1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/DebugInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include "llvm/Target/TargetSelectionDAGInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 /// LimitFloatPrecision - Generate low-precision inline sequences for 66 /// some float libcalls (6, 8 or 12 bits). 67 static unsigned LimitFloatPrecision; 68 69 static cl::opt<unsigned, true> 70 LimitFPPrecision("limit-float-precision", 71 cl::desc("Generate low-precision inline sequences " 72 "for some float libcalls"), 73 cl::location(LimitFloatPrecision), 74 cl::init(0)); 75 76 // Limit the width of DAG chains. This is important in general to prevent 77 // prevent DAG-based analysis from blowing up. For example, alias analysis and 78 // load clustering may not complete in reasonable time. It is difficult to 79 // recognize and avoid this situation within each individual analysis, and 80 // future analyses are likely to have the same behavior. Limiting DAG width is 81 // the safe approach, and will be especially important with global DAGs. 82 // 83 // MaxParallelChains default is arbitrarily high to avoid affecting 84 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 85 // sequence over this should have been converted to llvm.memcpy by the 86 // frontend. It easy to induce this behavior with .ll code such as: 87 // %buffer = alloca [4096 x i8] 88 // %data = load [4096 x i8]* %argPtr 89 // store [4096 x i8] %data, [4096 x i8]* %buffer 90 static const unsigned MaxParallelChains = 64; 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 MVT PartVT, EVT ValueVT, const Value *V); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, MVT PartVT, EVT ValueVT, 104 const Value *V, 105 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 106 if (ValueVT.isVector()) 107 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 108 PartVT, ValueVT, V); 109 110 assert(NumParts > 0 && "No parts to assemble!"); 111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 112 SDValue Val = Parts[0]; 113 114 if (NumParts > 1) { 115 // Assemble the value from multiple parts. 116 if (ValueVT.isInteger()) { 117 unsigned PartBits = PartVT.getSizeInBits(); 118 unsigned ValueBits = ValueVT.getSizeInBits(); 119 120 // Assemble the power of 2 part. 121 unsigned RoundParts = NumParts & (NumParts - 1) ? 122 1 << Log2_32(NumParts) : NumParts; 123 unsigned RoundBits = PartBits * RoundParts; 124 EVT RoundVT = RoundBits == ValueBits ? 125 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 126 SDValue Lo, Hi; 127 128 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 129 130 if (RoundParts > 2) { 131 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 132 PartVT, HalfVT, V); 133 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 134 RoundParts / 2, PartVT, HalfVT, V); 135 } else { 136 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 137 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 138 } 139 140 if (TLI.isBigEndian()) 141 std::swap(Lo, Hi); 142 143 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 144 145 if (RoundParts < NumParts) { 146 // Assemble the trailing non-power-of-2 part. 147 unsigned OddParts = NumParts - RoundParts; 148 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 149 Hi = getCopyFromParts(DAG, DL, 150 Parts + RoundParts, OddParts, PartVT, OddVT, V); 151 152 // Combine the round and odd parts. 153 Lo = Val; 154 if (TLI.isBigEndian()) 155 std::swap(Lo, Hi); 156 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 157 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 158 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 159 DAG.getConstant(Lo.getValueType().getSizeInBits(), 160 TLI.getPointerTy())); 161 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 162 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 163 } 164 } else if (PartVT.isFloatingPoint()) { 165 // FP split into multiple FP parts (for ppcf128) 166 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 167 "Unexpected split"); 168 SDValue Lo, Hi; 169 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 170 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 171 if (TLI.isBigEndian()) 172 std::swap(Lo, Hi); 173 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 174 } else { 175 // FP split into integer parts (soft fp) 176 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 177 !PartVT.isVector() && "Unexpected split"); 178 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 179 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 180 } 181 } 182 183 // There is now one part, held in Val. Correct it to match ValueVT. 184 EVT PartEVT = Val.getValueType(); 185 186 if (PartEVT == ValueVT) 187 return Val; 188 189 if (PartEVT.isInteger() && ValueVT.isInteger()) { 190 if (ValueVT.bitsLT(PartEVT)) { 191 // For a truncate, see if we have any information to 192 // indicate whether the truncated bits will always be 193 // zero or sign-extension. 194 if (AssertOp != ISD::DELETED_NODE) 195 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 196 DAG.getValueType(ValueVT)); 197 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 198 } 199 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 200 } 201 202 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 203 // FP_ROUND's are always exact here. 204 if (ValueVT.bitsLT(Val.getValueType())) 205 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 206 DAG.getTargetConstant(1, TLI.getPointerTy())); 207 208 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 212 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 213 214 llvm_unreachable("Unknown mismatch!"); 215 } 216 217 /// getCopyFromPartsVector - Create a value that contains the specified legal 218 /// parts combined into the value they represent. If the parts combine to a 219 /// type larger then ValueVT then AssertOp can be used to specify whether the 220 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 221 /// ValueVT (ISD::AssertSext). 222 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 223 const SDValue *Parts, unsigned NumParts, 224 MVT PartVT, EVT ValueVT, const Value *V) { 225 assert(ValueVT.isVector() && "Not a vector value"); 226 assert(NumParts > 0 && "No parts to assemble!"); 227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 228 SDValue Val = Parts[0]; 229 230 // Handle a multi-element vector. 231 if (NumParts > 1) { 232 EVT IntermediateVT; 233 MVT RegisterVT; 234 unsigned NumIntermediates; 235 unsigned NumRegs = 236 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 237 NumIntermediates, RegisterVT); 238 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 239 NumParts = NumRegs; // Silence a compiler warning. 240 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 241 assert(RegisterVT == Parts[0].getSimpleValueType() && 242 "Part type doesn't match part!"); 243 244 // Assemble the parts into intermediate operands. 245 SmallVector<SDValue, 8> Ops(NumIntermediates); 246 if (NumIntermediates == NumParts) { 247 // If the register was not expanded, truncate or copy the value, 248 // as appropriate. 249 for (unsigned i = 0; i != NumParts; ++i) 250 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 251 PartVT, IntermediateVT, V); 252 } else if (NumParts > 0) { 253 // If the intermediate type was expanded, build the intermediate 254 // operands from the parts. 255 assert(NumParts % NumIntermediates == 0 && 256 "Must expand into a divisible number of parts!"); 257 unsigned Factor = NumParts / NumIntermediates; 258 for (unsigned i = 0; i != NumIntermediates; ++i) 259 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 260 PartVT, IntermediateVT, V); 261 } 262 263 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 264 // intermediate operands. 265 Val = DAG.getNode(IntermediateVT.isVector() ? 266 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 267 ValueVT, &Ops[0], NumIntermediates); 268 } 269 270 // There is now one part, held in Val. Correct it to match ValueVT. 271 EVT PartEVT = Val.getValueType(); 272 273 if (PartEVT == ValueVT) 274 return Val; 275 276 if (PartEVT.isVector()) { 277 // If the element type of the source/dest vectors are the same, but the 278 // parts vector has more elements than the value vector, then we have a 279 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 280 // elements we want. 281 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 282 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 283 "Cannot narrow, it would be a lossy transformation"); 284 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 285 DAG.getConstant(0, TLI.getVectorIdxTy())); 286 } 287 288 // Vector/Vector bitcast. 289 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 290 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 291 292 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 293 "Cannot handle this kind of promotion"); 294 // Promoted vector extract 295 bool Smaller = ValueVT.bitsLE(PartEVT); 296 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 297 DL, ValueVT, Val); 298 299 } 300 301 // Trivial bitcast if the types are the same size and the destination 302 // vector type is legal. 303 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 304 TLI.isTypeLegal(ValueVT)) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle cases such as i8 -> <1 x i1> 308 if (ValueVT.getVectorNumElements() != 1) { 309 LLVMContext &Ctx = *DAG.getContext(); 310 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 311 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 312 if (const CallInst *CI = dyn_cast<CallInst>(I)) 313 if (isa<InlineAsm>(CI->getCalledValue())) 314 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 315 Ctx.emitError(I, ErrMsg); 316 } else { 317 Ctx.emitError(ErrMsg); 318 } 319 return DAG.getUNDEF(ValueVT); 320 } 321 322 if (ValueVT.getVectorNumElements() == 1 && 323 ValueVT.getVectorElementType() != PartEVT) { 324 bool Smaller = ValueVT.bitsLE(PartEVT); 325 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 326 DL, ValueVT.getScalarType(), Val); 327 } 328 329 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 330 } 331 332 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 333 SDValue Val, SDValue *Parts, unsigned NumParts, 334 MVT PartVT, const Value *V); 335 336 /// getCopyToParts - Create a series of nodes that contain the specified value 337 /// split into legal parts. If the parts contain more bits than Val, then, for 338 /// integers, ExtendKind can be used to specify how to generate the extra bits. 339 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V, 342 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 343 EVT ValueVT = Val.getValueType(); 344 345 // Handle the vector case separately. 346 if (ValueVT.isVector()) 347 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 unsigned PartBits = PartVT.getSizeInBits(); 351 unsigned OrigNumParts = NumParts; 352 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 353 354 if (NumParts == 0) 355 return; 356 357 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 358 EVT PartEVT = PartVT; 359 if (PartEVT == ValueVT) { 360 assert(NumParts == 1 && "No-op copy with multiple parts!"); 361 Parts[0] = Val; 362 return; 363 } 364 365 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 366 // If the parts cover more bits than the value has, promote the value. 367 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 368 assert(NumParts == 1 && "Do not know what to promote to!"); 369 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 370 } else { 371 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 372 ValueVT.isInteger() && 373 "Unknown mismatch!"); 374 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 375 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 376 if (PartVT == MVT::x86mmx) 377 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 378 } 379 } else if (PartBits == ValueVT.getSizeInBits()) { 380 // Different types of the same size. 381 assert(NumParts == 1 && PartEVT != ValueVT); 382 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 383 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 384 // If the parts cover less bits than value has, truncate the value. 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 394 // The value may have changed - recompute ValueVT. 395 ValueVT = Val.getValueType(); 396 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 397 "Failed to tile the value with PartVT!"); 398 399 if (NumParts == 1) { 400 if (PartEVT != ValueVT) { 401 LLVMContext &Ctx = *DAG.getContext(); 402 Twine ErrMsg("scalar-to-vector conversion failed"); 403 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 404 if (const CallInst *CI = dyn_cast<CallInst>(I)) 405 if (isa<InlineAsm>(CI->getCalledValue())) 406 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 407 Ctx.emitError(I, ErrMsg); 408 } else { 409 Ctx.emitError(ErrMsg); 410 } 411 } 412 413 Parts[0] = Val; 414 return; 415 } 416 417 // Expand the value into multiple parts. 418 if (NumParts & (NumParts - 1)) { 419 // The number of parts is not a power of 2. Split off and copy the tail. 420 assert(PartVT.isInteger() && ValueVT.isInteger() && 421 "Do not know what to expand to!"); 422 unsigned RoundParts = 1 << Log2_32(NumParts); 423 unsigned RoundBits = RoundParts * PartBits; 424 unsigned OddParts = NumParts - RoundParts; 425 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 426 DAG.getIntPtrConstant(RoundBits)); 427 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 428 429 if (TLI.isBigEndian()) 430 // The odd parts were reversed by getCopyToParts - unreverse them. 431 std::reverse(Parts + RoundParts, Parts + NumParts); 432 433 NumParts = RoundParts; 434 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 435 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 436 } 437 438 // The number of parts is a power of 2. Repeatedly bisect the value using 439 // EXTRACT_ELEMENT. 440 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 441 EVT::getIntegerVT(*DAG.getContext(), 442 ValueVT.getSizeInBits()), 443 Val); 444 445 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 446 for (unsigned i = 0; i < NumParts; i += StepSize) { 447 unsigned ThisBits = StepSize * PartBits / 2; 448 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 449 SDValue &Part0 = Parts[i]; 450 SDValue &Part1 = Parts[i+StepSize/2]; 451 452 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(1)); 454 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(0)); 456 457 if (ThisBits == PartBits && ThisVT != PartVT) { 458 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 459 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 460 } 461 } 462 } 463 464 if (TLI.isBigEndian()) 465 std::reverse(Parts, Parts + OrigNumParts); 466 } 467 468 469 /// getCopyToPartsVector - Create a series of nodes that contain the specified 470 /// value split into legal parts. 471 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V) { 474 EVT ValueVT = Val.getValueType(); 475 assert(ValueVT.isVector() && "Not a vector"); 476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 477 478 if (NumParts == 1) { 479 EVT PartEVT = PartVT; 480 if (PartEVT == ValueVT) { 481 // Nothing to do. 482 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 483 // Bitconvert vector->vector case. 484 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 485 } else if (PartVT.isVector() && 486 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 487 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 488 EVT ElementVT = PartVT.getVectorElementType(); 489 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 490 // undef elements. 491 SmallVector<SDValue, 16> Ops; 492 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 493 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 494 ElementVT, Val, DAG.getConstant(i, 495 TLI.getVectorIdxTy()))); 496 497 for (unsigned i = ValueVT.getVectorNumElements(), 498 e = PartVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getUNDEF(ElementVT)); 500 501 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 502 503 // FIXME: Use CONCAT for 2x -> 4x. 504 505 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 506 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 507 } else if (PartVT.isVector() && 508 PartEVT.getVectorElementType().bitsGE( 509 ValueVT.getVectorElementType()) && 510 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 511 512 // Promoted vector extract 513 bool Smaller = PartEVT.bitsLE(ValueVT); 514 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 515 DL, PartVT, Val); 516 } else{ 517 // Vector -> scalar conversion. 518 assert(ValueVT.getVectorNumElements() == 1 && 519 "Only trivial vector-to-scalar conversions should get here!"); 520 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 521 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 522 523 bool Smaller = ValueVT.bitsLE(PartVT); 524 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 525 DL, PartVT, Val); 526 } 527 528 Parts[0] = Val; 529 return; 530 } 531 532 // Handle a multi-element vector. 533 EVT IntermediateVT; 534 MVT RegisterVT; 535 unsigned NumIntermediates; 536 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 537 IntermediateVT, 538 NumIntermediates, RegisterVT); 539 unsigned NumElements = ValueVT.getVectorNumElements(); 540 541 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 542 NumParts = NumRegs; // Silence a compiler warning. 543 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 544 545 // Split the vector into intermediate operands. 546 SmallVector<SDValue, 8> Ops(NumIntermediates); 547 for (unsigned i = 0; i != NumIntermediates; ++i) { 548 if (IntermediateVT.isVector()) 549 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 550 IntermediateVT, Val, 551 DAG.getConstant(i * (NumElements / NumIntermediates), 552 TLI.getVectorIdxTy())); 553 else 554 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 555 IntermediateVT, Val, 556 DAG.getConstant(i, TLI.getVectorIdxTy())); 557 } 558 559 // Split the intermediate operands into legal parts. 560 if (NumParts == NumIntermediates) { 561 // If the register was not expanded, promote or copy the value, 562 // as appropriate. 563 for (unsigned i = 0; i != NumParts; ++i) 564 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 565 } else if (NumParts > 0) { 566 // If the intermediate type was expanded, split each the value into 567 // legal parts. 568 assert(NumParts % NumIntermediates == 0 && 569 "Must expand into a divisible number of parts!"); 570 unsigned Factor = NumParts / NumIntermediates; 571 for (unsigned i = 0; i != NumIntermediates; ++i) 572 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 573 } 574 } 575 576 namespace { 577 /// RegsForValue - This struct represents the registers (physical or virtual) 578 /// that a particular set of values is assigned, and the type information 579 /// about the value. The most common situation is to represent one value at a 580 /// time, but struct or array values are handled element-wise as multiple 581 /// values. The splitting of aggregates is performed recursively, so that we 582 /// never have aggregate-typed registers. The values at this point do not 583 /// necessarily have legal types, so each value may require one or more 584 /// registers of some legal type. 585 /// 586 struct RegsForValue { 587 /// ValueVTs - The value types of the values, which may not be legal, and 588 /// may need be promoted or synthesized from one or more registers. 589 /// 590 SmallVector<EVT, 4> ValueVTs; 591 592 /// RegVTs - The value types of the registers. This is the same size as 593 /// ValueVTs and it records, for each value, what the type of the assigned 594 /// register or registers are. (Individual values are never synthesized 595 /// from more than one type of register.) 596 /// 597 /// With virtual registers, the contents of RegVTs is redundant with TLI's 598 /// getRegisterType member function, however when with physical registers 599 /// it is necessary to have a separate record of the types. 600 /// 601 SmallVector<MVT, 4> RegVTs; 602 603 /// Regs - This list holds the registers assigned to the values. 604 /// Each legal or promoted value requires one register, and each 605 /// expanded value requires multiple registers. 606 /// 607 SmallVector<unsigned, 4> Regs; 608 609 RegsForValue() {} 610 611 RegsForValue(const SmallVector<unsigned, 4> ®s, 612 MVT regvt, EVT valuevt) 613 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 614 615 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 616 unsigned Reg, Type *Ty) { 617 ComputeValueVTs(tli, Ty, ValueVTs); 618 619 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 622 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 623 for (unsigned i = 0; i != NumRegs; ++i) 624 Regs.push_back(Reg + i); 625 RegVTs.push_back(RegisterVT); 626 Reg += NumRegs; 627 } 628 } 629 630 /// areValueTypesLegal - Return true if types of all the values are legal. 631 bool areValueTypesLegal(const TargetLowering &TLI) { 632 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 633 MVT RegisterVT = RegVTs[Value]; 634 if (!TLI.isTypeLegal(RegisterVT)) 635 return false; 636 } 637 return true; 638 } 639 640 /// append - Add the specified values to this one. 641 void append(const RegsForValue &RHS) { 642 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 643 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 644 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 645 } 646 647 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 648 /// this value and returns the result as a ValueVTs value. This uses 649 /// Chain/Flag as the input and updates them for the output Chain/Flag. 650 /// If the Flag pointer is NULL, no flag is used. 651 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 652 SDLoc dl, 653 SDValue &Chain, SDValue *Flag, 654 const Value *V = 0) const; 655 656 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 657 /// specified value into the registers specified by this object. This uses 658 /// Chain/Flag as the input and updates them for the output Chain/Flag. 659 /// If the Flag pointer is NULL, no flag is used. 660 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 661 SDValue &Chain, SDValue *Flag, const Value *V) const; 662 663 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 664 /// operand list. This adds the code marker, matching input operand index 665 /// (if applicable), and includes the number of values added into it. 666 void AddInlineAsmOperands(unsigned Kind, 667 bool HasMatching, unsigned MatchingIdx, 668 SelectionDAG &DAG, 669 std::vector<SDValue> &Ops) const; 670 }; 671 } 672 673 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 674 /// this value and returns the result as a ValueVT value. This uses 675 /// Chain/Flag as the input and updates them for the output Chain/Flag. 676 /// If the Flag pointer is NULL, no flag is used. 677 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 678 FunctionLoweringInfo &FuncInfo, 679 SDLoc dl, 680 SDValue &Chain, SDValue *Flag, 681 const Value *V) const { 682 // A Value with type {} or [0 x %t] needs no registers. 683 if (ValueVTs.empty()) 684 return SDValue(); 685 686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 687 688 // Assemble the legal parts into the final values. 689 SmallVector<SDValue, 4> Values(ValueVTs.size()); 690 SmallVector<SDValue, 8> Parts; 691 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 692 // Copy the legal parts from the registers. 693 EVT ValueVT = ValueVTs[Value]; 694 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 695 MVT RegisterVT = RegVTs[Value]; 696 697 Parts.resize(NumRegs); 698 for (unsigned i = 0; i != NumRegs; ++i) { 699 SDValue P; 700 if (Flag == 0) { 701 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 702 } else { 703 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 704 *Flag = P.getValue(2); 705 } 706 707 Chain = P.getValue(1); 708 Parts[i] = P; 709 710 // If the source register was virtual and if we know something about it, 711 // add an assert node. 712 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 713 !RegisterVT.isInteger() || RegisterVT.isVector()) 714 continue; 715 716 const FunctionLoweringInfo::LiveOutInfo *LOI = 717 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 718 if (!LOI) 719 continue; 720 721 unsigned RegSize = RegisterVT.getSizeInBits(); 722 unsigned NumSignBits = LOI->NumSignBits; 723 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 724 725 if (NumZeroBits == RegSize) { 726 // The current value is a zero. 727 // Explicitly express that as it would be easier for 728 // optimizations to kick in. 729 Parts[i] = DAG.getConstant(0, RegisterVT); 730 continue; 731 } 732 733 // FIXME: We capture more information than the dag can represent. For 734 // now, just use the tightest assertzext/assertsext possible. 735 bool isSExt = true; 736 EVT FromVT(MVT::Other); 737 if (NumSignBits == RegSize) 738 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 739 else if (NumZeroBits >= RegSize-1) 740 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 741 else if (NumSignBits > RegSize-8) 742 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 743 else if (NumZeroBits >= RegSize-8) 744 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 745 else if (NumSignBits > RegSize-16) 746 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 747 else if (NumZeroBits >= RegSize-16) 748 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 749 else if (NumSignBits > RegSize-32) 750 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 751 else if (NumZeroBits >= RegSize-32) 752 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 753 else 754 continue; 755 756 // Add an assertion node. 757 assert(FromVT != MVT::Other); 758 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 759 RegisterVT, P, DAG.getValueType(FromVT)); 760 } 761 762 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 763 NumRegs, RegisterVT, ValueVT, V); 764 Part += NumRegs; 765 Parts.clear(); 766 } 767 768 return DAG.getNode(ISD::MERGE_VALUES, dl, 769 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 770 &Values[0], ValueVTs.size()); 771 } 772 773 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 774 /// specified value into the registers specified by this object. This uses 775 /// Chain/Flag as the input and updates them for the output Chain/Flag. 776 /// If the Flag pointer is NULL, no flag is used. 777 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 778 SDValue &Chain, SDValue *Flag, 779 const Value *V) const { 780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 781 782 // Get the list of the values's legal parts. 783 unsigned NumRegs = Regs.size(); 784 SmallVector<SDValue, 8> Parts(NumRegs); 785 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 786 EVT ValueVT = ValueVTs[Value]; 787 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 788 MVT RegisterVT = RegVTs[Value]; 789 ISD::NodeType ExtendKind = 790 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 791 792 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 793 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 794 Part += NumParts; 795 } 796 797 // Copy the parts into the registers. 798 SmallVector<SDValue, 8> Chains(NumRegs); 799 for (unsigned i = 0; i != NumRegs; ++i) { 800 SDValue Part; 801 if (Flag == 0) { 802 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 803 } else { 804 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 805 *Flag = Part.getValue(1); 806 } 807 808 Chains[i] = Part.getValue(0); 809 } 810 811 if (NumRegs == 1 || Flag) 812 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 813 // flagged to it. That is the CopyToReg nodes and the user are considered 814 // a single scheduling unit. If we create a TokenFactor and return it as 815 // chain, then the TokenFactor is both a predecessor (operand) of the 816 // user as well as a successor (the TF operands are flagged to the user). 817 // c1, f1 = CopyToReg 818 // c2, f2 = CopyToReg 819 // c3 = TokenFactor c1, c2 820 // ... 821 // = op c3, ..., f2 822 Chain = Chains[NumRegs-1]; 823 else 824 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 825 } 826 827 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 828 /// operand list. This adds the code marker and includes the number of 829 /// values added into it. 830 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 831 unsigned MatchingIdx, 832 SelectionDAG &DAG, 833 std::vector<SDValue> &Ops) const { 834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 835 836 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 837 if (HasMatching) 838 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 839 else if (!Regs.empty() && 840 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 841 // Put the register class of the virtual registers in the flag word. That 842 // way, later passes can recompute register class constraints for inline 843 // assembly as well as normal instructions. 844 // Don't do this for tied operands that can use the regclass information 845 // from the def. 846 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 847 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 848 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 849 } 850 851 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 852 Ops.push_back(Res); 853 854 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 855 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 856 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 857 MVT RegisterVT = RegVTs[Value]; 858 for (unsigned i = 0; i != NumRegs; ++i) { 859 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 860 unsigned TheReg = Regs[Reg++]; 861 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 862 863 // Notice if we clobbered the stack pointer. Yes, inline asm can do this. 864 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 865 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 866 MFI->setHasInlineAsmWithSPAdjust(true); 867 } 868 } 869 } 870 } 871 872 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 873 const TargetLibraryInfo *li) { 874 AA = &aa; 875 GFI = gfi; 876 LibInfo = li; 877 TD = DAG.getTarget().getDataLayout(); 878 Context = DAG.getContext(); 879 LPadToCallSiteMap.clear(); 880 } 881 882 /// clear - Clear out the current SelectionDAG and the associated 883 /// state and prepare this SelectionDAGBuilder object to be used 884 /// for a new block. This doesn't clear out information about 885 /// additional blocks that are needed to complete switch lowering 886 /// or PHI node updating; that information is cleared out as it is 887 /// consumed. 888 void SelectionDAGBuilder::clear() { 889 NodeMap.clear(); 890 UnusedArgNodeMap.clear(); 891 PendingLoads.clear(); 892 PendingExports.clear(); 893 CurInst = NULL; 894 HasTailCall = false; 895 SDNodeOrder = LowestSDNodeOrder; 896 } 897 898 /// clearDanglingDebugInfo - Clear the dangling debug information 899 /// map. This function is separated from the clear so that debug 900 /// information that is dangling in a basic block can be properly 901 /// resolved in a different basic block. This allows the 902 /// SelectionDAG to resolve dangling debug information attached 903 /// to PHI nodes. 904 void SelectionDAGBuilder::clearDanglingDebugInfo() { 905 DanglingDebugInfoMap.clear(); 906 } 907 908 /// getRoot - Return the current virtual root of the Selection DAG, 909 /// flushing any PendingLoad items. This must be done before emitting 910 /// a store or any other node that may need to be ordered after any 911 /// prior load instructions. 912 /// 913 SDValue SelectionDAGBuilder::getRoot() { 914 if (PendingLoads.empty()) 915 return DAG.getRoot(); 916 917 if (PendingLoads.size() == 1) { 918 SDValue Root = PendingLoads[0]; 919 DAG.setRoot(Root); 920 PendingLoads.clear(); 921 return Root; 922 } 923 924 // Otherwise, we have to make a token factor node. 925 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 926 &PendingLoads[0], PendingLoads.size()); 927 PendingLoads.clear(); 928 DAG.setRoot(Root); 929 return Root; 930 } 931 932 /// getControlRoot - Similar to getRoot, but instead of flushing all the 933 /// PendingLoad items, flush all the PendingExports items. It is necessary 934 /// to do this before emitting a terminator instruction. 935 /// 936 SDValue SelectionDAGBuilder::getControlRoot() { 937 SDValue Root = DAG.getRoot(); 938 939 if (PendingExports.empty()) 940 return Root; 941 942 // Turn all of the CopyToReg chains into one factored node. 943 if (Root.getOpcode() != ISD::EntryToken) { 944 unsigned i = 0, e = PendingExports.size(); 945 for (; i != e; ++i) { 946 assert(PendingExports[i].getNode()->getNumOperands() > 1); 947 if (PendingExports[i].getNode()->getOperand(0) == Root) 948 break; // Don't add the root if we already indirectly depend on it. 949 } 950 951 if (i == e) 952 PendingExports.push_back(Root); 953 } 954 955 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 956 &PendingExports[0], 957 PendingExports.size()); 958 PendingExports.clear(); 959 DAG.setRoot(Root); 960 return Root; 961 } 962 963 void SelectionDAGBuilder::visit(const Instruction &I) { 964 // Set up outgoing PHI node register values before emitting the terminator. 965 if (isa<TerminatorInst>(&I)) 966 HandlePHINodesInSuccessorBlocks(I.getParent()); 967 968 ++SDNodeOrder; 969 970 CurInst = &I; 971 972 visit(I.getOpcode(), I); 973 974 if (!isa<TerminatorInst>(&I) && !HasTailCall) 975 CopyToExportRegsIfNeeded(&I); 976 977 CurInst = NULL; 978 } 979 980 void SelectionDAGBuilder::visitPHI(const PHINode &) { 981 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 982 } 983 984 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 985 // Note: this doesn't use InstVisitor, because it has to work with 986 // ConstantExpr's in addition to instructions. 987 switch (Opcode) { 988 default: llvm_unreachable("Unknown instruction type encountered!"); 989 // Build the switch statement using the Instruction.def file. 990 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 991 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 992 #include "llvm/IR/Instruction.def" 993 } 994 } 995 996 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 997 // generate the debug data structures now that we've seen its definition. 998 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 999 SDValue Val) { 1000 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1001 if (DDI.getDI()) { 1002 const DbgValueInst *DI = DDI.getDI(); 1003 DebugLoc dl = DDI.getdl(); 1004 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1005 MDNode *Variable = DI->getVariable(); 1006 uint64_t Offset = DI->getOffset(); 1007 SDDbgValue *SDV; 1008 if (Val.getNode()) { 1009 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 1010 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1011 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 1012 DAG.AddDbgValue(SDV, Val.getNode(), false); 1013 } 1014 } else 1015 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1016 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1017 } 1018 } 1019 1020 /// getValue - Return an SDValue for the given Value. 1021 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1022 // If we already have an SDValue for this value, use it. It's important 1023 // to do this first, so that we don't create a CopyFromReg if we already 1024 // have a regular SDValue. 1025 SDValue &N = NodeMap[V]; 1026 if (N.getNode()) return N; 1027 1028 // If there's a virtual register allocated and initialized for this 1029 // value, use it. 1030 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1031 if (It != FuncInfo.ValueMap.end()) { 1032 unsigned InReg = It->second; 1033 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1034 InReg, V->getType()); 1035 SDValue Chain = DAG.getEntryNode(); 1036 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1037 resolveDanglingDebugInfo(V, N); 1038 return N; 1039 } 1040 1041 // Otherwise create a new SDValue and remember it. 1042 SDValue Val = getValueImpl(V); 1043 NodeMap[V] = Val; 1044 resolveDanglingDebugInfo(V, Val); 1045 return Val; 1046 } 1047 1048 /// getNonRegisterValue - Return an SDValue for the given Value, but 1049 /// don't look in FuncInfo.ValueMap for a virtual register. 1050 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1051 // If we already have an SDValue for this value, use it. 1052 SDValue &N = NodeMap[V]; 1053 if (N.getNode()) return N; 1054 1055 // Otherwise create a new SDValue and remember it. 1056 SDValue Val = getValueImpl(V); 1057 NodeMap[V] = Val; 1058 resolveDanglingDebugInfo(V, Val); 1059 return Val; 1060 } 1061 1062 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1063 /// Create an SDValue for the given value. 1064 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1065 const TargetLowering *TLI = TM.getTargetLowering(); 1066 1067 if (const Constant *C = dyn_cast<Constant>(V)) { 1068 EVT VT = TLI->getValueType(V->getType(), true); 1069 1070 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1071 return DAG.getConstant(*CI, VT); 1072 1073 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1074 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1075 1076 if (isa<ConstantPointerNull>(C)) { 1077 unsigned AS = V->getType()->getPointerAddressSpace(); 1078 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1079 } 1080 1081 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1082 return DAG.getConstantFP(*CFP, VT); 1083 1084 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1085 return DAG.getUNDEF(VT); 1086 1087 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1088 visit(CE->getOpcode(), *CE); 1089 SDValue N1 = NodeMap[V]; 1090 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1091 return N1; 1092 } 1093 1094 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1095 SmallVector<SDValue, 4> Constants; 1096 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1097 OI != OE; ++OI) { 1098 SDNode *Val = getValue(*OI).getNode(); 1099 // If the operand is an empty aggregate, there are no values. 1100 if (!Val) continue; 1101 // Add each leaf value from the operand to the Constants list 1102 // to form a flattened list of all the values. 1103 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1104 Constants.push_back(SDValue(Val, i)); 1105 } 1106 1107 return DAG.getMergeValues(&Constants[0], Constants.size(), 1108 getCurSDLoc()); 1109 } 1110 1111 if (const ConstantDataSequential *CDS = 1112 dyn_cast<ConstantDataSequential>(C)) { 1113 SmallVector<SDValue, 4> Ops; 1114 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1115 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1116 // Add each leaf value from the operand to the Constants list 1117 // to form a flattened list of all the values. 1118 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1119 Ops.push_back(SDValue(Val, i)); 1120 } 1121 1122 if (isa<ArrayType>(CDS->getType())) 1123 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1124 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1125 VT, &Ops[0], Ops.size()); 1126 } 1127 1128 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1129 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1130 "Unknown struct or array constant!"); 1131 1132 SmallVector<EVT, 4> ValueVTs; 1133 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1134 unsigned NumElts = ValueVTs.size(); 1135 if (NumElts == 0) 1136 return SDValue(); // empty struct 1137 SmallVector<SDValue, 4> Constants(NumElts); 1138 for (unsigned i = 0; i != NumElts; ++i) { 1139 EVT EltVT = ValueVTs[i]; 1140 if (isa<UndefValue>(C)) 1141 Constants[i] = DAG.getUNDEF(EltVT); 1142 else if (EltVT.isFloatingPoint()) 1143 Constants[i] = DAG.getConstantFP(0, EltVT); 1144 else 1145 Constants[i] = DAG.getConstant(0, EltVT); 1146 } 1147 1148 return DAG.getMergeValues(&Constants[0], NumElts, 1149 getCurSDLoc()); 1150 } 1151 1152 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1153 return DAG.getBlockAddress(BA, VT); 1154 1155 VectorType *VecTy = cast<VectorType>(V->getType()); 1156 unsigned NumElements = VecTy->getNumElements(); 1157 1158 // Now that we know the number and type of the elements, get that number of 1159 // elements into the Ops array based on what kind of constant it is. 1160 SmallVector<SDValue, 16> Ops; 1161 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1162 for (unsigned i = 0; i != NumElements; ++i) 1163 Ops.push_back(getValue(CV->getOperand(i))); 1164 } else { 1165 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1166 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1167 1168 SDValue Op; 1169 if (EltVT.isFloatingPoint()) 1170 Op = DAG.getConstantFP(0, EltVT); 1171 else 1172 Op = DAG.getConstant(0, EltVT); 1173 Ops.assign(NumElements, Op); 1174 } 1175 1176 // Create a BUILD_VECTOR node. 1177 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1178 VT, &Ops[0], Ops.size()); 1179 } 1180 1181 // If this is a static alloca, generate it as the frameindex instead of 1182 // computation. 1183 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1184 DenseMap<const AllocaInst*, int>::iterator SI = 1185 FuncInfo.StaticAllocaMap.find(AI); 1186 if (SI != FuncInfo.StaticAllocaMap.end()) 1187 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1188 } 1189 1190 // If this is an instruction which fast-isel has deferred, select it now. 1191 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1192 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1193 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1194 SDValue Chain = DAG.getEntryNode(); 1195 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1196 } 1197 1198 llvm_unreachable("Can't get register for value!"); 1199 } 1200 1201 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1202 const TargetLowering *TLI = TM.getTargetLowering(); 1203 SDValue Chain = getControlRoot(); 1204 SmallVector<ISD::OutputArg, 8> Outs; 1205 SmallVector<SDValue, 8> OutVals; 1206 1207 if (!FuncInfo.CanLowerReturn) { 1208 unsigned DemoteReg = FuncInfo.DemoteRegister; 1209 const Function *F = I.getParent()->getParent(); 1210 1211 // Emit a store of the return value through the virtual register. 1212 // Leave Outs empty so that LowerReturn won't try to load return 1213 // registers the usual way. 1214 SmallVector<EVT, 1> PtrValueVTs; 1215 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1216 PtrValueVTs); 1217 1218 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1219 SDValue RetOp = getValue(I.getOperand(0)); 1220 1221 SmallVector<EVT, 4> ValueVTs; 1222 SmallVector<uint64_t, 4> Offsets; 1223 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1224 unsigned NumValues = ValueVTs.size(); 1225 1226 SmallVector<SDValue, 4> Chains(NumValues); 1227 for (unsigned i = 0; i != NumValues; ++i) { 1228 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1229 RetPtr.getValueType(), RetPtr, 1230 DAG.getIntPtrConstant(Offsets[i])); 1231 Chains[i] = 1232 DAG.getStore(Chain, getCurSDLoc(), 1233 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1234 // FIXME: better loc info would be nice. 1235 Add, MachinePointerInfo(), false, false, 0); 1236 } 1237 1238 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1239 MVT::Other, &Chains[0], NumValues); 1240 } else if (I.getNumOperands() != 0) { 1241 SmallVector<EVT, 4> ValueVTs; 1242 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1243 unsigned NumValues = ValueVTs.size(); 1244 if (NumValues) { 1245 SDValue RetOp = getValue(I.getOperand(0)); 1246 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1247 EVT VT = ValueVTs[j]; 1248 1249 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1250 1251 const Function *F = I.getParent()->getParent(); 1252 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1253 Attribute::SExt)) 1254 ExtendKind = ISD::SIGN_EXTEND; 1255 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1256 Attribute::ZExt)) 1257 ExtendKind = ISD::ZERO_EXTEND; 1258 1259 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1260 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1261 1262 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1263 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1264 SmallVector<SDValue, 4> Parts(NumParts); 1265 getCopyToParts(DAG, getCurSDLoc(), 1266 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1267 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1268 1269 // 'inreg' on function refers to return value 1270 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1271 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1272 Attribute::InReg)) 1273 Flags.setInReg(); 1274 1275 // Propagate extension type if any 1276 if (ExtendKind == ISD::SIGN_EXTEND) 1277 Flags.setSExt(); 1278 else if (ExtendKind == ISD::ZERO_EXTEND) 1279 Flags.setZExt(); 1280 1281 for (unsigned i = 0; i < NumParts; ++i) { 1282 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1283 VT, /*isfixed=*/true, 0, 0)); 1284 OutVals.push_back(Parts[i]); 1285 } 1286 } 1287 } 1288 } 1289 1290 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1291 CallingConv::ID CallConv = 1292 DAG.getMachineFunction().getFunction()->getCallingConv(); 1293 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1294 Outs, OutVals, getCurSDLoc(), 1295 DAG); 1296 1297 // Verify that the target's LowerReturn behaved as expected. 1298 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1299 "LowerReturn didn't return a valid chain!"); 1300 1301 // Update the DAG with the new chain value resulting from return lowering. 1302 DAG.setRoot(Chain); 1303 } 1304 1305 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1306 /// created for it, emit nodes to copy the value into the virtual 1307 /// registers. 1308 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1309 // Skip empty types 1310 if (V->getType()->isEmptyTy()) 1311 return; 1312 1313 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1314 if (VMI != FuncInfo.ValueMap.end()) { 1315 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1316 CopyValueToVirtualRegister(V, VMI->second); 1317 } 1318 } 1319 1320 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1321 /// the current basic block, add it to ValueMap now so that we'll get a 1322 /// CopyTo/FromReg. 1323 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1324 // No need to export constants. 1325 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1326 1327 // Already exported? 1328 if (FuncInfo.isExportedInst(V)) return; 1329 1330 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1331 CopyValueToVirtualRegister(V, Reg); 1332 } 1333 1334 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1335 const BasicBlock *FromBB) { 1336 // The operands of the setcc have to be in this block. We don't know 1337 // how to export them from some other block. 1338 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1339 // Can export from current BB. 1340 if (VI->getParent() == FromBB) 1341 return true; 1342 1343 // Is already exported, noop. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // If this is an argument, we can export it if the BB is the entry block or 1348 // if it is already exported. 1349 if (isa<Argument>(V)) { 1350 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1351 return true; 1352 1353 // Otherwise, can only export this if it is already exported. 1354 return FuncInfo.isExportedInst(V); 1355 } 1356 1357 // Otherwise, constants can always be exported. 1358 return true; 1359 } 1360 1361 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1362 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1363 const MachineBasicBlock *Dst) const { 1364 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1365 if (!BPI) 1366 return 0; 1367 const BasicBlock *SrcBB = Src->getBasicBlock(); 1368 const BasicBlock *DstBB = Dst->getBasicBlock(); 1369 return BPI->getEdgeWeight(SrcBB, DstBB); 1370 } 1371 1372 void SelectionDAGBuilder:: 1373 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1374 uint32_t Weight /* = 0 */) { 1375 if (!Weight) 1376 Weight = getEdgeWeight(Src, Dst); 1377 Src->addSuccessor(Dst, Weight); 1378 } 1379 1380 1381 static bool InBlock(const Value *V, const BasicBlock *BB) { 1382 if (const Instruction *I = dyn_cast<Instruction>(V)) 1383 return I->getParent() == BB; 1384 return true; 1385 } 1386 1387 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1388 /// This function emits a branch and is used at the leaves of an OR or an 1389 /// AND operator tree. 1390 /// 1391 void 1392 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1393 MachineBasicBlock *TBB, 1394 MachineBasicBlock *FBB, 1395 MachineBasicBlock *CurBB, 1396 MachineBasicBlock *SwitchBB, 1397 uint32_t TWeight, 1398 uint32_t FWeight) { 1399 const BasicBlock *BB = CurBB->getBasicBlock(); 1400 1401 // If the leaf of the tree is a comparison, merge the condition into 1402 // the caseblock. 1403 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1404 // The operands of the cmp have to be in this block. We don't know 1405 // how to export them from some other block. If this is the first block 1406 // of the sequence, no exporting is needed. 1407 if (CurBB == SwitchBB || 1408 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1409 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1410 ISD::CondCode Condition; 1411 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1412 Condition = getICmpCondCode(IC->getPredicate()); 1413 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1414 Condition = getFCmpCondCode(FC->getPredicate()); 1415 if (TM.Options.NoNaNsFPMath) 1416 Condition = getFCmpCodeWithoutNaN(Condition); 1417 } else { 1418 Condition = ISD::SETEQ; // silence warning. 1419 llvm_unreachable("Unknown compare instruction"); 1420 } 1421 1422 CaseBlock CB(Condition, BOp->getOperand(0), 1423 BOp->getOperand(1), NULL, TBB, FBB, CurBB, TWeight, FWeight); 1424 SwitchCases.push_back(CB); 1425 return; 1426 } 1427 } 1428 1429 // Create a CaseBlock record representing this branch. 1430 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1431 NULL, TBB, FBB, CurBB, TWeight, FWeight); 1432 SwitchCases.push_back(CB); 1433 } 1434 1435 /// Scale down both weights to fit into uint32_t. 1436 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1437 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1438 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1439 NewTrue = NewTrue / Scale; 1440 NewFalse = NewFalse / Scale; 1441 } 1442 1443 /// FindMergedConditions - If Cond is an expression like 1444 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1445 MachineBasicBlock *TBB, 1446 MachineBasicBlock *FBB, 1447 MachineBasicBlock *CurBB, 1448 MachineBasicBlock *SwitchBB, 1449 unsigned Opc, uint32_t TWeight, 1450 uint32_t FWeight) { 1451 // If this node is not part of the or/and tree, emit it as a branch. 1452 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1453 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1454 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1455 BOp->getParent() != CurBB->getBasicBlock() || 1456 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1457 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1458 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1459 TWeight, FWeight); 1460 return; 1461 } 1462 1463 // Create TmpBB after CurBB. 1464 MachineFunction::iterator BBI = CurBB; 1465 MachineFunction &MF = DAG.getMachineFunction(); 1466 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1467 CurBB->getParent()->insert(++BBI, TmpBB); 1468 1469 if (Opc == Instruction::Or) { 1470 // Codegen X | Y as: 1471 // BB1: 1472 // jmp_if_X TBB 1473 // jmp TmpBB 1474 // TmpBB: 1475 // jmp_if_Y TBB 1476 // jmp FBB 1477 // 1478 1479 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1480 // The requirement is that 1481 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1482 // = TrueProb for orignal BB. 1483 // Assuming the orignal weights are A and B, one choice is to set BB1's 1484 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1485 // assumes that 1486 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1487 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1488 // TmpBB, but the math is more complicated. 1489 1490 uint64_t NewTrueWeight = TWeight; 1491 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1492 ScaleWeights(NewTrueWeight, NewFalseWeight); 1493 // Emit the LHS condition. 1494 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1495 NewTrueWeight, NewFalseWeight); 1496 1497 NewTrueWeight = TWeight; 1498 NewFalseWeight = 2 * (uint64_t)FWeight; 1499 ScaleWeights(NewTrueWeight, NewFalseWeight); 1500 // Emit the RHS condition into TmpBB. 1501 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1502 NewTrueWeight, NewFalseWeight); 1503 } else { 1504 assert(Opc == Instruction::And && "Unknown merge op!"); 1505 // Codegen X & Y as: 1506 // BB1: 1507 // jmp_if_X TmpBB 1508 // jmp FBB 1509 // TmpBB: 1510 // jmp_if_Y TBB 1511 // jmp FBB 1512 // 1513 // This requires creation of TmpBB after CurBB. 1514 1515 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1516 // The requirement is that 1517 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1518 // = FalseProb for orignal BB. 1519 // Assuming the orignal weights are A and B, one choice is to set BB1's 1520 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1521 // assumes that 1522 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1523 1524 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1525 uint64_t NewFalseWeight = FWeight; 1526 ScaleWeights(NewTrueWeight, NewFalseWeight); 1527 // Emit the LHS condition. 1528 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1529 NewTrueWeight, NewFalseWeight); 1530 1531 NewTrueWeight = 2 * (uint64_t)TWeight; 1532 NewFalseWeight = FWeight; 1533 ScaleWeights(NewTrueWeight, NewFalseWeight); 1534 // Emit the RHS condition into TmpBB. 1535 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1536 NewTrueWeight, NewFalseWeight); 1537 } 1538 } 1539 1540 /// If the set of cases should be emitted as a series of branches, return true. 1541 /// If we should emit this as a bunch of and/or'd together conditions, return 1542 /// false. 1543 bool 1544 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1545 if (Cases.size() != 2) return true; 1546 1547 // If this is two comparisons of the same values or'd or and'd together, they 1548 // will get folded into a single comparison, so don't emit two blocks. 1549 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1550 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1551 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1552 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1553 return false; 1554 } 1555 1556 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1557 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1558 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1559 Cases[0].CC == Cases[1].CC && 1560 isa<Constant>(Cases[0].CmpRHS) && 1561 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1562 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1563 return false; 1564 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1565 return false; 1566 } 1567 1568 return true; 1569 } 1570 1571 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1572 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1573 1574 // Update machine-CFG edges. 1575 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1576 1577 // Figure out which block is immediately after the current one. 1578 MachineBasicBlock *NextBlock = 0; 1579 MachineFunction::iterator BBI = BrMBB; 1580 if (++BBI != FuncInfo.MF->end()) 1581 NextBlock = BBI; 1582 1583 if (I.isUnconditional()) { 1584 // Update machine-CFG edges. 1585 BrMBB->addSuccessor(Succ0MBB); 1586 1587 // If this is not a fall-through branch, emit the branch. 1588 if (Succ0MBB != NextBlock) 1589 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1590 MVT::Other, getControlRoot(), 1591 DAG.getBasicBlock(Succ0MBB))); 1592 1593 return; 1594 } 1595 1596 // If this condition is one of the special cases we handle, do special stuff 1597 // now. 1598 const Value *CondVal = I.getCondition(); 1599 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1600 1601 // If this is a series of conditions that are or'd or and'd together, emit 1602 // this as a sequence of branches instead of setcc's with and/or operations. 1603 // As long as jumps are not expensive, this should improve performance. 1604 // For example, instead of something like: 1605 // cmp A, B 1606 // C = seteq 1607 // cmp D, E 1608 // F = setle 1609 // or C, F 1610 // jnz foo 1611 // Emit: 1612 // cmp A, B 1613 // je foo 1614 // cmp D, E 1615 // jle foo 1616 // 1617 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1618 if (!TM.getTargetLowering()->isJumpExpensive() && 1619 BOp->hasOneUse() && 1620 (BOp->getOpcode() == Instruction::And || 1621 BOp->getOpcode() == Instruction::Or)) { 1622 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1623 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1624 getEdgeWeight(BrMBB, Succ1MBB)); 1625 // If the compares in later blocks need to use values not currently 1626 // exported from this block, export them now. This block should always 1627 // be the first entry. 1628 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1629 1630 // Allow some cases to be rejected. 1631 if (ShouldEmitAsBranches(SwitchCases)) { 1632 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1633 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1634 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1635 } 1636 1637 // Emit the branch for this block. 1638 visitSwitchCase(SwitchCases[0], BrMBB); 1639 SwitchCases.erase(SwitchCases.begin()); 1640 return; 1641 } 1642 1643 // Okay, we decided not to do this, remove any inserted MBB's and clear 1644 // SwitchCases. 1645 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1646 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1647 1648 SwitchCases.clear(); 1649 } 1650 } 1651 1652 // Create a CaseBlock record representing this branch. 1653 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1654 NULL, Succ0MBB, Succ1MBB, BrMBB); 1655 1656 // Use visitSwitchCase to actually insert the fast branch sequence for this 1657 // cond branch. 1658 visitSwitchCase(CB, BrMBB); 1659 } 1660 1661 /// visitSwitchCase - Emits the necessary code to represent a single node in 1662 /// the binary search tree resulting from lowering a switch instruction. 1663 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1664 MachineBasicBlock *SwitchBB) { 1665 SDValue Cond; 1666 SDValue CondLHS = getValue(CB.CmpLHS); 1667 SDLoc dl = getCurSDLoc(); 1668 1669 // Build the setcc now. 1670 if (CB.CmpMHS == NULL) { 1671 // Fold "(X == true)" to X and "(X == false)" to !X to 1672 // handle common cases produced by branch lowering. 1673 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1674 CB.CC == ISD::SETEQ) 1675 Cond = CondLHS; 1676 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1677 CB.CC == ISD::SETEQ) { 1678 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1679 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1680 } else 1681 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1682 } else { 1683 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1684 1685 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1686 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1687 1688 SDValue CmpOp = getValue(CB.CmpMHS); 1689 EVT VT = CmpOp.getValueType(); 1690 1691 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1692 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1693 ISD::SETLE); 1694 } else { 1695 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1696 VT, CmpOp, DAG.getConstant(Low, VT)); 1697 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1698 DAG.getConstant(High-Low, VT), ISD::SETULE); 1699 } 1700 } 1701 1702 // Update successor info 1703 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1704 // TrueBB and FalseBB are always different unless the incoming IR is 1705 // degenerate. This only happens when running llc on weird IR. 1706 if (CB.TrueBB != CB.FalseBB) 1707 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1708 1709 // Set NextBlock to be the MBB immediately after the current one, if any. 1710 // This is used to avoid emitting unnecessary branches to the next block. 1711 MachineBasicBlock *NextBlock = 0; 1712 MachineFunction::iterator BBI = SwitchBB; 1713 if (++BBI != FuncInfo.MF->end()) 1714 NextBlock = BBI; 1715 1716 // If the lhs block is the next block, invert the condition so that we can 1717 // fall through to the lhs instead of the rhs block. 1718 if (CB.TrueBB == NextBlock) { 1719 std::swap(CB.TrueBB, CB.FalseBB); 1720 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1721 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1722 } 1723 1724 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1725 MVT::Other, getControlRoot(), Cond, 1726 DAG.getBasicBlock(CB.TrueBB)); 1727 1728 // Insert the false branch. Do this even if it's a fall through branch, 1729 // this makes it easier to do DAG optimizations which require inverting 1730 // the branch condition. 1731 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1732 DAG.getBasicBlock(CB.FalseBB)); 1733 1734 DAG.setRoot(BrCond); 1735 } 1736 1737 /// visitJumpTable - Emit JumpTable node in the current MBB 1738 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1739 // Emit the code for the jump table 1740 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1741 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1742 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1743 JT.Reg, PTy); 1744 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1745 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1746 MVT::Other, Index.getValue(1), 1747 Table, Index); 1748 DAG.setRoot(BrJumpTable); 1749 } 1750 1751 /// visitJumpTableHeader - This function emits necessary code to produce index 1752 /// in the JumpTable from switch case. 1753 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1754 JumpTableHeader &JTH, 1755 MachineBasicBlock *SwitchBB) { 1756 // Subtract the lowest switch case value from the value being switched on and 1757 // conditional branch to default mbb if the result is greater than the 1758 // difference between smallest and largest cases. 1759 SDValue SwitchOp = getValue(JTH.SValue); 1760 EVT VT = SwitchOp.getValueType(); 1761 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1762 DAG.getConstant(JTH.First, VT)); 1763 1764 // The SDNode we just created, which holds the value being switched on minus 1765 // the smallest case value, needs to be copied to a virtual register so it 1766 // can be used as an index into the jump table in a subsequent basic block. 1767 // This value may be smaller or larger than the target's pointer type, and 1768 // therefore require extension or truncating. 1769 const TargetLowering *TLI = TM.getTargetLowering(); 1770 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1771 1772 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1773 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1774 JumpTableReg, SwitchOp); 1775 JT.Reg = JumpTableReg; 1776 1777 // Emit the range check for the jump table, and branch to the default block 1778 // for the switch statement if the value being switched on exceeds the largest 1779 // case in the switch. 1780 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1781 TLI->getSetCCResultType(*DAG.getContext(), 1782 Sub.getValueType()), 1783 Sub, 1784 DAG.getConstant(JTH.Last - JTH.First,VT), 1785 ISD::SETUGT); 1786 1787 // Set NextBlock to be the MBB immediately after the current one, if any. 1788 // This is used to avoid emitting unnecessary branches to the next block. 1789 MachineBasicBlock *NextBlock = 0; 1790 MachineFunction::iterator BBI = SwitchBB; 1791 1792 if (++BBI != FuncInfo.MF->end()) 1793 NextBlock = BBI; 1794 1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1796 MVT::Other, CopyTo, CMP, 1797 DAG.getBasicBlock(JT.Default)); 1798 1799 if (JT.MBB != NextBlock) 1800 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1801 DAG.getBasicBlock(JT.MBB)); 1802 1803 DAG.setRoot(BrCond); 1804 } 1805 1806 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1807 /// tail spliced into a stack protector check success bb. 1808 /// 1809 /// For a high level explanation of how this fits into the stack protector 1810 /// generation see the comment on the declaration of class 1811 /// StackProtectorDescriptor. 1812 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1813 MachineBasicBlock *ParentBB) { 1814 1815 // First create the loads to the guard/stack slot for the comparison. 1816 const TargetLowering *TLI = TM.getTargetLowering(); 1817 EVT PtrTy = TLI->getPointerTy(); 1818 1819 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1820 int FI = MFI->getStackProtectorIndex(); 1821 1822 const Value *IRGuard = SPD.getGuard(); 1823 SDValue GuardPtr = getValue(IRGuard); 1824 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1825 1826 unsigned Align = 1827 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1828 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 GuardPtr, MachinePointerInfo(IRGuard, 0), 1830 true, false, false, Align); 1831 1832 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 StackSlotPtr, 1834 MachinePointerInfo::getFixedStack(FI), 1835 true, false, false, Align); 1836 1837 // Perform the comparison via a subtract/getsetcc. 1838 EVT VT = Guard.getValueType(); 1839 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1840 1841 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1842 TLI->getSetCCResultType(*DAG.getContext(), 1843 Sub.getValueType()), 1844 Sub, DAG.getConstant(0, VT), 1845 ISD::SETNE); 1846 1847 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1848 // branch to failure MBB. 1849 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1850 MVT::Other, StackSlot.getOperand(0), 1851 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1852 // Otherwise branch to success MBB. 1853 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1854 MVT::Other, BrCond, 1855 DAG.getBasicBlock(SPD.getSuccessMBB())); 1856 1857 DAG.setRoot(Br); 1858 } 1859 1860 /// Codegen the failure basic block for a stack protector check. 1861 /// 1862 /// A failure stack protector machine basic block consists simply of a call to 1863 /// __stack_chk_fail(). 1864 /// 1865 /// For a high level explanation of how this fits into the stack protector 1866 /// generation see the comment on the declaration of class 1867 /// StackProtectorDescriptor. 1868 void 1869 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1870 const TargetLowering *TLI = TM.getTargetLowering(); 1871 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1872 MVT::isVoid, 0, 0, false, getCurSDLoc(), 1873 false, false).second; 1874 DAG.setRoot(Chain); 1875 } 1876 1877 /// visitBitTestHeader - This function emits necessary code to produce value 1878 /// suitable for "bit tests" 1879 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1880 MachineBasicBlock *SwitchBB) { 1881 // Subtract the minimum value 1882 SDValue SwitchOp = getValue(B.SValue); 1883 EVT VT = SwitchOp.getValueType(); 1884 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1885 DAG.getConstant(B.First, VT)); 1886 1887 // Check range 1888 const TargetLowering *TLI = TM.getTargetLowering(); 1889 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1890 TLI->getSetCCResultType(*DAG.getContext(), 1891 Sub.getValueType()), 1892 Sub, DAG.getConstant(B.Range, VT), 1893 ISD::SETUGT); 1894 1895 // Determine the type of the test operands. 1896 bool UsePtrType = false; 1897 if (!TLI->isTypeLegal(VT)) 1898 UsePtrType = true; 1899 else { 1900 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1901 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1902 // Switch table case range are encoded into series of masks. 1903 // Just use pointer type, it's guaranteed to fit. 1904 UsePtrType = true; 1905 break; 1906 } 1907 } 1908 if (UsePtrType) { 1909 VT = TLI->getPointerTy(); 1910 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1911 } 1912 1913 B.RegVT = VT.getSimpleVT(); 1914 B.Reg = FuncInfo.CreateReg(B.RegVT); 1915 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1916 B.Reg, Sub); 1917 1918 // Set NextBlock to be the MBB immediately after the current one, if any. 1919 // This is used to avoid emitting unnecessary branches to the next block. 1920 MachineBasicBlock *NextBlock = 0; 1921 MachineFunction::iterator BBI = SwitchBB; 1922 if (++BBI != FuncInfo.MF->end()) 1923 NextBlock = BBI; 1924 1925 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1926 1927 addSuccessorWithWeight(SwitchBB, B.Default); 1928 addSuccessorWithWeight(SwitchBB, MBB); 1929 1930 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1931 MVT::Other, CopyTo, RangeCmp, 1932 DAG.getBasicBlock(B.Default)); 1933 1934 if (MBB != NextBlock) 1935 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1936 DAG.getBasicBlock(MBB)); 1937 1938 DAG.setRoot(BrRange); 1939 } 1940 1941 /// visitBitTestCase - this function produces one "bit test" 1942 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1943 MachineBasicBlock* NextMBB, 1944 uint32_t BranchWeightToNext, 1945 unsigned Reg, 1946 BitTestCase &B, 1947 MachineBasicBlock *SwitchBB) { 1948 MVT VT = BB.RegVT; 1949 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1950 Reg, VT); 1951 SDValue Cmp; 1952 unsigned PopCount = CountPopulation_64(B.Mask); 1953 const TargetLowering *TLI = TM.getTargetLowering(); 1954 if (PopCount == 1) { 1955 // Testing for a single bit; just compare the shift count with what it 1956 // would need to be to shift a 1 bit in that position. 1957 Cmp = DAG.getSetCC(getCurSDLoc(), 1958 TLI->getSetCCResultType(*DAG.getContext(), VT), 1959 ShiftOp, 1960 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1961 ISD::SETEQ); 1962 } else if (PopCount == BB.Range) { 1963 // There is only one zero bit in the range, test for it directly. 1964 Cmp = DAG.getSetCC(getCurSDLoc(), 1965 TLI->getSetCCResultType(*DAG.getContext(), VT), 1966 ShiftOp, 1967 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1968 ISD::SETNE); 1969 } else { 1970 // Make desired shift 1971 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1972 DAG.getConstant(1, VT), ShiftOp); 1973 1974 // Emit bit tests and jumps 1975 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1976 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1977 Cmp = DAG.getSetCC(getCurSDLoc(), 1978 TLI->getSetCCResultType(*DAG.getContext(), VT), 1979 AndOp, DAG.getConstant(0, VT), 1980 ISD::SETNE); 1981 } 1982 1983 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1984 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1985 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1986 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1987 1988 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1989 MVT::Other, getControlRoot(), 1990 Cmp, DAG.getBasicBlock(B.TargetBB)); 1991 1992 // Set NextBlock to be the MBB immediately after the current one, if any. 1993 // This is used to avoid emitting unnecessary branches to the next block. 1994 MachineBasicBlock *NextBlock = 0; 1995 MachineFunction::iterator BBI = SwitchBB; 1996 if (++BBI != FuncInfo.MF->end()) 1997 NextBlock = BBI; 1998 1999 if (NextMBB != NextBlock) 2000 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2001 DAG.getBasicBlock(NextMBB)); 2002 2003 DAG.setRoot(BrAnd); 2004 } 2005 2006 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2007 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2008 2009 // Retrieve successors. 2010 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2011 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2012 2013 const Value *Callee(I.getCalledValue()); 2014 const Function *Fn = dyn_cast<Function>(Callee); 2015 if (isa<InlineAsm>(Callee)) 2016 visitInlineAsm(&I); 2017 else if (Fn && Fn->isIntrinsic()) { 2018 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2019 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2020 } else 2021 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2022 2023 // If the value of the invoke is used outside of its defining block, make it 2024 // available as a virtual register. 2025 CopyToExportRegsIfNeeded(&I); 2026 2027 // Update successor info 2028 addSuccessorWithWeight(InvokeMBB, Return); 2029 addSuccessorWithWeight(InvokeMBB, LandingPad); 2030 2031 // Drop into normal successor. 2032 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2033 MVT::Other, getControlRoot(), 2034 DAG.getBasicBlock(Return))); 2035 } 2036 2037 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2038 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2039 } 2040 2041 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2042 assert(FuncInfo.MBB->isLandingPad() && 2043 "Call to landingpad not in landing pad!"); 2044 2045 MachineBasicBlock *MBB = FuncInfo.MBB; 2046 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2047 AddLandingPadInfo(LP, MMI, MBB); 2048 2049 // If there aren't registers to copy the values into (e.g., during SjLj 2050 // exceptions), then don't bother to create these DAG nodes. 2051 const TargetLowering *TLI = TM.getTargetLowering(); 2052 if (TLI->getExceptionPointerRegister() == 0 && 2053 TLI->getExceptionSelectorRegister() == 0) 2054 return; 2055 2056 SmallVector<EVT, 2> ValueVTs; 2057 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2058 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2059 2060 // Get the two live-in registers as SDValues. The physregs have already been 2061 // copied into virtual registers. 2062 SDValue Ops[2]; 2063 Ops[0] = DAG.getZExtOrTrunc( 2064 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2065 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2066 getCurSDLoc(), ValueVTs[0]); 2067 Ops[1] = DAG.getZExtOrTrunc( 2068 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2069 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2070 getCurSDLoc(), ValueVTs[1]); 2071 2072 // Merge into one. 2073 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2074 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 2075 &Ops[0], 2); 2076 setValue(&LP, Res); 2077 } 2078 2079 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2080 /// small case ranges). 2081 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2082 CaseRecVector& WorkList, 2083 const Value* SV, 2084 MachineBasicBlock *Default, 2085 MachineBasicBlock *SwitchBB) { 2086 // Size is the number of Cases represented by this range. 2087 size_t Size = CR.Range.second - CR.Range.first; 2088 if (Size > 3) 2089 return false; 2090 2091 // Get the MachineFunction which holds the current MBB. This is used when 2092 // inserting any additional MBBs necessary to represent the switch. 2093 MachineFunction *CurMF = FuncInfo.MF; 2094 2095 // Figure out which block is immediately after the current one. 2096 MachineBasicBlock *NextBlock = 0; 2097 MachineFunction::iterator BBI = CR.CaseBB; 2098 2099 if (++BBI != FuncInfo.MF->end()) 2100 NextBlock = BBI; 2101 2102 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2103 // If any two of the cases has the same destination, and if one value 2104 // is the same as the other, but has one bit unset that the other has set, 2105 // use bit manipulation to do two compares at once. For example: 2106 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2107 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2108 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2109 if (Size == 2 && CR.CaseBB == SwitchBB) { 2110 Case &Small = *CR.Range.first; 2111 Case &Big = *(CR.Range.second-1); 2112 2113 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2114 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2115 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2116 2117 // Check that there is only one bit different. 2118 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2119 (SmallValue | BigValue) == BigValue) { 2120 // Isolate the common bit. 2121 APInt CommonBit = BigValue & ~SmallValue; 2122 assert((SmallValue | CommonBit) == BigValue && 2123 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2124 2125 SDValue CondLHS = getValue(SV); 2126 EVT VT = CondLHS.getValueType(); 2127 SDLoc DL = getCurSDLoc(); 2128 2129 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2130 DAG.getConstant(CommonBit, VT)); 2131 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2132 Or, DAG.getConstant(BigValue, VT), 2133 ISD::SETEQ); 2134 2135 // Update successor info. 2136 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2137 addSuccessorWithWeight(SwitchBB, Small.BB, 2138 Small.ExtraWeight + Big.ExtraWeight); 2139 addSuccessorWithWeight(SwitchBB, Default, 2140 // The default destination is the first successor in IR. 2141 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2142 2143 // Insert the true branch. 2144 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2145 getControlRoot(), Cond, 2146 DAG.getBasicBlock(Small.BB)); 2147 2148 // Insert the false branch. 2149 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2150 DAG.getBasicBlock(Default)); 2151 2152 DAG.setRoot(BrCond); 2153 return true; 2154 } 2155 } 2156 } 2157 2158 // Order cases by weight so the most likely case will be checked first. 2159 uint32_t UnhandledWeights = 0; 2160 if (BPI) { 2161 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2162 uint32_t IWeight = I->ExtraWeight; 2163 UnhandledWeights += IWeight; 2164 for (CaseItr J = CR.Range.first; J < I; ++J) { 2165 uint32_t JWeight = J->ExtraWeight; 2166 if (IWeight > JWeight) 2167 std::swap(*I, *J); 2168 } 2169 } 2170 } 2171 // Rearrange the case blocks so that the last one falls through if possible. 2172 Case &BackCase = *(CR.Range.second-1); 2173 if (Size > 1 && 2174 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2175 // The last case block won't fall through into 'NextBlock' if we emit the 2176 // branches in this order. See if rearranging a case value would help. 2177 // We start at the bottom as it's the case with the least weight. 2178 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2179 if (I->BB == NextBlock) { 2180 std::swap(*I, BackCase); 2181 break; 2182 } 2183 } 2184 2185 // Create a CaseBlock record representing a conditional branch to 2186 // the Case's target mbb if the value being switched on SV is equal 2187 // to C. 2188 MachineBasicBlock *CurBlock = CR.CaseBB; 2189 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2190 MachineBasicBlock *FallThrough; 2191 if (I != E-1) { 2192 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2193 CurMF->insert(BBI, FallThrough); 2194 2195 // Put SV in a virtual register to make it available from the new blocks. 2196 ExportFromCurrentBlock(SV); 2197 } else { 2198 // If the last case doesn't match, go to the default block. 2199 FallThrough = Default; 2200 } 2201 2202 const Value *RHS, *LHS, *MHS; 2203 ISD::CondCode CC; 2204 if (I->High == I->Low) { 2205 // This is just small small case range :) containing exactly 1 case 2206 CC = ISD::SETEQ; 2207 LHS = SV; RHS = I->High; MHS = NULL; 2208 } else { 2209 CC = ISD::SETLE; 2210 LHS = I->Low; MHS = SV; RHS = I->High; 2211 } 2212 2213 // The false weight should be sum of all un-handled cases. 2214 UnhandledWeights -= I->ExtraWeight; 2215 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2216 /* me */ CurBlock, 2217 /* trueweight */ I->ExtraWeight, 2218 /* falseweight */ UnhandledWeights); 2219 2220 // If emitting the first comparison, just call visitSwitchCase to emit the 2221 // code into the current block. Otherwise, push the CaseBlock onto the 2222 // vector to be later processed by SDISel, and insert the node's MBB 2223 // before the next MBB. 2224 if (CurBlock == SwitchBB) 2225 visitSwitchCase(CB, SwitchBB); 2226 else 2227 SwitchCases.push_back(CB); 2228 2229 CurBlock = FallThrough; 2230 } 2231 2232 return true; 2233 } 2234 2235 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2236 return TLI.supportJumpTables() && 2237 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2238 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2239 } 2240 2241 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2242 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2243 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2244 return (LastExt - FirstExt + 1ULL); 2245 } 2246 2247 /// handleJTSwitchCase - Emit jumptable for current switch case range 2248 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2249 CaseRecVector &WorkList, 2250 const Value *SV, 2251 MachineBasicBlock *Default, 2252 MachineBasicBlock *SwitchBB) { 2253 Case& FrontCase = *CR.Range.first; 2254 Case& BackCase = *(CR.Range.second-1); 2255 2256 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2257 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2258 2259 APInt TSize(First.getBitWidth(), 0); 2260 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2261 TSize += I->size(); 2262 2263 const TargetLowering *TLI = TM.getTargetLowering(); 2264 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2265 return false; 2266 2267 APInt Range = ComputeRange(First, Last); 2268 // The density is TSize / Range. Require at least 40%. 2269 // It should not be possible for IntTSize to saturate for sane code, but make 2270 // sure we handle Range saturation correctly. 2271 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2272 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2273 if (IntTSize * 10 < IntRange * 4) 2274 return false; 2275 2276 DEBUG(dbgs() << "Lowering jump table\n" 2277 << "First entry: " << First << ". Last entry: " << Last << '\n' 2278 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2279 2280 // Get the MachineFunction which holds the current MBB. This is used when 2281 // inserting any additional MBBs necessary to represent the switch. 2282 MachineFunction *CurMF = FuncInfo.MF; 2283 2284 // Figure out which block is immediately after the current one. 2285 MachineFunction::iterator BBI = CR.CaseBB; 2286 ++BBI; 2287 2288 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2289 2290 // Create a new basic block to hold the code for loading the address 2291 // of the jump table, and jumping to it. Update successor information; 2292 // we will either branch to the default case for the switch, or the jump 2293 // table. 2294 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2295 CurMF->insert(BBI, JumpTableBB); 2296 2297 addSuccessorWithWeight(CR.CaseBB, Default); 2298 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2299 2300 // Build a vector of destination BBs, corresponding to each target 2301 // of the jump table. If the value of the jump table slot corresponds to 2302 // a case statement, push the case's BB onto the vector, otherwise, push 2303 // the default BB. 2304 std::vector<MachineBasicBlock*> DestBBs; 2305 APInt TEI = First; 2306 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2307 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2308 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2309 2310 if (Low.sle(TEI) && TEI.sle(High)) { 2311 DestBBs.push_back(I->BB); 2312 if (TEI==High) 2313 ++I; 2314 } else { 2315 DestBBs.push_back(Default); 2316 } 2317 } 2318 2319 // Calculate weight for each unique destination in CR. 2320 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2321 if (FuncInfo.BPI) 2322 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2323 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2324 DestWeights.find(I->BB); 2325 if (Itr != DestWeights.end()) 2326 Itr->second += I->ExtraWeight; 2327 else 2328 DestWeights[I->BB] = I->ExtraWeight; 2329 } 2330 2331 // Update successor info. Add one edge to each unique successor. 2332 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2333 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2334 E = DestBBs.end(); I != E; ++I) { 2335 if (!SuccsHandled[(*I)->getNumber()]) { 2336 SuccsHandled[(*I)->getNumber()] = true; 2337 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2338 DestWeights.find(*I); 2339 addSuccessorWithWeight(JumpTableBB, *I, 2340 Itr != DestWeights.end() ? Itr->second : 0); 2341 } 2342 } 2343 2344 // Create a jump table index for this jump table. 2345 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2346 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2347 ->createJumpTableIndex(DestBBs); 2348 2349 // Set the jump table information so that we can codegen it as a second 2350 // MachineBasicBlock 2351 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2352 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2353 if (CR.CaseBB == SwitchBB) 2354 visitJumpTableHeader(JT, JTH, SwitchBB); 2355 2356 JTCases.push_back(JumpTableBlock(JTH, JT)); 2357 return true; 2358 } 2359 2360 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2361 /// 2 subtrees. 2362 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2363 CaseRecVector& WorkList, 2364 const Value* SV, 2365 MachineBasicBlock* Default, 2366 MachineBasicBlock* SwitchBB) { 2367 // Get the MachineFunction which holds the current MBB. This is used when 2368 // inserting any additional MBBs necessary to represent the switch. 2369 MachineFunction *CurMF = FuncInfo.MF; 2370 2371 // Figure out which block is immediately after the current one. 2372 MachineFunction::iterator BBI = CR.CaseBB; 2373 ++BBI; 2374 2375 Case& FrontCase = *CR.Range.first; 2376 Case& BackCase = *(CR.Range.second-1); 2377 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2378 2379 // Size is the number of Cases represented by this range. 2380 unsigned Size = CR.Range.second - CR.Range.first; 2381 2382 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2383 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2384 double FMetric = 0; 2385 CaseItr Pivot = CR.Range.first + Size/2; 2386 2387 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2388 // (heuristically) allow us to emit JumpTable's later. 2389 APInt TSize(First.getBitWidth(), 0); 2390 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2391 I!=E; ++I) 2392 TSize += I->size(); 2393 2394 APInt LSize = FrontCase.size(); 2395 APInt RSize = TSize-LSize; 2396 DEBUG(dbgs() << "Selecting best pivot: \n" 2397 << "First: " << First << ", Last: " << Last <<'\n' 2398 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2399 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2400 J!=E; ++I, ++J) { 2401 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2402 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2403 APInt Range = ComputeRange(LEnd, RBegin); 2404 assert((Range - 2ULL).isNonNegative() && 2405 "Invalid case distance"); 2406 // Use volatile double here to avoid excess precision issues on some hosts, 2407 // e.g. that use 80-bit X87 registers. 2408 volatile double LDensity = 2409 (double)LSize.roundToDouble() / 2410 (LEnd - First + 1ULL).roundToDouble(); 2411 volatile double RDensity = 2412 (double)RSize.roundToDouble() / 2413 (Last - RBegin + 1ULL).roundToDouble(); 2414 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2415 // Should always split in some non-trivial place 2416 DEBUG(dbgs() <<"=>Step\n" 2417 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2418 << "LDensity: " << LDensity 2419 << ", RDensity: " << RDensity << '\n' 2420 << "Metric: " << Metric << '\n'); 2421 if (FMetric < Metric) { 2422 Pivot = J; 2423 FMetric = Metric; 2424 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2425 } 2426 2427 LSize += J->size(); 2428 RSize -= J->size(); 2429 } 2430 2431 const TargetLowering *TLI = TM.getTargetLowering(); 2432 if (areJTsAllowed(*TLI)) { 2433 // If our case is dense we *really* should handle it earlier! 2434 assert((FMetric > 0) && "Should handle dense range earlier!"); 2435 } else { 2436 Pivot = CR.Range.first + Size/2; 2437 } 2438 2439 CaseRange LHSR(CR.Range.first, Pivot); 2440 CaseRange RHSR(Pivot, CR.Range.second); 2441 const Constant *C = Pivot->Low; 2442 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2443 2444 // We know that we branch to the LHS if the Value being switched on is 2445 // less than the Pivot value, C. We use this to optimize our binary 2446 // tree a bit, by recognizing that if SV is greater than or equal to the 2447 // LHS's Case Value, and that Case Value is exactly one less than the 2448 // Pivot's Value, then we can branch directly to the LHS's Target, 2449 // rather than creating a leaf node for it. 2450 if ((LHSR.second - LHSR.first) == 1 && 2451 LHSR.first->High == CR.GE && 2452 cast<ConstantInt>(C)->getValue() == 2453 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2454 TrueBB = LHSR.first->BB; 2455 } else { 2456 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2457 CurMF->insert(BBI, TrueBB); 2458 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2459 2460 // Put SV in a virtual register to make it available from the new blocks. 2461 ExportFromCurrentBlock(SV); 2462 } 2463 2464 // Similar to the optimization above, if the Value being switched on is 2465 // known to be less than the Constant CR.LT, and the current Case Value 2466 // is CR.LT - 1, then we can branch directly to the target block for 2467 // the current Case Value, rather than emitting a RHS leaf node for it. 2468 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2469 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2470 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2471 FalseBB = RHSR.first->BB; 2472 } else { 2473 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2474 CurMF->insert(BBI, FalseBB); 2475 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2476 2477 // Put SV in a virtual register to make it available from the new blocks. 2478 ExportFromCurrentBlock(SV); 2479 } 2480 2481 // Create a CaseBlock record representing a conditional branch to 2482 // the LHS node if the value being switched on SV is less than C. 2483 // Otherwise, branch to LHS. 2484 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2485 2486 if (CR.CaseBB == SwitchBB) 2487 visitSwitchCase(CB, SwitchBB); 2488 else 2489 SwitchCases.push_back(CB); 2490 2491 return true; 2492 } 2493 2494 /// handleBitTestsSwitchCase - if current case range has few destination and 2495 /// range span less, than machine word bitwidth, encode case range into series 2496 /// of masks and emit bit tests with these masks. 2497 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2498 CaseRecVector& WorkList, 2499 const Value* SV, 2500 MachineBasicBlock* Default, 2501 MachineBasicBlock* SwitchBB) { 2502 const TargetLowering *TLI = TM.getTargetLowering(); 2503 EVT PTy = TLI->getPointerTy(); 2504 unsigned IntPtrBits = PTy.getSizeInBits(); 2505 2506 Case& FrontCase = *CR.Range.first; 2507 Case& BackCase = *(CR.Range.second-1); 2508 2509 // Get the MachineFunction which holds the current MBB. This is used when 2510 // inserting any additional MBBs necessary to represent the switch. 2511 MachineFunction *CurMF = FuncInfo.MF; 2512 2513 // If target does not have legal shift left, do not emit bit tests at all. 2514 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2515 return false; 2516 2517 size_t numCmps = 0; 2518 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2519 I!=E; ++I) { 2520 // Single case counts one, case range - two. 2521 numCmps += (I->Low == I->High ? 1 : 2); 2522 } 2523 2524 // Count unique destinations 2525 SmallSet<MachineBasicBlock*, 4> Dests; 2526 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2527 Dests.insert(I->BB); 2528 if (Dests.size() > 3) 2529 // Don't bother the code below, if there are too much unique destinations 2530 return false; 2531 } 2532 DEBUG(dbgs() << "Total number of unique destinations: " 2533 << Dests.size() << '\n' 2534 << "Total number of comparisons: " << numCmps << '\n'); 2535 2536 // Compute span of values. 2537 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2538 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2539 APInt cmpRange = maxValue - minValue; 2540 2541 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2542 << "Low bound: " << minValue << '\n' 2543 << "High bound: " << maxValue << '\n'); 2544 2545 if (cmpRange.uge(IntPtrBits) || 2546 (!(Dests.size() == 1 && numCmps >= 3) && 2547 !(Dests.size() == 2 && numCmps >= 5) && 2548 !(Dests.size() >= 3 && numCmps >= 6))) 2549 return false; 2550 2551 DEBUG(dbgs() << "Emitting bit tests\n"); 2552 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2553 2554 // Optimize the case where all the case values fit in a 2555 // word without having to subtract minValue. In this case, 2556 // we can optimize away the subtraction. 2557 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2558 cmpRange = maxValue; 2559 } else { 2560 lowBound = minValue; 2561 } 2562 2563 CaseBitsVector CasesBits; 2564 unsigned i, count = 0; 2565 2566 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2567 MachineBasicBlock* Dest = I->BB; 2568 for (i = 0; i < count; ++i) 2569 if (Dest == CasesBits[i].BB) 2570 break; 2571 2572 if (i == count) { 2573 assert((count < 3) && "Too much destinations to test!"); 2574 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2575 count++; 2576 } 2577 2578 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2579 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2580 2581 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2582 uint64_t hi = (highValue - lowBound).getZExtValue(); 2583 CasesBits[i].ExtraWeight += I->ExtraWeight; 2584 2585 for (uint64_t j = lo; j <= hi; j++) { 2586 CasesBits[i].Mask |= 1ULL << j; 2587 CasesBits[i].Bits++; 2588 } 2589 2590 } 2591 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2592 2593 BitTestInfo BTC; 2594 2595 // Figure out which block is immediately after the current one. 2596 MachineFunction::iterator BBI = CR.CaseBB; 2597 ++BBI; 2598 2599 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2600 2601 DEBUG(dbgs() << "Cases:\n"); 2602 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2603 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2604 << ", Bits: " << CasesBits[i].Bits 2605 << ", BB: " << CasesBits[i].BB << '\n'); 2606 2607 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2608 CurMF->insert(BBI, CaseBB); 2609 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2610 CaseBB, 2611 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2612 2613 // Put SV in a virtual register to make it available from the new blocks. 2614 ExportFromCurrentBlock(SV); 2615 } 2616 2617 BitTestBlock BTB(lowBound, cmpRange, SV, 2618 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2619 CR.CaseBB, Default, BTC); 2620 2621 if (CR.CaseBB == SwitchBB) 2622 visitBitTestHeader(BTB, SwitchBB); 2623 2624 BitTestCases.push_back(BTB); 2625 2626 return true; 2627 } 2628 2629 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2630 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2631 const SwitchInst& SI) { 2632 size_t numCmps = 0; 2633 2634 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2635 // Start with "simple" cases 2636 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2637 i != e; ++i) { 2638 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2639 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2640 2641 uint32_t ExtraWeight = 2642 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2643 2644 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2645 SMBB, ExtraWeight)); 2646 } 2647 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2648 2649 // Merge case into clusters 2650 if (Cases.size() >= 2) 2651 // Must recompute end() each iteration because it may be 2652 // invalidated by erase if we hold on to it 2653 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2654 J != Cases.end(); ) { 2655 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2656 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2657 MachineBasicBlock* nextBB = J->BB; 2658 MachineBasicBlock* currentBB = I->BB; 2659 2660 // If the two neighboring cases go to the same destination, merge them 2661 // into a single case. 2662 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2663 I->High = J->High; 2664 I->ExtraWeight += J->ExtraWeight; 2665 J = Cases.erase(J); 2666 } else { 2667 I = J++; 2668 } 2669 } 2670 2671 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2672 if (I->Low != I->High) 2673 // A range counts double, since it requires two compares. 2674 ++numCmps; 2675 } 2676 2677 return numCmps; 2678 } 2679 2680 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2681 MachineBasicBlock *Last) { 2682 // Update JTCases. 2683 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2684 if (JTCases[i].first.HeaderBB == First) 2685 JTCases[i].first.HeaderBB = Last; 2686 2687 // Update BitTestCases. 2688 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2689 if (BitTestCases[i].Parent == First) 2690 BitTestCases[i].Parent = Last; 2691 } 2692 2693 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2694 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2695 2696 // Figure out which block is immediately after the current one. 2697 MachineBasicBlock *NextBlock = 0; 2698 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2699 2700 // If there is only the default destination, branch to it if it is not the 2701 // next basic block. Otherwise, just fall through. 2702 if (!SI.getNumCases()) { 2703 // Update machine-CFG edges. 2704 2705 // If this is not a fall-through branch, emit the branch. 2706 SwitchMBB->addSuccessor(Default); 2707 if (Default != NextBlock) 2708 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2709 MVT::Other, getControlRoot(), 2710 DAG.getBasicBlock(Default))); 2711 2712 return; 2713 } 2714 2715 // If there are any non-default case statements, create a vector of Cases 2716 // representing each one, and sort the vector so that we can efficiently 2717 // create a binary search tree from them. 2718 CaseVector Cases; 2719 size_t numCmps = Clusterify(Cases, SI); 2720 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2721 << ". Total compares: " << numCmps << '\n'); 2722 (void)numCmps; 2723 2724 // Get the Value to be switched on and default basic blocks, which will be 2725 // inserted into CaseBlock records, representing basic blocks in the binary 2726 // search tree. 2727 const Value *SV = SI.getCondition(); 2728 2729 // Push the initial CaseRec onto the worklist 2730 CaseRecVector WorkList; 2731 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2732 CaseRange(Cases.begin(),Cases.end()))); 2733 2734 while (!WorkList.empty()) { 2735 // Grab a record representing a case range to process off the worklist 2736 CaseRec CR = WorkList.back(); 2737 WorkList.pop_back(); 2738 2739 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2740 continue; 2741 2742 // If the range has few cases (two or less) emit a series of specific 2743 // tests. 2744 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2745 continue; 2746 2747 // If the switch has more than N blocks, and is at least 40% dense, and the 2748 // target supports indirect branches, then emit a jump table rather than 2749 // lowering the switch to a binary tree of conditional branches. 2750 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2751 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2752 continue; 2753 2754 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2755 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2756 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2757 } 2758 } 2759 2760 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2761 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2762 2763 // Update machine-CFG edges with unique successors. 2764 SmallSet<BasicBlock*, 32> Done; 2765 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2766 BasicBlock *BB = I.getSuccessor(i); 2767 bool Inserted = Done.insert(BB); 2768 if (!Inserted) 2769 continue; 2770 2771 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2772 addSuccessorWithWeight(IndirectBrMBB, Succ); 2773 } 2774 2775 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2776 MVT::Other, getControlRoot(), 2777 getValue(I.getAddress()))); 2778 } 2779 2780 void SelectionDAGBuilder::visitFSub(const User &I) { 2781 // -0.0 - X --> fneg 2782 Type *Ty = I.getType(); 2783 if (isa<Constant>(I.getOperand(0)) && 2784 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2785 SDValue Op2 = getValue(I.getOperand(1)); 2786 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2787 Op2.getValueType(), Op2)); 2788 return; 2789 } 2790 2791 visitBinary(I, ISD::FSUB); 2792 } 2793 2794 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2795 SDValue Op1 = getValue(I.getOperand(0)); 2796 SDValue Op2 = getValue(I.getOperand(1)); 2797 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2798 Op1.getValueType(), Op1, Op2)); 2799 } 2800 2801 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2802 SDValue Op1 = getValue(I.getOperand(0)); 2803 SDValue Op2 = getValue(I.getOperand(1)); 2804 2805 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2806 2807 // Coerce the shift amount to the right type if we can. 2808 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2809 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2810 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2811 SDLoc DL = getCurSDLoc(); 2812 2813 // If the operand is smaller than the shift count type, promote it. 2814 if (ShiftSize > Op2Size) 2815 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2816 2817 // If the operand is larger than the shift count type but the shift 2818 // count type has enough bits to represent any shift value, truncate 2819 // it now. This is a common case and it exposes the truncate to 2820 // optimization early. 2821 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2822 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2823 // Otherwise we'll need to temporarily settle for some other convenient 2824 // type. Type legalization will make adjustments once the shiftee is split. 2825 else 2826 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2827 } 2828 2829 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2830 Op1.getValueType(), Op1, Op2)); 2831 } 2832 2833 void SelectionDAGBuilder::visitSDiv(const User &I) { 2834 SDValue Op1 = getValue(I.getOperand(0)); 2835 SDValue Op2 = getValue(I.getOperand(1)); 2836 2837 // Turn exact SDivs into multiplications. 2838 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2839 // exact bit. 2840 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2841 !isa<ConstantSDNode>(Op1) && 2842 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2843 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2844 getCurSDLoc(), DAG)); 2845 else 2846 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2847 Op1, Op2)); 2848 } 2849 2850 void SelectionDAGBuilder::visitICmp(const User &I) { 2851 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2852 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2853 predicate = IC->getPredicate(); 2854 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2855 predicate = ICmpInst::Predicate(IC->getPredicate()); 2856 SDValue Op1 = getValue(I.getOperand(0)); 2857 SDValue Op2 = getValue(I.getOperand(1)); 2858 ISD::CondCode Opcode = getICmpCondCode(predicate); 2859 2860 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2861 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2862 } 2863 2864 void SelectionDAGBuilder::visitFCmp(const User &I) { 2865 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2866 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2867 predicate = FC->getPredicate(); 2868 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2869 predicate = FCmpInst::Predicate(FC->getPredicate()); 2870 SDValue Op1 = getValue(I.getOperand(0)); 2871 SDValue Op2 = getValue(I.getOperand(1)); 2872 ISD::CondCode Condition = getFCmpCondCode(predicate); 2873 if (TM.Options.NoNaNsFPMath) 2874 Condition = getFCmpCodeWithoutNaN(Condition); 2875 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2876 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2877 } 2878 2879 void SelectionDAGBuilder::visitSelect(const User &I) { 2880 SmallVector<EVT, 4> ValueVTs; 2881 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2882 unsigned NumValues = ValueVTs.size(); 2883 if (NumValues == 0) return; 2884 2885 SmallVector<SDValue, 4> Values(NumValues); 2886 SDValue Cond = getValue(I.getOperand(0)); 2887 SDValue TrueVal = getValue(I.getOperand(1)); 2888 SDValue FalseVal = getValue(I.getOperand(2)); 2889 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2890 ISD::VSELECT : ISD::SELECT; 2891 2892 for (unsigned i = 0; i != NumValues; ++i) 2893 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2894 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2895 Cond, 2896 SDValue(TrueVal.getNode(), 2897 TrueVal.getResNo() + i), 2898 SDValue(FalseVal.getNode(), 2899 FalseVal.getResNo() + i)); 2900 2901 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2902 DAG.getVTList(&ValueVTs[0], NumValues), 2903 &Values[0], NumValues)); 2904 } 2905 2906 void SelectionDAGBuilder::visitTrunc(const User &I) { 2907 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2908 SDValue N = getValue(I.getOperand(0)); 2909 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2910 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2911 } 2912 2913 void SelectionDAGBuilder::visitZExt(const User &I) { 2914 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2915 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2916 SDValue N = getValue(I.getOperand(0)); 2917 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2918 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2919 } 2920 2921 void SelectionDAGBuilder::visitSExt(const User &I) { 2922 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2923 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2924 SDValue N = getValue(I.getOperand(0)); 2925 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2926 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2927 } 2928 2929 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2930 // FPTrunc is never a no-op cast, no need to check 2931 SDValue N = getValue(I.getOperand(0)); 2932 const TargetLowering *TLI = TM.getTargetLowering(); 2933 EVT DestVT = TLI->getValueType(I.getType()); 2934 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2935 DestVT, N, 2936 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2937 } 2938 2939 void SelectionDAGBuilder::visitFPExt(const User &I) { 2940 // FPExt is never a no-op cast, no need to check 2941 SDValue N = getValue(I.getOperand(0)); 2942 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2943 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2944 } 2945 2946 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2947 // FPToUI is never a no-op cast, no need to check 2948 SDValue N = getValue(I.getOperand(0)); 2949 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2950 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2951 } 2952 2953 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2954 // FPToSI is never a no-op cast, no need to check 2955 SDValue N = getValue(I.getOperand(0)); 2956 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2957 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2958 } 2959 2960 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2961 // UIToFP is never a no-op cast, no need to check 2962 SDValue N = getValue(I.getOperand(0)); 2963 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2964 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2965 } 2966 2967 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2968 // SIToFP is never a no-op cast, no need to check 2969 SDValue N = getValue(I.getOperand(0)); 2970 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2971 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2972 } 2973 2974 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2975 // What to do depends on the size of the integer and the size of the pointer. 2976 // We can either truncate, zero extend, or no-op, accordingly. 2977 SDValue N = getValue(I.getOperand(0)); 2978 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2979 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2980 } 2981 2982 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2983 // What to do depends on the size of the integer and the size of the pointer. 2984 // We can either truncate, zero extend, or no-op, accordingly. 2985 SDValue N = getValue(I.getOperand(0)); 2986 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2987 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2988 } 2989 2990 void SelectionDAGBuilder::visitBitCast(const User &I) { 2991 SDValue N = getValue(I.getOperand(0)); 2992 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2993 2994 // BitCast assures us that source and destination are the same size so this is 2995 // either a BITCAST or a no-op. 2996 if (DestVT != N.getValueType()) 2997 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2998 DestVT, N)); // convert types. 2999 else if(ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 3000 setValue(&I, DAG.getConstant(C->getAPIntValue(), C->getValueType(0), 3001 /*isTarget=*/false, /*isOpaque*/true)); 3002 else 3003 setValue(&I, N); // noop cast. 3004 } 3005 3006 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3008 const Value *SV = I.getOperand(0); 3009 SDValue N = getValue(SV); 3010 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3011 3012 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3013 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3014 3015 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3016 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3017 3018 setValue(&I, N); 3019 } 3020 3021 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3023 SDValue InVec = getValue(I.getOperand(0)); 3024 SDValue InVal = getValue(I.getOperand(1)); 3025 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3026 getCurSDLoc(), TLI.getVectorIdxTy()); 3027 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3028 TM.getTargetLowering()->getValueType(I.getType()), 3029 InVec, InVal, InIdx)); 3030 } 3031 3032 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3034 SDValue InVec = getValue(I.getOperand(0)); 3035 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3036 getCurSDLoc(), TLI.getVectorIdxTy()); 3037 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3038 TM.getTargetLowering()->getValueType(I.getType()), 3039 InVec, InIdx)); 3040 } 3041 3042 // Utility for visitShuffleVector - Return true if every element in Mask, 3043 // beginning from position Pos and ending in Pos+Size, falls within the 3044 // specified sequential range [L, L+Pos). or is undef. 3045 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3046 unsigned Pos, unsigned Size, int Low) { 3047 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3048 if (Mask[i] >= 0 && Mask[i] != Low) 3049 return false; 3050 return true; 3051 } 3052 3053 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3054 SDValue Src1 = getValue(I.getOperand(0)); 3055 SDValue Src2 = getValue(I.getOperand(1)); 3056 3057 SmallVector<int, 8> Mask; 3058 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3059 unsigned MaskNumElts = Mask.size(); 3060 3061 const TargetLowering *TLI = TM.getTargetLowering(); 3062 EVT VT = TLI->getValueType(I.getType()); 3063 EVT SrcVT = Src1.getValueType(); 3064 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3065 3066 if (SrcNumElts == MaskNumElts) { 3067 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3068 &Mask[0])); 3069 return; 3070 } 3071 3072 // Normalize the shuffle vector since mask and vector length don't match. 3073 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3074 // Mask is longer than the source vectors and is a multiple of the source 3075 // vectors. We can use concatenate vector to make the mask and vectors 3076 // lengths match. 3077 if (SrcNumElts*2 == MaskNumElts) { 3078 // First check for Src1 in low and Src2 in high 3079 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3080 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3081 // The shuffle is concatenating two vectors together. 3082 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3083 VT, Src1, Src2)); 3084 return; 3085 } 3086 // Then check for Src2 in low and Src1 in high 3087 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3088 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3089 // The shuffle is concatenating two vectors together. 3090 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3091 VT, Src2, Src1)); 3092 return; 3093 } 3094 } 3095 3096 // Pad both vectors with undefs to make them the same length as the mask. 3097 unsigned NumConcat = MaskNumElts / SrcNumElts; 3098 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3099 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3100 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3101 3102 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3103 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3104 MOps1[0] = Src1; 3105 MOps2[0] = Src2; 3106 3107 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3108 getCurSDLoc(), VT, 3109 &MOps1[0], NumConcat); 3110 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3111 getCurSDLoc(), VT, 3112 &MOps2[0], NumConcat); 3113 3114 // Readjust mask for new input vector length. 3115 SmallVector<int, 8> MappedOps; 3116 for (unsigned i = 0; i != MaskNumElts; ++i) { 3117 int Idx = Mask[i]; 3118 if (Idx >= (int)SrcNumElts) 3119 Idx -= SrcNumElts - MaskNumElts; 3120 MappedOps.push_back(Idx); 3121 } 3122 3123 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3124 &MappedOps[0])); 3125 return; 3126 } 3127 3128 if (SrcNumElts > MaskNumElts) { 3129 // Analyze the access pattern of the vector to see if we can extract 3130 // two subvectors and do the shuffle. The analysis is done by calculating 3131 // the range of elements the mask access on both vectors. 3132 int MinRange[2] = { static_cast<int>(SrcNumElts), 3133 static_cast<int>(SrcNumElts)}; 3134 int MaxRange[2] = {-1, -1}; 3135 3136 for (unsigned i = 0; i != MaskNumElts; ++i) { 3137 int Idx = Mask[i]; 3138 unsigned Input = 0; 3139 if (Idx < 0) 3140 continue; 3141 3142 if (Idx >= (int)SrcNumElts) { 3143 Input = 1; 3144 Idx -= SrcNumElts; 3145 } 3146 if (Idx > MaxRange[Input]) 3147 MaxRange[Input] = Idx; 3148 if (Idx < MinRange[Input]) 3149 MinRange[Input] = Idx; 3150 } 3151 3152 // Check if the access is smaller than the vector size and can we find 3153 // a reasonable extract index. 3154 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3155 // Extract. 3156 int StartIdx[2]; // StartIdx to extract from 3157 for (unsigned Input = 0; Input < 2; ++Input) { 3158 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3159 RangeUse[Input] = 0; // Unused 3160 StartIdx[Input] = 0; 3161 continue; 3162 } 3163 3164 // Find a good start index that is a multiple of the mask length. Then 3165 // see if the rest of the elements are in range. 3166 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3167 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3168 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3169 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3170 } 3171 3172 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3173 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3174 return; 3175 } 3176 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3177 // Extract appropriate subvector and generate a vector shuffle 3178 for (unsigned Input = 0; Input < 2; ++Input) { 3179 SDValue &Src = Input == 0 ? Src1 : Src2; 3180 if (RangeUse[Input] == 0) 3181 Src = DAG.getUNDEF(VT); 3182 else 3183 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3184 Src, DAG.getConstant(StartIdx[Input], 3185 TLI->getVectorIdxTy())); 3186 } 3187 3188 // Calculate new mask. 3189 SmallVector<int, 8> MappedOps; 3190 for (unsigned i = 0; i != MaskNumElts; ++i) { 3191 int Idx = Mask[i]; 3192 if (Idx >= 0) { 3193 if (Idx < (int)SrcNumElts) 3194 Idx -= StartIdx[0]; 3195 else 3196 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3197 } 3198 MappedOps.push_back(Idx); 3199 } 3200 3201 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3202 &MappedOps[0])); 3203 return; 3204 } 3205 } 3206 3207 // We can't use either concat vectors or extract subvectors so fall back to 3208 // replacing the shuffle with extract and build vector. 3209 // to insert and build vector. 3210 EVT EltVT = VT.getVectorElementType(); 3211 EVT IdxVT = TLI->getVectorIdxTy(); 3212 SmallVector<SDValue,8> Ops; 3213 for (unsigned i = 0; i != MaskNumElts; ++i) { 3214 int Idx = Mask[i]; 3215 SDValue Res; 3216 3217 if (Idx < 0) { 3218 Res = DAG.getUNDEF(EltVT); 3219 } else { 3220 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3221 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3222 3223 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3224 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3225 } 3226 3227 Ops.push_back(Res); 3228 } 3229 3230 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3231 VT, &Ops[0], Ops.size())); 3232 } 3233 3234 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3235 const Value *Op0 = I.getOperand(0); 3236 const Value *Op1 = I.getOperand(1); 3237 Type *AggTy = I.getType(); 3238 Type *ValTy = Op1->getType(); 3239 bool IntoUndef = isa<UndefValue>(Op0); 3240 bool FromUndef = isa<UndefValue>(Op1); 3241 3242 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3243 3244 const TargetLowering *TLI = TM.getTargetLowering(); 3245 SmallVector<EVT, 4> AggValueVTs; 3246 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3247 SmallVector<EVT, 4> ValValueVTs; 3248 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3249 3250 unsigned NumAggValues = AggValueVTs.size(); 3251 unsigned NumValValues = ValValueVTs.size(); 3252 SmallVector<SDValue, 4> Values(NumAggValues); 3253 3254 SDValue Agg = getValue(Op0); 3255 unsigned i = 0; 3256 // Copy the beginning value(s) from the original aggregate. 3257 for (; i != LinearIndex; ++i) 3258 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3259 SDValue(Agg.getNode(), Agg.getResNo() + i); 3260 // Copy values from the inserted value(s). 3261 if (NumValValues) { 3262 SDValue Val = getValue(Op1); 3263 for (; i != LinearIndex + NumValValues; ++i) 3264 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3265 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3266 } 3267 // Copy remaining value(s) from the original aggregate. 3268 for (; i != NumAggValues; ++i) 3269 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3270 SDValue(Agg.getNode(), Agg.getResNo() + i); 3271 3272 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3273 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3274 &Values[0], NumAggValues)); 3275 } 3276 3277 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3278 const Value *Op0 = I.getOperand(0); 3279 Type *AggTy = Op0->getType(); 3280 Type *ValTy = I.getType(); 3281 bool OutOfUndef = isa<UndefValue>(Op0); 3282 3283 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3284 3285 const TargetLowering *TLI = TM.getTargetLowering(); 3286 SmallVector<EVT, 4> ValValueVTs; 3287 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3288 3289 unsigned NumValValues = ValValueVTs.size(); 3290 3291 // Ignore a extractvalue that produces an empty object 3292 if (!NumValValues) { 3293 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3294 return; 3295 } 3296 3297 SmallVector<SDValue, 4> Values(NumValValues); 3298 3299 SDValue Agg = getValue(Op0); 3300 // Copy out the selected value(s). 3301 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3302 Values[i - LinearIndex] = 3303 OutOfUndef ? 3304 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3305 SDValue(Agg.getNode(), Agg.getResNo() + i); 3306 3307 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3308 DAG.getVTList(&ValValueVTs[0], NumValValues), 3309 &Values[0], NumValValues)); 3310 } 3311 3312 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3313 Value *Op0 = I.getOperand(0); 3314 // Note that the pointer operand may be a vector of pointers. Take the scalar 3315 // element which holds a pointer. 3316 Type *Ty = Op0->getType()->getScalarType(); 3317 unsigned AS = Ty->getPointerAddressSpace(); 3318 SDValue N = getValue(Op0); 3319 3320 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3321 OI != E; ++OI) { 3322 const Value *Idx = *OI; 3323 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3324 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3325 if (Field) { 3326 // N = N + Offset 3327 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3328 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3329 DAG.getConstant(Offset, N.getValueType())); 3330 } 3331 3332 Ty = StTy->getElementType(Field); 3333 } else { 3334 Ty = cast<SequentialType>(Ty)->getElementType(); 3335 3336 // If this is a constant subscript, handle it quickly. 3337 const TargetLowering *TLI = TM.getTargetLowering(); 3338 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3339 if (CI->isZero()) continue; 3340 uint64_t Offs = 3341 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3342 SDValue OffsVal; 3343 EVT PTy = TLI->getPointerTy(AS); 3344 unsigned PtrBits = PTy.getSizeInBits(); 3345 if (PtrBits < 64) 3346 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3347 DAG.getConstant(Offs, MVT::i64)); 3348 else 3349 OffsVal = DAG.getConstant(Offs, PTy); 3350 3351 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3352 OffsVal); 3353 continue; 3354 } 3355 3356 // N = N + Idx * ElementSize; 3357 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3358 TD->getTypeAllocSize(Ty)); 3359 SDValue IdxN = getValue(Idx); 3360 3361 // If the index is smaller or larger than intptr_t, truncate or extend 3362 // it. 3363 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3364 3365 // If this is a multiply by a power of two, turn it into a shl 3366 // immediately. This is a very common case. 3367 if (ElementSize != 1) { 3368 if (ElementSize.isPowerOf2()) { 3369 unsigned Amt = ElementSize.logBase2(); 3370 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3371 N.getValueType(), IdxN, 3372 DAG.getConstant(Amt, IdxN.getValueType())); 3373 } else { 3374 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3375 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3376 N.getValueType(), IdxN, Scale); 3377 } 3378 } 3379 3380 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3381 N.getValueType(), N, IdxN); 3382 } 3383 } 3384 3385 setValue(&I, N); 3386 } 3387 3388 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3389 // If this is a fixed sized alloca in the entry block of the function, 3390 // allocate it statically on the stack. 3391 if (FuncInfo.StaticAllocaMap.count(&I)) 3392 return; // getValue will auto-populate this. 3393 3394 Type *Ty = I.getAllocatedType(); 3395 const TargetLowering *TLI = TM.getTargetLowering(); 3396 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3397 unsigned Align = 3398 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3399 I.getAlignment()); 3400 3401 SDValue AllocSize = getValue(I.getArraySize()); 3402 3403 EVT IntPtr = TLI->getPointerTy(); 3404 if (AllocSize.getValueType() != IntPtr) 3405 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3406 3407 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3408 AllocSize, 3409 DAG.getConstant(TySize, IntPtr)); 3410 3411 // Handle alignment. If the requested alignment is less than or equal to 3412 // the stack alignment, ignore it. If the size is greater than or equal to 3413 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3414 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3415 if (Align <= StackAlign) 3416 Align = 0; 3417 3418 // Round the size of the allocation up to the stack alignment size 3419 // by add SA-1 to the size. 3420 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3421 AllocSize.getValueType(), AllocSize, 3422 DAG.getIntPtrConstant(StackAlign-1)); 3423 3424 // Mask out the low bits for alignment purposes. 3425 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3426 AllocSize.getValueType(), AllocSize, 3427 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3428 3429 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3430 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3431 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3432 VTs, Ops, 3); 3433 setValue(&I, DSA); 3434 DAG.setRoot(DSA.getValue(1)); 3435 3436 // Inform the Frame Information that we have just allocated a variable-sized 3437 // object. 3438 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, &I); 3439 } 3440 3441 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3442 if (I.isAtomic()) 3443 return visitAtomicLoad(I); 3444 3445 const Value *SV = I.getOperand(0); 3446 SDValue Ptr = getValue(SV); 3447 3448 Type *Ty = I.getType(); 3449 3450 bool isVolatile = I.isVolatile(); 3451 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3452 bool isInvariant = I.getMetadata("invariant.load") != 0; 3453 unsigned Alignment = I.getAlignment(); 3454 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3455 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3456 3457 SmallVector<EVT, 4> ValueVTs; 3458 SmallVector<uint64_t, 4> Offsets; 3459 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3460 unsigned NumValues = ValueVTs.size(); 3461 if (NumValues == 0) 3462 return; 3463 3464 SDValue Root; 3465 bool ConstantMemory = false; 3466 if (isVolatile || NumValues > MaxParallelChains) 3467 // Serialize volatile loads with other side effects. 3468 Root = getRoot(); 3469 else if (AA->pointsToConstantMemory( 3470 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3471 // Do not serialize (non-volatile) loads of constant memory with anything. 3472 Root = DAG.getEntryNode(); 3473 ConstantMemory = true; 3474 } else { 3475 // Do not serialize non-volatile loads against each other. 3476 Root = DAG.getRoot(); 3477 } 3478 3479 const TargetLowering *TLI = TM.getTargetLowering(); 3480 if (isVolatile) 3481 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3482 3483 SmallVector<SDValue, 4> Values(NumValues); 3484 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3485 NumValues)); 3486 EVT PtrVT = Ptr.getValueType(); 3487 unsigned ChainI = 0; 3488 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3489 // Serializing loads here may result in excessive register pressure, and 3490 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3491 // could recover a bit by hoisting nodes upward in the chain by recognizing 3492 // they are side-effect free or do not alias. The optimizer should really 3493 // avoid this case by converting large object/array copies to llvm.memcpy 3494 // (MaxParallelChains should always remain as failsafe). 3495 if (ChainI == MaxParallelChains) { 3496 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3497 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3498 MVT::Other, &Chains[0], ChainI); 3499 Root = Chain; 3500 ChainI = 0; 3501 } 3502 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3503 PtrVT, Ptr, 3504 DAG.getConstant(Offsets[i], PtrVT)); 3505 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3506 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3507 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3508 Ranges); 3509 3510 Values[i] = L; 3511 Chains[ChainI] = L.getValue(1); 3512 } 3513 3514 if (!ConstantMemory) { 3515 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3516 MVT::Other, &Chains[0], ChainI); 3517 if (isVolatile) 3518 DAG.setRoot(Chain); 3519 else 3520 PendingLoads.push_back(Chain); 3521 } 3522 3523 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3524 DAG.getVTList(&ValueVTs[0], NumValues), 3525 &Values[0], NumValues)); 3526 } 3527 3528 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3529 if (I.isAtomic()) 3530 return visitAtomicStore(I); 3531 3532 const Value *SrcV = I.getOperand(0); 3533 const Value *PtrV = I.getOperand(1); 3534 3535 SmallVector<EVT, 4> ValueVTs; 3536 SmallVector<uint64_t, 4> Offsets; 3537 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3538 unsigned NumValues = ValueVTs.size(); 3539 if (NumValues == 0) 3540 return; 3541 3542 // Get the lowered operands. Note that we do this after 3543 // checking if NumResults is zero, because with zero results 3544 // the operands won't have values in the map. 3545 SDValue Src = getValue(SrcV); 3546 SDValue Ptr = getValue(PtrV); 3547 3548 SDValue Root = getRoot(); 3549 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3550 NumValues)); 3551 EVT PtrVT = Ptr.getValueType(); 3552 bool isVolatile = I.isVolatile(); 3553 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3554 unsigned Alignment = I.getAlignment(); 3555 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3556 3557 unsigned ChainI = 0; 3558 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3559 // See visitLoad comments. 3560 if (ChainI == MaxParallelChains) { 3561 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3562 MVT::Other, &Chains[0], ChainI); 3563 Root = Chain; 3564 ChainI = 0; 3565 } 3566 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3567 DAG.getConstant(Offsets[i], PtrVT)); 3568 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3569 SDValue(Src.getNode(), Src.getResNo() + i), 3570 Add, MachinePointerInfo(PtrV, Offsets[i]), 3571 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3572 Chains[ChainI] = St; 3573 } 3574 3575 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3576 MVT::Other, &Chains[0], ChainI); 3577 DAG.setRoot(StoreNode); 3578 } 3579 3580 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3581 SynchronizationScope Scope, 3582 bool Before, SDLoc dl, 3583 SelectionDAG &DAG, 3584 const TargetLowering &TLI) { 3585 // Fence, if necessary 3586 if (Before) { 3587 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3588 Order = Release; 3589 else if (Order == Acquire || Order == Monotonic) 3590 return Chain; 3591 } else { 3592 if (Order == AcquireRelease) 3593 Order = Acquire; 3594 else if (Order == Release || Order == Monotonic) 3595 return Chain; 3596 } 3597 SDValue Ops[3]; 3598 Ops[0] = Chain; 3599 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3600 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3601 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3602 } 3603 3604 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3605 SDLoc dl = getCurSDLoc(); 3606 AtomicOrdering Order = I.getOrdering(); 3607 SynchronizationScope Scope = I.getSynchScope(); 3608 3609 SDValue InChain = getRoot(); 3610 3611 const TargetLowering *TLI = TM.getTargetLowering(); 3612 if (TLI->getInsertFencesForAtomic()) 3613 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3614 DAG, *TLI); 3615 3616 SDValue L = 3617 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3618 getValue(I.getCompareOperand()).getSimpleValueType(), 3619 InChain, 3620 getValue(I.getPointerOperand()), 3621 getValue(I.getCompareOperand()), 3622 getValue(I.getNewValOperand()), 3623 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3624 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3625 Scope); 3626 3627 SDValue OutChain = L.getValue(1); 3628 3629 if (TLI->getInsertFencesForAtomic()) 3630 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3631 DAG, *TLI); 3632 3633 setValue(&I, L); 3634 DAG.setRoot(OutChain); 3635 } 3636 3637 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3638 SDLoc dl = getCurSDLoc(); 3639 ISD::NodeType NT; 3640 switch (I.getOperation()) { 3641 default: llvm_unreachable("Unknown atomicrmw operation"); 3642 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3643 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3644 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3645 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3646 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3647 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3648 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3649 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3650 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3651 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3652 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3653 } 3654 AtomicOrdering Order = I.getOrdering(); 3655 SynchronizationScope Scope = I.getSynchScope(); 3656 3657 SDValue InChain = getRoot(); 3658 3659 const TargetLowering *TLI = TM.getTargetLowering(); 3660 if (TLI->getInsertFencesForAtomic()) 3661 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3662 DAG, *TLI); 3663 3664 SDValue L = 3665 DAG.getAtomic(NT, dl, 3666 getValue(I.getValOperand()).getSimpleValueType(), 3667 InChain, 3668 getValue(I.getPointerOperand()), 3669 getValue(I.getValOperand()), 3670 I.getPointerOperand(), 0 /* Alignment */, 3671 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3672 Scope); 3673 3674 SDValue OutChain = L.getValue(1); 3675 3676 if (TLI->getInsertFencesForAtomic()) 3677 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3678 DAG, *TLI); 3679 3680 setValue(&I, L); 3681 DAG.setRoot(OutChain); 3682 } 3683 3684 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3685 SDLoc dl = getCurSDLoc(); 3686 const TargetLowering *TLI = TM.getTargetLowering(); 3687 SDValue Ops[3]; 3688 Ops[0] = getRoot(); 3689 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3690 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3691 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3692 } 3693 3694 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3695 SDLoc dl = getCurSDLoc(); 3696 AtomicOrdering Order = I.getOrdering(); 3697 SynchronizationScope Scope = I.getSynchScope(); 3698 3699 SDValue InChain = getRoot(); 3700 3701 const TargetLowering *TLI = TM.getTargetLowering(); 3702 EVT VT = TLI->getValueType(I.getType()); 3703 3704 if (I.getAlignment() < VT.getSizeInBits() / 8) 3705 report_fatal_error("Cannot generate unaligned atomic load"); 3706 3707 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3708 SDValue L = 3709 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3710 getValue(I.getPointerOperand()), 3711 I.getPointerOperand(), I.getAlignment(), 3712 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3713 Scope); 3714 3715 SDValue OutChain = L.getValue(1); 3716 3717 if (TLI->getInsertFencesForAtomic()) 3718 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3719 DAG, *TLI); 3720 3721 setValue(&I, L); 3722 DAG.setRoot(OutChain); 3723 } 3724 3725 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3726 SDLoc dl = getCurSDLoc(); 3727 3728 AtomicOrdering Order = I.getOrdering(); 3729 SynchronizationScope Scope = I.getSynchScope(); 3730 3731 SDValue InChain = getRoot(); 3732 3733 const TargetLowering *TLI = TM.getTargetLowering(); 3734 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3735 3736 if (I.getAlignment() < VT.getSizeInBits() / 8) 3737 report_fatal_error("Cannot generate unaligned atomic store"); 3738 3739 if (TLI->getInsertFencesForAtomic()) 3740 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3741 DAG, *TLI); 3742 3743 SDValue OutChain = 3744 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3745 InChain, 3746 getValue(I.getPointerOperand()), 3747 getValue(I.getValueOperand()), 3748 I.getPointerOperand(), I.getAlignment(), 3749 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3750 Scope); 3751 3752 if (TLI->getInsertFencesForAtomic()) 3753 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3754 DAG, *TLI); 3755 3756 DAG.setRoot(OutChain); 3757 } 3758 3759 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3760 /// node. 3761 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3762 unsigned Intrinsic) { 3763 bool HasChain = !I.doesNotAccessMemory(); 3764 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3765 3766 // Build the operand list. 3767 SmallVector<SDValue, 8> Ops; 3768 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3769 if (OnlyLoad) { 3770 // We don't need to serialize loads against other loads. 3771 Ops.push_back(DAG.getRoot()); 3772 } else { 3773 Ops.push_back(getRoot()); 3774 } 3775 } 3776 3777 // Info is set by getTgtMemInstrinsic 3778 TargetLowering::IntrinsicInfo Info; 3779 const TargetLowering *TLI = TM.getTargetLowering(); 3780 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3781 3782 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3783 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3784 Info.opc == ISD::INTRINSIC_W_CHAIN) 3785 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3786 3787 // Add all operands of the call to the operand list. 3788 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3789 SDValue Op = getValue(I.getArgOperand(i)); 3790 Ops.push_back(Op); 3791 } 3792 3793 SmallVector<EVT, 4> ValueVTs; 3794 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3795 3796 if (HasChain) 3797 ValueVTs.push_back(MVT::Other); 3798 3799 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3800 3801 // Create the node. 3802 SDValue Result; 3803 if (IsTgtIntrinsic) { 3804 // This is target intrinsic that touches memory 3805 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3806 VTs, &Ops[0], Ops.size(), 3807 Info.memVT, 3808 MachinePointerInfo(Info.ptrVal, Info.offset), 3809 Info.align, Info.vol, 3810 Info.readMem, Info.writeMem); 3811 } else if (!HasChain) { 3812 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3813 VTs, &Ops[0], Ops.size()); 3814 } else if (!I.getType()->isVoidTy()) { 3815 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3816 VTs, &Ops[0], Ops.size()); 3817 } else { 3818 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3819 VTs, &Ops[0], Ops.size()); 3820 } 3821 3822 if (HasChain) { 3823 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3824 if (OnlyLoad) 3825 PendingLoads.push_back(Chain); 3826 else 3827 DAG.setRoot(Chain); 3828 } 3829 3830 if (!I.getType()->isVoidTy()) { 3831 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3832 EVT VT = TLI->getValueType(PTy); 3833 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3834 } 3835 3836 setValue(&I, Result); 3837 } 3838 } 3839 3840 /// GetSignificand - Get the significand and build it into a floating-point 3841 /// number with exponent of 1: 3842 /// 3843 /// Op = (Op & 0x007fffff) | 0x3f800000; 3844 /// 3845 /// where Op is the hexadecimal representation of floating point value. 3846 static SDValue 3847 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3848 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3849 DAG.getConstant(0x007fffff, MVT::i32)); 3850 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3851 DAG.getConstant(0x3f800000, MVT::i32)); 3852 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3853 } 3854 3855 /// GetExponent - Get the exponent: 3856 /// 3857 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3858 /// 3859 /// where Op is the hexadecimal representation of floating point value. 3860 static SDValue 3861 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3862 SDLoc dl) { 3863 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3864 DAG.getConstant(0x7f800000, MVT::i32)); 3865 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3866 DAG.getConstant(23, TLI.getPointerTy())); 3867 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3868 DAG.getConstant(127, MVT::i32)); 3869 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3870 } 3871 3872 /// getF32Constant - Get 32-bit floating point constant. 3873 static SDValue 3874 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3875 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3876 MVT::f32); 3877 } 3878 3879 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3880 /// limited-precision mode. 3881 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3882 const TargetLowering &TLI) { 3883 if (Op.getValueType() == MVT::f32 && 3884 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3885 3886 // Put the exponent in the right bit position for later addition to the 3887 // final result: 3888 // 3889 // #define LOG2OFe 1.4426950f 3890 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3891 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3892 getF32Constant(DAG, 0x3fb8aa3b)); 3893 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3894 3895 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3896 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3897 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3898 3899 // IntegerPartOfX <<= 23; 3900 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3901 DAG.getConstant(23, TLI.getPointerTy())); 3902 3903 SDValue TwoToFracPartOfX; 3904 if (LimitFloatPrecision <= 6) { 3905 // For floating-point precision of 6: 3906 // 3907 // TwoToFractionalPartOfX = 3908 // 0.997535578f + 3909 // (0.735607626f + 0.252464424f * x) * x; 3910 // 3911 // error 0.0144103317, which is 6 bits 3912 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3913 getF32Constant(DAG, 0x3e814304)); 3914 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3915 getF32Constant(DAG, 0x3f3c50c8)); 3916 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3917 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3918 getF32Constant(DAG, 0x3f7f5e7e)); 3919 } else if (LimitFloatPrecision <= 12) { 3920 // For floating-point precision of 12: 3921 // 3922 // TwoToFractionalPartOfX = 3923 // 0.999892986f + 3924 // (0.696457318f + 3925 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3926 // 3927 // 0.000107046256 error, which is 13 to 14 bits 3928 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3929 getF32Constant(DAG, 0x3da235e3)); 3930 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3931 getF32Constant(DAG, 0x3e65b8f3)); 3932 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3933 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3934 getF32Constant(DAG, 0x3f324b07)); 3935 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3936 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3937 getF32Constant(DAG, 0x3f7ff8fd)); 3938 } else { // LimitFloatPrecision <= 18 3939 // For floating-point precision of 18: 3940 // 3941 // TwoToFractionalPartOfX = 3942 // 0.999999982f + 3943 // (0.693148872f + 3944 // (0.240227044f + 3945 // (0.554906021e-1f + 3946 // (0.961591928e-2f + 3947 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3948 // 3949 // error 2.47208000*10^(-7), which is better than 18 bits 3950 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3951 getF32Constant(DAG, 0x3924b03e)); 3952 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3953 getF32Constant(DAG, 0x3ab24b87)); 3954 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3955 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3956 getF32Constant(DAG, 0x3c1d8c17)); 3957 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3958 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3959 getF32Constant(DAG, 0x3d634a1d)); 3960 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3961 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3962 getF32Constant(DAG, 0x3e75fe14)); 3963 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3964 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3965 getF32Constant(DAG, 0x3f317234)); 3966 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3967 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3968 getF32Constant(DAG, 0x3f800000)); 3969 } 3970 3971 // Add the exponent into the result in integer domain. 3972 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3973 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3974 DAG.getNode(ISD::ADD, dl, MVT::i32, 3975 t13, IntegerPartOfX)); 3976 } 3977 3978 // No special expansion. 3979 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3980 } 3981 3982 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3983 /// limited-precision mode. 3984 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3985 const TargetLowering &TLI) { 3986 if (Op.getValueType() == MVT::f32 && 3987 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3988 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3989 3990 // Scale the exponent by log(2) [0.69314718f]. 3991 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3992 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3993 getF32Constant(DAG, 0x3f317218)); 3994 3995 // Get the significand and build it into a floating-point number with 3996 // exponent of 1. 3997 SDValue X = GetSignificand(DAG, Op1, dl); 3998 3999 SDValue LogOfMantissa; 4000 if (LimitFloatPrecision <= 6) { 4001 // For floating-point precision of 6: 4002 // 4003 // LogofMantissa = 4004 // -1.1609546f + 4005 // (1.4034025f - 0.23903021f * x) * x; 4006 // 4007 // error 0.0034276066, which is better than 8 bits 4008 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4009 getF32Constant(DAG, 0xbe74c456)); 4010 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4011 getF32Constant(DAG, 0x3fb3a2b1)); 4012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4013 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4014 getF32Constant(DAG, 0x3f949a29)); 4015 } else if (LimitFloatPrecision <= 12) { 4016 // For floating-point precision of 12: 4017 // 4018 // LogOfMantissa = 4019 // -1.7417939f + 4020 // (2.8212026f + 4021 // (-1.4699568f + 4022 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4023 // 4024 // error 0.000061011436, which is 14 bits 4025 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4026 getF32Constant(DAG, 0xbd67b6d6)); 4027 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4028 getF32Constant(DAG, 0x3ee4f4b8)); 4029 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4030 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4031 getF32Constant(DAG, 0x3fbc278b)); 4032 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4033 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4034 getF32Constant(DAG, 0x40348e95)); 4035 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4036 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4037 getF32Constant(DAG, 0x3fdef31a)); 4038 } else { // LimitFloatPrecision <= 18 4039 // For floating-point precision of 18: 4040 // 4041 // LogOfMantissa = 4042 // -2.1072184f + 4043 // (4.2372794f + 4044 // (-3.7029485f + 4045 // (2.2781945f + 4046 // (-0.87823314f + 4047 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4048 // 4049 // error 0.0000023660568, which is better than 18 bits 4050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4051 getF32Constant(DAG, 0xbc91e5ac)); 4052 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4053 getF32Constant(DAG, 0x3e4350aa)); 4054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4055 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4056 getF32Constant(DAG, 0x3f60d3e3)); 4057 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4058 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4059 getF32Constant(DAG, 0x4011cdf0)); 4060 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4061 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4062 getF32Constant(DAG, 0x406cfd1c)); 4063 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4064 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4065 getF32Constant(DAG, 0x408797cb)); 4066 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4067 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4068 getF32Constant(DAG, 0x4006dcab)); 4069 } 4070 4071 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4072 } 4073 4074 // No special expansion. 4075 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4076 } 4077 4078 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4079 /// limited-precision mode. 4080 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4081 const TargetLowering &TLI) { 4082 if (Op.getValueType() == MVT::f32 && 4083 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4084 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4085 4086 // Get the exponent. 4087 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4088 4089 // Get the significand and build it into a floating-point number with 4090 // exponent of 1. 4091 SDValue X = GetSignificand(DAG, Op1, dl); 4092 4093 // Different possible minimax approximations of significand in 4094 // floating-point for various degrees of accuracy over [1,2]. 4095 SDValue Log2ofMantissa; 4096 if (LimitFloatPrecision <= 6) { 4097 // For floating-point precision of 6: 4098 // 4099 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4100 // 4101 // error 0.0049451742, which is more than 7 bits 4102 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4103 getF32Constant(DAG, 0xbeb08fe0)); 4104 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4105 getF32Constant(DAG, 0x40019463)); 4106 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4107 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4108 getF32Constant(DAG, 0x3fd6633d)); 4109 } else if (LimitFloatPrecision <= 12) { 4110 // For floating-point precision of 12: 4111 // 4112 // Log2ofMantissa = 4113 // -2.51285454f + 4114 // (4.07009056f + 4115 // (-2.12067489f + 4116 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4117 // 4118 // error 0.0000876136000, which is better than 13 bits 4119 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4120 getF32Constant(DAG, 0xbda7262e)); 4121 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4122 getF32Constant(DAG, 0x3f25280b)); 4123 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4124 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4125 getF32Constant(DAG, 0x4007b923)); 4126 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4127 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4128 getF32Constant(DAG, 0x40823e2f)); 4129 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4130 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4131 getF32Constant(DAG, 0x4020d29c)); 4132 } else { // LimitFloatPrecision <= 18 4133 // For floating-point precision of 18: 4134 // 4135 // Log2ofMantissa = 4136 // -3.0400495f + 4137 // (6.1129976f + 4138 // (-5.3420409f + 4139 // (3.2865683f + 4140 // (-1.2669343f + 4141 // (0.27515199f - 4142 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4143 // 4144 // error 0.0000018516, which is better than 18 bits 4145 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4146 getF32Constant(DAG, 0xbcd2769e)); 4147 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4148 getF32Constant(DAG, 0x3e8ce0b9)); 4149 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4150 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4151 getF32Constant(DAG, 0x3fa22ae7)); 4152 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4153 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4154 getF32Constant(DAG, 0x40525723)); 4155 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4156 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4157 getF32Constant(DAG, 0x40aaf200)); 4158 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4159 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4160 getF32Constant(DAG, 0x40c39dad)); 4161 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4162 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4163 getF32Constant(DAG, 0x4042902c)); 4164 } 4165 4166 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4167 } 4168 4169 // No special expansion. 4170 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4171 } 4172 4173 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4174 /// limited-precision mode. 4175 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4176 const TargetLowering &TLI) { 4177 if (Op.getValueType() == MVT::f32 && 4178 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4179 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4180 4181 // Scale the exponent by log10(2) [0.30102999f]. 4182 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4183 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4184 getF32Constant(DAG, 0x3e9a209a)); 4185 4186 // Get the significand and build it into a floating-point number with 4187 // exponent of 1. 4188 SDValue X = GetSignificand(DAG, Op1, dl); 4189 4190 SDValue Log10ofMantissa; 4191 if (LimitFloatPrecision <= 6) { 4192 // For floating-point precision of 6: 4193 // 4194 // Log10ofMantissa = 4195 // -0.50419619f + 4196 // (0.60948995f - 0.10380950f * x) * x; 4197 // 4198 // error 0.0014886165, which is 6 bits 4199 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4200 getF32Constant(DAG, 0xbdd49a13)); 4201 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4202 getF32Constant(DAG, 0x3f1c0789)); 4203 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4204 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4205 getF32Constant(DAG, 0x3f011300)); 4206 } else if (LimitFloatPrecision <= 12) { 4207 // For floating-point precision of 12: 4208 // 4209 // Log10ofMantissa = 4210 // -0.64831180f + 4211 // (0.91751397f + 4212 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4213 // 4214 // error 0.00019228036, which is better than 12 bits 4215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4216 getF32Constant(DAG, 0x3d431f31)); 4217 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4218 getF32Constant(DAG, 0x3ea21fb2)); 4219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4220 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4221 getF32Constant(DAG, 0x3f6ae232)); 4222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4223 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4224 getF32Constant(DAG, 0x3f25f7c3)); 4225 } else { // LimitFloatPrecision <= 18 4226 // For floating-point precision of 18: 4227 // 4228 // Log10ofMantissa = 4229 // -0.84299375f + 4230 // (1.5327582f + 4231 // (-1.0688956f + 4232 // (0.49102474f + 4233 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4234 // 4235 // error 0.0000037995730, which is better than 18 bits 4236 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4237 getF32Constant(DAG, 0x3c5d51ce)); 4238 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4239 getF32Constant(DAG, 0x3e00685a)); 4240 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4241 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4242 getF32Constant(DAG, 0x3efb6798)); 4243 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4244 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4245 getF32Constant(DAG, 0x3f88d192)); 4246 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4247 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4248 getF32Constant(DAG, 0x3fc4316c)); 4249 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4250 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4251 getF32Constant(DAG, 0x3f57ce70)); 4252 } 4253 4254 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4255 } 4256 4257 // No special expansion. 4258 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4259 } 4260 4261 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4262 /// limited-precision mode. 4263 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4264 const TargetLowering &TLI) { 4265 if (Op.getValueType() == MVT::f32 && 4266 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4267 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4268 4269 // FractionalPartOfX = x - (float)IntegerPartOfX; 4270 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4271 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4272 4273 // IntegerPartOfX <<= 23; 4274 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4275 DAG.getConstant(23, TLI.getPointerTy())); 4276 4277 SDValue TwoToFractionalPartOfX; 4278 if (LimitFloatPrecision <= 6) { 4279 // For floating-point precision of 6: 4280 // 4281 // TwoToFractionalPartOfX = 4282 // 0.997535578f + 4283 // (0.735607626f + 0.252464424f * x) * x; 4284 // 4285 // error 0.0144103317, which is 6 bits 4286 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4287 getF32Constant(DAG, 0x3e814304)); 4288 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4289 getF32Constant(DAG, 0x3f3c50c8)); 4290 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4291 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4292 getF32Constant(DAG, 0x3f7f5e7e)); 4293 } else if (LimitFloatPrecision <= 12) { 4294 // For floating-point precision of 12: 4295 // 4296 // TwoToFractionalPartOfX = 4297 // 0.999892986f + 4298 // (0.696457318f + 4299 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4300 // 4301 // error 0.000107046256, which is 13 to 14 bits 4302 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4303 getF32Constant(DAG, 0x3da235e3)); 4304 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4305 getF32Constant(DAG, 0x3e65b8f3)); 4306 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4307 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4308 getF32Constant(DAG, 0x3f324b07)); 4309 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4310 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4311 getF32Constant(DAG, 0x3f7ff8fd)); 4312 } else { // LimitFloatPrecision <= 18 4313 // For floating-point precision of 18: 4314 // 4315 // TwoToFractionalPartOfX = 4316 // 0.999999982f + 4317 // (0.693148872f + 4318 // (0.240227044f + 4319 // (0.554906021e-1f + 4320 // (0.961591928e-2f + 4321 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4322 // error 2.47208000*10^(-7), which is better than 18 bits 4323 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4324 getF32Constant(DAG, 0x3924b03e)); 4325 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4326 getF32Constant(DAG, 0x3ab24b87)); 4327 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4328 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4329 getF32Constant(DAG, 0x3c1d8c17)); 4330 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4331 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4332 getF32Constant(DAG, 0x3d634a1d)); 4333 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4334 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4335 getF32Constant(DAG, 0x3e75fe14)); 4336 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4337 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4338 getF32Constant(DAG, 0x3f317234)); 4339 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4340 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4341 getF32Constant(DAG, 0x3f800000)); 4342 } 4343 4344 // Add the exponent into the result in integer domain. 4345 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4346 TwoToFractionalPartOfX); 4347 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4348 DAG.getNode(ISD::ADD, dl, MVT::i32, 4349 t13, IntegerPartOfX)); 4350 } 4351 4352 // No special expansion. 4353 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4354 } 4355 4356 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4357 /// limited-precision mode with x == 10.0f. 4358 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4359 SelectionDAG &DAG, const TargetLowering &TLI) { 4360 bool IsExp10 = false; 4361 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4362 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4363 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4364 APFloat Ten(10.0f); 4365 IsExp10 = LHSC->isExactlyValue(Ten); 4366 } 4367 } 4368 4369 if (IsExp10) { 4370 // Put the exponent in the right bit position for later addition to the 4371 // final result: 4372 // 4373 // #define LOG2OF10 3.3219281f 4374 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4375 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4376 getF32Constant(DAG, 0x40549a78)); 4377 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4378 4379 // FractionalPartOfX = x - (float)IntegerPartOfX; 4380 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4381 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4382 4383 // IntegerPartOfX <<= 23; 4384 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4385 DAG.getConstant(23, TLI.getPointerTy())); 4386 4387 SDValue TwoToFractionalPartOfX; 4388 if (LimitFloatPrecision <= 6) { 4389 // For floating-point precision of 6: 4390 // 4391 // twoToFractionalPartOfX = 4392 // 0.997535578f + 4393 // (0.735607626f + 0.252464424f * x) * x; 4394 // 4395 // error 0.0144103317, which is 6 bits 4396 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4397 getF32Constant(DAG, 0x3e814304)); 4398 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4399 getF32Constant(DAG, 0x3f3c50c8)); 4400 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4401 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4402 getF32Constant(DAG, 0x3f7f5e7e)); 4403 } else if (LimitFloatPrecision <= 12) { 4404 // For floating-point precision of 12: 4405 // 4406 // TwoToFractionalPartOfX = 4407 // 0.999892986f + 4408 // (0.696457318f + 4409 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4410 // 4411 // error 0.000107046256, which is 13 to 14 bits 4412 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4413 getF32Constant(DAG, 0x3da235e3)); 4414 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4415 getF32Constant(DAG, 0x3e65b8f3)); 4416 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4417 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4418 getF32Constant(DAG, 0x3f324b07)); 4419 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4420 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4421 getF32Constant(DAG, 0x3f7ff8fd)); 4422 } else { // LimitFloatPrecision <= 18 4423 // For floating-point precision of 18: 4424 // 4425 // TwoToFractionalPartOfX = 4426 // 0.999999982f + 4427 // (0.693148872f + 4428 // (0.240227044f + 4429 // (0.554906021e-1f + 4430 // (0.961591928e-2f + 4431 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4432 // error 2.47208000*10^(-7), which is better than 18 bits 4433 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4434 getF32Constant(DAG, 0x3924b03e)); 4435 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4436 getF32Constant(DAG, 0x3ab24b87)); 4437 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4438 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4439 getF32Constant(DAG, 0x3c1d8c17)); 4440 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4441 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4442 getF32Constant(DAG, 0x3d634a1d)); 4443 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4444 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4445 getF32Constant(DAG, 0x3e75fe14)); 4446 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4447 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4448 getF32Constant(DAG, 0x3f317234)); 4449 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4450 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4451 getF32Constant(DAG, 0x3f800000)); 4452 } 4453 4454 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4455 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4456 DAG.getNode(ISD::ADD, dl, MVT::i32, 4457 t13, IntegerPartOfX)); 4458 } 4459 4460 // No special expansion. 4461 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4462 } 4463 4464 4465 /// ExpandPowI - Expand a llvm.powi intrinsic. 4466 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4467 SelectionDAG &DAG) { 4468 // If RHS is a constant, we can expand this out to a multiplication tree, 4469 // otherwise we end up lowering to a call to __powidf2 (for example). When 4470 // optimizing for size, we only want to do this if the expansion would produce 4471 // a small number of multiplies, otherwise we do the full expansion. 4472 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4473 // Get the exponent as a positive value. 4474 unsigned Val = RHSC->getSExtValue(); 4475 if ((int)Val < 0) Val = -Val; 4476 4477 // powi(x, 0) -> 1.0 4478 if (Val == 0) 4479 return DAG.getConstantFP(1.0, LHS.getValueType()); 4480 4481 const Function *F = DAG.getMachineFunction().getFunction(); 4482 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4483 Attribute::OptimizeForSize) || 4484 // If optimizing for size, don't insert too many multiplies. This 4485 // inserts up to 5 multiplies. 4486 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4487 // We use the simple binary decomposition method to generate the multiply 4488 // sequence. There are more optimal ways to do this (for example, 4489 // powi(x,15) generates one more multiply than it should), but this has 4490 // the benefit of being both really simple and much better than a libcall. 4491 SDValue Res; // Logically starts equal to 1.0 4492 SDValue CurSquare = LHS; 4493 while (Val) { 4494 if (Val & 1) { 4495 if (Res.getNode()) 4496 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4497 else 4498 Res = CurSquare; // 1.0*CurSquare. 4499 } 4500 4501 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4502 CurSquare, CurSquare); 4503 Val >>= 1; 4504 } 4505 4506 // If the original was negative, invert the result, producing 1/(x*x*x). 4507 if (RHSC->getSExtValue() < 0) 4508 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4509 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4510 return Res; 4511 } 4512 } 4513 4514 // Otherwise, expand to a libcall. 4515 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4516 } 4517 4518 // getTruncatedArgReg - Find underlying register used for an truncated 4519 // argument. 4520 static unsigned getTruncatedArgReg(const SDValue &N) { 4521 if (N.getOpcode() != ISD::TRUNCATE) 4522 return 0; 4523 4524 const SDValue &Ext = N.getOperand(0); 4525 if (Ext.getOpcode() == ISD::AssertZext || 4526 Ext.getOpcode() == ISD::AssertSext) { 4527 const SDValue &CFR = Ext.getOperand(0); 4528 if (CFR.getOpcode() == ISD::CopyFromReg) 4529 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4530 if (CFR.getOpcode() == ISD::TRUNCATE) 4531 return getTruncatedArgReg(CFR); 4532 } 4533 return 0; 4534 } 4535 4536 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4537 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4538 /// At the end of instruction selection, they will be inserted to the entry BB. 4539 bool 4540 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4541 int64_t Offset, 4542 const SDValue &N) { 4543 const Argument *Arg = dyn_cast<Argument>(V); 4544 if (!Arg) 4545 return false; 4546 4547 MachineFunction &MF = DAG.getMachineFunction(); 4548 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4549 4550 // Ignore inlined function arguments here. 4551 DIVariable DV(Variable); 4552 if (DV.isInlinedFnArgument(MF.getFunction())) 4553 return false; 4554 4555 Optional<MachineOperand> Op; 4556 // Some arguments' frame index is recorded during argument lowering. 4557 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4558 Op = MachineOperand::CreateFI(FI); 4559 4560 if (!Op && N.getNode()) { 4561 unsigned Reg; 4562 if (N.getOpcode() == ISD::CopyFromReg) 4563 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4564 else 4565 Reg = getTruncatedArgReg(N); 4566 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4567 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4568 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4569 if (PR) 4570 Reg = PR; 4571 } 4572 if (Reg) 4573 Op = MachineOperand::CreateReg(Reg, false); 4574 } 4575 4576 if (!Op) { 4577 // Check if ValueMap has reg number. 4578 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4579 if (VMI != FuncInfo.ValueMap.end()) 4580 Op = MachineOperand::CreateReg(VMI->second, false); 4581 } 4582 4583 if (!Op && N.getNode()) 4584 // Check if frame index is available. 4585 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4586 if (FrameIndexSDNode *FINode = 4587 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4588 Op = MachineOperand::CreateFI(FINode->getIndex()); 4589 4590 if (!Op) 4591 return false; 4592 4593 // FIXME: This does not handle register-indirect values at offset 0. 4594 bool IsIndirect = Offset != 0; 4595 if (Op->isReg()) 4596 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4597 TII->get(TargetOpcode::DBG_VALUE), 4598 IsIndirect, 4599 Op->getReg(), Offset, Variable)); 4600 else 4601 FuncInfo.ArgDbgValues.push_back( 4602 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4603 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4604 4605 return true; 4606 } 4607 4608 // VisualStudio defines setjmp as _setjmp 4609 #if defined(_MSC_VER) && defined(setjmp) && \ 4610 !defined(setjmp_undefined_for_msvc) 4611 # pragma push_macro("setjmp") 4612 # undef setjmp 4613 # define setjmp_undefined_for_msvc 4614 #endif 4615 4616 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4617 /// we want to emit this as a call to a named external function, return the name 4618 /// otherwise lower it and return null. 4619 const char * 4620 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4621 const TargetLowering *TLI = TM.getTargetLowering(); 4622 SDLoc sdl = getCurSDLoc(); 4623 DebugLoc dl = getCurDebugLoc(); 4624 SDValue Res; 4625 4626 switch (Intrinsic) { 4627 default: 4628 // By default, turn this into a target intrinsic node. 4629 visitTargetIntrinsic(I, Intrinsic); 4630 return 0; 4631 case Intrinsic::vastart: visitVAStart(I); return 0; 4632 case Intrinsic::vaend: visitVAEnd(I); return 0; 4633 case Intrinsic::vacopy: visitVACopy(I); return 0; 4634 case Intrinsic::returnaddress: 4635 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4636 getValue(I.getArgOperand(0)))); 4637 return 0; 4638 case Intrinsic::frameaddress: 4639 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4640 getValue(I.getArgOperand(0)))); 4641 return 0; 4642 case Intrinsic::setjmp: 4643 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4644 case Intrinsic::longjmp: 4645 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4646 case Intrinsic::memcpy: { 4647 // Assert for address < 256 since we support only user defined address 4648 // spaces. 4649 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4650 < 256 && 4651 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4652 < 256 && 4653 "Unknown address space"); 4654 SDValue Op1 = getValue(I.getArgOperand(0)); 4655 SDValue Op2 = getValue(I.getArgOperand(1)); 4656 SDValue Op3 = getValue(I.getArgOperand(2)); 4657 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4658 if (!Align) 4659 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4660 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4661 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4662 MachinePointerInfo(I.getArgOperand(0)), 4663 MachinePointerInfo(I.getArgOperand(1)))); 4664 return 0; 4665 } 4666 case Intrinsic::memset: { 4667 // Assert for address < 256 since we support only user defined address 4668 // spaces. 4669 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4670 < 256 && 4671 "Unknown address space"); 4672 SDValue Op1 = getValue(I.getArgOperand(0)); 4673 SDValue Op2 = getValue(I.getArgOperand(1)); 4674 SDValue Op3 = getValue(I.getArgOperand(2)); 4675 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4676 if (!Align) 4677 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4678 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4679 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4680 MachinePointerInfo(I.getArgOperand(0)))); 4681 return 0; 4682 } 4683 case Intrinsic::memmove: { 4684 // Assert for address < 256 since we support only user defined address 4685 // spaces. 4686 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4687 < 256 && 4688 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4689 < 256 && 4690 "Unknown address space"); 4691 SDValue Op1 = getValue(I.getArgOperand(0)); 4692 SDValue Op2 = getValue(I.getArgOperand(1)); 4693 SDValue Op3 = getValue(I.getArgOperand(2)); 4694 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4695 if (!Align) 4696 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4697 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4698 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4699 MachinePointerInfo(I.getArgOperand(0)), 4700 MachinePointerInfo(I.getArgOperand(1)))); 4701 return 0; 4702 } 4703 case Intrinsic::dbg_declare: { 4704 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4705 MDNode *Variable = DI.getVariable(); 4706 const Value *Address = DI.getAddress(); 4707 DIVariable DIVar(Variable); 4708 assert((!DIVar || DIVar.isVariable()) && 4709 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4710 if (!Address || !DIVar) { 4711 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4712 return 0; 4713 } 4714 4715 // Check if address has undef value. 4716 if (isa<UndefValue>(Address) || 4717 (Address->use_empty() && !isa<Argument>(Address))) { 4718 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4719 return 0; 4720 } 4721 4722 SDValue &N = NodeMap[Address]; 4723 if (!N.getNode() && isa<Argument>(Address)) 4724 // Check unused arguments map. 4725 N = UnusedArgNodeMap[Address]; 4726 SDDbgValue *SDV; 4727 if (N.getNode()) { 4728 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4729 Address = BCI->getOperand(0); 4730 // Parameters are handled specially. 4731 bool isParameter = 4732 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4733 isa<Argument>(Address)); 4734 4735 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4736 4737 if (isParameter && !AI) { 4738 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4739 if (FINode) 4740 // Byval parameter. We have a frame index at this point. 4741 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4742 0, dl, SDNodeOrder); 4743 else { 4744 // Address is an argument, so try to emit its dbg value using 4745 // virtual register info from the FuncInfo.ValueMap. 4746 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4747 return 0; 4748 } 4749 } else if (AI) 4750 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4751 0, dl, SDNodeOrder); 4752 else { 4753 // Can't do anything with other non-AI cases yet. 4754 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4755 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4756 DEBUG(Address->dump()); 4757 return 0; 4758 } 4759 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4760 } else { 4761 // If Address is an argument then try to emit its dbg value using 4762 // virtual register info from the FuncInfo.ValueMap. 4763 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4764 // If variable is pinned by a alloca in dominating bb then 4765 // use StaticAllocaMap. 4766 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4767 if (AI->getParent() != DI.getParent()) { 4768 DenseMap<const AllocaInst*, int>::iterator SI = 4769 FuncInfo.StaticAllocaMap.find(AI); 4770 if (SI != FuncInfo.StaticAllocaMap.end()) { 4771 SDV = DAG.getDbgValue(Variable, SI->second, 4772 0, dl, SDNodeOrder); 4773 DAG.AddDbgValue(SDV, 0, false); 4774 return 0; 4775 } 4776 } 4777 } 4778 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4779 } 4780 } 4781 return 0; 4782 } 4783 case Intrinsic::dbg_value: { 4784 const DbgValueInst &DI = cast<DbgValueInst>(I); 4785 DIVariable DIVar(DI.getVariable()); 4786 assert((!DIVar || DIVar.isVariable()) && 4787 "Variable in DbgValueInst should be either null or a DIVariable."); 4788 if (!DIVar) 4789 return 0; 4790 4791 MDNode *Variable = DI.getVariable(); 4792 uint64_t Offset = DI.getOffset(); 4793 const Value *V = DI.getValue(); 4794 if (!V) 4795 return 0; 4796 4797 SDDbgValue *SDV; 4798 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4799 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4800 DAG.AddDbgValue(SDV, 0, false); 4801 } else { 4802 // Do not use getValue() in here; we don't want to generate code at 4803 // this point if it hasn't been done yet. 4804 SDValue N = NodeMap[V]; 4805 if (!N.getNode() && isa<Argument>(V)) 4806 // Check unused arguments map. 4807 N = UnusedArgNodeMap[V]; 4808 if (N.getNode()) { 4809 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4810 SDV = DAG.getDbgValue(Variable, N.getNode(), 4811 N.getResNo(), Offset, dl, SDNodeOrder); 4812 DAG.AddDbgValue(SDV, N.getNode(), false); 4813 } 4814 } else if (!V->use_empty() ) { 4815 // Do not call getValue(V) yet, as we don't want to generate code. 4816 // Remember it for later. 4817 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4818 DanglingDebugInfoMap[V] = DDI; 4819 } else { 4820 // We may expand this to cover more cases. One case where we have no 4821 // data available is an unreferenced parameter. 4822 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4823 } 4824 } 4825 4826 // Build a debug info table entry. 4827 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4828 V = BCI->getOperand(0); 4829 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4830 // Don't handle byval struct arguments or VLAs, for example. 4831 if (!AI) { 4832 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4833 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4834 return 0; 4835 } 4836 DenseMap<const AllocaInst*, int>::iterator SI = 4837 FuncInfo.StaticAllocaMap.find(AI); 4838 if (SI == FuncInfo.StaticAllocaMap.end()) 4839 return 0; // VLAs. 4840 int FI = SI->second; 4841 4842 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4843 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4844 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4845 return 0; 4846 } 4847 4848 case Intrinsic::eh_typeid_for: { 4849 // Find the type id for the given typeinfo. 4850 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4851 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4852 Res = DAG.getConstant(TypeID, MVT::i32); 4853 setValue(&I, Res); 4854 return 0; 4855 } 4856 4857 case Intrinsic::eh_return_i32: 4858 case Intrinsic::eh_return_i64: 4859 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4860 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4861 MVT::Other, 4862 getControlRoot(), 4863 getValue(I.getArgOperand(0)), 4864 getValue(I.getArgOperand(1)))); 4865 return 0; 4866 case Intrinsic::eh_unwind_init: 4867 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4868 return 0; 4869 case Intrinsic::eh_dwarf_cfa: { 4870 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4871 TLI->getPointerTy()); 4872 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4873 CfaArg.getValueType(), 4874 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4875 CfaArg.getValueType()), 4876 CfaArg); 4877 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4878 TLI->getPointerTy(), 4879 DAG.getConstant(0, TLI->getPointerTy())); 4880 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4881 FA, Offset)); 4882 return 0; 4883 } 4884 case Intrinsic::eh_sjlj_callsite: { 4885 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4886 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4887 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4888 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4889 4890 MMI.setCurrentCallSite(CI->getZExtValue()); 4891 return 0; 4892 } 4893 case Intrinsic::eh_sjlj_functioncontext: { 4894 // Get and store the index of the function context. 4895 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4896 AllocaInst *FnCtx = 4897 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4898 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4899 MFI->setFunctionContextIndex(FI); 4900 return 0; 4901 } 4902 case Intrinsic::eh_sjlj_setjmp: { 4903 SDValue Ops[2]; 4904 Ops[0] = getRoot(); 4905 Ops[1] = getValue(I.getArgOperand(0)); 4906 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4907 DAG.getVTList(MVT::i32, MVT::Other), 4908 Ops, 2); 4909 setValue(&I, Op.getValue(0)); 4910 DAG.setRoot(Op.getValue(1)); 4911 return 0; 4912 } 4913 case Intrinsic::eh_sjlj_longjmp: { 4914 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4915 getRoot(), getValue(I.getArgOperand(0)))); 4916 return 0; 4917 } 4918 4919 case Intrinsic::x86_mmx_pslli_w: 4920 case Intrinsic::x86_mmx_pslli_d: 4921 case Intrinsic::x86_mmx_pslli_q: 4922 case Intrinsic::x86_mmx_psrli_w: 4923 case Intrinsic::x86_mmx_psrli_d: 4924 case Intrinsic::x86_mmx_psrli_q: 4925 case Intrinsic::x86_mmx_psrai_w: 4926 case Intrinsic::x86_mmx_psrai_d: { 4927 SDValue ShAmt = getValue(I.getArgOperand(1)); 4928 if (isa<ConstantSDNode>(ShAmt)) { 4929 visitTargetIntrinsic(I, Intrinsic); 4930 return 0; 4931 } 4932 unsigned NewIntrinsic = 0; 4933 EVT ShAmtVT = MVT::v2i32; 4934 switch (Intrinsic) { 4935 case Intrinsic::x86_mmx_pslli_w: 4936 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4937 break; 4938 case Intrinsic::x86_mmx_pslli_d: 4939 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4940 break; 4941 case Intrinsic::x86_mmx_pslli_q: 4942 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4943 break; 4944 case Intrinsic::x86_mmx_psrli_w: 4945 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4946 break; 4947 case Intrinsic::x86_mmx_psrli_d: 4948 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4949 break; 4950 case Intrinsic::x86_mmx_psrli_q: 4951 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4952 break; 4953 case Intrinsic::x86_mmx_psrai_w: 4954 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4955 break; 4956 case Intrinsic::x86_mmx_psrai_d: 4957 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4958 break; 4959 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4960 } 4961 4962 // The vector shift intrinsics with scalars uses 32b shift amounts but 4963 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4964 // to be zero. 4965 // We must do this early because v2i32 is not a legal type. 4966 SDValue ShOps[2]; 4967 ShOps[0] = ShAmt; 4968 ShOps[1] = DAG.getConstant(0, MVT::i32); 4969 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4970 EVT DestVT = TLI->getValueType(I.getType()); 4971 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4972 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4973 DAG.getConstant(NewIntrinsic, MVT::i32), 4974 getValue(I.getArgOperand(0)), ShAmt); 4975 setValue(&I, Res); 4976 return 0; 4977 } 4978 case Intrinsic::x86_avx_vinsertf128_pd_256: 4979 case Intrinsic::x86_avx_vinsertf128_ps_256: 4980 case Intrinsic::x86_avx_vinsertf128_si_256: 4981 case Intrinsic::x86_avx2_vinserti128: { 4982 EVT DestVT = TLI->getValueType(I.getType()); 4983 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4984 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4985 ElVT.getVectorNumElements(); 4986 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4987 getValue(I.getArgOperand(0)), 4988 getValue(I.getArgOperand(1)), 4989 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4990 setValue(&I, Res); 4991 return 0; 4992 } 4993 case Intrinsic::x86_avx_vextractf128_pd_256: 4994 case Intrinsic::x86_avx_vextractf128_ps_256: 4995 case Intrinsic::x86_avx_vextractf128_si_256: 4996 case Intrinsic::x86_avx2_vextracti128: { 4997 EVT DestVT = TLI->getValueType(I.getType()); 4998 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4999 DestVT.getVectorNumElements(); 5000 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5001 getValue(I.getArgOperand(0)), 5002 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5003 setValue(&I, Res); 5004 return 0; 5005 } 5006 case Intrinsic::convertff: 5007 case Intrinsic::convertfsi: 5008 case Intrinsic::convertfui: 5009 case Intrinsic::convertsif: 5010 case Intrinsic::convertuif: 5011 case Intrinsic::convertss: 5012 case Intrinsic::convertsu: 5013 case Intrinsic::convertus: 5014 case Intrinsic::convertuu: { 5015 ISD::CvtCode Code = ISD::CVT_INVALID; 5016 switch (Intrinsic) { 5017 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5018 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5019 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5020 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5021 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5022 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5023 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5024 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5025 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5026 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5027 } 5028 EVT DestVT = TLI->getValueType(I.getType()); 5029 const Value *Op1 = I.getArgOperand(0); 5030 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5031 DAG.getValueType(DestVT), 5032 DAG.getValueType(getValue(Op1).getValueType()), 5033 getValue(I.getArgOperand(1)), 5034 getValue(I.getArgOperand(2)), 5035 Code); 5036 setValue(&I, Res); 5037 return 0; 5038 } 5039 case Intrinsic::powi: 5040 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5041 getValue(I.getArgOperand(1)), DAG)); 5042 return 0; 5043 case Intrinsic::log: 5044 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5045 return 0; 5046 case Intrinsic::log2: 5047 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5048 return 0; 5049 case Intrinsic::log10: 5050 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5051 return 0; 5052 case Intrinsic::exp: 5053 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5054 return 0; 5055 case Intrinsic::exp2: 5056 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5057 return 0; 5058 case Intrinsic::pow: 5059 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5060 getValue(I.getArgOperand(1)), DAG, *TLI)); 5061 return 0; 5062 case Intrinsic::sqrt: 5063 case Intrinsic::fabs: 5064 case Intrinsic::sin: 5065 case Intrinsic::cos: 5066 case Intrinsic::floor: 5067 case Intrinsic::ceil: 5068 case Intrinsic::trunc: 5069 case Intrinsic::rint: 5070 case Intrinsic::nearbyint: 5071 case Intrinsic::round: { 5072 unsigned Opcode; 5073 switch (Intrinsic) { 5074 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5075 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5076 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5077 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5078 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5079 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5080 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5081 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5082 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5083 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5084 case Intrinsic::round: Opcode = ISD::FROUND; break; 5085 } 5086 5087 setValue(&I, DAG.getNode(Opcode, sdl, 5088 getValue(I.getArgOperand(0)).getValueType(), 5089 getValue(I.getArgOperand(0)))); 5090 return 0; 5091 } 5092 case Intrinsic::copysign: 5093 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5094 getValue(I.getArgOperand(0)).getValueType(), 5095 getValue(I.getArgOperand(0)), 5096 getValue(I.getArgOperand(1)))); 5097 return 0; 5098 case Intrinsic::fma: 5099 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5100 getValue(I.getArgOperand(0)).getValueType(), 5101 getValue(I.getArgOperand(0)), 5102 getValue(I.getArgOperand(1)), 5103 getValue(I.getArgOperand(2)))); 5104 return 0; 5105 case Intrinsic::fmuladd: { 5106 EVT VT = TLI->getValueType(I.getType()); 5107 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5108 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5109 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5110 getValue(I.getArgOperand(0)).getValueType(), 5111 getValue(I.getArgOperand(0)), 5112 getValue(I.getArgOperand(1)), 5113 getValue(I.getArgOperand(2)))); 5114 } else { 5115 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5116 getValue(I.getArgOperand(0)).getValueType(), 5117 getValue(I.getArgOperand(0)), 5118 getValue(I.getArgOperand(1))); 5119 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5120 getValue(I.getArgOperand(0)).getValueType(), 5121 Mul, 5122 getValue(I.getArgOperand(2))); 5123 setValue(&I, Add); 5124 } 5125 return 0; 5126 } 5127 case Intrinsic::convert_to_fp16: 5128 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5129 MVT::i16, getValue(I.getArgOperand(0)))); 5130 return 0; 5131 case Intrinsic::convert_from_fp16: 5132 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5133 MVT::f32, getValue(I.getArgOperand(0)))); 5134 return 0; 5135 case Intrinsic::pcmarker: { 5136 SDValue Tmp = getValue(I.getArgOperand(0)); 5137 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5138 return 0; 5139 } 5140 case Intrinsic::readcyclecounter: { 5141 SDValue Op = getRoot(); 5142 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5143 DAG.getVTList(MVT::i64, MVT::Other), 5144 &Op, 1); 5145 setValue(&I, Res); 5146 DAG.setRoot(Res.getValue(1)); 5147 return 0; 5148 } 5149 case Intrinsic::bswap: 5150 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5151 getValue(I.getArgOperand(0)).getValueType(), 5152 getValue(I.getArgOperand(0)))); 5153 return 0; 5154 case Intrinsic::cttz: { 5155 SDValue Arg = getValue(I.getArgOperand(0)); 5156 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5157 EVT Ty = Arg.getValueType(); 5158 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5159 sdl, Ty, Arg)); 5160 return 0; 5161 } 5162 case Intrinsic::ctlz: { 5163 SDValue Arg = getValue(I.getArgOperand(0)); 5164 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5165 EVT Ty = Arg.getValueType(); 5166 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5167 sdl, Ty, Arg)); 5168 return 0; 5169 } 5170 case Intrinsic::ctpop: { 5171 SDValue Arg = getValue(I.getArgOperand(0)); 5172 EVT Ty = Arg.getValueType(); 5173 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5174 return 0; 5175 } 5176 case Intrinsic::stacksave: { 5177 SDValue Op = getRoot(); 5178 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5179 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5180 setValue(&I, Res); 5181 DAG.setRoot(Res.getValue(1)); 5182 return 0; 5183 } 5184 case Intrinsic::stackrestore: { 5185 Res = getValue(I.getArgOperand(0)); 5186 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5187 return 0; 5188 } 5189 case Intrinsic::stackprotector: { 5190 // Emit code into the DAG to store the stack guard onto the stack. 5191 MachineFunction &MF = DAG.getMachineFunction(); 5192 MachineFrameInfo *MFI = MF.getFrameInfo(); 5193 EVT PtrTy = TLI->getPointerTy(); 5194 5195 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5196 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5197 5198 int FI = FuncInfo.StaticAllocaMap[Slot]; 5199 MFI->setStackProtectorIndex(FI); 5200 5201 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5202 5203 // Store the stack protector onto the stack. 5204 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5205 MachinePointerInfo::getFixedStack(FI), 5206 true, false, 0); 5207 setValue(&I, Res); 5208 DAG.setRoot(Res); 5209 return 0; 5210 } 5211 case Intrinsic::objectsize: { 5212 // If we don't know by now, we're never going to know. 5213 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5214 5215 assert(CI && "Non-constant type in __builtin_object_size?"); 5216 5217 SDValue Arg = getValue(I.getCalledValue()); 5218 EVT Ty = Arg.getValueType(); 5219 5220 if (CI->isZero()) 5221 Res = DAG.getConstant(-1ULL, Ty); 5222 else 5223 Res = DAG.getConstant(0, Ty); 5224 5225 setValue(&I, Res); 5226 return 0; 5227 } 5228 case Intrinsic::annotation: 5229 case Intrinsic::ptr_annotation: 5230 // Drop the intrinsic, but forward the value 5231 setValue(&I, getValue(I.getOperand(0))); 5232 return 0; 5233 case Intrinsic::var_annotation: 5234 // Discard annotate attributes 5235 return 0; 5236 5237 case Intrinsic::init_trampoline: { 5238 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5239 5240 SDValue Ops[6]; 5241 Ops[0] = getRoot(); 5242 Ops[1] = getValue(I.getArgOperand(0)); 5243 Ops[2] = getValue(I.getArgOperand(1)); 5244 Ops[3] = getValue(I.getArgOperand(2)); 5245 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5246 Ops[5] = DAG.getSrcValue(F); 5247 5248 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5249 5250 DAG.setRoot(Res); 5251 return 0; 5252 } 5253 case Intrinsic::adjust_trampoline: { 5254 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5255 TLI->getPointerTy(), 5256 getValue(I.getArgOperand(0)))); 5257 return 0; 5258 } 5259 case Intrinsic::gcroot: 5260 if (GFI) { 5261 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5262 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5263 5264 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5265 GFI->addStackRoot(FI->getIndex(), TypeMap); 5266 } 5267 return 0; 5268 case Intrinsic::gcread: 5269 case Intrinsic::gcwrite: 5270 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5271 case Intrinsic::flt_rounds: 5272 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5273 return 0; 5274 5275 case Intrinsic::expect: { 5276 // Just replace __builtin_expect(exp, c) with EXP. 5277 setValue(&I, getValue(I.getArgOperand(0))); 5278 return 0; 5279 } 5280 5281 case Intrinsic::debugtrap: 5282 case Intrinsic::trap: { 5283 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5284 if (TrapFuncName.empty()) { 5285 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5286 ISD::TRAP : ISD::DEBUGTRAP; 5287 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5288 return 0; 5289 } 5290 TargetLowering::ArgListTy Args; 5291 TargetLowering:: 5292 CallLoweringInfo CLI(getRoot(), I.getType(), 5293 false, false, false, false, 0, CallingConv::C, 5294 /*isTailCall=*/false, 5295 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5296 DAG.getExternalSymbol(TrapFuncName.data(), 5297 TLI->getPointerTy()), 5298 Args, DAG, sdl); 5299 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5300 DAG.setRoot(Result.second); 5301 return 0; 5302 } 5303 5304 case Intrinsic::uadd_with_overflow: 5305 case Intrinsic::sadd_with_overflow: 5306 case Intrinsic::usub_with_overflow: 5307 case Intrinsic::ssub_with_overflow: 5308 case Intrinsic::umul_with_overflow: 5309 case Intrinsic::smul_with_overflow: { 5310 ISD::NodeType Op; 5311 switch (Intrinsic) { 5312 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5313 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5314 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5315 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5316 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5317 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5318 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5319 } 5320 SDValue Op1 = getValue(I.getArgOperand(0)); 5321 SDValue Op2 = getValue(I.getArgOperand(1)); 5322 5323 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5324 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5325 return 0; 5326 } 5327 case Intrinsic::prefetch: { 5328 SDValue Ops[5]; 5329 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5330 Ops[0] = getRoot(); 5331 Ops[1] = getValue(I.getArgOperand(0)); 5332 Ops[2] = getValue(I.getArgOperand(1)); 5333 Ops[3] = getValue(I.getArgOperand(2)); 5334 Ops[4] = getValue(I.getArgOperand(3)); 5335 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5336 DAG.getVTList(MVT::Other), 5337 &Ops[0], 5, 5338 EVT::getIntegerVT(*Context, 8), 5339 MachinePointerInfo(I.getArgOperand(0)), 5340 0, /* align */ 5341 false, /* volatile */ 5342 rw==0, /* read */ 5343 rw==1)); /* write */ 5344 return 0; 5345 } 5346 case Intrinsic::lifetime_start: 5347 case Intrinsic::lifetime_end: { 5348 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5349 // Stack coloring is not enabled in O0, discard region information. 5350 if (TM.getOptLevel() == CodeGenOpt::None) 5351 return 0; 5352 5353 SmallVector<Value *, 4> Allocas; 5354 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5355 5356 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5357 E = Allocas.end(); Object != E; ++Object) { 5358 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5359 5360 // Could not find an Alloca. 5361 if (!LifetimeObject) 5362 continue; 5363 5364 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5365 5366 SDValue Ops[2]; 5367 Ops[0] = getRoot(); 5368 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5369 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5370 5371 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5372 DAG.setRoot(Res); 5373 } 5374 return 0; 5375 } 5376 case Intrinsic::invariant_start: 5377 // Discard region information. 5378 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5379 return 0; 5380 case Intrinsic::invariant_end: 5381 // Discard region information. 5382 return 0; 5383 case Intrinsic::stackprotectorcheck: { 5384 // Do not actually emit anything for this basic block. Instead we initialize 5385 // the stack protector descriptor and export the guard variable so we can 5386 // access it in FinishBasicBlock. 5387 const BasicBlock *BB = I.getParent(); 5388 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5389 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5390 5391 // Flush our exports since we are going to process a terminator. 5392 (void)getControlRoot(); 5393 return 0; 5394 } 5395 case Intrinsic::donothing: 5396 // ignore 5397 return 0; 5398 case Intrinsic::experimental_stackmap: { 5399 visitStackmap(I); 5400 return 0; 5401 } 5402 case Intrinsic::experimental_patchpoint_void: 5403 case Intrinsic::experimental_patchpoint_i64: { 5404 visitPatchpoint(I); 5405 return 0; 5406 } 5407 } 5408 } 5409 5410 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5411 bool isTailCall, 5412 MachineBasicBlock *LandingPad) { 5413 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5414 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5415 Type *RetTy = FTy->getReturnType(); 5416 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5417 MCSymbol *BeginLabel = 0; 5418 5419 TargetLowering::ArgListTy Args; 5420 TargetLowering::ArgListEntry Entry; 5421 Args.reserve(CS.arg_size()); 5422 5423 // Check whether the function can return without sret-demotion. 5424 SmallVector<ISD::OutputArg, 4> Outs; 5425 const TargetLowering *TLI = TM.getTargetLowering(); 5426 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5427 5428 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5429 DAG.getMachineFunction(), 5430 FTy->isVarArg(), Outs, 5431 FTy->getContext()); 5432 5433 SDValue DemoteStackSlot; 5434 int DemoteStackIdx = -100; 5435 5436 if (!CanLowerReturn) { 5437 assert(!CS.hasInAllocaArgument() && 5438 "sret demotion is incompatible with inalloca"); 5439 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5440 FTy->getReturnType()); 5441 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5442 FTy->getReturnType()); 5443 MachineFunction &MF = DAG.getMachineFunction(); 5444 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5445 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5446 5447 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5448 Entry.Node = DemoteStackSlot; 5449 Entry.Ty = StackSlotPtrType; 5450 Entry.isSExt = false; 5451 Entry.isZExt = false; 5452 Entry.isInReg = false; 5453 Entry.isSRet = true; 5454 Entry.isNest = false; 5455 Entry.isByVal = false; 5456 Entry.isReturned = false; 5457 Entry.Alignment = Align; 5458 Args.push_back(Entry); 5459 RetTy = Type::getVoidTy(FTy->getContext()); 5460 } 5461 5462 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5463 i != e; ++i) { 5464 const Value *V = *i; 5465 5466 // Skip empty types 5467 if (V->getType()->isEmptyTy()) 5468 continue; 5469 5470 SDValue ArgNode = getValue(V); 5471 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5472 5473 // Skip the first return-type Attribute to get to params. 5474 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5475 Args.push_back(Entry); 5476 } 5477 5478 if (LandingPad) { 5479 // Insert a label before the invoke call to mark the try range. This can be 5480 // used to detect deletion of the invoke via the MachineModuleInfo. 5481 BeginLabel = MMI.getContext().CreateTempSymbol(); 5482 5483 // For SjLj, keep track of which landing pads go with which invokes 5484 // so as to maintain the ordering of pads in the LSDA. 5485 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5486 if (CallSiteIndex) { 5487 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5488 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5489 5490 // Now that the call site is handled, stop tracking it. 5491 MMI.setCurrentCallSite(0); 5492 } 5493 5494 // Both PendingLoads and PendingExports must be flushed here; 5495 // this call might not return. 5496 (void)getRoot(); 5497 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5498 } 5499 5500 // Check if target-independent constraints permit a tail call here. 5501 // Target-dependent constraints are checked within TLI->LowerCallTo. 5502 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5503 isTailCall = false; 5504 5505 TargetLowering:: 5506 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5507 getCurSDLoc(), CS); 5508 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5509 assert((isTailCall || Result.second.getNode()) && 5510 "Non-null chain expected with non-tail call!"); 5511 assert((Result.second.getNode() || !Result.first.getNode()) && 5512 "Null value expected with tail call!"); 5513 if (Result.first.getNode()) { 5514 setValue(CS.getInstruction(), Result.first); 5515 } else if (!CanLowerReturn && Result.second.getNode()) { 5516 // The instruction result is the result of loading from the 5517 // hidden sret parameter. 5518 SmallVector<EVT, 1> PVTs; 5519 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5520 5521 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5522 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5523 EVT PtrVT = PVTs[0]; 5524 5525 SmallVector<EVT, 4> RetTys; 5526 SmallVector<uint64_t, 4> Offsets; 5527 RetTy = FTy->getReturnType(); 5528 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5529 5530 unsigned NumValues = RetTys.size(); 5531 SmallVector<SDValue, 4> Values(NumValues); 5532 SmallVector<SDValue, 4> Chains(NumValues); 5533 5534 for (unsigned i = 0; i < NumValues; ++i) { 5535 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5536 DemoteStackSlot, 5537 DAG.getConstant(Offsets[i], PtrVT)); 5538 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5539 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5540 false, false, false, 1); 5541 Values[i] = L; 5542 Chains[i] = L.getValue(1); 5543 } 5544 5545 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5546 MVT::Other, &Chains[0], NumValues); 5547 PendingLoads.push_back(Chain); 5548 5549 setValue(CS.getInstruction(), 5550 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5551 DAG.getVTList(&RetTys[0], RetTys.size()), 5552 &Values[0], Values.size())); 5553 } 5554 5555 if (!Result.second.getNode()) { 5556 // As a special case, a null chain means that a tail call has been emitted 5557 // and the DAG root is already updated. 5558 HasTailCall = true; 5559 5560 // Since there's no actual continuation from this block, nothing can be 5561 // relying on us setting vregs for them. 5562 PendingExports.clear(); 5563 } else { 5564 DAG.setRoot(Result.second); 5565 } 5566 5567 if (LandingPad) { 5568 // Insert a label at the end of the invoke call to mark the try range. This 5569 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5570 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5571 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5572 5573 // Inform MachineModuleInfo of range. 5574 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5575 } 5576 } 5577 5578 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5579 /// value is equal or not-equal to zero. 5580 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5581 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5582 UI != E; ++UI) { 5583 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5584 if (IC->isEquality()) 5585 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5586 if (C->isNullValue()) 5587 continue; 5588 // Unknown instruction. 5589 return false; 5590 } 5591 return true; 5592 } 5593 5594 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5595 Type *LoadTy, 5596 SelectionDAGBuilder &Builder) { 5597 5598 // Check to see if this load can be trivially constant folded, e.g. if the 5599 // input is from a string literal. 5600 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5601 // Cast pointer to the type we really want to load. 5602 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5603 PointerType::getUnqual(LoadTy)); 5604 5605 if (const Constant *LoadCst = 5606 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5607 Builder.TD)) 5608 return Builder.getValue(LoadCst); 5609 } 5610 5611 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5612 // still constant memory, the input chain can be the entry node. 5613 SDValue Root; 5614 bool ConstantMemory = false; 5615 5616 // Do not serialize (non-volatile) loads of constant memory with anything. 5617 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5618 Root = Builder.DAG.getEntryNode(); 5619 ConstantMemory = true; 5620 } else { 5621 // Do not serialize non-volatile loads against each other. 5622 Root = Builder.DAG.getRoot(); 5623 } 5624 5625 SDValue Ptr = Builder.getValue(PtrVal); 5626 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5627 Ptr, MachinePointerInfo(PtrVal), 5628 false /*volatile*/, 5629 false /*nontemporal*/, 5630 false /*isinvariant*/, 1 /* align=1 */); 5631 5632 if (!ConstantMemory) 5633 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5634 return LoadVal; 5635 } 5636 5637 /// processIntegerCallValue - Record the value for an instruction that 5638 /// produces an integer result, converting the type where necessary. 5639 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5640 SDValue Value, 5641 bool IsSigned) { 5642 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5643 if (IsSigned) 5644 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5645 else 5646 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5647 setValue(&I, Value); 5648 } 5649 5650 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5651 /// If so, return true and lower it, otherwise return false and it will be 5652 /// lowered like a normal call. 5653 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5654 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5655 if (I.getNumArgOperands() != 3) 5656 return false; 5657 5658 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5659 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5660 !I.getArgOperand(2)->getType()->isIntegerTy() || 5661 !I.getType()->isIntegerTy()) 5662 return false; 5663 5664 const Value *Size = I.getArgOperand(2); 5665 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5666 if (CSize && CSize->getZExtValue() == 0) { 5667 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5668 setValue(&I, DAG.getConstant(0, CallVT)); 5669 return true; 5670 } 5671 5672 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5673 std::pair<SDValue, SDValue> Res = 5674 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5675 getValue(LHS), getValue(RHS), getValue(Size), 5676 MachinePointerInfo(LHS), 5677 MachinePointerInfo(RHS)); 5678 if (Res.first.getNode()) { 5679 processIntegerCallValue(I, Res.first, true); 5680 PendingLoads.push_back(Res.second); 5681 return true; 5682 } 5683 5684 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5685 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5686 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5687 bool ActuallyDoIt = true; 5688 MVT LoadVT; 5689 Type *LoadTy; 5690 switch (CSize->getZExtValue()) { 5691 default: 5692 LoadVT = MVT::Other; 5693 LoadTy = 0; 5694 ActuallyDoIt = false; 5695 break; 5696 case 2: 5697 LoadVT = MVT::i16; 5698 LoadTy = Type::getInt16Ty(CSize->getContext()); 5699 break; 5700 case 4: 5701 LoadVT = MVT::i32; 5702 LoadTy = Type::getInt32Ty(CSize->getContext()); 5703 break; 5704 case 8: 5705 LoadVT = MVT::i64; 5706 LoadTy = Type::getInt64Ty(CSize->getContext()); 5707 break; 5708 /* 5709 case 16: 5710 LoadVT = MVT::v4i32; 5711 LoadTy = Type::getInt32Ty(CSize->getContext()); 5712 LoadTy = VectorType::get(LoadTy, 4); 5713 break; 5714 */ 5715 } 5716 5717 // This turns into unaligned loads. We only do this if the target natively 5718 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5719 // we'll only produce a small number of byte loads. 5720 5721 // Require that we can find a legal MVT, and only do this if the target 5722 // supports unaligned loads of that type. Expanding into byte loads would 5723 // bloat the code. 5724 const TargetLowering *TLI = TM.getTargetLowering(); 5725 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5726 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5727 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5728 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5729 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5730 if (!TLI->isTypeLegal(LoadVT) || 5731 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5732 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5733 ActuallyDoIt = false; 5734 } 5735 5736 if (ActuallyDoIt) { 5737 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5738 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5739 5740 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5741 ISD::SETNE); 5742 processIntegerCallValue(I, Res, false); 5743 return true; 5744 } 5745 } 5746 5747 5748 return false; 5749 } 5750 5751 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5752 /// form. If so, return true and lower it, otherwise return false and it 5753 /// will be lowered like a normal call. 5754 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5755 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5756 if (I.getNumArgOperands() != 3) 5757 return false; 5758 5759 const Value *Src = I.getArgOperand(0); 5760 const Value *Char = I.getArgOperand(1); 5761 const Value *Length = I.getArgOperand(2); 5762 if (!Src->getType()->isPointerTy() || 5763 !Char->getType()->isIntegerTy() || 5764 !Length->getType()->isIntegerTy() || 5765 !I.getType()->isPointerTy()) 5766 return false; 5767 5768 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5769 std::pair<SDValue, SDValue> Res = 5770 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5771 getValue(Src), getValue(Char), getValue(Length), 5772 MachinePointerInfo(Src)); 5773 if (Res.first.getNode()) { 5774 setValue(&I, Res.first); 5775 PendingLoads.push_back(Res.second); 5776 return true; 5777 } 5778 5779 return false; 5780 } 5781 5782 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5783 /// optimized form. If so, return true and lower it, otherwise return false 5784 /// and it will be lowered like a normal call. 5785 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5786 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5787 if (I.getNumArgOperands() != 2) 5788 return false; 5789 5790 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5791 if (!Arg0->getType()->isPointerTy() || 5792 !Arg1->getType()->isPointerTy() || 5793 !I.getType()->isPointerTy()) 5794 return false; 5795 5796 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5797 std::pair<SDValue, SDValue> Res = 5798 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5799 getValue(Arg0), getValue(Arg1), 5800 MachinePointerInfo(Arg0), 5801 MachinePointerInfo(Arg1), isStpcpy); 5802 if (Res.first.getNode()) { 5803 setValue(&I, Res.first); 5804 DAG.setRoot(Res.second); 5805 return true; 5806 } 5807 5808 return false; 5809 } 5810 5811 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5812 /// If so, return true and lower it, otherwise return false and it will be 5813 /// lowered like a normal call. 5814 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5815 // Verify that the prototype makes sense. int strcmp(void*,void*) 5816 if (I.getNumArgOperands() != 2) 5817 return false; 5818 5819 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5820 if (!Arg0->getType()->isPointerTy() || 5821 !Arg1->getType()->isPointerTy() || 5822 !I.getType()->isIntegerTy()) 5823 return false; 5824 5825 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5826 std::pair<SDValue, SDValue> Res = 5827 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5828 getValue(Arg0), getValue(Arg1), 5829 MachinePointerInfo(Arg0), 5830 MachinePointerInfo(Arg1)); 5831 if (Res.first.getNode()) { 5832 processIntegerCallValue(I, Res.first, true); 5833 PendingLoads.push_back(Res.second); 5834 return true; 5835 } 5836 5837 return false; 5838 } 5839 5840 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5841 /// form. If so, return true and lower it, otherwise return false and it 5842 /// will be lowered like a normal call. 5843 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5844 // Verify that the prototype makes sense. size_t strlen(char *) 5845 if (I.getNumArgOperands() != 1) 5846 return false; 5847 5848 const Value *Arg0 = I.getArgOperand(0); 5849 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5850 return false; 5851 5852 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5853 std::pair<SDValue, SDValue> Res = 5854 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5855 getValue(Arg0), MachinePointerInfo(Arg0)); 5856 if (Res.first.getNode()) { 5857 processIntegerCallValue(I, Res.first, false); 5858 PendingLoads.push_back(Res.second); 5859 return true; 5860 } 5861 5862 return false; 5863 } 5864 5865 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5866 /// form. If so, return true and lower it, otherwise return false and it 5867 /// will be lowered like a normal call. 5868 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5869 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5870 if (I.getNumArgOperands() != 2) 5871 return false; 5872 5873 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5874 if (!Arg0->getType()->isPointerTy() || 5875 !Arg1->getType()->isIntegerTy() || 5876 !I.getType()->isIntegerTy()) 5877 return false; 5878 5879 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5880 std::pair<SDValue, SDValue> Res = 5881 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5882 getValue(Arg0), getValue(Arg1), 5883 MachinePointerInfo(Arg0)); 5884 if (Res.first.getNode()) { 5885 processIntegerCallValue(I, Res.first, false); 5886 PendingLoads.push_back(Res.second); 5887 return true; 5888 } 5889 5890 return false; 5891 } 5892 5893 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5894 /// operation (as expected), translate it to an SDNode with the specified opcode 5895 /// and return true. 5896 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5897 unsigned Opcode) { 5898 // Sanity check that it really is a unary floating-point call. 5899 if (I.getNumArgOperands() != 1 || 5900 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5901 I.getType() != I.getArgOperand(0)->getType() || 5902 !I.onlyReadsMemory()) 5903 return false; 5904 5905 SDValue Tmp = getValue(I.getArgOperand(0)); 5906 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5907 return true; 5908 } 5909 5910 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5911 // Handle inline assembly differently. 5912 if (isa<InlineAsm>(I.getCalledValue())) { 5913 visitInlineAsm(&I); 5914 return; 5915 } 5916 5917 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5918 ComputeUsesVAFloatArgument(I, &MMI); 5919 5920 const char *RenameFn = 0; 5921 if (Function *F = I.getCalledFunction()) { 5922 if (F->isDeclaration()) { 5923 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5924 if (unsigned IID = II->getIntrinsicID(F)) { 5925 RenameFn = visitIntrinsicCall(I, IID); 5926 if (!RenameFn) 5927 return; 5928 } 5929 } 5930 if (unsigned IID = F->getIntrinsicID()) { 5931 RenameFn = visitIntrinsicCall(I, IID); 5932 if (!RenameFn) 5933 return; 5934 } 5935 } 5936 5937 // Check for well-known libc/libm calls. If the function is internal, it 5938 // can't be a library call. 5939 LibFunc::Func Func; 5940 if (!F->hasLocalLinkage() && F->hasName() && 5941 LibInfo->getLibFunc(F->getName(), Func) && 5942 LibInfo->hasOptimizedCodeGen(Func)) { 5943 switch (Func) { 5944 default: break; 5945 case LibFunc::copysign: 5946 case LibFunc::copysignf: 5947 case LibFunc::copysignl: 5948 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5949 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5950 I.getType() == I.getArgOperand(0)->getType() && 5951 I.getType() == I.getArgOperand(1)->getType() && 5952 I.onlyReadsMemory()) { 5953 SDValue LHS = getValue(I.getArgOperand(0)); 5954 SDValue RHS = getValue(I.getArgOperand(1)); 5955 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5956 LHS.getValueType(), LHS, RHS)); 5957 return; 5958 } 5959 break; 5960 case LibFunc::fabs: 5961 case LibFunc::fabsf: 5962 case LibFunc::fabsl: 5963 if (visitUnaryFloatCall(I, ISD::FABS)) 5964 return; 5965 break; 5966 case LibFunc::sin: 5967 case LibFunc::sinf: 5968 case LibFunc::sinl: 5969 if (visitUnaryFloatCall(I, ISD::FSIN)) 5970 return; 5971 break; 5972 case LibFunc::cos: 5973 case LibFunc::cosf: 5974 case LibFunc::cosl: 5975 if (visitUnaryFloatCall(I, ISD::FCOS)) 5976 return; 5977 break; 5978 case LibFunc::sqrt: 5979 case LibFunc::sqrtf: 5980 case LibFunc::sqrtl: 5981 case LibFunc::sqrt_finite: 5982 case LibFunc::sqrtf_finite: 5983 case LibFunc::sqrtl_finite: 5984 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5985 return; 5986 break; 5987 case LibFunc::floor: 5988 case LibFunc::floorf: 5989 case LibFunc::floorl: 5990 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5991 return; 5992 break; 5993 case LibFunc::nearbyint: 5994 case LibFunc::nearbyintf: 5995 case LibFunc::nearbyintl: 5996 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5997 return; 5998 break; 5999 case LibFunc::ceil: 6000 case LibFunc::ceilf: 6001 case LibFunc::ceill: 6002 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6003 return; 6004 break; 6005 case LibFunc::rint: 6006 case LibFunc::rintf: 6007 case LibFunc::rintl: 6008 if (visitUnaryFloatCall(I, ISD::FRINT)) 6009 return; 6010 break; 6011 case LibFunc::round: 6012 case LibFunc::roundf: 6013 case LibFunc::roundl: 6014 if (visitUnaryFloatCall(I, ISD::FROUND)) 6015 return; 6016 break; 6017 case LibFunc::trunc: 6018 case LibFunc::truncf: 6019 case LibFunc::truncl: 6020 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6021 return; 6022 break; 6023 case LibFunc::log2: 6024 case LibFunc::log2f: 6025 case LibFunc::log2l: 6026 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6027 return; 6028 break; 6029 case LibFunc::exp2: 6030 case LibFunc::exp2f: 6031 case LibFunc::exp2l: 6032 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6033 return; 6034 break; 6035 case LibFunc::memcmp: 6036 if (visitMemCmpCall(I)) 6037 return; 6038 break; 6039 case LibFunc::memchr: 6040 if (visitMemChrCall(I)) 6041 return; 6042 break; 6043 case LibFunc::strcpy: 6044 if (visitStrCpyCall(I, false)) 6045 return; 6046 break; 6047 case LibFunc::stpcpy: 6048 if (visitStrCpyCall(I, true)) 6049 return; 6050 break; 6051 case LibFunc::strcmp: 6052 if (visitStrCmpCall(I)) 6053 return; 6054 break; 6055 case LibFunc::strlen: 6056 if (visitStrLenCall(I)) 6057 return; 6058 break; 6059 case LibFunc::strnlen: 6060 if (visitStrNLenCall(I)) 6061 return; 6062 break; 6063 } 6064 } 6065 } 6066 6067 SDValue Callee; 6068 if (!RenameFn) 6069 Callee = getValue(I.getCalledValue()); 6070 else 6071 Callee = DAG.getExternalSymbol(RenameFn, 6072 TM.getTargetLowering()->getPointerTy()); 6073 6074 // Check if we can potentially perform a tail call. More detailed checking is 6075 // be done within LowerCallTo, after more information about the call is known. 6076 LowerCallTo(&I, Callee, I.isTailCall()); 6077 } 6078 6079 namespace { 6080 6081 /// AsmOperandInfo - This contains information for each constraint that we are 6082 /// lowering. 6083 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6084 public: 6085 /// CallOperand - If this is the result output operand or a clobber 6086 /// this is null, otherwise it is the incoming operand to the CallInst. 6087 /// This gets modified as the asm is processed. 6088 SDValue CallOperand; 6089 6090 /// AssignedRegs - If this is a register or register class operand, this 6091 /// contains the set of register corresponding to the operand. 6092 RegsForValue AssignedRegs; 6093 6094 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6095 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 6096 } 6097 6098 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6099 /// corresponds to. If there is no Value* for this operand, it returns 6100 /// MVT::Other. 6101 EVT getCallOperandValEVT(LLVMContext &Context, 6102 const TargetLowering &TLI, 6103 const DataLayout *TD) const { 6104 if (CallOperandVal == 0) return MVT::Other; 6105 6106 if (isa<BasicBlock>(CallOperandVal)) 6107 return TLI.getPointerTy(); 6108 6109 llvm::Type *OpTy = CallOperandVal->getType(); 6110 6111 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6112 // If this is an indirect operand, the operand is a pointer to the 6113 // accessed type. 6114 if (isIndirect) { 6115 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6116 if (!PtrTy) 6117 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6118 OpTy = PtrTy->getElementType(); 6119 } 6120 6121 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6122 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6123 if (STy->getNumElements() == 1) 6124 OpTy = STy->getElementType(0); 6125 6126 // If OpTy is not a single value, it may be a struct/union that we 6127 // can tile with integers. 6128 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6129 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 6130 switch (BitSize) { 6131 default: break; 6132 case 1: 6133 case 8: 6134 case 16: 6135 case 32: 6136 case 64: 6137 case 128: 6138 OpTy = IntegerType::get(Context, BitSize); 6139 break; 6140 } 6141 } 6142 6143 return TLI.getValueType(OpTy, true); 6144 } 6145 }; 6146 6147 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6148 6149 } // end anonymous namespace 6150 6151 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6152 /// specified operand. We prefer to assign virtual registers, to allow the 6153 /// register allocator to handle the assignment process. However, if the asm 6154 /// uses features that we can't model on machineinstrs, we have SDISel do the 6155 /// allocation. This produces generally horrible, but correct, code. 6156 /// 6157 /// OpInfo describes the operand. 6158 /// 6159 static void GetRegistersForValue(SelectionDAG &DAG, 6160 const TargetLowering &TLI, 6161 SDLoc DL, 6162 SDISelAsmOperandInfo &OpInfo) { 6163 LLVMContext &Context = *DAG.getContext(); 6164 6165 MachineFunction &MF = DAG.getMachineFunction(); 6166 SmallVector<unsigned, 4> Regs; 6167 6168 // If this is a constraint for a single physreg, or a constraint for a 6169 // register class, find it. 6170 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6171 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6172 OpInfo.ConstraintVT); 6173 6174 unsigned NumRegs = 1; 6175 if (OpInfo.ConstraintVT != MVT::Other) { 6176 // If this is a FP input in an integer register (or visa versa) insert a bit 6177 // cast of the input value. More generally, handle any case where the input 6178 // value disagrees with the register class we plan to stick this in. 6179 if (OpInfo.Type == InlineAsm::isInput && 6180 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6181 // Try to convert to the first EVT that the reg class contains. If the 6182 // types are identical size, use a bitcast to convert (e.g. two differing 6183 // vector types). 6184 MVT RegVT = *PhysReg.second->vt_begin(); 6185 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 6186 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6187 RegVT, OpInfo.CallOperand); 6188 OpInfo.ConstraintVT = RegVT; 6189 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6190 // If the input is a FP value and we want it in FP registers, do a 6191 // bitcast to the corresponding integer type. This turns an f64 value 6192 // into i64, which can be passed with two i32 values on a 32-bit 6193 // machine. 6194 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6195 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6196 RegVT, OpInfo.CallOperand); 6197 OpInfo.ConstraintVT = RegVT; 6198 } 6199 } 6200 6201 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6202 } 6203 6204 MVT RegVT; 6205 EVT ValueVT = OpInfo.ConstraintVT; 6206 6207 // If this is a constraint for a specific physical register, like {r17}, 6208 // assign it now. 6209 if (unsigned AssignedReg = PhysReg.first) { 6210 const TargetRegisterClass *RC = PhysReg.second; 6211 if (OpInfo.ConstraintVT == MVT::Other) 6212 ValueVT = *RC->vt_begin(); 6213 6214 // Get the actual register value type. This is important, because the user 6215 // may have asked for (e.g.) the AX register in i32 type. We need to 6216 // remember that AX is actually i16 to get the right extension. 6217 RegVT = *RC->vt_begin(); 6218 6219 // This is a explicit reference to a physical register. 6220 Regs.push_back(AssignedReg); 6221 6222 // If this is an expanded reference, add the rest of the regs to Regs. 6223 if (NumRegs != 1) { 6224 TargetRegisterClass::iterator I = RC->begin(); 6225 for (; *I != AssignedReg; ++I) 6226 assert(I != RC->end() && "Didn't find reg!"); 6227 6228 // Already added the first reg. 6229 --NumRegs; ++I; 6230 for (; NumRegs; --NumRegs, ++I) { 6231 assert(I != RC->end() && "Ran out of registers to allocate!"); 6232 Regs.push_back(*I); 6233 } 6234 } 6235 6236 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6237 return; 6238 } 6239 6240 // Otherwise, if this was a reference to an LLVM register class, create vregs 6241 // for this reference. 6242 if (const TargetRegisterClass *RC = PhysReg.second) { 6243 RegVT = *RC->vt_begin(); 6244 if (OpInfo.ConstraintVT == MVT::Other) 6245 ValueVT = RegVT; 6246 6247 // Create the appropriate number of virtual registers. 6248 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6249 for (; NumRegs; --NumRegs) 6250 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6251 6252 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6253 return; 6254 } 6255 6256 // Otherwise, we couldn't allocate enough registers for this. 6257 } 6258 6259 /// visitInlineAsm - Handle a call to an InlineAsm object. 6260 /// 6261 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6262 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6263 6264 /// ConstraintOperands - Information about all of the constraints. 6265 SDISelAsmOperandInfoVector ConstraintOperands; 6266 6267 const TargetLowering *TLI = TM.getTargetLowering(); 6268 TargetLowering::AsmOperandInfoVector 6269 TargetConstraints = TLI->ParseConstraints(CS); 6270 6271 bool hasMemory = false; 6272 6273 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6274 unsigned ResNo = 0; // ResNo - The result number of the next output. 6275 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6276 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6277 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6278 6279 MVT OpVT = MVT::Other; 6280 6281 // Compute the value type for each operand. 6282 switch (OpInfo.Type) { 6283 case InlineAsm::isOutput: 6284 // Indirect outputs just consume an argument. 6285 if (OpInfo.isIndirect) { 6286 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6287 break; 6288 } 6289 6290 // The return value of the call is this value. As such, there is no 6291 // corresponding argument. 6292 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6293 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6294 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6295 } else { 6296 assert(ResNo == 0 && "Asm only has one result!"); 6297 OpVT = TLI->getSimpleValueType(CS.getType()); 6298 } 6299 ++ResNo; 6300 break; 6301 case InlineAsm::isInput: 6302 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6303 break; 6304 case InlineAsm::isClobber: 6305 // Nothing to do. 6306 break; 6307 } 6308 6309 // If this is an input or an indirect output, process the call argument. 6310 // BasicBlocks are labels, currently appearing only in asm's. 6311 if (OpInfo.CallOperandVal) { 6312 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6313 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6314 } else { 6315 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6316 } 6317 6318 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD). 6319 getSimpleVT(); 6320 } 6321 6322 OpInfo.ConstraintVT = OpVT; 6323 6324 // Indirect operand accesses access memory. 6325 if (OpInfo.isIndirect) 6326 hasMemory = true; 6327 else { 6328 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6329 TargetLowering::ConstraintType 6330 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6331 if (CType == TargetLowering::C_Memory) { 6332 hasMemory = true; 6333 break; 6334 } 6335 } 6336 } 6337 } 6338 6339 SDValue Chain, Flag; 6340 6341 // We won't need to flush pending loads if this asm doesn't touch 6342 // memory and is nonvolatile. 6343 if (hasMemory || IA->hasSideEffects()) 6344 Chain = getRoot(); 6345 else 6346 Chain = DAG.getRoot(); 6347 6348 // Second pass over the constraints: compute which constraint option to use 6349 // and assign registers to constraints that want a specific physreg. 6350 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6351 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6352 6353 // If this is an output operand with a matching input operand, look up the 6354 // matching input. If their types mismatch, e.g. one is an integer, the 6355 // other is floating point, or their sizes are different, flag it as an 6356 // error. 6357 if (OpInfo.hasMatchingInput()) { 6358 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6359 6360 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6361 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6362 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6363 OpInfo.ConstraintVT); 6364 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6365 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6366 Input.ConstraintVT); 6367 if ((OpInfo.ConstraintVT.isInteger() != 6368 Input.ConstraintVT.isInteger()) || 6369 (MatchRC.second != InputRC.second)) { 6370 report_fatal_error("Unsupported asm: input constraint" 6371 " with a matching output constraint of" 6372 " incompatible type!"); 6373 } 6374 Input.ConstraintVT = OpInfo.ConstraintVT; 6375 } 6376 } 6377 6378 // Compute the constraint code and ConstraintType to use. 6379 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6380 6381 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6382 OpInfo.Type == InlineAsm::isClobber) 6383 continue; 6384 6385 // If this is a memory input, and if the operand is not indirect, do what we 6386 // need to to provide an address for the memory input. 6387 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6388 !OpInfo.isIndirect) { 6389 assert((OpInfo.isMultipleAlternative || 6390 (OpInfo.Type == InlineAsm::isInput)) && 6391 "Can only indirectify direct input operands!"); 6392 6393 // Memory operands really want the address of the value. If we don't have 6394 // an indirect input, put it in the constpool if we can, otherwise spill 6395 // it to a stack slot. 6396 // TODO: This isn't quite right. We need to handle these according to 6397 // the addressing mode that the constraint wants. Also, this may take 6398 // an additional register for the computation and we don't want that 6399 // either. 6400 6401 // If the operand is a float, integer, or vector constant, spill to a 6402 // constant pool entry to get its address. 6403 const Value *OpVal = OpInfo.CallOperandVal; 6404 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6405 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6406 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6407 TLI->getPointerTy()); 6408 } else { 6409 // Otherwise, create a stack slot and emit a store to it before the 6410 // asm. 6411 Type *Ty = OpVal->getType(); 6412 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6413 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6414 MachineFunction &MF = DAG.getMachineFunction(); 6415 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6416 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6417 Chain = DAG.getStore(Chain, getCurSDLoc(), 6418 OpInfo.CallOperand, StackSlot, 6419 MachinePointerInfo::getFixedStack(SSFI), 6420 false, false, 0); 6421 OpInfo.CallOperand = StackSlot; 6422 } 6423 6424 // There is no longer a Value* corresponding to this operand. 6425 OpInfo.CallOperandVal = 0; 6426 6427 // It is now an indirect operand. 6428 OpInfo.isIndirect = true; 6429 } 6430 6431 // If this constraint is for a specific register, allocate it before 6432 // anything else. 6433 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6434 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6435 } 6436 6437 // Second pass - Loop over all of the operands, assigning virtual or physregs 6438 // to register class operands. 6439 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6440 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6441 6442 // C_Register operands have already been allocated, Other/Memory don't need 6443 // to be. 6444 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6445 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6446 } 6447 6448 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6449 std::vector<SDValue> AsmNodeOperands; 6450 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6451 AsmNodeOperands.push_back( 6452 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6453 TLI->getPointerTy())); 6454 6455 // If we have a !srcloc metadata node associated with it, we want to attach 6456 // this to the ultimately generated inline asm machineinstr. To do this, we 6457 // pass in the third operand as this (potentially null) inline asm MDNode. 6458 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6459 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6460 6461 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6462 // bits as operand 3. 6463 unsigned ExtraInfo = 0; 6464 if (IA->hasSideEffects()) 6465 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6466 if (IA->isAlignStack()) 6467 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6468 // Set the asm dialect. 6469 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6470 6471 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6472 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6473 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6474 6475 // Compute the constraint code and ConstraintType to use. 6476 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6477 6478 // Ideally, we would only check against memory constraints. However, the 6479 // meaning of an other constraint can be target-specific and we can't easily 6480 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6481 // for other constriants as well. 6482 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6483 OpInfo.ConstraintType == TargetLowering::C_Other) { 6484 if (OpInfo.Type == InlineAsm::isInput) 6485 ExtraInfo |= InlineAsm::Extra_MayLoad; 6486 else if (OpInfo.Type == InlineAsm::isOutput) 6487 ExtraInfo |= InlineAsm::Extra_MayStore; 6488 else if (OpInfo.Type == InlineAsm::isClobber) 6489 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6490 } 6491 } 6492 6493 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6494 TLI->getPointerTy())); 6495 6496 // Loop over all of the inputs, copying the operand values into the 6497 // appropriate registers and processing the output regs. 6498 RegsForValue RetValRegs; 6499 6500 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6501 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6502 6503 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6504 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6505 6506 switch (OpInfo.Type) { 6507 case InlineAsm::isOutput: { 6508 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6509 OpInfo.ConstraintType != TargetLowering::C_Register) { 6510 // Memory output, or 'other' output (e.g. 'X' constraint). 6511 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6512 6513 // Add information to the INLINEASM node to know about this output. 6514 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6515 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6516 TLI->getPointerTy())); 6517 AsmNodeOperands.push_back(OpInfo.CallOperand); 6518 break; 6519 } 6520 6521 // Otherwise, this is a register or register class output. 6522 6523 // Copy the output from the appropriate register. Find a register that 6524 // we can use. 6525 if (OpInfo.AssignedRegs.Regs.empty()) { 6526 LLVMContext &Ctx = *DAG.getContext(); 6527 Ctx.emitError(CS.getInstruction(), 6528 "couldn't allocate output register for constraint '" + 6529 Twine(OpInfo.ConstraintCode) + "'"); 6530 return; 6531 } 6532 6533 // If this is an indirect operand, store through the pointer after the 6534 // asm. 6535 if (OpInfo.isIndirect) { 6536 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6537 OpInfo.CallOperandVal)); 6538 } else { 6539 // This is the result value of the call. 6540 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6541 // Concatenate this output onto the outputs list. 6542 RetValRegs.append(OpInfo.AssignedRegs); 6543 } 6544 6545 // Add information to the INLINEASM node to know that this register is 6546 // set. 6547 OpInfo.AssignedRegs 6548 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6549 ? InlineAsm::Kind_RegDefEarlyClobber 6550 : InlineAsm::Kind_RegDef, 6551 false, 0, DAG, AsmNodeOperands); 6552 break; 6553 } 6554 case InlineAsm::isInput: { 6555 SDValue InOperandVal = OpInfo.CallOperand; 6556 6557 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6558 // If this is required to match an output register we have already set, 6559 // just use its register. 6560 unsigned OperandNo = OpInfo.getMatchedOperand(); 6561 6562 // Scan until we find the definition we already emitted of this operand. 6563 // When we find it, create a RegsForValue operand. 6564 unsigned CurOp = InlineAsm::Op_FirstOperand; 6565 for (; OperandNo; --OperandNo) { 6566 // Advance to the next operand. 6567 unsigned OpFlag = 6568 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6569 assert((InlineAsm::isRegDefKind(OpFlag) || 6570 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6571 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6572 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6573 } 6574 6575 unsigned OpFlag = 6576 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6577 if (InlineAsm::isRegDefKind(OpFlag) || 6578 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6579 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6580 if (OpInfo.isIndirect) { 6581 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6582 LLVMContext &Ctx = *DAG.getContext(); 6583 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6584 " don't know how to handle tied " 6585 "indirect register inputs"); 6586 return; 6587 } 6588 6589 RegsForValue MatchedRegs; 6590 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6591 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6592 MatchedRegs.RegVTs.push_back(RegVT); 6593 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6594 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6595 i != e; ++i) { 6596 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6597 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6598 else { 6599 LLVMContext &Ctx = *DAG.getContext(); 6600 Ctx.emitError(CS.getInstruction(), 6601 "inline asm error: This value" 6602 " type register class is not natively supported!"); 6603 return; 6604 } 6605 } 6606 // Use the produced MatchedRegs object to 6607 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6608 Chain, &Flag, CS.getInstruction()); 6609 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6610 true, OpInfo.getMatchedOperand(), 6611 DAG, AsmNodeOperands); 6612 break; 6613 } 6614 6615 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6616 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6617 "Unexpected number of operands"); 6618 // Add information to the INLINEASM node to know about this input. 6619 // See InlineAsm.h isUseOperandTiedToDef. 6620 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6621 OpInfo.getMatchedOperand()); 6622 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6623 TLI->getPointerTy())); 6624 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6625 break; 6626 } 6627 6628 // Treat indirect 'X' constraint as memory. 6629 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6630 OpInfo.isIndirect) 6631 OpInfo.ConstraintType = TargetLowering::C_Memory; 6632 6633 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6634 std::vector<SDValue> Ops; 6635 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6636 Ops, DAG); 6637 if (Ops.empty()) { 6638 LLVMContext &Ctx = *DAG.getContext(); 6639 Ctx.emitError(CS.getInstruction(), 6640 "invalid operand for inline asm constraint '" + 6641 Twine(OpInfo.ConstraintCode) + "'"); 6642 return; 6643 } 6644 6645 // Add information to the INLINEASM node to know about this input. 6646 unsigned ResOpType = 6647 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6648 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6649 TLI->getPointerTy())); 6650 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6651 break; 6652 } 6653 6654 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6655 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6656 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6657 "Memory operands expect pointer values"); 6658 6659 // Add information to the INLINEASM node to know about this input. 6660 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6661 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6662 TLI->getPointerTy())); 6663 AsmNodeOperands.push_back(InOperandVal); 6664 break; 6665 } 6666 6667 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6668 OpInfo.ConstraintType == TargetLowering::C_Register) && 6669 "Unknown constraint type!"); 6670 6671 // TODO: Support this. 6672 if (OpInfo.isIndirect) { 6673 LLVMContext &Ctx = *DAG.getContext(); 6674 Ctx.emitError(CS.getInstruction(), 6675 "Don't know how to handle indirect register inputs yet " 6676 "for constraint '" + 6677 Twine(OpInfo.ConstraintCode) + "'"); 6678 return; 6679 } 6680 6681 // Copy the input into the appropriate registers. 6682 if (OpInfo.AssignedRegs.Regs.empty()) { 6683 LLVMContext &Ctx = *DAG.getContext(); 6684 Ctx.emitError(CS.getInstruction(), 6685 "couldn't allocate input reg for constraint '" + 6686 Twine(OpInfo.ConstraintCode) + "'"); 6687 return; 6688 } 6689 6690 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6691 Chain, &Flag, CS.getInstruction()); 6692 6693 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6694 DAG, AsmNodeOperands); 6695 break; 6696 } 6697 case InlineAsm::isClobber: { 6698 // Add the clobbered value to the operand list, so that the register 6699 // allocator is aware that the physreg got clobbered. 6700 if (!OpInfo.AssignedRegs.Regs.empty()) 6701 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6702 false, 0, DAG, 6703 AsmNodeOperands); 6704 break; 6705 } 6706 } 6707 } 6708 6709 // Finish up input operands. Set the input chain and add the flag last. 6710 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6711 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6712 6713 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6714 DAG.getVTList(MVT::Other, MVT::Glue), 6715 &AsmNodeOperands[0], AsmNodeOperands.size()); 6716 Flag = Chain.getValue(1); 6717 6718 // If this asm returns a register value, copy the result from that register 6719 // and set it as the value of the call. 6720 if (!RetValRegs.Regs.empty()) { 6721 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6722 Chain, &Flag, CS.getInstruction()); 6723 6724 // FIXME: Why don't we do this for inline asms with MRVs? 6725 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6726 EVT ResultType = TLI->getValueType(CS.getType()); 6727 6728 // If any of the results of the inline asm is a vector, it may have the 6729 // wrong width/num elts. This can happen for register classes that can 6730 // contain multiple different value types. The preg or vreg allocated may 6731 // not have the same VT as was expected. Convert it to the right type 6732 // with bit_convert. 6733 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6734 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6735 ResultType, Val); 6736 6737 } else if (ResultType != Val.getValueType() && 6738 ResultType.isInteger() && Val.getValueType().isInteger()) { 6739 // If a result value was tied to an input value, the computed result may 6740 // have a wider width than the expected result. Extract the relevant 6741 // portion. 6742 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6743 } 6744 6745 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6746 } 6747 6748 setValue(CS.getInstruction(), Val); 6749 // Don't need to use this as a chain in this case. 6750 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6751 return; 6752 } 6753 6754 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6755 6756 // Process indirect outputs, first output all of the flagged copies out of 6757 // physregs. 6758 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6759 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6760 const Value *Ptr = IndirectStoresToEmit[i].second; 6761 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6762 Chain, &Flag, IA); 6763 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6764 } 6765 6766 // Emit the non-flagged stores from the physregs. 6767 SmallVector<SDValue, 8> OutChains; 6768 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6769 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6770 StoresToEmit[i].first, 6771 getValue(StoresToEmit[i].second), 6772 MachinePointerInfo(StoresToEmit[i].second), 6773 false, false, 0); 6774 OutChains.push_back(Val); 6775 } 6776 6777 if (!OutChains.empty()) 6778 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6779 &OutChains[0], OutChains.size()); 6780 6781 DAG.setRoot(Chain); 6782 } 6783 6784 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6785 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6786 MVT::Other, getRoot(), 6787 getValue(I.getArgOperand(0)), 6788 DAG.getSrcValue(I.getArgOperand(0)))); 6789 } 6790 6791 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6792 const TargetLowering *TLI = TM.getTargetLowering(); 6793 const DataLayout &TD = *TLI->getDataLayout(); 6794 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6795 getRoot(), getValue(I.getOperand(0)), 6796 DAG.getSrcValue(I.getOperand(0)), 6797 TD.getABITypeAlignment(I.getType())); 6798 setValue(&I, V); 6799 DAG.setRoot(V.getValue(1)); 6800 } 6801 6802 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6803 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6804 MVT::Other, getRoot(), 6805 getValue(I.getArgOperand(0)), 6806 DAG.getSrcValue(I.getArgOperand(0)))); 6807 } 6808 6809 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6810 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6811 MVT::Other, getRoot(), 6812 getValue(I.getArgOperand(0)), 6813 getValue(I.getArgOperand(1)), 6814 DAG.getSrcValue(I.getArgOperand(0)), 6815 DAG.getSrcValue(I.getArgOperand(1)))); 6816 } 6817 6818 /// \brief Lower an argument list according to the target calling convention. 6819 /// 6820 /// \return A tuple of <return-value, token-chain> 6821 /// 6822 /// This is a helper for lowering intrinsics that follow a target calling 6823 /// convention or require stack pointer adjustment. Only a subset of the 6824 /// intrinsic's operands need to participate in the calling convention. 6825 std::pair<SDValue, SDValue> 6826 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6827 unsigned NumArgs, SDValue Callee, 6828 bool useVoidTy) { 6829 TargetLowering::ArgListTy Args; 6830 Args.reserve(NumArgs); 6831 6832 // Populate the argument list. 6833 // Attributes for args start at offset 1, after the return attribute. 6834 ImmutableCallSite CS(&CI); 6835 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6836 ArgI != ArgE; ++ArgI) { 6837 const Value *V = CI.getOperand(ArgI); 6838 6839 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6840 6841 TargetLowering::ArgListEntry Entry; 6842 Entry.Node = getValue(V); 6843 Entry.Ty = V->getType(); 6844 Entry.setAttributes(&CS, AttrI); 6845 Args.push_back(Entry); 6846 } 6847 6848 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6849 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6850 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6851 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6852 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6853 6854 const TargetLowering *TLI = TM.getTargetLowering(); 6855 return TLI->LowerCallTo(CLI); 6856 } 6857 6858 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6859 /// or patchpoint target node's operand list. 6860 /// 6861 /// Constants are converted to TargetConstants purely as an optimization to 6862 /// avoid constant materialization and register allocation. 6863 /// 6864 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6865 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6866 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6867 /// address materialization and register allocation, but may also be required 6868 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6869 /// alloca in the entry block, then the runtime may assume that the alloca's 6870 /// StackMap location can be read immediately after compilation and that the 6871 /// location is valid at any point during execution (this is similar to the 6872 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6873 /// only available in a register, then the runtime would need to trap when 6874 /// execution reaches the StackMap in order to read the alloca's location. 6875 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6876 SmallVectorImpl<SDValue> &Ops, 6877 SelectionDAGBuilder &Builder) { 6878 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6879 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6880 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6881 Ops.push_back( 6882 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6883 Ops.push_back( 6884 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6885 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6886 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6887 Ops.push_back( 6888 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6889 } else 6890 Ops.push_back(OpVal); 6891 } 6892 } 6893 6894 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6895 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6896 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6897 // [live variables...]) 6898 6899 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6900 6901 SDValue Callee = getValue(CI.getCalledValue()); 6902 6903 // Lower into a call sequence with no args and no return value. 6904 std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee); 6905 // Set the root to the target-lowered call chain. 6906 SDValue Chain = Result.second; 6907 DAG.setRoot(Chain); 6908 6909 /// Get a call instruction from the call sequence chain. 6910 /// Tail calls are not allowed. 6911 SDNode *CallEnd = Chain.getNode(); 6912 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6913 "Expected a callseq node."); 6914 SDNode *Call = CallEnd->getOperand(0).getNode(); 6915 bool hasGlue = Call->getGluedNode(); 6916 6917 // Replace the target specific call node with the stackmap intrinsic. 6918 SmallVector<SDValue, 8> Ops; 6919 6920 // Add the <id> and <numShadowBytes> constants. 6921 for (unsigned i = 0; i < 2; ++i) { 6922 SDValue tmp = getValue(CI.getOperand(i)); 6923 Ops.push_back(DAG.getTargetConstant( 6924 cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32)); 6925 } 6926 // Push live variables for the stack map. 6927 addStackMapLiveVars(CI, 2, Ops, *this); 6928 6929 // Push the chain (this is originally the first operand of the call, but 6930 // becomes now the last or second to last operand). 6931 Ops.push_back(*(Call->op_begin())); 6932 6933 // Push the glue flag (last operand). 6934 if (hasGlue) 6935 Ops.push_back(*(Call->op_end()-1)); 6936 6937 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6938 6939 // Replace the target specific call node with a STACKMAP node. 6940 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(), 6941 NodeTys, Ops); 6942 6943 // StackMap generates no value, so nothing goes in the NodeMap. 6944 6945 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6946 // call sequence. 6947 DAG.ReplaceAllUsesWith(Call, MN); 6948 6949 DAG.DeleteNode(Call); 6950 6951 // Inform the Frame Information that we have a stackmap in this function. 6952 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6953 } 6954 6955 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6956 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6957 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6958 // i32 <numBytes>, 6959 // i8* <target>, 6960 // i32 <numArgs>, 6961 // [Args...], 6962 // [live variables...]) 6963 6964 CallingConv::ID CC = CI.getCallingConv(); 6965 bool isAnyRegCC = CC == CallingConv::AnyReg; 6966 bool hasDef = !CI.getType()->isVoidTy(); 6967 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6968 6969 // Get the real number of arguments participating in the call <numArgs> 6970 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6971 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6972 6973 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6974 // Intrinsics include all meta-operands up to but not including CC. 6975 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6976 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6977 "Not enough arguments provided to the patchpoint intrinsic"); 6978 6979 // For AnyRegCC the arguments are lowered later on manually. 6980 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6981 std::pair<SDValue, SDValue> Result = 6982 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6983 6984 // Set the root to the target-lowered call chain. 6985 SDValue Chain = Result.second; 6986 DAG.setRoot(Chain); 6987 6988 SDNode *CallEnd = Chain.getNode(); 6989 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6990 CallEnd = CallEnd->getOperand(0).getNode(); 6991 6992 /// Get a call instruction from the call sequence chain. 6993 /// Tail calls are not allowed. 6994 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6995 "Expected a callseq node."); 6996 SDNode *Call = CallEnd->getOperand(0).getNode(); 6997 bool hasGlue = Call->getGluedNode(); 6998 6999 // Replace the target specific call node with the patchable intrinsic. 7000 SmallVector<SDValue, 8> Ops; 7001 7002 // Add the <id> and <numBytes> constants. 7003 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7004 Ops.push_back(DAG.getTargetConstant( 7005 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7006 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7007 Ops.push_back(DAG.getTargetConstant( 7008 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7009 7010 // Assume that the Callee is a constant address. 7011 // FIXME: handle function symbols in the future. 7012 Ops.push_back( 7013 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7014 /*isTarget=*/true)); 7015 7016 // Adjust <numArgs> to account for any arguments that have been passed on the 7017 // stack instead. 7018 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7019 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7020 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7021 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7022 7023 // Add the calling convention 7024 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7025 7026 // Add the arguments we omitted previously. The register allocator should 7027 // place these in any free register. 7028 if (isAnyRegCC) 7029 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7030 Ops.push_back(getValue(CI.getArgOperand(i))); 7031 7032 // Push the arguments from the call instruction up to the register mask. 7033 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7034 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7035 Ops.push_back(*i); 7036 7037 // Push live variables for the stack map. 7038 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7039 7040 // Push the register mask info. 7041 if (hasGlue) 7042 Ops.push_back(*(Call->op_end()-2)); 7043 else 7044 Ops.push_back(*(Call->op_end()-1)); 7045 7046 // Push the chain (this is originally the first operand of the call, but 7047 // becomes now the last or second to last operand). 7048 Ops.push_back(*(Call->op_begin())); 7049 7050 // Push the glue flag (last operand). 7051 if (hasGlue) 7052 Ops.push_back(*(Call->op_end()-1)); 7053 7054 SDVTList NodeTys; 7055 if (isAnyRegCC && hasDef) { 7056 // Create the return types based on the intrinsic definition 7057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7058 SmallVector<EVT, 3> ValueVTs; 7059 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7060 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7061 7062 // There is always a chain and a glue type at the end 7063 ValueVTs.push_back(MVT::Other); 7064 ValueVTs.push_back(MVT::Glue); 7065 NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 7066 } else 7067 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7068 7069 // Replace the target specific call node with a PATCHPOINT node. 7070 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7071 getCurSDLoc(), NodeTys, Ops); 7072 7073 // Update the NodeMap. 7074 if (hasDef) { 7075 if (isAnyRegCC) 7076 setValue(&CI, SDValue(MN, 0)); 7077 else 7078 setValue(&CI, Result.first); 7079 } 7080 7081 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7082 // call sequence. Furthermore the location of the chain and glue can change 7083 // when the AnyReg calling convention is used and the intrinsic returns a 7084 // value. 7085 if (isAnyRegCC && hasDef) { 7086 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7087 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7088 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7089 } else 7090 DAG.ReplaceAllUsesWith(Call, MN); 7091 DAG.DeleteNode(Call); 7092 7093 // Inform the Frame Information that we have a patchpoint in this function. 7094 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7095 } 7096 7097 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7098 /// implementation, which just calls LowerCall. 7099 /// FIXME: When all targets are 7100 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7101 std::pair<SDValue, SDValue> 7102 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7103 // Handle the incoming return values from the call. 7104 CLI.Ins.clear(); 7105 SmallVector<EVT, 4> RetTys; 7106 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7107 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7108 EVT VT = RetTys[I]; 7109 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7110 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7111 for (unsigned i = 0; i != NumRegs; ++i) { 7112 ISD::InputArg MyFlags; 7113 MyFlags.VT = RegisterVT; 7114 MyFlags.ArgVT = VT; 7115 MyFlags.Used = CLI.IsReturnValueUsed; 7116 if (CLI.RetSExt) 7117 MyFlags.Flags.setSExt(); 7118 if (CLI.RetZExt) 7119 MyFlags.Flags.setZExt(); 7120 if (CLI.IsInReg) 7121 MyFlags.Flags.setInReg(); 7122 CLI.Ins.push_back(MyFlags); 7123 } 7124 } 7125 7126 // Handle all of the outgoing arguments. 7127 CLI.Outs.clear(); 7128 CLI.OutVals.clear(); 7129 ArgListTy &Args = CLI.Args; 7130 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7131 SmallVector<EVT, 4> ValueVTs; 7132 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7133 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7134 Value != NumValues; ++Value) { 7135 EVT VT = ValueVTs[Value]; 7136 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7137 SDValue Op = SDValue(Args[i].Node.getNode(), 7138 Args[i].Node.getResNo() + Value); 7139 ISD::ArgFlagsTy Flags; 7140 unsigned OriginalAlignment = 7141 getDataLayout()->getABITypeAlignment(ArgTy); 7142 7143 if (Args[i].isZExt) 7144 Flags.setZExt(); 7145 if (Args[i].isSExt) 7146 Flags.setSExt(); 7147 if (Args[i].isInReg) 7148 Flags.setInReg(); 7149 if (Args[i].isSRet) 7150 Flags.setSRet(); 7151 if (Args[i].isByVal) 7152 Flags.setByVal(); 7153 if (Args[i].isInAlloca) { 7154 Flags.setInAlloca(); 7155 // Set the byval flag for CCAssignFn callbacks that don't know about 7156 // inalloca. This way we can know how many bytes we should've allocated 7157 // and how many bytes a callee cleanup function will pop. If we port 7158 // inalloca to more targets, we'll have to add custom inalloca handling 7159 // in the various CC lowering callbacks. 7160 Flags.setByVal(); 7161 } 7162 if (Args[i].isByVal || Args[i].isInAlloca) { 7163 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7164 Type *ElementTy = Ty->getElementType(); 7165 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7166 // For ByVal, alignment should come from FE. BE will guess if this 7167 // info is not there but there are cases it cannot get right. 7168 unsigned FrameAlign; 7169 if (Args[i].Alignment) 7170 FrameAlign = Args[i].Alignment; 7171 else 7172 FrameAlign = getByValTypeAlignment(ElementTy); 7173 Flags.setByValAlign(FrameAlign); 7174 } 7175 if (Args[i].isNest) 7176 Flags.setNest(); 7177 Flags.setOrigAlign(OriginalAlignment); 7178 7179 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7180 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7181 SmallVector<SDValue, 4> Parts(NumParts); 7182 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7183 7184 if (Args[i].isSExt) 7185 ExtendKind = ISD::SIGN_EXTEND; 7186 else if (Args[i].isZExt) 7187 ExtendKind = ISD::ZERO_EXTEND; 7188 7189 // Conservatively only handle 'returned' on non-vectors for now 7190 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7191 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7192 "unexpected use of 'returned'"); 7193 // Before passing 'returned' to the target lowering code, ensure that 7194 // either the register MVT and the actual EVT are the same size or that 7195 // the return value and argument are extended in the same way; in these 7196 // cases it's safe to pass the argument register value unchanged as the 7197 // return register value (although it's at the target's option whether 7198 // to do so) 7199 // TODO: allow code generation to take advantage of partially preserved 7200 // registers rather than clobbering the entire register when the 7201 // parameter extension method is not compatible with the return 7202 // extension method 7203 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7204 (ExtendKind != ISD::ANY_EXTEND && 7205 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7206 Flags.setReturned(); 7207 } 7208 7209 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 7210 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 7211 7212 for (unsigned j = 0; j != NumParts; ++j) { 7213 // if it isn't first piece, alignment must be 1 7214 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7215 i < CLI.NumFixedArgs, 7216 i, j*Parts[j].getValueType().getStoreSize()); 7217 if (NumParts > 1 && j == 0) 7218 MyFlags.Flags.setSplit(); 7219 else if (j != 0) 7220 MyFlags.Flags.setOrigAlign(1); 7221 7222 CLI.Outs.push_back(MyFlags); 7223 CLI.OutVals.push_back(Parts[j]); 7224 } 7225 } 7226 } 7227 7228 SmallVector<SDValue, 4> InVals; 7229 CLI.Chain = LowerCall(CLI, InVals); 7230 7231 // Verify that the target's LowerCall behaved as expected. 7232 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7233 "LowerCall didn't return a valid chain!"); 7234 assert((!CLI.IsTailCall || InVals.empty()) && 7235 "LowerCall emitted a return value for a tail call!"); 7236 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7237 "LowerCall didn't emit the correct number of values!"); 7238 7239 // For a tail call, the return value is merely live-out and there aren't 7240 // any nodes in the DAG representing it. Return a special value to 7241 // indicate that a tail call has been emitted and no more Instructions 7242 // should be processed in the current block. 7243 if (CLI.IsTailCall) { 7244 CLI.DAG.setRoot(CLI.Chain); 7245 return std::make_pair(SDValue(), SDValue()); 7246 } 7247 7248 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7249 assert(InVals[i].getNode() && 7250 "LowerCall emitted a null value!"); 7251 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7252 "LowerCall emitted a value with the wrong type!"); 7253 }); 7254 7255 // Collect the legal value parts into potentially illegal values 7256 // that correspond to the original function's return values. 7257 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7258 if (CLI.RetSExt) 7259 AssertOp = ISD::AssertSext; 7260 else if (CLI.RetZExt) 7261 AssertOp = ISD::AssertZext; 7262 SmallVector<SDValue, 4> ReturnValues; 7263 unsigned CurReg = 0; 7264 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7265 EVT VT = RetTys[I]; 7266 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7267 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7268 7269 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7270 NumRegs, RegisterVT, VT, NULL, 7271 AssertOp)); 7272 CurReg += NumRegs; 7273 } 7274 7275 // For a function returning void, there is no return value. We can't create 7276 // such a node, so we just return a null return value in that case. In 7277 // that case, nothing will actually look at the value. 7278 if (ReturnValues.empty()) 7279 return std::make_pair(SDValue(), CLI.Chain); 7280 7281 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7282 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 7283 &ReturnValues[0], ReturnValues.size()); 7284 return std::make_pair(Res, CLI.Chain); 7285 } 7286 7287 void TargetLowering::LowerOperationWrapper(SDNode *N, 7288 SmallVectorImpl<SDValue> &Results, 7289 SelectionDAG &DAG) const { 7290 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7291 if (Res.getNode()) 7292 Results.push_back(Res); 7293 } 7294 7295 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7296 llvm_unreachable("LowerOperation not implemented for this target!"); 7297 } 7298 7299 void 7300 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7301 SDValue Op = getNonRegisterValue(V); 7302 assert((Op.getOpcode() != ISD::CopyFromReg || 7303 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7304 "Copy from a reg to the same reg!"); 7305 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7306 7307 const TargetLowering *TLI = TM.getTargetLowering(); 7308 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7309 SDValue Chain = DAG.getEntryNode(); 7310 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 7311 PendingExports.push_back(Chain); 7312 } 7313 7314 #include "llvm/CodeGen/SelectionDAGISel.h" 7315 7316 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7317 /// entry block, return true. This includes arguments used by switches, since 7318 /// the switch may expand into multiple basic blocks. 7319 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7320 // With FastISel active, we may be splitting blocks, so force creation 7321 // of virtual registers for all non-dead arguments. 7322 if (FastISel) 7323 return A->use_empty(); 7324 7325 const BasicBlock *Entry = A->getParent()->begin(); 7326 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 7327 UI != E; ++UI) { 7328 const User *U = *UI; 7329 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7330 return false; // Use not in entry block. 7331 } 7332 return true; 7333 } 7334 7335 void SelectionDAGISel::LowerArguments(const Function &F) { 7336 SelectionDAG &DAG = SDB->DAG; 7337 SDLoc dl = SDB->getCurSDLoc(); 7338 const TargetLowering *TLI = getTargetLowering(); 7339 const DataLayout *TD = TLI->getDataLayout(); 7340 SmallVector<ISD::InputArg, 16> Ins; 7341 7342 if (!FuncInfo->CanLowerReturn) { 7343 // Put in an sret pointer parameter before all the other parameters. 7344 SmallVector<EVT, 1> ValueVTs; 7345 ComputeValueVTs(*getTargetLowering(), 7346 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7347 7348 // NOTE: Assuming that a pointer will never break down to more than one VT 7349 // or one register. 7350 ISD::ArgFlagsTy Flags; 7351 Flags.setSRet(); 7352 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7353 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7354 Ins.push_back(RetArg); 7355 } 7356 7357 // Set up the incoming argument description vector. 7358 unsigned Idx = 1; 7359 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7360 I != E; ++I, ++Idx) { 7361 SmallVector<EVT, 4> ValueVTs; 7362 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7363 bool isArgValueUsed = !I->use_empty(); 7364 unsigned PartBase = 0; 7365 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7366 Value != NumValues; ++Value) { 7367 EVT VT = ValueVTs[Value]; 7368 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7369 ISD::ArgFlagsTy Flags; 7370 unsigned OriginalAlignment = 7371 TD->getABITypeAlignment(ArgTy); 7372 7373 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7374 Flags.setZExt(); 7375 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7376 Flags.setSExt(); 7377 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7378 Flags.setInReg(); 7379 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7380 Flags.setSRet(); 7381 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7382 Flags.setByVal(); 7383 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7384 Flags.setInAlloca(); 7385 // Set the byval flag for CCAssignFn callbacks that don't know about 7386 // inalloca. This way we can know how many bytes we should've allocated 7387 // and how many bytes a callee cleanup function will pop. If we port 7388 // inalloca to more targets, we'll have to add custom inalloca handling 7389 // in the various CC lowering callbacks. 7390 Flags.setByVal(); 7391 } 7392 if (Flags.isByVal() || Flags.isInAlloca()) { 7393 PointerType *Ty = cast<PointerType>(I->getType()); 7394 Type *ElementTy = Ty->getElementType(); 7395 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 7396 // For ByVal, alignment should be passed from FE. BE will guess if 7397 // this info is not there but there are cases it cannot get right. 7398 unsigned FrameAlign; 7399 if (F.getParamAlignment(Idx)) 7400 FrameAlign = F.getParamAlignment(Idx); 7401 else 7402 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7403 Flags.setByValAlign(FrameAlign); 7404 } 7405 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7406 Flags.setNest(); 7407 Flags.setOrigAlign(OriginalAlignment); 7408 7409 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7410 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7411 for (unsigned i = 0; i != NumRegs; ++i) { 7412 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7413 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7414 if (NumRegs > 1 && i == 0) 7415 MyFlags.Flags.setSplit(); 7416 // if it isn't first piece, alignment must be 1 7417 else if (i > 0) 7418 MyFlags.Flags.setOrigAlign(1); 7419 Ins.push_back(MyFlags); 7420 } 7421 PartBase += VT.getStoreSize(); 7422 } 7423 } 7424 7425 // Call the target to set up the argument values. 7426 SmallVector<SDValue, 8> InVals; 7427 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7428 F.isVarArg(), Ins, 7429 dl, DAG, InVals); 7430 7431 // Verify that the target's LowerFormalArguments behaved as expected. 7432 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7433 "LowerFormalArguments didn't return a valid chain!"); 7434 assert(InVals.size() == Ins.size() && 7435 "LowerFormalArguments didn't emit the correct number of values!"); 7436 DEBUG({ 7437 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7438 assert(InVals[i].getNode() && 7439 "LowerFormalArguments emitted a null value!"); 7440 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7441 "LowerFormalArguments emitted a value with the wrong type!"); 7442 } 7443 }); 7444 7445 // Update the DAG with the new chain value resulting from argument lowering. 7446 DAG.setRoot(NewRoot); 7447 7448 // Set up the argument values. 7449 unsigned i = 0; 7450 Idx = 1; 7451 if (!FuncInfo->CanLowerReturn) { 7452 // Create a virtual register for the sret pointer, and put in a copy 7453 // from the sret argument into it. 7454 SmallVector<EVT, 1> ValueVTs; 7455 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7456 MVT VT = ValueVTs[0].getSimpleVT(); 7457 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7458 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7459 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7460 RegVT, VT, NULL, AssertOp); 7461 7462 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7463 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7464 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7465 FuncInfo->DemoteRegister = SRetReg; 7466 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7467 SRetReg, ArgValue); 7468 DAG.setRoot(NewRoot); 7469 7470 // i indexes lowered arguments. Bump it past the hidden sret argument. 7471 // Idx indexes LLVM arguments. Don't touch it. 7472 ++i; 7473 } 7474 7475 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7476 ++I, ++Idx) { 7477 SmallVector<SDValue, 4> ArgValues; 7478 SmallVector<EVT, 4> ValueVTs; 7479 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7480 unsigned NumValues = ValueVTs.size(); 7481 7482 // If this argument is unused then remember its value. It is used to generate 7483 // debugging information. 7484 if (I->use_empty() && NumValues) { 7485 SDB->setUnusedArgValue(I, InVals[i]); 7486 7487 // Also remember any frame index for use in FastISel. 7488 if (FrameIndexSDNode *FI = 7489 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7490 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7491 } 7492 7493 for (unsigned Val = 0; Val != NumValues; ++Val) { 7494 EVT VT = ValueVTs[Val]; 7495 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7496 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7497 7498 if (!I->use_empty()) { 7499 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7500 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7501 AssertOp = ISD::AssertSext; 7502 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7503 AssertOp = ISD::AssertZext; 7504 7505 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7506 NumParts, PartVT, VT, 7507 NULL, AssertOp)); 7508 } 7509 7510 i += NumParts; 7511 } 7512 7513 // We don't need to do anything else for unused arguments. 7514 if (ArgValues.empty()) 7515 continue; 7516 7517 // Note down frame index. 7518 if (FrameIndexSDNode *FI = 7519 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7520 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7521 7522 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7523 SDB->getCurSDLoc()); 7524 7525 SDB->setValue(I, Res); 7526 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7527 if (LoadSDNode *LNode = 7528 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7529 if (FrameIndexSDNode *FI = 7530 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7531 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7532 } 7533 7534 // If this argument is live outside of the entry block, insert a copy from 7535 // wherever we got it to the vreg that other BB's will reference it as. 7536 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7537 // If we can, though, try to skip creating an unnecessary vreg. 7538 // FIXME: This isn't very clean... it would be nice to make this more 7539 // general. It's also subtly incompatible with the hacks FastISel 7540 // uses with vregs. 7541 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7542 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7543 FuncInfo->ValueMap[I] = Reg; 7544 continue; 7545 } 7546 } 7547 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7548 FuncInfo->InitializeRegForValue(I); 7549 SDB->CopyToExportRegsIfNeeded(I); 7550 } 7551 } 7552 7553 assert(i == InVals.size() && "Argument register count mismatch!"); 7554 7555 // Finally, if the target has anything special to do, allow it to do so. 7556 // FIXME: this should insert code into the DAG! 7557 EmitFunctionEntryCode(); 7558 } 7559 7560 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7561 /// ensure constants are generated when needed. Remember the virtual registers 7562 /// that need to be added to the Machine PHI nodes as input. We cannot just 7563 /// directly add them, because expansion might result in multiple MBB's for one 7564 /// BB. As such, the start of the BB might correspond to a different MBB than 7565 /// the end. 7566 /// 7567 void 7568 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7569 const TerminatorInst *TI = LLVMBB->getTerminator(); 7570 7571 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7572 7573 // Check successor nodes' PHI nodes that expect a constant to be available 7574 // from this block. 7575 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7576 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7577 if (!isa<PHINode>(SuccBB->begin())) continue; 7578 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7579 7580 // If this terminator has multiple identical successors (common for 7581 // switches), only handle each succ once. 7582 if (!SuccsHandled.insert(SuccMBB)) continue; 7583 7584 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7585 7586 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7587 // nodes and Machine PHI nodes, but the incoming operands have not been 7588 // emitted yet. 7589 for (BasicBlock::const_iterator I = SuccBB->begin(); 7590 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7591 // Ignore dead phi's. 7592 if (PN->use_empty()) continue; 7593 7594 // Skip empty types 7595 if (PN->getType()->isEmptyTy()) 7596 continue; 7597 7598 unsigned Reg; 7599 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7600 7601 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7602 unsigned &RegOut = ConstantsOut[C]; 7603 if (RegOut == 0) { 7604 RegOut = FuncInfo.CreateRegs(C->getType()); 7605 CopyValueToVirtualRegister(C, RegOut); 7606 } 7607 Reg = RegOut; 7608 } else { 7609 DenseMap<const Value *, unsigned>::iterator I = 7610 FuncInfo.ValueMap.find(PHIOp); 7611 if (I != FuncInfo.ValueMap.end()) 7612 Reg = I->second; 7613 else { 7614 assert(isa<AllocaInst>(PHIOp) && 7615 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7616 "Didn't codegen value into a register!??"); 7617 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7618 CopyValueToVirtualRegister(PHIOp, Reg); 7619 } 7620 } 7621 7622 // Remember that this register needs to added to the machine PHI node as 7623 // the input for this MBB. 7624 SmallVector<EVT, 4> ValueVTs; 7625 const TargetLowering *TLI = TM.getTargetLowering(); 7626 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7627 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7628 EVT VT = ValueVTs[vti]; 7629 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7630 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7631 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7632 Reg += NumRegisters; 7633 } 7634 } 7635 } 7636 7637 ConstantsOut.clear(); 7638 } 7639 7640 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7641 /// is 0. 7642 MachineBasicBlock * 7643 SelectionDAGBuilder::StackProtectorDescriptor:: 7644 AddSuccessorMBB(const BasicBlock *BB, 7645 MachineBasicBlock *ParentMBB, 7646 MachineBasicBlock *SuccMBB) { 7647 // If SuccBB has not been created yet, create it. 7648 if (!SuccMBB) { 7649 MachineFunction *MF = ParentMBB->getParent(); 7650 MachineFunction::iterator BBI = ParentMBB; 7651 SuccMBB = MF->CreateMachineBasicBlock(BB); 7652 MF->insert(++BBI, SuccMBB); 7653 } 7654 // Add it as a successor of ParentMBB. 7655 ParentMBB->addSuccessor(SuccMBB); 7656 return SuccMBB; 7657 } 7658