CatchingMBB = FuncInfo.MBBMap[I.getNormalDest()];
1166   MachineBasicBlock *UnwindMBB = FuncInfo.MBBMap[I.getUnwindDest()];
1167   PadMBB->addSuccessor(CatchingMBB);
1168   PadMBB->addSuccessor(UnwindMBB);
1169 
1170   CatchingMBB->setIsEHFuncletEntry();
1171   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1172   MMI.setHasEHFunclets(true);
1173 }
1174 
1175 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1176   // Update machine-CFG edge.
1177   MachineBasicBlock *PadMBB = FuncInfo.MBB;
1178   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1179   PadMBB->addSuccessor(TargetMBB);
1180 
1181   // Create the terminator node.
1182   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1183                             getControlRoot(), DAG.getBasicBlock(TargetMBB));
1184   DAG.setRoot(Ret);
1185 }
1186 
1187 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) {
1188   // If this unwinds to caller, we don't need a DAG node hanging around.
1189   if (!I.hasUnwindDest())
1190     return;
1191 
1192   // Update machine-CFG edge.
1193   MachineBasicBlock *PadMBB = FuncInfo.MBB;
1194   MachineBasicBlock *UnwindMBB = FuncInfo.MBBMap[I.getUnwindDest()];
1195   PadMBB->addSuccessor(UnwindMBB);
1196 }
1197 
1198 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1199   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1200   MMI.setHasEHFunclets(true);
1201   report_fatal_error("visitCleanupPad not yet implemented!");
1202 }
1203 
1204 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1205   report_fatal_error("visitCleanupRet not yet implemented!");
1206 }
1207 
1208 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) {
1209   report_fatal_error("visitTerminatePad not yet implemented!");
1210 }
1211 
1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1214   auto &DL = DAG.getDataLayout();
1215   SDValue Chain = getControlRoot();
1216   SmallVector<ISD::OutputArg, 8> Outs;
1217   SmallVector<SDValue, 8> OutVals;
1218 
1219   if (!FuncInfo.CanLowerReturn) {
1220     unsigned DemoteReg = FuncInfo.DemoteRegister;
1221     const Function *F = I.getParent()->getParent();
1222 
1223     // Emit a store of the return value through the virtual register.
1224     // Leave Outs empty so that LowerReturn won't try to load return
1225     // registers the usual way.
1226     SmallVector<EVT, 1> PtrValueVTs;
1227     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1228                     PtrValueVTs);
1229 
1230     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1231     SDValue RetOp = getValue(I.getOperand(0));
1232 
1233     SmallVector<EVT, 4> ValueVTs;
1234     SmallVector<uint64_t, 4> Offsets;
1235     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1236     unsigned NumValues = ValueVTs.size();
1237 
1238     SmallVector<SDValue, 4> Chains(NumValues);
1239     for (unsigned i = 0; i != NumValues; ++i) {
1240       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1241                                 RetPtr.getValueType(), RetPtr,
1242                                 DAG.getIntPtrConstant(Offsets[i],
1243                                                       getCurSDLoc()));
1244       Chains[i] =
1245         DAG.getStore(Chain, getCurSDLoc(),
1246                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1247                      // FIXME: better loc info would be nice.
1248                      Add, MachinePointerInfo(), false, false, 0);
1249     }
1250 
1251     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1252                         MVT::Other, Chains);
1253   } else if (I.getNumOperands() != 0) {
1254     SmallVector<EVT, 4> ValueVTs;
1255     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1256     unsigned NumValues = ValueVTs.size();
1257     if (NumValues) {
1258       SDValue RetOp = getValue(I.getOperand(0));
1259 
1260       const Function *F = I.getParent()->getParent();
1261 
1262       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1263       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1264                                           Attribute::SExt))
1265         ExtendKind = ISD::SIGN_EXTEND;
1266       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1267                                                Attribute::ZExt))
1268         ExtendKind = ISD::ZERO_EXTEND;
1269 
1270       LLVMContext &Context = F->getContext();
1271       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1272                                                       Attribute::InReg);
1273 
1274       for (unsigned j = 0; j != NumValues; ++j) {
1275         EVT VT = ValueVTs[j];
1276 
1277         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1278           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1279 
1280         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1281         MVT PartVT = TLI.getRegisterType(Context, VT);
1282         SmallVector<SDValue, 4> Parts(NumParts);
1283         getCopyToParts(DAG, getCurSDLoc(),
1284                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1285                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1286 
1287         // 'inreg' on function refers to return value
1288         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1289         if (RetInReg)
1290           Flags.setInReg();
1291 
1292         // Propagate extension type if any
1293         if (ExtendKind == ISD::SIGN_EXTEND)
1294           Flags.setSExt();
1295         else if (ExtendKind == ISD::ZERO_EXTEND)
1296           Flags.setZExt();
1297 
1298         for (unsigned i = 0; i < NumParts; ++i) {
1299           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1300                                         VT, /*isfixed=*/true, 0, 0));
1301           OutVals.push_back(Parts[i]);
1302         }
1303       }
1304     }
1305   }
1306 
1307   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1308   CallingConv::ID CallConv =
1309     DAG.getMachineFunction().getFunction()->getCallingConv();
1310   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1311       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1312 
1313   // Verify that the target's LowerReturn behaved as expected.
1314   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1315          "LowerReturn didn't return a valid chain!");
1316 
1317   // Update the DAG with the new chain value resulting from return lowering.
1318   DAG.setRoot(Chain);
1319 }
1320 
1321 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1322 /// created for it, emit nodes to copy the value into the virtual
1323 /// registers.
1324 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1325   // Skip empty types
1326   if (V->getType()->isEmptyTy())
1327     return;
1328 
1329   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1330   if (VMI != FuncInfo.ValueMap.end()) {
1331     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1332     CopyValueToVirtualRegister(V, VMI->second);
1333   }
1334 }
1335 
1336 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1337 /// the current basic block, add it to ValueMap now so that we'll get a
1338 /// CopyTo/FromReg.
1339 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1340   // No need to export constants.
1341   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1342 
1343   // Already exported?
1344   if (FuncInfo.isExportedInst(V)) return;
1345 
1346   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1347   CopyValueToVirtualRegister(V, Reg);
1348 }
1349 
1350 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1351                                                      const BasicBlock *FromBB) {
1352   // The operands of the setcc have to be in this block.  We don't know
1353   // how to export them from some other block.
1354   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1355     // Can export from current BB.
1356     if (VI->getParent() == FromBB)
1357       return true;
1358 
1359     // Is already exported, noop.
1360     return FuncInfo.isExportedInst(V);
1361   }
1362 
1363   // If this is an argument, we can export it if the BB is the entry block or
1364   // if it is already exported.
1365   if (isa<Argument>(V)) {
1366     if (FromBB == &FromBB->getParent()->getEntryBlock())
1367       return true;
1368 
1369     // Otherwise, can only export this if it is already exported.
1370     return FuncInfo.isExportedInst(V);
1371   }
1372 
1373   // Otherwise, constants can always be exported.
1374   return true;
1375 }
1376 
1377 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1378 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1379                                             const MachineBasicBlock *Dst) const {
1380   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1381   if (!BPI)
1382     return 0;
1383   const BasicBlock *SrcBB = Src->getBasicBlock();
1384   const BasicBlock *DstBB = Dst->getBasicBlock();
1385   return BPI->getEdgeWeight(SrcBB, DstBB);
1386 }
1387 
1388 void SelectionDAGBuilder::
1389 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1390                        uint32_t Weight /* = 0 */) {
1391   if (!Weight)
1392     Weight = getEdgeWeight(Src, Dst);
1393   Src->addSuccessor(Dst, Weight);
1394 }
1395 
1396 
1397 static bool InBlock(const Value *V, const BasicBlock *BB) {
1398   if (const Instruction *I = dyn_cast<Instruction>(V))
1399     return I->getParent() == BB;
1400   return true;
1401 }
1402 
1403 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1404 /// This function emits a branch and is used at the leaves of an OR or an
1405 /// AND operator tree.
1406 ///
1407 void
1408 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1409                                                   MachineBasicBlock *TBB,
1410                                                   MachineBasicBlock *FBB,
1411                                                   MachineBasicBlock *CurBB,
1412                                                   MachineBasicBlock *SwitchBB,
1413                                                   uint32_t TWeight,
1414                                                   uint32_t FWeight) {
1415   const BasicBlock *BB = CurBB->getBasicBlock();
1416 
1417   // If the leaf of the tree is a comparison, merge the condition into
1418   // the caseblock.
1419   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1420     // The operands of the cmp have to be in this block.  We don't know
1421     // how to export them from some other block.  If this is the first block
1422     // of the sequence, no exporting is needed.
1423     if (CurBB == SwitchBB ||
1424         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1425          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1426       ISD::CondCode Condition;
1427       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1428         Condition = getICmpCondCode(IC->getPredicate());
1429       } else {
1430         const FCmpInst *FC = cast<FCmpInst>(Cond);
1431         Condition = getFCmpCondCode(FC->getPredicate());
1432         if (TM.Options.NoNaNsFPMath)
1433           Condition = getFCmpCodeWithoutNaN(Condition);
1434       }
1435 
1436       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1437                    TBB, FBB, CurBB, TWeight, FWeight);
1438       SwitchCases.push_back(CB);
1439       return;
1440     }
1441   }
1442 
1443   // Create a CaseBlock record representing this branch.
1444   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1445                nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1446   SwitchCases.push_back(CB);
1447 }
1448 
1449 /// Scale down both weights to fit into uint32_t.
1450 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1451   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1452   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1453   NewTrue = NewTrue / Scale;
1454   NewFalse = NewFalse / Scale;
1455 }
1456 
1457 /// FindMergedConditions - If Cond is an expression like
1458 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1459                                                MachineBasicBlock *TBB,
1460                                                MachineBasicBlock *FBB,
1461                                                MachineBasicBlock *CurBB,
1462                                                MachineBasicBlock *SwitchBB,
1463                                                Instruction::BinaryOps Opc,
1464                                                uint32_t TWeight,
1465                                                uint32_t FWeight) {
1466   // If this node is not part of the or/and tree, emit it as a branch.
1467   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1468   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1469       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1470       BOp->getParent() != CurBB->getBasicBlock() ||
1471       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1472       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1473     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1474                                  TWeight, FWeight);
1475     return;
1476   }
1477 
1478   //  Create TmpBB after CurBB.
1479   MachineFunction::iterator BBI = CurBB;
1480   MachineFunction &MF = DAG.getMachineFunction();
1481   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1482   CurBB->getParent()->insert(++BBI, TmpBB);
1483 
1484   if (Opc == Instruction::Or) {
1485     // Codegen X | Y as:
1486     // BB1:
1487     //   jmp_if_X TBB
1488     //   jmp TmpBB
1489     // TmpBB:
1490     //   jmp_if_Y TBB
1491     //   jmp FBB
1492     //
1493 
1494     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1495     // The requirement is that
1496     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1497     //     = TrueProb for original BB.
1498     // Assuming the original weights are A and B, one choice is to set BB1's
1499     // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1500     // assumes that
1501     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1502     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1503     // TmpBB, but the math is more complicated.
1504 
1505     uint64_t NewTrueWeight = TWeight;
1506     uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1507     ScaleWeights(NewTrueWeight, NewFalseWeight);
1508     // Emit the LHS condition.
1509     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1510                          NewTrueWeight, NewFalseWeight);
1511 
1512     NewTrueWeight = TWeight;
1513     NewFalseWeight = 2 * (uint64_t)FWeight;
1514     ScaleWeights(NewTrueWeight, NewFalseWeight);
1515     // Emit the RHS condition into TmpBB.
1516     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1517                          NewTrueWeight, NewFalseWeight);
1518   } else {
1519     assert(Opc == Instruction::And && "Unknown merge op!");
1520     // Codegen X & Y as:
1521     // BB1:
1522     //   jmp_if_X TmpBB
1523     //   jmp FBB
1524     // TmpBB:
1525     //   jmp_if_Y TBB
1526     //   jmp FBB
1527     //
1528     //  This requires creation of TmpBB after CurBB.
1529 
1530     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1531     // The requirement is that
1532     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1533     //     = FalseProb for original BB.
1534     // Assuming the original weights are A and B, one choice is to set BB1's
1535     // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1536     // assumes that
1537     //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1538 
1539     uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1540     uint64_t NewFalseWeight = FWeight;
1541     ScaleWeights(NewTrueWeight, NewFalseWeight);
1542     // Emit the LHS condition.
1543     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1544                          NewTrueWeight, NewFalseWeight);
1545 
1546     NewTrueWeight = 2 * (uint64_t)TWeight;
1547     NewFalseWeight = FWeight;
1548     ScaleWeights(NewTrueWeight, NewFalseWeight);
1549     // Emit the RHS condition into TmpBB.
1550     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1551                          NewTrueWeight, NewFalseWeight);
1552   }
1553 }
1554 
1555 /// If the set of cases should be emitted as a series of branches, return true.
1556 /// If we should emit this as a bunch of and/or'd together conditions, return
1557 /// false.
1558 bool
1559 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1560   if (Cases.size() != 2) return true;
1561 
1562   // If this is two comparisons of the same values or'd or and'd together, they
1563   // will get folded into a single comparison, so don't emit two blocks.
1564   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1565        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1566       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1567        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1568     return false;
1569   }
1570 
1571   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1572   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1573   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1574       Cases[0].CC == Cases[1].CC &&
1575       isa<Constant>(Cases[0].CmpRHS) &&
1576       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1577     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1578       return false;
1579     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1580       return false;
1581   }
1582 
1583   return true;
1584 }
1585 
1586 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1587   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1588 
1589   // Update machine-CFG edges.
1590   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1591 
1592   if (I.isUnconditional()) {
1593     // Update machine-CFG edges.
1594     BrMBB->addSuccessor(Succ0MBB);
1595 
1596     // If this is not a fall-through branch or optimizations are switched off,
1597     // emit the branch.
1598     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1599       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1600                               MVT::Other, getControlRoot(),
1601                               DAG.getBasicBlock(Succ0MBB)));
1602 
1603     return;
1604   }
1605 
1606   // If this condition is one of the special cases we handle, do special stuff
1607   // now.
1608   const Value *CondVal = I.getCondition();
1609   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1610 
1611   // If this is a series of conditions that are or'd or and'd together, emit
1612   // this as a sequence of branches instead of setcc's with and/or operations.
1613   // As long as jumps are not expensive, this should improve performance.
1614   // For example, instead of something like:
1615   //     cmp A, B
1616   //     C = seteq
1617   //     cmp D, E
1618   //     F = setle
1619   //     or C, F
1620   //     jnz foo
1621   // Emit:
1622   //     cmp A, B
1623   //     je foo
1624   //     cmp D, E
1625   //     jle foo
1626   //
1627   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1628     if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1629         BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1630                              BOp->getOpcode() == Instruction::Or)) {
1631       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1632                            BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1633                            getEdgeWeight(BrMBB, Succ1MBB));
1634       // If the compares in later blocks need to use values not currently
1635       // exported from this block, export them now.  This block should always
1636       // be the first entry.
1637       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1638 
1639       // Allow some cases to be rejected.
1640       if (ShouldEmitAsBranches(SwitchCases)) {
1641         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1642           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1643           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1644         }
1645 
1646         // Emit the branch for this block.
1647         visitSwitchCase(SwitchCases[0], BrMBB);
1648         SwitchCases.erase(SwitchCases.begin());
1649         return;
1650       }
1651 
1652       // Okay, we decided not to do this, remove any inserted MBB's and clear
1653       // SwitchCases.
1654       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1655         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1656 
1657       SwitchCases.clear();
1658     }
1659   }
1660 
1661   // Create a CaseBlock record representing this branch.
1662   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1663                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1664 
1665   // Use visitSwitchCase to actually insert the fast branch sequence for this
1666   // cond branch.
1667   visitSwitchCase(CB, BrMBB);
1668 }
1669 
1670 /// visitSwitchCase - Emits the necessary code to represent a single node in
1671 /// the binary search tree resulting from lowering a switch instruction.
1672 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1673                                           MachineBasicBlock *SwitchBB) {
1674   SDValue Cond;
1675   SDValue CondLHS = getValue(CB.CmpLHS);
1676   SDLoc dl = getCurSDLoc();
1677 
1678   // Build the setcc now.
1679   if (!CB.CmpMHS) {
1680     // Fold "(X == true)" to X and "(X == false)" to !X to
1681     // handle common cases produced by branch lowering.
1682     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1683         CB.CC == ISD::SETEQ)
1684       Cond = CondLHS;
1685     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1686              CB.CC == ISD::SETEQ) {
1687       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1688       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1689     } else
1690       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1691   } else {
1692     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1693 
1694     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1695     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1696 
1697     SDValue CmpOp = getValue(CB.CmpMHS);
1698     EVT VT = CmpOp.getValueType();
1699 
1700     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1701       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1702                           ISD::SETLE);
1703     } else {
1704       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1705                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1706       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1707                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1708     }
1709   }
1710 
1711   // Update successor info
1712   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1713   // TrueBB and FalseBB are always different unless the incoming IR is
1714   // degenerate. This only happens when running llc on weird IR.
1715   if (CB.TrueBB != CB.FalseBB)
1716     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1717 
1718   // If the lhs block is the next block, invert the condition so that we can
1719   // fall through to the lhs instead of the rhs block.
1720   if (CB.TrueBB == NextBlock(SwitchBB)) {
1721     std::swap(CB.TrueBB, CB.FalseBB);
1722     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1723     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1724   }
1725 
1726   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1727                                MVT::Other, getControlRoot(), Cond,
1728                                DAG.getBasicBlock(CB.TrueBB));
1729 
1730   // Insert the false branch. Do this even if it's a fall through branch,
1731   // this makes it easier to do DAG optimizations which require inverting
1732   // the branch condition.
1733   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1734                        DAG.getBasicBlock(CB.FalseBB));
1735 
1736   DAG.setRoot(BrCond);
1737 }
1738 
1739 /// visitJumpTable - Emit JumpTable node in the current MBB
1740 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1741   // Emit the code for the jump table
1742   assert(JT.Reg != -1U && "Should lower JT Header first!");
1743   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1744   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1745                                      JT.Reg, PTy);
1746   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1747   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1748                                     MVT::Other, Index.getValue(1),
1749                                     Table, Index);
1750   DAG.setRoot(BrJumpTable);
1751 }
1752 
1753 /// visitJumpTableHeader - This function emits necessary code to produce index
1754 /// in the JumpTable from switch case.
1755 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1756                                                JumpTableHeader &JTH,
1757                                                MachineBasicBlock *SwitchBB) {
1758   SDLoc dl = getCurSDLoc();
1759 
1760   // Subtract the lowest switch case value from the value being switched on and
1761   // conditional branch to default mbb if the result is greater than the
1762   // difference between smallest and largest cases.
1763   SDValue SwitchOp = getValue(JTH.SValue);
1764   EVT VT = SwitchOp.getValueType();
1765   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1766                             DAG.getConstant(JTH.First, dl, VT));
1767 
1768   // The SDNode we just created, which holds the value being switched on minus
1769   // the smallest case value, needs to be copied to a virtual register so it
1770   // can be used as an index into the jump table in a subsequent basic block.
1771   // This value may be smaller or larger than the target's pointer type, and
1772   // therefore require extension or truncating.
1773   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1774   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1775 
1776   unsigned JumpTableReg =
1777       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1778   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1779                                     JumpTableReg, SwitchOp);
1780   JT.Reg = JumpTableReg;
1781 
1782   // Emit the range check for the jump table, and branch to the default block
1783   // for the switch statement if the value being switched on exceeds the largest
1784   // case in the switch.
1785   SDValue CMP = DAG.getSetCC(
1786       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1787                                  Sub.getValueType()),
1788       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1789 
1790   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1791                                MVT::Other, CopyTo, CMP,
1792                                DAG.getBasicBlock(JT.Default));
1793 
1794   // Avoid emitting unnecessary branches to the next block.
1795   if (JT.MBB != NextBlock(SwitchBB))
1796     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1797                          DAG.getBasicBlock(JT.MBB));
1798 
1799   DAG.setRoot(BrCond);
1800 }
1801 
1802 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1803 /// tail spliced into a stack protector check success bb.
1804 ///
1805 /// For a high level explanation of how this fits into the stack protector
1806 /// generation see the comment on the declaration of class
1807 /// StackProtectorDescriptor.
1808 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1809                                                   MachineBasicBlock *ParentBB) {
1810 
1811   // First create the loads to the guard/stack slot for the comparison.
1812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1813   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1814 
1815   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1816   int FI = MFI->getStackProtectorIndex();
1817 
1818   const Value *IRGuard = SPD.getGuard();
1819   SDValue GuardPtr = getValue(IRGuard);
1820   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1821 
1822   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1823 
1824   SDValue Guard;
1825   SDLoc dl = getCurSDLoc();
1826 
1827   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1828   // guard value from the virtual register holding the value. Otherwise, emit a
1829   // volatile load to retrieve the stack guard value.
1830   unsigned GuardReg = SPD.getGuardReg();
1831 
1832   if (GuardReg && TLI.useLoadStackGuardNode())
1833     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1834                                PtrTy);
1835   else
1836     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1837                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1838                         true, false, false, Align);
1839 
1840   SDValue StackSlot = DAG.getLoad(
1841       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1842       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1843       false, false, Align);
1844 
1845   // Perform the comparison via a subtract/getsetcc.
1846   EVT VT = Guard.getValueType();
1847   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1848 
1849   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1850                                                         *DAG.getContext(),
1851                                                         Sub.getValueType()),
1852                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1853 
1854   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1855   // branch to failure MBB.
1856   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1857                                MVT::Other, StackSlot.getOperand(0),
1858                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1859   // Otherwise branch to success MBB.
1860   SDValue Br = DAG.getNode(ISD::BR, dl,
1861                            MVT::Other, BrCond,
1862                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1863 
1864   DAG.setRoot(Br);
1865 }
1866 
1867 /// Codegen the failure basic block for a stack protector check.
1868 ///
1869 /// A failure stack protector machine basic block consists simply of a call to
1870 /// __stack_chk_fail().
1871 ///
1872 /// For a high level explanation of how this fits into the stack protector
1873 /// generation see the comment on the declaration of class
1874 /// StackProtectorDescriptor.
1875 void
1876 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1877   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1878   SDValue Chain =
1879       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1880                       nullptr, 0, false, getCurSDLoc(), false, false).second;
1881   DAG.setRoot(Chain);
1882 }
1883 
1884 /// visitBitTestHeader - This function emits necessary code to produce value
1885 /// suitable for "bit tests"
1886 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1887                                              MachineBasicBlock *SwitchBB) {
1888   SDLoc dl = getCurSDLoc();
1889 
1890   // Subtract the minimum value
1891   SDValue SwitchOp = getValue(B.SValue);
1892   EVT VT = SwitchOp.getValueType();
1893   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1894                             DAG.getConstant(B.First, dl, VT));
1895 
1896   // Check range
1897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1898   SDValue RangeCmp = DAG.getSetCC(
1899       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1900                                  Sub.getValueType()),
1901       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
1902 
1903   // Determine the type of the test operands.
1904   bool UsePtrType = false;
1905   if (!TLI.isTypeLegal(VT))
1906     UsePtrType = true;
1907   else {
1908     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1909       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1910         // Switch table case range are encoded into series of masks.
1911         // Just use pointer type, it's guaranteed to fit.
1912         UsePtrType = true;
1913         break;
1914       }
1915   }
1916   if (UsePtrType) {
1917     VT = TLI.getPointerTy(DAG.getDataLayout());
1918     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
1919   }
1920 
1921   B.RegVT = VT.getSimpleVT();
1922   B.Reg = FuncInfo.CreateReg(B.RegVT);
1923   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
1924 
1925   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1926 
1927   addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight);
1928   addSuccessorWithWeight(SwitchBB, MBB, B.Weight);
1929 
1930   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
1931                                 MVT::Other, CopyTo, RangeCmp,
1932                                 DAG.getBasicBlock(B.Default));
1933 
1934   // Avoid emitting unnecessary branches to the next block.
1935   if (MBB != NextBlock(SwitchBB))
1936     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
1937                           DAG.getBasicBlock(MBB));
1938 
1939   DAG.setRoot(BrRange);
1940 }
1941 
1942 /// visitBitTestCase - this function produces one "bit test"
1943 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1944                                            MachineBasicBlock* NextMBB,
1945                                            uint32_t BranchWeightToNext,
1946                                            unsigned Reg,
1947                                            BitTestCase &B,
1948                                            MachineBasicBlock *SwitchBB) {
1949   SDLoc dl = getCurSDLoc();
1950   MVT VT = BB.RegVT;
1951   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
1952   SDValue Cmp;
1953   unsigned PopCount = countPopulation(B.Mask);
1954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1955   if (PopCount == 1) {
1956     // Testing for a single bit; just compare the shift count with what it
1957     // would need to be to shift a 1 bit in that position.
1958     Cmp = DAG.getSetCC(
1959         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
1960         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
1961         ISD::SETEQ);
1962   } else if (PopCount == BB.Range) {
1963     // There is only one zero bit in the range, test for it directly.
1964     Cmp = DAG.getSetCC(
1965         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
1966         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
1967         ISD::SETNE);
1968   } else {
1969     // Make desired shift
1970     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
1971                                     DAG.getConstant(1, dl, VT), ShiftOp);
1972 
1973     // Emit bit tests and jumps
1974     SDValue AndOp = DAG.getNode(ISD::AND, dl,
1975                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
1976     Cmp = DAG.getSetCC(
1977         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
1978         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
1979   }
1980 
1981   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1982   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1983   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1984   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1985 
1986   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
1987                               MVT::Other, getControlRoot(),
1988                               Cmp, DAG.getBasicBlock(B.TargetBB));
1989 
1990   // Avoid emitting unnecessary branches to the next block.
1991   if (NextMBB != NextBlock(SwitchBB))
1992     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
1993                         DAG.getBasicBlock(NextMBB));
1994 
1995   DAG.setRoot(BrAnd);
1996 }
1997 
1998 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1999   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2000 
2001   // Retrieve successors.
2002   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2003   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
2004 
2005   const Value *Callee(I.getCalledValue());
2006   const Function *Fn = dyn_cast<Function>(Callee);
2007   if (isa<InlineAsm>(Callee))
2008     visitInlineAsm(&I);
2009   else if (Fn && Fn->isIntrinsic()) {
2010     switch (Fn->getIntrinsicID()) {
2011     default:
2012       llvm_unreachable("Cannot invoke this intrinsic");
2013     case Intrinsic::donothing:
2014       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2015       break;
2016     case Intrinsic::experimental_patchpoint_void:
2017     case Intrinsic::experimental_patchpoint_i64:
2018       visitPatchpoint(&I, LandingPad);
2019       break;
2020     case Intrinsic::experimental_gc_statepoint:
2021       LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
2022       break;
2023     }
2024   } else
2025     LowerCallTo(&I, getValue(Callee), false, LandingPad);
2026 
2027   // If the value of the invoke is used outside of its defining block, make it
2028   // available as a virtual register.
2029   // We already took care of the exported value for the statepoint instruction
2030   // during call to the LowerStatepoint.
2031   if (!isStatepoint(I)) {
2032     CopyToExportRegsIfNeeded(&I);
2033   }
2034 
2035   // Update successor info
2036   addSuccessorWithWeight(InvokeMBB, Return);
2037   addSuccessorWithWeight(InvokeMBB, LandingPad);
2038 
2039   // Drop into normal successor.
2040   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2041                           MVT::Other, getControlRoot(),
2042                           DAG.getBasicBlock(Return)));
2043 }
2044 
2045 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2046   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2047 }
2048 
2049 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2050   assert(FuncInfo.MBB->isEHPad() &&
2051          "Call to landingpad not in landing pad!");
2052 
2053   MachineBasicBlock *MBB = FuncInfo.MBB;
2054   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2055   AddLandingPadInfo(LP, MMI, MBB);
2056 
2057   // If there aren't registers to copy the values into (e.g., during SjLj
2058   // exceptions), then don't bother to create these DAG nodes.
2059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2060   if (TLI.getExceptionPointerRegister() == 0 &&
2061       TLI.getExceptionSelectorRegister() == 0)
2062     return;
2063 
2064   SmallVector<EVT, 2> ValueVTs;
2065   SDLoc dl = getCurSDLoc();
2066   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2067   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2068 
2069   // Get the two live-in registers as SDValues. The physregs have already been
2070   // copied into virtual registers.
2071   SDValue Ops[2];
2072   if (FuncInfo.ExceptionPointerVirtReg) {
2073     Ops[0] = DAG.getZExtOrTrunc(
2074         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2075                            FuncInfo.ExceptionPointerVirtReg,
2076                            TLI.getPointerTy(DAG.getDataLayout())),
2077         dl, ValueVTs[0]);
2078   } else {
2079     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2080   }
2081   Ops[1] = DAG.getZExtOrTrunc(
2082       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2083                          FuncInfo.ExceptionSelectorVirtReg,
2084                          TLI.getPointerTy(DAG.getDataLayout())),
2085       dl, ValueVTs[1]);
2086 
2087   // Merge into one.
2088   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2089                             DAG.getVTList(ValueVTs), Ops);
2090   setValue(&LP, Res);
2091 }
2092 
2093 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2094 #ifndef NDEBUG
2095   for (const CaseCluster &CC : Clusters)
2096     assert(CC.Low == CC.High && "Input clusters must be single-case");
2097 #endif
2098 
2099   std::sort(Clusters.begin(), Clusters.end(),
2100             [](const CaseCluster &a, const CaseCluster &b) {
2101     return a.Low->getValue().slt(b.Low->getValue());
2102   });
2103 
2104   // Merge adjacent clusters with the same destination.
2105   const unsigned N = Clusters.size();
2106   unsigned DstIndex = 0;
2107   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2108     CaseCluster &CC = Clusters[SrcIndex];
2109     const ConstantInt *CaseVal = CC.Low;
2110     MachineBasicBlock *Succ = CC.MBB;
2111 
2112     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2113         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2114       // If this case has the same successor and is a neighbour, merge it into
2115       // the previous cluster.
2116       Clusters[DstIndex - 1].High = CaseVal;
2117       Clusters[DstIndex - 1].Weight += CC.Weight;
2118       assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!");
2119     } else {
2120       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2121                    sizeof(Clusters[SrcIndex]));
2122     }
2123   }
2124   Clusters.resize(DstIndex);
2125 }
2126 
2127 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2128                                            MachineBasicBlock *Last) {
2129   // Update JTCases.
2130   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2131     if (JTCases[i].first.HeaderBB == First)
2132       JTCases[i].first.HeaderBB = Last;
2133 
2134   // Update BitTestCases.
2135   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2136     if (BitTestCases[i].Parent == First)
2137       BitTestCases[i].Parent = Last;
2138 }
2139 
2140 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2141   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2142 
2143   // Update machine-CFG edges with unique successors.
2144   SmallSet<BasicBlock*, 32> Done;
2145   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2146     BasicBlock *BB = I.getSuccessor(i);
2147     bool Inserted = Done.insert(BB).second;
2148     if (!Inserted)
2149         continue;
2150 
2151     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2152     addSuccessorWithWeight(IndirectBrMBB, Succ);
2153   }
2154 
2155   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2156                           MVT::Other, getControlRoot(),
2157                           getValue(I.getAddress())));
2158 }
2159 
2160 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2161   if (DAG.getTarget().Options.TrapUnreachable)
2162     DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2163 }
2164 
2165 void SelectionDAGBuilder::visitFSub(const User &I) {
2166   // -0.0 - X --> fneg
2167   Type *Ty = I.getType();
2168   if (isa<Constant>(I.getOperand(0)) &&
2169       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2170     SDValue Op2 = getValue(I.getOperand(1));
2171     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2172                              Op2.getValueType(), Op2));
2173     return;
2174   }
2175 
2176   visitBinary(I, ISD::FSUB);
2177 }
2178 
2179 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2180   SDValue Op1 = getValue(I.getOperand(0));
2181   SDValue Op2 = getValue(I.getOperand(1));
2182 
2183   bool nuw = false;
2184   bool nsw = false;
2185   bool exact = false;
2186   FastMathFlags FMF;
2187 
2188   if (const OverflowingBinaryOperator *OFBinOp =
2189           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2190     nuw = OFBinOp->hasNoUnsignedWrap();
2191     nsw = OFBinOp->hasNoSignedWrap();
2192   }
2193   if (const PossiblyExactOperator *ExactOp =
2194           dyn_cast<const PossiblyExactOperator>(&I))
2195     exact = ExactOp->isExact();
2196   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2197     FMF = FPOp->getFastMathFlags();
2198 
2199   SDNodeFlags Flags;
2200   Flags.setExact(exact);
2201   Flags.setNoSignedWrap(nsw);
2202   Flags.setNoUnsignedWrap(nuw);
2203   if (EnableFMFInDAG) {
2204     Flags.setAllowReciprocal(FMF.allowReciprocal());
2205     Flags.setNoInfs(FMF.noInfs());
2206     Flags.setNoNaNs(FMF.noNaNs());
2207     Flags.setNoSignedZeros(FMF.noSignedZeros());
2208     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2209   }
2210   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2211                                      Op1, Op2, &Flags);
2212   setValue(&I, BinNodeValue);
2213 }
2214 
2215 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2216   SDValue Op1 = getValue(I.getOperand(0));
2217   SDValue Op2 = getValue(I.getOperand(1));
2218 
2219   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2220       Op2.getValueType(), DAG.getDataLayout());
2221 
2222   // Coerce the shift amount to the right type if we can.
2223   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2224     unsigned ShiftSize = ShiftTy.getSizeInBits();
2225     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2226     SDLoc DL = getCurSDLoc();
2227 
2228     // If the operand is smaller than the shift count type, promote it.
2229     if (ShiftSize > Op2Size)
2230       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2231 
2232     // If the operand is larger than the shift count type but the shift
2233     // count type has enough bits to represent any shift value, truncate
2234     // it now. This is a common case and it exposes the truncate to
2235     // optimization early.
2236     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2237       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2238     // Otherwise we'll need to temporarily settle for some other convenient
2239     // type.  Type legalization will make adjustments once the shiftee is split.
2240     else
2241       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2242   }
2243 
2244   bool nuw = false;
2245   bool nsw = false;
2246   bool exact = false;
2247 
2248   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2249 
2250     if (const OverflowingBinaryOperator *OFBinOp =
2251             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2252       nuw = OFBinOp->hasNoUnsignedWrap();
2253       nsw = OFBinOp->hasNoSignedWrap();
2254     }
2255     if (const PossiblyExactOperator *ExactOp =
2256             dyn_cast<const PossiblyExactOperator>(&I))
2257       exact = ExactOp->isExact();
2258   }
2259   SDNodeFlags Flags;
2260   Flags.setExact(exact);
2261   Flags.setNoSignedWrap(nsw);
2262   Flags.setNoUnsignedWrap(nuw);
2263   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2264                             &Flags);
2265   setValue(&I, Res);
2266 }
2267 
2268 void SelectionDAGBuilder::visitSDiv(const User &I) {
2269   SDValue Op1 = getValue(I.getOperand(0));
2270   SDValue Op2 = getValue(I.getOperand(1));
2271 
2272   SDNodeFlags Flags;
2273   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2274                  cast<PossiblyExactOperator>(&I)->isExact());
2275   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2276                            Op2, &Flags));
2277 }
2278 
2279 void SelectionDAGBuilder::visitICmp(const User &I) {
2280   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2281   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2282     predicate = IC->getPredicate();
2283   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2284     predicate = ICmpInst::Predicate(IC->getPredicate());
2285   SDValue Op1 = getValue(I.getOperand(0));
2286   SDValue Op2 = getValue(I.getOperand(1));
2287   ISD::CondCode Opcode = getICmpCondCode(predicate);
2288 
2289   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2290                                                         I.getType());
2291   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2292 }
2293 
2294 void SelectionDAGBuilder::visitFCmp(const User &I) {
2295   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2296   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2297     predicate = FC->getPredicate();
2298   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2299     predicate = FCmpInst::Predicate(FC->getPredicate());
2300   SDValue Op1 = getValue(I.getOperand(0));
2301   SDValue Op2 = getValue(I.getOperand(1));
2302   ISD::CondCode Condition = getFCmpCondCode(predicate);
2303   if (TM.Options.NoNaNsFPMath)
2304     Condition = getFCmpCodeWithoutNaN(Condition);
2305   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2306                                                         I.getType());
2307   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2308 }
2309 
2310 void SelectionDAGBuilder::visitSelect(const User &I) {
2311   SmallVector<EVT, 4> ValueVTs;
2312   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2313                   ValueVTs);
2314   unsigned NumValues = ValueVTs.size();
2315   if (NumValues == 0) return;
2316 
2317   SmallVector<SDValue, 4> Values(NumValues);
2318   SDValue Cond     = getValue(I.getOperand(0));
2319   SDValue LHSVal   = getValue(I.getOperand(1));
2320   SDValue RHSVal   = getValue(I.getOperand(2));
2321   auto BaseOps = {Cond};
2322   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2323     ISD::VSELECT : ISD::SELECT;
2324 
2325   // Min/max matching is only viable if all output VTs are the same.
2326   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2327     EVT VT = ValueVTs[0];
2328     LLVMContext &Ctx = *DAG.getContext();
2329     auto &TLI = DAG.getTargetLoweringInfo();
2330     while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector)
2331       VT = TLI.getTypeToTransformTo(Ctx, VT);
2332 
2333     Value *LHS, *RHS;
2334     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2335     ISD::NodeType Opc = ISD::DELETED_NODE;
2336     switch (SPR.Flavor) {
2337     case SPF_UMAX:    Opc = ISD::UMAX; break;
2338     case SPF_UMIN:    Opc = ISD::UMIN; break;
2339     case SPF_SMAX:    Opc = ISD::SMAX; break;
2340     case SPF_SMIN:    Opc = ISD::SMIN; break;
2341     case SPF_FMINNUM:
2342       switch (SPR.NaNBehavior) {
2343       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2344       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2345       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2346       case SPNB_RETURNS_ANY:
2347         Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM
2348           : ISD::FMINNAN;
2349         break;
2350       }
2351       break;
2352     case SPF_FMAXNUM:
2353       switch (SPR.NaNBehavior) {
2354       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2355       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2356       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2357       case SPNB_RETURNS_ANY:
2358         Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM
2359           : ISD::FMAXNAN;
2360         break;
2361       }
2362       break;
2363     default: break;
2364     }
2365 
2366     if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) &&
2367         // If the underlying comparison instruction is used by any other instruction,
2368         // the consumed instructions won't be destroyed, so it is not profitable
2369         // to convert to a min/max.
2370         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2371       OpCode = Opc;
2372       LHSVal = getValue(LHS);
2373       RHSVal = getValue(RHS);
2374       BaseOps = {};
2375     }
2376   }
2377 
2378   for (unsigned i = 0; i != NumValues; ++i) {
2379     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2380     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2381     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2382     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2383                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2384                             Ops);
2385   }
2386 
2387   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2388                            DAG.getVTList(ValueVTs), Values));
2389 }
2390 
2391 void SelectionDAGBuilder::visitTrunc(const User &I) {
2392   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2393   SDValue N = getValue(I.getOperand(0));
2394   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2395                                                         I.getType());
2396   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2397 }
2398 
2399 void SelectionDAGBuilder::visitZExt(const User &I) {
2400   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2401   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2402   SDValue N = getValue(I.getOperand(0));
2403   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2404                                                         I.getType());
2405   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2406 }
2407 
2408 void SelectionDAGBuilder::visitSExt(const User &I) {
2409   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2410   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2411   SDValue N = getValue(I.getOperand(0));
2412   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2413                                                         I.getType());
2414   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2415 }
2416 
2417 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2418   // FPTrunc is never a no-op cast, no need to check
2419   SDValue N = getValue(I.getOperand(0));
2420   SDLoc dl = getCurSDLoc();
2421   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2422   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2423   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2424                            DAG.getTargetConstant(
2425                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2426 }
2427 
2428 void SelectionDAGBuilder::visitFPExt(const User &I) {
2429   // FPExt is never a no-op cast, no need to check
2430   SDValue N = getValue(I.getOperand(0));
2431   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2432                                                         I.getType());
2433   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2434 }
2435 
2436 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2437   // FPToUI is never a no-op cast, no need to check
2438   SDValue N = getValue(I.getOperand(0));
2439   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2440                                                         I.getType());
2441   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2442 }
2443 
2444 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2445   // FPToSI is never a no-op cast, no need to check
2446   SDValue N = getValue(I.getOperand(0));
2447   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2448                                                         I.getType());
2449   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2450 }
2451 
2452 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2453   // UIToFP is never a no-op cast, no need to check
2454   SDValue N = getValue(I.getOperand(0));
2455   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2456                                                         I.getType());
2457   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2458 }
2459 
2460 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2461   // SIToFP is never a no-op cast, no need to check
2462   SDValue N = getValue(I.getOperand(0));
2463   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2464                                                         I.getType());
2465   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2466 }
2467 
2468 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2469   // What to do depends on the size of the integer and the size of the pointer.
2470   // We can either truncate, zero extend, or no-op, accordingly.
2471   SDValue N = getValue(I.getOperand(0));
2472   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2473                                                         I.getType());
2474   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2475 }
2476 
2477 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2478   // What to do depends on the size of the integer and the size of the pointer.
2479   // We can either truncate, zero extend, or no-op, accordingly.
2480   SDValue N = getValue(I.getOperand(0));
2481   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2482                                                         I.getType());
2483   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2484 }
2485 
2486 void SelectionDAGBuilder::visitBitCast(const User &I) {
2487   SDValue N = getValue(I.getOperand(0));
2488   SDLoc dl = getCurSDLoc();
2489   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2490                                                         I.getType());
2491 
2492   // BitCast assures us that source and destination are the same size so this is
2493   // either a BITCAST or a no-op.
2494   if (DestVT != N.getValueType())
2495     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2496                              DestVT, N)); // convert types.
2497   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2498   // might fold any kind of constant expression to an integer constant and that
2499   // is not what we are looking for. Only regcognize a bitcast of a genuine
2500   // constant integer as an opaque constant.
2501   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2502     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2503                                  /*isOpaque*/true));
2504   else
2505     setValue(&I, N);            // noop cast.
2506 }
2507 
2508 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2509   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2510   const Value *SV = I.getOperand(0);
2511   SDValue N = getValue(SV);
2512   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2513 
2514   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2515   unsigned DestAS = I.getType()->getPointerAddressSpace();
2516 
2517   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2518     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2519 
2520   setValue(&I, N);
2521 }
2522 
2523 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2525   SDValue InVec = getValue(I.getOperand(0));
2526   SDValue InVal = getValue(I.getOperand(1));
2527   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2528                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2529   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2530                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2531                            InVec, InVal, InIdx));
2532 }
2533 
2534 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2536   SDValue InVec = getValue(I.getOperand(0));
2537   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2538                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2539   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2540                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2541                            InVec, InIdx));
2542 }
2543 
2544 // Utility for visitShuffleVector - Return true if every element in Mask,
2545 // beginning from position Pos and ending in Pos+Size, falls within the
2546 // specified sequential range [L, L+Pos). or is undef.
2547 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2548                                 unsigned Pos, unsigned Size, int Low) {
2549   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2550     if (Mask[i] >= 0 && Mask[i] != Low)
2551       return false;
2552   return true;
2553 }
2554 
2555 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2556   SDValue Src1 = getValue(I.getOperand(0));
2557   SDValue Src2 = getValue(I.getOperand(1));
2558 
2559   SmallVector<int, 8> Mask;
2560   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2561   unsigned MaskNumElts = Mask.size();
2562 
2563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2564   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2565   EVT SrcVT = Src1.getValueType();
2566   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2567 
2568   if (SrcNumElts == MaskNumElts) {
2569     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2570                                       &Mask[0]));
2571     return;
2572   }
2573 
2574   // Normalize the shuffle vector since mask and vector length don't match.
2575   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2576     // Mask is longer than the source vectors and is a multiple of the source
2577     // vectors.  We can use concatenate vector to make the mask and vectors
2578     // lengths match.
2579     if (SrcNumElts*2 == MaskNumElts) {
2580       // First check for Src1 in low and Src2 in high
2581       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2582           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2583         // The shuffle is concatenating two vectors together.
2584         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2585                                  VT, Src1, Src2));
2586         return;
2587       }
2588       // Then check for Src2 in low and Src1 in high
2589       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2590           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2591         // The shuffle is concatenating two vectors together.
2592         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2593                                  VT, Src2, Src1));
2594         return;
2595       }
2596     }
2597 
2598     // Pad both vectors with undefs to make them the same length as the mask.
2599     unsigned NumConcat = MaskNumElts / SrcNumElts;
2600     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2601     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2602     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2603 
2604     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2605     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2606     MOps1[0] = Src1;
2607     MOps2[0] = Src2;
2608 
2609     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2610                                                   getCurSDLoc(), VT, MOps1);
2611     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2612                                                   getCurSDLoc(), VT, MOps2);
2613 
2614     // Readjust mask for new input vector length.
2615     SmallVector<int, 8> MappedOps;
2616     for (unsigned i = 0; i != MaskNumElts; ++i) {
2617       int Idx = Mask[i];
2618       if (Idx >= (int)SrcNumElts)
2619         Idx -= SrcNumElts - MaskNumElts;
2620       MappedOps.push_back(Idx);
2621     }
2622 
2623     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2624                                       &MappedOps[0]));
2625     return;
2626   }
2627 
2628   if (SrcNumElts > MaskNumElts) {
2629     // Analyze the access pattern of the vector to see if we can extract
2630     // two subvectors and do the shuffle. The analysis is done by calculating
2631     // the range of elements the mask access on both vectors.
2632     int MinRange[2] = { static_cast<int>(SrcNumElts),
2633                         static_cast<int>(SrcNumElts)};
2634     int MaxRange[2] = {-1, -1};
2635 
2636     for (unsigned i = 0; i != MaskNumElts; ++i) {
2637       int Idx = Mask[i];
2638       unsigned Input = 0;
2639       if (Idx < 0)
2640         continue;
2641 
2642       if (Idx >= (int)SrcNumElts) {
2643         Input = 1;
2644         Idx -= SrcNumElts;
2645       }
2646       if (Idx > MaxRange[Input])
2647         MaxRange[Input] = Idx;
2648       if (Idx < MinRange[Input])
2649         MinRange[Input] = Idx;
2650     }
2651 
2652     // Check if the access is smaller than the vector size and can we find
2653     // a reasonable extract index.
2654     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2655                                    // Extract.
2656     int StartIdx[2];  // StartIdx to extract from
2657     for (unsigned Input = 0; Input < 2; ++Input) {
2658       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2659         RangeUse[Input] = 0; // Unused
2660         StartIdx[Input] = 0;
2661         continue;
2662       }
2663 
2664       // Find a good start index that is a multiple of the mask length. Then
2665       // see if the rest of the elements are in range.
2666       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2667       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2668           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2669         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2670     }
2671 
2672     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2673       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2674       return;
2675     }
2676     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2677       // Extract appropriate subvector and generate a vector shuffle
2678       for (unsigned Input = 0; Input < 2; ++Input) {
2679         SDValue &Src = Input == 0 ? Src1 : Src2;
2680         if (RangeUse[Input] == 0)
2681           Src = DAG.getUNDEF(VT);
2682         else {
2683           SDLoc dl = getCurSDLoc();
2684           Src = DAG.getNode(
2685               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2686               DAG.getConstant(StartIdx[Input], dl,
2687                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2688         }
2689       }
2690 
2691       // Calculate new mask.
2692       SmallVector<int, 8> MappedOps;
2693       for (unsigned i = 0; i != MaskNumElts; ++i) {
2694         int Idx = Mask[i];
2695         if (Idx >= 0) {
2696           if (Idx < (int)SrcNumElts)
2697             Idx -= StartIdx[0];
2698           else
2699             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2700         }
2701         MappedOps.push_back(Idx);
2702       }
2703 
2704       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2705                                         &MappedOps[0]));
2706       return;
2707     }
2708   }
2709 
2710   // We can't use either concat vectors or extract subvectors so fall back to
2711   // replacing the shuffle with extract and build vector.
2712   // to insert and build vector.
2713   EVT EltVT = VT.getVectorElementType();
2714   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
2715   SDLoc dl = getCurSDLoc();
2716   SmallVector<SDValue,8> Ops;
2717   for (unsigned i = 0; i != MaskNumElts; ++i) {
2718     int Idx = Mask[i];
2719     SDValue Res;
2720 
2721     if (Idx < 0) {
2722       Res = DAG.getUNDEF(EltVT);
2723     } else {
2724       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2725       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2726 
2727       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2728                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2729     }
2730 
2731     Ops.push_back(Res);
2732   }
2733 
2734   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2735 }
2736 
2737 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2738   const Value *Op0 = I.getOperand(0);
2739   const Value *Op1 = I.getOperand(1);
2740   Type *AggTy = I.getType();
2741   Type *ValTy = Op1->getType();
2742   bool IntoUndef = isa<UndefValue>(Op0);
2743   bool FromUndef = isa<UndefValue>(Op1);
2744 
2745   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2746 
2747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2748   SmallVector<EVT, 4> AggValueVTs;
2749   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
2750   SmallVector<EVT, 4> ValValueVTs;
2751   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2752 
2753   unsigned NumAggValues = AggValueVTs.size();
2754   unsigned NumValValues = ValValueVTs.size();
2755   SmallVector<SDValue, 4> Values(NumAggValues);
2756 
2757   // Ignore an insertvalue that produces an empty object
2758   if (!NumAggValues) {
2759     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2760     return;
2761   }
2762 
2763   SDValue Agg = getValue(Op0);
2764   unsigned i = 0;
2765   // Copy the beginning value(s) from the original aggregate.
2766   for (; i != LinearIndex; ++i)
2767     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2768                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2769   // Copy values from the inserted value(s).
2770   if (NumValValues) {
2771     SDValue Val = getValue(Op1);
2772     for (; i != LinearIndex + NumValValues; ++i)
2773       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2774                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2775   }
2776   // Copy remaining value(s) from the original aggregate.
2777   for (; i != NumAggValues; ++i)
2778     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2779                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2780 
2781   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2782                            DAG.getVTList(AggValueVTs), Values));
2783 }
2784 
2785 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2786   const Value *Op0 = I.getOperand(0);
2787   Type *AggTy = Op0->getType();
2788   Type *ValTy = I.getType();
2789   bool OutOfUndef = isa<UndefValue>(Op0);
2790 
2791   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2792 
2793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2794   SmallVector<EVT, 4> ValValueVTs;
2795   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2796 
2797   unsigned NumValValues = ValValueVTs.size();
2798 
2799   // Ignore a extractvalue that produces an empty object
2800   if (!NumValValues) {
2801     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2802     return;
2803   }
2804 
2805   SmallVector<SDValue, 4> Values(NumValValues);
2806 
2807   SDValue Agg = getValue(Op0);
2808   // Copy out the selected value(s).
2809   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2810     Values[i - LinearIndex] =
2811       OutOfUndef ?
2812         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2813         SDValue(Agg.getNode(), Agg.getResNo() + i);
2814 
2815   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2816                            DAG.getVTList(ValValueVTs), Values));
2817 }
2818 
2819 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2820   Value *Op0 = I.getOperand(0);
2821   // Note that the pointer operand may be a vector of pointers. Take the scalar
2822   // element which holds a pointer.
2823   Type *Ty = Op0->getType()->getScalarType();
2824   unsigned AS = Ty->getPointerAddressSpace();
2825   SDValue N = getValue(Op0);
2826   SDLoc dl = getCurSDLoc();
2827 
2828   // Normalize Vector GEP - all scalar operands should be converted to the
2829   // splat vector.
2830   unsigned VectorWidth = I.getType()->isVectorTy() ?
2831     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
2832 
2833   if (VectorWidth && !N.getValueType().isVector()) {
2834     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
2835     SmallVector<SDValue, 16> Ops(VectorWidth, N);
2836     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2837   }
2838   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2839        OI != E; ++OI) {
2840     const Value *Idx = *OI;
2841     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2842       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
2843       if (Field) {
2844         // N = N + Offset
2845         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
2846         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
2847                         DAG.getConstant(Offset, dl, N.getValueType()));
2848       }
2849 
2850       Ty = StTy->getElementType(Field);
2851     } else {
2852       Ty = cast<SequentialType>(Ty)->getElementType();
2853       MVT PtrTy =
2854           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
2855       unsigned PtrSize = PtrTy.getSizeInBits();
2856       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
2857 
2858       // If this is a scalar constant or a splat vector of constants,
2859       // handle it quickly.
2860       const auto *CI = dyn_cast<ConstantInt>(Idx);
2861       if (!CI && isa<ConstantDataVector>(Idx) &&
2862           cast<ConstantDataVector>(Idx)->getSplatValue())
2863         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
2864 
2865       if (CI) {
2866         if (CI->isZero())
2867           continue;
2868         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
2869         SDValue OffsVal = VectorWidth ?
2870           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
2871           DAG.getConstant(Offs, dl, PtrTy);
2872         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
2873         continue;
2874       }
2875 
2876       // N = N + Idx * ElementSize;
2877       SDValue IdxN = getValue(Idx);
2878 
2879       if (!IdxN.getValueType().isVector() && VectorWidth) {
2880         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
2881         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
2882         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2883       }
2884       // If the index is smaller or larger than intptr_t, truncate or extend
2885       // it.
2886       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
2887 
2888       // If this is a multiply by a power of two, turn it into a shl
2889       // immediately.  This is a very common case.
2890       if (ElementSize != 1) {
2891         if (ElementSize.isPowerOf2()) {
2892           unsigned Amt = ElementSize.logBase2();
2893           IdxN = DAG.getNode(ISD::SHL, dl,
2894                              N.getValueType(), IdxN,
2895                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
2896         } else {
2897           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
2898           IdxN = DAG.getNode(ISD::MUL, dl,
2899                              N.getValueType(), IdxN, Scale);
2900         }
2901       }
2902 
2903       N = DAG.getNode(ISD::ADD, dl,
2904                       N.getValueType(), N, IdxN);
2905     }
2906   }
2907 
2908   setValue(&I, N);
2909 }
2910 
2911 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2912   // If this is a fixed sized alloca in the entry block of the function,
2913   // allocate it statically on the stack.
2914   if (FuncInfo.StaticAllocaMap.count(&I))
2915     return;   // getValue will auto-populate this.
2916 
2917   SDLoc dl = getCurSDLoc();
2918   Type *Ty = I.getAllocatedType();
2919   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2920   auto &DL = DAG.getDataLayout();
2921   uint64_t TySize = DL.getTypeAllocSize(Ty);
2922   unsigned Align =
2923       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
2924 
2925   SDValue AllocSize = getValue(I.getArraySize());
2926 
2927   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
2928   if (AllocSize.getValueType() != IntPtr)
2929     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
2930 
2931   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
2932                           AllocSize,
2933                           DAG.getConstant(TySize, dl, IntPtr));
2934 
2935   // Handle alignment.  If the requested alignment is less than or equal to
2936   // the stack alignment, ignore it.  If the size is greater than or equal to
2937   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2938   unsigned StackAlign =
2939       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
2940   if (Align <= StackAlign)
2941     Align = 0;
2942 
2943   // Round the size of the allocation up to the stack alignment size
2944   // by add SA-1 to the size.
2945   AllocSize = DAG.getNode(ISD::ADD, dl,
2946                           AllocSize.getValueType(), AllocSize,
2947                           DAG.getIntPtrConstant(StackAlign - 1, dl));
2948 
2949   // Mask out the low bits for alignment purposes.
2950   AllocSize = DAG.getNode(ISD::AND, dl,
2951                           AllocSize.getValueType(), AllocSize,
2952                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
2953                                                 dl));
2954 
2955   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
2956   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2957   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
2958   setValue(&I, DSA);
2959   DAG.setRoot(DSA.getValue(1));
2960 
2961   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
2962 }
2963 
2964 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2965   if (I.isAtomic())
2966     return visitAtomicLoad(I);
2967 
2968   const Value *SV = I.getOperand(0);
2969   SDValue Ptr = getValue(SV);
2970 
2971   Type *Ty = I.getType();
2972 
2973   bool isVolatile = I.isVolatile();
2974   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2975 
2976   // The IR notion of invariant_load only guarantees that all *non-faulting*
2977   // invariant loads result in the same value.  The MI notion of invariant load
2978   // guarantees that the load can be legally moved to any location within its
2979   // containing function.  The MI notion of invariant_load is stronger than the
2980   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
2981   // with a guarantee that the location being loaded from is dereferenceable
2982   // throughout the function's lifetime.
2983 
2984   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
2985                      isDereferenceablePointer(SV, DAG.getDataLayout());
2986   unsigned Alignment = I.getAlignment();
2987 
2988   AAMDNodes AAInfo;
2989   I.getAAMetadata(AAInfo);
2990   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
2991 
2992   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2993   SmallVector<EVT, 4> ValueVTs;
2994   SmallVector<uint64_t, 4> Offsets;
2995   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
2996   unsigned NumValues = ValueVTs.size();
2997   if (NumValues == 0)
2998     return;
2999 
3000   SDValue Root;
3001   bool ConstantMemory = false;
3002   if (isVolatile || NumValues > MaxParallelChains)
3003     // Serialize volatile loads with other side effects.
3004     Root = getRoot();
3005   else if (AA->pointsToConstantMemory(MemoryLocation(
3006                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3007     // Do not serialize (non-volatile) loads of constant memory with anything.
3008     Root = DAG.getEntryNode();
3009     ConstantMemory = true;
3010   } else {
3011     // Do not serialize non-volatile loads against each other.
3012     Root = DAG.getRoot();
3013   }
3014 
3015   SDLoc dl = getCurSDLoc();
3016 
3017   if (isVolatile)
3018     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3019 
3020   SmallVector<SDValue, 4> Values(NumValues);
3021   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3022   EVT PtrVT = Ptr.getValueType();
3023   unsigned ChainI = 0;
3024   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3025     // Serializing loads here may result in excessive register pressure, and
3026     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3027     // could recover a bit by hoisting nodes upward in the chain by recognizing
3028     // they are side-effect free or do not alias. The optimizer should really
3029     // avoid this case by converting large object/array copies to llvm.memcpy
3030     // (MaxParallelChains should always remain as failsafe).
3031     if (ChainI == MaxParallelChains) {
3032       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3033       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3034                                   makeArrayRef(Chains.data(), ChainI));
3035       Root = Chain;
3036       ChainI = 0;
3037     }
3038     SDValue A = DAG.getNode(ISD::ADD, dl,
3039                             PtrVT, Ptr,
3040                             DAG.getConstant(Offsets[i], dl, PtrVT));
3041     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3042                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3043                             isNonTemporal, isInvariant, Alignment, AAInfo,
3044                             Ranges);
3045 
3046     Values[i] = L;
3047     Chains[ChainI] = L.getValue(1);
3048   }
3049 
3050   if (!ConstantMemory) {
3051     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3052                                 makeArrayRef(Chains.data(), ChainI));
3053     if (isVolatile)
3054       DAG.setRoot(Chain);
3055     else
3056       PendingLoads.push_back(Chain);
3057   }
3058 
3059   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3060                            DAG.getVTList(ValueVTs), Values));
3061 }
3062 
3063 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3064   if (I.isAtomic())
3065     return visitAtomicStore(I);
3066 
3067   const Value *SrcV = I.getOperand(0);
3068   const Value *PtrV = I.getOperand(1);
3069 
3070   SmallVector<EVT, 4> ValueVTs;
3071   SmallVector<uint64_t, 4> Offsets;
3072   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3073                   SrcV->getType(), ValueVTs, &Offsets);
3074   unsigned NumValues = ValueVTs.size();
3075   if (NumValues == 0)
3076     return;
3077 
3078   // Get the lowered operands. Note that we do this after
3079   // checking if NumResults is zero, because with zero results
3080   // the operands won't have values in the map.
3081   SDValue Src = getValue(SrcV);
3082   SDValue Ptr = getValue(PtrV);
3083 
3084   SDValue Root = getRoot();
3085   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3086   EVT PtrVT = Ptr.getValueType();
3087   bool isVolatile = I.isVolatile();
3088   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3089   unsigned Alignment = I.getAlignment();
3090   SDLoc dl = getCurSDLoc();
3091 
3092   AAMDNodes AAInfo;
3093   I.getAAMetadata(AAInfo);
3094 
3095   unsigned ChainI = 0;
3096   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3097     // See visitLoad comments.
3098     if (ChainI == MaxParallelChains) {
3099       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3100                                   makeArrayRef(Chains.data(), ChainI));
3101       Root = Chain;
3102       ChainI = 0;
3103     }
3104     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3105                               DAG.getConstant(Offsets[i], dl, PtrVT));
3106     SDValue St = DAG.getStore(Root, dl,
3107                               SDValue(Src.getNode(), Src.getResNo() + i),
3108                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3109                               isVolatile, isNonTemporal, Alignment, AAInfo);
3110     Chains[ChainI] = St;
3111   }
3112 
3113   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3114                                   makeArrayRef(Chains.data(), ChainI));
3115   DAG.setRoot(StoreNode);
3116 }
3117 
3118 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3119   SDLoc sdl = getCurSDLoc();
3120 
3121   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3122   Value  *PtrOperand = I.getArgOperand(1);
3123   SDValue Ptr = getValue(PtrOperand);
3124   SDValue Src0 = getValue(I.getArgOperand(0));
3125   SDValue Mask = getValue(I.getArgOperand(3));
3126   EVT VT = Src0.getValueType();
3127   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3128   if (!Alignment)
3129     Alignment = DAG.getEVTAlignment(VT);
3130 
3131   AAMDNodes AAInfo;
3132   I.getAAMetadata(AAInfo);
3133 
3134   MachineMemOperand *MMO =
3135     DAG.getMachineFunction().
3136     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3137                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3138                           Alignment, AAInfo);
3139   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3140                                          MMO, false);
3141   DAG.setRoot(StoreNode);
3142   setValue(&I, StoreNode);
3143 }
3144 
3145 // Get a uniform base for the Gather/Scatter intrinsic.
3146 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3147 // We try to represent it as a base pointer + vector of indices.
3148 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3149 // The first operand of the GEP may be a single pointer or a vector of pointers
3150 // Example:
3151 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3152 //  or
3153 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3154 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3155 //
3156 // When the first GEP operand is a single pointer - it is the uniform base we
3157 // are looking for. If first operand of the GEP is a splat vector - we
3158 // extract the spalt value and use it as a uniform base.
3159 // In all other cases the function returns 'false'.
3160 //
3161 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index,
3162                            SelectionDAGBuilder* SDB) {
3163 
3164   SelectionDAG& DAG = SDB->DAG;
3165   LLVMContext &Context = *DAG.getContext();
3166 
3167   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3168   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3169   if (!GEP || GEP->getNumOperands() > 2)
3170     return false;
3171 
3172   Value *GEPPtr = GEP->getPointerOperand();
3173   if (!GEPPtr->getType()->isVectorTy())
3174     Ptr = GEPPtr;
3175   else if (!(Ptr = getSplatValue(GEPPtr)))
3176     return false;
3177 
3178   Value *IndexVal = GEP->getOperand(1);
3179 
3180   // The operands of the GEP may be defined in another basic block.
3181   // In this case we'll not find nodes for the operands.
3182   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3183     return false;
3184 
3185   Base = SDB->getValue(Ptr);
3186   Index = SDB->getValue(IndexVal);
3187 
3188   // Suppress sign extension.
3189   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3190     if (SDB->findValue(Sext->getOperand(0))) {
3191       IndexVal = Sext->getOperand(0);
3192       Index = SDB->getValue(IndexVal);
3193     }
3194   }
3195   if (!Index.getValueType().isVector()) {
3196     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3197     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3198     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3199     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3200   }
3201   return true;
3202 }
3203 
3204 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3205   SDLoc sdl = getCurSDLoc();
3206 
3207   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3208   Value  *Ptr = I.getArgOperand(1);
3209   SDValue Src0 = getValue(I.getArgOperand(0));
3210   SDValue Mask = getValue(I.getArgOperand(3));
3211   EVT VT = Src0.getValueType();
3212   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3213   if (!Alignment)
3214     Alignment = DAG.getEVTAlignment(VT);
3215   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3216 
3217   AAMDNodes AAInfo;
3218   I.getAAMetadata(AAInfo);
3219 
3220   SDValue Base;
3221   SDValue Index;
3222   Value *BasePtr = Ptr;
3223   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3224 
3225   Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3226   MachineMemOperand *MMO = DAG.getMachineFunction().
3227     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3228                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3229                          Alignment, AAInfo);
3230   if (!UniformBase) {
3231     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3232     Index = getValue(Ptr);
3233   }
3234   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3235   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3236                                          Ops, MMO);
3237   DAG.setRoot(Scatter);
3238   setValue(&I, Scatter);
3239 }
3240 
3241 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3242   SDLoc sdl = getCurSDLoc();
3243 
3244   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3245   Value  *PtrOperand = I.getArgOperand(0);
3246   SDValue Ptr = getValue(PtrOperand);
3247   SDValue Src0 = getValue(I.getArgOperand(3));
3248   SDValue Mask = getValue(I.getArgOperand(2));
3249 
3250   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3251   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3252   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3253   if (!Alignment)
3254     Alignment = DAG.getEVTAlignment(VT);
3255 
3256   AAMDNodes AAInfo;
3257   I.getAAMetadata(AAInfo);
3258   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3259 
3260   SDValue InChain = DAG.getRoot();
3261   if (AA->pointsToConstantMemory(MemoryLocation(
3262           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3263           AAInfo))) {
3264     // Do not serialize (non-volatile) loads of constant memory with anything.
3265     InChain = DAG.getEntryNode();
3266   }
3267 
3268   MachineMemOperand *MMO =
3269     DAG.getMachineFunction().
3270     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3271                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3272                           Alignment, AAInfo, Ranges);
3273 
3274   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3275                                    ISD::NON_EXTLOAD);
3276   SDValue OutChain = Load.getValue(1);
3277   DAG.setRoot(OutChain);
3278   setValue(&I, Load);
3279 }
3280 
3281 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3282   SDLoc sdl = getCurSDLoc();
3283 
3284   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3285   Value  *Ptr = I.getArgOperand(0);
3286   SDValue Src0 = getValue(I.getArgOperand(3));
3287   SDValue Mask = getValue(I.getArgOperand(2));
3288 
3289   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3290   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3291   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3292   if (!Alignment)
3293     Alignment = DAG.getEVTAlignment(VT);
3294 
3295   AAMDNodes AAInfo;
3296   I.getAAMetadata(AAInfo);
3297   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3298 
3299   SDValue Root = DAG.getRoot();
3300   SDValue Base;
3301   SDValue Index;
3302   Value *BasePtr = Ptr;
3303   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3304   bool ConstantMemory = false;
3305   if (UniformBase &&
3306       AA->pointsToConstantMemory(MemoryLocation(
3307           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3308           AAInfo))) {
3309     // Do not serialize (non-volatile) loads of constant memory with anything.
3310     Root = DAG.getEntryNode();
3311     ConstantMemory = true;
3312   }
3313 
3314   MachineMemOperand *MMO =
3315     DAG.getMachineFunction().
3316     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3317                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3318                          Alignment, AAInfo, Ranges);
3319 
3320   if (!UniformBase) {
3321     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3322     Index = getValue(Ptr);
3323   }
3324   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3325   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3326                                        Ops, MMO);
3327 
3328   SDValue OutChain = Gather.getValue(1);
3329   if (!ConstantMemory)
3330     PendingLoads.push_back(OutChain);
3331   setValue(&I, Gather);
3332 }
3333 
3334 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3335   SDLoc dl = getCurSDLoc();
3336   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3337   AtomicOrdering FailureOrder = I.getFailureOrdering();
3338   SynchronizationScope Scope = I.getSynchScope();
3339 
3340   SDValue InChain = getRoot();
3341 
3342   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3343   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3344   SDValue L = DAG.getAtomicCmpSwap(
3345       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3346       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3347       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3348       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3349 
3350   SDValue OutChain = L.getValue(2);
3351 
3352   setValue(&I, L);
3353   DAG.setRoot(OutChain);
3354 }
3355 
3356 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3357   SDLoc dl = getCurSDLoc();
3358   ISD::NodeType NT;
3359   switch (I.getOperation()) {
3360   default: llvm_unreachable("Unknown atomicrmw operation");
3361   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3362   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3363   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3364   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3365   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3366   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3367   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3368   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3369   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3370   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3371   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3372   }
3373   AtomicOrdering Order = I.getOrdering();
3374   SynchronizationScope Scope = I.getSynchScope();
3375 
3376   SDValue InChain = getRoot();
3377 
3378   SDValue L =
3379     DAG.getAtomic(NT, dl,
3380                   getValue(I.getValOperand()).getSimpleValueType(),
3381                   InChain,
3382                   getValue(I.getPointerOperand()),
3383                   getValue(I.getValOperand()),
3384                   I.getPointerOperand(),
3385                   /* Alignment=*/ 0, Order, Scope);
3386 
3387   SDValue OutChain = L.getValue(1);
3388 
3389   setValue(&I, L);
3390   DAG.setRoot(OutChain);
3391 }
3392 
3393 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3394   SDLoc dl = getCurSDLoc();
3395   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3396   SDValue Ops[3];
3397   Ops[0] = getRoot();
3398   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3399                            TLI.getPointerTy(DAG.getDataLayout()));
3400   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3401                            TLI.getPointerTy(DAG.getDataLayout()));
3402   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3403 }
3404 
3405 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3406   SDLoc dl = getCurSDLoc();
3407   AtomicOrdering Order = I.getOrdering();
3408   SynchronizationScope Scope = I.getSynchScope();
3409 
3410   SDValue InChain = getRoot();
3411 
3412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3413   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3414 
3415   if (I.getAlignment() < VT.getSizeInBits() / 8)
3416     report_fatal_error("Cannot generate unaligned atomic load");
3417 
3418   MachineMemOperand *MMO =
3419       DAG.getMachineFunction().
3420       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3421                            MachineMemOperand::MOVolatile |
3422                            MachineMemOperand::MOLoad,
3423                            VT.getStoreSize(),
3424                            I.getAlignment() ? I.getAlignment() :
3425                                               DAG.getEVTAlignment(VT));
3426 
3427   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3428   SDValue L =
3429       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3430                     getValue(I.getPointerOperand()), MMO,
3431                     Order, Scope);
3432 
3433   SDValue OutChain = L.getValue(1);
3434 
3435   setValue(&I, L);
3436   DAG.setRoot(OutChain);
3437 }
3438 
3439 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3440   SDLoc dl = getCurSDLoc();
3441 
3442   AtomicOrdering Order = I.getOrdering();
3443   SynchronizationScope Scope = I.getSynchScope();
3444 
3445   SDValue InChain = getRoot();
3446 
3447   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3448   EVT VT =
3449       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3450 
3451   if (I.getAlignment() < VT.getSizeInBits() / 8)
3452     report_fatal_error("Cannot generate unaligned atomic store");
3453 
3454   SDValue OutChain =
3455     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3456                   InChain,
3457                   getValue(I.getPointerOperand()),
3458                   getValue(I.getValueOperand()),
3459                   I.getPointerOperand(), I.getAlignment(),
3460                   Order, Scope);
3461 
3462   DAG.setRoot(OutChain);
3463 }
3464 
3465 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3466 /// node.
3467 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3468                                                unsigned Intrinsic) {
3469   bool HasChain = !I.doesNotAccessMemory();
3470   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3471 
3472   // Build the operand list.
3473   SmallVector<SDValue, 8> Ops;
3474   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3475     if (OnlyLoad) {
3476       // We don't need to serialize loads against other loads.
3477       Ops.push_back(DAG.getRoot());
3478     } else {
3479       Ops.push_back(getRoot());
3480     }
3481   }
3482 
3483   // Info is set by getTgtMemInstrinsic
3484   TargetLowering::IntrinsicInfo Info;
3485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3486   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3487 
3488   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3489   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3490       Info.opc == ISD::INTRINSIC_W_CHAIN)
3491     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3492                                         TLI.getPointerTy(DAG.getDataLayout())));
3493 
3494   // Add all operands of the call to the operand list.
3495   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3496     SDValue Op = getValue(I.getArgOperand(i));
3497     Ops.push_back(Op);
3498   }
3499 
3500   SmallVector<EVT, 4> ValueVTs;
3501   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3502 
3503   if (HasChain)
3504     ValueVTs.push_back(MVT::Other);
3505 
3506   SDVTList VTs = DAG.getVTList(ValueVTs);
3507 
3508   // Create the node.
3509   SDValue Result;
3510   if (IsTgtIntrinsic) {
3511     // This is target intrinsic that touches memory
3512     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3513                                      VTs, Ops, Info.memVT,
3514                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3515                                      Info.align, Info.vol,
3516                                      Info.readMem, Info.writeMem, Info.size);
3517   } else if (!HasChain) {
3518     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3519   } else if (!I.getType()->isVoidTy()) {
3520     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3521   } else {
3522     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3523   }
3524 
3525   if (HasChain) {
3526     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3527     if (OnlyLoad)
3528       PendingLoads.push_back(Chain);
3529     else
3530       DAG.setRoot(Chain);
3531   }
3532 
3533   if (!I.getType()->isVoidTy()) {
3534     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3535       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3536       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3537     }
3538 
3539     setValue(&I, Result);
3540   }
3541 }
3542 
3543 /// GetSignificand - Get the significand and build it into a floating-point
3544 /// number with exponent of 1:
3545 ///
3546 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3547 ///
3548 /// where Op is the hexadecimal representation of floating point value.
3549 static SDValue
3550 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3551   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3552                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3553   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3554                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3555   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3556 }
3557 
3558 /// GetExponent - Get the exponent:
3559 ///
3560 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3561 ///
3562 /// where Op is the hexadecimal representation of floating point value.
3563 static SDValue
3564 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3565             SDLoc dl) {
3566   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3567                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3568   SDValue t1 = DAG.getNode(
3569       ISD::SRL, dl, MVT::i32, t0,
3570       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3571   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3572                            DAG.getConstant(127, dl, MVT::i32));
3573   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3574 }
3575 
3576 /// getF32Constant - Get 32-bit floating point constant.
3577 static SDValue
3578 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3579   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3580                            MVT::f32);
3581 }
3582 
3583 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3584                                        SelectionDAG &DAG) {
3585   //   IntegerPartOfX = ((int32_t)(t0);
3586   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3587 
3588   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3589   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3590   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3591 
3592   //   IntegerPartOfX <<= 23;
3593   IntegerPartOfX = DAG.getNode(
3594       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3595       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3596                                   DAG.getDataLayout())));
3597 
3598   SDValue TwoToFractionalPartOfX;
3599   if (LimitFloatPrecision <= 6) {
3600     // For floating-point precision of 6:
3601     //
3602     //   TwoToFractionalPartOfX =
3603     //     0.997535578f +
3604     //       (0.735607626f + 0.252464424f * x) * x;
3605     //
3606     // error 0.0144103317, which is 6 bits
3607     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3608                              getF32Constant(DAG, 0x3e814304, dl));
3609     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3610                              getF32Constant(DAG, 0x3f3c50c8, dl));
3611     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3612     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3613                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3614   } else if (LimitFloatPrecision <= 12) {
3615     // For floating-point precision of 12:
3616     //
3617     //   TwoToFractionalPartOfX =
3618     //     0.999892986f +
3619     //       (0.696457318f +
3620     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3621     //
3622     // error 0.000107046256, which is 13 to 14 bits
3623     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3624                              getF32Constant(DAG, 0x3da235e3, dl));
3625     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3626                              getF32Constant(DAG, 0x3e65b8f3, dl));
3627     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3628     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3629                              getF32Constant(DAG, 0x3f324b07, dl));
3630     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3631     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3632                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3633   } else { // LimitFloatPrecision <= 18
3634     // For floating-point precision of 18:
3635     //
3636     //   TwoToFractionalPartOfX =
3637     //     0.999999982f +
3638     //       (0.693148872f +
3639     //         (0.240227044f +
3640     //           (0.554906021e-1f +
3641     //             (0.961591928e-2f +
3642     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3643     // error 2.47208000*10^(-7), which is better than 18 bits
3644     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3645                              getF32Constant(DAG, 0x3924b03e, dl));
3646     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3647                              getF32Constant(DAG, 0x3ab24b87, dl));
3648     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3649     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3650                              getF32Constant(DAG, 0x3c1d8c17, dl));
3651     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3652     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3653                              getF32Constant(DAG, 0x3d634a1d, dl));
3654     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3655     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3656                              getF32Constant(DAG, 0x3e75fe14, dl));
3657     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3658     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3659                               getF32Constant(DAG, 0x3f317234, dl));
3660     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3661     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3662                                          getF32Constant(DAG, 0x3f800000, dl));
3663   }
3664 
3665   // Add the exponent into the result in integer domain.
3666   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3667   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3668                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3669 }
3670 
3671 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3672 /// limited-precision mode.
3673 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3674                          const TargetLowering &TLI) {
3675   if (Op.getValueType() == MVT::f32 &&
3676       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3677 
3678     // Put the exponent in the right bit position for later addition to the
3679     // final result:
3680     //
3681     //   #define LOG2OFe 1.4426950f
3682     //   t0 = Op * LOG2OFe
3683     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3684                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3685     return getLimitedPrecisionExp2(t0, dl, DAG);
3686   }
3687 
3688   // No special expansion.
3689   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3690 }
3691 
3692 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3693 /// limited-precision mode.
3694 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3695                          const TargetLowering &TLI) {
3696   if (Op.getValueType() == MVT::f32 &&
3697       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3698     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3699 
3700     // Scale the exponent by log(2) [0.69314718f].
3701     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3702     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3703                                         getF32Constant(DAG, 0x3f317218, dl));
3704 
3705     // Get the significand and build it into a floating-point number with
3706     // exponent of 1.
3707     SDValue X = GetSignificand(DAG, Op1, dl);
3708 
3709     SDValue LogOfMantissa;
3710     if (LimitFloatPrecision <= 6) {
3711       // For floating-point precision of 6:
3712       //
3713       //   LogofMantissa =
3714       //     -1.1609546f +
3715       //       (1.4034025f - 0.23903021f * x) * x;
3716       //
3717       // error 0.0034276066, which is better than 8 bits
3718       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3719                                getF32Constant(DAG, 0xbe74c456, dl));
3720       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3721                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3722       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3723       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3724                                   getF32Constant(DAG, 0x3f949a29, dl));
3725     } else if (LimitFloatPrecision <= 12) {
3726       // For floating-point precision of 12:
3727       //
3728       //   LogOfMantissa =
3729       //     -1.7417939f +
3730       //       (2.8212026f +
3731       //         (-1.4699568f +
3732       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3733       //
3734       // error 0.000061011436, which is 14 bits
3735       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3736                                getF32Constant(DAG, 0xbd67b6d6, dl));
3737       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3738                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3739       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3740       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3741                                getF32Constant(DAG, 0x3fbc278b, dl));
3742       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3743       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3744                                getF32Constant(DAG, 0x40348e95, dl));
3745       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3746       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3747                                   getF32Constant(DAG, 0x3fdef31a, dl));
3748     } else { // LimitFloatPrecision <= 18
3749       // For floating-point precision of 18:
3750       //
3751       //   LogOfMantissa =
3752       //     -2.1072184f +
3753       //       (4.2372794f +
3754       //         (-3.7029485f +
3755       //           (2.2781945f +
3756       //             (-0.87823314f +
3757       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3758       //
3759       // error 0.0000023660568, which is better than 18 bits
3760       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3761                                getF32Constant(DAG, 0xbc91e5ac, dl));
3762       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3763                                getF32Constant(DAG, 0x3e4350aa, dl));
3764       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3765       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3766                                getF32Constant(DAG, 0x3f60d3e3, dl));
3767       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3768       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3769                                getF32Constant(DAG, 0x4011cdf0, dl));
3770       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3771       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3772                                getF32Constant(DAG, 0x406cfd1c, dl));
3773       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3774       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3775                                getF32Constant(DAG, 0x408797cb, dl));
3776       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3777       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3778                                   getF32Constant(DAG, 0x4006dcab, dl));
3779     }
3780 
3781     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3782   }
3783 
3784   // No special expansion.
3785   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3786 }
3787 
3788 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3789 /// limited-precision mode.
3790 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3791                           const TargetLowering &TLI) {
3792   if (Op.getValueType() == MVT::f32 &&
3793       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3794     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3795 
3796     // Get the exponent.
3797     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3798 
3799     // Get the significand and build it into a floating-point number with
3800     // exponent of 1.
3801     SDValue X = GetSignificand(DAG, Op1, dl);
3802 
3803     // Different possible minimax approximations of significand in
3804     // floating-point for various degrees of accuracy over [1,2].
3805     SDValue Log2ofMantissa;
3806     if (LimitFloatPrecision <= 6) {
3807       // For floating-point precision of 6:
3808       //
3809       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3810       //
3811       // error 0.0049451742, which is more than 7 bits
3812       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3813                                getF32Constant(DAG, 0xbeb08fe0, dl));
3814       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3815                                getF32Constant(DAG, 0x40019463, dl));
3816       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3817       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3818                                    getF32Constant(DAG, 0x3fd6633d, dl));
3819     } else if (LimitFloatPrecision <= 12) {
3820       // For floating-point precision of 12:
3821       //
3822       //   Log2ofMantissa =
3823       //     -2.51285454f +
3824       //       (4.07009056f +
3825       //         (-2.12067489f +
3826       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3827       //
3828       // error 0.0000876136000, which is better than 13 bits
3829       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3830                                getF32Constant(DAG, 0xbda7262e, dl));
3831       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3832                                getF32Constant(DAG, 0x3f25280b, dl));
3833       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3834       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3835                                getF32Constant(DAG, 0x4007b923, dl));
3836       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3837       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3838                                getF32Constant(DAG, 0x40823e2f, dl));
3839       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3840       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3841                                    getF32Constant(DAG, 0x4020d29c, dl));
3842     } else { // LimitFloatPrecision <= 18
3843       // For floating-point precision of 18:
3844       //
3845       //   Log2ofMantissa =
3846       //     -3.0400495f +
3847       //       (6.1129976f +
3848       //         (-5.3420409f +
3849       //           (3.2865683f +
3850       //             (-1.2669343f +
3851       //               (0.27515199f -
3852       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3853       //
3854       // error 0.0000018516, which is better than 18 bits
3855       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3856                                getF32Constant(DAG, 0xbcd2769e, dl));
3857       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3858                                getF32Constant(DAG, 0x3e8ce0b9, dl));
3859       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3860       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3861                                getF32Constant(DAG, 0x3fa22ae7, dl));
3862       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3863       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3864                                getF32Constant(DAG, 0x40525723, dl));
3865       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3866       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3867                                getF32Constant(DAG, 0x40aaf200, dl));
3868       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3869       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3870                                getF32Constant(DAG, 0x40c39dad, dl));
3871       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3872       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3873                                    getF32Constant(DAG, 0x4042902c, dl));
3874     }
3875 
3876     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3877   }
3878 
3879   // No special expansion.
3880   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3881 }
3882 
3883 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3884 /// limited-precision mode.
3885 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3886                            const TargetLowering &TLI) {
3887   if (Op.getValueType() == MVT::f32 &&
3888       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3889     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3890 
3891     // Scale the exponent by log10(2) [0.30102999f].
3892     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3893     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3894                                         getF32Constant(DAG, 0x3e9a209a, dl));
3895 
3896     // Get the significand and build it into a floating-point number with
3897     // exponent of 1.
3898     SDValue X = GetSignificand(DAG, Op1, dl);
3899 
3900     SDValue Log10ofMantissa;
3901     if (LimitFloatPrecision <= 6) {
3902       // For floating-point precision of 6:
3903       //
3904       //   Log10ofMantissa =
3905       //     -0.50419619f +
3906       //       (0.60948995f - 0.10380950f * x) * x;
3907       //
3908       // error 0.0014886165, which is 6 bits
3909       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3910                                getF32Constant(DAG, 0xbdd49a13, dl));
3911       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3912                                getF32Constant(DAG, 0x3f1c0789, dl));
3913       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3914       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3915                                     getF32Constant(DAG, 0x3f011300, dl));
3916     } else if (LimitFloatPrecision <= 12) {
3917       // For floating-point precision of 12:
3918       //
3919       //   Log10ofMantissa =
3920       //     -0.64831180f +
3921       //       (0.91751397f +
3922       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3923       //
3924       // error 0.00019228036, which is better than 12 bits
3925       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3926                                getF32Constant(DAG, 0x3d431f31, dl));
3927       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3928                                getF32Constant(DAG, 0x3ea21fb2, dl));
3929       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3930       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3931                                getF32Constant(DAG, 0x3f6ae232, dl));
3932       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3933       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3934                                     getF32Constant(DAG, 0x3f25f7c3, dl));
3935     } else { // LimitFloatPrecision <= 18
3936       // For floating-point precision of 18:
3937       //
3938       //   Log10ofMantissa =
3939       //     -0.84299375f +
3940       //       (1.5327582f +
3941       //         (-1.0688956f +
3942       //           (0.49102474f +
3943       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3944       //
3945       // error 0.0000037995730, which is better than 18 bits
3946       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3947                                getF32Constant(DAG, 0x3c5d51ce, dl));
3948       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3949                                getF32Constant(DAG, 0x3e00685a, dl));
3950       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3951       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3952                                getF32Constant(DAG, 0x3efb6798, dl));
3953       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3954       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3955                                getF32Constant(DAG, 0x3f88d192, dl));
3956       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3957       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3958                                getF32Constant(DAG, 0x3fc4316c, dl));
3959       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3960       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3961                                     getF32Constant(DAG, 0x3f57ce70, dl));
3962     }
3963 
3964     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
3965   }
3966 
3967   // No special expansion.
3968   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
3969 }
3970 
3971 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3972 /// limited-precision mode.
3973 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3974                           const TargetLowering &TLI) {
3975   if (Op.getValueType() == MVT::f32 &&
3976       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
3977     return getLimitedPrecisionExp2(Op, dl, DAG);
3978 
3979   // No special expansion.
3980   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
3981 }
3982 
3983 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3984 /// limited-precision mode with x == 10.0f.
3985 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
3986                          SelectionDAG &DAG, const TargetLowering &TLI) {
3987   bool IsExp10 = false;
3988   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
3989       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3990     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
3991       APFloat Ten(10.0f);
3992       IsExp10 = LHSC->isExactlyValue(Ten);
3993     }
3994   }
3995 
3996   if (IsExp10) {
3997     // Put the exponent in the right bit position for later addition to the
3998     // final result:
3999     //
4000     //   #define LOG2OF10 3.3219281f
4001     //   t0 = Op * LOG2OF10;
4002     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4003                              getF32Constant(DAG, 0x40549a78, dl));
4004     return getLimitedPrecisionExp2(t0, dl, DAG);
4005   }
4006 
4007   // No special expansion.
4008   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4009 }
4010 
4011 
4012 /// ExpandPowI - Expand a llvm.powi intrinsic.
4013 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4014                           SelectionDAG &DAG) {
4015   // If RHS is a constant, we can expand this out to a multiplication tree,
4016   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4017   // optimizing for size, we only want to do this if the expansion would produce
4018   // a small number of multiplies, otherwise we do the full expansion.
4019   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4020     // Get the exponent as a positive value.
4021     unsigned Val = RHSC->getSExtValue();
4022     if ((int)Val < 0) Val = -Val;
4023 
4024     // powi(x, 0) -> 1.0
4025     if (Val == 0)
4026       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4027 
4028     const Function *F = DAG.getMachineFunction().getFunction();
4029     if (!F->optForSize() ||
4030         // If optimizing for size, don't insert too many multiplies.
4031         // This inserts up to 5 multiplies.
4032         countPopulation(Val) + Log2_32(Val) < 7) {
4033       // We use the simple binary decomposition method to generate the multiply
4034       // sequence.  There are more optimal ways to do this (for example,
4035       // powi(x,15) generates one more multiply than it should), but this has
4036       // the benefit of being both really simple and much better than a libcall.
4037       SDValue Res;  // Logically starts equal to 1.0
4038       SDValue CurSquare = LHS;
4039       while (Val) {
4040         if (Val & 1) {
4041           if (Res.getNode())
4042             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4043           else
4044             Res = CurSquare;  // 1.0*CurSquare.
4045         }
4046 
4047         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4048                                 CurSquare, CurSquare);
4049         Val >>= 1;
4050       }
4051 
4052       // If the original was negative, invert the result, producing 1/(x*x*x).
4053       if (RHSC->getSExtValue() < 0)
4054         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4055                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4056       return Res;
4057     }
4058   }
4059 
4060   // Otherwise, expand to a libcall.
4061   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4062 }
4063 
4064 // getTruncatedArgReg - Find underlying register used for an truncated
4065 // argument.
4066 static unsigned getTruncatedArgReg(const SDValue &N) {
4067   if (N.getOpcode() != ISD::TRUNCATE)
4068     return 0;
4069 
4070   const SDValue &Ext = N.getOperand(0);
4071   if (Ext.getOpcode() == ISD::AssertZext ||
4072       Ext.getOpcode() == ISD::AssertSext) {
4073     const SDValue &CFR = Ext.getOperand(0);
4074     if (CFR.getOpcode() == ISD::CopyFromReg)
4075       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4076     if (CFR.getOpcode() == ISD::TRUNCATE)
4077       return getTruncatedArgReg(CFR);
4078   }
4079   return 0;
4080 }
4081 
4082 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4083 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4084 /// At the end of instruction selection, they will be inserted to the entry BB.
4085 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4086     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4087     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4088   const Argument *Arg = dyn_cast<Argument>(V);
4089   if (!Arg)
4090     return false;
4091 
4092   MachineFunction &MF = DAG.getMachineFunction();
4093   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4094 
4095   // Ignore inlined function arguments here.
4096   //
4097   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4098   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4099     return false;
4100 
4101   Optional<MachineOperand> Op;
4102   // Some arguments' frame index is recorded during argument lowering.
4103   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4104     Op = MachineOperand::CreateFI(FI);
4105 
4106   if (!Op && N.getNode()) {
4107     unsigned Reg;
4108     if (N.getOpcode() == ISD::CopyFromReg)
4109       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4110     else
4111       Reg = getTruncatedArgReg(N);
4112     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4113       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4114       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4115       if (PR)
4116         Reg = PR;
4117     }
4118     if (Reg)
4119       Op = MachineOperand::CreateReg(Reg, false);
4120   }
4121 
4122   if (!Op) {
4123     // Check if ValueMap has reg number.
4124     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4125     if (VMI != FuncInfo.ValueMap.end())
4126       Op = MachineOperand::CreateReg(VMI->second, false);
4127   }
4128 
4129   if (!Op && N.getNode())
4130     // Check if frame index is available.
4131     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4132       if (FrameIndexSDNode *FINode =
4133           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4134         Op = MachineOperand::CreateFI(FINode->getIndex());
4135 
4136   if (!Op)
4137     return false;
4138 
4139   assert(Variable->isValidLocationForIntrinsic(DL) &&
4140          "Expected inlined-at fields to agree");
4141   if (Op->isReg())
4142     FuncInfo.ArgDbgValues.push_back(
4143         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4144                 Op->getReg(), Offset, Variable, Expr));
4145   else
4146     FuncInfo.ArgDbgValues.push_back(
4147         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4148             .addOperand(*Op)
4149             .addImm(Offset)
4150             .addMetadata(Variable)
4151             .addMetadata(Expr));
4152 
4153   return true;
4154 }
4155 
4156 // VisualStudio defines setjmp as _setjmp
4157 #if defined(_MSC_VER) && defined(setjmp) && \
4158                          !defined(setjmp_undefined_for_msvc)
4159 #  pragma push_macro("setjmp")
4160 #  undef setjmp
4161 #  define setjmp_undefined_for_msvc
4162 #endif
4163 
4164 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4165 /// we want to emit this as a call to a named external function, return the name
4166 /// otherwise lower it and return null.
4167 const char *
4168 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4169   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4170   SDLoc sdl = getCurSDLoc();
4171   DebugLoc dl = getCurDebugLoc();
4172   SDValue Res;
4173 
4174   switch (Intrinsic) {
4175   default:
4176     // By default, turn this into a target intrinsic node.
4177     visitTargetIntrinsic(I, Intrinsic);
4178     return nullptr;
4179   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4180   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4181   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4182   case Intrinsic::returnaddress:
4183     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4184                              TLI.getPointerTy(DAG.getDataLayout()),
4185                              getValue(I.getArgOperand(0))));
4186     return nullptr;
4187   case Intrinsic::frameaddress:
4188     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4189                              TLI.getPointerTy(DAG.getDataLayout()),
4190                              getValue(I.getArgOperand(0))));
4191     return nullptr;
4192   case Intrinsic::read_register: {
4193     Value *Reg = I.getArgOperand(0);
4194     SDValue Chain = getRoot();
4195     SDValue RegName =
4196         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4197     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4198     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4199       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4200     setValue(&I, Res);
4201     DAG.setRoot(Res.getValue(1));
4202     return nullptr;
4203   }
4204   case Intrinsic::write_register: {
4205     Value *Reg = I.getArgOperand(0);
4206     Value *RegValue = I.getArgOperand(1);
4207     SDValue Chain = getRoot();
4208     SDValue RegName =
4209         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4210     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4211                             RegName, getValue(RegValue)));
4212     return nullptr;
4213   }
4214   case Intrinsic::setjmp:
4215     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4216   case Intrinsic::longjmp:
4217     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4218   case Intrinsic::memcpy: {
4219     // FIXME: this definition of "user defined address space" is x86-specific
4220     // Assert for address < 256 since we support only user defined address
4221     // spaces.
4222     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4223            < 256 &&
4224            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4225            < 256 &&
4226            "Unknown address space");
4227     SDValue Op1 = getValue(I.getArgOperand(0));
4228     SDValue Op2 = getValue(I.getArgOperand(1));
4229     SDValue Op3 = getValue(I.getArgOperand(2));
4230     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4231     if (!Align)
4232       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4233     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4234     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4235     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4236                                false, isTC,
4237                                MachinePointerInfo(I.getArgOperand(0)),
4238                                MachinePointerInfo(I.getArgOperand(1)));
4239     updateDAGForMaybeTailCall(MC);
4240     return nullptr;
4241   }
4242   case Intrinsic::memset: {
4243     // FIXME: this definition of "user defined address space" is x86-specific
4244     // Assert for address < 256 since we support only user defined address
4245     // spaces.
4246     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4247            < 256 &&
4248            "Unknown address space");
4249     SDValue Op1 = getValue(I.getArgOperand(0));
4250     SDValue Op2 = getValue(I.getArgOperand(1));
4251     SDValue Op3 = getValue(I.getArgOperand(2));
4252     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4253     if (!Align)
4254       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4255     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4256     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4257     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4258                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4259     updateDAGForMaybeTailCall(MS);
4260     return nullptr;
4261   }
4262   case Intrinsic::memmove: {
4263     // FIXME: this definition of "user defined address space" is x86-specific
4264     // Assert for address < 256 since we support only user defined address
4265     // spaces.
4266     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4267            < 256 &&
4268            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4269            < 256 &&
4270            "Unknown address space");
4271     SDValue Op1 = getValue(I.getArgOperand(0));
4272     SDValue Op2 = getValue(I.getArgOperand(1));
4273     SDValue Op3 = getValue(I.getArgOperand(2));
4274     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4275     if (!Align)
4276       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4277     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4278     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4279     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4280                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4281                                 MachinePointerInfo(I.getArgOperand(1)));
4282     updateDAGForMaybeTailCall(MM);
4283     return nullptr;
4284   }
4285   case Intrinsic::dbg_declare: {
4286     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4287     DILocalVariable *Variable = DI.getVariable();
4288     DIExpression *Expression = DI.getExpression();
4289     const Value *Address = DI.getAddress();
4290     assert(Variable && "Missing variable");
4291     if (!Address) {
4292       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4293       return nullptr;
4294     }
4295 
4296     // Check if address has undef value.
4297     if (isa<UndefValue>(Address) ||
4298         (Address->use_empty() && !isa<Argument>(Address))) {
4299       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4300       return nullptr;
4301     }
4302 
4303     SDValue &N = NodeMap[Address];
4304     if (!N.getNode() && isa<Argument>(Address))
4305       // Check unused arguments map.
4306       N = UnusedArgNodeMap[Address];
4307     SDDbgValue *SDV;
4308     if (N.getNode()) {
4309       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4310         Address = BCI->getOperand(0);
4311       // Parameters are handled specially.
4312       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4313 
4314       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4315 
4316       if (isParameter && !AI) {
4317         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4318         if (FINode)
4319           // Byval parameter.  We have a frame index at this point.
4320           SDV = DAG.getFrameIndexDbgValue(
4321               Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
4322         else {
4323           // Address is an argument, so try to emit its dbg value using
4324           // virtual register info from the FuncInfo.ValueMap.
4325           EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4326                                    N);
4327           return nullptr;
4328         }
4329       } else if (AI)
4330         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4331                               true, 0, dl, SDNodeOrder);
4332       else {
4333         // Can't do anything with other non-AI cases yet.
4334         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4335         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4336         DEBUG(Address->dump());
4337         return nullptr;
4338       }
4339       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4340     } else {
4341       // If Address is an argument then try to emit its dbg value using
4342       // virtual register info from the FuncInfo.ValueMap.
4343       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4344                                     N)) {
4345         // If variable is pinned by a alloca in dominating bb then
4346         // use StaticAllocaMap.
4347         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4348           if (AI->getParent() != DI.getParent()) {
4349             DenseMap<const AllocaInst*, int>::iterator SI =
4350               FuncInfo.StaticAllocaMap.find(AI);
4351             if (SI != FuncInfo.StaticAllocaMap.end()) {
4352               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4353                                               0, dl, SDNodeOrder);
4354               DAG.AddDbgValue(SDV, nullptr, false);
4355               return nullptr;
4356             }
4357           }
4358         }
4359         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4360       }
4361     }
4362     return nullptr;
4363   }
4364   case Intrinsic::dbg_value: {
4365     const DbgValueInst &DI = cast<DbgValueInst>(I);
4366     assert(DI.getVariable() && "Missing variable");
4367 
4368     DILocalVariable *Variable = DI.getVariable();
4369     DIExpression *Expression = DI.getExpression();
4370     uint64_t Offset = DI.getOffset();
4371     const Value *V = DI.getValue();
4372     if (!V)
4373       return nullptr;
4374 
4375     SDDbgValue *SDV;
4376     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4377       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4378                                     SDNodeOrder);
4379       DAG.AddDbgValue(SDV, nullptr, false);
4380     } else {
4381       // Do not use getValue() in here; we don't want to generate code at
4382       // this point if it hasn't been done yet.
4383       SDValue N = NodeMap[V];
4384       if (!N.getNode() && isa<Argument>(V))
4385         // Check unused arguments map.
4386         N = UnusedArgNodeMap[V];
4387       if (N.getNode()) {
4388         // A dbg.value for an alloca is always indirect.
4389         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4390         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4391                                       IsIndirect, N)) {
4392           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4393                                 IsIndirect, Offset, dl, SDNodeOrder);
4394           DAG.AddDbgValue(SDV, N.getNode(), false);
4395         }
4396       } else if (!V->use_empty() ) {
4397         // Do not call getValue(V) yet, as we don't want to generate code.
4398         // Remember it for later.
4399         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4400         DanglingDebugInfoMap[V] = DDI;
4401       } else {
4402         // We may expand this to cover more cases.  One case where we have no
4403         // data available is an unreferenced parameter.
4404         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4405       }
4406     }
4407 
4408     // Build a debug info table entry.
4409     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4410       V = BCI->getOperand(0);
4411     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4412     // Don't handle byval struct arguments or VLAs, for example.
4413     if (!AI) {
4414       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4415       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4416       return nullptr;
4417     }
4418     DenseMap<const AllocaInst*, int>::iterator SI =
4419       FuncInfo.StaticAllocaMap.find(AI);
4420     if (SI == FuncInfo.StaticAllocaMap.end())
4421       return nullptr; // VLAs.
4422     return nullptr;
4423   }
4424 
4425   case Intrinsic::eh_typeid_for: {
4426     // Find the type id for the given typeinfo.
4427     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4428     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4429     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4430     setValue(&I, Res);
4431     return nullptr;
4432   }
4433 
4434   case Intrinsic::eh_return_i32:
4435   case Intrinsic::eh_return_i64:
4436     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4437     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4438                             MVT::Other,
4439                             getControlRoot(),
4440                             getValue(I.getArgOperand(0)),
4441                             getValue(I.getArgOperand(1))));
4442     return nullptr;
4443   case Intrinsic::eh_unwind_init:
4444     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4445     return nullptr;
4446   case Intrinsic::eh_dwarf_cfa: {
4447     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4448                                         TLI.getPointerTy(DAG.getDataLayout()));
4449     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4450                                  CfaArg.getValueType(),
4451                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4452                                              CfaArg.getValueType()),
4453                                  CfaArg);
4454     SDValue FA = DAG.getNode(
4455         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4456         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4457     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4458                              FA, Offset));
4459     return nullptr;
4460   }
4461   case Intrinsic::eh_sjlj_callsite: {
4462     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4463     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4464     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4465     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4466 
4467     MMI.setCurrentCallSite(CI->getZExtValue());
4468     return nullptr;
4469   }
4470   case Intrinsic::eh_sjlj_functioncontext: {
4471     // Get and store the index of the function context.
4472     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4473     AllocaInst *FnCtx =
4474       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4475     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4476     MFI->setFunctionContextIndex(FI);
4477     return nullptr;
4478   }
4479   case Intrinsic::eh_sjlj_setjmp: {
4480     SDValue Ops[2];
4481     Ops[0] = getRoot();
4482     Ops[1] = getValue(I.getArgOperand(0));
4483     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4484                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4485     setValue(&I, Op.getValue(0));
4486     DAG.setRoot(Op.getValue(1));
4487     return nullptr;
4488   }
4489   case Intrinsic::eh_sjlj_longjmp: {
4490     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4491                             getRoot(), getValue(I.getArgOperand(0))));
4492     return nullptr;
4493   }
4494   case Intrinsic::eh_sjlj_setup_dispatch: {
4495     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4496                             getRoot()));
4497     return nullptr;
4498   }
4499 
4500   case Intrinsic::masked_gather:
4501     visitMaskedGather(I);
4502     return nullptr;
4503   case Intrinsic::masked_load:
4504     visitMaskedLoad(I);
4505     return nullptr;
4506   case Intrinsic::masked_scatter:
4507     visitMaskedScatter(I);
4508     return nullptr;
4509   case Intrinsic::masked_store:
4510     visitMaskedStore(I);
4511     return nullptr;
4512   case Intrinsic::x86_mmx_pslli_w:
4513   case Intrinsic::x86_mmx_pslli_d:
4514   case Intrinsic::x86_mmx_pslli_q:
4515   case Intrinsic::x86_mmx_psrli_w:
4516   case Intrinsic::x86_mmx_psrli_d:
4517   case Intrinsic::x86_mmx_psrli_q:
4518   case Intrinsic::x86_mmx_psrai_w:
4519   case Intrinsic::x86_mmx_psrai_d: {
4520     SDValue ShAmt = getValue(I.getArgOperand(1));
4521     if (isa<ConstantSDNode>(ShAmt)) {
4522       visitTargetIntrinsic(I, Intrinsic);
4523       return nullptr;
4524     }
4525     unsigned NewIntrinsic = 0;
4526     EVT ShAmtVT = MVT::v2i32;
4527     switch (Intrinsic) {
4528     case Intrinsic::x86_mmx_pslli_w:
4529       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4530       break;
4531     case Intrinsic::x86_mmx_pslli_d:
4532       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4533       break;
4534     case Intrinsic::x86_mmx_pslli_q:
4535       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4536       break;
4537     case Intrinsic::x86_mmx_psrli_w:
4538       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4539       break;
4540     case Intrinsic::x86_mmx_psrli_d:
4541       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4542       break;
4543     case Intrinsic::x86_mmx_psrli_q:
4544       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4545       break;
4546     case Intrinsic::x86_mmx_psrai_w:
4547       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4548       break;
4549     case Intrinsic::x86_mmx_psrai_d:
4550       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4551       break;
4552     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4553     }
4554 
4555     // The vector shift intrinsics with scalars uses 32b shift amounts but
4556     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4557     // to be zero.
4558     // We must do this early because v2i32 is not a legal type.
4559     SDValue ShOps[2];
4560     ShOps[0] = ShAmt;
4561     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4562     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4563     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4564     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4565     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4566                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4567                        getValue(I.getArgOperand(0)), ShAmt);
4568     setValue(&I, Res);
4569     return nullptr;
4570   }
4571   case Intrinsic::convertff:
4572   case Intrinsic::convertfsi:
4573   case Intrinsic::convertfui:
4574   case Intrinsic::convertsif:
4575   case Intrinsic::convertuif:
4576   case Intrinsic::convertss:
4577   case Intrinsic::convertsu:
4578   case Intrinsic::convertus:
4579   case Intrinsic::convertuu: {
4580     ISD::CvtCode Code = ISD::CVT_INVALID;
4581     switch (Intrinsic) {
4582     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4583     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4584     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4585     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4586     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4587     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4588     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4589     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4590     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4591     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4592     }
4593     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4594     const Value *Op1 = I.getArgOperand(0);
4595     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4596                                DAG.getValueType(DestVT),
4597                                DAG.getValueType(getValue(Op1).getValueType()),
4598                                getValue(I.getArgOperand(1)),
4599                                getValue(I.getArgOperand(2)),
4600                                Code);
4601     setValue(&I, Res);
4602     return nullptr;
4603   }
4604   case Intrinsic::powi:
4605     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4606                             getValue(I.getArgOperand(1)), DAG));
4607     return nullptr;
4608   case Intrinsic::log:
4609     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4610     return nullptr;
4611   case Intrinsic::log2:
4612     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4613     return nullptr;
4614   case Intrinsic::log10:
4615     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4616     return nullptr;
4617   case Intrinsic::exp:
4618     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4619     return nullptr;
4620   case Intrinsic::exp2:
4621     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4622     return nullptr;
4623   case Intrinsic::pow:
4624     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4625                            getValue(I.getArgOperand(1)), DAG, TLI));
4626     return nullptr;
4627   case Intrinsic::sqrt:
4628   case Intrinsic::fabs:
4629   case Intrinsic::sin:
4630   case Intrinsic::cos:
4631   case Intrinsic::floor:
4632   case Intrinsic::ceil:
4633   case Intrinsic::trunc:
4634   case Intrinsic::rint:
4635   case Intrinsic::nearbyint:
4636   case Intrinsic::round: {
4637     unsigned Opcode;
4638     switch (Intrinsic) {
4639     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4640     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4641     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4642     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4643     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4644     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4645     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4646     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4647     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4648     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4649     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4650     }
4651 
4652     setValue(&I, DAG.getNode(Opcode, sdl,
4653                              getValue(I.getArgOperand(0)).getValueType(),
4654                              getValue(I.getArgOperand(0))));
4655     return nullptr;
4656   }
4657   case Intrinsic::minnum:
4658     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4659                              getValue(I.getArgOperand(0)).getValueType(),
4660                              getValue(I.getArgOperand(0)),
4661                              getValue(I.getArgOperand(1))));
4662     return nullptr;
4663   case Intrinsic::maxnum:
4664     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4665                              getValue(I.getArgOperand(0)).getValueType(),
4666                              getValue(I.getArgOperand(0)),
4667                              getValue(I.getArgOperand(1))));
4668     return nullptr;
4669   case Intrinsic::copysign:
4670     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4671                              getValue(I.getArgOperand(0)).getValueType(),
4672                              getValue(I.getArgOperand(0)),
4673                              getValue(I.getArgOperand(1))));
4674     return nullptr;
4675   case Intrinsic::fma:
4676     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4677                              getValue(I.getArgOperand(0)).getValueType(),
4678                              getValue(I.getArgOperand(0)),
4679                              getValue(I.getArgOperand(1)),
4680                              getValue(I.getArgOperand(2))));
4681     return nullptr;
4682   case Intrinsic::fmuladd: {
4683     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4684     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4685         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4686       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4687                                getValue(I.getArgOperand(0)).getValueType(),
4688                                getValue(I.getArgOperand(0)),
4689                                getValue(I.getArgOperand(1)),
4690                                getValue(I.getArgOperand(2))));
4691     } else {
4692       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4693                                 getValue(I.getArgOperand(0)).getValueType(),
4694                                 getValue(I.getArgOperand(0)),
4695                                 getValue(I.getArgOperand(1)));
4696       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4697                                 getValue(I.getArgOperand(0)).getValueType(),
4698                                 Mul,
4699                                 getValue(I.getArgOperand(2)));
4700       setValue(&I, Add);
4701     }
4702     return nullptr;
4703   }
4704   case Intrinsic::convert_to_fp16:
4705     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4706                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4707                                          getValue(I.getArgOperand(0)),
4708                                          DAG.getTargetConstant(0, sdl,
4709                                                                MVT::i32))));
4710     return nullptr;
4711   case Intrinsic::convert_from_fp16:
4712     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
4713                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
4714                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4715                                          getValue(I.getArgOperand(0)))));
4716     return nullptr;
4717   case Intrinsic::pcmarker: {
4718     SDValue Tmp = getValue(I.getArgOperand(0));
4719     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4720     return nullptr;
4721   }
4722   case Intrinsic::readcyclecounter: {
4723     SDValue Op = getRoot();
4724     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4725                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4726     setValue(&I, Res);
4727     DAG.setRoot(Res.getValue(1));
4728     return nullptr;
4729   }
4730   case Intrinsic::bswap:
4731     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4732                              getValue(I.getArgOperand(0)).getValueType(),
4733                              getValue(I.getArgOperand(0))));
4734     return nullptr;
4735   case Intrinsic::uabsdiff:
4736     setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl,
4737                              getValue(I.getArgOperand(0)).getValueType(),
4738                              getValue(I.getArgOperand(0)),
4739                              getValue(I.getArgOperand(1))));
4740     return nullptr;
4741   case Intrinsic::sabsdiff:
4742     setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl,
4743                              getValue(I.getArgOperand(0)).getValueType(),
4744                              getValue(I.getArgOperand(0)),
4745                              getValue(I.getArgOperand(1))));
4746     return nullptr;
4747   case Intrinsic::cttz: {
4748     SDValue Arg = getValue(I.getArgOperand(0));
4749     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4750     EVT Ty = Arg.getValueType();
4751     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4752                              sdl, Ty, Arg));
4753     return nullptr;
4754   }
4755   case Intrinsic::ctlz: {
4756     SDValue Arg = getValue(I.getArgOperand(0));
4757     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4758     EVT Ty = Arg.getValueType();
4759     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4760                              sdl, Ty, Arg));
4761     return nullptr;
4762   }
4763   case Intrinsic::ctpop: {
4764     SDValue Arg = getValue(I.getArgOperand(0));
4765     EVT Ty = Arg.getValueType();
4766     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4767     return nullptr;
4768   }
4769   case Intrinsic::stacksave: {
4770     SDValue Op = getRoot();
4771     Res = DAG.getNode(
4772         ISD::STACKSAVE, sdl,
4773         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
4774     setValue(&I, Res);
4775     DAG.setRoot(Res.getValue(1));
4776     return nullptr;
4777   }
4778   case Intrinsic::stackrestore: {
4779     Res = getValue(I.getArgOperand(0));
4780     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4781     return nullptr;
4782   }
4783   case Intrinsic::stackprotector: {
4784     // Emit code into the DAG to store the stack guard onto the stack.
4785     MachineFunction &MF = DAG.getMachineFunction();
4786     MachineFrameInfo *MFI = MF.getFrameInfo();
4787     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4788     SDValue Src, Chain = getRoot();
4789     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4790     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4791 
4792     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4793     // global variable __stack_chk_guard.
4794     if (!GV)
4795       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4796         if (BC->getOpcode() == Instruction::BitCast)
4797           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4798 
4799     if (GV && TLI.useLoadStackGuardNode()) {
4800       // Emit a LOAD_STACK_GUARD node.
4801       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4802                                                sdl, PtrTy, Chain);
4803       MachinePointerInfo MPInfo(GV);
4804       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4805       unsigned Flags = MachineMemOperand::MOLoad |
4806                        MachineMemOperand::MOInvariant;
4807       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4808                                          PtrTy.getSizeInBits() / 8,
4809                                          DAG.getEVTAlignment(PtrTy));
4810       Node->setMemRefs(MemRefs, MemRefs + 1);
4811 
4812       // Copy the guard value to a virtual register so that it can be
4813       // retrieved in the epilogue.
4814       Src = SDValue(Node, 0);
4815       const TargetRegisterClass *RC =
4816           TLI.getRegClassFor(Src.getSimpleValueType());
4817       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4818 
4819       SPDescriptor.setGuardReg(Reg);
4820       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4821     } else {
4822       Src = getValue(I.getArgOperand(0));   // The guard's value.
4823     }
4824 
4825     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4826 
4827     int FI = FuncInfo.StaticAllocaMap[Slot];
4828     MFI->setStackProtectorIndex(FI);
4829 
4830     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4831 
4832     // Store the stack protector onto the stack.
4833     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
4834                                                  DAG.getMachineFunction(), FI),
4835                        true, false, 0);
4836     setValue(&I, Res);
4837     DAG.setRoot(Res);
4838     return nullptr;
4839   }
4840   case Intrinsic::objectsize: {
4841     // If we don't know by now, we're never going to know.
4842     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4843 
4844     assert(CI && "Non-constant type in __builtin_object_size?");
4845 
4846     SDValue Arg = getValue(I.getCalledValue());
4847     EVT Ty = Arg.getValueType();
4848 
4849     if (CI->isZero())
4850       Res = DAG.getConstant(-1ULL, sdl, Ty);
4851     else
4852       Res = DAG.getConstant(0, sdl, Ty);
4853 
4854     setValue(&I, Res);
4855     return nullptr;
4856   }
4857   case Intrinsic::annotation:
4858   case Intrinsic::ptr_annotation:
4859     // Drop the intrinsic, but forward the value
4860     setValue(&I, getValue(I.getOperand(0)));
4861     return nullptr;
4862   case Intrinsic::assume:
4863   case Intrinsic::var_annotation:
4864     // Discard annotate attributes and assumptions
4865     return nullptr;
4866 
4867   case Intrinsic::init_trampoline: {
4868     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4869 
4870     SDValue Ops[6];
4871     Ops[0] = getRoot();
4872     Ops[1] = getValue(I.getArgOperand(0));
4873     Ops[2] = getValue(I.getArgOperand(1));
4874     Ops[3] = getValue(I.getArgOperand(2));
4875     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4876     Ops[5] = DAG.getSrcValue(F);
4877 
4878     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
4879 
4880     DAG.setRoot(Res);
4881     return nullptr;
4882   }
4883   case Intrinsic::adjust_trampoline: {
4884     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
4885                              TLI.getPointerTy(DAG.getDataLayout()),
4886                              getValue(I.getArgOperand(0))));
4887     return nullptr;
4888   }
4889   case Intrinsic::gcroot:
4890     if (GFI) {
4891       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
4892       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4893 
4894       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4895       GFI->addStackRoot(FI->getIndex(), TypeMap);
4896     }
4897     return nullptr;
4898   case Intrinsic::gcread:
4899   case Intrinsic::gcwrite:
4900     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4901   case Intrinsic::flt_rounds:
4902     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
4903     return nullptr;
4904 
4905   case Intrinsic::expect: {
4906     // Just replace __builtin_expect(exp, c) with EXP.
4907     setValue(&I, getValue(I.getArgOperand(0)));
4908     return nullptr;
4909   }
4910 
4911   case Intrinsic::debugtrap:
4912   case Intrinsic::trap: {
4913     StringRef TrapFuncName =
4914         I.getAttributes()
4915             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
4916             .getValueAsString();
4917     if (TrapFuncName.empty()) {
4918       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
4919         ISD::TRAP : ISD::DEBUGTRAP;
4920       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
4921       return nullptr;
4922     }
4923     TargetLowering::ArgListTy Args;
4924 
4925     TargetLowering::CallLoweringInfo CLI(DAG);
4926     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
4927         CallingConv::C, I.getType(),
4928         DAG.getExternalSymbol(TrapFuncName.data(),
4929                               TLI.getPointerTy(DAG.getDataLayout())),
4930         std::move(Args), 0);
4931 
4932     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
4933     DAG.setRoot(Result.second);
4934     return nullptr;
4935   }
4936 
4937   case Intrinsic::uadd_with_overflow:
4938   case Intrinsic::sadd_with_overflow:
4939   case Intrinsic::usub_with_overflow:
4940   case Intrinsic::ssub_with_overflow:
4941   case Intrinsic::umul_with_overflow:
4942   case Intrinsic::smul_with_overflow: {
4943     ISD::NodeType Op;
4944     switch (Intrinsic) {
4945     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4946     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
4947     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
4948     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
4949     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
4950     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
4951     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
4952     }
4953     SDValue Op1 = getValue(I.getArgOperand(0));
4954     SDValue Op2 = getValue(I.getArgOperand(1));
4955 
4956     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
4957     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
4958     return nullptr;
4959   }
4960   case Intrinsic::prefetch: {
4961     SDValue Ops[5];
4962     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4963     Ops[0] = getRoot();
4964     Ops[1] = getValue(I.getArgOperand(0));
4965     Ops[2] = getValue(I.getArgOperand(1));
4966     Ops[3] = getValue(I.getArgOperand(2));
4967     Ops[4] = getValue(I.getArgOperand(3));
4968     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
4969                                         DAG.getVTList(MVT::Other), Ops,
4970                                         EVT::getIntegerVT(*Context, 8),
4971                                         MachinePointerInfo(I.getArgOperand(0)),
4972                                         0, /* align */
4973                                         false, /* volatile */
4974                                         rw==0, /* read */
4975                                         rw==1)); /* write */
4976     return nullptr;
4977   }
4978   case Intrinsic::lifetime_start:
4979   case Intrinsic::lifetime_end: {
4980     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
4981     // Stack coloring is not enabled in O0, discard region information.
4982     if (TM.getOptLevel() == CodeGenOpt::None)
4983       return nullptr;
4984 
4985     SmallVector<Value *, 4> Allocas;
4986     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
4987 
4988     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
4989            E = Allocas.end(); Object != E; ++Object) {
4990       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
4991 
4992       // Could not find an Alloca.
4993       if (!LifetimeObject)
4994         continue;
4995 
4996       // First check that the Alloca is static, otherwise it won't have a
4997       // valid frame index.
4998       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
4999       if (SI == FuncInfo.StaticAllocaMap.end())
5000         return nullptr;
5001 
5002       int FI = SI->second;
5003 
5004       SDValue Ops[2];
5005       Ops[0] = getRoot();
5006       Ops[1] =
5007           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5008       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5009 
5010       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5011       DAG.setRoot(Res);
5012     }
5013     return nullptr;
5014   }
5015   case Intrinsic::invariant_start:
5016     // Discard region information.
5017     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5018     return nullptr;
5019   case Intrinsic::invariant_end:
5020     // Discard region information.
5021     return nullptr;
5022   case Intrinsic::stackprotectorcheck: {
5023     // Do not actually emit anything for this basic block. Instead we initialize
5024     // the stack protector descriptor and export the guard variable so we can
5025     // access it in FinishBasicBlock.
5026     const BasicBlock *BB = I.getParent();
5027     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5028     ExportFromCurrentBlock(SPDescriptor.getGuard());
5029 
5030     // Flush our exports since we are going to process a terminator.
5031     (void)getControlRoot();
5032     return nullptr;
5033   }
5034   case Intrinsic::clear_cache:
5035     return TLI.getClearCacheBuiltinName();
5036   case Intrinsic::eh_actions:
5037     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5038     return nullptr;
5039   case Intrinsic::donothing:
5040     // ignore
5041     return nullptr;
5042   case Intrinsic::experimental_stackmap: {
5043     visitStackmap(I);
5044     return nullptr;
5045   }
5046   case Intrinsic::experimental_patchpoint_void:
5047   case Intrinsic::experimental_patchpoint_i64: {
5048     visitPatchpoint(&I);
5049     return nullptr;
5050   }
5051   case Intrinsic::experimental_gc_statepoint: {
5052     visitStatepoint(I);
5053     return nullptr;
5054   }
5055   case Intrinsic::experimental_gc_result_int:
5056   case Intrinsic::experimental_gc_result_float:
5057   case Intrinsic::experimental_gc_result_ptr:
5058   case Intrinsic::experimental_gc_result: {
5059     visitGCResult(I);
5060     return nullptr;
5061   }
5062   case Intrinsic::experimental_gc_relocate: {
5063     visitGCRelocate(I);
5064     return nullptr;
5065   }
5066   case Intrinsic::instrprof_increment:
5067     llvm_unreachable("instrprof failed to lower an increment");
5068 
5069   case Intrinsic::localescape: {
5070     MachineFunction &MF = DAG.getMachineFunction();
5071     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5072 
5073     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5074     // is the same on all targets.
5075     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5076       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5077       if (isa<ConstantPointerNull>(Arg))
5078         continue; // Skip null pointers. They represent a hole in index space.
5079       AllocaInst *Slot = cast<AllocaInst>(Arg);
5080       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5081              "can only escape static allocas");
5082       int FI = FuncInfo.StaticAllocaMap[Slot];
5083       MCSymbol *FrameAllocSym =
5084           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5085               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5086       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5087               TII->get(TargetOpcode::LOCAL_ESCAPE))
5088           .addSym(FrameAllocSym)
5089           .addFrameIndex(FI);
5090     }
5091 
5092     return nullptr;
5093   }
5094 
5095   case Intrinsic::localrecover: {
5096     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5097     MachineFunction &MF = DAG.getMachineFunction();
5098     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5099 
5100     // Get the symbol that defines the frame offset.
5101     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5102     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5103     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5104     MCSymbol *FrameAllocSym =
5105         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5106             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5107 
5108     // Create a MCSymbol for the label to avoid any target lowering
5109     // that would make this PC relative.
5110     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5111     SDValue OffsetVal =
5112         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5113 
5114     // Add the offset to the FP.
5115     Value *FP = I.getArgOperand(1);
5116     SDValue FPVal = getValue(FP);
5117     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5118     setValue(&I, Add);
5119 
5120     return nullptr;
5121   }
5122   case Intrinsic::eh_begincatch:
5123   case Intrinsic::eh_endcatch:
5124     llvm_unreachable("begin/end catch intrinsics not lowered in codegen");
5125   case Intrinsic::eh_exceptioncode: {
5126     unsigned Reg = TLI.getExceptionPointerRegister();
5127     assert(Reg && "cannot get exception code on this platform");
5128     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5129     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5130     assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad");
5131     unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC);
5132     SDValue N =
5133         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5134     N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5135     setValue(&I, N);
5136     return nullptr;
5137   }
5138   }
5139 }
5140 
5141 std::pair<SDValue, SDValue>
5142 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5143                                     MachineBasicBlock *LandingPad) {
5144   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5145   MCSymbol *BeginLabel = nullptr;
5146 
5147   if (LandingPad) {
5148     // Insert a label before the invoke call to mark the try range.  This can be
5149     // used to detect deletion of the invoke via the MachineModuleInfo.
5150     BeginLabel = MMI.getContext().createTempSymbol();
5151 
5152     // For SjLj, keep track of which landing pads go with which invokes
5153     // so as to maintain the ordering of pads in the LSDA.
5154     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5155     if (CallSiteIndex) {
5156       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5157       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5158 
5159       // Now that the call site is handled, stop tracking it.
5160       MMI.setCurrentCallSite(0);
5161     }
5162 
5163     // Both PendingLoads and PendingExports must be flushed here;
5164     // this call might not return.
5165     (void)getRoot();
5166     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5167 
5168     CLI.setChain(getRoot());
5169   }
5170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5171   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5172 
5173   assert((CLI.IsTailCall || Result.second.getNode()) &&
5174          "Non-null chain expected with non-tail call!");
5175   assert((Result.second.getNode() || !Result.first.getNode()) &&
5176          "Null value expected with tail call!");
5177 
5178   if (!Result.second.getNode()) {
5179     // As a special case, a null chain means that a tail call has been emitted
5180     // and the DAG root is already updated.
5181     HasTailCall = true;
5182 
5183     // Since there's no actual continuation from this block, nothing can be
5184     // relying on us setting vregs for them.
5185     PendingExports.clear();
5186   } else {
5187     DAG.setRoot(Result.second);
5188   }
5189 
5190   if (LandingPad) {
5191     // Insert a label at the end of the invoke call to mark the try range.  This
5192     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5193     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5194     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5195 
5196     // Inform MachineModuleInfo of range.
5197     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5198   }
5199 
5200   return Result;
5201 }
5202 
5203 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5204                                       bool isTailCall,
5205                                       MachineBasicBlock *LandingPad) {
5206   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5207   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5208   Type *RetTy = FTy->getReturnType();
5209 
5210   TargetLowering::ArgListTy Args;
5211   TargetLowering::ArgListEntry Entry;
5212   Args.reserve(CS.arg_size());
5213 
5214   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5215        i != e; ++i) {
5216     const Value *V = *i;
5217 
5218     // Skip empty types
5219     if (V->getType()->isEmptyTy())
5220       continue;
5221 
5222     SDValue ArgNode = getValue(V);
5223     Entry.Node = ArgNode; Entry.Ty = V->getType();
5224 
5225     // Skip the first return-type Attribute to get to params.
5226     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5227     Args.push_back(Entry);
5228 
5229     // If we have an explicit sret argument that is an Instruction, (i.e., it
5230     // might point to function-local memory), we can't meaningfully tail-call.
5231     if (Entry.isSRet && isa<Instruction>(V))
5232       isTailCall = false;
5233   }
5234 
5235   // Check if target-independent constraints permit a tail call here.
5236   // Target-dependent constraints are checked within TLI->LowerCallTo.
5237   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5238     isTailCall = false;
5239 
5240   TargetLowering::CallLoweringInfo CLI(DAG);
5241   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5242     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5243     .setTailCall(isTailCall);
5244   std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
5245 
5246   if (Result.first.getNode())
5247     setValue(CS.getInstruction(), Result.first);
5248 }
5249 
5250 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5251 /// value is equal or not-equal to zero.
5252 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5253   for (const User *U : V->users()) {
5254     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5255       if (IC->isEquality())
5256         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5257           if (C->isNullValue())
5258             continue;
5259     // Unknown instruction.
5260     return false;
5261   }
5262   return true;
5263 }
5264 
5265 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5266                              Type *LoadTy,
5267                              SelectionDAGBuilder &Builder) {
5268 
5269   // Check to see if this load can be trivially constant folded, e.g. if the
5270   // input is from a string literal.
5271   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5272     // Cast pointer to the type we really want to load.
5273     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5274                                          PointerType::getUnqual(LoadTy));
5275 
5276     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5277             const_cast<Constant *>(LoadInput), *Builder.DL))
5278       return Builder.getValue(LoadCst);
5279   }
5280 
5281   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5282   // still constant memory, the input chain can be the entry node.
5283   SDValue Root;
5284   bool ConstantMemory = false;
5285 
5286   // Do not serialize (non-volatile) loads of constant memory with anything.
5287   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5288     Root = Builder.DAG.getEntryNode();
5289     ConstantMemory = true;
5290   } else {
5291     // Do not serialize non-volatile loads against each other.
5292     Root = Builder.DAG.getRoot();
5293   }
5294 
5295   SDValue Ptr = Builder.getValue(PtrVal);
5296   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5297                                         Ptr, MachinePointerInfo(PtrVal),
5298                                         false /*volatile*/,
5299                                         false /*nontemporal*/,
5300                                         false /*isinvariant*/, 1 /* align=1 */);
5301 
5302   if (!ConstantMemory)
5303     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5304   return LoadVal;
5305 }
5306 
5307 /// processIntegerCallValue - Record the value for an instruction that
5308 /// produces an integer result, converting the type where necessary.
5309 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5310                                                   SDValue Value,
5311                                                   bool IsSigned) {
5312   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5313                                                     I.getType(), true);
5314   if (IsSigned)
5315     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5316   else
5317     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5318   setValue(&I, Value);
5319 }
5320 
5321 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5322 /// If so, return true and lower it, otherwise return false and it will be
5323 /// lowered like a normal call.
5324 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5325   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5326   if (I.getNumArgOperands() != 3)
5327     return false;
5328 
5329   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5330   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5331       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5332       !I.getType()->isIntegerTy())
5333     return false;
5334 
5335   const Value *Size = I.getArgOperand(2);
5336   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5337   if (CSize && CSize->getZExtValue() == 0) {
5338     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5339                                                           I.getType(), true);
5340     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5341     return true;
5342   }
5343 
5344   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5345   std::pair<SDValue, SDValue> Res =
5346     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5347                                 getValue(LHS), getValue(RHS), getValue(Size),
5348                                 MachinePointerInfo(LHS),
5349                                 MachinePointerInfo(RHS));
5350   if (Res.first.getNode()) {
5351     processIntegerCallValue(I, Res.first, true);
5352     PendingLoads.push_back(Res.second);
5353     return true;
5354   }
5355 
5356   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5357   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5358   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5359     bool ActuallyDoIt = true;
5360     MVT LoadVT;
5361     Type *LoadTy;
5362     switch (CSize->getZExtValue()) {
5363     default:
5364       LoadVT = MVT::Other;
5365       LoadTy = nullptr;
5366       ActuallyDoIt = false;
5367       break;
5368     case 2:
5369       LoadVT = MVT::i16;
5370       LoadTy = Type::getInt16Ty(CSize->getContext());
5371       break;
5372     case 4:
5373       LoadVT = MVT::i32;
5374       LoadTy = Type::getInt32Ty(CSize->getContext());
5375       break;
5376     case 8:
5377       LoadVT = MVT::i64;
5378       LoadTy = Type::getInt64Ty(CSize->getContext());
5379       break;
5380         /*
5381     case 16:
5382       LoadVT = MVT::v4i32;
5383       LoadTy = Type::getInt32Ty(CSize->getContext());
5384       LoadTy = VectorType::get(LoadTy, 4);
5385       break;
5386          */
5387     }
5388 
5389     // This turns into unaligned loads.  We only do this if the target natively
5390     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5391     // we'll only produce a small number of byte loads.
5392 
5393     // Require that we can find a legal MVT, and only do this if the target
5394     // supports unaligned loads of that type.  Expanding into byte loads would
5395     // bloat the code.
5396     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5397     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5398       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5399       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5400       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5401       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5402       // TODO: Check alignment of src and dest ptrs.
5403       if (!TLI.isTypeLegal(LoadVT) ||
5404           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5405           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5406         ActuallyDoIt = false;
5407     }
5408 
5409     if (ActuallyDoIt) {
5410       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5411       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5412 
5413       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5414                                  ISD::SETNE);
5415       processIntegerCallValue(I, Res, false);
5416       return true;
5417     }
5418   }
5419 
5420 
5421   return false;
5422 }
5423 
5424 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5425 /// form.  If so, return true and lower it, otherwise return false and it
5426 /// will be lowered like a normal call.
5427 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5428   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5429   if (I.getNumArgOperands() != 3)
5430     return false;
5431 
5432   const Value *Src = I.getArgOperand(0);
5433   const Value *Char = I.getArgOperand(1);
5434   const Value *Length = I.getArgOperand(2);
5435   if (!Src->getType()->isPointerTy() ||
5436       !Char->getType()->isIntegerTy() ||
5437       !Length->getType()->isIntegerTy() ||
5438       !I.getType()->isPointerTy())
5439     return false;
5440 
5441   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5442   std::pair<SDValue, SDValue> Res =
5443     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5444                                 getValue(Src), getValue(Char), getValue(Length),
5445                                 MachinePointerInfo(Src));
5446   if (Res.first.getNode()) {
5447     setValue(&I, Res.first);
5448     PendingLoads.push_back(Res.second);
5449     return true;
5450   }
5451 
5452   return false;
5453 }
5454 
5455 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5456 /// optimized form.  If so, return true and lower it, otherwise return false
5457 /// and it will be lowered like a normal call.
5458 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5459   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5460   if (I.getNumArgOperands() != 2)
5461     return false;
5462 
5463   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5464   if (!Arg0->getType()->isPointerTy() ||
5465       !Arg1->getType()->isPointerTy() ||
5466       !I.getType()->isPointerTy())
5467     return false;
5468 
5469   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5470   std::pair<SDValue, SDValue> Res =
5471     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5472                                 getValue(Arg0), getValue(Arg1),
5473                                 MachinePointerInfo(Arg0),
5474                                 MachinePointerInfo(Arg1), isStpcpy);
5475   if (Res.first.getNode()) {
5476     setValue(&I, Res.first);
5477     DAG.setRoot(Res.second);
5478     return true;
5479   }
5480 
5481   return false;
5482 }
5483 
5484 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5485 /// If so, return true and lower it, otherwise return false and it will be
5486 /// lowered like a normal call.
5487 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5488   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5489   if (I.getNumArgOperands() != 2)
5490     return false;
5491 
5492   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5493   if (!Arg0->getType()->isPointerTy() ||
5494       !Arg1->getType()->isPointerTy() ||
5495       !I.getType()->isIntegerTy())
5496     return false;
5497 
5498   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5499   std::pair<SDValue, SDValue> Res =
5500     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5501                                 getValue(Arg0), getValue(Arg1),
5502                                 MachinePointerInfo(Arg0),
5503                                 MachinePointerInfo(Arg1));
5504   if (Res.first.getNode()) {
5505     processIntegerCallValue(I, Res.first, true);
5506     PendingLoads.push_back(Res.second);
5507     return true;
5508   }
5509 
5510   return false;
5511 }
5512 
5513 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5514 /// form.  If so, return true and lower it, otherwise return false and it
5515 /// will be lowered like a normal call.
5516 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5517   // Verify that the prototype makes sense.  size_t strlen(char *)
5518   if (I.getNumArgOperands() != 1)
5519     return false;
5520 
5521   const Value *Arg0 = I.getArgOperand(0);
5522   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5523     return false;
5524 
5525   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5526   std::pair<SDValue, SDValue> Res =
5527     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5528                                 getValue(Arg0), MachinePointerInfo(Arg0));
5529   if (Res.first.getNode()) {
5530     processIntegerCallValue(I, Res.first, false);
5531     PendingLoads.push_back(Res.second);
5532     return true;
5533   }
5534 
5535   return false;
5536 }
5537 
5538 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5539 /// form.  If so, return true and lower it, otherwise return false and it
5540 /// will be lowered like a normal call.
5541 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5542   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5543   if (I.getNumArgOperands() != 2)
5544     return false;
5545 
5546   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5547   if (!Arg0->getType()->isPointerTy() ||
5548       !Arg1->getType()->isIntegerTy() ||
5549       !I.getType()->isIntegerTy())
5550     return false;
5551 
5552   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5553   std::pair<SDValue, SDValue> Res =
5554     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5555                                  getValue(Arg0), getValue(Arg1),
5556                                  MachinePointerInfo(Arg0));
5557   if (Res.first.getNode()) {
5558     processIntegerCallValue(I, Res.first, false);
5559     PendingLoads.push_back(Res.second);
5560     return true;
5561   }
5562 
5563   return false;
5564 }
5565 
5566 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5567 /// operation (as expected), translate it to an SDNode with the specified opcode
5568 /// and return true.
5569 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5570                                               unsigned Opcode) {
5571   // Sanity check that it really is a unary floating-point call.
5572   if (I.getNumArgOperands() != 1 ||
5573       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5574       I.getType() != I.getArgOperand(0)->getType() ||
5575       !I.onlyReadsMemory())
5576     return false;
5577 
5578   SDValue Tmp = getValue(I.getArgOperand(0));
5579   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5580   return true;
5581 }
5582 
5583 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5584 /// operation (as expected), translate it to an SDNode with the specified opcode
5585 /// and return true.
5586 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5587                                                unsigned Opcode) {
5588   // Sanity check that it really is a binary floating-point call.
5589   if (I.getNumArgOperands() != 2 ||
5590       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5591       I.getType() != I.getArgOperand(0)->getType() ||
5592       I.getType() != I.getArgOperand(1)->getType() ||
5593       !I.onlyReadsMemory())
5594     return false;
5595 
5596   SDValue Tmp0 = getValue(I.getArgOperand(0));
5597   SDValue Tmp1 = getValue(I.getArgOperand(1));
5598   EVT VT = Tmp0.getValueType();
5599   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5600   return true;
5601 }
5602 
5603 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5604   // Handle inline assembly differently.
5605   if (isa<InlineAsm>(I.getCalledValue())) {
5606     visitInlineAsm(&I);
5607     return;
5608   }
5609 
5610   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5611   ComputeUsesVAFloatArgument(I, &MMI);
5612 
5613   const char *RenameFn = nullptr;
5614   if (Function *F = I.getCalledFunction()) {
5615     if (F->isDeclaration()) {
5616       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5617         if (unsigned IID = II->getIntrinsicID(F)) {
5618           RenameFn = visitIntrinsicCall(I, IID);
5619           if (!RenameFn)
5620             return;
5621         }
5622       }
5623       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5624         RenameFn = visitIntrinsicCall(I, IID);
5625         if (!RenameFn)
5626           return;
5627       }
5628     }
5629 
5630     // Check for well-known libc/libm calls.  If the function is internal, it
5631     // can't be a library call.
5632     LibFunc::Func Func;
5633     if (!F->hasLocalLinkage() && F->hasName() &&
5634         LibInfo->getLibFunc(F->getName(), Func) &&
5635         LibInfo->hasOptimizedCodeGen(Func)) {
5636       switch (Func) {
5637       default: break;
5638       case LibFunc::copysign:
5639       case LibFunc::copysignf:
5640       case LibFunc::copysignl:
5641         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5642             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5643             I.getType() == I.getArgOperand(0)->getType() &&
5644             I.getType() == I.getArgOperand(1)->getType() &&
5645             I.onlyReadsMemory()) {
5646           SDValue LHS = getValue(I.getArgOperand(0));
5647           SDValue RHS = getValue(I.getArgOperand(1));
5648           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5649                                    LHS.getValueType(), LHS, RHS));
5650           return;
5651         }
5652         break;
5653       case LibFunc::fabs:
5654       case LibFunc::fabsf:
5655       case LibFunc::fabsl:
5656         if (visitUnaryFloatCall(I, ISD::FABS))
5657           return;
5658         break;
5659       case LibFunc::fmin:
5660       case LibFunc::fminf:
5661       case LibFunc::fminl:
5662         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5663           return;
5664         break;
5665       case LibFunc::fmax:
5666       case LibFunc::fmaxf:
5667       case LibFunc::fmaxl:
5668         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5669           return;
5670         break;
5671       case LibFunc::sin:
5672       case LibFunc::sinf:
5673       case LibFunc::sinl:
5674         if (visitUnaryFloatCall(I, ISD::FSIN))
5675           return;
5676         break;
5677       case LibFunc::cos:
5678       case LibFunc::cosf:
5679       case LibFunc::cosl:
5680         if (visitUnaryFloatCall(I, ISD::FCOS))
5681           return;
5682         break;
5683       case LibFunc::sqrt:
5684       case LibFunc::sqrtf:
5685       case LibFunc::sqrtl:
5686       case LibFunc::sqrt_finite:
5687       case LibFunc::sqrtf_finite:
5688       case LibFunc::sqrtl_finite:
5689         if (visitUnaryFloatCall(I, ISD::FSQRT))
5690           return;
5691         break;
5692       case LibFunc::floor:
5693       case LibFunc::floorf:
5694       case LibFunc::floorl:
5695         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5696           return;
5697         break;
5698       case LibFunc::nearbyint:
5699       case LibFunc::nearbyintf:
5700       case LibFunc::nearbyintl:
5701         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5702           return;
5703         break;
5704       case LibFunc::ceil:
5705       case LibFunc::ceilf:
5706       case LibFunc::ceill:
5707         if (visitUnaryFloatCall(I, ISD::FCEIL))
5708           return;
5709         break;
5710       case LibFunc::rint:
5711       case LibFunc::rintf:
5712       case LibFunc::rintl:
5713         if (visitUnaryFloatCall(I, ISD::FRINT))
5714           return;
5715         break;
5716       case LibFunc::round:
5717       case LibFunc::roundf:
5718       case LibFunc::roundl:
5719         if (visitUnaryFloatCall(I, ISD::FROUND))
5720           return;
5721         break;
5722       case LibFunc::trunc:
5723       case LibFunc::truncf:
5724       case LibFunc::truncl:
5725         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5726           return;
5727         break;
5728       case LibFunc::log2:
5729       case LibFunc::log2f:
5730       case LibFunc::log2l:
5731         if (visitUnaryFloatCall(I, ISD::FLOG2))
5732           return;
5733         break;
5734       case LibFunc::exp2:
5735       case LibFunc::exp2f:
5736       case LibFunc::exp2l:
5737         if (visitUnaryFloatCall(I, ISD::FEXP2))
5738           return;
5739         break;
5740       case LibFunc::memcmp:
5741         if (visitMemCmpCall(I))
5742           return;
5743         break;
5744       case LibFunc::memchr:
5745         if (visitMemChrCall(I))
5746           return;
5747         break;
5748       case LibFunc::strcpy:
5749         if (visitStrCpyCall(I, false))
5750           return;
5751         break;
5752       case LibFunc::stpcpy:
5753         if (visitStrCpyCall(I, true))
5754           return;
5755         break;
5756       case LibFunc::strcmp:
5757         if (visitStrCmpCall(I))
5758           return;
5759         break;
5760       case LibFunc::strlen:
5761         if (visitStrLenCall(I))
5762           return;
5763         break;
5764       case LibFunc::strnlen:
5765         if (visitStrNLenCall(I))
5766           return;
5767         break;
5768       }
5769     }
5770   }
5771 
5772   SDValue Callee;
5773   if (!RenameFn)
5774     Callee = getValue(I.getCalledValue());
5775   else
5776     Callee = DAG.getExternalSymbol(
5777         RenameFn,
5778         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5779 
5780   // Check if we can potentially perform a tail call. More detailed checking is
5781   // be done within LowerCallTo, after more information about the call is known.
5782   LowerCallTo(&I, Callee, I.isTailCall());
5783 }
5784 
5785 namespace {
5786 
5787 /// AsmOperandInfo - This contains information for each constraint that we are
5788 /// lowering.
5789 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5790 public:
5791   /// CallOperand - If this is the result output operand or a clobber
5792   /// this is null, otherwise it is the incoming operand to the CallInst.
5793   /// This gets modified as the asm is processed.
5794   SDValue CallOperand;
5795 
5796   /// AssignedRegs - If this is a register or register class operand, this
5797   /// contains the set of register corresponding to the operand.
5798   RegsForValue AssignedRegs;
5799 
5800   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5801     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5802   }
5803 
5804   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5805   /// corresponds to.  If there is no Value* for this operand, it returns
5806   /// MVT::Other.
5807   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
5808                            const DataLayout &DL) const {
5809     if (!CallOperandVal) return MVT::Other;
5810 
5811     if (isa<BasicBlock>(CallOperandVal))
5812       return TLI.getPointerTy(DL);
5813 
5814     llvm::Type *OpTy = CallOperandVal->getType();
5815 
5816     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5817     // If this is an indirect operand, the operand is a pointer to the
5818     // accessed type.
5819     if (isIndirect) {
5820       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5821       if (!PtrTy)
5822         report_fatal_error("Indirect operand for inline asm not a pointer!");
5823       OpTy = PtrTy->getElementType();
5824     }
5825 
5826     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5827     if (StructType *STy = dyn_cast<StructType>(OpTy))
5828       if (STy->getNumElements() == 1)
5829         OpTy = STy->getElementType(0);
5830 
5831     // If OpTy is not a single value, it may be a struct/union that we
5832     // can tile with integers.
5833     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5834       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5835       switch (BitSize) {
5836       default: break;
5837       case 1:
5838       case 8:
5839       case 16:
5840       case 32:
5841       case 64:
5842       case 128:
5843         OpTy = IntegerType::get(Context, BitSize);
5844         break;
5845       }
5846     }
5847 
5848     return TLI.getValueType(DL, OpTy, true);
5849   }
5850 };
5851 
5852 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5853 
5854 } // end anonymous namespace
5855 
5856 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5857 /// specified operand.  We prefer to assign virtual registers, to allow the
5858 /// register allocator to handle the assignment process.  However, if the asm
5859 /// uses features that we can't model on machineinstrs, we have SDISel do the
5860 /// allocation.  This produces generally horrible, but correct, code.
5861 ///
5862 ///   OpInfo describes the operand.
5863 ///
5864 static void GetRegistersForValue(SelectionDAG &DAG,
5865                                  const TargetLowering &TLI,
5866                                  SDLoc DL,
5867                                  SDISelAsmOperandInfo &OpInfo) {
5868   LLVMContext &Context = *DAG.getContext();
5869 
5870   MachineFunction &MF = DAG.getMachineFunction();
5871   SmallVector<unsigned, 4> Regs;
5872 
5873   // If this is a constraint for a single physreg, or a constraint for a
5874   // register class, find it.
5875   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
5876       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
5877                                        OpInfo.ConstraintCode,
5878                                        OpInfo.ConstraintVT);
5879 
5880   unsigned NumRegs = 1;
5881   if (OpInfo.ConstraintVT != MVT::Other) {
5882     // If this is a FP input in an integer register (or visa versa) insert a bit
5883     // cast of the input value.  More generally, handle any case where the input
5884     // value disagrees with the register class we plan to stick this in.
5885     if (OpInfo.Type == InlineAsm::isInput &&
5886         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5887       // Try to convert to the first EVT that the reg class contains.  If the
5888       // types are identical size, use a bitcast to convert (e.g. two differing
5889       // vector types).
5890       MVT RegVT = *PhysReg.second->vt_begin();
5891       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
5892         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5893                                          RegVT, OpInfo.CallOperand);
5894         OpInfo.ConstraintVT = RegVT;
5895       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5896         // If the input is a FP value and we want it in FP registers, do a
5897         // bitcast to the corresponding integer type.  This turns an f64 value
5898         // into i64, which can be passed with two i32 values on a 32-bit
5899         // machine.
5900         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5901         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5902                                          RegVT, OpInfo.CallOperand);
5903         OpInfo.ConstraintVT = RegVT;
5904       }
5905     }
5906 
5907     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5908   }
5909 
5910   MVT RegVT;
5911   EVT ValueVT = OpInfo.ConstraintVT;
5912 
5913   // If this is a constraint for a specific physical register, like {r17},
5914   // assign it now.
5915   if (unsigned AssignedReg = PhysReg.first) {
5916     const TargetRegisterClass *RC = PhysReg.second;
5917     if (OpInfo.ConstraintVT == MVT::Other)
5918       ValueVT = *RC->vt_begin();
5919 
5920     // Get the actual register value type.  This is important, because the user
5921     // may have asked for (e.g.) the AX register in i32 type.  We need to
5922     // remember that AX is actually i16 to get the right extension.
5923     RegVT = *RC->vt_begin();
5924 
5925     // This is a explicit reference to a physical register.
5926     Regs.push_back(AssignedReg);
5927 
5928     // If this is an expanded reference, add the rest of the regs to Regs.
5929     if (NumRegs != 1) {
5930       TargetRegisterClass::iterator I = RC->begin();
5931       for (; *I != AssignedReg; ++I)
5932         assert(I != RC->end() && "Didn't find reg!");
5933 
5934       // Already added the first reg.
5935       --NumRegs; ++I;
5936       for (; NumRegs; --NumRegs, ++I) {
5937         assert(I != RC->end() && "Ran out of registers to allocate!");
5938         Regs.push_back(*I);
5939       }
5940     }
5941 
5942     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5943     return;
5944   }
5945 
5946   // Otherwise, if this was a reference to an LLVM register class, create vregs
5947   // for this reference.
5948   if (const TargetRegisterClass *RC = PhysReg.second) {
5949     RegVT = *RC->vt_begin();
5950     if (OpInfo.ConstraintVT == MVT::Other)
5951       ValueVT = RegVT;
5952 
5953     // Create the appropriate number of virtual registers.
5954     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5955     for (; NumRegs; --NumRegs)
5956       Regs.push_back(RegInfo.createVirtualRegister(RC));
5957 
5958     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5959     return;
5960   }
5961 
5962   // Otherwise, we couldn't allocate enough registers for this.
5963 }
5964 
5965 /// visitInlineAsm - Handle a call to an InlineAsm object.
5966 ///
5967 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5968   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5969 
5970   /// ConstraintOperands - Information about all of the constraints.
5971   SDISelAsmOperandInfoVector ConstraintOperands;
5972 
5973   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5974   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
5975       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
5976 
5977   bool hasMemory = false;
5978 
5979   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5980   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5981   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5982     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5983     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5984 
5985     MVT OpVT = MVT::Other;
5986 
5987     // Compute the value type for each operand.
5988     switch (OpInfo.Type) {
5989     case InlineAsm::isOutput:
5990       // Indirect outputs just consume an argument.
5991       if (OpInfo.isIndirect) {
5992         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5993         break;
5994       }
5995 
5996       // The return value of the call is this value.  As such, there is no
5997       // corresponding argument.
5998       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5999       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6000         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6001                                       STy->getElementType(ResNo));
6002       } else {
6003         assert(ResNo == 0 && "Asm only has one result!");
6004         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6005       }
6006       ++ResNo;
6007       break;
6008     case InlineAsm::isInput:
6009       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6010       break;
6011     case InlineAsm::isClobber:
6012       // Nothing to do.
6013       break;
6014     }
6015 
6016     // If this is an input or an indirect output, process the call argument.
6017     // BasicBlocks are labels, currently appearing only in asm's.
6018     if (OpInfo.CallOperandVal) {
6019       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6020         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6021       } else {
6022         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6023       }
6024 
6025       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6026                                          DAG.getDataLayout()).getSimpleVT();
6027     }
6028 
6029     OpInfo.ConstraintVT = OpVT;
6030 
6031     // Indirect operand accesses access memory.
6032     if (OpInfo.isIndirect)
6033       hasMemory = true;
6034     else {
6035       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6036         TargetLowering::ConstraintType
6037           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6038         if (CType == TargetLowering::C_Memory) {
6039           hasMemory = true;
6040           break;
6041         }
6042       }
6043     }
6044   }
6045 
6046   SDValue Chain, Flag;
6047 
6048   // We won't need to flush pending loads if this asm doesn't touch
6049   // memory and is nonvolatile.
6050   if (hasMemory || IA->hasSideEffects())
6051     Chain = getRoot();
6052   else
6053     Chain = DAG.getRoot();
6054 
6055   // Second pass over the constraints: compute which constraint option to use
6056   // and assign registers to constraints that want a specific physreg.
6057   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6058     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6059 
6060     // If this is an output operand with a matching input operand, look up the
6061     // matching input. If their types mismatch, e.g. one is an integer, the
6062     // other is floating point, or their sizes are different, flag it as an
6063     // error.
6064     if (OpInfo.hasMatchingInput()) {
6065       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6066 
6067       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6068 	const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6069         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6070             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6071                                              OpInfo.ConstraintVT);
6072         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6073             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6074                                              Input.ConstraintVT);
6075         if ((OpInfo.ConstraintVT.isInteger() !=
6076              Input.ConstraintVT.isInteger()) ||
6077             (MatchRC.second != InputRC.second)) {
6078           report_fatal_error("Unsupported asm: input constraint"
6079                              " with a matching output constraint of"
6080                              " incompatible type!");
6081         }
6082         Input.ConstraintVT = OpInfo.ConstraintVT;
6083       }
6084     }
6085 
6086     // Compute the constraint code and ConstraintType to use.
6087     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6088 
6089     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6090         OpInfo.Type == InlineAsm::isClobber)
6091       continue;
6092 
6093     // If this is a memory input, and if the operand is not indirect, do what we
6094     // need to to provide an address for the memory input.
6095     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6096         !OpInfo.isIndirect) {
6097       assert((OpInfo.isMultipleAlternative ||
6098               (OpInfo.Type == InlineAsm::isInput)) &&
6099              "Can only indirectify direct input operands!");
6100 
6101       // Memory operands really want the address of the value.  If we don't have
6102       // an indirect input, put it in the constpool if we can, otherwise spill
6103       // it to a stack slot.
6104       // TODO: This isn't quite right. We need to handle these according to
6105       // the addressing mode that the constraint wants. Also, this may take
6106       // an additional register for the computation and we don't want that
6107       // either.
6108 
6109       // If the operand is a float, integer, or vector constant, spill to a
6110       // constant pool entry to get its address.
6111       const Value *OpVal = OpInfo.CallOperandVal;
6112       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6113           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6114         OpInfo.CallOperand = DAG.getConstantPool(
6115             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6116       } else {
6117         // Otherwise, create a stack slot and emit a store to it before the
6118         // asm.
6119         Type *Ty = OpVal->getType();
6120         auto &DL = DAG.getDataLayout();
6121         uint64_t TySize = DL.getTypeAllocSize(Ty);
6122         unsigned Align = DL.getPrefTypeAlignment(Ty);
6123         MachineFunction &MF = DAG.getMachineFunction();
6124         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6125         SDValue StackSlot =
6126             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6127         Chain = DAG.getStore(
6128             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6129             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6130             false, false, 0);
6131         OpInfo.CallOperand = StackSlot;
6132       }
6133 
6134       // There is no longer a Value* corresponding to this operand.
6135       OpInfo.CallOperandVal = nullptr;
6136 
6137       // It is now an indirect operand.
6138       OpInfo.isIndirect = true;
6139     }
6140 
6141     // If this constraint is for a specific register, allocate it before
6142     // anything else.
6143     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6144       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6145   }
6146 
6147   // Second pass - Loop over all of the operands, assigning virtual or physregs
6148   // to register class operands.
6149   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6150     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6151 
6152     // C_Register operands have already been allocated, Other/Memory don't need
6153     // to be.
6154     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6155       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6156   }
6157 
6158   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6159   std::vector<SDValue> AsmNodeOperands;
6160   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6161   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6162       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6163 
6164   // If we have a !srcloc metadata node associated with it, we want to attach
6165   // this to the ultimately generated inline asm machineinstr.  To do this, we
6166   // pass in the third operand as this (potentially null) inline asm MDNode.
6167   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6168   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6169 
6170   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6171   // bits as operand 3.
6172   unsigned ExtraInfo = 0;
6173   if (IA->hasSideEffects())
6174     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6175   if (IA->isAlignStack())
6176     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6177   // Set the asm dialect.
6178   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6179 
6180   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6181   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6182     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6183 
6184     // Compute the constraint code and ConstraintType to use.
6185     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6186 
6187     // Ideally, we would only check against memory constraints.  However, the
6188     // meaning of an other constraint can be target-specific and we can't easily
6189     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6190     // for other constriants as well.
6191     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6192         OpInfo.ConstraintType == TargetLowering::C_Other) {
6193       if (OpInfo.Type == InlineAsm::isInput)
6194         ExtraInfo |= InlineAsm::Extra_MayLoad;
6195       else if (OpInfo.Type == InlineAsm::isOutput)
6196         ExtraInfo |= InlineAsm::Extra_MayStore;
6197       else if (OpInfo.Type == InlineAsm::isClobber)
6198         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6199     }
6200   }
6201 
6202   AsmNodeOperands.push_back(DAG.getTargetConstant(
6203       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6204 
6205   // Loop over all of the inputs, copying the operand values into the
6206   // appropriate registers and processing the output regs.
6207   RegsForValue RetValRegs;
6208 
6209   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6210   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6211 
6212   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6213     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6214 
6215     switch (OpInfo.Type) {
6216     case InlineAsm::isOutput: {
6217       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6218           OpInfo.ConstraintType != TargetLowering::C_Register) {
6219         // Memory output, or 'other' output (e.g. 'X' constraint).
6220         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6221 
6222         unsigned ConstraintID =
6223             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6224         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6225                "Failed to convert memory constraint code to constraint id.");
6226 
6227         // Add information to the INLINEASM node to know about this output.
6228         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6229         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6230         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6231                                                         MVT::i32));
6232         AsmNodeOperands.push_back(OpInfo.CallOperand);
6233         break;
6234       }
6235 
6236       // Otherwise, this is a register or register class output.
6237 
6238       // Copy the output from the appropriate register.  Find a register that
6239       // we can use.
6240       if (OpInfo.AssignedRegs.Regs.empty()) {
6241         LLVMContext &Ctx = *DAG.getContext();
6242         Ctx.emitError(CS.getInstruction(),
6243                       "couldn't allocate output register for constraint '" +
6244                           Twine(OpInfo.ConstraintCode) + "'");
6245         return;
6246       }
6247 
6248       // If this is an indirect operand, store through the pointer after the
6249       // asm.
6250       if (OpInfo.isIndirect) {
6251         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6252                                                       OpInfo.CallOperandVal));
6253       } else {
6254         // This is the result value of the call.
6255         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6256         // Concatenate this output onto the outputs list.
6257         RetValRegs.append(OpInfo.AssignedRegs);
6258       }
6259 
6260       // Add information to the INLINEASM node to know that this register is
6261       // set.
6262       OpInfo.AssignedRegs
6263           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6264                                     ? InlineAsm::Kind_RegDefEarlyClobber
6265                                     : InlineAsm::Kind_RegDef,
6266                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6267       break;
6268     }
6269     case InlineAsm::isInput: {
6270       SDValue InOperandVal = OpInfo.CallOperand;
6271 
6272       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6273         // If this is required to match an output register we have already set,
6274         // just use its register.
6275         unsigned OperandNo = OpInfo.getMatchedOperand();
6276 
6277         // Scan until we find the definition we already emitted of this operand.
6278         // When we find it, create a RegsForValue operand.
6279         unsigned CurOp = InlineAsm::Op_FirstOperand;
6280         for (; OperandNo; --OperandNo) {
6281           // Advance to the next operand.
6282           unsigned OpFlag =
6283             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6284           assert((InlineAsm::isRegDefKind(OpFlag) ||
6285                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6286                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6287           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6288         }
6289 
6290         unsigned OpFlag =
6291           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6292         if (InlineAsm::isRegDefKind(OpFlag) ||
6293             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6294           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6295           if (OpInfo.isIndirect) {
6296             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6297             LLVMContext &Ctx = *DAG.getContext();
6298             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6299                                                " don't know how to handle tied "
6300                                                "indirect register inputs");
6301             return;
6302           }
6303 
6304           RegsForValue MatchedRegs;
6305           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6306           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6307           MatchedRegs.RegVTs.push_back(RegVT);
6308           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6309           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6310                i != e; ++i) {
6311             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6312               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6313             else {
6314               LLVMContext &Ctx = *DAG.getContext();
6315               Ctx.emitError(CS.getInstruction(),
6316                             "inline asm error: This value"
6317                             " type register class is not natively supported!");
6318               return;
6319             }
6320           }
6321           SDLoc dl = getCurSDLoc();
6322           // Use the produced MatchedRegs object to
6323           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6324                                     Chain, &Flag, CS.getInstruction());
6325           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6326                                            true, OpInfo.getMatchedOperand(), dl,
6327                                            DAG, AsmNodeOperands);
6328           break;
6329         }
6330 
6331         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6332         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6333                "Unexpected number of operands");
6334         // Add information to the INLINEASM node to know about this input.
6335         // See InlineAsm.h isUseOperandTiedToDef.
6336         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6337         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6338                                                     OpInfo.getMatchedOperand());
6339         AsmNodeOperands.push_back(DAG.getTargetConstant(
6340             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6341         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6342         break;
6343       }
6344 
6345       // Treat indirect 'X' constraint as memory.
6346       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6347           OpInfo.isIndirect)
6348         OpInfo.ConstraintType = TargetLowering::C_Memory;
6349 
6350       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6351         std::vector<SDValue> Ops;
6352         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6353                                           Ops, DAG);
6354         if (Ops.empty()) {
6355           LLVMContext &Ctx = *DAG.getContext();
6356           Ctx.emitError(CS.getInstruction(),
6357                         "invalid operand for inline asm constraint '" +
6358                             Twine(OpInfo.ConstraintCode) + "'");
6359           return;
6360         }
6361 
6362         // Add information to the INLINEASM node to know about this input.
6363         unsigned ResOpType =
6364           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6365         AsmNodeOperands.push_back(DAG.getTargetConstant(
6366             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6367         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6368         break;
6369       }
6370 
6371       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6372         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6373         assert(InOperandVal.getValueType() ==
6374                    TLI.getPointerTy(DAG.getDataLayout()) &&
6375                "Memory operands expect pointer values");
6376 
6377         unsigned ConstraintID =
6378             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6379         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6380                "Failed to convert memory constraint code to constraint id.");
6381 
6382         // Add information to the INLINEASM node to know about this input.
6383         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6384         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6385         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6386                                                         getCurSDLoc(),
6387                                                         MVT::i32));
6388         AsmNodeOperands.push_back(InOperandVal);
6389         break;
6390       }
6391 
6392       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6393               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6394              "Unknown constraint type!");
6395 
6396       // TODO: Support this.
6397       if (OpInfo.isIndirect) {
6398         LLVMContext &Ctx = *DAG.getContext();
6399         Ctx.emitError(CS.getInstruction(),
6400                       "Don't know how to handle indirect register inputs yet "
6401                       "for constraint '" +
6402                           Twine(OpInfo.ConstraintCode) + "'");
6403         return;
6404       }
6405 
6406       // Copy the input into the appropriate registers.
6407       if (OpInfo.AssignedRegs.Regs.empty()) {
6408         LLVMContext &Ctx = *DAG.getContext();
6409         Ctx.emitError(CS.getInstruction(),
6410                       "couldn't allocate input reg for constraint '" +
6411                           Twine(OpInfo.ConstraintCode) + "'");
6412         return;
6413       }
6414 
6415       SDLoc dl = getCurSDLoc();
6416 
6417       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6418                                         Chain, &Flag, CS.getInstruction());
6419 
6420       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6421                                                dl, DAG, AsmNodeOperands);
6422       break;
6423     }
6424     case InlineAsm::isClobber: {
6425       // Add the clobbered value to the operand list, so that the register
6426       // allocator is aware that the physreg got clobbered.
6427       if (!OpInfo.AssignedRegs.Regs.empty())
6428         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6429                                                  false, 0, getCurSDLoc(), DAG,
6430                                                  AsmNodeOperands);
6431       break;
6432     }
6433     }
6434   }
6435 
6436   // Finish up input operands.  Set the input chain and add the flag last.
6437   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6438   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6439 
6440   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6441                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6442   Flag = Chain.getValue(1);
6443 
6444   // If this asm returns a register value, copy the result from that register
6445   // and set it as the value of the call.
6446   if (!RetValRegs.Regs.empty()) {
6447     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6448                                              Chain, &Flag, CS.getInstruction());
6449 
6450     // FIXME: Why don't we do this for inline asms with MRVs?
6451     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6452       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6453 
6454       // If any of the results of the inline asm is a vector, it may have the
6455       // wrong width/num elts.  This can happen for register classes that can
6456       // contain multiple different value types.  The preg or vreg allocated may
6457       // not have the same VT as was expected.  Convert it to the right type
6458       // with bit_convert.
6459       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6460         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6461                           ResultType, Val);
6462 
6463       } else if (ResultType != Val.getValueType() &&
6464                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6465         // If a result value was tied to an input value, the computed result may
6466         // have a wider width than the expected result.  Extract the relevant
6467         // portion.
6468         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6469       }
6470 
6471       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6472     }
6473 
6474     setValue(CS.getInstruction(), Val);
6475     // Don't need to use this as a chain in this case.
6476     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6477       return;
6478   }
6479 
6480   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6481 
6482   // Process indirect outputs, first output all of the flagged copies out of
6483   // physregs.
6484   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6485     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6486     const Value *Ptr = IndirectStoresToEmit[i].second;
6487     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6488                                              Chain, &Flag, IA);
6489     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6490   }
6491 
6492   // Emit the non-flagged stores from the physregs.
6493   SmallVector<SDValue, 8> OutChains;
6494   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6495     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6496                                StoresToEmit[i].first,
6497                                getValue(StoresToEmit[i].second),
6498                                MachinePointerInfo(StoresToEmit[i].second),
6499                                false, false, 0);
6500     OutChains.push_back(Val);
6501   }
6502 
6503   if (!OutChains.empty())
6504     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6505 
6506   DAG.setRoot(Chain);
6507 }
6508 
6509 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6510   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6511                           MVT::Other, getRoot(),
6512                           getValue(I.getArgOperand(0)),
6513                           DAG.getSrcValue(I.getArgOperand(0))));
6514 }
6515 
6516 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6518   const DataLayout &DL = DAG.getDataLayout();
6519   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6520                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6521                            DAG.getSrcValue(I.getOperand(0)),
6522                            DL.getABITypeAlignment(I.getType()));
6523   setValue(&I, V);
6524   DAG.setRoot(V.getValue(1));
6525 }
6526 
6527 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6528   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6529                           MVT::Other, getRoot(),
6530                           getValue(I.getArgOperand(0)),
6531                           DAG.getSrcValue(I.getArgOperand(0))));
6532 }
6533 
6534 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6535   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6536                           MVT::Other, getRoot(),
6537                           getValue(I.getArgOperand(0)),
6538                           getValue(I.getArgOperand(1)),
6539                           DAG.getSrcValue(I.getArgOperand(0)),
6540                           DAG.getSrcValue(I.getArgOperand(1))));
6541 }
6542 
6543 /// \brief Lower an argument list according to the target calling convention.
6544 ///
6545 /// \return A tuple of <return-value, token-chain>
6546 ///
6547 /// This is a helper for lowering intrinsics that follow a target calling
6548 /// convention or require stack pointer adjustment. Only a subset of the
6549 /// intrinsic's operands need to participate in the calling convention.
6550 std::pair<SDValue, SDValue>
6551 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
6552                                        unsigned NumArgs, SDValue Callee,
6553                                        Type *ReturnTy,
6554                                        MachineBasicBlock *LandingPad,
6555                                        bool IsPatchPoint) {
6556   TargetLowering::ArgListTy Args;
6557   Args.reserve(NumArgs);
6558 
6559   // Populate the argument list.
6560   // Attributes for args start at offset 1, after the return attribute.
6561   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6562        ArgI != ArgE; ++ArgI) {
6563     const Value *V = CS->getOperand(ArgI);
6564 
6565     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6566 
6567     TargetLowering::ArgListEntry Entry;
6568     Entry.Node = getValue(V);
6569     Entry.Ty = V->getType();
6570     Entry.setAttributes(&CS, AttrI);
6571     Args.push_back(Entry);
6572   }
6573 
6574   TargetLowering::CallLoweringInfo CLI(DAG);
6575   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6576     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6577     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6578 
6579   return lowerInvokable(CLI, LandingPad);
6580 }
6581 
6582 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6583 /// or patchpoint target node's operand list.
6584 ///
6585 /// Constants are converted to TargetConstants purely as an optimization to
6586 /// avoid constant materialization and register allocation.
6587 ///
6588 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6589 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6590 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6591 /// address materialization and register allocation, but may also be required
6592 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6593 /// alloca in the entry block, then the runtime may assume that the alloca's
6594 /// StackMap location can be read immediately after compilation and that the
6595 /// location is valid at any point during execution (this is similar to the
6596 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6597 /// only available in a register, then the runtime would need to trap when
6598 /// execution reaches the StackMap in order to read the alloca's location.
6599 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6600                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6601                                 SelectionDAGBuilder &Builder) {
6602   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6603     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6604     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6605       Ops.push_back(
6606         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6607       Ops.push_back(
6608         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6609     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6610       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6611       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6612           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6613     } else
6614       Ops.push_back(OpVal);
6615   }
6616 }
6617 
6618 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6619 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6620   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6621   //                                  [live variables...])
6622 
6623   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6624 
6625   SDValue Chain, InFlag, Callee, NullPtr;
6626   SmallVector<SDValue, 32> Ops;
6627 
6628   SDLoc DL = getCurSDLoc();
6629   Callee = getValue(CI.getCalledValue());
6630   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6631 
6632   // The stackmap intrinsic only records the live variables (the arguemnts
6633   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6634   // intrinsic, this won't be lowered to a function call. This means we don't
6635   // have to worry about calling conventions and target specific lowering code.
6636   // Instead we perform the call lowering right here.
6637   //
6638   // chain, flag = CALLSEQ_START(chain, 0)
6639   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6640   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6641   //
6642   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6643   InFlag = Chain.getValue(1);
6644 
6645   // Add the <id> and <numBytes> constants.
6646   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6647   Ops.push_back(DAG.getTargetConstant(
6648                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6649   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6650   Ops.push_back(DAG.getTargetConstant(
6651                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6652                   MVT::i32));
6653 
6654   // Push live variables for the stack map.
6655   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6656 
6657   // We are not pushing any register mask info here on the operands list,
6658   // because the stackmap doesn't clobber anything.
6659 
6660   // Push the chain and the glue flag.
6661   Ops.push_back(Chain);
6662   Ops.push_back(InFlag);
6663 
6664   // Create the STACKMAP node.
6665   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6666   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6667   Chain = SDValue(SM, 0);
6668   InFlag = Chain.getValue(1);
6669 
6670   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6671 
6672   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6673 
6674   // Set the root to the target-lowered call chain.
6675   DAG.setRoot(Chain);
6676 
6677   // Inform the Frame Information that we have a stackmap in this function.
6678   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6679 }
6680 
6681 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6682 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6683                                           MachineBasicBlock *LandingPad) {
6684   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6685   //                                                 i32 <numBytes>,
6686   //                                                 i8* <target>,
6687   //                                                 i32 <numArgs>,
6688   //                                                 [Args...],
6689   //                                                 [live variables...])
6690 
6691   CallingConv::ID CC = CS.getCallingConv();
6692   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6693   bool HasDef = !CS->getType()->isVoidTy();
6694   SDLoc dl = getCurSDLoc();
6695   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6696 
6697   // Handle immediate and symbolic callees.
6698   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6699     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6700                                    /*isTarget=*/true);
6701   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6702     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6703                                          SDLoc(SymbolicCallee),
6704                                          SymbolicCallee->getValueType(0));
6705 
6706   // Get the real number of arguments participating in the call <numArgs>
6707   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6708   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6709 
6710   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6711   // Intrinsics include all meta-operands up to but not including CC.
6712   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6713   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6714          "Not enough arguments provided to the patchpoint intrinsic");
6715 
6716   // For AnyRegCC the arguments are lowered later on manually.
6717   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6718   Type *ReturnTy =
6719     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6720   std::pair<SDValue, SDValue> Result =
6721     lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
6722                       LandingPad, true);
6723 
6724   SDNode *CallEnd = Result.second.getNode();
6725   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6726     CallEnd = CallEnd->getOperand(0).getNode();
6727 
6728   /// Get a call instruction from the call sequence chain.
6729   /// Tail calls are not allowed.
6730   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6731          "Expected a callseq node.");
6732   SDNode *Call = CallEnd->getOperand(0).getNode();
6733   bool HasGlue = Call->getGluedNode();
6734 
6735   // Replace the target specific call node with the patchable intrinsic.
6736   SmallVector<SDValue, 8> Ops;
6737 
6738   // Add the <id> and <numBytes> constants.
6739   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6740   Ops.push_back(DAG.getTargetConstant(
6741                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6742   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6743   Ops.push_back(DAG.getTargetConstant(
6744                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6745                   MVT::i32));
6746 
6747   // Add the callee.
6748   Ops.push_back(Callee);
6749 
6750   // Adjust <numArgs> to account for any arguments that have been passed on the
6751   // stack instead.
6752   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6753   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6754   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6755   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6756 
6757   // Add the calling convention
6758   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6759 
6760   // Add the arguments we omitted previously. The register allocator should
6761   // place these in any free register.
6762   if (IsAnyRegCC)
6763     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6764       Ops.push_back(getValue(CS.getArgument(i)));
6765 
6766   // Push the arguments from the call instruction up to the register mask.
6767   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6768   Ops.append(Call->op_begin() + 2, e);
6769 
6770   // Push live variables for the stack map.
6771   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6772 
6773   // Push the register mask info.
6774   if (HasGlue)
6775     Ops.push_back(*(Call->op_end()-2));
6776   else
6777     Ops.push_back(*(Call->op_end()-1));
6778 
6779   // Push the chain (this is originally the first operand of the call, but
6780   // becomes now the last or second to last operand).
6781   Ops.push_back(*(Call->op_begin()));
6782 
6783   // Push the glue flag (last operand).
6784   if (HasGlue)
6785     Ops.push_back(*(Call->op_end()-1));
6786 
6787   SDVTList NodeTys;
6788   if (IsAnyRegCC && HasDef) {
6789     // Create the return types based on the intrinsic definition
6790     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6791     SmallVector<EVT, 3> ValueVTs;
6792     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
6793     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6794 
6795     // There is always a chain and a glue type at the end
6796     ValueVTs.push_back(MVT::Other);
6797     ValueVTs.push_back(MVT::Glue);
6798     NodeTys = DAG.getVTList(ValueVTs);
6799   } else
6800     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6801 
6802   // Replace the target specific call node with a PATCHPOINT node.
6803   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6804                                          dl, NodeTys, Ops);
6805 
6806   // Update the NodeMap.
6807   if (HasDef) {
6808     if (IsAnyRegCC)
6809       setValue(CS.getInstruction(), SDValue(MN, 0));
6810     else
6811       setValue(CS.getInstruction(), Result.first);
6812   }
6813 
6814   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6815   // call sequence. Furthermore the location of the chain and glue can change
6816   // when the AnyReg calling convention is used and the intrinsic returns a
6817   // value.
6818   if (IsAnyRegCC && HasDef) {
6819     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6820     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6821     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6822   } else
6823     DAG.ReplaceAllUsesWith(Call, MN);
6824   DAG.DeleteNode(Call);
6825 
6826   // Inform the Frame Information that we have a patchpoint in this function.
6827   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
6828 }
6829 
6830 /// Returns an AttributeSet representing the attributes applied to the return
6831 /// value of the given call.
6832 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
6833   SmallVector<Attribute::AttrKind, 2> Attrs;
6834   if (CLI.RetSExt)
6835     Attrs.push_back(Attribute::SExt);
6836   if (CLI.RetZExt)
6837     Attrs.push_back(Attribute::ZExt);
6838   if (CLI.IsInReg)
6839     Attrs.push_back(Attribute::InReg);
6840 
6841   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
6842                            Attrs);
6843 }
6844 
6845 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6846 /// implementation, which just calls LowerCall.
6847 /// FIXME: When all targets are
6848 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6849 std::pair<SDValue, SDValue>
6850 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6851   // Handle the incoming return values from the call.
6852   CLI.Ins.clear();
6853   Type *OrigRetTy = CLI.RetTy;
6854   SmallVector<EVT, 4> RetTys;
6855   SmallVector<uint64_t, 4> Offsets;
6856   auto &DL = CLI.DAG.getDataLayout();
6857   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
6858 
6859   SmallVector<ISD::OutputArg, 4> Outs;
6860   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
6861 
6862   bool CanLowerReturn =
6863       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
6864                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
6865 
6866   SDValue DemoteStackSlot;
6867   int DemoteStackIdx = -100;
6868   if (!CanLowerReturn) {
6869     // FIXME: equivalent assert?
6870     // assert(!CS.hasInAllocaArgument() &&
6871     //        "sret demotion is incompatible with inalloca");
6872     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
6873     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
6874     MachineFunction &MF = CLI.DAG.getMachineFunction();
6875     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6876     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
6877 
6878     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
6879     ArgListEntry Entry;
6880     Entry.Node = DemoteStackSlot;
6881     Entry.Ty = StackSlotPtrType;
6882     Entry.isSExt = false;
6883     Entry.isZExt = false;
6884     Entry.isInReg = false;
6885     Entry.isSRet = true;
6886     Entry.isNest = false;
6887     Entry.isByVal = false;
6888     Entry.isReturned = false;
6889     Entry.Alignment = Align;
6890     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
6891     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
6892 
6893     // sret demotion isn't compatible with tail-calls, since the sret argument
6894     // points into the callers stack frame.
6895     CLI.IsTailCall = false;
6896   } else {
6897     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6898       EVT VT = RetTys[I];
6899       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6900       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6901       for (unsigned i = 0; i != NumRegs; ++i) {
6902         ISD::InputArg MyFlags;
6903         MyFlags.VT = RegisterVT;
6904         MyFlags.ArgVT = VT;
6905         MyFlags.Used = CLI.IsReturnValueUsed;
6906         if (CLI.RetSExt)
6907           MyFlags.Flags.setSExt();
6908         if (CLI.RetZExt)
6909           MyFlags.Flags.setZExt();
6910         if (CLI.IsInReg)
6911           MyFlags.Flags.setInReg();
6912         CLI.Ins.push_back(MyFlags);
6913       }
6914     }
6915   }
6916 
6917   // Handle all of the outgoing arguments.
6918   CLI.Outs.clear();
6919   CLI.OutVals.clear();
6920   ArgListTy &Args = CLI.getArgs();
6921   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6922     SmallVector<EVT, 4> ValueVTs;
6923     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
6924     Type *FinalType = Args[i].Ty;
6925     if (Args[i].isByVal)
6926       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
6927     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
6928         FinalType, CLI.CallConv, CLI.IsVarArg);
6929     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
6930          ++Value) {
6931       EVT VT = ValueVTs[Value];
6932       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6933       SDValue Op = SDValue(Args[i].Node.getNode(),
6934                            Args[i].Node.getResNo() + Value);
6935       ISD::ArgFlagsTy Flags;
6936       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
6937 
6938       if (Args[i].isZExt)
6939         Flags.setZExt();
6940       if (Args[i].isSExt)
6941         Flags.setSExt();
6942       if (Args[i].isInReg)
6943         Flags.setInReg();
6944       if (Args[i].isSRet)
6945         Flags.setSRet();
6946       if (Args[i].isByVal)
6947         Flags.setByVal();
6948       if (Args[i].isInAlloca) {
6949         Flags.setInAlloca();
6950         // Set the byval flag for CCAssignFn callbacks that don't know about
6951         // inalloca.  This way we can know how many bytes we should've allocated
6952         // and how many bytes a callee cleanup function will pop.  If we port
6953         // inalloca to more targets, we'll have to add custom inalloca handling
6954         // in the various CC lowering callbacks.
6955         Flags.setByVal();
6956       }
6957       if (Args[i].isByVal || Args[i].isInAlloca) {
6958         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6959         Type *ElementTy = Ty->getElementType();
6960         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
6961         // For ByVal, alignment should come from FE.  BE will guess if this
6962         // info is not there but there are cases it cannot get right.
6963         unsigned FrameAlign;
6964         if (Args[i].Alignment)
6965           FrameAlign = Args[i].Alignment;
6966         else
6967           FrameAlign = getByValTypeAlignment(ElementTy, DL);
6968         Flags.setByValAlign(FrameAlign);
6969       }
6970       if (Args[i].isNest)
6971         Flags.setNest();
6972       if (NeedsRegBlock)
6973         Flags.setInConsecutiveRegs();
6974       Flags.setOrigAlign(OriginalAlignment);
6975 
6976       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6977       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6978       SmallVector<SDValue, 4> Parts(NumParts);
6979       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6980 
6981       if (Args[i].isSExt)
6982         ExtendKind = ISD::SIGN_EXTEND;
6983       else if (Args[i].isZExt)
6984         ExtendKind = ISD::ZERO_EXTEND;
6985 
6986       // Conservatively only handle 'returned' on non-vectors for now
6987       if (Args[i].isReturned && !Op.getValueType().isVector()) {
6988         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6989                "unexpected use of 'returned'");
6990         // Before passing 'returned' to the target lowering code, ensure that
6991         // either the register MVT and the actual EVT are the same size or that
6992         // the return value and argument are extended in the same way; in these
6993         // cases it's safe to pass the argument register value unchanged as the
6994         // return register value (although it's at the target's option whether
6995         // to do so)
6996         // TODO: allow code generation to take advantage of partially preserved
6997         // registers rather than clobbering the entire register when the
6998         // parameter extension method is not compatible with the return
6999         // extension method
7000         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7001             (ExtendKind != ISD::ANY_EXTEND &&
7002              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7003         Flags.setReturned();
7004       }
7005 
7006       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7007                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7008 
7009       for (unsigned j = 0; j != NumParts; ++j) {
7010         // if it isn't first piece, alignment must be 1
7011         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7012                                i < CLI.NumFixedArgs,
7013                                i, j*Parts[j].getValueType().getStoreSize());
7014         if (NumParts > 1 && j == 0)
7015           MyFlags.Flags.setSplit();
7016         else if (j != 0)
7017           MyFlags.Flags.setOrigAlign(1);
7018 
7019         CLI.Outs.push_back(MyFlags);
7020         CLI.OutVals.push_back(Parts[j]);
7021       }
7022 
7023       if (NeedsRegBlock && Value == NumValues - 1)
7024         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7025     }
7026   }
7027 
7028   SmallVector<SDValue, 4> InVals;
7029   CLI.Chain = LowerCall(CLI, InVals);
7030 
7031   // Verify that the target's LowerCall behaved as expected.
7032   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7033          "LowerCall didn't return a valid chain!");
7034   assert((!CLI.IsTailCall || InVals.empty()) &&
7035          "LowerCall emitted a return value for a tail call!");
7036   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7037          "LowerCall didn't emit the correct number of values!");
7038 
7039   // For a tail call, the return value is merely live-out and there aren't
7040   // any nodes in the DAG representing it. Return a special value to
7041   // indicate that a tail call has been emitted and no more Instructions
7042   // should be processed in the current block.
7043   if (CLI.IsTailCall) {
7044     CLI.DAG.setRoot(CLI.Chain);
7045     return std::make_pair(SDValue(), SDValue());
7046   }
7047 
7048   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7049           assert(InVals[i].getNode() &&
7050                  "LowerCall emitted a null value!");
7051           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7052                  "LowerCall emitted a value with the wrong type!");
7053         });
7054 
7055   SmallVector<SDValue, 4> ReturnValues;
7056   if (!CanLowerReturn) {
7057     // The instruction result is the result of loading from the
7058     // hidden sret parameter.
7059     SmallVector<EVT, 1> PVTs;
7060     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7061 
7062     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7063     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7064     EVT PtrVT = PVTs[0];
7065 
7066     unsigned NumValues = RetTys.size();
7067     ReturnValues.resize(NumValues);
7068     SmallVector<SDValue, 4> Chains(NumValues);
7069 
7070     for (unsigned i = 0; i < NumValues; ++i) {
7071       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7072                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7073                                                         PtrVT));
7074       SDValue L = CLI.DAG.getLoad(
7075           RetTys[i], CLI.DL, CLI.Chain, Add,
7076           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7077                                             DemoteStackIdx, Offsets[i]),
7078           false, false, false, 1);
7079       ReturnValues[i] = L;
7080       Chains[i] = L.getValue(1);
7081     }
7082 
7083     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7084   } else {
7085     // Collect the legal value parts into potentially illegal values
7086     // that correspond to the original function's return values.
7087     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7088     if (CLI.RetSExt)
7089       AssertOp = ISD::AssertSext;
7090     else if (CLI.RetZExt)
7091       AssertOp = ISD::AssertZext;
7092     unsigned CurReg = 0;
7093     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7094       EVT VT = RetTys[I];
7095       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7096       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7097 
7098       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7099                                               NumRegs, RegisterVT, VT, nullptr,
7100                                               AssertOp));
7101       CurReg += NumRegs;
7102     }
7103 
7104     // For a function returning void, there is no return value. We can't create
7105     // such a node, so we just return a null return value in that case. In
7106     // that case, nothing will actually look at the value.
7107     if (ReturnValues.empty())
7108       return std::make_pair(SDValue(), CLI.Chain);
7109   }
7110 
7111   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7112                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7113   return std::make_pair(Res, CLI.Chain);
7114 }
7115 
7116 void TargetLowering::LowerOperationWrapper(SDNode *N,
7117                                            SmallVectorImpl<SDValue> &Results,
7118                                            SelectionDAG &DAG) const {
7119   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7120   if (Res.getNode())
7121     Results.push_back(Res);
7122 }
7123 
7124 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7125   llvm_unreachable("LowerOperation not implemented for this target!");
7126 }
7127 
7128 void
7129 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7130   SDValue Op = getNonRegisterValue(V);
7131   assert((Op.getOpcode() != ISD::CopyFromReg ||
7132           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7133          "Copy from a reg to the same reg!");
7134   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7135 
7136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7137   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7138                    V->getType());
7139   SDValue Chain = DAG.getEntryNode();
7140 
7141   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7142                               FuncInfo.PreferredExtendType.end())
7143                                  ? ISD::ANY_EXTEND
7144                                  : FuncInfo.PreferredExtendType[V];
7145   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7146   PendingExports.push_back(Chain);
7147 }
7148 
7149 #include "llvm/CodeGen/SelectionDAGISel.h"
7150 
7151 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7152 /// entry block, return true.  This includes arguments used by switches, since
7153 /// the switch may expand into multiple basic blocks.
7154 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7155   // With FastISel active, we may be splitting blocks, so force creation
7156   // of virtual registers for all non-dead arguments.
7157   if (FastISel)
7158     return A->use_empty();
7159 
7160   const BasicBlock *Entry = A->getParent()->begin();
7161   for (const User *U : A->users())
7162     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7163       return false;  // Use not in entry block.
7164 
7165   return true;
7166 }
7167 
7168 void SelectionDAGISel::LowerArguments(const Function &F) {
7169   SelectionDAG &DAG = SDB->DAG;
7170   SDLoc dl = SDB->getCurSDLoc();
7171   const DataLayout &DL = DAG.getDataLayout();
7172   SmallVector<ISD::InputArg, 16> Ins;
7173 
7174   if (!FuncInfo->CanLowerReturn) {
7175     // Put in an sret pointer parameter before all the other parameters.
7176     SmallVector<EVT, 1> ValueVTs;
7177     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7178                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7179 
7180     // NOTE: Assuming that a pointer will never break down to more than one VT
7181     // or one register.
7182     ISD::ArgFlagsTy Flags;
7183     Flags.setSRet();
7184     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7185     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7186                          ISD::InputArg::NoArgIndex, 0);
7187     Ins.push_back(RetArg);
7188   }
7189 
7190   // Set up the incoming argument description vector.
7191   unsigned Idx = 1;
7192   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7193        I != E; ++I, ++Idx) {
7194     SmallVector<EVT, 4> ValueVTs;
7195     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7196     bool isArgValueUsed = !I->use_empty();
7197     unsigned PartBase = 0;
7198     Type *FinalType = I->getType();
7199     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7200       FinalType = cast<PointerType>(FinalType)->getElementType();
7201     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7202         FinalType, F.getCallingConv(), F.isVarArg());
7203     for (unsigned Value = 0, NumValues = ValueVTs.size();
7204          Value != NumValues; ++Value) {
7205       EVT VT = ValueVTs[Value];
7206       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7207       ISD::ArgFlagsTy Flags;
7208       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7209 
7210       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7211         Flags.setZExt();
7212       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7213         Flags.setSExt();
7214       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7215         Flags.setInReg();
7216       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7217         Flags.setSRet();
7218       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7219         Flags.setByVal();
7220       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7221         Flags.setInAlloca();
7222         // Set the byval flag for CCAssignFn callbacks that don't know about
7223         // inalloca.  This way we can know how many bytes we should've allocated
7224         // and how many bytes a callee cleanup function will pop.  If we port
7225         // inalloca to more targets, we'll have to add custom inalloca handling
7226         // in the various CC lowering callbacks.
7227         Flags.setByVal();
7228       }
7229       if (Flags.isByVal() || Flags.isInAlloca()) {
7230         PointerType *Ty = cast<PointerType>(I->getType());
7231         Type *ElementTy = Ty->getElementType();
7232         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7233         // For ByVal, alignment should be passed from FE.  BE will guess if
7234         // this info is not there but there are cases it cannot get right.
7235         unsigned FrameAlign;
7236         if (F.getParamAlignment(Idx))
7237           FrameAlign = F.getParamAlignment(Idx);
7238         else
7239           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7240         Flags.setByValAlign(FrameAlign);
7241       }
7242       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7243         Flags.setNest();
7244       if (NeedsRegBlock)
7245         Flags.setInConsecutiveRegs();
7246       Flags.setOrigAlign(OriginalAlignment);
7247 
7248       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7249       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7250       for (unsigned i = 0; i != NumRegs; ++i) {
7251         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7252                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7253         if (NumRegs > 1 && i == 0)
7254           MyFlags.Flags.setSplit();
7255         // if it isn't first piece, alignment must be 1
7256         else if (i > 0)
7257           MyFlags.Flags.setOrigAlign(1);
7258         Ins.push_back(MyFlags);
7259       }
7260       if (NeedsRegBlock && Value == NumValues - 1)
7261         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7262       PartBase += VT.getStoreSize();
7263     }
7264   }
7265 
7266   // Call the target to set up the argument values.
7267   SmallVector<SDValue, 8> InVals;
7268   SDValue NewRoot = TLI->LowerFormalArguments(
7269       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7270 
7271   // Verify that the target's LowerFormalArguments behaved as expected.
7272   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7273          "LowerFormalArguments didn't return a valid chain!");
7274   assert(InVals.size() == Ins.size() &&
7275          "LowerFormalArguments didn't emit the correct number of values!");
7276   DEBUG({
7277       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7278         assert(InVals[i].getNode() &&
7279                "LowerFormalArguments emitted a null value!");
7280         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7281                "LowerFormalArguments emitted a value with the wrong type!");
7282       }
7283     });
7284 
7285   // Update the DAG with the new chain value resulting from argument lowering.
7286   DAG.setRoot(NewRoot);
7287 
7288   // Set up the argument values.
7289   unsigned i = 0;
7290   Idx = 1;
7291   if (!FuncInfo->CanLowerReturn) {
7292     // Create a virtual register for the sret pointer, and put in a copy
7293     // from the sret argument into it.
7294     SmallVector<EVT, 1> ValueVTs;
7295     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7296                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7297     MVT VT = ValueVTs[0].getSimpleVT();
7298     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7299     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7300     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7301                                         RegVT, VT, nullptr, AssertOp);
7302 
7303     MachineFunction& MF = SDB->DAG.getMachineFunction();
7304     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7305     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7306     FuncInfo->DemoteRegister = SRetReg;
7307     NewRoot =
7308         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7309     DAG.setRoot(NewRoot);
7310 
7311     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7312     // Idx indexes LLVM arguments.  Don't touch it.
7313     ++i;
7314   }
7315 
7316   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7317       ++I, ++Idx) {
7318     SmallVector<SDValue, 4> ArgValues;
7319     SmallVector<EVT, 4> ValueVTs;
7320     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7321     unsigned NumValues = ValueVTs.size();
7322 
7323     // If this argument is unused then remember its value. It is used to generate
7324     // debugging information.
7325     if (I->use_empty() && NumValues) {
7326       SDB->setUnusedArgValue(I, InVals[i]);
7327 
7328       // Also remember any frame index for use in FastISel.
7329       if (FrameIndexSDNode *FI =
7330           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7331         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7332     }
7333 
7334     for (unsigned Val = 0; Val != NumValues; ++Val) {
7335       EVT VT = ValueVTs[Val];
7336       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7337       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7338 
7339       if (!I->use_empty()) {
7340         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7341         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7342           AssertOp = ISD::AssertSext;
7343         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7344           AssertOp = ISD::AssertZext;
7345 
7346         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7347                                              NumParts, PartVT, VT,
7348                                              nullptr, AssertOp));
7349       }
7350 
7351       i += NumParts;
7352     }
7353 
7354     // We don't need to do anything else for unused arguments.
7355     if (ArgValues.empty())
7356       continue;
7357 
7358     // Note down frame index.
7359     if (FrameIndexSDNode *FI =
7360         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7361       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7362 
7363     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7364                                      SDB->getCurSDLoc());
7365 
7366     SDB->setValue(I, Res);
7367     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7368       if (LoadSDNode *LNode =
7369           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7370         if (FrameIndexSDNode *FI =
7371             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7372         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7373     }
7374 
7375     // If this argument is live outside of the entry block, insert a copy from
7376     // wherever we got it to the vreg that other BB's will reference it as.
7377     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7378       // If we can, though, try to skip creating an unnecessary vreg.
7379       // FIXME: This isn't very clean... it would be nice to make this more
7380       // general.  It's also subtly incompatible with the hacks FastISel
7381       // uses with vregs.
7382       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7383       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7384         FuncInfo->ValueMap[I] = Reg;
7385         continue;
7386       }
7387     }
7388     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7389       FuncInfo->InitializeRegForValue(I);
7390       SDB->CopyToExportRegsIfNeeded(I);
7391     }
7392   }
7393 
7394   assert(i == InVals.size() && "Argument register count mismatch!");
7395 
7396   // Finally, if the target has anything special to do, allow it to do so.
7397   EmitFunctionEntryCode();
7398 }
7399 
7400 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7401 /// ensure constants are generated when needed.  Remember the virtual registers
7402 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7403 /// directly add them, because expansion might result in multiple MBB's for one
7404 /// BB.  As such, the start of the BB might correspond to a different MBB than
7405 /// the end.
7406 ///
7407 void
7408 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7409   const TerminatorInst *TI = LLVMBB->getTerminator();
7410 
7411   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7412 
7413   // Check PHI nodes in successors that expect a value to be available from this
7414   // block.
7415   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7416     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7417     if (!isa<PHINode>(SuccBB->begin())) continue;
7418     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7419 
7420     // If this terminator has multiple identical successors (common for
7421     // switches), only handle each succ once.
7422     if (!SuccsHandled.insert(SuccMBB).second)
7423       continue;
7424 
7425     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7426 
7427     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7428     // nodes and Machine PHI nodes, but the incoming operands have not been
7429     // emitted yet.
7430     for (BasicBlock::const_iterator I = SuccBB->begin();
7431          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7432       // Ignore dead phi's.
7433       if (PN->use_empty()) continue;
7434 
7435       // Skip empty types
7436       if (PN->getType()->isEmptyTy())
7437         continue;
7438 
7439       unsigned Reg;
7440       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7441 
7442       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7443         unsigned &RegOut = ConstantsOut[C];
7444         if (RegOut == 0) {
7445           RegOut = FuncInfo.CreateRegs(C->getType());
7446           CopyValueToVirtualRegister(C, RegOut);
7447         }
7448         Reg = RegOut;
7449       } else {
7450         DenseMap<const Value *, unsigned>::iterator I =
7451           FuncInfo.ValueMap.find(PHIOp);
7452         if (I != FuncInfo.ValueMap.end())
7453           Reg = I->second;
7454         else {
7455           assert(isa<AllocaInst>(PHIOp) &&
7456                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7457                  "Didn't codegen value into a register!??");
7458           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7459           CopyValueToVirtualRegister(PHIOp, Reg);
7460         }
7461       }
7462 
7463       // Remember that this register needs to added to the machine PHI node as
7464       // the input for this MBB.
7465       SmallVector<EVT, 4> ValueVTs;
7466       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7467       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7468       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7469         EVT VT = ValueVTs[vti];
7470         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7471         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7472           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7473         Reg += NumRegisters;
7474       }
7475     }
7476   }
7477 
7478   ConstantsOut.clear();
7479 }
7480 
7481 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7482 /// is 0.
7483 MachineBasicBlock *
7484 SelectionDAGBuilder::StackProtectorDescriptor::
7485 AddSuccessorMBB(const BasicBlock *BB,
7486                 MachineBasicBlock *ParentMBB,
7487                 bool IsLikely,
7488                 MachineBasicBlock *SuccMBB) {
7489   // If SuccBB has not been created yet, create it.
7490   if (!SuccMBB) {
7491     MachineFunction *MF = ParentMBB->getParent();
7492     MachineFunction::iterator BBI = ParentMBB;
7493     SuccMBB = MF->CreateMachineBasicBlock(BB);
7494     MF->insert(++BBI, SuccMBB);
7495   }
7496   // Add it as a successor of ParentMBB.
7497   ParentMBB->addSuccessor(
7498       SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
7499   return SuccMBB;
7500 }
7501 
7502 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7503   MachineFunction::iterator I = MBB;
7504   if (++I == FuncInfo.MF->end())
7505     return nullptr;
7506   return I;
7507 }
7508 
7509 /// During lowering new call nodes can be created (such as memset, etc.).
7510 /// Those will become new roots of the current DAG, but complications arise
7511 /// when they are tail calls. In such cases, the call lowering will update
7512 /// the root, but the builder still needs to know that a tail call has been
7513 /// lowered in order to avoid generating an additional return.
7514 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7515   // If the node is null, we do have a tail call.
7516   if (MaybeTC.getNode() != nullptr)
7517     DAG.setRoot(MaybeTC);
7518   else
7519     HasTailCall = true;
7520 }
7521 
7522 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7523                                   unsigned *TotalCases, unsigned First,
7524                                   unsigned Last) {
7525   assert(Last >= First);
7526   assert(TotalCases[Last] >= TotalCases[First]);
7527 
7528   APInt LowCase = Clusters[First].Low->getValue();
7529   APInt HighCase = Clusters[Last].High->getValue();
7530   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7531 
7532   // FIXME: A range of consecutive cases has 100% density, but only requires one
7533   // comparison to lower. We should discriminate against such consecutive ranges
7534   // in jump tables.
7535 
7536   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7537   uint64_t Range = Diff + 1;
7538 
7539   uint64_t NumCases =
7540       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7541 
7542   assert(NumCases < UINT64_MAX / 100);
7543   assert(Range >= NumCases);
7544 
7545   return NumCases * 100 >= Range * MinJumpTableDensity;
7546 }
7547 
7548 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7549   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7550          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7551 }
7552 
7553 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7554                                          unsigned First, unsigned Last,
7555                                          const SwitchInst *SI,
7556                                          MachineBasicBlock *DefaultMBB,
7557                                          CaseCluster &JTCluster) {
7558   assert(First <= Last);
7559 
7560   uint32_t Weight = 0;
7561   unsigned NumCmps = 0;
7562   std::vector<MachineBasicBlock*> Table;
7563   DenseMap<MachineBasicBlock*, uint32_t> JTWeights;
7564   for (unsigned I = First; I <= Last; ++I) {
7565     assert(Clusters[I].Kind == CC_Range);
7566     Weight += Clusters[I].Weight;
7567     assert(Weight >= Clusters[I].Weight && "Weight overflow!");
7568     APInt Low = Clusters[I].Low->getValue();
7569     APInt High = Clusters[I].High->getValue();
7570     NumCmps += (Low == High) ? 1 : 2;
7571     if (I != First) {
7572       // Fill the gap between this and the previous cluster.
7573       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7574       assert(PreviousHigh.slt(Low));
7575       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7576       for (uint64_t J = 0; J < Gap; J++)
7577         Table.push_back(DefaultMBB);
7578     }
7579     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7580     for (uint64_t J = 0; J < ClusterSize; ++J)
7581       Table.push_back(Clusters[I].MBB);
7582     JTWeights[Clusters[I].MBB] += Clusters[I].Weight;
7583   }
7584 
7585   unsigned NumDests = JTWeights.size();
7586   if (isSuitableForBitTests(NumDests, NumCmps,
7587                             Clusters[First].Low->getValue(),
7588                             Clusters[Last].High->getValue())) {
7589     // Clusters[First..Last] should be lowered as bit tests instead.
7590     return false;
7591   }
7592 
7593   // Create the MBB that will load from and jump through the table.
7594   // Note: We create it here, but it's not inserted into the function yet.
7595   MachineFunction *CurMF = FuncInfo.MF;
7596   MachineBasicBlock *JumpTableMBB =
7597       CurMF->CreateMachineBasicBlock(SI->getParent());
7598 
7599   // Add successors. Note: use table order for determinism.
7600   SmallPtrSet<MachineBasicBlock *, 8> Done;
7601   for (MachineBasicBlock *Succ : Table) {
7602     if (Done.count(Succ))
7603       continue;
7604     addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]);
7605     Done.insert(Succ);
7606   }
7607 
7608   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7609   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7610                      ->createJumpTableIndex(Table);
7611 
7612   // Set up the jump table info.
7613   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7614   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7615                       Clusters[Last].High->getValue(), SI->getCondition(),
7616                       nullptr, false);
7617   JTCases.emplace_back(std::move(JTH), std::move(JT));
7618 
7619   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7620                                      JTCases.size() - 1, Weight);
7621   return true;
7622 }
7623 
7624 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7625                                          const SwitchInst *SI,
7626                                          MachineBasicBlock *DefaultMBB) {
7627 #ifndef NDEBUG
7628   // Clusters must be non-empty, sorted, and only contain Range clusters.
7629   assert(!Clusters.empty());
7630   for (CaseCluster &C : Clusters)
7631     assert(C.Kind == CC_Range);
7632   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7633     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7634 #endif
7635 
7636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7637   if (!areJTsAllowed(TLI))
7638     return;
7639 
7640   const int64_t N = Clusters.size();
7641   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7642 
7643   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7644   SmallVector<unsigned, 8> TotalCases(N);
7645 
7646   for (unsigned i = 0; i < N; ++i) {
7647     APInt Hi = Clusters[i].High->getValue();
7648     APInt Lo = Clusters[i].Low->getValue();
7649     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7650     if (i != 0)
7651       TotalCases[i] += TotalCases[i - 1];
7652   }
7653 
7654   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
7655     // Cheap case: the whole range might be suitable for jump table.
7656     CaseCluster JTCluster;
7657     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
7658       Clusters[0] = JTCluster;
7659       Clusters.resize(1);
7660       return;
7661     }
7662   }
7663 
7664   // The algorithm below is not suitable for -O0.
7665   if (TM.getOptLevel() == CodeGenOpt::None)
7666     return;
7667 
7668   // Split Clusters into minimum number of dense partitions. The algorithm uses
7669   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7670   // for the Case Statement'" (1994), but builds the MinPartitions array in
7671   // reverse order to make it easier to reconstruct the partitions in ascending
7672   // order. In the choice between two optimal partitionings, it picks the one
7673   // which yields more jump tables.
7674 
7675   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7676   SmallVector<unsigned, 8> MinPartitions(N);
7677   // LastElement[i] is the last element of the partition starting at i.
7678   SmallVector<unsigned, 8> LastElement(N);
7679   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7680   SmallVector<unsigned, 8> NumTables(N);
7681 
7682   // Base case: There is only one way to partition Clusters[N-1].
7683   MinPartitions[N - 1] = 1;
7684   LastElement[N - 1] = N - 1;
7685   assert(MinJumpTableSize > 1);
7686   NumTables[N - 1] = 0;
7687 
7688   // Note: loop indexes are signed to avoid underflow.
7689   for (int64_t i = N - 2; i >= 0; i--) {
7690     // Find optimal partitioning of Clusters[i..N-1].
7691     // Baseline: Put Clusters[i] into a partition on its own.
7692     MinPartitions[i] = MinPartitions[i + 1] + 1;
7693     LastElement[i] = i;
7694     NumTables[i] = NumTables[i + 1];
7695 
7696     // Search for a solution that results in fewer partitions.
7697     for (int64_t j = N - 1; j > i; j--) {
7698       // Try building a partition from Clusters[i..j].
7699       if (isDense(Clusters, &TotalCases[0], i, j)) {
7700         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7701         bool IsTable = j - i + 1 >= MinJumpTableSize;
7702         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7703 
7704         // If this j leads to fewer partitions, or same number of partitions
7705         // with more lookup tables, it is a better partitioning.
7706         if (NumPartitions < MinPartitions[i] ||
7707             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7708           MinPartitions[i] = NumPartitions;
7709           LastElement[i] = j;
7710           NumTables[i] = Tables;
7711         }
7712       }
7713     }
7714   }
7715 
7716   // Iterate over the partitions, replacing some with jump tables in-place.
7717   unsigned DstIndex = 0;
7718   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7719     Last = LastElement[First];
7720     assert(Last >= First);
7721     assert(DstIndex <= First);
7722     unsigned NumClusters = Last - First + 1;
7723 
7724     CaseCluster JTCluster;
7725     if (NumClusters >= MinJumpTableSize &&
7726         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7727       Clusters[DstIndex++] = JTCluster;
7728     } else {
7729       for (unsigned I = First; I <= Last; ++I)
7730         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7731     }
7732   }
7733   Clusters.resize(DstIndex);
7734 }
7735 
7736 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7737   // FIXME: Using the pointer type doesn't seem ideal.
7738   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
7739   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7740   return Range <= BW;
7741 }
7742 
7743 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7744                                                 unsigned NumCmps,
7745                                                 const APInt &Low,
7746                                                 const APInt &High) {
7747   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7748   // range of cases both require only one branch to lower. Just looking at the
7749   // number of clusters and destinations should be enough to decide whether to
7750   // build bit tests.
7751 
7752   // To lower a range with bit tests, the range must fit the bitwidth of a
7753   // machine word.
7754   if (!rangeFitsInWord(Low, High))
7755     return false;
7756 
7757   // Decide whether it's profitable to lower this range with bit tests. Each
7758   // destination requires a bit test and branch, and there is an overall range
7759   // check branch. For a small number of clusters, separate comparisons might be
7760   // cheaper, and for many destinations, splitting the range might be better.
7761   return (NumDests == 1 && NumCmps >= 3) ||
7762          (NumDests == 2 && NumCmps >= 5) ||
7763          (NumDests == 3 && NumCmps >= 6);
7764 }
7765 
7766 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7767                                         unsigned First, unsigned Last,
7768                                         const SwitchInst *SI,
7769                                         CaseCluster &BTCluster) {
7770   assert(First <= Last);
7771   if (First == Last)
7772     return false;
7773 
7774   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7775   unsigned NumCmps = 0;
7776   for (int64_t I = First; I <= Last; ++I) {
7777     assert(Clusters[I].Kind == CC_Range);
7778     Dests.set(Clusters[I].MBB->getNumber());
7779     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
7780   }
7781   unsigned NumDests = Dests.count();
7782 
7783   APInt Low = Clusters[First].Low->getValue();
7784   APInt High = Clusters[Last].High->getValue();
7785   assert(Low.slt(High));
7786 
7787   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
7788     return false;
7789 
7790   APInt LowBound;
7791   APInt CmpRange;
7792 
7793   const int BitWidth = DAG.getTargetLoweringInfo()
7794                            .getPointerTy(DAG.getDataLayout())
7795                            .getSizeInBits();
7796   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
7797 
7798   // Check if the clusters cover a contiguous range such that no value in the
7799   // range will jump to the default statement.
7800   bool ContiguousRange = true;
7801   for (int64_t I = First + 1; I <= Last; ++I) {
7802     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
7803       ContiguousRange = false;
7804       break;
7805     }
7806   }
7807 
7808   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
7809     // Optimize the case where all the case values fit in a word without having
7810     // to subtract minValue. In this case, we can optimize away the subtraction.
7811     LowBound = APInt::getNullValue(Low.getBitWidth());
7812     CmpRange = High;
7813     ContiguousRange = false;
7814   } else {
7815     LowBound = Low;
7816     CmpRange = High - Low;
7817   }
7818 
7819   CaseBitsVector CBV;
7820   uint32_t TotalWeight = 0;
7821   for (unsigned i = First; i <= Last; ++i) {
7822     // Find the CaseBits for this destination.
7823     unsigned j;
7824     for (j = 0; j < CBV.size(); ++j)
7825       if (CBV[j].BB == Clusters[i].MBB)
7826         break;
7827     if (j == CBV.size())
7828       CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0));
7829     CaseBits *CB = &CBV[j];
7830 
7831     // Update Mask, Bits and ExtraWeight.
7832     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
7833     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
7834     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
7835     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
7836     CB->Bits += Hi - Lo + 1;
7837     CB->ExtraWeight += Clusters[i].Weight;
7838     TotalWeight += Clusters[i].Weight;
7839     assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!");
7840   }
7841 
7842   BitTestInfo BTI;
7843   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
7844     // Sort by weight first, number of bits second.
7845     if (a.ExtraWeight != b.ExtraWeight)
7846       return a.ExtraWeight > b.ExtraWeight;
7847     return a.Bits > b.Bits;
7848   });
7849 
7850   for (auto &CB : CBV) {
7851     MachineBasicBlock *BitTestBB =
7852         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
7853     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight));
7854   }
7855   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
7856                             SI->getCondition(), -1U, MVT::Other, false,
7857                             ContiguousRange, nullptr, nullptr, std::move(BTI),
7858                             TotalWeight);
7859 
7860   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
7861                                     BitTestCases.size() - 1, TotalWeight);
7862   return true;
7863 }
7864 
7865 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
7866                                               const SwitchInst *SI) {
7867 // Partition Clusters into as few subsets as possible, where each subset has a
7868 // range that fits in a machine word and has <= 3 unique destinations.
7869 
7870 #ifndef NDEBUG
7871   // Clusters must be sorted and contain Range or JumpTable clusters.
7872   assert(!Clusters.empty());
7873   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
7874   for (const CaseCluster &C : Clusters)
7875     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
7876   for (unsigned i = 1; i < Clusters.size(); ++i)
7877     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
7878 #endif
7879 
7880   // The algorithm below is not suitable for -O0.
7881   if (TM.getOptLevel() == CodeGenOpt::None)
7882     return;
7883 
7884   // If target does not have legal shift left, do not emit bit tests at all.
7885   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7886   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
7887   if (!TLI.isOperationLegal(ISD::SHL, PTy))
7888     return;
7889 
7890   int BitWidth = PTy.getSizeInBits();
7891   const int64_t N = Clusters.size();
7892 
7893   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7894   SmallVector<unsigned, 8> MinPartitions(N);
7895   // LastElement[i] is the last element of the partition starting at i.
7896   SmallVector<unsigned, 8> LastElement(N);
7897 
7898   // FIXME: This might not be the best algorithm for finding bit test clusters.
7899 
7900   // Base case: There is only one way to partition Clusters[N-1].
7901   MinPartitions[N - 1] = 1;
7902   LastElement[N - 1] = N - 1;
7903 
7904   // Note: loop indexes are signed to avoid underflow.
7905   for (int64_t i = N - 2; i >= 0; --i) {
7906     // Find optimal partitioning of Clusters[i..N-1].
7907     // Baseline: Put Clusters[i] into a partition on its own.
7908     MinPartitions[i] = MinPartitions[i + 1] + 1;
7909     LastElement[i] = i;
7910 
7911     // Search for a solution that results in fewer partitions.
7912     // Note: the search is limited by BitWidth, reducing time complexity.
7913     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
7914       // Try building a partition from Clusters[i..j].
7915 
7916       // Check the range.
7917       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
7918                            Clusters[j].High->getValue()))
7919         continue;
7920 
7921       // Check nbr of destinations and cluster types.
7922       // FIXME: This works, but doesn't seem very efficient.
7923       bool RangesOnly = true;
7924       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7925       for (int64_t k = i; k <= j; k++) {
7926         if (Clusters[k].Kind != CC_Range) {
7927           RangesOnly = false;
7928           break;
7929         }
7930         Dests.set(Clusters[k].MBB->getNumber());
7931       }
7932       if (!RangesOnly || Dests.count() > 3)
7933         break;
7934 
7935       // Check if it's a better partition.
7936       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7937       if (NumPartitions < MinPartitions[i]) {
7938         // Found a better partition.
7939         MinPartitions[i] = NumPartitions;
7940         LastElement[i] = j;
7941       }
7942     }
7943   }
7944 
7945   // Iterate over the partitions, replacing with bit-test clusters in-place.
7946   unsigned DstIndex = 0;
7947   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7948     Last = LastElement[First];
7949     assert(First <= Last);
7950     assert(DstIndex <= First);
7951 
7952     CaseCluster BitTestCluster;
7953     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
7954       Clusters[DstIndex++] = BitTestCluster;
7955     } else {
7956       size_t NumClusters = Last - First + 1;
7957       std::memmove(&Clusters[DstIndex], &Clusters[First],
7958                    sizeof(Clusters[0]) * NumClusters);
7959       DstIndex += NumClusters;
7960     }
7961   }
7962   Clusters.resize(DstIndex);
7963 }
7964 
7965 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
7966                                         MachineBasicBlock *SwitchMBB,
7967                                         MachineBasicBlock *DefaultMBB) {
7968   MachineFunction *CurMF = FuncInfo.MF;
7969   MachineBasicBlock *NextMBB = nullptr;
7970   MachineFunction::iterator BBI = W.MBB;
7971   if (++BBI != FuncInfo.MF->end())
7972     NextMBB = BBI;
7973 
7974   unsigned Size = W.LastCluster - W.FirstCluster + 1;
7975 
7976   BranchProbabilityInfo *BPI = FuncInfo.BPI;
7977 
7978   if (Size == 2 && W.MBB == SwitchMBB) {
7979     // If any two of the cases has the same destination, and if one value
7980     // is the same as the other, but has one bit unset that the other has set,
7981     // use bit manipulation to do two compares at once.  For example:
7982     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
7983     // TODO: This could be extended to merge any 2 cases in switches with 3
7984     // cases.
7985     // TODO: Handle cases where W.CaseBB != SwitchBB.
7986     CaseCluster &Small = *W.FirstCluster;
7987     CaseCluster &Big = *W.LastCluster;
7988 
7989     if (Small.Low == Small.High && Big.Low == Big.High &&
7990         Small.MBB == Big.MBB) {
7991       const APInt &SmallValue = Small.Low->getValue();
7992       const APInt &BigValue = Big.Low->getValue();
7993 
7994       // Check that there is only one bit different.
7995       APInt CommonBit = BigValue ^ SmallValue;
7996       if (CommonBit.isPowerOf2()) {
7997         SDValue CondLHS = getValue(Cond);
7998         EVT VT = CondLHS.getValueType();
7999         SDLoc DL = getCurSDLoc();
8000 
8001         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8002                                  DAG.getConstant(CommonBit, DL, VT));
8003         SDValue Cond = DAG.getSetCC(
8004             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8005             ISD::SETEQ);
8006 
8007         // Update successor info.
8008         // Both Small and Big will jump to Small.BB, so we sum up the weights.
8009         addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight);
8010         addSuccessorWithWeight(
8011             SwitchMBB, DefaultMBB,
8012             // The default destination is the first successor in IR.
8013             BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0)
8014                 : 0);
8015 
8016         // Insert the true branch.
8017         SDValue BrCond =
8018             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8019                         DAG.getBasicBlock(Small.MBB));
8020         // Insert the false branch.
8021         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8022                              DAG.getBasicBlock(DefaultMBB));
8023 
8024         DAG.setRoot(BrCond);
8025         return;
8026       }
8027     }
8028   }
8029 
8030   if (TM.getOptLevel() != CodeGenOpt::None) {
8031     // Order cases by weight so the most likely case will be checked first.
8032     std::sort(W.FirstCluster, W.LastCluster + 1,
8033               [](const CaseCluster &a, const CaseCluster &b) {
8034       return a.Weight > b.Weight;
8035     });
8036 
8037     // Rearrange the case blocks so that the last one falls through if possible
8038     // without without changing the order of weights.
8039     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8040       --I;
8041       if (I->Weight > W.LastCluster->Weight)
8042         break;
8043       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8044         std::swap(*I, *W.LastCluster);
8045         break;
8046       }
8047     }
8048   }
8049 
8050   // Compute total weight.
8051   uint32_t DefaultWeight = W.DefaultWeight;
8052   uint32_t UnhandledWeights = DefaultWeight;
8053   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) {
8054     UnhandledWeights += I->Weight;
8055     assert(UnhandledWeights >= I->Weight && "Weight overflow!");
8056   }
8057 
8058   MachineBasicBlock *CurMBB = W.MBB;
8059   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8060     MachineBasicBlock *Fallthrough;
8061     if (I == W.LastCluster) {
8062       // For the last cluster, fall through to the default destination.
8063       Fallthrough = DefaultMBB;
8064     } else {
8065       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8066       CurMF->insert(BBI, Fallthrough);
8067       // Put Cond in a virtual register to make it available from the new blocks.
8068       ExportFromCurrentBlock(Cond);
8069     }
8070     UnhandledWeights -= I->Weight;
8071 
8072     switch (I->Kind) {
8073       case CC_JumpTable: {
8074         // FIXME: Optimize away range check based on pivot comparisons.
8075         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8076         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8077 
8078         // The jump block hasn't been inserted yet; insert it here.
8079         MachineBasicBlock *JumpMBB = JT->MBB;
8080         CurMF->insert(BBI, JumpMBB);
8081 
8082         uint32_t JumpWeight = I->Weight;
8083         uint32_t FallthroughWeight = UnhandledWeights;
8084 
8085         // If Fallthrough is a target of the jump table, we evenly distribute
8086         // the weight on the edge to Fallthrough to successors of CurMBB.
8087         // Also update the weight on the edge from JumpMBB to Fallthrough.
8088         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8089                                               SE = JumpMBB->succ_end();
8090              SI != SE; ++SI) {
8091           if (*SI == Fallthrough) {
8092             JumpWeight += DefaultWeight / 2;
8093             FallthroughWeight -= DefaultWeight / 2;
8094             JumpMBB->setSuccWeight(SI, DefaultWeight / 2);
8095             break;
8096           }
8097         }
8098 
8099         addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight);
8100         addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight);
8101 
8102         // The jump table header will be inserted in our current block, do the
8103         // range check, and fall through to our fallthrough block.
8104         JTH->HeaderBB = CurMBB;
8105         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8106 
8107         // If we're in the right place, emit the jump table header right now.
8108         if (CurMBB == SwitchMBB) {
8109           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8110           JTH->Emitted = true;
8111         }
8112         break;
8113       }
8114       case CC_BitTests: {
8115         // FIXME: Optimize away range check based on pivot comparisons.
8116         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8117 
8118         // The bit test blocks haven't been inserted yet; insert them here.
8119         for (BitTestCase &BTC : BTB->Cases)
8120           CurMF->insert(BBI, BTC.ThisBB);
8121 
8122         // Fill in fields of the BitTestBlock.
8123         BTB->Parent = CurMBB;
8124         BTB->Default = Fallthrough;
8125 
8126         BTB->DefaultWeight = UnhandledWeights;
8127         // If the cases in bit test don't form a contiguous range, we evenly
8128         // distribute the weight on the edge to Fallthrough to two successors
8129         // of CurMBB.
8130         if (!BTB->ContiguousRange) {
8131           BTB->Weight += DefaultWeight / 2;
8132           BTB->DefaultWeight -= DefaultWeight / 2;
8133         }
8134 
8135         // If we're in the right place, emit the bit test header right now.
8136         if (CurMBB == SwitchMBB) {
8137           visitBitTestHeader(*BTB, SwitchMBB);
8138           BTB->Emitted = true;
8139         }
8140         break;
8141       }
8142       case CC_Range: {
8143         const Value *RHS, *LHS, *MHS;
8144         ISD::CondCode CC;
8145         if (I->Low == I->High) {
8146           // Check Cond == I->Low.
8147           CC = ISD::SETEQ;
8148           LHS = Cond;
8149           RHS=I->Low;
8150           MHS = nullptr;
8151         } else {
8152           // Check I->Low <= Cond <= I->High.
8153           CC = ISD::SETLE;
8154           LHS = I->Low;
8155           MHS = Cond;
8156           RHS = I->High;
8157         }
8158 
8159         // The false weight is the sum of all unhandled cases.
8160         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight,
8161                      UnhandledWeights);
8162 
8163         if (CurMBB == SwitchMBB)
8164           visitSwitchCase(CB, SwitchMBB);
8165         else
8166           SwitchCases.push_back(CB);
8167 
8168         break;
8169       }
8170     }
8171     CurMBB = Fallthrough;
8172   }
8173 }
8174 
8175 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8176                                               CaseClusterIt First,
8177                                               CaseClusterIt Last) {
8178   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8179     if (X.Weight != CC.Weight)
8180       return X.Weight > CC.Weight;
8181 
8182     // Ties are broken by comparing the case value.
8183     return X.Low->getValue().slt(CC.Low->getValue());
8184   });
8185 }
8186 
8187 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8188                                         const SwitchWorkListItem &W,
8189                                         Value *Cond,
8190                                         MachineBasicBlock *SwitchMBB) {
8191   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8192          "Clusters not sorted?");
8193 
8194   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8195 
8196   // Balance the tree based on branch weights to create a near-optimal (in terms
8197   // of search time given key frequency) binary search tree. See e.g. Kurt
8198   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8199   CaseClusterIt LastLeft = W.FirstCluster;
8200   CaseClusterIt FirstRight = W.LastCluster;
8201   uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2;
8202   uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2;
8203 
8204   // Move LastLeft and FirstRight towards each other from opposite directions to
8205   // find a partitioning of the clusters which balances the weight on both
8206   // sides. If LeftWeight and RightWeight are equal, alternate which side is
8207   // taken to ensure 0-weight nodes are distributed evenly.
8208   unsigned I = 0;
8209   while (LastLeft + 1 < FirstRight) {
8210     if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1)))
8211       LeftWeight += (++LastLeft)->Weight;
8212     else
8213       RightWeight += (--FirstRight)->Weight;
8214     I++;
8215   }
8216 
8217   for (;;) {
8218     // Our binary search tree differs from a typical BST in that ours can have up
8219     // to three values in each leaf. The pivot selection above doesn't take that
8220     // into account, which means the tree might require more nodes and be less
8221     // efficient. We compensate for this here.
8222 
8223     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8224     unsigned NumRight = W.LastCluster - FirstRight + 1;
8225 
8226     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8227       // If one side has less than 3 clusters, and the other has more than 3,
8228       // consider taking a cluster from the other side.
8229 
8230       if (NumLeft < NumRight) {
8231         // Consider moving the first cluster on the right to the left side.
8232         CaseCluster &CC = *FirstRight;
8233         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8234         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8235         if (LeftSideRank <= RightSideRank) {
8236           // Moving the cluster to the left does not demote it.
8237           ++LastLeft;
8238           ++FirstRight;
8239           continue;
8240         }
8241       } else {
8242         assert(NumRight < NumLeft);
8243         // Consider moving the last element on the left to the right side.
8244         CaseCluster &CC = *LastLeft;
8245         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8246         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8247         if (RightSideRank <= LeftSideRank) {
8248           // Moving the cluster to the right does not demot it.
8249           --LastLeft;
8250           --FirstRight;
8251           continue;
8252         }
8253       }
8254     }
8255     break;
8256   }
8257 
8258   assert(LastLeft + 1 == FirstRight);
8259   assert(LastLeft >= W.FirstCluster);
8260   assert(FirstRight <= W.LastCluster);
8261 
8262   // Use the first element on the right as pivot since we will make less-than
8263   // comparisons against it.
8264   CaseClusterIt PivotCluster = FirstRight;
8265   assert(PivotCluster > W.FirstCluster);
8266   assert(PivotCluster <= W.LastCluster);
8267 
8268   CaseClusterIt FirstLeft = W.FirstCluster;
8269   CaseClusterIt LastRight = W.LastCluster;
8270 
8271   const ConstantInt *Pivot = PivotCluster->Low;
8272 
8273   // New blocks will be inserted immediately after the current one.
8274   MachineFunction::iterator BBI = W.MBB;
8275   ++BBI;
8276 
8277   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8278   // we can branch to its destination directly if it's squeezed exactly in
8279   // between the known lower bound and Pivot - 1.
8280   MachineBasicBlock *LeftMBB;
8281   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8282       FirstLeft->Low == W.GE &&
8283       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8284     LeftMBB = FirstLeft->MBB;
8285   } else {
8286     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8287     FuncInfo.MF->insert(BBI, LeftMBB);
8288     WorkList.push_back(
8289         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2});
8290     // Put Cond in a virtual register to make it available from the new blocks.
8291     ExportFromCurrentBlock(Cond);
8292   }
8293 
8294   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8295   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8296   // directly if RHS.High equals the current upper bound.
8297   MachineBasicBlock *RightMBB;
8298   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8299       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8300     RightMBB = FirstRight->MBB;
8301   } else {
8302     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8303     FuncInfo.MF->insert(BBI, RightMBB);
8304     WorkList.push_back(
8305         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2});
8306     // Put Cond in a virtual register to make it available from the new blocks.
8307     ExportFromCurrentBlock(Cond);
8308   }
8309 
8310   // Create the CaseBlock record that will be used to lower the branch.
8311   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8312                LeftWeight, RightWeight);
8313 
8314   if (W.MBB == SwitchMBB)
8315     visitSwitchCase(CB, SwitchMBB);
8316   else
8317     SwitchCases.push_back(CB);
8318 }
8319 
8320 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8321   // Extract cases from the switch.
8322   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8323   CaseClusterVector Clusters;
8324   Clusters.reserve(SI.getNumCases());
8325   for (auto I : SI.cases()) {
8326     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8327     const ConstantInt *CaseVal = I.getCaseValue();
8328     uint32_t Weight =
8329         BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0;
8330     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight));
8331   }
8332 
8333   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8334 
8335   // Cluster adjacent cases with the same destination. We do this at all
8336   // optimization levels because it's cheap to do and will make codegen faster
8337   // if there are many clusters.
8338   sortAndRangeify(Clusters);
8339 
8340   if (TM.getOptLevel() != CodeGenOpt::None) {
8341     // Replace an unreachable default with the most popular destination.
8342     // FIXME: Exploit unreachable default more aggressively.
8343     bool UnreachableDefault =
8344         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8345     if (UnreachableDefault && !Clusters.empty()) {
8346       DenseMap<const BasicBlock *, unsigned> Popularity;
8347       unsigned MaxPop = 0;
8348       const BasicBlock *MaxBB = nullptr;
8349       for (auto I : SI.cases()) {
8350         const BasicBlock *BB = I.getCaseSuccessor();
8351         if (++Popularity[BB] > MaxPop) {
8352           MaxPop = Popularity[BB];
8353           MaxBB = BB;
8354         }
8355       }
8356       // Set new default.
8357       assert(MaxPop > 0 && MaxBB);
8358       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8359 
8360       // Remove cases that were pointing to the destination that is now the
8361       // default.
8362       CaseClusterVector New;
8363       New.reserve(Clusters.size());
8364       for (CaseCluster &CC : Clusters) {
8365         if (CC.MBB != DefaultMBB)
8366           New.push_back(CC);
8367       }
8368       Clusters = std::move(New);
8369     }
8370   }
8371 
8372   // If there is only the default destination, jump there directly.
8373   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8374   if (Clusters.empty()) {
8375     SwitchMBB->addSuccessor(DefaultMBB);
8376     if (DefaultMBB != NextBlock(SwitchMBB)) {
8377       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8378                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8379     }
8380     return;
8381   }
8382 
8383   findJumpTables(Clusters, &SI, DefaultMBB);
8384   findBitTestClusters(Clusters, &SI);
8385 
8386   DEBUG({
8387     dbgs() << "Case clusters: ";
8388     for (const CaseCluster &C : Clusters) {
8389       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8390       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8391 
8392       C.Low->getValue().print(dbgs(), true);
8393       if (C.Low != C.High) {
8394         dbgs() << '-';
8395         C.High->getValue().print(dbgs(), true);
8396       }
8397       dbgs() << ' ';
8398     }
8399     dbgs() << '\n';
8400   });
8401 
8402   assert(!Clusters.empty());
8403   SwitchWorkList WorkList;
8404   CaseClusterIt First = Clusters.begin();
8405   CaseClusterIt Last = Clusters.end() - 1;
8406   uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB);
8407   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight});
8408 
8409   while (!WorkList.empty()) {
8410     SwitchWorkListItem W = WorkList.back();
8411     WorkList.pop_back();
8412     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8413 
8414     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8415       // For optimized builds, lower large range as a balanced binary tree.
8416       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8417       continue;
8418     }
8419 
8420     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8421   }
8422 }
8423