xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 1af3705c7fe23db9d5308bfdf07bfbd04398b895)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfoMetadata.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/IntrinsicsAArch64.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PatternMatch.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/MC/MCContext.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/Support/AtomicOrdering.h"
102 #include "llvm/Support/BranchProbability.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CodeGen.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Compiler.h"
107 #include "llvm/Support/Debug.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/MachineValueType.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetIntrinsicInfo.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cstddef>
119 #include <cstdint>
120 #include <cstring>
121 #include <iterator>
122 #include <limits>
123 #include <numeric>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 using namespace llvm;
129 using namespace PatternMatch;
130 using namespace SwitchCG;
131 
132 #define DEBUG_TYPE "isel"
133 
134 /// LimitFloatPrecision - Generate low-precision inline sequences for
135 /// some float libcalls (6, 8 or 12 bits).
136 static unsigned LimitFloatPrecision;
137 
138 static cl::opt<unsigned, true>
139     LimitFPPrecision("limit-float-precision",
140                      cl::desc("Generate low-precision inline sequences "
141                               "for some float libcalls"),
142                      cl::location(LimitFloatPrecision), cl::Hidden,
143                      cl::init(0));
144 
145 static cl::opt<unsigned> SwitchPeelThreshold(
146     "switch-peel-threshold", cl::Hidden, cl::init(66),
147     cl::desc("Set the case probability threshold for peeling the case from a "
148              "switch statement. A value greater than 100 will void this "
149              "optimization"));
150 
151 // Limit the width of DAG chains. This is important in general to prevent
152 // DAG-based analysis from blowing up. For example, alias analysis and
153 // load clustering may not complete in reasonable time. It is difficult to
154 // recognize and avoid this situation within each individual analysis, and
155 // future analyses are likely to have the same behavior. Limiting DAG width is
156 // the safe approach and will be especially important with global DAGs.
157 //
158 // MaxParallelChains default is arbitrarily high to avoid affecting
159 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
160 // sequence over this should have been converted to llvm.memcpy by the
161 // frontend. It is easy to induce this behavior with .ll code such as:
162 // %buffer = alloca [4096 x i8]
163 // %data = load [4096 x i8]* %argPtr
164 // store [4096 x i8] %data, [4096 x i8]* %buffer
165 static const unsigned MaxParallelChains = 64;
166 
167 // Return the calling convention if the Value passed requires ABI mangling as it
168 // is a parameter to a function or a return value from a function which is not
169 // an intrinsic.
170 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
171   if (auto *R = dyn_cast<ReturnInst>(V))
172     return R->getParent()->getParent()->getCallingConv();
173 
174   if (auto *CI = dyn_cast<CallInst>(V)) {
175     const bool IsInlineAsm = CI->isInlineAsm();
176     const bool IsIndirectFunctionCall =
177         !IsInlineAsm && !CI->getCalledFunction();
178 
179     // It is possible that the call instruction is an inline asm statement or an
180     // indirect function call in which case the return value of
181     // getCalledFunction() would be nullptr.
182     const bool IsInstrinsicCall =
183         !IsInlineAsm && !IsIndirectFunctionCall &&
184         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
185 
186     if (!IsInlineAsm && !IsInstrinsicCall)
187       return CI->getCallingConv();
188   }
189 
190   return None;
191 }
192 
193 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
194                                       const SDValue *Parts, unsigned NumParts,
195                                       MVT PartVT, EVT ValueVT, const Value *V,
196                                       Optional<CallingConv::ID> CC);
197 
198 /// getCopyFromParts - Create a value that contains the specified legal parts
199 /// combined into the value they represent.  If the parts combine to a type
200 /// larger than ValueVT then AssertOp can be used to specify whether the extra
201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
202 /// (ISD::AssertSext).
203 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
204                                 const SDValue *Parts, unsigned NumParts,
205                                 MVT PartVT, EVT ValueVT, const Value *V,
206                                 Optional<CallingConv::ID> CC = None,
207                                 Optional<ISD::NodeType> AssertOp = None) {
208   if (ValueVT.isVector())
209     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
210                                   CC);
211 
212   assert(NumParts > 0 && "No parts to assemble!");
213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
214   SDValue Val = Parts[0];
215 
216   if (NumParts > 1) {
217     // Assemble the value from multiple parts.
218     if (ValueVT.isInteger()) {
219       unsigned PartBits = PartVT.getSizeInBits();
220       unsigned ValueBits = ValueVT.getSizeInBits();
221 
222       // Assemble the power of 2 part.
223       unsigned RoundParts =
224           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
225       unsigned RoundBits = PartBits * RoundParts;
226       EVT RoundVT = RoundBits == ValueBits ?
227         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
228       SDValue Lo, Hi;
229 
230       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
231 
232       if (RoundParts > 2) {
233         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
234                               PartVT, HalfVT, V);
235         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
236                               RoundParts / 2, PartVT, HalfVT, V);
237       } else {
238         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
239         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
240       }
241 
242       if (DAG.getDataLayout().isBigEndian())
243         std::swap(Lo, Hi);
244 
245       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
246 
247       if (RoundParts < NumParts) {
248         // Assemble the trailing non-power-of-2 part.
249         unsigned OddParts = NumParts - RoundParts;
250         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
251         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
252                               OddVT, V, CC);
253 
254         // Combine the round and odd parts.
255         Lo = Val;
256         if (DAG.getDataLayout().isBigEndian())
257           std::swap(Lo, Hi);
258         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
259         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
260         Hi =
261             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
262                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
263                                         TLI.getPointerTy(DAG.getDataLayout())));
264         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
265         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
266       }
267     } else if (PartVT.isFloatingPoint()) {
268       // FP split into multiple FP parts (for ppcf128)
269       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
270              "Unexpected split");
271       SDValue Lo, Hi;
272       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
273       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
274       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
275         std::swap(Lo, Hi);
276       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
277     } else {
278       // FP split into integer parts (soft fp)
279       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
280              !PartVT.isVector() && "Unexpected split");
281       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
282       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
283     }
284   }
285 
286   // There is now one part, held in Val.  Correct it to match ValueVT.
287   // PartEVT is the type of the register class that holds the value.
288   // ValueVT is the type of the inline asm operation.
289   EVT PartEVT = Val.getValueType();
290 
291   if (PartEVT == ValueVT)
292     return Val;
293 
294   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
295       ValueVT.bitsLT(PartEVT)) {
296     // For an FP value in an integer part, we need to truncate to the right
297     // width first.
298     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
299     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
300   }
301 
302   // Handle types that have the same size.
303   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
304     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305 
306   // Handle types with different sizes.
307   if (PartEVT.isInteger() && ValueVT.isInteger()) {
308     if (ValueVT.bitsLT(PartEVT)) {
309       // For a truncate, see if we have any information to
310       // indicate whether the truncated bits will always be
311       // zero or sign-extension.
312       if (AssertOp.hasValue())
313         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
314                           DAG.getValueType(ValueVT));
315       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
316     }
317     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
318   }
319 
320   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
321     // FP_ROUND's are always exact here.
322     if (ValueVT.bitsLT(Val.getValueType()))
323       return DAG.getNode(
324           ISD::FP_ROUND, DL, ValueVT, Val,
325           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
326 
327     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
328   }
329 
330   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
331   // then truncating.
332   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
333       ValueVT.bitsLT(PartEVT)) {
334     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
335     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
336   }
337 
338   report_fatal_error("Unknown mismatch in getCopyFromParts!");
339 }
340 
341 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
342                                               const Twine &ErrMsg) {
343   const Instruction *I = dyn_cast_or_null<Instruction>(V);
344   if (!V)
345     return Ctx.emitError(ErrMsg);
346 
347   const char *AsmError = ", possible invalid constraint for vector type";
348   if (const CallInst *CI = dyn_cast<CallInst>(I))
349     if (CI->isInlineAsm())
350       return Ctx.emitError(I, ErrMsg + AsmError);
351 
352   return Ctx.emitError(I, ErrMsg);
353 }
354 
355 /// getCopyFromPartsVector - Create a value that contains the specified legal
356 /// parts combined into the value they represent.  If the parts combine to a
357 /// type larger than ValueVT then AssertOp can be used to specify whether the
358 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
359 /// ValueVT (ISD::AssertSext).
360 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
361                                       const SDValue *Parts, unsigned NumParts,
362                                       MVT PartVT, EVT ValueVT, const Value *V,
363                                       Optional<CallingConv::ID> CallConv) {
364   assert(ValueVT.isVector() && "Not a vector value");
365   assert(NumParts > 0 && "No parts to assemble!");
366   const bool IsABIRegCopy = CallConv.hasValue();
367 
368   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
369   SDValue Val = Parts[0];
370 
371   // Handle a multi-element vector.
372   if (NumParts > 1) {
373     EVT IntermediateVT;
374     MVT RegisterVT;
375     unsigned NumIntermediates;
376     unsigned NumRegs;
377 
378     if (IsABIRegCopy) {
379       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
380           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
381           NumIntermediates, RegisterVT);
382     } else {
383       NumRegs =
384           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
385                                      NumIntermediates, RegisterVT);
386     }
387 
388     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
389     NumParts = NumRegs; // Silence a compiler warning.
390     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
391     assert(RegisterVT.getSizeInBits() ==
392            Parts[0].getSimpleValueType().getSizeInBits() &&
393            "Part type sizes don't match!");
394 
395     // Assemble the parts into intermediate operands.
396     SmallVector<SDValue, 8> Ops(NumIntermediates);
397     if (NumIntermediates == NumParts) {
398       // If the register was not expanded, truncate or copy the value,
399       // as appropriate.
400       for (unsigned i = 0; i != NumParts; ++i)
401         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
402                                   PartVT, IntermediateVT, V);
403     } else if (NumParts > 0) {
404       // If the intermediate type was expanded, build the intermediate
405       // operands from the parts.
406       assert(NumParts % NumIntermediates == 0 &&
407              "Must expand into a divisible number of parts!");
408       unsigned Factor = NumParts / NumIntermediates;
409       for (unsigned i = 0; i != NumIntermediates; ++i)
410         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
411                                   PartVT, IntermediateVT, V);
412     }
413 
414     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
415     // intermediate operands.
416     EVT BuiltVectorTy =
417         IntermediateVT.isVector()
418             ? EVT::getVectorVT(
419                   *DAG.getContext(), IntermediateVT.getScalarType(),
420                   IntermediateVT.getVectorElementCount() * NumParts)
421             : EVT::getVectorVT(*DAG.getContext(),
422                                IntermediateVT.getScalarType(),
423                                NumIntermediates);
424     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
425                                                 : ISD::BUILD_VECTOR,
426                       DL, BuiltVectorTy, Ops);
427   }
428 
429   // There is now one part, held in Val.  Correct it to match ValueVT.
430   EVT PartEVT = Val.getValueType();
431 
432   if (PartEVT == ValueVT)
433     return Val;
434 
435   if (PartEVT.isVector()) {
436     // If the element type of the source/dest vectors are the same, but the
437     // parts vector has more elements than the value vector, then we have a
438     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
439     // elements we want.
440     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
441       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
442              "Cannot narrow, it would be a lossy transformation");
443       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
444                          DAG.getVectorIdxConstant(0, DL));
445     }
446 
447     // Vector/Vector bitcast.
448     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
449       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
450 
451     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
452       "Cannot handle this kind of promotion");
453     // Promoted vector extract
454     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
455 
456   }
457 
458   // Trivial bitcast if the types are the same size and the destination
459   // vector type is legal.
460   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
461       TLI.isTypeLegal(ValueVT))
462     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
463 
464   if (ValueVT.getVectorNumElements() != 1) {
465      // Certain ABIs require that vectors are passed as integers. For vectors
466      // are the same size, this is an obvious bitcast.
467      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
468        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
469      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
470        // Bitcast Val back the original type and extract the corresponding
471        // vector we want.
472        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
473        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
474                                            ValueVT.getVectorElementType(), Elts);
475        Val = DAG.getBitcast(WiderVecType, Val);
476        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
477                           DAG.getVectorIdxConstant(0, DL));
478      }
479 
480      diagnosePossiblyInvalidConstraint(
481          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
482      return DAG.getUNDEF(ValueVT);
483   }
484 
485   // Handle cases such as i8 -> <1 x i1>
486   EVT ValueSVT = ValueVT.getVectorElementType();
487   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
488     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
489       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
490     else
491       Val = ValueVT.isFloatingPoint()
492                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
493                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
494   }
495 
496   return DAG.getBuildVector(ValueVT, DL, Val);
497 }
498 
499 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
500                                  SDValue Val, SDValue *Parts, unsigned NumParts,
501                                  MVT PartVT, const Value *V,
502                                  Optional<CallingConv::ID> CallConv);
503 
504 /// getCopyToParts - Create a series of nodes that contain the specified value
505 /// split into legal parts.  If the parts contain more bits than Val, then, for
506 /// integers, ExtendKind can be used to specify how to generate the extra bits.
507 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
508                            SDValue *Parts, unsigned NumParts, MVT PartVT,
509                            const Value *V,
510                            Optional<CallingConv::ID> CallConv = None,
511                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
512   EVT ValueVT = Val.getValueType();
513 
514   // Handle the vector case separately.
515   if (ValueVT.isVector())
516     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
517                                 CallConv);
518 
519   unsigned PartBits = PartVT.getSizeInBits();
520   unsigned OrigNumParts = NumParts;
521   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
522          "Copying to an illegal type!");
523 
524   if (NumParts == 0)
525     return;
526 
527   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528   EVT PartEVT = PartVT;
529   if (PartEVT == ValueVT) {
530     assert(NumParts == 1 && "No-op copy with multiple parts!");
531     Parts[0] = Val;
532     return;
533   }
534 
535   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
536     // If the parts cover more bits than the value has, promote the value.
537     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
538       assert(NumParts == 1 && "Do not know what to promote to!");
539       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
540     } else {
541       if (ValueVT.isFloatingPoint()) {
542         // FP values need to be bitcast, then extended if they are being put
543         // into a larger container.
544         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
545         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
546       }
547       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
548              ValueVT.isInteger() &&
549              "Unknown mismatch!");
550       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
551       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
552       if (PartVT == MVT::x86mmx)
553         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555   } else if (PartBits == ValueVT.getSizeInBits()) {
556     // Different types of the same size.
557     assert(NumParts == 1 && PartEVT != ValueVT);
558     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
560     // If the parts cover less bits than value has, truncate the value.
561     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
562            ValueVT.isInteger() &&
563            "Unknown mismatch!");
564     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
565     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
566     if (PartVT == MVT::x86mmx)
567       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
568   }
569 
570   // The value may have changed - recompute ValueVT.
571   ValueVT = Val.getValueType();
572   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
573          "Failed to tile the value with PartVT!");
574 
575   if (NumParts == 1) {
576     if (PartEVT != ValueVT) {
577       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
578                                         "scalar-to-vector conversion failed");
579       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
580     }
581 
582     Parts[0] = Val;
583     return;
584   }
585 
586   // Expand the value into multiple parts.
587   if (NumParts & (NumParts - 1)) {
588     // The number of parts is not a power of 2.  Split off and copy the tail.
589     assert(PartVT.isInteger() && ValueVT.isInteger() &&
590            "Do not know what to expand to!");
591     unsigned RoundParts = 1 << Log2_32(NumParts);
592     unsigned RoundBits = RoundParts * PartBits;
593     unsigned OddParts = NumParts - RoundParts;
594     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
595       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
596 
597     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
598                    CallConv);
599 
600     if (DAG.getDataLayout().isBigEndian())
601       // The odd parts were reversed by getCopyToParts - unreverse them.
602       std::reverse(Parts + RoundParts, Parts + NumParts);
603 
604     NumParts = RoundParts;
605     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
606     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
607   }
608 
609   // The number of parts is a power of 2.  Repeatedly bisect the value using
610   // EXTRACT_ELEMENT.
611   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
612                          EVT::getIntegerVT(*DAG.getContext(),
613                                            ValueVT.getSizeInBits()),
614                          Val);
615 
616   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617     for (unsigned i = 0; i < NumParts; i += StepSize) {
618       unsigned ThisBits = StepSize * PartBits / 2;
619       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
620       SDValue &Part0 = Parts[i];
621       SDValue &Part1 = Parts[i+StepSize/2];
622 
623       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
625       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
627 
628       if (ThisBits == PartBits && ThisVT != PartVT) {
629         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
630         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
631       }
632     }
633   }
634 
635   if (DAG.getDataLayout().isBigEndian())
636     std::reverse(Parts, Parts + OrigNumParts);
637 }
638 
639 static SDValue widenVectorToPartType(SelectionDAG &DAG,
640                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
641   if (!PartVT.isVector())
642     return SDValue();
643 
644   EVT ValueVT = Val.getValueType();
645   unsigned PartNumElts = PartVT.getVectorNumElements();
646   unsigned ValueNumElts = ValueVT.getVectorNumElements();
647   if (PartNumElts > ValueNumElts &&
648       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
649     EVT ElementVT = PartVT.getVectorElementType();
650     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
651     // undef elements.
652     SmallVector<SDValue, 16> Ops;
653     DAG.ExtractVectorElements(Val, Ops);
654     SDValue EltUndef = DAG.getUNDEF(ElementVT);
655     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
656       Ops.push_back(EltUndef);
657 
658     // FIXME: Use CONCAT for 2x -> 4x.
659     return DAG.getBuildVector(PartVT, DL, Ops);
660   }
661 
662   return SDValue();
663 }
664 
665 /// getCopyToPartsVector - Create a series of nodes that contain the specified
666 /// value split into legal parts.
667 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
668                                  SDValue Val, SDValue *Parts, unsigned NumParts,
669                                  MVT PartVT, const Value *V,
670                                  Optional<CallingConv::ID> CallConv) {
671   EVT ValueVT = Val.getValueType();
672   assert(ValueVT.isVector() && "Not a vector");
673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
674   const bool IsABIRegCopy = CallConv.hasValue();
675 
676   if (NumParts == 1) {
677     EVT PartEVT = PartVT;
678     if (PartEVT == ValueVT) {
679       // Nothing to do.
680     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
681       // Bitconvert vector->vector case.
682       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
683     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
684       Val = Widened;
685     } else if (PartVT.isVector() &&
686                PartEVT.getVectorElementType().bitsGE(
687                  ValueVT.getVectorElementType()) &&
688                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
689 
690       // Promoted vector extract
691       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
692     } else {
693       if (ValueVT.getVectorNumElements() == 1) {
694         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
695                           DAG.getVectorIdxConstant(0, DL));
696       } else {
697         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
698                "lossy conversion of vector to scalar type");
699         EVT IntermediateType =
700             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
701         Val = DAG.getBitcast(IntermediateType, Val);
702         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
703       }
704     }
705 
706     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
707     Parts[0] = Val;
708     return;
709   }
710 
711   // Handle a multi-element vector.
712   EVT IntermediateVT;
713   MVT RegisterVT;
714   unsigned NumIntermediates;
715   unsigned NumRegs;
716   if (IsABIRegCopy) {
717     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
718         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
719         NumIntermediates, RegisterVT);
720   } else {
721     NumRegs =
722         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
723                                    NumIntermediates, RegisterVT);
724   }
725 
726   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
727   NumParts = NumRegs; // Silence a compiler warning.
728   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
729 
730   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
731     IntermediateVT.getVectorNumElements() : 1;
732 
733   // Convert the vector to the appropriate type if necessary.
734   auto DestEltCnt = ElementCount(NumIntermediates * IntermediateNumElts,
735                                  ValueVT.isScalableVector());
736   EVT BuiltVectorTy = EVT::getVectorVT(
737       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt);
738   if (ValueVT != BuiltVectorTy) {
739     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
740       Val = Widened;
741 
742     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
743   }
744 
745   // Split the vector into intermediate operands.
746   SmallVector<SDValue, 8> Ops(NumIntermediates);
747   for (unsigned i = 0; i != NumIntermediates; ++i) {
748     if (IntermediateVT.isVector()) {
749       Ops[i] =
750           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
751                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
752     } else {
753       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
754                            DAG.getVectorIdxConstant(i, DL));
755     }
756   }
757 
758   // Split the intermediate operands into legal parts.
759   if (NumParts == NumIntermediates) {
760     // If the register was not expanded, promote or copy the value,
761     // as appropriate.
762     for (unsigned i = 0; i != NumParts; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
764   } else if (NumParts > 0) {
765     // If the intermediate type was expanded, split each the value into
766     // legal parts.
767     assert(NumIntermediates != 0 && "division by zero");
768     assert(NumParts % NumIntermediates == 0 &&
769            "Must expand into a divisible number of parts!");
770     unsigned Factor = NumParts / NumIntermediates;
771     for (unsigned i = 0; i != NumIntermediates; ++i)
772       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
773                      CallConv);
774   }
775 }
776 
777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
778                            EVT valuevt, Optional<CallingConv::ID> CC)
779     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
780       RegCount(1, regs.size()), CallConv(CC) {}
781 
782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
783                            const DataLayout &DL, unsigned Reg, Type *Ty,
784                            Optional<CallingConv::ID> CC) {
785   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
786 
787   CallConv = CC;
788 
789   for (EVT ValueVT : ValueVTs) {
790     unsigned NumRegs =
791         isABIMangled()
792             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
793             : TLI.getNumRegisters(Context, ValueVT);
794     MVT RegisterVT =
795         isABIMangled()
796             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
797             : TLI.getRegisterType(Context, ValueVT);
798     for (unsigned i = 0; i != NumRegs; ++i)
799       Regs.push_back(Reg + i);
800     RegVTs.push_back(RegisterVT);
801     RegCount.push_back(NumRegs);
802     Reg += NumRegs;
803   }
804 }
805 
806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
807                                       FunctionLoweringInfo &FuncInfo,
808                                       const SDLoc &dl, SDValue &Chain,
809                                       SDValue *Flag, const Value *V) const {
810   // A Value with type {} or [0 x %t] needs no registers.
811   if (ValueVTs.empty())
812     return SDValue();
813 
814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
815 
816   // Assemble the legal parts into the final values.
817   SmallVector<SDValue, 4> Values(ValueVTs.size());
818   SmallVector<SDValue, 8> Parts;
819   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
820     // Copy the legal parts from the registers.
821     EVT ValueVT = ValueVTs[Value];
822     unsigned NumRegs = RegCount[Value];
823     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
824                                           *DAG.getContext(),
825                                           CallConv.getValue(), RegVTs[Value])
826                                     : RegVTs[Value];
827 
828     Parts.resize(NumRegs);
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       SDValue P;
831       if (!Flag) {
832         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
833       } else {
834         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
835         *Flag = P.getValue(2);
836       }
837 
838       Chain = P.getValue(1);
839       Parts[i] = P;
840 
841       // If the source register was virtual and if we know something about it,
842       // add an assert node.
843       if (!Register::isVirtualRegister(Regs[Part + i]) ||
844           !RegisterVT.isInteger())
845         continue;
846 
847       const FunctionLoweringInfo::LiveOutInfo *LOI =
848         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
849       if (!LOI)
850         continue;
851 
852       unsigned RegSize = RegisterVT.getScalarSizeInBits();
853       unsigned NumSignBits = LOI->NumSignBits;
854       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
855 
856       if (NumZeroBits == RegSize) {
857         // The current value is a zero.
858         // Explicitly express that as it would be easier for
859         // optimizations to kick in.
860         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
861         continue;
862       }
863 
864       // FIXME: We capture more information than the dag can represent.  For
865       // now, just use the tightest assertzext/assertsext possible.
866       bool isSExt;
867       EVT FromVT(MVT::Other);
868       if (NumZeroBits) {
869         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
870         isSExt = false;
871       } else if (NumSignBits > 1) {
872         FromVT =
873             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
874         isSExt = true;
875       } else {
876         continue;
877       }
878       // Add an assertion node.
879       assert(FromVT != MVT::Other);
880       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
881                              RegisterVT, P, DAG.getValueType(FromVT));
882     }
883 
884     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
885                                      RegisterVT, ValueVT, V, CallConv);
886     Part += NumRegs;
887     Parts.clear();
888   }
889 
890   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
891 }
892 
893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
894                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
895                                  const Value *V,
896                                  ISD::NodeType PreferredExtendType) const {
897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
898   ISD::NodeType ExtendKind = PreferredExtendType;
899 
900   // Get the list of the values's legal parts.
901   unsigned NumRegs = Regs.size();
902   SmallVector<SDValue, 8> Parts(NumRegs);
903   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
904     unsigned NumParts = RegCount[Value];
905 
906     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
907                                           *DAG.getContext(),
908                                           CallConv.getValue(), RegVTs[Value])
909                                     : RegVTs[Value];
910 
911     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
912       ExtendKind = ISD::ZERO_EXTEND;
913 
914     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
915                    NumParts, RegisterVT, V, CallConv, ExtendKind);
916     Part += NumParts;
917   }
918 
919   // Copy the parts into the registers.
920   SmallVector<SDValue, 8> Chains(NumRegs);
921   for (unsigned i = 0; i != NumRegs; ++i) {
922     SDValue Part;
923     if (!Flag) {
924       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
925     } else {
926       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
927       *Flag = Part.getValue(1);
928     }
929 
930     Chains[i] = Part.getValue(0);
931   }
932 
933   if (NumRegs == 1 || Flag)
934     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
935     // flagged to it. That is the CopyToReg nodes and the user are considered
936     // a single scheduling unit. If we create a TokenFactor and return it as
937     // chain, then the TokenFactor is both a predecessor (operand) of the
938     // user as well as a successor (the TF operands are flagged to the user).
939     // c1, f1 = CopyToReg
940     // c2, f2 = CopyToReg
941     // c3     = TokenFactor c1, c2
942     // ...
943     //        = op c3, ..., f2
944     Chain = Chains[NumRegs-1];
945   else
946     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
947 }
948 
949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
950                                         unsigned MatchingIdx, const SDLoc &dl,
951                                         SelectionDAG &DAG,
952                                         std::vector<SDValue> &Ops) const {
953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
954 
955   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
956   if (HasMatching)
957     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
958   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
959     // Put the register class of the virtual registers in the flag word.  That
960     // way, later passes can recompute register class constraints for inline
961     // assembly as well as normal instructions.
962     // Don't do this for tied operands that can use the regclass information
963     // from the def.
964     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
965     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
966     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
967   }
968 
969   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
970   Ops.push_back(Res);
971 
972   if (Code == InlineAsm::Kind_Clobber) {
973     // Clobbers should always have a 1:1 mapping with registers, and may
974     // reference registers that have illegal (e.g. vector) types. Hence, we
975     // shouldn't try to apply any sort of splitting logic to them.
976     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
977            "No 1:1 mapping from clobbers to regs?");
978     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
979     (void)SP;
980     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
981       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
982       assert(
983           (Regs[I] != SP ||
984            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
985           "If we clobbered the stack pointer, MFI should know about it.");
986     }
987     return;
988   }
989 
990   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
991     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
992     MVT RegisterVT = RegVTs[Value];
993     for (unsigned i = 0; i != NumRegs; ++i) {
994       assert(Reg < Regs.size() && "Mismatch in # registers expected");
995       unsigned TheReg = Regs[Reg++];
996       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
997     }
998   }
999 }
1000 
1001 SmallVector<std::pair<unsigned, unsigned>, 4>
1002 RegsForValue::getRegsAndSizes() const {
1003   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1004   unsigned I = 0;
1005   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1006     unsigned RegCount = std::get<0>(CountAndVT);
1007     MVT RegisterVT = std::get<1>(CountAndVT);
1008     unsigned RegisterSize = RegisterVT.getSizeInBits();
1009     for (unsigned E = I + RegCount; I != E; ++I)
1010       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1011   }
1012   return OutVec;
1013 }
1014 
1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1016                                const TargetLibraryInfo *li) {
1017   AA = aa;
1018   GFI = gfi;
1019   LibInfo = li;
1020   DL = &DAG.getDataLayout();
1021   Context = DAG.getContext();
1022   LPadToCallSiteMap.clear();
1023   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1024 }
1025 
1026 void SelectionDAGBuilder::clear() {
1027   NodeMap.clear();
1028   UnusedArgNodeMap.clear();
1029   PendingLoads.clear();
1030   PendingExports.clear();
1031   PendingConstrainedFP.clear();
1032   PendingConstrainedFPStrict.clear();
1033   CurInst = nullptr;
1034   HasTailCall = false;
1035   SDNodeOrder = LowestSDNodeOrder;
1036   StatepointLowering.clear();
1037 }
1038 
1039 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1040   DanglingDebugInfoMap.clear();
1041 }
1042 
1043 // Update DAG root to include dependencies on Pending chains.
1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1045   SDValue Root = DAG.getRoot();
1046 
1047   if (Pending.empty())
1048     return Root;
1049 
1050   // Add current root to PendingChains, unless we already indirectly
1051   // depend on it.
1052   if (Root.getOpcode() != ISD::EntryToken) {
1053     unsigned i = 0, e = Pending.size();
1054     for (; i != e; ++i) {
1055       assert(Pending[i].getNode()->getNumOperands() > 1);
1056       if (Pending[i].getNode()->getOperand(0) == Root)
1057         break;  // Don't add the root if we already indirectly depend on it.
1058     }
1059 
1060     if (i == e)
1061       Pending.push_back(Root);
1062   }
1063 
1064   if (Pending.size() == 1)
1065     Root = Pending[0];
1066   else
1067     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1068 
1069   DAG.setRoot(Root);
1070   Pending.clear();
1071   return Root;
1072 }
1073 
1074 SDValue SelectionDAGBuilder::getMemoryRoot() {
1075   return updateRoot(PendingLoads);
1076 }
1077 
1078 SDValue SelectionDAGBuilder::getRoot() {
1079   // Chain up all pending constrained intrinsics together with all
1080   // pending loads, by simply appending them to PendingLoads and
1081   // then calling getMemoryRoot().
1082   PendingLoads.reserve(PendingLoads.size() +
1083                        PendingConstrainedFP.size() +
1084                        PendingConstrainedFPStrict.size());
1085   PendingLoads.append(PendingConstrainedFP.begin(),
1086                       PendingConstrainedFP.end());
1087   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1088                       PendingConstrainedFPStrict.end());
1089   PendingConstrainedFP.clear();
1090   PendingConstrainedFPStrict.clear();
1091   return getMemoryRoot();
1092 }
1093 
1094 SDValue SelectionDAGBuilder::getControlRoot() {
1095   // We need to emit pending fpexcept.strict constrained intrinsics,
1096   // so append them to the PendingExports list.
1097   PendingExports.append(PendingConstrainedFPStrict.begin(),
1098                         PendingConstrainedFPStrict.end());
1099   PendingConstrainedFPStrict.clear();
1100   return updateRoot(PendingExports);
1101 }
1102 
1103 void SelectionDAGBuilder::visit(const Instruction &I) {
1104   // Set up outgoing PHI node register values before emitting the terminator.
1105   if (I.isTerminator()) {
1106     HandlePHINodesInSuccessorBlocks(I.getParent());
1107   }
1108 
1109   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1110   if (!isa<DbgInfoIntrinsic>(I))
1111     ++SDNodeOrder;
1112 
1113   CurInst = &I;
1114 
1115   visit(I.getOpcode(), I);
1116 
1117   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1118     // ConstrainedFPIntrinsics handle their own FMF.
1119     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1120       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1121       // maps to this instruction.
1122       // TODO: We could handle all flags (nsw, etc) here.
1123       // TODO: If an IR instruction maps to >1 node, only the final node will have
1124       //       flags set.
1125       if (SDNode *Node = getNodeForIRValue(&I)) {
1126         SDNodeFlags IncomingFlags;
1127         IncomingFlags.copyFMF(*FPMO);
1128         if (!Node->getFlags().isDefined())
1129           Node->setFlags(IncomingFlags);
1130         else
1131           Node->intersectFlagsWith(IncomingFlags);
1132       }
1133     }
1134   }
1135 
1136   if (!I.isTerminator() && !HasTailCall &&
1137       !isStatepoint(&I)) // statepoints handle their exports internally
1138     CopyToExportRegsIfNeeded(&I);
1139 
1140   CurInst = nullptr;
1141 }
1142 
1143 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1144   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1145 }
1146 
1147 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1148   // Note: this doesn't use InstVisitor, because it has to work with
1149   // ConstantExpr's in addition to instructions.
1150   switch (Opcode) {
1151   default: llvm_unreachable("Unknown instruction type encountered!");
1152     // Build the switch statement using the Instruction.def file.
1153 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1154     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1155 #include "llvm/IR/Instruction.def"
1156   }
1157 }
1158 
1159 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1160                                                 const DIExpression *Expr) {
1161   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1162     const DbgValueInst *DI = DDI.getDI();
1163     DIVariable *DanglingVariable = DI->getVariable();
1164     DIExpression *DanglingExpr = DI->getExpression();
1165     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1166       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1167       return true;
1168     }
1169     return false;
1170   };
1171 
1172   for (auto &DDIMI : DanglingDebugInfoMap) {
1173     DanglingDebugInfoVector &DDIV = DDIMI.second;
1174 
1175     // If debug info is to be dropped, run it through final checks to see
1176     // whether it can be salvaged.
1177     for (auto &DDI : DDIV)
1178       if (isMatchingDbgValue(DDI))
1179         salvageUnresolvedDbgValue(DDI);
1180 
1181     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1182   }
1183 }
1184 
1185 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1186 // generate the debug data structures now that we've seen its definition.
1187 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1188                                                    SDValue Val) {
1189   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1190   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1191     return;
1192 
1193   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1194   for (auto &DDI : DDIV) {
1195     const DbgValueInst *DI = DDI.getDI();
1196     assert(DI && "Ill-formed DanglingDebugInfo");
1197     DebugLoc dl = DDI.getdl();
1198     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1199     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1200     DILocalVariable *Variable = DI->getVariable();
1201     DIExpression *Expr = DI->getExpression();
1202     assert(Variable->isValidLocationForIntrinsic(dl) &&
1203            "Expected inlined-at fields to agree");
1204     SDDbgValue *SDV;
1205     if (Val.getNode()) {
1206       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1207       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1208       // we couldn't resolve it directly when examining the DbgValue intrinsic
1209       // in the first place we should not be more successful here). Unless we
1210       // have some test case that prove this to be correct we should avoid
1211       // calling EmitFuncArgumentDbgValue here.
1212       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1213         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1214                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1215         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1216         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1217         // inserted after the definition of Val when emitting the instructions
1218         // after ISel. An alternative could be to teach
1219         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1220         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1221                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1222                    << ValSDNodeOrder << "\n");
1223         SDV = getDbgValue(Val, Variable, Expr, dl,
1224                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1225         DAG.AddDbgValue(SDV, Val.getNode(), false);
1226       } else
1227         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1228                           << "in EmitFuncArgumentDbgValue\n");
1229     } else {
1230       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1231       auto Undef =
1232           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1233       auto SDV =
1234           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1235       DAG.AddDbgValue(SDV, nullptr, false);
1236     }
1237   }
1238   DDIV.clear();
1239 }
1240 
1241 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1242   Value *V = DDI.getDI()->getValue();
1243   DILocalVariable *Var = DDI.getDI()->getVariable();
1244   DIExpression *Expr = DDI.getDI()->getExpression();
1245   DebugLoc DL = DDI.getdl();
1246   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1247   unsigned SDOrder = DDI.getSDNodeOrder();
1248 
1249   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1250   // that DW_OP_stack_value is desired.
1251   assert(isa<DbgValueInst>(DDI.getDI()));
1252   bool StackValue = true;
1253 
1254   // Can this Value can be encoded without any further work?
1255   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1256     return;
1257 
1258   // Attempt to salvage back through as many instructions as possible. Bail if
1259   // a non-instruction is seen, such as a constant expression or global
1260   // variable. FIXME: Further work could recover those too.
1261   while (isa<Instruction>(V)) {
1262     Instruction &VAsInst = *cast<Instruction>(V);
1263     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1264 
1265     // If we cannot salvage any further, and haven't yet found a suitable debug
1266     // expression, bail out.
1267     if (!NewExpr)
1268       break;
1269 
1270     // New value and expr now represent this debuginfo.
1271     V = VAsInst.getOperand(0);
1272     Expr = NewExpr;
1273 
1274     // Some kind of simplification occurred: check whether the operand of the
1275     // salvaged debug expression can be encoded in this DAG.
1276     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1277       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1278                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1279       return;
1280     }
1281   }
1282 
1283   // This was the final opportunity to salvage this debug information, and it
1284   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1285   // any earlier variable location.
1286   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1287   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1288   DAG.AddDbgValue(SDV, nullptr, false);
1289 
1290   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1291                     << "\n");
1292   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1293                     << "\n");
1294 }
1295 
1296 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1297                                            DIExpression *Expr, DebugLoc dl,
1298                                            DebugLoc InstDL, unsigned Order) {
1299   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1300   SDDbgValue *SDV;
1301   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1302       isa<ConstantPointerNull>(V)) {
1303     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1304     DAG.AddDbgValue(SDV, nullptr, false);
1305     return true;
1306   }
1307 
1308   // If the Value is a frame index, we can create a FrameIndex debug value
1309   // without relying on the DAG at all.
1310   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1311     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1312     if (SI != FuncInfo.StaticAllocaMap.end()) {
1313       auto SDV =
1314           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1315                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1316       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1317       // is still available even if the SDNode gets optimized out.
1318       DAG.AddDbgValue(SDV, nullptr, false);
1319       return true;
1320     }
1321   }
1322 
1323   // Do not use getValue() in here; we don't want to generate code at
1324   // this point if it hasn't been done yet.
1325   SDValue N = NodeMap[V];
1326   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1327     N = UnusedArgNodeMap[V];
1328   if (N.getNode()) {
1329     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1330       return true;
1331     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1332     DAG.AddDbgValue(SDV, N.getNode(), false);
1333     return true;
1334   }
1335 
1336   // Special rules apply for the first dbg.values of parameter variables in a
1337   // function. Identify them by the fact they reference Argument Values, that
1338   // they're parameters, and they are parameters of the current function. We
1339   // need to let them dangle until they get an SDNode.
1340   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1341                        !InstDL.getInlinedAt();
1342   if (!IsParamOfFunc) {
1343     // The value is not used in this block yet (or it would have an SDNode).
1344     // We still want the value to appear for the user if possible -- if it has
1345     // an associated VReg, we can refer to that instead.
1346     auto VMI = FuncInfo.ValueMap.find(V);
1347     if (VMI != FuncInfo.ValueMap.end()) {
1348       unsigned Reg = VMI->second;
1349       // If this is a PHI node, it may be split up into several MI PHI nodes
1350       // (in FunctionLoweringInfo::set).
1351       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1352                        V->getType(), None);
1353       if (RFV.occupiesMultipleRegs()) {
1354         unsigned Offset = 0;
1355         unsigned BitsToDescribe = 0;
1356         if (auto VarSize = Var->getSizeInBits())
1357           BitsToDescribe = *VarSize;
1358         if (auto Fragment = Expr->getFragmentInfo())
1359           BitsToDescribe = Fragment->SizeInBits;
1360         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1361           unsigned RegisterSize = RegAndSize.second;
1362           // Bail out if all bits are described already.
1363           if (Offset >= BitsToDescribe)
1364             break;
1365           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1366               ? BitsToDescribe - Offset
1367               : RegisterSize;
1368           auto FragmentExpr = DIExpression::createFragmentExpression(
1369               Expr, Offset, FragmentSize);
1370           if (!FragmentExpr)
1371               continue;
1372           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1373                                     false, dl, SDNodeOrder);
1374           DAG.AddDbgValue(SDV, nullptr, false);
1375           Offset += RegisterSize;
1376         }
1377       } else {
1378         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1379         DAG.AddDbgValue(SDV, nullptr, false);
1380       }
1381       return true;
1382     }
1383   }
1384 
1385   return false;
1386 }
1387 
1388 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1389   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1390   for (auto &Pair : DanglingDebugInfoMap)
1391     for (auto &DDI : Pair.second)
1392       salvageUnresolvedDbgValue(DDI);
1393   clearDanglingDebugInfo();
1394 }
1395 
1396 /// getCopyFromRegs - If there was virtual register allocated for the value V
1397 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1398 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1399   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1400   SDValue Result;
1401 
1402   if (It != FuncInfo.ValueMap.end()) {
1403     Register InReg = It->second;
1404 
1405     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1406                      DAG.getDataLayout(), InReg, Ty,
1407                      None); // This is not an ABI copy.
1408     SDValue Chain = DAG.getEntryNode();
1409     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1410                                  V);
1411     resolveDanglingDebugInfo(V, Result);
1412   }
1413 
1414   return Result;
1415 }
1416 
1417 /// getValue - Return an SDValue for the given Value.
1418 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1419   // If we already have an SDValue for this value, use it. It's important
1420   // to do this first, so that we don't create a CopyFromReg if we already
1421   // have a regular SDValue.
1422   SDValue &N = NodeMap[V];
1423   if (N.getNode()) return N;
1424 
1425   // If there's a virtual register allocated and initialized for this
1426   // value, use it.
1427   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1428     return copyFromReg;
1429 
1430   // Otherwise create a new SDValue and remember it.
1431   SDValue Val = getValueImpl(V);
1432   NodeMap[V] = Val;
1433   resolveDanglingDebugInfo(V, Val);
1434   return Val;
1435 }
1436 
1437 /// getNonRegisterValue - Return an SDValue for the given Value, but
1438 /// don't look in FuncInfo.ValueMap for a virtual register.
1439 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1440   // If we already have an SDValue for this value, use it.
1441   SDValue &N = NodeMap[V];
1442   if (N.getNode()) {
1443     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1444       // Remove the debug location from the node as the node is about to be used
1445       // in a location which may differ from the original debug location.  This
1446       // is relevant to Constant and ConstantFP nodes because they can appear
1447       // as constant expressions inside PHI nodes.
1448       N->setDebugLoc(DebugLoc());
1449     }
1450     return N;
1451   }
1452 
1453   // Otherwise create a new SDValue and remember it.
1454   SDValue Val = getValueImpl(V);
1455   NodeMap[V] = Val;
1456   resolveDanglingDebugInfo(V, Val);
1457   return Val;
1458 }
1459 
1460 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1461 /// Create an SDValue for the given value.
1462 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1463   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1464 
1465   if (const Constant *C = dyn_cast<Constant>(V)) {
1466     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1467 
1468     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1469       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1470 
1471     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1472       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1473 
1474     if (isa<ConstantPointerNull>(C)) {
1475       unsigned AS = V->getType()->getPointerAddressSpace();
1476       return DAG.getConstant(0, getCurSDLoc(),
1477                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1478     }
1479 
1480     if (match(C, m_VScale(DAG.getDataLayout())))
1481       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1482 
1483     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1484       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1485 
1486     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1487       return DAG.getUNDEF(VT);
1488 
1489     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1490       visit(CE->getOpcode(), *CE);
1491       SDValue N1 = NodeMap[V];
1492       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1493       return N1;
1494     }
1495 
1496     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1497       SmallVector<SDValue, 4> Constants;
1498       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1499            OI != OE; ++OI) {
1500         SDNode *Val = getValue(*OI).getNode();
1501         // If the operand is an empty aggregate, there are no values.
1502         if (!Val) continue;
1503         // Add each leaf value from the operand to the Constants list
1504         // to form a flattened list of all the values.
1505         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1506           Constants.push_back(SDValue(Val, i));
1507       }
1508 
1509       return DAG.getMergeValues(Constants, getCurSDLoc());
1510     }
1511 
1512     if (const ConstantDataSequential *CDS =
1513           dyn_cast<ConstantDataSequential>(C)) {
1514       SmallVector<SDValue, 4> Ops;
1515       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1516         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1517         // Add each leaf value from the operand to the Constants list
1518         // to form a flattened list of all the values.
1519         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1520           Ops.push_back(SDValue(Val, i));
1521       }
1522 
1523       if (isa<ArrayType>(CDS->getType()))
1524         return DAG.getMergeValues(Ops, getCurSDLoc());
1525       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1526     }
1527 
1528     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1529       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1530              "Unknown struct or array constant!");
1531 
1532       SmallVector<EVT, 4> ValueVTs;
1533       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1534       unsigned NumElts = ValueVTs.size();
1535       if (NumElts == 0)
1536         return SDValue(); // empty struct
1537       SmallVector<SDValue, 4> Constants(NumElts);
1538       for (unsigned i = 0; i != NumElts; ++i) {
1539         EVT EltVT = ValueVTs[i];
1540         if (isa<UndefValue>(C))
1541           Constants[i] = DAG.getUNDEF(EltVT);
1542         else if (EltVT.isFloatingPoint())
1543           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1544         else
1545           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1546       }
1547 
1548       return DAG.getMergeValues(Constants, getCurSDLoc());
1549     }
1550 
1551     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1552       return DAG.getBlockAddress(BA, VT);
1553 
1554     VectorType *VecTy = cast<VectorType>(V->getType());
1555 
1556     // Now that we know the number and type of the elements, get that number of
1557     // elements into the Ops array based on what kind of constant it is.
1558     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1559       SmallVector<SDValue, 16> Ops;
1560       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1561       for (unsigned i = 0; i != NumElements; ++i)
1562         Ops.push_back(getValue(CV->getOperand(i)));
1563 
1564       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1565     } else if (isa<ConstantAggregateZero>(C)) {
1566       EVT EltVT =
1567           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1568 
1569       SDValue Op;
1570       if (EltVT.isFloatingPoint())
1571         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1572       else
1573         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1574 
1575       if (isa<ScalableVectorType>(VecTy))
1576         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1577       else {
1578         SmallVector<SDValue, 16> Ops;
1579         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1580         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1581       }
1582     }
1583     llvm_unreachable("Unknown vector constant");
1584   }
1585 
1586   // If this is a static alloca, generate it as the frameindex instead of
1587   // computation.
1588   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1589     DenseMap<const AllocaInst*, int>::iterator SI =
1590       FuncInfo.StaticAllocaMap.find(AI);
1591     if (SI != FuncInfo.StaticAllocaMap.end())
1592       return DAG.getFrameIndex(SI->second,
1593                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1594   }
1595 
1596   // If this is an instruction which fast-isel has deferred, select it now.
1597   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1598     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1599 
1600     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1601                      Inst->getType(), getABIRegCopyCC(V));
1602     SDValue Chain = DAG.getEntryNode();
1603     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1604   }
1605 
1606   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1607     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1608   }
1609   llvm_unreachable("Can't get register for value!");
1610 }
1611 
1612 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1613   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1614   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1615   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1616   bool IsSEH = isAsynchronousEHPersonality(Pers);
1617   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1618   if (!IsSEH)
1619     CatchPadMBB->setIsEHScopeEntry();
1620   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1621   if (IsMSVCCXX || IsCoreCLR)
1622     CatchPadMBB->setIsEHFuncletEntry();
1623 }
1624 
1625 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1626   // Update machine-CFG edge.
1627   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1628   FuncInfo.MBB->addSuccessor(TargetMBB);
1629 
1630   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1631   bool IsSEH = isAsynchronousEHPersonality(Pers);
1632   if (IsSEH) {
1633     // If this is not a fall-through branch or optimizations are switched off,
1634     // emit the branch.
1635     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1636         TM.getOptLevel() == CodeGenOpt::None)
1637       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1638                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1639     return;
1640   }
1641 
1642   // Figure out the funclet membership for the catchret's successor.
1643   // This will be used by the FuncletLayout pass to determine how to order the
1644   // BB's.
1645   // A 'catchret' returns to the outer scope's color.
1646   Value *ParentPad = I.getCatchSwitchParentPad();
1647   const BasicBlock *SuccessorColor;
1648   if (isa<ConstantTokenNone>(ParentPad))
1649     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1650   else
1651     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1652   assert(SuccessorColor && "No parent funclet for catchret!");
1653   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1654   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1655 
1656   // Create the terminator node.
1657   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1658                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1659                             DAG.getBasicBlock(SuccessorColorMBB));
1660   DAG.setRoot(Ret);
1661 }
1662 
1663 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1664   // Don't emit any special code for the cleanuppad instruction. It just marks
1665   // the start of an EH scope/funclet.
1666   FuncInfo.MBB->setIsEHScopeEntry();
1667   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1668   if (Pers != EHPersonality::Wasm_CXX) {
1669     FuncInfo.MBB->setIsEHFuncletEntry();
1670     FuncInfo.MBB->setIsCleanupFuncletEntry();
1671   }
1672 }
1673 
1674 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1675 // the control flow always stops at the single catch pad, as it does for a
1676 // cleanup pad. In case the exception caught is not of the types the catch pad
1677 // catches, it will be rethrown by a rethrow.
1678 static void findWasmUnwindDestinations(
1679     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1680     BranchProbability Prob,
1681     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1682         &UnwindDests) {
1683   while (EHPadBB) {
1684     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1685     if (isa<CleanupPadInst>(Pad)) {
1686       // Stop on cleanup pads.
1687       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1688       UnwindDests.back().first->setIsEHScopeEntry();
1689       break;
1690     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1691       // Add the catchpad handlers to the possible destinations. We don't
1692       // continue to the unwind destination of the catchswitch for wasm.
1693       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1694         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1695         UnwindDests.back().first->setIsEHScopeEntry();
1696       }
1697       break;
1698     } else {
1699       continue;
1700     }
1701   }
1702 }
1703 
1704 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1705 /// many places it could ultimately go. In the IR, we have a single unwind
1706 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1707 /// This function skips over imaginary basic blocks that hold catchswitch
1708 /// instructions, and finds all the "real" machine
1709 /// basic block destinations. As those destinations may not be successors of
1710 /// EHPadBB, here we also calculate the edge probability to those destinations.
1711 /// The passed-in Prob is the edge probability to EHPadBB.
1712 static void findUnwindDestinations(
1713     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1714     BranchProbability Prob,
1715     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1716         &UnwindDests) {
1717   EHPersonality Personality =
1718     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1719   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1720   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1721   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1722   bool IsSEH = isAsynchronousEHPersonality(Personality);
1723 
1724   if (IsWasmCXX) {
1725     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1726     assert(UnwindDests.size() <= 1 &&
1727            "There should be at most one unwind destination for wasm");
1728     return;
1729   }
1730 
1731   while (EHPadBB) {
1732     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1733     BasicBlock *NewEHPadBB = nullptr;
1734     if (isa<LandingPadInst>(Pad)) {
1735       // Stop on landingpads. They are not funclets.
1736       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1737       break;
1738     } else if (isa<CleanupPadInst>(Pad)) {
1739       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1740       // personalities.
1741       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1742       UnwindDests.back().first->setIsEHScopeEntry();
1743       UnwindDests.back().first->setIsEHFuncletEntry();
1744       break;
1745     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1746       // Add the catchpad handlers to the possible destinations.
1747       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1748         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1749         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1750         if (IsMSVCCXX || IsCoreCLR)
1751           UnwindDests.back().first->setIsEHFuncletEntry();
1752         if (!IsSEH)
1753           UnwindDests.back().first->setIsEHScopeEntry();
1754       }
1755       NewEHPadBB = CatchSwitch->getUnwindDest();
1756     } else {
1757       continue;
1758     }
1759 
1760     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1761     if (BPI && NewEHPadBB)
1762       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1763     EHPadBB = NewEHPadBB;
1764   }
1765 }
1766 
1767 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1768   // Update successor info.
1769   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1770   auto UnwindDest = I.getUnwindDest();
1771   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1772   BranchProbability UnwindDestProb =
1773       (BPI && UnwindDest)
1774           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1775           : BranchProbability::getZero();
1776   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1777   for (auto &UnwindDest : UnwindDests) {
1778     UnwindDest.first->setIsEHPad();
1779     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1780   }
1781   FuncInfo.MBB->normalizeSuccProbs();
1782 
1783   // Create the terminator node.
1784   SDValue Ret =
1785       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1786   DAG.setRoot(Ret);
1787 }
1788 
1789 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1790   report_fatal_error("visitCatchSwitch not yet implemented!");
1791 }
1792 
1793 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1795   auto &DL = DAG.getDataLayout();
1796   SDValue Chain = getControlRoot();
1797   SmallVector<ISD::OutputArg, 8> Outs;
1798   SmallVector<SDValue, 8> OutVals;
1799 
1800   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1801   // lower
1802   //
1803   //   %val = call <ty> @llvm.experimental.deoptimize()
1804   //   ret <ty> %val
1805   //
1806   // differently.
1807   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1808     LowerDeoptimizingReturn();
1809     return;
1810   }
1811 
1812   if (!FuncInfo.CanLowerReturn) {
1813     unsigned DemoteReg = FuncInfo.DemoteRegister;
1814     const Function *F = I.getParent()->getParent();
1815 
1816     // Emit a store of the return value through the virtual register.
1817     // Leave Outs empty so that LowerReturn won't try to load return
1818     // registers the usual way.
1819     SmallVector<EVT, 1> PtrValueVTs;
1820     ComputeValueVTs(TLI, DL,
1821                     F->getReturnType()->getPointerTo(
1822                         DAG.getDataLayout().getAllocaAddrSpace()),
1823                     PtrValueVTs);
1824 
1825     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1826                                         DemoteReg, PtrValueVTs[0]);
1827     SDValue RetOp = getValue(I.getOperand(0));
1828 
1829     SmallVector<EVT, 4> ValueVTs, MemVTs;
1830     SmallVector<uint64_t, 4> Offsets;
1831     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1832                     &Offsets);
1833     unsigned NumValues = ValueVTs.size();
1834 
1835     SmallVector<SDValue, 4> Chains(NumValues);
1836     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1837     for (unsigned i = 0; i != NumValues; ++i) {
1838       // An aggregate return value cannot wrap around the address space, so
1839       // offsets to its parts don't wrap either.
1840       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1841 
1842       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1843       if (MemVTs[i] != ValueVTs[i])
1844         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1845       Chains[i] = DAG.getStore(
1846           Chain, getCurSDLoc(), Val,
1847           // FIXME: better loc info would be nice.
1848           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1849           commonAlignment(BaseAlign, Offsets[i]));
1850     }
1851 
1852     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1853                         MVT::Other, Chains);
1854   } else if (I.getNumOperands() != 0) {
1855     SmallVector<EVT, 4> ValueVTs;
1856     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1857     unsigned NumValues = ValueVTs.size();
1858     if (NumValues) {
1859       SDValue RetOp = getValue(I.getOperand(0));
1860 
1861       const Function *F = I.getParent()->getParent();
1862 
1863       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1864           I.getOperand(0)->getType(), F->getCallingConv(),
1865           /*IsVarArg*/ false);
1866 
1867       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1868       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1869                                           Attribute::SExt))
1870         ExtendKind = ISD::SIGN_EXTEND;
1871       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1872                                                Attribute::ZExt))
1873         ExtendKind = ISD::ZERO_EXTEND;
1874 
1875       LLVMContext &Context = F->getContext();
1876       bool RetInReg = F->getAttributes().hasAttribute(
1877           AttributeList::ReturnIndex, Attribute::InReg);
1878 
1879       for (unsigned j = 0; j != NumValues; ++j) {
1880         EVT VT = ValueVTs[j];
1881 
1882         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1883           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1884 
1885         CallingConv::ID CC = F->getCallingConv();
1886 
1887         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1888         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1889         SmallVector<SDValue, 4> Parts(NumParts);
1890         getCopyToParts(DAG, getCurSDLoc(),
1891                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1892                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1893 
1894         // 'inreg' on function refers to return value
1895         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1896         if (RetInReg)
1897           Flags.setInReg();
1898 
1899         if (I.getOperand(0)->getType()->isPointerTy()) {
1900           Flags.setPointer();
1901           Flags.setPointerAddrSpace(
1902               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1903         }
1904 
1905         if (NeedsRegBlock) {
1906           Flags.setInConsecutiveRegs();
1907           if (j == NumValues - 1)
1908             Flags.setInConsecutiveRegsLast();
1909         }
1910 
1911         // Propagate extension type if any
1912         if (ExtendKind == ISD::SIGN_EXTEND)
1913           Flags.setSExt();
1914         else if (ExtendKind == ISD::ZERO_EXTEND)
1915           Flags.setZExt();
1916 
1917         for (unsigned i = 0; i < NumParts; ++i) {
1918           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1919                                         VT, /*isfixed=*/true, 0, 0));
1920           OutVals.push_back(Parts[i]);
1921         }
1922       }
1923     }
1924   }
1925 
1926   // Push in swifterror virtual register as the last element of Outs. This makes
1927   // sure swifterror virtual register will be returned in the swifterror
1928   // physical register.
1929   const Function *F = I.getParent()->getParent();
1930   if (TLI.supportSwiftError() &&
1931       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1932     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1933     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1934     Flags.setSwiftError();
1935     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1936                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1937                                   true /*isfixed*/, 1 /*origidx*/,
1938                                   0 /*partOffs*/));
1939     // Create SDNode for the swifterror virtual register.
1940     OutVals.push_back(
1941         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1942                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1943                         EVT(TLI.getPointerTy(DL))));
1944   }
1945 
1946   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1947   CallingConv::ID CallConv =
1948     DAG.getMachineFunction().getFunction().getCallingConv();
1949   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1950       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1951 
1952   // Verify that the target's LowerReturn behaved as expected.
1953   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1954          "LowerReturn didn't return a valid chain!");
1955 
1956   // Update the DAG with the new chain value resulting from return lowering.
1957   DAG.setRoot(Chain);
1958 }
1959 
1960 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1961 /// created for it, emit nodes to copy the value into the virtual
1962 /// registers.
1963 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1964   // Skip empty types
1965   if (V->getType()->isEmptyTy())
1966     return;
1967 
1968   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1969   if (VMI != FuncInfo.ValueMap.end()) {
1970     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1971     CopyValueToVirtualRegister(V, VMI->second);
1972   }
1973 }
1974 
1975 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1976 /// the current basic block, add it to ValueMap now so that we'll get a
1977 /// CopyTo/FromReg.
1978 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1979   // No need to export constants.
1980   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1981 
1982   // Already exported?
1983   if (FuncInfo.isExportedInst(V)) return;
1984 
1985   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1986   CopyValueToVirtualRegister(V, Reg);
1987 }
1988 
1989 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1990                                                      const BasicBlock *FromBB) {
1991   // The operands of the setcc have to be in this block.  We don't know
1992   // how to export them from some other block.
1993   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1994     // Can export from current BB.
1995     if (VI->getParent() == FromBB)
1996       return true;
1997 
1998     // Is already exported, noop.
1999     return FuncInfo.isExportedInst(V);
2000   }
2001 
2002   // If this is an argument, we can export it if the BB is the entry block or
2003   // if it is already exported.
2004   if (isa<Argument>(V)) {
2005     if (FromBB == &FromBB->getParent()->getEntryBlock())
2006       return true;
2007 
2008     // Otherwise, can only export this if it is already exported.
2009     return FuncInfo.isExportedInst(V);
2010   }
2011 
2012   // Otherwise, constants can always be exported.
2013   return true;
2014 }
2015 
2016 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2017 BranchProbability
2018 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2019                                         const MachineBasicBlock *Dst) const {
2020   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2021   const BasicBlock *SrcBB = Src->getBasicBlock();
2022   const BasicBlock *DstBB = Dst->getBasicBlock();
2023   if (!BPI) {
2024     // If BPI is not available, set the default probability as 1 / N, where N is
2025     // the number of successors.
2026     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2027     return BranchProbability(1, SuccSize);
2028   }
2029   return BPI->getEdgeProbability(SrcBB, DstBB);
2030 }
2031 
2032 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2033                                                MachineBasicBlock *Dst,
2034                                                BranchProbability Prob) {
2035   if (!FuncInfo.BPI)
2036     Src->addSuccessorWithoutProb(Dst);
2037   else {
2038     if (Prob.isUnknown())
2039       Prob = getEdgeProbability(Src, Dst);
2040     Src->addSuccessor(Dst, Prob);
2041   }
2042 }
2043 
2044 static bool InBlock(const Value *V, const BasicBlock *BB) {
2045   if (const Instruction *I = dyn_cast<Instruction>(V))
2046     return I->getParent() == BB;
2047   return true;
2048 }
2049 
2050 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2051 /// This function emits a branch and is used at the leaves of an OR or an
2052 /// AND operator tree.
2053 void
2054 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2055                                                   MachineBasicBlock *TBB,
2056                                                   MachineBasicBlock *FBB,
2057                                                   MachineBasicBlock *CurBB,
2058                                                   MachineBasicBlock *SwitchBB,
2059                                                   BranchProbability TProb,
2060                                                   BranchProbability FProb,
2061                                                   bool InvertCond) {
2062   const BasicBlock *BB = CurBB->getBasicBlock();
2063 
2064   // If the leaf of the tree is a comparison, merge the condition into
2065   // the caseblock.
2066   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2067     // The operands of the cmp have to be in this block.  We don't know
2068     // how to export them from some other block.  If this is the first block
2069     // of the sequence, no exporting is needed.
2070     if (CurBB == SwitchBB ||
2071         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2072          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2073       ISD::CondCode Condition;
2074       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2075         ICmpInst::Predicate Pred =
2076             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2077         Condition = getICmpCondCode(Pred);
2078       } else {
2079         const FCmpInst *FC = cast<FCmpInst>(Cond);
2080         FCmpInst::Predicate Pred =
2081             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2082         Condition = getFCmpCondCode(Pred);
2083         if (TM.Options.NoNaNsFPMath)
2084           Condition = getFCmpCodeWithoutNaN(Condition);
2085       }
2086 
2087       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2088                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2089       SL->SwitchCases.push_back(CB);
2090       return;
2091     }
2092   }
2093 
2094   // Create a CaseBlock record representing this branch.
2095   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2096   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2097                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2098   SL->SwitchCases.push_back(CB);
2099 }
2100 
2101 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2102                                                MachineBasicBlock *TBB,
2103                                                MachineBasicBlock *FBB,
2104                                                MachineBasicBlock *CurBB,
2105                                                MachineBasicBlock *SwitchBB,
2106                                                Instruction::BinaryOps Opc,
2107                                                BranchProbability TProb,
2108                                                BranchProbability FProb,
2109                                                bool InvertCond) {
2110   // Skip over not part of the tree and remember to invert op and operands at
2111   // next level.
2112   Value *NotCond;
2113   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2114       InBlock(NotCond, CurBB->getBasicBlock())) {
2115     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2116                          !InvertCond);
2117     return;
2118   }
2119 
2120   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2121   // Compute the effective opcode for Cond, taking into account whether it needs
2122   // to be inverted, e.g.
2123   //   and (not (or A, B)), C
2124   // gets lowered as
2125   //   and (and (not A, not B), C)
2126   unsigned BOpc = 0;
2127   if (BOp) {
2128     BOpc = BOp->getOpcode();
2129     if (InvertCond) {
2130       if (BOpc == Instruction::And)
2131         BOpc = Instruction::Or;
2132       else if (BOpc == Instruction::Or)
2133         BOpc = Instruction::And;
2134     }
2135   }
2136 
2137   // If this node is not part of the or/and tree, emit it as a branch.
2138   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2139       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2140       BOp->getParent() != CurBB->getBasicBlock() ||
2141       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2142       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2143     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2144                                  TProb, FProb, InvertCond);
2145     return;
2146   }
2147 
2148   //  Create TmpBB after CurBB.
2149   MachineFunction::iterator BBI(CurBB);
2150   MachineFunction &MF = DAG.getMachineFunction();
2151   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2152   CurBB->getParent()->insert(++BBI, TmpBB);
2153 
2154   if (Opc == Instruction::Or) {
2155     // Codegen X | Y as:
2156     // BB1:
2157     //   jmp_if_X TBB
2158     //   jmp TmpBB
2159     // TmpBB:
2160     //   jmp_if_Y TBB
2161     //   jmp FBB
2162     //
2163 
2164     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2165     // The requirement is that
2166     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2167     //     = TrueProb for original BB.
2168     // Assuming the original probabilities are A and B, one choice is to set
2169     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2170     // A/(1+B) and 2B/(1+B). This choice assumes that
2171     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2172     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2173     // TmpBB, but the math is more complicated.
2174 
2175     auto NewTrueProb = TProb / 2;
2176     auto NewFalseProb = TProb / 2 + FProb;
2177     // Emit the LHS condition.
2178     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2179                          NewTrueProb, NewFalseProb, InvertCond);
2180 
2181     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2182     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2183     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2184     // Emit the RHS condition into TmpBB.
2185     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2186                          Probs[0], Probs[1], InvertCond);
2187   } else {
2188     assert(Opc == Instruction::And && "Unknown merge op!");
2189     // Codegen X & Y as:
2190     // BB1:
2191     //   jmp_if_X TmpBB
2192     //   jmp FBB
2193     // TmpBB:
2194     //   jmp_if_Y TBB
2195     //   jmp FBB
2196     //
2197     //  This requires creation of TmpBB after CurBB.
2198 
2199     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2200     // The requirement is that
2201     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2202     //     = FalseProb for original BB.
2203     // Assuming the original probabilities are A and B, one choice is to set
2204     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2205     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2206     // TrueProb for BB1 * FalseProb for TmpBB.
2207 
2208     auto NewTrueProb = TProb + FProb / 2;
2209     auto NewFalseProb = FProb / 2;
2210     // Emit the LHS condition.
2211     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2212                          NewTrueProb, NewFalseProb, InvertCond);
2213 
2214     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2215     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2216     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2217     // Emit the RHS condition into TmpBB.
2218     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2219                          Probs[0], Probs[1], InvertCond);
2220   }
2221 }
2222 
2223 /// If the set of cases should be emitted as a series of branches, return true.
2224 /// If we should emit this as a bunch of and/or'd together conditions, return
2225 /// false.
2226 bool
2227 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2228   if (Cases.size() != 2) return true;
2229 
2230   // If this is two comparisons of the same values or'd or and'd together, they
2231   // will get folded into a single comparison, so don't emit two blocks.
2232   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2233        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2234       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2235        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2236     return false;
2237   }
2238 
2239   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2240   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2241   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2242       Cases[0].CC == Cases[1].CC &&
2243       isa<Constant>(Cases[0].CmpRHS) &&
2244       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2245     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2246       return false;
2247     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2248       return false;
2249   }
2250 
2251   return true;
2252 }
2253 
2254 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2255   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2256 
2257   // Update machine-CFG edges.
2258   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2259 
2260   if (I.isUnconditional()) {
2261     // Update machine-CFG edges.
2262     BrMBB->addSuccessor(Succ0MBB);
2263 
2264     // If this is not a fall-through branch or optimizations are switched off,
2265     // emit the branch.
2266     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2267       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2268                               MVT::Other, getControlRoot(),
2269                               DAG.getBasicBlock(Succ0MBB)));
2270 
2271     return;
2272   }
2273 
2274   // If this condition is one of the special cases we handle, do special stuff
2275   // now.
2276   const Value *CondVal = I.getCondition();
2277   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2278 
2279   // If this is a series of conditions that are or'd or and'd together, emit
2280   // this as a sequence of branches instead of setcc's with and/or operations.
2281   // As long as jumps are not expensive, this should improve performance.
2282   // For example, instead of something like:
2283   //     cmp A, B
2284   //     C = seteq
2285   //     cmp D, E
2286   //     F = setle
2287   //     or C, F
2288   //     jnz foo
2289   // Emit:
2290   //     cmp A, B
2291   //     je foo
2292   //     cmp D, E
2293   //     jle foo
2294   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2295     Instruction::BinaryOps Opcode = BOp->getOpcode();
2296     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2297         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2298         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2299       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2300                            Opcode,
2301                            getEdgeProbability(BrMBB, Succ0MBB),
2302                            getEdgeProbability(BrMBB, Succ1MBB),
2303                            /*InvertCond=*/false);
2304       // If the compares in later blocks need to use values not currently
2305       // exported from this block, export them now.  This block should always
2306       // be the first entry.
2307       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2308 
2309       // Allow some cases to be rejected.
2310       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2311         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2312           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2313           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2314         }
2315 
2316         // Emit the branch for this block.
2317         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2318         SL->SwitchCases.erase(SL->SwitchCases.begin());
2319         return;
2320       }
2321 
2322       // Okay, we decided not to do this, remove any inserted MBB's and clear
2323       // SwitchCases.
2324       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2325         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2326 
2327       SL->SwitchCases.clear();
2328     }
2329   }
2330 
2331   // Create a CaseBlock record representing this branch.
2332   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2333                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2334 
2335   // Use visitSwitchCase to actually insert the fast branch sequence for this
2336   // cond branch.
2337   visitSwitchCase(CB, BrMBB);
2338 }
2339 
2340 /// visitSwitchCase - Emits the necessary code to represent a single node in
2341 /// the binary search tree resulting from lowering a switch instruction.
2342 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2343                                           MachineBasicBlock *SwitchBB) {
2344   SDValue Cond;
2345   SDValue CondLHS = getValue(CB.CmpLHS);
2346   SDLoc dl = CB.DL;
2347 
2348   if (CB.CC == ISD::SETTRUE) {
2349     // Branch or fall through to TrueBB.
2350     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2351     SwitchBB->normalizeSuccProbs();
2352     if (CB.TrueBB != NextBlock(SwitchBB)) {
2353       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2354                               DAG.getBasicBlock(CB.TrueBB)));
2355     }
2356     return;
2357   }
2358 
2359   auto &TLI = DAG.getTargetLoweringInfo();
2360   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2361 
2362   // Build the setcc now.
2363   if (!CB.CmpMHS) {
2364     // Fold "(X == true)" to X and "(X == false)" to !X to
2365     // handle common cases produced by branch lowering.
2366     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2367         CB.CC == ISD::SETEQ)
2368       Cond = CondLHS;
2369     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2370              CB.CC == ISD::SETEQ) {
2371       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2372       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2373     } else {
2374       SDValue CondRHS = getValue(CB.CmpRHS);
2375 
2376       // If a pointer's DAG type is larger than its memory type then the DAG
2377       // values are zero-extended. This breaks signed comparisons so truncate
2378       // back to the underlying type before doing the compare.
2379       if (CondLHS.getValueType() != MemVT) {
2380         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2381         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2382       }
2383       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2384     }
2385   } else {
2386     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2387 
2388     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2389     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2390 
2391     SDValue CmpOp = getValue(CB.CmpMHS);
2392     EVT VT = CmpOp.getValueType();
2393 
2394     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2395       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2396                           ISD::SETLE);
2397     } else {
2398       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2399                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2400       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2401                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2402     }
2403   }
2404 
2405   // Update successor info
2406   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2407   // TrueBB and FalseBB are always different unless the incoming IR is
2408   // degenerate. This only happens when running llc on weird IR.
2409   if (CB.TrueBB != CB.FalseBB)
2410     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2411   SwitchBB->normalizeSuccProbs();
2412 
2413   // If the lhs block is the next block, invert the condition so that we can
2414   // fall through to the lhs instead of the rhs block.
2415   if (CB.TrueBB == NextBlock(SwitchBB)) {
2416     std::swap(CB.TrueBB, CB.FalseBB);
2417     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2418     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2419   }
2420 
2421   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2422                                MVT::Other, getControlRoot(), Cond,
2423                                DAG.getBasicBlock(CB.TrueBB));
2424 
2425   // Insert the false branch. Do this even if it's a fall through branch,
2426   // this makes it easier to do DAG optimizations which require inverting
2427   // the branch condition.
2428   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2429                        DAG.getBasicBlock(CB.FalseBB));
2430 
2431   DAG.setRoot(BrCond);
2432 }
2433 
2434 /// visitJumpTable - Emit JumpTable node in the current MBB
2435 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2436   // Emit the code for the jump table
2437   assert(JT.Reg != -1U && "Should lower JT Header first!");
2438   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2439   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2440                                      JT.Reg, PTy);
2441   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2442   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2443                                     MVT::Other, Index.getValue(1),
2444                                     Table, Index);
2445   DAG.setRoot(BrJumpTable);
2446 }
2447 
2448 /// visitJumpTableHeader - This function emits necessary code to produce index
2449 /// in the JumpTable from switch case.
2450 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2451                                                JumpTableHeader &JTH,
2452                                                MachineBasicBlock *SwitchBB) {
2453   SDLoc dl = getCurSDLoc();
2454 
2455   // Subtract the lowest switch case value from the value being switched on.
2456   SDValue SwitchOp = getValue(JTH.SValue);
2457   EVT VT = SwitchOp.getValueType();
2458   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2459                             DAG.getConstant(JTH.First, dl, VT));
2460 
2461   // The SDNode we just created, which holds the value being switched on minus
2462   // the smallest case value, needs to be copied to a virtual register so it
2463   // can be used as an index into the jump table in a subsequent basic block.
2464   // This value may be smaller or larger than the target's pointer type, and
2465   // therefore require extension or truncating.
2466   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2467   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2468 
2469   unsigned JumpTableReg =
2470       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2471   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2472                                     JumpTableReg, SwitchOp);
2473   JT.Reg = JumpTableReg;
2474 
2475   if (!JTH.OmitRangeCheck) {
2476     // Emit the range check for the jump table, and branch to the default block
2477     // for the switch statement if the value being switched on exceeds the
2478     // largest case in the switch.
2479     SDValue CMP = DAG.getSetCC(
2480         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2481                                    Sub.getValueType()),
2482         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2483 
2484     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2485                                  MVT::Other, CopyTo, CMP,
2486                                  DAG.getBasicBlock(JT.Default));
2487 
2488     // Avoid emitting unnecessary branches to the next block.
2489     if (JT.MBB != NextBlock(SwitchBB))
2490       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2491                            DAG.getBasicBlock(JT.MBB));
2492 
2493     DAG.setRoot(BrCond);
2494   } else {
2495     // Avoid emitting unnecessary branches to the next block.
2496     if (JT.MBB != NextBlock(SwitchBB))
2497       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2498                               DAG.getBasicBlock(JT.MBB)));
2499     else
2500       DAG.setRoot(CopyTo);
2501   }
2502 }
2503 
2504 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2505 /// variable if there exists one.
2506 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2507                                  SDValue &Chain) {
2508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2509   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2510   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2511   MachineFunction &MF = DAG.getMachineFunction();
2512   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2513   MachineSDNode *Node =
2514       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2515   if (Global) {
2516     MachinePointerInfo MPInfo(Global);
2517     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2518                  MachineMemOperand::MODereferenceable;
2519     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2520         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2521     DAG.setNodeMemRefs(Node, {MemRef});
2522   }
2523   if (PtrTy != PtrMemTy)
2524     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2525   return SDValue(Node, 0);
2526 }
2527 
2528 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2529 /// tail spliced into a stack protector check success bb.
2530 ///
2531 /// For a high level explanation of how this fits into the stack protector
2532 /// generation see the comment on the declaration of class
2533 /// StackProtectorDescriptor.
2534 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2535                                                   MachineBasicBlock *ParentBB) {
2536 
2537   // First create the loads to the guard/stack slot for the comparison.
2538   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2539   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2540   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2541 
2542   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2543   int FI = MFI.getStackProtectorIndex();
2544 
2545   SDValue Guard;
2546   SDLoc dl = getCurSDLoc();
2547   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2548   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2549   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2550 
2551   // Generate code to load the content of the guard slot.
2552   SDValue GuardVal = DAG.getLoad(
2553       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2554       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2555       MachineMemOperand::MOVolatile);
2556 
2557   if (TLI.useStackGuardXorFP())
2558     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2559 
2560   // Retrieve guard check function, nullptr if instrumentation is inlined.
2561   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2562     // The target provides a guard check function to validate the guard value.
2563     // Generate a call to that function with the content of the guard slot as
2564     // argument.
2565     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2566     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2567 
2568     TargetLowering::ArgListTy Args;
2569     TargetLowering::ArgListEntry Entry;
2570     Entry.Node = GuardVal;
2571     Entry.Ty = FnTy->getParamType(0);
2572     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2573       Entry.IsInReg = true;
2574     Args.push_back(Entry);
2575 
2576     TargetLowering::CallLoweringInfo CLI(DAG);
2577     CLI.setDebugLoc(getCurSDLoc())
2578         .setChain(DAG.getEntryNode())
2579         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2580                    getValue(GuardCheckFn), std::move(Args));
2581 
2582     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2583     DAG.setRoot(Result.second);
2584     return;
2585   }
2586 
2587   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2588   // Otherwise, emit a volatile load to retrieve the stack guard value.
2589   SDValue Chain = DAG.getEntryNode();
2590   if (TLI.useLoadStackGuardNode()) {
2591     Guard = getLoadStackGuard(DAG, dl, Chain);
2592   } else {
2593     const Value *IRGuard = TLI.getSDagStackGuard(M);
2594     SDValue GuardPtr = getValue(IRGuard);
2595 
2596     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2597                         MachinePointerInfo(IRGuard, 0), Align,
2598                         MachineMemOperand::MOVolatile);
2599   }
2600 
2601   // Perform the comparison via a getsetcc.
2602   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2603                                                         *DAG.getContext(),
2604                                                         Guard.getValueType()),
2605                              Guard, GuardVal, ISD::SETNE);
2606 
2607   // If the guard/stackslot do not equal, branch to failure MBB.
2608   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2609                                MVT::Other, GuardVal.getOperand(0),
2610                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2611   // Otherwise branch to success MBB.
2612   SDValue Br = DAG.getNode(ISD::BR, dl,
2613                            MVT::Other, BrCond,
2614                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2615 
2616   DAG.setRoot(Br);
2617 }
2618 
2619 /// Codegen the failure basic block for a stack protector check.
2620 ///
2621 /// A failure stack protector machine basic block consists simply of a call to
2622 /// __stack_chk_fail().
2623 ///
2624 /// For a high level explanation of how this fits into the stack protector
2625 /// generation see the comment on the declaration of class
2626 /// StackProtectorDescriptor.
2627 void
2628 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630   TargetLowering::MakeLibCallOptions CallOptions;
2631   CallOptions.setDiscardResult(true);
2632   SDValue Chain =
2633       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2634                       None, CallOptions, getCurSDLoc()).second;
2635   // On PS4, the "return address" must still be within the calling function,
2636   // even if it's at the very end, so emit an explicit TRAP here.
2637   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2638   if (TM.getTargetTriple().isPS4CPU())
2639     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2640 
2641   DAG.setRoot(Chain);
2642 }
2643 
2644 /// visitBitTestHeader - This function emits necessary code to produce value
2645 /// suitable for "bit tests"
2646 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2647                                              MachineBasicBlock *SwitchBB) {
2648   SDLoc dl = getCurSDLoc();
2649 
2650   // Subtract the minimum value.
2651   SDValue SwitchOp = getValue(B.SValue);
2652   EVT VT = SwitchOp.getValueType();
2653   SDValue RangeSub =
2654       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2655 
2656   // Determine the type of the test operands.
2657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2658   bool UsePtrType = false;
2659   if (!TLI.isTypeLegal(VT)) {
2660     UsePtrType = true;
2661   } else {
2662     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2663       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2664         // Switch table case range are encoded into series of masks.
2665         // Just use pointer type, it's guaranteed to fit.
2666         UsePtrType = true;
2667         break;
2668       }
2669   }
2670   SDValue Sub = RangeSub;
2671   if (UsePtrType) {
2672     VT = TLI.getPointerTy(DAG.getDataLayout());
2673     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2674   }
2675 
2676   B.RegVT = VT.getSimpleVT();
2677   B.Reg = FuncInfo.CreateReg(B.RegVT);
2678   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2679 
2680   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2681 
2682   if (!B.OmitRangeCheck)
2683     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2684   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2685   SwitchBB->normalizeSuccProbs();
2686 
2687   SDValue Root = CopyTo;
2688   if (!B.OmitRangeCheck) {
2689     // Conditional branch to the default block.
2690     SDValue RangeCmp = DAG.getSetCC(dl,
2691         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2692                                RangeSub.getValueType()),
2693         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2694         ISD::SETUGT);
2695 
2696     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2697                        DAG.getBasicBlock(B.Default));
2698   }
2699 
2700   // Avoid emitting unnecessary branches to the next block.
2701   if (MBB != NextBlock(SwitchBB))
2702     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2703 
2704   DAG.setRoot(Root);
2705 }
2706 
2707 /// visitBitTestCase - this function produces one "bit test"
2708 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2709                                            MachineBasicBlock* NextMBB,
2710                                            BranchProbability BranchProbToNext,
2711                                            unsigned Reg,
2712                                            BitTestCase &B,
2713                                            MachineBasicBlock *SwitchBB) {
2714   SDLoc dl = getCurSDLoc();
2715   MVT VT = BB.RegVT;
2716   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2717   SDValue Cmp;
2718   unsigned PopCount = countPopulation(B.Mask);
2719   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2720   if (PopCount == 1) {
2721     // Testing for a single bit; just compare the shift count with what it
2722     // would need to be to shift a 1 bit in that position.
2723     Cmp = DAG.getSetCC(
2724         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2725         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2726         ISD::SETEQ);
2727   } else if (PopCount == BB.Range) {
2728     // There is only one zero bit in the range, test for it directly.
2729     Cmp = DAG.getSetCC(
2730         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2731         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2732         ISD::SETNE);
2733   } else {
2734     // Make desired shift
2735     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2736                                     DAG.getConstant(1, dl, VT), ShiftOp);
2737 
2738     // Emit bit tests and jumps
2739     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2740                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2741     Cmp = DAG.getSetCC(
2742         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2743         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2744   }
2745 
2746   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2747   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2748   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2749   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2750   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2751   // one as they are relative probabilities (and thus work more like weights),
2752   // and hence we need to normalize them to let the sum of them become one.
2753   SwitchBB->normalizeSuccProbs();
2754 
2755   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2756                               MVT::Other, getControlRoot(),
2757                               Cmp, DAG.getBasicBlock(B.TargetBB));
2758 
2759   // Avoid emitting unnecessary branches to the next block.
2760   if (NextMBB != NextBlock(SwitchBB))
2761     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2762                         DAG.getBasicBlock(NextMBB));
2763 
2764   DAG.setRoot(BrAnd);
2765 }
2766 
2767 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2768   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2769 
2770   // Retrieve successors. Look through artificial IR level blocks like
2771   // catchswitch for successors.
2772   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2773   const BasicBlock *EHPadBB = I.getSuccessor(1);
2774 
2775   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2776   // have to do anything here to lower funclet bundles.
2777   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2778                                         LLVMContext::OB_gc_transition,
2779                                         LLVMContext::OB_funclet,
2780                                         LLVMContext::OB_cfguardtarget}) &&
2781          "Cannot lower invokes with arbitrary operand bundles yet!");
2782 
2783   const Value *Callee(I.getCalledOperand());
2784   const Function *Fn = dyn_cast<Function>(Callee);
2785   if (isa<InlineAsm>(Callee))
2786     visitInlineAsm(I);
2787   else if (Fn && Fn->isIntrinsic()) {
2788     switch (Fn->getIntrinsicID()) {
2789     default:
2790       llvm_unreachable("Cannot invoke this intrinsic");
2791     case Intrinsic::donothing:
2792       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2793       break;
2794     case Intrinsic::experimental_patchpoint_void:
2795     case Intrinsic::experimental_patchpoint_i64:
2796       visitPatchpoint(I, EHPadBB);
2797       break;
2798     case Intrinsic::experimental_gc_statepoint:
2799       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2800       break;
2801     case Intrinsic::wasm_rethrow_in_catch: {
2802       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2803       // special because it can be invoked, so we manually lower it to a DAG
2804       // node here.
2805       SmallVector<SDValue, 8> Ops;
2806       Ops.push_back(getRoot()); // inchain
2807       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2808       Ops.push_back(
2809           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2810                                 TLI.getPointerTy(DAG.getDataLayout())));
2811       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2812       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2813       break;
2814     }
2815     }
2816   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2817     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2818     // Eventually we will support lowering the @llvm.experimental.deoptimize
2819     // intrinsic, and right now there are no plans to support other intrinsics
2820     // with deopt state.
2821     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2822   } else {
2823     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2824   }
2825 
2826   // If the value of the invoke is used outside of its defining block, make it
2827   // available as a virtual register.
2828   // We already took care of the exported value for the statepoint instruction
2829   // during call to the LowerStatepoint.
2830   if (!isStatepoint(I)) {
2831     CopyToExportRegsIfNeeded(&I);
2832   }
2833 
2834   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2835   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2836   BranchProbability EHPadBBProb =
2837       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2838           : BranchProbability::getZero();
2839   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2840 
2841   // Update successor info.
2842   addSuccessorWithProb(InvokeMBB, Return);
2843   for (auto &UnwindDest : UnwindDests) {
2844     UnwindDest.first->setIsEHPad();
2845     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2846   }
2847   InvokeMBB->normalizeSuccProbs();
2848 
2849   // Drop into normal successor.
2850   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2851                           DAG.getBasicBlock(Return)));
2852 }
2853 
2854 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2855   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2856 
2857   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2858   // have to do anything here to lower funclet bundles.
2859   assert(!I.hasOperandBundlesOtherThan(
2860              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2861          "Cannot lower callbrs with arbitrary operand bundles yet!");
2862 
2863   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2864   visitInlineAsm(I);
2865   CopyToExportRegsIfNeeded(&I);
2866 
2867   // Retrieve successors.
2868   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2869   Return->setInlineAsmBrDefaultTarget();
2870 
2871   // Update successor info.
2872   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2873   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2874     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2875     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2876     CallBrMBB->addInlineAsmBrIndirectTarget(Target);
2877   }
2878   CallBrMBB->normalizeSuccProbs();
2879 
2880   // Drop into default successor.
2881   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2882                           MVT::Other, getControlRoot(),
2883                           DAG.getBasicBlock(Return)));
2884 }
2885 
2886 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2887   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2888 }
2889 
2890 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2891   assert(FuncInfo.MBB->isEHPad() &&
2892          "Call to landingpad not in landing pad!");
2893 
2894   // If there aren't registers to copy the values into (e.g., during SjLj
2895   // exceptions), then don't bother to create these DAG nodes.
2896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2897   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2898   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2899       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2900     return;
2901 
2902   // If landingpad's return type is token type, we don't create DAG nodes
2903   // for its exception pointer and selector value. The extraction of exception
2904   // pointer or selector value from token type landingpads is not currently
2905   // supported.
2906   if (LP.getType()->isTokenTy())
2907     return;
2908 
2909   SmallVector<EVT, 2> ValueVTs;
2910   SDLoc dl = getCurSDLoc();
2911   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2912   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2913 
2914   // Get the two live-in registers as SDValues. The physregs have already been
2915   // copied into virtual registers.
2916   SDValue Ops[2];
2917   if (FuncInfo.ExceptionPointerVirtReg) {
2918     Ops[0] = DAG.getZExtOrTrunc(
2919         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2920                            FuncInfo.ExceptionPointerVirtReg,
2921                            TLI.getPointerTy(DAG.getDataLayout())),
2922         dl, ValueVTs[0]);
2923   } else {
2924     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2925   }
2926   Ops[1] = DAG.getZExtOrTrunc(
2927       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2928                          FuncInfo.ExceptionSelectorVirtReg,
2929                          TLI.getPointerTy(DAG.getDataLayout())),
2930       dl, ValueVTs[1]);
2931 
2932   // Merge into one.
2933   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2934                             DAG.getVTList(ValueVTs), Ops);
2935   setValue(&LP, Res);
2936 }
2937 
2938 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2939                                            MachineBasicBlock *Last) {
2940   // Update JTCases.
2941   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2942     if (SL->JTCases[i].first.HeaderBB == First)
2943       SL->JTCases[i].first.HeaderBB = Last;
2944 
2945   // Update BitTestCases.
2946   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2947     if (SL->BitTestCases[i].Parent == First)
2948       SL->BitTestCases[i].Parent = Last;
2949 
2950   // SelectionDAGISel::FinishBasicBlock will add PHI operands for the
2951   // successors of the fallthrough block. Here, we add PHI operands for the
2952   // successors of the INLINEASM_BR block itself.
2953   if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR)
2954     for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate)
2955       if (First->isSuccessor(pair.first->getParent()))
2956         MachineInstrBuilder(*First->getParent(), pair.first)
2957             .addReg(pair.second)
2958             .addMBB(First);
2959 }
2960 
2961 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2962   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2963 
2964   // Update machine-CFG edges with unique successors.
2965   SmallSet<BasicBlock*, 32> Done;
2966   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2967     BasicBlock *BB = I.getSuccessor(i);
2968     bool Inserted = Done.insert(BB).second;
2969     if (!Inserted)
2970         continue;
2971 
2972     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2973     addSuccessorWithProb(IndirectBrMBB, Succ);
2974   }
2975   IndirectBrMBB->normalizeSuccProbs();
2976 
2977   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2978                           MVT::Other, getControlRoot(),
2979                           getValue(I.getAddress())));
2980 }
2981 
2982 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2983   if (!DAG.getTarget().Options.TrapUnreachable)
2984     return;
2985 
2986   // We may be able to ignore unreachable behind a noreturn call.
2987   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2988     const BasicBlock &BB = *I.getParent();
2989     if (&I != &BB.front()) {
2990       BasicBlock::const_iterator PredI =
2991         std::prev(BasicBlock::const_iterator(&I));
2992       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2993         if (Call->doesNotReturn())
2994           return;
2995       }
2996     }
2997   }
2998 
2999   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3000 }
3001 
3002 void SelectionDAGBuilder::visitFSub(const User &I) {
3003   // -0.0 - X --> fneg
3004   Type *Ty = I.getType();
3005   if (isa<Constant>(I.getOperand(0)) &&
3006       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
3007     SDValue Op2 = getValue(I.getOperand(1));
3008     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
3009                              Op2.getValueType(), Op2));
3010     return;
3011   }
3012 
3013   visitBinary(I, ISD::FSUB);
3014 }
3015 
3016 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3017   SDNodeFlags Flags;
3018 
3019   SDValue Op = getValue(I.getOperand(0));
3020   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3021                                     Op, Flags);
3022   setValue(&I, UnNodeValue);
3023 }
3024 
3025 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3026   SDNodeFlags Flags;
3027   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3028     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3029     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3030   }
3031   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3032     Flags.setExact(ExactOp->isExact());
3033   }
3034 
3035   SDValue Op1 = getValue(I.getOperand(0));
3036   SDValue Op2 = getValue(I.getOperand(1));
3037   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3038                                      Op1, Op2, Flags);
3039   setValue(&I, BinNodeValue);
3040 }
3041 
3042 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3043   SDValue Op1 = getValue(I.getOperand(0));
3044   SDValue Op2 = getValue(I.getOperand(1));
3045 
3046   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3047       Op1.getValueType(), DAG.getDataLayout());
3048 
3049   // Coerce the shift amount to the right type if we can.
3050   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3051     unsigned ShiftSize = ShiftTy.getSizeInBits();
3052     unsigned Op2Size = Op2.getValueSizeInBits();
3053     SDLoc DL = getCurSDLoc();
3054 
3055     // If the operand is smaller than the shift count type, promote it.
3056     if (ShiftSize > Op2Size)
3057       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3058 
3059     // If the operand is larger than the shift count type but the shift
3060     // count type has enough bits to represent any shift value, truncate
3061     // it now. This is a common case and it exposes the truncate to
3062     // optimization early.
3063     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3064       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3065     // Otherwise we'll need to temporarily settle for some other convenient
3066     // type.  Type legalization will make adjustments once the shiftee is split.
3067     else
3068       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3069   }
3070 
3071   bool nuw = false;
3072   bool nsw = false;
3073   bool exact = false;
3074 
3075   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3076 
3077     if (const OverflowingBinaryOperator *OFBinOp =
3078             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3079       nuw = OFBinOp->hasNoUnsignedWrap();
3080       nsw = OFBinOp->hasNoSignedWrap();
3081     }
3082     if (const PossiblyExactOperator *ExactOp =
3083             dyn_cast<const PossiblyExactOperator>(&I))
3084       exact = ExactOp->isExact();
3085   }
3086   SDNodeFlags Flags;
3087   Flags.setExact(exact);
3088   Flags.setNoSignedWrap(nsw);
3089   Flags.setNoUnsignedWrap(nuw);
3090   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3091                             Flags);
3092   setValue(&I, Res);
3093 }
3094 
3095 void SelectionDAGBuilder::visitSDiv(const User &I) {
3096   SDValue Op1 = getValue(I.getOperand(0));
3097   SDValue Op2 = getValue(I.getOperand(1));
3098 
3099   SDNodeFlags Flags;
3100   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3101                  cast<PossiblyExactOperator>(&I)->isExact());
3102   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3103                            Op2, Flags));
3104 }
3105 
3106 void SelectionDAGBuilder::visitICmp(const User &I) {
3107   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3108   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3109     predicate = IC->getPredicate();
3110   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3111     predicate = ICmpInst::Predicate(IC->getPredicate());
3112   SDValue Op1 = getValue(I.getOperand(0));
3113   SDValue Op2 = getValue(I.getOperand(1));
3114   ISD::CondCode Opcode = getICmpCondCode(predicate);
3115 
3116   auto &TLI = DAG.getTargetLoweringInfo();
3117   EVT MemVT =
3118       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3119 
3120   // If a pointer's DAG type is larger than its memory type then the DAG values
3121   // are zero-extended. This breaks signed comparisons so truncate back to the
3122   // underlying type before doing the compare.
3123   if (Op1.getValueType() != MemVT) {
3124     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3125     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3126   }
3127 
3128   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3129                                                         I.getType());
3130   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3131 }
3132 
3133 void SelectionDAGBuilder::visitFCmp(const User &I) {
3134   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3135   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3136     predicate = FC->getPredicate();
3137   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3138     predicate = FCmpInst::Predicate(FC->getPredicate());
3139   SDValue Op1 = getValue(I.getOperand(0));
3140   SDValue Op2 = getValue(I.getOperand(1));
3141 
3142   ISD::CondCode Condition = getFCmpCondCode(predicate);
3143   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3144   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3145     Condition = getFCmpCodeWithoutNaN(Condition);
3146 
3147   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3148                                                         I.getType());
3149   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3150 }
3151 
3152 // Check if the condition of the select has one use or two users that are both
3153 // selects with the same condition.
3154 static bool hasOnlySelectUsers(const Value *Cond) {
3155   return llvm::all_of(Cond->users(), [](const Value *V) {
3156     return isa<SelectInst>(V);
3157   });
3158 }
3159 
3160 void SelectionDAGBuilder::visitSelect(const User &I) {
3161   SmallVector<EVT, 4> ValueVTs;
3162   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3163                   ValueVTs);
3164   unsigned NumValues = ValueVTs.size();
3165   if (NumValues == 0) return;
3166 
3167   SmallVector<SDValue, 4> Values(NumValues);
3168   SDValue Cond     = getValue(I.getOperand(0));
3169   SDValue LHSVal   = getValue(I.getOperand(1));
3170   SDValue RHSVal   = getValue(I.getOperand(2));
3171   SmallVector<SDValue, 1> BaseOps(1, Cond);
3172   ISD::NodeType OpCode =
3173       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3174 
3175   bool IsUnaryAbs = false;
3176 
3177   // Min/max matching is only viable if all output VTs are the same.
3178   if (is_splat(ValueVTs)) {
3179     EVT VT = ValueVTs[0];
3180     LLVMContext &Ctx = *DAG.getContext();
3181     auto &TLI = DAG.getTargetLoweringInfo();
3182 
3183     // We care about the legality of the operation after it has been type
3184     // legalized.
3185     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3186       VT = TLI.getTypeToTransformTo(Ctx, VT);
3187 
3188     // If the vselect is legal, assume we want to leave this as a vector setcc +
3189     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3190     // min/max is legal on the scalar type.
3191     bool UseScalarMinMax = VT.isVector() &&
3192       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3193 
3194     Value *LHS, *RHS;
3195     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3196     ISD::NodeType Opc = ISD::DELETED_NODE;
3197     switch (SPR.Flavor) {
3198     case SPF_UMAX:    Opc = ISD::UMAX; break;
3199     case SPF_UMIN:    Opc = ISD::UMIN; break;
3200     case SPF_SMAX:    Opc = ISD::SMAX; break;
3201     case SPF_SMIN:    Opc = ISD::SMIN; break;
3202     case SPF_FMINNUM:
3203       switch (SPR.NaNBehavior) {
3204       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3205       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3206       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3207       case SPNB_RETURNS_ANY: {
3208         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3209           Opc = ISD::FMINNUM;
3210         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3211           Opc = ISD::FMINIMUM;
3212         else if (UseScalarMinMax)
3213           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3214             ISD::FMINNUM : ISD::FMINIMUM;
3215         break;
3216       }
3217       }
3218       break;
3219     case SPF_FMAXNUM:
3220       switch (SPR.NaNBehavior) {
3221       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3222       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3223       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3224       case SPNB_RETURNS_ANY:
3225 
3226         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3227           Opc = ISD::FMAXNUM;
3228         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3229           Opc = ISD::FMAXIMUM;
3230         else if (UseScalarMinMax)
3231           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3232             ISD::FMAXNUM : ISD::FMAXIMUM;
3233         break;
3234       }
3235       break;
3236     case SPF_ABS:
3237       IsUnaryAbs = true;
3238       Opc = ISD::ABS;
3239       break;
3240     case SPF_NABS:
3241       // TODO: we need to produce sub(0, abs(X)).
3242     default: break;
3243     }
3244 
3245     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3246         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3247          (UseScalarMinMax &&
3248           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3249         // If the underlying comparison instruction is used by any other
3250         // instruction, the consumed instructions won't be destroyed, so it is
3251         // not profitable to convert to a min/max.
3252         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3253       OpCode = Opc;
3254       LHSVal = getValue(LHS);
3255       RHSVal = getValue(RHS);
3256       BaseOps.clear();
3257     }
3258 
3259     if (IsUnaryAbs) {
3260       OpCode = Opc;
3261       LHSVal = getValue(LHS);
3262       BaseOps.clear();
3263     }
3264   }
3265 
3266   if (IsUnaryAbs) {
3267     for (unsigned i = 0; i != NumValues; ++i) {
3268       Values[i] =
3269           DAG.getNode(OpCode, getCurSDLoc(),
3270                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3271                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3272     }
3273   } else {
3274     for (unsigned i = 0; i != NumValues; ++i) {
3275       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3276       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3277       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3278       Values[i] = DAG.getNode(
3279           OpCode, getCurSDLoc(),
3280           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3281     }
3282   }
3283 
3284   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3285                            DAG.getVTList(ValueVTs), Values));
3286 }
3287 
3288 void SelectionDAGBuilder::visitTrunc(const User &I) {
3289   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3290   SDValue N = getValue(I.getOperand(0));
3291   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3292                                                         I.getType());
3293   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3294 }
3295 
3296 void SelectionDAGBuilder::visitZExt(const User &I) {
3297   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3298   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3299   SDValue N = getValue(I.getOperand(0));
3300   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3301                                                         I.getType());
3302   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3303 }
3304 
3305 void SelectionDAGBuilder::visitSExt(const User &I) {
3306   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3307   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3308   SDValue N = getValue(I.getOperand(0));
3309   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3310                                                         I.getType());
3311   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3312 }
3313 
3314 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3315   // FPTrunc is never a no-op cast, no need to check
3316   SDValue N = getValue(I.getOperand(0));
3317   SDLoc dl = getCurSDLoc();
3318   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3319   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3320   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3321                            DAG.getTargetConstant(
3322                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3323 }
3324 
3325 void SelectionDAGBuilder::visitFPExt(const User &I) {
3326   // FPExt is never a no-op cast, no need to check
3327   SDValue N = getValue(I.getOperand(0));
3328   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3329                                                         I.getType());
3330   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3331 }
3332 
3333 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3334   // FPToUI is never a no-op cast, no need to check
3335   SDValue N = getValue(I.getOperand(0));
3336   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3337                                                         I.getType());
3338   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3339 }
3340 
3341 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3342   // FPToSI is never a no-op cast, no need to check
3343   SDValue N = getValue(I.getOperand(0));
3344   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3345                                                         I.getType());
3346   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3347 }
3348 
3349 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3350   // UIToFP is never a no-op cast, no need to check
3351   SDValue N = getValue(I.getOperand(0));
3352   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3353                                                         I.getType());
3354   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3355 }
3356 
3357 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3358   // SIToFP is never a no-op cast, no need to check
3359   SDValue N = getValue(I.getOperand(0));
3360   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3361                                                         I.getType());
3362   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3363 }
3364 
3365 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3366   // What to do depends on the size of the integer and the size of the pointer.
3367   // We can either truncate, zero extend, or no-op, accordingly.
3368   SDValue N = getValue(I.getOperand(0));
3369   auto &TLI = DAG.getTargetLoweringInfo();
3370   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3371                                                         I.getType());
3372   EVT PtrMemVT =
3373       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3374   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3375   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3376   setValue(&I, N);
3377 }
3378 
3379 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3380   // What to do depends on the size of the integer and the size of the pointer.
3381   // We can either truncate, zero extend, or no-op, accordingly.
3382   SDValue N = getValue(I.getOperand(0));
3383   auto &TLI = DAG.getTargetLoweringInfo();
3384   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3385   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3386   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3387   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3388   setValue(&I, N);
3389 }
3390 
3391 void SelectionDAGBuilder::visitBitCast(const User &I) {
3392   SDValue N = getValue(I.getOperand(0));
3393   SDLoc dl = getCurSDLoc();
3394   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3395                                                         I.getType());
3396 
3397   // BitCast assures us that source and destination are the same size so this is
3398   // either a BITCAST or a no-op.
3399   if (DestVT != N.getValueType())
3400     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3401                              DestVT, N)); // convert types.
3402   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3403   // might fold any kind of constant expression to an integer constant and that
3404   // is not what we are looking for. Only recognize a bitcast of a genuine
3405   // constant integer as an opaque constant.
3406   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3407     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3408                                  /*isOpaque*/true));
3409   else
3410     setValue(&I, N);            // noop cast.
3411 }
3412 
3413 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415   const Value *SV = I.getOperand(0);
3416   SDValue N = getValue(SV);
3417   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3418 
3419   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3420   unsigned DestAS = I.getType()->getPointerAddressSpace();
3421 
3422   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3423     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3424 
3425   setValue(&I, N);
3426 }
3427 
3428 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3430   SDValue InVec = getValue(I.getOperand(0));
3431   SDValue InVal = getValue(I.getOperand(1));
3432   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3433                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3434   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3435                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3436                            InVec, InVal, InIdx));
3437 }
3438 
3439 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3441   SDValue InVec = getValue(I.getOperand(0));
3442   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3443                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3444   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3445                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3446                            InVec, InIdx));
3447 }
3448 
3449 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3450   SDValue Src1 = getValue(I.getOperand(0));
3451   SDValue Src2 = getValue(I.getOperand(1));
3452   ArrayRef<int> Mask;
3453   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3454     Mask = SVI->getShuffleMask();
3455   else
3456     Mask = cast<ConstantExpr>(I).getShuffleMask();
3457   SDLoc DL = getCurSDLoc();
3458   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3459   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3460   EVT SrcVT = Src1.getValueType();
3461   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3462 
3463   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3464       VT.isScalableVector()) {
3465     // Canonical splat form of first element of first input vector.
3466     SDValue FirstElt =
3467         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3468                     DAG.getVectorIdxConstant(0, DL));
3469     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3470     return;
3471   }
3472 
3473   // For now, we only handle splats for scalable vectors.
3474   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3475   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3476   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3477 
3478   unsigned MaskNumElts = Mask.size();
3479 
3480   if (SrcNumElts == MaskNumElts) {
3481     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3482     return;
3483   }
3484 
3485   // Normalize the shuffle vector since mask and vector length don't match.
3486   if (SrcNumElts < MaskNumElts) {
3487     // Mask is longer than the source vectors. We can use concatenate vector to
3488     // make the mask and vectors lengths match.
3489 
3490     if (MaskNumElts % SrcNumElts == 0) {
3491       // Mask length is a multiple of the source vector length.
3492       // Check if the shuffle is some kind of concatenation of the input
3493       // vectors.
3494       unsigned NumConcat = MaskNumElts / SrcNumElts;
3495       bool IsConcat = true;
3496       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3497       for (unsigned i = 0; i != MaskNumElts; ++i) {
3498         int Idx = Mask[i];
3499         if (Idx < 0)
3500           continue;
3501         // Ensure the indices in each SrcVT sized piece are sequential and that
3502         // the same source is used for the whole piece.
3503         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3504             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3505              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3506           IsConcat = false;
3507           break;
3508         }
3509         // Remember which source this index came from.
3510         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3511       }
3512 
3513       // The shuffle is concatenating multiple vectors together. Just emit
3514       // a CONCAT_VECTORS operation.
3515       if (IsConcat) {
3516         SmallVector<SDValue, 8> ConcatOps;
3517         for (auto Src : ConcatSrcs) {
3518           if (Src < 0)
3519             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3520           else if (Src == 0)
3521             ConcatOps.push_back(Src1);
3522           else
3523             ConcatOps.push_back(Src2);
3524         }
3525         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3526         return;
3527       }
3528     }
3529 
3530     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3531     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3532     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3533                                     PaddedMaskNumElts);
3534 
3535     // Pad both vectors with undefs to make them the same length as the mask.
3536     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3537 
3538     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3539     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3540     MOps1[0] = Src1;
3541     MOps2[0] = Src2;
3542 
3543     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3544     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3545 
3546     // Readjust mask for new input vector length.
3547     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3548     for (unsigned i = 0; i != MaskNumElts; ++i) {
3549       int Idx = Mask[i];
3550       if (Idx >= (int)SrcNumElts)
3551         Idx -= SrcNumElts - PaddedMaskNumElts;
3552       MappedOps[i] = Idx;
3553     }
3554 
3555     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3556 
3557     // If the concatenated vector was padded, extract a subvector with the
3558     // correct number of elements.
3559     if (MaskNumElts != PaddedMaskNumElts)
3560       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3561                            DAG.getVectorIdxConstant(0, DL));
3562 
3563     setValue(&I, Result);
3564     return;
3565   }
3566 
3567   if (SrcNumElts > MaskNumElts) {
3568     // Analyze the access pattern of the vector to see if we can extract
3569     // two subvectors and do the shuffle.
3570     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3571     bool CanExtract = true;
3572     for (int Idx : Mask) {
3573       unsigned Input = 0;
3574       if (Idx < 0)
3575         continue;
3576 
3577       if (Idx >= (int)SrcNumElts) {
3578         Input = 1;
3579         Idx -= SrcNumElts;
3580       }
3581 
3582       // If all the indices come from the same MaskNumElts sized portion of
3583       // the sources we can use extract. Also make sure the extract wouldn't
3584       // extract past the end of the source.
3585       int NewStartIdx = alignDown(Idx, MaskNumElts);
3586       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3587           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3588         CanExtract = false;
3589       // Make sure we always update StartIdx as we use it to track if all
3590       // elements are undef.
3591       StartIdx[Input] = NewStartIdx;
3592     }
3593 
3594     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3595       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3596       return;
3597     }
3598     if (CanExtract) {
3599       // Extract appropriate subvector and generate a vector shuffle
3600       for (unsigned Input = 0; Input < 2; ++Input) {
3601         SDValue &Src = Input == 0 ? Src1 : Src2;
3602         if (StartIdx[Input] < 0)
3603           Src = DAG.getUNDEF(VT);
3604         else {
3605           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3606                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3607         }
3608       }
3609 
3610       // Calculate new mask.
3611       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3612       for (int &Idx : MappedOps) {
3613         if (Idx >= (int)SrcNumElts)
3614           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3615         else if (Idx >= 0)
3616           Idx -= StartIdx[0];
3617       }
3618 
3619       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3620       return;
3621     }
3622   }
3623 
3624   // We can't use either concat vectors or extract subvectors so fall back to
3625   // replacing the shuffle with extract and build vector.
3626   // to insert and build vector.
3627   EVT EltVT = VT.getVectorElementType();
3628   SmallVector<SDValue,8> Ops;
3629   for (int Idx : Mask) {
3630     SDValue Res;
3631 
3632     if (Idx < 0) {
3633       Res = DAG.getUNDEF(EltVT);
3634     } else {
3635       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3636       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3637 
3638       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3639                         DAG.getVectorIdxConstant(Idx, DL));
3640     }
3641 
3642     Ops.push_back(Res);
3643   }
3644 
3645   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3646 }
3647 
3648 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3649   ArrayRef<unsigned> Indices;
3650   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3651     Indices = IV->getIndices();
3652   else
3653     Indices = cast<ConstantExpr>(&I)->getIndices();
3654 
3655   const Value *Op0 = I.getOperand(0);
3656   const Value *Op1 = I.getOperand(1);
3657   Type *AggTy = I.getType();
3658   Type *ValTy = Op1->getType();
3659   bool IntoUndef = isa<UndefValue>(Op0);
3660   bool FromUndef = isa<UndefValue>(Op1);
3661 
3662   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3663 
3664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3665   SmallVector<EVT, 4> AggValueVTs;
3666   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3667   SmallVector<EVT, 4> ValValueVTs;
3668   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3669 
3670   unsigned NumAggValues = AggValueVTs.size();
3671   unsigned NumValValues = ValValueVTs.size();
3672   SmallVector<SDValue, 4> Values(NumAggValues);
3673 
3674   // Ignore an insertvalue that produces an empty object
3675   if (!NumAggValues) {
3676     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3677     return;
3678   }
3679 
3680   SDValue Agg = getValue(Op0);
3681   unsigned i = 0;
3682   // Copy the beginning value(s) from the original aggregate.
3683   for (; i != LinearIndex; ++i)
3684     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3685                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3686   // Copy values from the inserted value(s).
3687   if (NumValValues) {
3688     SDValue Val = getValue(Op1);
3689     for (; i != LinearIndex + NumValValues; ++i)
3690       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3691                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3692   }
3693   // Copy remaining value(s) from the original aggregate.
3694   for (; i != NumAggValues; ++i)
3695     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3696                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3697 
3698   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3699                            DAG.getVTList(AggValueVTs), Values));
3700 }
3701 
3702 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3703   ArrayRef<unsigned> Indices;
3704   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3705     Indices = EV->getIndices();
3706   else
3707     Indices = cast<ConstantExpr>(&I)->getIndices();
3708 
3709   const Value *Op0 = I.getOperand(0);
3710   Type *AggTy = Op0->getType();
3711   Type *ValTy = I.getType();
3712   bool OutOfUndef = isa<UndefValue>(Op0);
3713 
3714   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3715 
3716   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3717   SmallVector<EVT, 4> ValValueVTs;
3718   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3719 
3720   unsigned NumValValues = ValValueVTs.size();
3721 
3722   // Ignore a extractvalue that produces an empty object
3723   if (!NumValValues) {
3724     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3725     return;
3726   }
3727 
3728   SmallVector<SDValue, 4> Values(NumValValues);
3729 
3730   SDValue Agg = getValue(Op0);
3731   // Copy out the selected value(s).
3732   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3733     Values[i - LinearIndex] =
3734       OutOfUndef ?
3735         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3736         SDValue(Agg.getNode(), Agg.getResNo() + i);
3737 
3738   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3739                            DAG.getVTList(ValValueVTs), Values));
3740 }
3741 
3742 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3743   Value *Op0 = I.getOperand(0);
3744   // Note that the pointer operand may be a vector of pointers. Take the scalar
3745   // element which holds a pointer.
3746   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3747   SDValue N = getValue(Op0);
3748   SDLoc dl = getCurSDLoc();
3749   auto &TLI = DAG.getTargetLoweringInfo();
3750   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3751   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3752 
3753   // Normalize Vector GEP - all scalar operands should be converted to the
3754   // splat vector.
3755   bool IsVectorGEP = I.getType()->isVectorTy();
3756   ElementCount VectorElementCount =
3757       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3758                   : ElementCount(0, false);
3759 
3760   if (IsVectorGEP && !N.getValueType().isVector()) {
3761     LLVMContext &Context = *DAG.getContext();
3762     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3763     if (VectorElementCount.Scalable)
3764       N = DAG.getSplatVector(VT, dl, N);
3765     else
3766       N = DAG.getSplatBuildVector(VT, dl, N);
3767   }
3768 
3769   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3770        GTI != E; ++GTI) {
3771     const Value *Idx = GTI.getOperand();
3772     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3773       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3774       if (Field) {
3775         // N = N + Offset
3776         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3777 
3778         // In an inbounds GEP with an offset that is nonnegative even when
3779         // interpreted as signed, assume there is no unsigned overflow.
3780         SDNodeFlags Flags;
3781         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3782           Flags.setNoUnsignedWrap(true);
3783 
3784         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3785                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3786       }
3787     } else {
3788       // IdxSize is the width of the arithmetic according to IR semantics.
3789       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3790       // (and fix up the result later).
3791       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3792       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3793       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3794       // We intentionally mask away the high bits here; ElementSize may not
3795       // fit in IdxTy.
3796       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3797       bool ElementScalable = ElementSize.isScalable();
3798 
3799       // If this is a scalar constant or a splat vector of constants,
3800       // handle it quickly.
3801       const auto *C = dyn_cast<Constant>(Idx);
3802       if (C && isa<VectorType>(C->getType()))
3803         C = C->getSplatValue();
3804 
3805       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3806       if (CI && CI->isZero())
3807         continue;
3808       if (CI && !ElementScalable) {
3809         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3810         LLVMContext &Context = *DAG.getContext();
3811         SDValue OffsVal;
3812         if (IsVectorGEP)
3813           OffsVal = DAG.getConstant(
3814               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3815         else
3816           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3817 
3818         // In an inbounds GEP with an offset that is nonnegative even when
3819         // interpreted as signed, assume there is no unsigned overflow.
3820         SDNodeFlags Flags;
3821         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3822           Flags.setNoUnsignedWrap(true);
3823 
3824         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3825 
3826         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3827         continue;
3828       }
3829 
3830       // N = N + Idx * ElementMul;
3831       SDValue IdxN = getValue(Idx);
3832 
3833       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3834         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3835                                   VectorElementCount);
3836         if (VectorElementCount.Scalable)
3837           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3838         else
3839           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3840       }
3841 
3842       // If the index is smaller or larger than intptr_t, truncate or extend
3843       // it.
3844       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3845 
3846       if (ElementScalable) {
3847         EVT VScaleTy = N.getValueType().getScalarType();
3848         SDValue VScale = DAG.getNode(
3849             ISD::VSCALE, dl, VScaleTy,
3850             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3851         if (IsVectorGEP)
3852           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3853         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3854       } else {
3855         // If this is a multiply by a power of two, turn it into a shl
3856         // immediately.  This is a very common case.
3857         if (ElementMul != 1) {
3858           if (ElementMul.isPowerOf2()) {
3859             unsigned Amt = ElementMul.logBase2();
3860             IdxN = DAG.getNode(ISD::SHL, dl,
3861                                N.getValueType(), IdxN,
3862                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3863           } else {
3864             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3865                                             IdxN.getValueType());
3866             IdxN = DAG.getNode(ISD::MUL, dl,
3867                                N.getValueType(), IdxN, Scale);
3868           }
3869         }
3870       }
3871 
3872       N = DAG.getNode(ISD::ADD, dl,
3873                       N.getValueType(), N, IdxN);
3874     }
3875   }
3876 
3877   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3878     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3879 
3880   setValue(&I, N);
3881 }
3882 
3883 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3884   // If this is a fixed sized alloca in the entry block of the function,
3885   // allocate it statically on the stack.
3886   if (FuncInfo.StaticAllocaMap.count(&I))
3887     return;   // getValue will auto-populate this.
3888 
3889   SDLoc dl = getCurSDLoc();
3890   Type *Ty = I.getAllocatedType();
3891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3892   auto &DL = DAG.getDataLayout();
3893   uint64_t TySize = DL.getTypeAllocSize(Ty);
3894   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3895 
3896   SDValue AllocSize = getValue(I.getArraySize());
3897 
3898   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3899   if (AllocSize.getValueType() != IntPtr)
3900     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3901 
3902   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3903                           AllocSize,
3904                           DAG.getConstant(TySize, dl, IntPtr));
3905 
3906   // Handle alignment.  If the requested alignment is less than or equal to
3907   // the stack alignment, ignore it.  If the size is greater than or equal to
3908   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3909   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3910   if (*Alignment <= StackAlign)
3911     Alignment = None;
3912 
3913   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3914   // Round the size of the allocation up to the stack alignment size
3915   // by add SA-1 to the size. This doesn't overflow because we're computing
3916   // an address inside an alloca.
3917   SDNodeFlags Flags;
3918   Flags.setNoUnsignedWrap(true);
3919   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3920                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3921 
3922   // Mask out the low bits for alignment purposes.
3923   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3924                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3925 
3926   SDValue Ops[] = {
3927       getRoot(), AllocSize,
3928       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3929   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3930   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3931   setValue(&I, DSA);
3932   DAG.setRoot(DSA.getValue(1));
3933 
3934   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3935 }
3936 
3937 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3938   if (I.isAtomic())
3939     return visitAtomicLoad(I);
3940 
3941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3942   const Value *SV = I.getOperand(0);
3943   if (TLI.supportSwiftError()) {
3944     // Swifterror values can come from either a function parameter with
3945     // swifterror attribute or an alloca with swifterror attribute.
3946     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3947       if (Arg->hasSwiftErrorAttr())
3948         return visitLoadFromSwiftError(I);
3949     }
3950 
3951     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3952       if (Alloca->isSwiftError())
3953         return visitLoadFromSwiftError(I);
3954     }
3955   }
3956 
3957   SDValue Ptr = getValue(SV);
3958 
3959   Type *Ty = I.getType();
3960   Align Alignment = I.getAlign();
3961 
3962   AAMDNodes AAInfo;
3963   I.getAAMetadata(AAInfo);
3964   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3965 
3966   SmallVector<EVT, 4> ValueVTs, MemVTs;
3967   SmallVector<uint64_t, 4> Offsets;
3968   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3969   unsigned NumValues = ValueVTs.size();
3970   if (NumValues == 0)
3971     return;
3972 
3973   bool isVolatile = I.isVolatile();
3974 
3975   SDValue Root;
3976   bool ConstantMemory = false;
3977   if (isVolatile)
3978     // Serialize volatile loads with other side effects.
3979     Root = getRoot();
3980   else if (NumValues > MaxParallelChains)
3981     Root = getMemoryRoot();
3982   else if (AA &&
3983            AA->pointsToConstantMemory(MemoryLocation(
3984                SV,
3985                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3986                AAInfo))) {
3987     // Do not serialize (non-volatile) loads of constant memory with anything.
3988     Root = DAG.getEntryNode();
3989     ConstantMemory = true;
3990   } else {
3991     // Do not serialize non-volatile loads against each other.
3992     Root = DAG.getRoot();
3993   }
3994 
3995   SDLoc dl = getCurSDLoc();
3996 
3997   if (isVolatile)
3998     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3999 
4000   // An aggregate load cannot wrap around the address space, so offsets to its
4001   // parts don't wrap either.
4002   SDNodeFlags Flags;
4003   Flags.setNoUnsignedWrap(true);
4004 
4005   SmallVector<SDValue, 4> Values(NumValues);
4006   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4007   EVT PtrVT = Ptr.getValueType();
4008 
4009   MachineMemOperand::Flags MMOFlags
4010     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4011 
4012   unsigned ChainI = 0;
4013   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4014     // Serializing loads here may result in excessive register pressure, and
4015     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4016     // could recover a bit by hoisting nodes upward in the chain by recognizing
4017     // they are side-effect free or do not alias. The optimizer should really
4018     // avoid this case by converting large object/array copies to llvm.memcpy
4019     // (MaxParallelChains should always remain as failsafe).
4020     if (ChainI == MaxParallelChains) {
4021       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4022       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4023                                   makeArrayRef(Chains.data(), ChainI));
4024       Root = Chain;
4025       ChainI = 0;
4026     }
4027     SDValue A = DAG.getNode(ISD::ADD, dl,
4028                             PtrVT, Ptr,
4029                             DAG.getConstant(Offsets[i], dl, PtrVT),
4030                             Flags);
4031 
4032     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4033                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4034                             MMOFlags, AAInfo, Ranges);
4035     Chains[ChainI] = L.getValue(1);
4036 
4037     if (MemVTs[i] != ValueVTs[i])
4038       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4039 
4040     Values[i] = L;
4041   }
4042 
4043   if (!ConstantMemory) {
4044     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4045                                 makeArrayRef(Chains.data(), ChainI));
4046     if (isVolatile)
4047       DAG.setRoot(Chain);
4048     else
4049       PendingLoads.push_back(Chain);
4050   }
4051 
4052   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4053                            DAG.getVTList(ValueVTs), Values));
4054 }
4055 
4056 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4057   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4058          "call visitStoreToSwiftError when backend supports swifterror");
4059 
4060   SmallVector<EVT, 4> ValueVTs;
4061   SmallVector<uint64_t, 4> Offsets;
4062   const Value *SrcV = I.getOperand(0);
4063   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4064                   SrcV->getType(), ValueVTs, &Offsets);
4065   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4066          "expect a single EVT for swifterror");
4067 
4068   SDValue Src = getValue(SrcV);
4069   // Create a virtual register, then update the virtual register.
4070   Register VReg =
4071       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4072   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4073   // Chain can be getRoot or getControlRoot.
4074   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4075                                       SDValue(Src.getNode(), Src.getResNo()));
4076   DAG.setRoot(CopyNode);
4077 }
4078 
4079 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4080   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4081          "call visitLoadFromSwiftError when backend supports swifterror");
4082 
4083   assert(!I.isVolatile() &&
4084          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4085          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4086          "Support volatile, non temporal, invariant for load_from_swift_error");
4087 
4088   const Value *SV = I.getOperand(0);
4089   Type *Ty = I.getType();
4090   AAMDNodes AAInfo;
4091   I.getAAMetadata(AAInfo);
4092   assert(
4093       (!AA ||
4094        !AA->pointsToConstantMemory(MemoryLocation(
4095            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4096            AAInfo))) &&
4097       "load_from_swift_error should not be constant memory");
4098 
4099   SmallVector<EVT, 4> ValueVTs;
4100   SmallVector<uint64_t, 4> Offsets;
4101   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4102                   ValueVTs, &Offsets);
4103   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4104          "expect a single EVT for swifterror");
4105 
4106   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4107   SDValue L = DAG.getCopyFromReg(
4108       getRoot(), getCurSDLoc(),
4109       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4110 
4111   setValue(&I, L);
4112 }
4113 
4114 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4115   if (I.isAtomic())
4116     return visitAtomicStore(I);
4117 
4118   const Value *SrcV = I.getOperand(0);
4119   const Value *PtrV = I.getOperand(1);
4120 
4121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4122   if (TLI.supportSwiftError()) {
4123     // Swifterror values can come from either a function parameter with
4124     // swifterror attribute or an alloca with swifterror attribute.
4125     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4126       if (Arg->hasSwiftErrorAttr())
4127         return visitStoreToSwiftError(I);
4128     }
4129 
4130     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4131       if (Alloca->isSwiftError())
4132         return visitStoreToSwiftError(I);
4133     }
4134   }
4135 
4136   SmallVector<EVT, 4> ValueVTs, MemVTs;
4137   SmallVector<uint64_t, 4> Offsets;
4138   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4139                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4140   unsigned NumValues = ValueVTs.size();
4141   if (NumValues == 0)
4142     return;
4143 
4144   // Get the lowered operands. Note that we do this after
4145   // checking if NumResults is zero, because with zero results
4146   // the operands won't have values in the map.
4147   SDValue Src = getValue(SrcV);
4148   SDValue Ptr = getValue(PtrV);
4149 
4150   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4151   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4152   SDLoc dl = getCurSDLoc();
4153   Align Alignment = I.getAlign();
4154   AAMDNodes AAInfo;
4155   I.getAAMetadata(AAInfo);
4156 
4157   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4158 
4159   // An aggregate load cannot wrap around the address space, so offsets to its
4160   // parts don't wrap either.
4161   SDNodeFlags Flags;
4162   Flags.setNoUnsignedWrap(true);
4163 
4164   unsigned ChainI = 0;
4165   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4166     // See visitLoad comments.
4167     if (ChainI == MaxParallelChains) {
4168       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4169                                   makeArrayRef(Chains.data(), ChainI));
4170       Root = Chain;
4171       ChainI = 0;
4172     }
4173     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4174     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4175     if (MemVTs[i] != ValueVTs[i])
4176       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4177     SDValue St =
4178         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4179                      Alignment, MMOFlags, AAInfo);
4180     Chains[ChainI] = St;
4181   }
4182 
4183   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4184                                   makeArrayRef(Chains.data(), ChainI));
4185   DAG.setRoot(StoreNode);
4186 }
4187 
4188 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4189                                            bool IsCompressing) {
4190   SDLoc sdl = getCurSDLoc();
4191 
4192   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4193                                MaybeAlign &Alignment) {
4194     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4195     Src0 = I.getArgOperand(0);
4196     Ptr = I.getArgOperand(1);
4197     Alignment =
4198         MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
4199     Mask = I.getArgOperand(3);
4200   };
4201   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4202                                     MaybeAlign &Alignment) {
4203     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4204     Src0 = I.getArgOperand(0);
4205     Ptr = I.getArgOperand(1);
4206     Mask = I.getArgOperand(2);
4207     Alignment = None;
4208   };
4209 
4210   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4211   MaybeAlign Alignment;
4212   if (IsCompressing)
4213     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4214   else
4215     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4216 
4217   SDValue Ptr = getValue(PtrOperand);
4218   SDValue Src0 = getValue(Src0Operand);
4219   SDValue Mask = getValue(MaskOperand);
4220   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4221 
4222   EVT VT = Src0.getValueType();
4223   if (!Alignment)
4224     Alignment = DAG.getEVTAlign(VT);
4225 
4226   AAMDNodes AAInfo;
4227   I.getAAMetadata(AAInfo);
4228 
4229   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4230       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4231       // TODO: Make MachineMemOperands aware of scalable
4232       // vectors.
4233       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4234   SDValue StoreNode =
4235       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4236                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4237   DAG.setRoot(StoreNode);
4238   setValue(&I, StoreNode);
4239 }
4240 
4241 // Get a uniform base for the Gather/Scatter intrinsic.
4242 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4243 // We try to represent it as a base pointer + vector of indices.
4244 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4245 // The first operand of the GEP may be a single pointer or a vector of pointers
4246 // Example:
4247 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4248 //  or
4249 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4250 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4251 //
4252 // When the first GEP operand is a single pointer - it is the uniform base we
4253 // are looking for. If first operand of the GEP is a splat vector - we
4254 // extract the splat value and use it as a uniform base.
4255 // In all other cases the function returns 'false'.
4256 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4257                            ISD::MemIndexType &IndexType, SDValue &Scale,
4258                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4259   SelectionDAG& DAG = SDB->DAG;
4260   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4261   const DataLayout &DL = DAG.getDataLayout();
4262 
4263   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4264 
4265   // Handle splat constant pointer.
4266   if (auto *C = dyn_cast<Constant>(Ptr)) {
4267     C = C->getSplatValue();
4268     if (!C)
4269       return false;
4270 
4271     Base = SDB->getValue(C);
4272 
4273     unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements();
4274     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4275     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4276     IndexType = ISD::SIGNED_SCALED;
4277     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4278     return true;
4279   }
4280 
4281   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4282   if (!GEP || GEP->getParent() != CurBB)
4283     return false;
4284 
4285   if (GEP->getNumOperands() != 2)
4286     return false;
4287 
4288   const Value *BasePtr = GEP->getPointerOperand();
4289   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4290 
4291   // Make sure the base is scalar and the index is a vector.
4292   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4293     return false;
4294 
4295   Base = SDB->getValue(BasePtr);
4296   Index = SDB->getValue(IndexVal);
4297   IndexType = ISD::SIGNED_SCALED;
4298   Scale = DAG.getTargetConstant(
4299               DL.getTypeAllocSize(GEP->getResultElementType()),
4300               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4301   return true;
4302 }
4303 
4304 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4305   SDLoc sdl = getCurSDLoc();
4306 
4307   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4308   const Value *Ptr = I.getArgOperand(1);
4309   SDValue Src0 = getValue(I.getArgOperand(0));
4310   SDValue Mask = getValue(I.getArgOperand(3));
4311   EVT VT = Src0.getValueType();
4312   MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
4313   if (!Alignment)
4314     Alignment = DAG.getEVTAlign(VT);
4315   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4316 
4317   AAMDNodes AAInfo;
4318   I.getAAMetadata(AAInfo);
4319 
4320   SDValue Base;
4321   SDValue Index;
4322   ISD::MemIndexType IndexType;
4323   SDValue Scale;
4324   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4325                                     I.getParent());
4326 
4327   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4328   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4329       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4330       // TODO: Make MachineMemOperands aware of scalable
4331       // vectors.
4332       MemoryLocation::UnknownSize, *Alignment, AAInfo);
4333   if (!UniformBase) {
4334     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4335     Index = getValue(Ptr);
4336     IndexType = ISD::SIGNED_SCALED;
4337     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4338   }
4339   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4340   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4341                                          Ops, MMO, IndexType);
4342   DAG.setRoot(Scatter);
4343   setValue(&I, Scatter);
4344 }
4345 
4346 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4347   SDLoc sdl = getCurSDLoc();
4348 
4349   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4350                               MaybeAlign &Alignment) {
4351     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4352     Ptr = I.getArgOperand(0);
4353     Alignment =
4354         MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
4355     Mask = I.getArgOperand(2);
4356     Src0 = I.getArgOperand(3);
4357   };
4358   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4359                                  MaybeAlign &Alignment) {
4360     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4361     Ptr = I.getArgOperand(0);
4362     Alignment = None;
4363     Mask = I.getArgOperand(1);
4364     Src0 = I.getArgOperand(2);
4365   };
4366 
4367   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4368   MaybeAlign Alignment;
4369   if (IsExpanding)
4370     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4371   else
4372     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4373 
4374   SDValue Ptr = getValue(PtrOperand);
4375   SDValue Src0 = getValue(Src0Operand);
4376   SDValue Mask = getValue(MaskOperand);
4377   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4378 
4379   EVT VT = Src0.getValueType();
4380   if (!Alignment)
4381     Alignment = DAG.getEVTAlign(VT);
4382 
4383   AAMDNodes AAInfo;
4384   I.getAAMetadata(AAInfo);
4385   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4386 
4387   // Do not serialize masked loads of constant memory with anything.
4388   MemoryLocation ML;
4389   if (VT.isScalableVector())
4390     ML = MemoryLocation(PtrOperand);
4391   else
4392     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4393                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4394                            AAInfo);
4395   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4396 
4397   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4398 
4399   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4400       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4401       // TODO: Make MachineMemOperands aware of scalable
4402       // vectors.
4403       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4404 
4405   SDValue Load =
4406       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4407                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4408   if (AddToChain)
4409     PendingLoads.push_back(Load.getValue(1));
4410   setValue(&I, Load);
4411 }
4412 
4413 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4414   SDLoc sdl = getCurSDLoc();
4415 
4416   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4417   const Value *Ptr = I.getArgOperand(0);
4418   SDValue Src0 = getValue(I.getArgOperand(3));
4419   SDValue Mask = getValue(I.getArgOperand(2));
4420 
4421   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4422   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4423   MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
4424   if (!Alignment)
4425     Alignment = DAG.getEVTAlign(VT);
4426 
4427   AAMDNodes AAInfo;
4428   I.getAAMetadata(AAInfo);
4429   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4430 
4431   SDValue Root = DAG.getRoot();
4432   SDValue Base;
4433   SDValue Index;
4434   ISD::MemIndexType IndexType;
4435   SDValue Scale;
4436   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4437                                     I.getParent());
4438   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4439   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4440       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4441       // TODO: Make MachineMemOperands aware of scalable
4442       // vectors.
4443       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4444 
4445   if (!UniformBase) {
4446     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4447     Index = getValue(Ptr);
4448     IndexType = ISD::SIGNED_SCALED;
4449     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4450   }
4451   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4452   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4453                                        Ops, MMO, IndexType);
4454 
4455   PendingLoads.push_back(Gather.getValue(1));
4456   setValue(&I, Gather);
4457 }
4458 
4459 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4460   SDLoc dl = getCurSDLoc();
4461   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4462   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4463   SyncScope::ID SSID = I.getSyncScopeID();
4464 
4465   SDValue InChain = getRoot();
4466 
4467   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4468   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4469 
4470   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4471   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4472 
4473   MachineFunction &MF = DAG.getMachineFunction();
4474   MachineMemOperand *MMO = MF.getMachineMemOperand(
4475       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4476       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4477       FailureOrdering);
4478 
4479   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4480                                    dl, MemVT, VTs, InChain,
4481                                    getValue(I.getPointerOperand()),
4482                                    getValue(I.getCompareOperand()),
4483                                    getValue(I.getNewValOperand()), MMO);
4484 
4485   SDValue OutChain = L.getValue(2);
4486 
4487   setValue(&I, L);
4488   DAG.setRoot(OutChain);
4489 }
4490 
4491 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4492   SDLoc dl = getCurSDLoc();
4493   ISD::NodeType NT;
4494   switch (I.getOperation()) {
4495   default: llvm_unreachable("Unknown atomicrmw operation");
4496   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4497   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4498   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4499   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4500   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4501   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4502   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4503   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4504   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4505   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4506   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4507   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4508   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4509   }
4510   AtomicOrdering Ordering = I.getOrdering();
4511   SyncScope::ID SSID = I.getSyncScopeID();
4512 
4513   SDValue InChain = getRoot();
4514 
4515   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4517   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4518 
4519   MachineFunction &MF = DAG.getMachineFunction();
4520   MachineMemOperand *MMO = MF.getMachineMemOperand(
4521       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4522       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4523 
4524   SDValue L =
4525     DAG.getAtomic(NT, dl, MemVT, InChain,
4526                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4527                   MMO);
4528 
4529   SDValue OutChain = L.getValue(1);
4530 
4531   setValue(&I, L);
4532   DAG.setRoot(OutChain);
4533 }
4534 
4535 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4536   SDLoc dl = getCurSDLoc();
4537   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4538   SDValue Ops[3];
4539   Ops[0] = getRoot();
4540   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4541                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4542   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4543                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4544   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4545 }
4546 
4547 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4548   SDLoc dl = getCurSDLoc();
4549   AtomicOrdering Order = I.getOrdering();
4550   SyncScope::ID SSID = I.getSyncScopeID();
4551 
4552   SDValue InChain = getRoot();
4553 
4554   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4555   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4556   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4557 
4558   if (!TLI.supportsUnalignedAtomics() &&
4559       I.getAlignment() < MemVT.getSizeInBits() / 8)
4560     report_fatal_error("Cannot generate unaligned atomic load");
4561 
4562   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4563 
4564   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4565       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4566       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4567 
4568   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4569 
4570   SDValue Ptr = getValue(I.getPointerOperand());
4571 
4572   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4573     // TODO: Once this is better exercised by tests, it should be merged with
4574     // the normal path for loads to prevent future divergence.
4575     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4576     if (MemVT != VT)
4577       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4578 
4579     setValue(&I, L);
4580     SDValue OutChain = L.getValue(1);
4581     if (!I.isUnordered())
4582       DAG.setRoot(OutChain);
4583     else
4584       PendingLoads.push_back(OutChain);
4585     return;
4586   }
4587 
4588   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4589                             Ptr, MMO);
4590 
4591   SDValue OutChain = L.getValue(1);
4592   if (MemVT != VT)
4593     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4594 
4595   setValue(&I, L);
4596   DAG.setRoot(OutChain);
4597 }
4598 
4599 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4600   SDLoc dl = getCurSDLoc();
4601 
4602   AtomicOrdering Ordering = I.getOrdering();
4603   SyncScope::ID SSID = I.getSyncScopeID();
4604 
4605   SDValue InChain = getRoot();
4606 
4607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4608   EVT MemVT =
4609       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4610 
4611   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4612     report_fatal_error("Cannot generate unaligned atomic store");
4613 
4614   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4615 
4616   MachineFunction &MF = DAG.getMachineFunction();
4617   MachineMemOperand *MMO = MF.getMachineMemOperand(
4618       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4619       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4620 
4621   SDValue Val = getValue(I.getValueOperand());
4622   if (Val.getValueType() != MemVT)
4623     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4624   SDValue Ptr = getValue(I.getPointerOperand());
4625 
4626   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4627     // TODO: Once this is better exercised by tests, it should be merged with
4628     // the normal path for stores to prevent future divergence.
4629     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4630     DAG.setRoot(S);
4631     return;
4632   }
4633   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4634                                    Ptr, Val, MMO);
4635 
4636 
4637   DAG.setRoot(OutChain);
4638 }
4639 
4640 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4641 /// node.
4642 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4643                                                unsigned Intrinsic) {
4644   // Ignore the callsite's attributes. A specific call site may be marked with
4645   // readnone, but the lowering code will expect the chain based on the
4646   // definition.
4647   const Function *F = I.getCalledFunction();
4648   bool HasChain = !F->doesNotAccessMemory();
4649   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4650 
4651   // Build the operand list.
4652   SmallVector<SDValue, 8> Ops;
4653   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4654     if (OnlyLoad) {
4655       // We don't need to serialize loads against other loads.
4656       Ops.push_back(DAG.getRoot());
4657     } else {
4658       Ops.push_back(getRoot());
4659     }
4660   }
4661 
4662   // Info is set by getTgtMemInstrinsic
4663   TargetLowering::IntrinsicInfo Info;
4664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4665   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4666                                                DAG.getMachineFunction(),
4667                                                Intrinsic);
4668 
4669   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4670   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4671       Info.opc == ISD::INTRINSIC_W_CHAIN)
4672     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4673                                         TLI.getPointerTy(DAG.getDataLayout())));
4674 
4675   // Add all operands of the call to the operand list.
4676   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4677     const Value *Arg = I.getArgOperand(i);
4678     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4679       Ops.push_back(getValue(Arg));
4680       continue;
4681     }
4682 
4683     // Use TargetConstant instead of a regular constant for immarg.
4684     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4685     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4686       assert(CI->getBitWidth() <= 64 &&
4687              "large intrinsic immediates not handled");
4688       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4689     } else {
4690       Ops.push_back(
4691           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4692     }
4693   }
4694 
4695   SmallVector<EVT, 4> ValueVTs;
4696   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4697 
4698   if (HasChain)
4699     ValueVTs.push_back(MVT::Other);
4700 
4701   SDVTList VTs = DAG.getVTList(ValueVTs);
4702 
4703   // Create the node.
4704   SDValue Result;
4705   if (IsTgtIntrinsic) {
4706     // This is target intrinsic that touches memory
4707     AAMDNodes AAInfo;
4708     I.getAAMetadata(AAInfo);
4709     Result =
4710         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4711                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4712                                 Info.align, Info.flags, Info.size, AAInfo);
4713   } else if (!HasChain) {
4714     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4715   } else if (!I.getType()->isVoidTy()) {
4716     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4717   } else {
4718     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4719   }
4720 
4721   if (HasChain) {
4722     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4723     if (OnlyLoad)
4724       PendingLoads.push_back(Chain);
4725     else
4726       DAG.setRoot(Chain);
4727   }
4728 
4729   if (!I.getType()->isVoidTy()) {
4730     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4731       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4732       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4733     } else
4734       Result = lowerRangeToAssertZExt(DAG, I, Result);
4735 
4736     setValue(&I, Result);
4737   }
4738 }
4739 
4740 /// GetSignificand - Get the significand and build it into a floating-point
4741 /// number with exponent of 1:
4742 ///
4743 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4744 ///
4745 /// where Op is the hexadecimal representation of floating point value.
4746 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4747   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4748                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4749   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4750                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4751   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4752 }
4753 
4754 /// GetExponent - Get the exponent:
4755 ///
4756 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4757 ///
4758 /// where Op is the hexadecimal representation of floating point value.
4759 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4760                            const TargetLowering &TLI, const SDLoc &dl) {
4761   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4762                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4763   SDValue t1 = DAG.getNode(
4764       ISD::SRL, dl, MVT::i32, t0,
4765       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4766   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4767                            DAG.getConstant(127, dl, MVT::i32));
4768   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4769 }
4770 
4771 /// getF32Constant - Get 32-bit floating point constant.
4772 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4773                               const SDLoc &dl) {
4774   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4775                            MVT::f32);
4776 }
4777 
4778 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4779                                        SelectionDAG &DAG) {
4780   // TODO: What fast-math-flags should be set on the floating-point nodes?
4781 
4782   //   IntegerPartOfX = ((int32_t)(t0);
4783   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4784 
4785   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4786   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4787   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4788 
4789   //   IntegerPartOfX <<= 23;
4790   IntegerPartOfX = DAG.getNode(
4791       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4792       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4793                                   DAG.getDataLayout())));
4794 
4795   SDValue TwoToFractionalPartOfX;
4796   if (LimitFloatPrecision <= 6) {
4797     // For floating-point precision of 6:
4798     //
4799     //   TwoToFractionalPartOfX =
4800     //     0.997535578f +
4801     //       (0.735607626f + 0.252464424f * x) * x;
4802     //
4803     // error 0.0144103317, which is 6 bits
4804     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4805                              getF32Constant(DAG, 0x3e814304, dl));
4806     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4807                              getF32Constant(DAG, 0x3f3c50c8, dl));
4808     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4809     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4810                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4811   } else if (LimitFloatPrecision <= 12) {
4812     // For floating-point precision of 12:
4813     //
4814     //   TwoToFractionalPartOfX =
4815     //     0.999892986f +
4816     //       (0.696457318f +
4817     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4818     //
4819     // error 0.000107046256, which is 13 to 14 bits
4820     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4821                              getF32Constant(DAG, 0x3da235e3, dl));
4822     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4823                              getF32Constant(DAG, 0x3e65b8f3, dl));
4824     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4825     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4826                              getF32Constant(DAG, 0x3f324b07, dl));
4827     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4828     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4829                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4830   } else { // LimitFloatPrecision <= 18
4831     // For floating-point precision of 18:
4832     //
4833     //   TwoToFractionalPartOfX =
4834     //     0.999999982f +
4835     //       (0.693148872f +
4836     //         (0.240227044f +
4837     //           (0.554906021e-1f +
4838     //             (0.961591928e-2f +
4839     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4840     // error 2.47208000*10^(-7), which is better than 18 bits
4841     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4842                              getF32Constant(DAG, 0x3924b03e, dl));
4843     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4844                              getF32Constant(DAG, 0x3ab24b87, dl));
4845     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4846     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4847                              getF32Constant(DAG, 0x3c1d8c17, dl));
4848     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4849     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4850                              getF32Constant(DAG, 0x3d634a1d, dl));
4851     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4852     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4853                              getF32Constant(DAG, 0x3e75fe14, dl));
4854     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4855     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4856                               getF32Constant(DAG, 0x3f317234, dl));
4857     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4858     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4859                                          getF32Constant(DAG, 0x3f800000, dl));
4860   }
4861 
4862   // Add the exponent into the result in integer domain.
4863   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4864   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4865                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4866 }
4867 
4868 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4869 /// limited-precision mode.
4870 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4871                          const TargetLowering &TLI) {
4872   if (Op.getValueType() == MVT::f32 &&
4873       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4874 
4875     // Put the exponent in the right bit position for later addition to the
4876     // final result:
4877     //
4878     // t0 = Op * log2(e)
4879 
4880     // TODO: What fast-math-flags should be set here?
4881     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4882                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4883     return getLimitedPrecisionExp2(t0, dl, DAG);
4884   }
4885 
4886   // No special expansion.
4887   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4888 }
4889 
4890 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4891 /// limited-precision mode.
4892 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4893                          const TargetLowering &TLI) {
4894   // TODO: What fast-math-flags should be set on the floating-point nodes?
4895 
4896   if (Op.getValueType() == MVT::f32 &&
4897       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4898     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4899 
4900     // Scale the exponent by log(2).
4901     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4902     SDValue LogOfExponent =
4903         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4904                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4905 
4906     // Get the significand and build it into a floating-point number with
4907     // exponent of 1.
4908     SDValue X = GetSignificand(DAG, Op1, dl);
4909 
4910     SDValue LogOfMantissa;
4911     if (LimitFloatPrecision <= 6) {
4912       // For floating-point precision of 6:
4913       //
4914       //   LogofMantissa =
4915       //     -1.1609546f +
4916       //       (1.4034025f - 0.23903021f * x) * x;
4917       //
4918       // error 0.0034276066, which is better than 8 bits
4919       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4920                                getF32Constant(DAG, 0xbe74c456, dl));
4921       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4922                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4923       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4924       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4925                                   getF32Constant(DAG, 0x3f949a29, dl));
4926     } else if (LimitFloatPrecision <= 12) {
4927       // For floating-point precision of 12:
4928       //
4929       //   LogOfMantissa =
4930       //     -1.7417939f +
4931       //       (2.8212026f +
4932       //         (-1.4699568f +
4933       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4934       //
4935       // error 0.000061011436, which is 14 bits
4936       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4937                                getF32Constant(DAG, 0xbd67b6d6, dl));
4938       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4939                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4940       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4941       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4942                                getF32Constant(DAG, 0x3fbc278b, dl));
4943       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4944       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4945                                getF32Constant(DAG, 0x40348e95, dl));
4946       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4947       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4948                                   getF32Constant(DAG, 0x3fdef31a, dl));
4949     } else { // LimitFloatPrecision <= 18
4950       // For floating-point precision of 18:
4951       //
4952       //   LogOfMantissa =
4953       //     -2.1072184f +
4954       //       (4.2372794f +
4955       //         (-3.7029485f +
4956       //           (2.2781945f +
4957       //             (-0.87823314f +
4958       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4959       //
4960       // error 0.0000023660568, which is better than 18 bits
4961       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4962                                getF32Constant(DAG, 0xbc91e5ac, dl));
4963       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4964                                getF32Constant(DAG, 0x3e4350aa, dl));
4965       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4966       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4967                                getF32Constant(DAG, 0x3f60d3e3, dl));
4968       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4969       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4970                                getF32Constant(DAG, 0x4011cdf0, dl));
4971       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4972       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4973                                getF32Constant(DAG, 0x406cfd1c, dl));
4974       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4975       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4976                                getF32Constant(DAG, 0x408797cb, dl));
4977       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4978       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4979                                   getF32Constant(DAG, 0x4006dcab, dl));
4980     }
4981 
4982     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4983   }
4984 
4985   // No special expansion.
4986   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4987 }
4988 
4989 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4990 /// limited-precision mode.
4991 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4992                           const TargetLowering &TLI) {
4993   // TODO: What fast-math-flags should be set on the floating-point nodes?
4994 
4995   if (Op.getValueType() == MVT::f32 &&
4996       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4997     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4998 
4999     // Get the exponent.
5000     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5001 
5002     // Get the significand and build it into a floating-point number with
5003     // exponent of 1.
5004     SDValue X = GetSignificand(DAG, Op1, dl);
5005 
5006     // Different possible minimax approximations of significand in
5007     // floating-point for various degrees of accuracy over [1,2].
5008     SDValue Log2ofMantissa;
5009     if (LimitFloatPrecision <= 6) {
5010       // For floating-point precision of 6:
5011       //
5012       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5013       //
5014       // error 0.0049451742, which is more than 7 bits
5015       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5016                                getF32Constant(DAG, 0xbeb08fe0, dl));
5017       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5018                                getF32Constant(DAG, 0x40019463, dl));
5019       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5020       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5021                                    getF32Constant(DAG, 0x3fd6633d, dl));
5022     } else if (LimitFloatPrecision <= 12) {
5023       // For floating-point precision of 12:
5024       //
5025       //   Log2ofMantissa =
5026       //     -2.51285454f +
5027       //       (4.07009056f +
5028       //         (-2.12067489f +
5029       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5030       //
5031       // error 0.0000876136000, which is better than 13 bits
5032       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5033                                getF32Constant(DAG, 0xbda7262e, dl));
5034       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5035                                getF32Constant(DAG, 0x3f25280b, dl));
5036       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5037       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5038                                getF32Constant(DAG, 0x4007b923, dl));
5039       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5040       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5041                                getF32Constant(DAG, 0x40823e2f, dl));
5042       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5043       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5044                                    getF32Constant(DAG, 0x4020d29c, dl));
5045     } else { // LimitFloatPrecision <= 18
5046       // For floating-point precision of 18:
5047       //
5048       //   Log2ofMantissa =
5049       //     -3.0400495f +
5050       //       (6.1129976f +
5051       //         (-5.3420409f +
5052       //           (3.2865683f +
5053       //             (-1.2669343f +
5054       //               (0.27515199f -
5055       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5056       //
5057       // error 0.0000018516, which is better than 18 bits
5058       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5059                                getF32Constant(DAG, 0xbcd2769e, dl));
5060       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5061                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5062       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5063       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5064                                getF32Constant(DAG, 0x3fa22ae7, dl));
5065       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5066       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5067                                getF32Constant(DAG, 0x40525723, dl));
5068       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5069       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5070                                getF32Constant(DAG, 0x40aaf200, dl));
5071       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5072       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5073                                getF32Constant(DAG, 0x40c39dad, dl));
5074       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5075       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5076                                    getF32Constant(DAG, 0x4042902c, dl));
5077     }
5078 
5079     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5080   }
5081 
5082   // No special expansion.
5083   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5084 }
5085 
5086 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5087 /// limited-precision mode.
5088 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5089                            const TargetLowering &TLI) {
5090   // TODO: What fast-math-flags should be set on the floating-point nodes?
5091 
5092   if (Op.getValueType() == MVT::f32 &&
5093       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5094     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5095 
5096     // Scale the exponent by log10(2) [0.30102999f].
5097     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5098     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5099                                         getF32Constant(DAG, 0x3e9a209a, dl));
5100 
5101     // Get the significand and build it into a floating-point number with
5102     // exponent of 1.
5103     SDValue X = GetSignificand(DAG, Op1, dl);
5104 
5105     SDValue Log10ofMantissa;
5106     if (LimitFloatPrecision <= 6) {
5107       // For floating-point precision of 6:
5108       //
5109       //   Log10ofMantissa =
5110       //     -0.50419619f +
5111       //       (0.60948995f - 0.10380950f * x) * x;
5112       //
5113       // error 0.0014886165, which is 6 bits
5114       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5115                                getF32Constant(DAG, 0xbdd49a13, dl));
5116       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5117                                getF32Constant(DAG, 0x3f1c0789, dl));
5118       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5119       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5120                                     getF32Constant(DAG, 0x3f011300, dl));
5121     } else if (LimitFloatPrecision <= 12) {
5122       // For floating-point precision of 12:
5123       //
5124       //   Log10ofMantissa =
5125       //     -0.64831180f +
5126       //       (0.91751397f +
5127       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5128       //
5129       // error 0.00019228036, which is better than 12 bits
5130       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5131                                getF32Constant(DAG, 0x3d431f31, dl));
5132       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5133                                getF32Constant(DAG, 0x3ea21fb2, dl));
5134       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5135       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5136                                getF32Constant(DAG, 0x3f6ae232, dl));
5137       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5138       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5139                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5140     } else { // LimitFloatPrecision <= 18
5141       // For floating-point precision of 18:
5142       //
5143       //   Log10ofMantissa =
5144       //     -0.84299375f +
5145       //       (1.5327582f +
5146       //         (-1.0688956f +
5147       //           (0.49102474f +
5148       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5149       //
5150       // error 0.0000037995730, which is better than 18 bits
5151       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5152                                getF32Constant(DAG, 0x3c5d51ce, dl));
5153       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5154                                getF32Constant(DAG, 0x3e00685a, dl));
5155       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5156       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5157                                getF32Constant(DAG, 0x3efb6798, dl));
5158       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5159       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5160                                getF32Constant(DAG, 0x3f88d192, dl));
5161       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5162       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5163                                getF32Constant(DAG, 0x3fc4316c, dl));
5164       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5165       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5166                                     getF32Constant(DAG, 0x3f57ce70, dl));
5167     }
5168 
5169     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5170   }
5171 
5172   // No special expansion.
5173   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5174 }
5175 
5176 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5177 /// limited-precision mode.
5178 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5179                           const TargetLowering &TLI) {
5180   if (Op.getValueType() == MVT::f32 &&
5181       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5182     return getLimitedPrecisionExp2(Op, dl, DAG);
5183 
5184   // No special expansion.
5185   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5186 }
5187 
5188 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5189 /// limited-precision mode with x == 10.0f.
5190 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5191                          SelectionDAG &DAG, const TargetLowering &TLI) {
5192   bool IsExp10 = false;
5193   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5194       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5195     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5196       APFloat Ten(10.0f);
5197       IsExp10 = LHSC->isExactlyValue(Ten);
5198     }
5199   }
5200 
5201   // TODO: What fast-math-flags should be set on the FMUL node?
5202   if (IsExp10) {
5203     // Put the exponent in the right bit position for later addition to the
5204     // final result:
5205     //
5206     //   #define LOG2OF10 3.3219281f
5207     //   t0 = Op * LOG2OF10;
5208     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5209                              getF32Constant(DAG, 0x40549a78, dl));
5210     return getLimitedPrecisionExp2(t0, dl, DAG);
5211   }
5212 
5213   // No special expansion.
5214   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5215 }
5216 
5217 /// ExpandPowI - Expand a llvm.powi intrinsic.
5218 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5219                           SelectionDAG &DAG) {
5220   // If RHS is a constant, we can expand this out to a multiplication tree,
5221   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5222   // optimizing for size, we only want to do this if the expansion would produce
5223   // a small number of multiplies, otherwise we do the full expansion.
5224   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5225     // Get the exponent as a positive value.
5226     unsigned Val = RHSC->getSExtValue();
5227     if ((int)Val < 0) Val = -Val;
5228 
5229     // powi(x, 0) -> 1.0
5230     if (Val == 0)
5231       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5232 
5233     bool OptForSize = DAG.shouldOptForSize();
5234     if (!OptForSize ||
5235         // If optimizing for size, don't insert too many multiplies.
5236         // This inserts up to 5 multiplies.
5237         countPopulation(Val) + Log2_32(Val) < 7) {
5238       // We use the simple binary decomposition method to generate the multiply
5239       // sequence.  There are more optimal ways to do this (for example,
5240       // powi(x,15) generates one more multiply than it should), but this has
5241       // the benefit of being both really simple and much better than a libcall.
5242       SDValue Res;  // Logically starts equal to 1.0
5243       SDValue CurSquare = LHS;
5244       // TODO: Intrinsics should have fast-math-flags that propagate to these
5245       // nodes.
5246       while (Val) {
5247         if (Val & 1) {
5248           if (Res.getNode())
5249             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5250           else
5251             Res = CurSquare;  // 1.0*CurSquare.
5252         }
5253 
5254         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5255                                 CurSquare, CurSquare);
5256         Val >>= 1;
5257       }
5258 
5259       // If the original was negative, invert the result, producing 1/(x*x*x).
5260       if (RHSC->getSExtValue() < 0)
5261         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5262                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5263       return Res;
5264     }
5265   }
5266 
5267   // Otherwise, expand to a libcall.
5268   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5269 }
5270 
5271 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5272                             SDValue LHS, SDValue RHS, SDValue Scale,
5273                             SelectionDAG &DAG, const TargetLowering &TLI) {
5274   EVT VT = LHS.getValueType();
5275   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5276   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5277   LLVMContext &Ctx = *DAG.getContext();
5278 
5279   // If the type is legal but the operation isn't, this node might survive all
5280   // the way to operation legalization. If we end up there and we do not have
5281   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5282   // node.
5283 
5284   // Coax the legalizer into expanding the node during type legalization instead
5285   // by bumping the size by one bit. This will force it to Promote, enabling the
5286   // early expansion and avoiding the need to expand later.
5287 
5288   // We don't have to do this if Scale is 0; that can always be expanded, unless
5289   // it's a saturating signed operation. Those can experience true integer
5290   // division overflow, a case which we must avoid.
5291 
5292   // FIXME: We wouldn't have to do this (or any of the early
5293   // expansion/promotion) if it was possible to expand a libcall of an
5294   // illegal type during operation legalization. But it's not, so things
5295   // get a bit hacky.
5296   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5297   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5298       (TLI.isTypeLegal(VT) ||
5299        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5300     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5301         Opcode, VT, ScaleInt);
5302     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5303       EVT PromVT;
5304       if (VT.isScalarInteger())
5305         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5306       else if (VT.isVector()) {
5307         PromVT = VT.getVectorElementType();
5308         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5309         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5310       } else
5311         llvm_unreachable("Wrong VT for DIVFIX?");
5312       if (Signed) {
5313         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5314         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5315       } else {
5316         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5317         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5318       }
5319       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5320       // For saturating operations, we need to shift up the LHS to get the
5321       // proper saturation width, and then shift down again afterwards.
5322       if (Saturating)
5323         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5324                           DAG.getConstant(1, DL, ShiftTy));
5325       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5326       if (Saturating)
5327         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5328                           DAG.getConstant(1, DL, ShiftTy));
5329       return DAG.getZExtOrTrunc(Res, DL, VT);
5330     }
5331   }
5332 
5333   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5334 }
5335 
5336 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5337 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5338 static void
5339 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5340                      const SDValue &N) {
5341   switch (N.getOpcode()) {
5342   case ISD::CopyFromReg: {
5343     SDValue Op = N.getOperand(1);
5344     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5345                       Op.getValueType().getSizeInBits());
5346     return;
5347   }
5348   case ISD::BITCAST:
5349   case ISD::AssertZext:
5350   case ISD::AssertSext:
5351   case ISD::TRUNCATE:
5352     getUnderlyingArgRegs(Regs, N.getOperand(0));
5353     return;
5354   case ISD::BUILD_PAIR:
5355   case ISD::BUILD_VECTOR:
5356   case ISD::CONCAT_VECTORS:
5357     for (SDValue Op : N->op_values())
5358       getUnderlyingArgRegs(Regs, Op);
5359     return;
5360   default:
5361     return;
5362   }
5363 }
5364 
5365 /// If the DbgValueInst is a dbg_value of a function argument, create the
5366 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5367 /// instruction selection, they will be inserted to the entry BB.
5368 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5369     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5370     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5371   const Argument *Arg = dyn_cast<Argument>(V);
5372   if (!Arg)
5373     return false;
5374 
5375   if (!IsDbgDeclare) {
5376     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5377     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5378     // the entry block.
5379     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5380     if (!IsInEntryBlock)
5381       return false;
5382 
5383     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5384     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5385     // variable that also is a param.
5386     //
5387     // Although, if we are at the top of the entry block already, we can still
5388     // emit using ArgDbgValue. This might catch some situations when the
5389     // dbg.value refers to an argument that isn't used in the entry block, so
5390     // any CopyToReg node would be optimized out and the only way to express
5391     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5392     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5393     // we should only emit as ArgDbgValue if the Variable is an argument to the
5394     // current function, and the dbg.value intrinsic is found in the entry
5395     // block.
5396     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5397         !DL->getInlinedAt();
5398     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5399     if (!IsInPrologue && !VariableIsFunctionInputArg)
5400       return false;
5401 
5402     // Here we assume that a function argument on IR level only can be used to
5403     // describe one input parameter on source level. If we for example have
5404     // source code like this
5405     //
5406     //    struct A { long x, y; };
5407     //    void foo(struct A a, long b) {
5408     //      ...
5409     //      b = a.x;
5410     //      ...
5411     //    }
5412     //
5413     // and IR like this
5414     //
5415     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5416     //  entry:
5417     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5418     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5419     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5420     //    ...
5421     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5422     //    ...
5423     //
5424     // then the last dbg.value is describing a parameter "b" using a value that
5425     // is an argument. But since we already has used %a1 to describe a parameter
5426     // we should not handle that last dbg.value here (that would result in an
5427     // incorrect hoisting of the DBG_VALUE to the function entry).
5428     // Notice that we allow one dbg.value per IR level argument, to accommodate
5429     // for the situation with fragments above.
5430     if (VariableIsFunctionInputArg) {
5431       unsigned ArgNo = Arg->getArgNo();
5432       if (ArgNo >= FuncInfo.DescribedArgs.size())
5433         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5434       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5435         return false;
5436       FuncInfo.DescribedArgs.set(ArgNo);
5437     }
5438   }
5439 
5440   MachineFunction &MF = DAG.getMachineFunction();
5441   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5442 
5443   bool IsIndirect = false;
5444   Optional<MachineOperand> Op;
5445   // Some arguments' frame index is recorded during argument lowering.
5446   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5447   if (FI != std::numeric_limits<int>::max())
5448     Op = MachineOperand::CreateFI(FI);
5449 
5450   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5451   if (!Op && N.getNode()) {
5452     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5453     Register Reg;
5454     if (ArgRegsAndSizes.size() == 1)
5455       Reg = ArgRegsAndSizes.front().first;
5456 
5457     if (Reg && Reg.isVirtual()) {
5458       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5459       Register PR = RegInfo.getLiveInPhysReg(Reg);
5460       if (PR)
5461         Reg = PR;
5462     }
5463     if (Reg) {
5464       Op = MachineOperand::CreateReg(Reg, false);
5465       IsIndirect = IsDbgDeclare;
5466     }
5467   }
5468 
5469   if (!Op && N.getNode()) {
5470     // Check if frame index is available.
5471     SDValue LCandidate = peekThroughBitcasts(N);
5472     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5473       if (FrameIndexSDNode *FINode =
5474           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5475         Op = MachineOperand::CreateFI(FINode->getIndex());
5476   }
5477 
5478   if (!Op) {
5479     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5480     auto splitMultiRegDbgValue
5481       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5482       unsigned Offset = 0;
5483       for (auto RegAndSize : SplitRegs) {
5484         // If the expression is already a fragment, the current register
5485         // offset+size might extend beyond the fragment. In this case, only
5486         // the register bits that are inside the fragment are relevant.
5487         int RegFragmentSizeInBits = RegAndSize.second;
5488         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5489           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5490           // The register is entirely outside the expression fragment,
5491           // so is irrelevant for debug info.
5492           if (Offset >= ExprFragmentSizeInBits)
5493             break;
5494           // The register is partially outside the expression fragment, only
5495           // the low bits within the fragment are relevant for debug info.
5496           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5497             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5498           }
5499         }
5500 
5501         auto FragmentExpr = DIExpression::createFragmentExpression(
5502             Expr, Offset, RegFragmentSizeInBits);
5503         Offset += RegAndSize.second;
5504         // If a valid fragment expression cannot be created, the variable's
5505         // correct value cannot be determined and so it is set as Undef.
5506         if (!FragmentExpr) {
5507           SDDbgValue *SDV = DAG.getConstantDbgValue(
5508               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5509           DAG.AddDbgValue(SDV, nullptr, false);
5510           continue;
5511         }
5512         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5513         FuncInfo.ArgDbgValues.push_back(
5514           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5515                   RegAndSize.first, Variable, *FragmentExpr));
5516       }
5517     };
5518 
5519     // Check if ValueMap has reg number.
5520     DenseMap<const Value *, Register>::const_iterator
5521       VMI = FuncInfo.ValueMap.find(V);
5522     if (VMI != FuncInfo.ValueMap.end()) {
5523       const auto &TLI = DAG.getTargetLoweringInfo();
5524       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5525                        V->getType(), getABIRegCopyCC(V));
5526       if (RFV.occupiesMultipleRegs()) {
5527         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5528         return true;
5529       }
5530 
5531       Op = MachineOperand::CreateReg(VMI->second, false);
5532       IsIndirect = IsDbgDeclare;
5533     } else if (ArgRegsAndSizes.size() > 1) {
5534       // This was split due to the calling convention, and no virtual register
5535       // mapping exists for the value.
5536       splitMultiRegDbgValue(ArgRegsAndSizes);
5537       return true;
5538     }
5539   }
5540 
5541   if (!Op)
5542     return false;
5543 
5544   assert(Variable->isValidLocationForIntrinsic(DL) &&
5545          "Expected inlined-at fields to agree");
5546   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5547   FuncInfo.ArgDbgValues.push_back(
5548       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5549               *Op, Variable, Expr));
5550 
5551   return true;
5552 }
5553 
5554 /// Return the appropriate SDDbgValue based on N.
5555 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5556                                              DILocalVariable *Variable,
5557                                              DIExpression *Expr,
5558                                              const DebugLoc &dl,
5559                                              unsigned DbgSDNodeOrder) {
5560   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5561     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5562     // stack slot locations.
5563     //
5564     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5565     // debug values here after optimization:
5566     //
5567     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5568     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5569     //
5570     // Both describe the direct values of their associated variables.
5571     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5572                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5573   }
5574   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5575                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5576 }
5577 
5578 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5579   switch (Intrinsic) {
5580   case Intrinsic::smul_fix:
5581     return ISD::SMULFIX;
5582   case Intrinsic::umul_fix:
5583     return ISD::UMULFIX;
5584   case Intrinsic::smul_fix_sat:
5585     return ISD::SMULFIXSAT;
5586   case Intrinsic::umul_fix_sat:
5587     return ISD::UMULFIXSAT;
5588   case Intrinsic::sdiv_fix:
5589     return ISD::SDIVFIX;
5590   case Intrinsic::udiv_fix:
5591     return ISD::UDIVFIX;
5592   case Intrinsic::sdiv_fix_sat:
5593     return ISD::SDIVFIXSAT;
5594   case Intrinsic::udiv_fix_sat:
5595     return ISD::UDIVFIXSAT;
5596   default:
5597     llvm_unreachable("Unhandled fixed point intrinsic");
5598   }
5599 }
5600 
5601 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5602                                            const char *FunctionName) {
5603   assert(FunctionName && "FunctionName must not be nullptr");
5604   SDValue Callee = DAG.getExternalSymbol(
5605       FunctionName,
5606       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5607   LowerCallTo(I, Callee, I.isTailCall());
5608 }
5609 
5610 /// Given a @llvm.call.preallocated.setup, return the corresponding
5611 /// preallocated call.
5612 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5613   assert(cast<CallBase>(PreallocatedSetup)
5614                  ->getCalledFunction()
5615                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5616          "expected call_preallocated_setup Value");
5617   for (auto *U : PreallocatedSetup->users()) {
5618     auto *UseCall = cast<CallBase>(U);
5619     const Function *Fn = UseCall->getCalledFunction();
5620     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5621       return UseCall;
5622     }
5623   }
5624   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5625 }
5626 
5627 /// Lower the call to the specified intrinsic function.
5628 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5629                                              unsigned Intrinsic) {
5630   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5631   SDLoc sdl = getCurSDLoc();
5632   DebugLoc dl = getCurDebugLoc();
5633   SDValue Res;
5634 
5635   switch (Intrinsic) {
5636   default:
5637     // By default, turn this into a target intrinsic node.
5638     visitTargetIntrinsic(I, Intrinsic);
5639     return;
5640   case Intrinsic::vscale: {
5641     match(&I, m_VScale(DAG.getDataLayout()));
5642     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5643     setValue(&I,
5644              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5645     return;
5646   }
5647   case Intrinsic::vastart:  visitVAStart(I); return;
5648   case Intrinsic::vaend:    visitVAEnd(I); return;
5649   case Intrinsic::vacopy:   visitVACopy(I); return;
5650   case Intrinsic::returnaddress:
5651     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5652                              TLI.getPointerTy(DAG.getDataLayout()),
5653                              getValue(I.getArgOperand(0))));
5654     return;
5655   case Intrinsic::addressofreturnaddress:
5656     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5657                              TLI.getPointerTy(DAG.getDataLayout())));
5658     return;
5659   case Intrinsic::sponentry:
5660     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5661                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5662     return;
5663   case Intrinsic::frameaddress:
5664     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5665                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5666                              getValue(I.getArgOperand(0))));
5667     return;
5668   case Intrinsic::read_register: {
5669     Value *Reg = I.getArgOperand(0);
5670     SDValue Chain = getRoot();
5671     SDValue RegName =
5672         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5673     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5674     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5675       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5676     setValue(&I, Res);
5677     DAG.setRoot(Res.getValue(1));
5678     return;
5679   }
5680   case Intrinsic::write_register: {
5681     Value *Reg = I.getArgOperand(0);
5682     Value *RegValue = I.getArgOperand(1);
5683     SDValue Chain = getRoot();
5684     SDValue RegName =
5685         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5686     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5687                             RegName, getValue(RegValue)));
5688     return;
5689   }
5690   case Intrinsic::memcpy: {
5691     const auto &MCI = cast<MemCpyInst>(I);
5692     SDValue Op1 = getValue(I.getArgOperand(0));
5693     SDValue Op2 = getValue(I.getArgOperand(1));
5694     SDValue Op3 = getValue(I.getArgOperand(2));
5695     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5696     Align DstAlign = MCI.getDestAlign().valueOrOne();
5697     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5698     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5699     bool isVol = MCI.isVolatile();
5700     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5701     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5702     // node.
5703     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5704     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5705                                /* AlwaysInline */ false, isTC,
5706                                MachinePointerInfo(I.getArgOperand(0)),
5707                                MachinePointerInfo(I.getArgOperand(1)));
5708     updateDAGForMaybeTailCall(MC);
5709     return;
5710   }
5711   case Intrinsic::memcpy_inline: {
5712     const auto &MCI = cast<MemCpyInlineInst>(I);
5713     SDValue Dst = getValue(I.getArgOperand(0));
5714     SDValue Src = getValue(I.getArgOperand(1));
5715     SDValue Size = getValue(I.getArgOperand(2));
5716     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5717     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5718     Align DstAlign = MCI.getDestAlign().valueOrOne();
5719     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5720     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5721     bool isVol = MCI.isVolatile();
5722     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5723     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5724     // node.
5725     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5726                                /* AlwaysInline */ true, isTC,
5727                                MachinePointerInfo(I.getArgOperand(0)),
5728                                MachinePointerInfo(I.getArgOperand(1)));
5729     updateDAGForMaybeTailCall(MC);
5730     return;
5731   }
5732   case Intrinsic::memset: {
5733     const auto &MSI = cast<MemSetInst>(I);
5734     SDValue Op1 = getValue(I.getArgOperand(0));
5735     SDValue Op2 = getValue(I.getArgOperand(1));
5736     SDValue Op3 = getValue(I.getArgOperand(2));
5737     // @llvm.memset defines 0 and 1 to both mean no alignment.
5738     Align Alignment = MSI.getDestAlign().valueOrOne();
5739     bool isVol = MSI.isVolatile();
5740     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5741     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5742     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5743                                MachinePointerInfo(I.getArgOperand(0)));
5744     updateDAGForMaybeTailCall(MS);
5745     return;
5746   }
5747   case Intrinsic::memmove: {
5748     const auto &MMI = cast<MemMoveInst>(I);
5749     SDValue Op1 = getValue(I.getArgOperand(0));
5750     SDValue Op2 = getValue(I.getArgOperand(1));
5751     SDValue Op3 = getValue(I.getArgOperand(2));
5752     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5753     Align DstAlign = MMI.getDestAlign().valueOrOne();
5754     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5755     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5756     bool isVol = MMI.isVolatile();
5757     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5758     // FIXME: Support passing different dest/src alignments to the memmove DAG
5759     // node.
5760     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5761     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5762                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5763                                 MachinePointerInfo(I.getArgOperand(1)));
5764     updateDAGForMaybeTailCall(MM);
5765     return;
5766   }
5767   case Intrinsic::memcpy_element_unordered_atomic: {
5768     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5769     SDValue Dst = getValue(MI.getRawDest());
5770     SDValue Src = getValue(MI.getRawSource());
5771     SDValue Length = getValue(MI.getLength());
5772 
5773     unsigned DstAlign = MI.getDestAlignment();
5774     unsigned SrcAlign = MI.getSourceAlignment();
5775     Type *LengthTy = MI.getLength()->getType();
5776     unsigned ElemSz = MI.getElementSizeInBytes();
5777     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5778     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5779                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5780                                      MachinePointerInfo(MI.getRawDest()),
5781                                      MachinePointerInfo(MI.getRawSource()));
5782     updateDAGForMaybeTailCall(MC);
5783     return;
5784   }
5785   case Intrinsic::memmove_element_unordered_atomic: {
5786     auto &MI = cast<AtomicMemMoveInst>(I);
5787     SDValue Dst = getValue(MI.getRawDest());
5788     SDValue Src = getValue(MI.getRawSource());
5789     SDValue Length = getValue(MI.getLength());
5790 
5791     unsigned DstAlign = MI.getDestAlignment();
5792     unsigned SrcAlign = MI.getSourceAlignment();
5793     Type *LengthTy = MI.getLength()->getType();
5794     unsigned ElemSz = MI.getElementSizeInBytes();
5795     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5796     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5797                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5798                                       MachinePointerInfo(MI.getRawDest()),
5799                                       MachinePointerInfo(MI.getRawSource()));
5800     updateDAGForMaybeTailCall(MC);
5801     return;
5802   }
5803   case Intrinsic::memset_element_unordered_atomic: {
5804     auto &MI = cast<AtomicMemSetInst>(I);
5805     SDValue Dst = getValue(MI.getRawDest());
5806     SDValue Val = getValue(MI.getValue());
5807     SDValue Length = getValue(MI.getLength());
5808 
5809     unsigned DstAlign = MI.getDestAlignment();
5810     Type *LengthTy = MI.getLength()->getType();
5811     unsigned ElemSz = MI.getElementSizeInBytes();
5812     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5813     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5814                                      LengthTy, ElemSz, isTC,
5815                                      MachinePointerInfo(MI.getRawDest()));
5816     updateDAGForMaybeTailCall(MC);
5817     return;
5818   }
5819   case Intrinsic::call_preallocated_setup: {
5820     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5821     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5822     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5823                               getRoot(), SrcValue);
5824     setValue(&I, Res);
5825     DAG.setRoot(Res);
5826     return;
5827   }
5828   case Intrinsic::call_preallocated_arg: {
5829     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5830     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5831     SDValue Ops[3];
5832     Ops[0] = getRoot();
5833     Ops[1] = SrcValue;
5834     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5835                                    MVT::i32); // arg index
5836     SDValue Res = DAG.getNode(
5837         ISD::PREALLOCATED_ARG, sdl,
5838         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5839     setValue(&I, Res);
5840     DAG.setRoot(Res.getValue(1));
5841     return;
5842   }
5843   case Intrinsic::dbg_addr:
5844   case Intrinsic::dbg_declare: {
5845     const auto &DI = cast<DbgVariableIntrinsic>(I);
5846     DILocalVariable *Variable = DI.getVariable();
5847     DIExpression *Expression = DI.getExpression();
5848     dropDanglingDebugInfo(Variable, Expression);
5849     assert(Variable && "Missing variable");
5850     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5851                       << "\n");
5852     // Check if address has undef value.
5853     const Value *Address = DI.getVariableLocation();
5854     if (!Address || isa<UndefValue>(Address) ||
5855         (Address->use_empty() && !isa<Argument>(Address))) {
5856       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5857                         << " (bad/undef/unused-arg address)\n");
5858       return;
5859     }
5860 
5861     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5862 
5863     // Check if this variable can be described by a frame index, typically
5864     // either as a static alloca or a byval parameter.
5865     int FI = std::numeric_limits<int>::max();
5866     if (const auto *AI =
5867             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5868       if (AI->isStaticAlloca()) {
5869         auto I = FuncInfo.StaticAllocaMap.find(AI);
5870         if (I != FuncInfo.StaticAllocaMap.end())
5871           FI = I->second;
5872       }
5873     } else if (const auto *Arg = dyn_cast<Argument>(
5874                    Address->stripInBoundsConstantOffsets())) {
5875       FI = FuncInfo.getArgumentFrameIndex(Arg);
5876     }
5877 
5878     // llvm.dbg.addr is control dependent and always generates indirect
5879     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5880     // the MachineFunction variable table.
5881     if (FI != std::numeric_limits<int>::max()) {
5882       if (Intrinsic == Intrinsic::dbg_addr) {
5883         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5884             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5885         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5886       } else {
5887         LLVM_DEBUG(dbgs() << "Skipping " << DI
5888                           << " (variable info stashed in MF side table)\n");
5889       }
5890       return;
5891     }
5892 
5893     SDValue &N = NodeMap[Address];
5894     if (!N.getNode() && isa<Argument>(Address))
5895       // Check unused arguments map.
5896       N = UnusedArgNodeMap[Address];
5897     SDDbgValue *SDV;
5898     if (N.getNode()) {
5899       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5900         Address = BCI->getOperand(0);
5901       // Parameters are handled specially.
5902       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5903       if (isParameter && FINode) {
5904         // Byval parameter. We have a frame index at this point.
5905         SDV =
5906             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5907                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5908       } else if (isa<Argument>(Address)) {
5909         // Address is an argument, so try to emit its dbg value using
5910         // virtual register info from the FuncInfo.ValueMap.
5911         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5912         return;
5913       } else {
5914         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5915                               true, dl, SDNodeOrder);
5916       }
5917       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5918     } else {
5919       // If Address is an argument then try to emit its dbg value using
5920       // virtual register info from the FuncInfo.ValueMap.
5921       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5922                                     N)) {
5923         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5924                           << " (could not emit func-arg dbg_value)\n");
5925       }
5926     }
5927     return;
5928   }
5929   case Intrinsic::dbg_label: {
5930     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5931     DILabel *Label = DI.getLabel();
5932     assert(Label && "Missing label");
5933 
5934     SDDbgLabel *SDV;
5935     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5936     DAG.AddDbgLabel(SDV);
5937     return;
5938   }
5939   case Intrinsic::dbg_value: {
5940     const DbgValueInst &DI = cast<DbgValueInst>(I);
5941     assert(DI.getVariable() && "Missing variable");
5942 
5943     DILocalVariable *Variable = DI.getVariable();
5944     DIExpression *Expression = DI.getExpression();
5945     dropDanglingDebugInfo(Variable, Expression);
5946     const Value *V = DI.getValue();
5947     if (!V)
5948       return;
5949 
5950     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5951         SDNodeOrder))
5952       return;
5953 
5954     // TODO: Dangling debug info will eventually either be resolved or produce
5955     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5956     // between the original dbg.value location and its resolved DBG_VALUE, which
5957     // we should ideally fill with an extra Undef DBG_VALUE.
5958 
5959     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5960     return;
5961   }
5962 
5963   case Intrinsic::eh_typeid_for: {
5964     // Find the type id for the given typeinfo.
5965     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5966     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5967     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5968     setValue(&I, Res);
5969     return;
5970   }
5971 
5972   case Intrinsic::eh_return_i32:
5973   case Intrinsic::eh_return_i64:
5974     DAG.getMachineFunction().setCallsEHReturn(true);
5975     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5976                             MVT::Other,
5977                             getControlRoot(),
5978                             getValue(I.getArgOperand(0)),
5979                             getValue(I.getArgOperand(1))));
5980     return;
5981   case Intrinsic::eh_unwind_init:
5982     DAG.getMachineFunction().setCallsUnwindInit(true);
5983     return;
5984   case Intrinsic::eh_dwarf_cfa:
5985     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5986                              TLI.getPointerTy(DAG.getDataLayout()),
5987                              getValue(I.getArgOperand(0))));
5988     return;
5989   case Intrinsic::eh_sjlj_callsite: {
5990     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5991     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5992     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5993     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5994 
5995     MMI.setCurrentCallSite(CI->getZExtValue());
5996     return;
5997   }
5998   case Intrinsic::eh_sjlj_functioncontext: {
5999     // Get and store the index of the function context.
6000     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6001     AllocaInst *FnCtx =
6002       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6003     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6004     MFI.setFunctionContextIndex(FI);
6005     return;
6006   }
6007   case Intrinsic::eh_sjlj_setjmp: {
6008     SDValue Ops[2];
6009     Ops[0] = getRoot();
6010     Ops[1] = getValue(I.getArgOperand(0));
6011     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6012                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6013     setValue(&I, Op.getValue(0));
6014     DAG.setRoot(Op.getValue(1));
6015     return;
6016   }
6017   case Intrinsic::eh_sjlj_longjmp:
6018     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6019                             getRoot(), getValue(I.getArgOperand(0))));
6020     return;
6021   case Intrinsic::eh_sjlj_setup_dispatch:
6022     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6023                             getRoot()));
6024     return;
6025   case Intrinsic::masked_gather:
6026     visitMaskedGather(I);
6027     return;
6028   case Intrinsic::masked_load:
6029     visitMaskedLoad(I);
6030     return;
6031   case Intrinsic::masked_scatter:
6032     visitMaskedScatter(I);
6033     return;
6034   case Intrinsic::masked_store:
6035     visitMaskedStore(I);
6036     return;
6037   case Intrinsic::masked_expandload:
6038     visitMaskedLoad(I, true /* IsExpanding */);
6039     return;
6040   case Intrinsic::masked_compressstore:
6041     visitMaskedStore(I, true /* IsCompressing */);
6042     return;
6043   case Intrinsic::powi:
6044     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6045                             getValue(I.getArgOperand(1)), DAG));
6046     return;
6047   case Intrinsic::log:
6048     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6049     return;
6050   case Intrinsic::log2:
6051     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6052     return;
6053   case Intrinsic::log10:
6054     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6055     return;
6056   case Intrinsic::exp:
6057     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6058     return;
6059   case Intrinsic::exp2:
6060     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6061     return;
6062   case Intrinsic::pow:
6063     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6064                            getValue(I.getArgOperand(1)), DAG, TLI));
6065     return;
6066   case Intrinsic::sqrt:
6067   case Intrinsic::fabs:
6068   case Intrinsic::sin:
6069   case Intrinsic::cos:
6070   case Intrinsic::floor:
6071   case Intrinsic::ceil:
6072   case Intrinsic::trunc:
6073   case Intrinsic::rint:
6074   case Intrinsic::nearbyint:
6075   case Intrinsic::round:
6076   case Intrinsic::roundeven:
6077   case Intrinsic::canonicalize: {
6078     unsigned Opcode;
6079     switch (Intrinsic) {
6080     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6081     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6082     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6083     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6084     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6085     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6086     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6087     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6088     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6089     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6090     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6091     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6092     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6093     }
6094 
6095     setValue(&I, DAG.getNode(Opcode, sdl,
6096                              getValue(I.getArgOperand(0)).getValueType(),
6097                              getValue(I.getArgOperand(0))));
6098     return;
6099   }
6100   case Intrinsic::lround:
6101   case Intrinsic::llround:
6102   case Intrinsic::lrint:
6103   case Intrinsic::llrint: {
6104     unsigned Opcode;
6105     switch (Intrinsic) {
6106     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6107     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6108     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6109     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6110     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6111     }
6112 
6113     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6114     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6115                              getValue(I.getArgOperand(0))));
6116     return;
6117   }
6118   case Intrinsic::minnum:
6119     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6120                              getValue(I.getArgOperand(0)).getValueType(),
6121                              getValue(I.getArgOperand(0)),
6122                              getValue(I.getArgOperand(1))));
6123     return;
6124   case Intrinsic::maxnum:
6125     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6126                              getValue(I.getArgOperand(0)).getValueType(),
6127                              getValue(I.getArgOperand(0)),
6128                              getValue(I.getArgOperand(1))));
6129     return;
6130   case Intrinsic::minimum:
6131     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6132                              getValue(I.getArgOperand(0)).getValueType(),
6133                              getValue(I.getArgOperand(0)),
6134                              getValue(I.getArgOperand(1))));
6135     return;
6136   case Intrinsic::maximum:
6137     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6138                              getValue(I.getArgOperand(0)).getValueType(),
6139                              getValue(I.getArgOperand(0)),
6140                              getValue(I.getArgOperand(1))));
6141     return;
6142   case Intrinsic::copysign:
6143     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6144                              getValue(I.getArgOperand(0)).getValueType(),
6145                              getValue(I.getArgOperand(0)),
6146                              getValue(I.getArgOperand(1))));
6147     return;
6148   case Intrinsic::fma:
6149     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6150                              getValue(I.getArgOperand(0)).getValueType(),
6151                              getValue(I.getArgOperand(0)),
6152                              getValue(I.getArgOperand(1)),
6153                              getValue(I.getArgOperand(2))));
6154     return;
6155 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6156   case Intrinsic::INTRINSIC:
6157 #include "llvm/IR/ConstrainedOps.def"
6158     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6159     return;
6160   case Intrinsic::fmuladd: {
6161     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6162     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6163         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6164       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6165                                getValue(I.getArgOperand(0)).getValueType(),
6166                                getValue(I.getArgOperand(0)),
6167                                getValue(I.getArgOperand(1)),
6168                                getValue(I.getArgOperand(2))));
6169     } else {
6170       // TODO: Intrinsic calls should have fast-math-flags.
6171       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6172                                 getValue(I.getArgOperand(0)).getValueType(),
6173                                 getValue(I.getArgOperand(0)),
6174                                 getValue(I.getArgOperand(1)));
6175       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6176                                 getValue(I.getArgOperand(0)).getValueType(),
6177                                 Mul,
6178                                 getValue(I.getArgOperand(2)));
6179       setValue(&I, Add);
6180     }
6181     return;
6182   }
6183   case Intrinsic::convert_to_fp16:
6184     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6185                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6186                                          getValue(I.getArgOperand(0)),
6187                                          DAG.getTargetConstant(0, sdl,
6188                                                                MVT::i32))));
6189     return;
6190   case Intrinsic::convert_from_fp16:
6191     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6192                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6193                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6194                                          getValue(I.getArgOperand(0)))));
6195     return;
6196   case Intrinsic::pcmarker: {
6197     SDValue Tmp = getValue(I.getArgOperand(0));
6198     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6199     return;
6200   }
6201   case Intrinsic::readcyclecounter: {
6202     SDValue Op = getRoot();
6203     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6204                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6205     setValue(&I, Res);
6206     DAG.setRoot(Res.getValue(1));
6207     return;
6208   }
6209   case Intrinsic::bitreverse:
6210     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6211                              getValue(I.getArgOperand(0)).getValueType(),
6212                              getValue(I.getArgOperand(0))));
6213     return;
6214   case Intrinsic::bswap:
6215     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6216                              getValue(I.getArgOperand(0)).getValueType(),
6217                              getValue(I.getArgOperand(0))));
6218     return;
6219   case Intrinsic::cttz: {
6220     SDValue Arg = getValue(I.getArgOperand(0));
6221     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6222     EVT Ty = Arg.getValueType();
6223     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6224                              sdl, Ty, Arg));
6225     return;
6226   }
6227   case Intrinsic::ctlz: {
6228     SDValue Arg = getValue(I.getArgOperand(0));
6229     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6230     EVT Ty = Arg.getValueType();
6231     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6232                              sdl, Ty, Arg));
6233     return;
6234   }
6235   case Intrinsic::ctpop: {
6236     SDValue Arg = getValue(I.getArgOperand(0));
6237     EVT Ty = Arg.getValueType();
6238     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6239     return;
6240   }
6241   case Intrinsic::fshl:
6242   case Intrinsic::fshr: {
6243     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6244     SDValue X = getValue(I.getArgOperand(0));
6245     SDValue Y = getValue(I.getArgOperand(1));
6246     SDValue Z = getValue(I.getArgOperand(2));
6247     EVT VT = X.getValueType();
6248     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6249     SDValue Zero = DAG.getConstant(0, sdl, VT);
6250     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6251 
6252     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6253     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6254       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6255       return;
6256     }
6257 
6258     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6259     // avoid the select that is necessary in the general case to filter out
6260     // the 0-shift possibility that leads to UB.
6261     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6262       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6263       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6264         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6265         return;
6266       }
6267 
6268       // Some targets only rotate one way. Try the opposite direction.
6269       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6270       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6271         // Negate the shift amount because it is safe to ignore the high bits.
6272         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6273         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6274         return;
6275       }
6276 
6277       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6278       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6279       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6280       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6281       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6282       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6283       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6284       return;
6285     }
6286 
6287     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6288     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6289     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6290     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6291     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6292     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6293 
6294     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6295     // and that is undefined. We must compare and select to avoid UB.
6296     EVT CCVT = MVT::i1;
6297     if (VT.isVector())
6298       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6299 
6300     // For fshl, 0-shift returns the 1st arg (X).
6301     // For fshr, 0-shift returns the 2nd arg (Y).
6302     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6303     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6304     return;
6305   }
6306   case Intrinsic::sadd_sat: {
6307     SDValue Op1 = getValue(I.getArgOperand(0));
6308     SDValue Op2 = getValue(I.getArgOperand(1));
6309     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6310     return;
6311   }
6312   case Intrinsic::uadd_sat: {
6313     SDValue Op1 = getValue(I.getArgOperand(0));
6314     SDValue Op2 = getValue(I.getArgOperand(1));
6315     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6316     return;
6317   }
6318   case Intrinsic::ssub_sat: {
6319     SDValue Op1 = getValue(I.getArgOperand(0));
6320     SDValue Op2 = getValue(I.getArgOperand(1));
6321     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6322     return;
6323   }
6324   case Intrinsic::usub_sat: {
6325     SDValue Op1 = getValue(I.getArgOperand(0));
6326     SDValue Op2 = getValue(I.getArgOperand(1));
6327     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6328     return;
6329   }
6330   case Intrinsic::smul_fix:
6331   case Intrinsic::umul_fix:
6332   case Intrinsic::smul_fix_sat:
6333   case Intrinsic::umul_fix_sat: {
6334     SDValue Op1 = getValue(I.getArgOperand(0));
6335     SDValue Op2 = getValue(I.getArgOperand(1));
6336     SDValue Op3 = getValue(I.getArgOperand(2));
6337     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6338                              Op1.getValueType(), Op1, Op2, Op3));
6339     return;
6340   }
6341   case Intrinsic::sdiv_fix:
6342   case Intrinsic::udiv_fix:
6343   case Intrinsic::sdiv_fix_sat:
6344   case Intrinsic::udiv_fix_sat: {
6345     SDValue Op1 = getValue(I.getArgOperand(0));
6346     SDValue Op2 = getValue(I.getArgOperand(1));
6347     SDValue Op3 = getValue(I.getArgOperand(2));
6348     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6349                               Op1, Op2, Op3, DAG, TLI));
6350     return;
6351   }
6352   case Intrinsic::stacksave: {
6353     SDValue Op = getRoot();
6354     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6355     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6356     setValue(&I, Res);
6357     DAG.setRoot(Res.getValue(1));
6358     return;
6359   }
6360   case Intrinsic::stackrestore:
6361     Res = getValue(I.getArgOperand(0));
6362     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6363     return;
6364   case Intrinsic::get_dynamic_area_offset: {
6365     SDValue Op = getRoot();
6366     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6367     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6368     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6369     // target.
6370     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6371       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6372                          " intrinsic!");
6373     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6374                       Op);
6375     DAG.setRoot(Op);
6376     setValue(&I, Res);
6377     return;
6378   }
6379   case Intrinsic::stackguard: {
6380     MachineFunction &MF = DAG.getMachineFunction();
6381     const Module &M = *MF.getFunction().getParent();
6382     SDValue Chain = getRoot();
6383     if (TLI.useLoadStackGuardNode()) {
6384       Res = getLoadStackGuard(DAG, sdl, Chain);
6385     } else {
6386       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6387       const Value *Global = TLI.getSDagStackGuard(M);
6388       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6389       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6390                         MachinePointerInfo(Global, 0), Align,
6391                         MachineMemOperand::MOVolatile);
6392     }
6393     if (TLI.useStackGuardXorFP())
6394       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6395     DAG.setRoot(Chain);
6396     setValue(&I, Res);
6397     return;
6398   }
6399   case Intrinsic::stackprotector: {
6400     // Emit code into the DAG to store the stack guard onto the stack.
6401     MachineFunction &MF = DAG.getMachineFunction();
6402     MachineFrameInfo &MFI = MF.getFrameInfo();
6403     SDValue Src, Chain = getRoot();
6404 
6405     if (TLI.useLoadStackGuardNode())
6406       Src = getLoadStackGuard(DAG, sdl, Chain);
6407     else
6408       Src = getValue(I.getArgOperand(0));   // The guard's value.
6409 
6410     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6411 
6412     int FI = FuncInfo.StaticAllocaMap[Slot];
6413     MFI.setStackProtectorIndex(FI);
6414     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6415 
6416     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6417 
6418     // Store the stack protector onto the stack.
6419     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6420                                                  DAG.getMachineFunction(), FI),
6421                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6422     setValue(&I, Res);
6423     DAG.setRoot(Res);
6424     return;
6425   }
6426   case Intrinsic::objectsize:
6427     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6428 
6429   case Intrinsic::is_constant:
6430     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6431 
6432   case Intrinsic::annotation:
6433   case Intrinsic::ptr_annotation:
6434   case Intrinsic::launder_invariant_group:
6435   case Intrinsic::strip_invariant_group:
6436     // Drop the intrinsic, but forward the value
6437     setValue(&I, getValue(I.getOperand(0)));
6438     return;
6439   case Intrinsic::assume:
6440   case Intrinsic::var_annotation:
6441   case Intrinsic::sideeffect:
6442     // Discard annotate attributes, assumptions, and artificial side-effects.
6443     return;
6444 
6445   case Intrinsic::codeview_annotation: {
6446     // Emit a label associated with this metadata.
6447     MachineFunction &MF = DAG.getMachineFunction();
6448     MCSymbol *Label =
6449         MF.getMMI().getContext().createTempSymbol("annotation", true);
6450     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6451     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6452     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6453     DAG.setRoot(Res);
6454     return;
6455   }
6456 
6457   case Intrinsic::init_trampoline: {
6458     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6459 
6460     SDValue Ops[6];
6461     Ops[0] = getRoot();
6462     Ops[1] = getValue(I.getArgOperand(0));
6463     Ops[2] = getValue(I.getArgOperand(1));
6464     Ops[3] = getValue(I.getArgOperand(2));
6465     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6466     Ops[5] = DAG.getSrcValue(F);
6467 
6468     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6469 
6470     DAG.setRoot(Res);
6471     return;
6472   }
6473   case Intrinsic::adjust_trampoline:
6474     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6475                              TLI.getPointerTy(DAG.getDataLayout()),
6476                              getValue(I.getArgOperand(0))));
6477     return;
6478   case Intrinsic::gcroot: {
6479     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6480            "only valid in functions with gc specified, enforced by Verifier");
6481     assert(GFI && "implied by previous");
6482     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6483     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6484 
6485     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6486     GFI->addStackRoot(FI->getIndex(), TypeMap);
6487     return;
6488   }
6489   case Intrinsic::gcread:
6490   case Intrinsic::gcwrite:
6491     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6492   case Intrinsic::flt_rounds:
6493     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6494     setValue(&I, Res);
6495     DAG.setRoot(Res.getValue(1));
6496     return;
6497 
6498   case Intrinsic::expect:
6499     // Just replace __builtin_expect(exp, c) with EXP.
6500     setValue(&I, getValue(I.getArgOperand(0)));
6501     return;
6502 
6503   case Intrinsic::debugtrap:
6504   case Intrinsic::trap: {
6505     StringRef TrapFuncName =
6506         I.getAttributes()
6507             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6508             .getValueAsString();
6509     if (TrapFuncName.empty()) {
6510       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6511         ISD::TRAP : ISD::DEBUGTRAP;
6512       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6513       return;
6514     }
6515     TargetLowering::ArgListTy Args;
6516 
6517     TargetLowering::CallLoweringInfo CLI(DAG);
6518     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6519         CallingConv::C, I.getType(),
6520         DAG.getExternalSymbol(TrapFuncName.data(),
6521                               TLI.getPointerTy(DAG.getDataLayout())),
6522         std::move(Args));
6523 
6524     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6525     DAG.setRoot(Result.second);
6526     return;
6527   }
6528 
6529   case Intrinsic::uadd_with_overflow:
6530   case Intrinsic::sadd_with_overflow:
6531   case Intrinsic::usub_with_overflow:
6532   case Intrinsic::ssub_with_overflow:
6533   case Intrinsic::umul_with_overflow:
6534   case Intrinsic::smul_with_overflow: {
6535     ISD::NodeType Op;
6536     switch (Intrinsic) {
6537     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6538     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6539     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6540     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6541     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6542     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6543     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6544     }
6545     SDValue Op1 = getValue(I.getArgOperand(0));
6546     SDValue Op2 = getValue(I.getArgOperand(1));
6547 
6548     EVT ResultVT = Op1.getValueType();
6549     EVT OverflowVT = MVT::i1;
6550     if (ResultVT.isVector())
6551       OverflowVT = EVT::getVectorVT(
6552           *Context, OverflowVT, ResultVT.getVectorNumElements());
6553 
6554     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6555     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6556     return;
6557   }
6558   case Intrinsic::prefetch: {
6559     SDValue Ops[5];
6560     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6561     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6562     Ops[0] = DAG.getRoot();
6563     Ops[1] = getValue(I.getArgOperand(0));
6564     Ops[2] = getValue(I.getArgOperand(1));
6565     Ops[3] = getValue(I.getArgOperand(2));
6566     Ops[4] = getValue(I.getArgOperand(3));
6567     SDValue Result = DAG.getMemIntrinsicNode(
6568         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6569         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6570         /* align */ None, Flags);
6571 
6572     // Chain the prefetch in parallell with any pending loads, to stay out of
6573     // the way of later optimizations.
6574     PendingLoads.push_back(Result);
6575     Result = getRoot();
6576     DAG.setRoot(Result);
6577     return;
6578   }
6579   case Intrinsic::lifetime_start:
6580   case Intrinsic::lifetime_end: {
6581     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6582     // Stack coloring is not enabled in O0, discard region information.
6583     if (TM.getOptLevel() == CodeGenOpt::None)
6584       return;
6585 
6586     const int64_t ObjectSize =
6587         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6588     Value *const ObjectPtr = I.getArgOperand(1);
6589     SmallVector<const Value *, 4> Allocas;
6590     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6591 
6592     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6593            E = Allocas.end(); Object != E; ++Object) {
6594       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6595 
6596       // Could not find an Alloca.
6597       if (!LifetimeObject)
6598         continue;
6599 
6600       // First check that the Alloca is static, otherwise it won't have a
6601       // valid frame index.
6602       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6603       if (SI == FuncInfo.StaticAllocaMap.end())
6604         return;
6605 
6606       const int FrameIndex = SI->second;
6607       int64_t Offset;
6608       if (GetPointerBaseWithConstantOffset(
6609               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6610         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6611       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6612                                 Offset);
6613       DAG.setRoot(Res);
6614     }
6615     return;
6616   }
6617   case Intrinsic::invariant_start:
6618     // Discard region information.
6619     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6620     return;
6621   case Intrinsic::invariant_end:
6622     // Discard region information.
6623     return;
6624   case Intrinsic::clear_cache:
6625     /// FunctionName may be null.
6626     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6627       lowerCallToExternalSymbol(I, FunctionName);
6628     return;
6629   case Intrinsic::donothing:
6630     // ignore
6631     return;
6632   case Intrinsic::experimental_stackmap:
6633     visitStackmap(I);
6634     return;
6635   case Intrinsic::experimental_patchpoint_void:
6636   case Intrinsic::experimental_patchpoint_i64:
6637     visitPatchpoint(I);
6638     return;
6639   case Intrinsic::experimental_gc_statepoint:
6640     LowerStatepoint(ImmutableStatepoint(&I));
6641     return;
6642   case Intrinsic::experimental_gc_result:
6643     visitGCResult(cast<GCResultInst>(I));
6644     return;
6645   case Intrinsic::experimental_gc_relocate:
6646     visitGCRelocate(cast<GCRelocateInst>(I));
6647     return;
6648   case Intrinsic::instrprof_increment:
6649     llvm_unreachable("instrprof failed to lower an increment");
6650   case Intrinsic::instrprof_value_profile:
6651     llvm_unreachable("instrprof failed to lower a value profiling call");
6652   case Intrinsic::localescape: {
6653     MachineFunction &MF = DAG.getMachineFunction();
6654     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6655 
6656     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6657     // is the same on all targets.
6658     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6659       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6660       if (isa<ConstantPointerNull>(Arg))
6661         continue; // Skip null pointers. They represent a hole in index space.
6662       AllocaInst *Slot = cast<AllocaInst>(Arg);
6663       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6664              "can only escape static allocas");
6665       int FI = FuncInfo.StaticAllocaMap[Slot];
6666       MCSymbol *FrameAllocSym =
6667           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6668               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6669       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6670               TII->get(TargetOpcode::LOCAL_ESCAPE))
6671           .addSym(FrameAllocSym)
6672           .addFrameIndex(FI);
6673     }
6674 
6675     return;
6676   }
6677 
6678   case Intrinsic::localrecover: {
6679     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6680     MachineFunction &MF = DAG.getMachineFunction();
6681 
6682     // Get the symbol that defines the frame offset.
6683     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6684     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6685     unsigned IdxVal =
6686         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6687     MCSymbol *FrameAllocSym =
6688         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6689             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6690 
6691     Value *FP = I.getArgOperand(1);
6692     SDValue FPVal = getValue(FP);
6693     EVT PtrVT = FPVal.getValueType();
6694 
6695     // Create a MCSymbol for the label to avoid any target lowering
6696     // that would make this PC relative.
6697     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6698     SDValue OffsetVal =
6699         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6700 
6701     // Add the offset to the FP.
6702     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6703     setValue(&I, Add);
6704 
6705     return;
6706   }
6707 
6708   case Intrinsic::eh_exceptionpointer:
6709   case Intrinsic::eh_exceptioncode: {
6710     // Get the exception pointer vreg, copy from it, and resize it to fit.
6711     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6712     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6713     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6714     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6715     SDValue N =
6716         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6717     if (Intrinsic == Intrinsic::eh_exceptioncode)
6718       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6719     setValue(&I, N);
6720     return;
6721   }
6722   case Intrinsic::xray_customevent: {
6723     // Here we want to make sure that the intrinsic behaves as if it has a
6724     // specific calling convention, and only for x86_64.
6725     // FIXME: Support other platforms later.
6726     const auto &Triple = DAG.getTarget().getTargetTriple();
6727     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6728       return;
6729 
6730     SDLoc DL = getCurSDLoc();
6731     SmallVector<SDValue, 8> Ops;
6732 
6733     // We want to say that we always want the arguments in registers.
6734     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6735     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6736     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6737     SDValue Chain = getRoot();
6738     Ops.push_back(LogEntryVal);
6739     Ops.push_back(StrSizeVal);
6740     Ops.push_back(Chain);
6741 
6742     // We need to enforce the calling convention for the callsite, so that
6743     // argument ordering is enforced correctly, and that register allocation can
6744     // see that some registers may be assumed clobbered and have to preserve
6745     // them across calls to the intrinsic.
6746     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6747                                            DL, NodeTys, Ops);
6748     SDValue patchableNode = SDValue(MN, 0);
6749     DAG.setRoot(patchableNode);
6750     setValue(&I, patchableNode);
6751     return;
6752   }
6753   case Intrinsic::xray_typedevent: {
6754     // Here we want to make sure that the intrinsic behaves as if it has a
6755     // specific calling convention, and only for x86_64.
6756     // FIXME: Support other platforms later.
6757     const auto &Triple = DAG.getTarget().getTargetTriple();
6758     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6759       return;
6760 
6761     SDLoc DL = getCurSDLoc();
6762     SmallVector<SDValue, 8> Ops;
6763 
6764     // We want to say that we always want the arguments in registers.
6765     // It's unclear to me how manipulating the selection DAG here forces callers
6766     // to provide arguments in registers instead of on the stack.
6767     SDValue LogTypeId = getValue(I.getArgOperand(0));
6768     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6769     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6770     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6771     SDValue Chain = getRoot();
6772     Ops.push_back(LogTypeId);
6773     Ops.push_back(LogEntryVal);
6774     Ops.push_back(StrSizeVal);
6775     Ops.push_back(Chain);
6776 
6777     // We need to enforce the calling convention for the callsite, so that
6778     // argument ordering is enforced correctly, and that register allocation can
6779     // see that some registers may be assumed clobbered and have to preserve
6780     // them across calls to the intrinsic.
6781     MachineSDNode *MN = DAG.getMachineNode(
6782         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6783     SDValue patchableNode = SDValue(MN, 0);
6784     DAG.setRoot(patchableNode);
6785     setValue(&I, patchableNode);
6786     return;
6787   }
6788   case Intrinsic::experimental_deoptimize:
6789     LowerDeoptimizeCall(&I);
6790     return;
6791 
6792   case Intrinsic::experimental_vector_reduce_v2_fadd:
6793   case Intrinsic::experimental_vector_reduce_v2_fmul:
6794   case Intrinsic::experimental_vector_reduce_add:
6795   case Intrinsic::experimental_vector_reduce_mul:
6796   case Intrinsic::experimental_vector_reduce_and:
6797   case Intrinsic::experimental_vector_reduce_or:
6798   case Intrinsic::experimental_vector_reduce_xor:
6799   case Intrinsic::experimental_vector_reduce_smax:
6800   case Intrinsic::experimental_vector_reduce_smin:
6801   case Intrinsic::experimental_vector_reduce_umax:
6802   case Intrinsic::experimental_vector_reduce_umin:
6803   case Intrinsic::experimental_vector_reduce_fmax:
6804   case Intrinsic::experimental_vector_reduce_fmin:
6805     visitVectorReduce(I, Intrinsic);
6806     return;
6807 
6808   case Intrinsic::icall_branch_funnel: {
6809     SmallVector<SDValue, 16> Ops;
6810     Ops.push_back(getValue(I.getArgOperand(0)));
6811 
6812     int64_t Offset;
6813     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6814         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6815     if (!Base)
6816       report_fatal_error(
6817           "llvm.icall.branch.funnel operand must be a GlobalValue");
6818     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6819 
6820     struct BranchFunnelTarget {
6821       int64_t Offset;
6822       SDValue Target;
6823     };
6824     SmallVector<BranchFunnelTarget, 8> Targets;
6825 
6826     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6827       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6828           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6829       if (ElemBase != Base)
6830         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6831                            "to the same GlobalValue");
6832 
6833       SDValue Val = getValue(I.getArgOperand(Op + 1));
6834       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6835       if (!GA)
6836         report_fatal_error(
6837             "llvm.icall.branch.funnel operand must be a GlobalValue");
6838       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6839                                      GA->getGlobal(), getCurSDLoc(),
6840                                      Val.getValueType(), GA->getOffset())});
6841     }
6842     llvm::sort(Targets,
6843                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6844                  return T1.Offset < T2.Offset;
6845                });
6846 
6847     for (auto &T : Targets) {
6848       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6849       Ops.push_back(T.Target);
6850     }
6851 
6852     Ops.push_back(DAG.getRoot()); // Chain
6853     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6854                                  getCurSDLoc(), MVT::Other, Ops),
6855               0);
6856     DAG.setRoot(N);
6857     setValue(&I, N);
6858     HasTailCall = true;
6859     return;
6860   }
6861 
6862   case Intrinsic::wasm_landingpad_index:
6863     // Information this intrinsic contained has been transferred to
6864     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6865     // delete it now.
6866     return;
6867 
6868   case Intrinsic::aarch64_settag:
6869   case Intrinsic::aarch64_settag_zero: {
6870     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6871     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6872     SDValue Val = TSI.EmitTargetCodeForSetTag(
6873         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6874         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6875         ZeroMemory);
6876     DAG.setRoot(Val);
6877     setValue(&I, Val);
6878     return;
6879   }
6880   case Intrinsic::ptrmask: {
6881     SDValue Ptr = getValue(I.getOperand(0));
6882     SDValue Const = getValue(I.getOperand(1));
6883 
6884     EVT PtrVT = Ptr.getValueType();
6885     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6886                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6887     return;
6888   }
6889   }
6890 }
6891 
6892 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6893     const ConstrainedFPIntrinsic &FPI) {
6894   SDLoc sdl = getCurSDLoc();
6895 
6896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6897   SmallVector<EVT, 4> ValueVTs;
6898   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6899   ValueVTs.push_back(MVT::Other); // Out chain
6900 
6901   // We do not need to serialize constrained FP intrinsics against
6902   // each other or against (nonvolatile) loads, so they can be
6903   // chained like loads.
6904   SDValue Chain = DAG.getRoot();
6905   SmallVector<SDValue, 4> Opers;
6906   Opers.push_back(Chain);
6907   if (FPI.isUnaryOp()) {
6908     Opers.push_back(getValue(FPI.getArgOperand(0)));
6909   } else if (FPI.isTernaryOp()) {
6910     Opers.push_back(getValue(FPI.getArgOperand(0)));
6911     Opers.push_back(getValue(FPI.getArgOperand(1)));
6912     Opers.push_back(getValue(FPI.getArgOperand(2)));
6913   } else {
6914     Opers.push_back(getValue(FPI.getArgOperand(0)));
6915     Opers.push_back(getValue(FPI.getArgOperand(1)));
6916   }
6917 
6918   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6919     assert(Result.getNode()->getNumValues() == 2);
6920 
6921     // Push node to the appropriate list so that future instructions can be
6922     // chained up correctly.
6923     SDValue OutChain = Result.getValue(1);
6924     switch (EB) {
6925     case fp::ExceptionBehavior::ebIgnore:
6926       // The only reason why ebIgnore nodes still need to be chained is that
6927       // they might depend on the current rounding mode, and therefore must
6928       // not be moved across instruction that may change that mode.
6929       LLVM_FALLTHROUGH;
6930     case fp::ExceptionBehavior::ebMayTrap:
6931       // These must not be moved across calls or instructions that may change
6932       // floating-point exception masks.
6933       PendingConstrainedFP.push_back(OutChain);
6934       break;
6935     case fp::ExceptionBehavior::ebStrict:
6936       // These must not be moved across calls or instructions that may change
6937       // floating-point exception masks or read floating-point exception flags.
6938       // In addition, they cannot be optimized out even if unused.
6939       PendingConstrainedFPStrict.push_back(OutChain);
6940       break;
6941     }
6942   };
6943 
6944   SDVTList VTs = DAG.getVTList(ValueVTs);
6945   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6946 
6947   SDNodeFlags Flags;
6948   if (EB == fp::ExceptionBehavior::ebIgnore)
6949     Flags.setNoFPExcept(true);
6950 
6951   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6952     Flags.copyFMF(*FPOp);
6953 
6954   unsigned Opcode;
6955   switch (FPI.getIntrinsicID()) {
6956   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6957 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6958   case Intrinsic::INTRINSIC:                                                   \
6959     Opcode = ISD::STRICT_##DAGN;                                               \
6960     break;
6961 #include "llvm/IR/ConstrainedOps.def"
6962   case Intrinsic::experimental_constrained_fmuladd: {
6963     Opcode = ISD::STRICT_FMA;
6964     // Break fmuladd into fmul and fadd.
6965     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
6966         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
6967                                         ValueVTs[0])) {
6968       Opers.pop_back();
6969       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
6970       pushOutChain(Mul, EB);
6971       Opcode = ISD::STRICT_FADD;
6972       Opers.clear();
6973       Opers.push_back(Mul.getValue(1));
6974       Opers.push_back(Mul.getValue(0));
6975       Opers.push_back(getValue(FPI.getArgOperand(2)));
6976     }
6977     break;
6978   }
6979   }
6980 
6981   // A few strict DAG nodes carry additional operands that are not
6982   // set up by the default code above.
6983   switch (Opcode) {
6984   default: break;
6985   case ISD::STRICT_FP_ROUND:
6986     Opers.push_back(
6987         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
6988     break;
6989   case ISD::STRICT_FSETCC:
6990   case ISD::STRICT_FSETCCS: {
6991     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
6992     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
6993     break;
6994   }
6995   }
6996 
6997   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
6998   pushOutChain(Result, EB);
6999 
7000   SDValue FPResult = Result.getValue(0);
7001   setValue(&FPI, FPResult);
7002 }
7003 
7004 std::pair<SDValue, SDValue>
7005 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7006                                     const BasicBlock *EHPadBB) {
7007   MachineFunction &MF = DAG.getMachineFunction();
7008   MachineModuleInfo &MMI = MF.getMMI();
7009   MCSymbol *BeginLabel = nullptr;
7010 
7011   if (EHPadBB) {
7012     // Insert a label before the invoke call to mark the try range.  This can be
7013     // used to detect deletion of the invoke via the MachineModuleInfo.
7014     BeginLabel = MMI.getContext().createTempSymbol();
7015 
7016     // For SjLj, keep track of which landing pads go with which invokes
7017     // so as to maintain the ordering of pads in the LSDA.
7018     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7019     if (CallSiteIndex) {
7020       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7021       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7022 
7023       // Now that the call site is handled, stop tracking it.
7024       MMI.setCurrentCallSite(0);
7025     }
7026 
7027     // Both PendingLoads and PendingExports must be flushed here;
7028     // this call might not return.
7029     (void)getRoot();
7030     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7031 
7032     CLI.setChain(getRoot());
7033   }
7034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7035   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7036 
7037   assert((CLI.IsTailCall || Result.second.getNode()) &&
7038          "Non-null chain expected with non-tail call!");
7039   assert((Result.second.getNode() || !Result.first.getNode()) &&
7040          "Null value expected with tail call!");
7041 
7042   if (!Result.second.getNode()) {
7043     // As a special case, a null chain means that a tail call has been emitted
7044     // and the DAG root is already updated.
7045     HasTailCall = true;
7046 
7047     // Since there's no actual continuation from this block, nothing can be
7048     // relying on us setting vregs for them.
7049     PendingExports.clear();
7050   } else {
7051     DAG.setRoot(Result.second);
7052   }
7053 
7054   if (EHPadBB) {
7055     // Insert a label at the end of the invoke call to mark the try range.  This
7056     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7057     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7058     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7059 
7060     // Inform MachineModuleInfo of range.
7061     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7062     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7063     // actually use outlined funclets and their LSDA info style.
7064     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7065       assert(CLI.CB);
7066       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7067       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7068     } else if (!isScopedEHPersonality(Pers)) {
7069       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7070     }
7071   }
7072 
7073   return Result;
7074 }
7075 
7076 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7077                                       bool isTailCall,
7078                                       const BasicBlock *EHPadBB) {
7079   auto &DL = DAG.getDataLayout();
7080   FunctionType *FTy = CB.getFunctionType();
7081   Type *RetTy = CB.getType();
7082 
7083   TargetLowering::ArgListTy Args;
7084   Args.reserve(CB.arg_size());
7085 
7086   const Value *SwiftErrorVal = nullptr;
7087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7088 
7089   if (isTailCall) {
7090     // Avoid emitting tail calls in functions with the disable-tail-calls
7091     // attribute.
7092     auto *Caller = CB.getParent()->getParent();
7093     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7094         "true")
7095       isTailCall = false;
7096 
7097     // We can't tail call inside a function with a swifterror argument. Lowering
7098     // does not support this yet. It would have to move into the swifterror
7099     // register before the call.
7100     if (TLI.supportSwiftError() &&
7101         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7102       isTailCall = false;
7103   }
7104 
7105   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7106     TargetLowering::ArgListEntry Entry;
7107     const Value *V = *I;
7108 
7109     // Skip empty types
7110     if (V->getType()->isEmptyTy())
7111       continue;
7112 
7113     SDValue ArgNode = getValue(V);
7114     Entry.Node = ArgNode; Entry.Ty = V->getType();
7115 
7116     Entry.setAttributes(&CB, I - CB.arg_begin());
7117 
7118     // Use swifterror virtual register as input to the call.
7119     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7120       SwiftErrorVal = V;
7121       // We find the virtual register for the actual swifterror argument.
7122       // Instead of using the Value, we use the virtual register instead.
7123       Entry.Node =
7124           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7125                           EVT(TLI.getPointerTy(DL)));
7126     }
7127 
7128     Args.push_back(Entry);
7129 
7130     // If we have an explicit sret argument that is an Instruction, (i.e., it
7131     // might point to function-local memory), we can't meaningfully tail-call.
7132     if (Entry.IsSRet && isa<Instruction>(V))
7133       isTailCall = false;
7134   }
7135 
7136   // If call site has a cfguardtarget operand bundle, create and add an
7137   // additional ArgListEntry.
7138   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7139     TargetLowering::ArgListEntry Entry;
7140     Value *V = Bundle->Inputs[0];
7141     SDValue ArgNode = getValue(V);
7142     Entry.Node = ArgNode;
7143     Entry.Ty = V->getType();
7144     Entry.IsCFGuardTarget = true;
7145     Args.push_back(Entry);
7146   }
7147 
7148   // Check if target-independent constraints permit a tail call here.
7149   // Target-dependent constraints are checked within TLI->LowerCallTo.
7150   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7151     isTailCall = false;
7152 
7153   // Disable tail calls if there is an swifterror argument. Targets have not
7154   // been updated to support tail calls.
7155   if (TLI.supportSwiftError() && SwiftErrorVal)
7156     isTailCall = false;
7157 
7158   TargetLowering::CallLoweringInfo CLI(DAG);
7159   CLI.setDebugLoc(getCurSDLoc())
7160       .setChain(getRoot())
7161       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7162       .setTailCall(isTailCall)
7163       .setConvergent(CB.isConvergent())
7164       .setIsPreallocated(
7165           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7166   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7167 
7168   if (Result.first.getNode()) {
7169     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7170     setValue(&CB, Result.first);
7171   }
7172 
7173   // The last element of CLI.InVals has the SDValue for swifterror return.
7174   // Here we copy it to a virtual register and update SwiftErrorMap for
7175   // book-keeping.
7176   if (SwiftErrorVal && TLI.supportSwiftError()) {
7177     // Get the last element of InVals.
7178     SDValue Src = CLI.InVals.back();
7179     Register VReg =
7180         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7181     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7182     DAG.setRoot(CopyNode);
7183   }
7184 }
7185 
7186 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7187                              SelectionDAGBuilder &Builder) {
7188   // Check to see if this load can be trivially constant folded, e.g. if the
7189   // input is from a string literal.
7190   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7191     // Cast pointer to the type we really want to load.
7192     Type *LoadTy =
7193         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7194     if (LoadVT.isVector())
7195       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7196 
7197     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7198                                          PointerType::getUnqual(LoadTy));
7199 
7200     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7201             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7202       return Builder.getValue(LoadCst);
7203   }
7204 
7205   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7206   // still constant memory, the input chain can be the entry node.
7207   SDValue Root;
7208   bool ConstantMemory = false;
7209 
7210   // Do not serialize (non-volatile) loads of constant memory with anything.
7211   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7212     Root = Builder.DAG.getEntryNode();
7213     ConstantMemory = true;
7214   } else {
7215     // Do not serialize non-volatile loads against each other.
7216     Root = Builder.DAG.getRoot();
7217   }
7218 
7219   SDValue Ptr = Builder.getValue(PtrVal);
7220   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7221                                         Ptr, MachinePointerInfo(PtrVal),
7222                                         /* Alignment = */ 1);
7223 
7224   if (!ConstantMemory)
7225     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7226   return LoadVal;
7227 }
7228 
7229 /// Record the value for an instruction that produces an integer result,
7230 /// converting the type where necessary.
7231 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7232                                                   SDValue Value,
7233                                                   bool IsSigned) {
7234   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7235                                                     I.getType(), true);
7236   if (IsSigned)
7237     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7238   else
7239     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7240   setValue(&I, Value);
7241 }
7242 
7243 /// See if we can lower a memcmp call into an optimized form. If so, return
7244 /// true and lower it. Otherwise return false, and it will be lowered like a
7245 /// normal call.
7246 /// The caller already checked that \p I calls the appropriate LibFunc with a
7247 /// correct prototype.
7248 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7249   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7250   const Value *Size = I.getArgOperand(2);
7251   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7252   if (CSize && CSize->getZExtValue() == 0) {
7253     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7254                                                           I.getType(), true);
7255     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7256     return true;
7257   }
7258 
7259   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7260   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7261       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7262       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7263   if (Res.first.getNode()) {
7264     processIntegerCallValue(I, Res.first, true);
7265     PendingLoads.push_back(Res.second);
7266     return true;
7267   }
7268 
7269   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7270   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7271   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7272     return false;
7273 
7274   // If the target has a fast compare for the given size, it will return a
7275   // preferred load type for that size. Require that the load VT is legal and
7276   // that the target supports unaligned loads of that type. Otherwise, return
7277   // INVALID.
7278   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7279     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7280     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7281     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7282       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7283       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7284       // TODO: Check alignment of src and dest ptrs.
7285       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7286       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7287       if (!TLI.isTypeLegal(LVT) ||
7288           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7289           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7290         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7291     }
7292 
7293     return LVT;
7294   };
7295 
7296   // This turns into unaligned loads. We only do this if the target natively
7297   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7298   // we'll only produce a small number of byte loads.
7299   MVT LoadVT;
7300   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7301   switch (NumBitsToCompare) {
7302   default:
7303     return false;
7304   case 16:
7305     LoadVT = MVT::i16;
7306     break;
7307   case 32:
7308     LoadVT = MVT::i32;
7309     break;
7310   case 64:
7311   case 128:
7312   case 256:
7313     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7314     break;
7315   }
7316 
7317   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7318     return false;
7319 
7320   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7321   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7322 
7323   // Bitcast to a wide integer type if the loads are vectors.
7324   if (LoadVT.isVector()) {
7325     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7326     LoadL = DAG.getBitcast(CmpVT, LoadL);
7327     LoadR = DAG.getBitcast(CmpVT, LoadR);
7328   }
7329 
7330   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7331   processIntegerCallValue(I, Cmp, false);
7332   return true;
7333 }
7334 
7335 /// See if we can lower a memchr call into an optimized form. If so, return
7336 /// true and lower it. Otherwise return false, and it will be lowered like a
7337 /// normal call.
7338 /// The caller already checked that \p I calls the appropriate LibFunc with a
7339 /// correct prototype.
7340 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7341   const Value *Src = I.getArgOperand(0);
7342   const Value *Char = I.getArgOperand(1);
7343   const Value *Length = I.getArgOperand(2);
7344 
7345   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7346   std::pair<SDValue, SDValue> Res =
7347     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7348                                 getValue(Src), getValue(Char), getValue(Length),
7349                                 MachinePointerInfo(Src));
7350   if (Res.first.getNode()) {
7351     setValue(&I, Res.first);
7352     PendingLoads.push_back(Res.second);
7353     return true;
7354   }
7355 
7356   return false;
7357 }
7358 
7359 /// See if we can lower a mempcpy call into an optimized form. If so, return
7360 /// true and lower it. Otherwise return false, and it will be lowered like a
7361 /// normal call.
7362 /// The caller already checked that \p I calls the appropriate LibFunc with a
7363 /// correct prototype.
7364 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7365   SDValue Dst = getValue(I.getArgOperand(0));
7366   SDValue Src = getValue(I.getArgOperand(1));
7367   SDValue Size = getValue(I.getArgOperand(2));
7368 
7369   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7370   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7371   // DAG::getMemcpy needs Alignment to be defined.
7372   Align Alignment = std::min(DstAlign, SrcAlign);
7373 
7374   bool isVol = false;
7375   SDLoc sdl = getCurSDLoc();
7376 
7377   // In the mempcpy context we need to pass in a false value for isTailCall
7378   // because the return pointer needs to be adjusted by the size of
7379   // the copied memory.
7380   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7381   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7382                              /*isTailCall=*/false,
7383                              MachinePointerInfo(I.getArgOperand(0)),
7384                              MachinePointerInfo(I.getArgOperand(1)));
7385   assert(MC.getNode() != nullptr &&
7386          "** memcpy should not be lowered as TailCall in mempcpy context **");
7387   DAG.setRoot(MC);
7388 
7389   // Check if Size needs to be truncated or extended.
7390   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7391 
7392   // Adjust return pointer to point just past the last dst byte.
7393   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7394                                     Dst, Size);
7395   setValue(&I, DstPlusSize);
7396   return true;
7397 }
7398 
7399 /// See if we can lower a strcpy call into an optimized form.  If so, return
7400 /// true and lower it, otherwise return false and it will be lowered like a
7401 /// normal call.
7402 /// The caller already checked that \p I calls the appropriate LibFunc with a
7403 /// correct prototype.
7404 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7405   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7406 
7407   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7408   std::pair<SDValue, SDValue> Res =
7409     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7410                                 getValue(Arg0), getValue(Arg1),
7411                                 MachinePointerInfo(Arg0),
7412                                 MachinePointerInfo(Arg1), isStpcpy);
7413   if (Res.first.getNode()) {
7414     setValue(&I, Res.first);
7415     DAG.setRoot(Res.second);
7416     return true;
7417   }
7418 
7419   return false;
7420 }
7421 
7422 /// See if we can lower a strcmp call into an optimized form.  If so, return
7423 /// true and lower it, otherwise return false and it will be lowered like a
7424 /// normal call.
7425 /// The caller already checked that \p I calls the appropriate LibFunc with a
7426 /// correct prototype.
7427 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7428   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7429 
7430   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7431   std::pair<SDValue, SDValue> Res =
7432     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7433                                 getValue(Arg0), getValue(Arg1),
7434                                 MachinePointerInfo(Arg0),
7435                                 MachinePointerInfo(Arg1));
7436   if (Res.first.getNode()) {
7437     processIntegerCallValue(I, Res.first, true);
7438     PendingLoads.push_back(Res.second);
7439     return true;
7440   }
7441 
7442   return false;
7443 }
7444 
7445 /// See if we can lower a strlen call into an optimized form.  If so, return
7446 /// true and lower it, otherwise return false and it will be lowered like a
7447 /// normal call.
7448 /// The caller already checked that \p I calls the appropriate LibFunc with a
7449 /// correct prototype.
7450 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7451   const Value *Arg0 = I.getArgOperand(0);
7452 
7453   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7454   std::pair<SDValue, SDValue> Res =
7455     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7456                                 getValue(Arg0), MachinePointerInfo(Arg0));
7457   if (Res.first.getNode()) {
7458     processIntegerCallValue(I, Res.first, false);
7459     PendingLoads.push_back(Res.second);
7460     return true;
7461   }
7462 
7463   return false;
7464 }
7465 
7466 /// See if we can lower a strnlen call into an optimized form.  If so, return
7467 /// true and lower it, otherwise return false and it will be lowered like a
7468 /// normal call.
7469 /// The caller already checked that \p I calls the appropriate LibFunc with a
7470 /// correct prototype.
7471 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7472   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7473 
7474   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7475   std::pair<SDValue, SDValue> Res =
7476     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7477                                  getValue(Arg0), getValue(Arg1),
7478                                  MachinePointerInfo(Arg0));
7479   if (Res.first.getNode()) {
7480     processIntegerCallValue(I, Res.first, false);
7481     PendingLoads.push_back(Res.second);
7482     return true;
7483   }
7484 
7485   return false;
7486 }
7487 
7488 /// See if we can lower a unary floating-point operation into an SDNode with
7489 /// the specified Opcode.  If so, return true and lower it, otherwise return
7490 /// false and it will be lowered like a normal call.
7491 /// The caller already checked that \p I calls the appropriate LibFunc with a
7492 /// correct prototype.
7493 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7494                                               unsigned Opcode) {
7495   // We already checked this call's prototype; verify it doesn't modify errno.
7496   if (!I.onlyReadsMemory())
7497     return false;
7498 
7499   SDValue Tmp = getValue(I.getArgOperand(0));
7500   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7501   return true;
7502 }
7503 
7504 /// See if we can lower a binary floating-point operation into an SDNode with
7505 /// the specified Opcode. If so, return true and lower it. Otherwise return
7506 /// false, and it will be lowered like a normal call.
7507 /// The caller already checked that \p I calls the appropriate LibFunc with a
7508 /// correct prototype.
7509 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7510                                                unsigned Opcode) {
7511   // We already checked this call's prototype; verify it doesn't modify errno.
7512   if (!I.onlyReadsMemory())
7513     return false;
7514 
7515   SDValue Tmp0 = getValue(I.getArgOperand(0));
7516   SDValue Tmp1 = getValue(I.getArgOperand(1));
7517   EVT VT = Tmp0.getValueType();
7518   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7519   return true;
7520 }
7521 
7522 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7523   // Handle inline assembly differently.
7524   if (I.isInlineAsm()) {
7525     visitInlineAsm(I);
7526     return;
7527   }
7528 
7529   if (Function *F = I.getCalledFunction()) {
7530     if (F->isDeclaration()) {
7531       // Is this an LLVM intrinsic or a target-specific intrinsic?
7532       unsigned IID = F->getIntrinsicID();
7533       if (!IID)
7534         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7535           IID = II->getIntrinsicID(F);
7536 
7537       if (IID) {
7538         visitIntrinsicCall(I, IID);
7539         return;
7540       }
7541     }
7542 
7543     // Check for well-known libc/libm calls.  If the function is internal, it
7544     // can't be a library call.  Don't do the check if marked as nobuiltin for
7545     // some reason or the call site requires strict floating point semantics.
7546     LibFunc Func;
7547     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7548         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7549         LibInfo->hasOptimizedCodeGen(Func)) {
7550       switch (Func) {
7551       default: break;
7552       case LibFunc_copysign:
7553       case LibFunc_copysignf:
7554       case LibFunc_copysignl:
7555         // We already checked this call's prototype; verify it doesn't modify
7556         // errno.
7557         if (I.onlyReadsMemory()) {
7558           SDValue LHS = getValue(I.getArgOperand(0));
7559           SDValue RHS = getValue(I.getArgOperand(1));
7560           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7561                                    LHS.getValueType(), LHS, RHS));
7562           return;
7563         }
7564         break;
7565       case LibFunc_fabs:
7566       case LibFunc_fabsf:
7567       case LibFunc_fabsl:
7568         if (visitUnaryFloatCall(I, ISD::FABS))
7569           return;
7570         break;
7571       case LibFunc_fmin:
7572       case LibFunc_fminf:
7573       case LibFunc_fminl:
7574         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7575           return;
7576         break;
7577       case LibFunc_fmax:
7578       case LibFunc_fmaxf:
7579       case LibFunc_fmaxl:
7580         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7581           return;
7582         break;
7583       case LibFunc_sin:
7584       case LibFunc_sinf:
7585       case LibFunc_sinl:
7586         if (visitUnaryFloatCall(I, ISD::FSIN))
7587           return;
7588         break;
7589       case LibFunc_cos:
7590       case LibFunc_cosf:
7591       case LibFunc_cosl:
7592         if (visitUnaryFloatCall(I, ISD::FCOS))
7593           return;
7594         break;
7595       case LibFunc_sqrt:
7596       case LibFunc_sqrtf:
7597       case LibFunc_sqrtl:
7598       case LibFunc_sqrt_finite:
7599       case LibFunc_sqrtf_finite:
7600       case LibFunc_sqrtl_finite:
7601         if (visitUnaryFloatCall(I, ISD::FSQRT))
7602           return;
7603         break;
7604       case LibFunc_floor:
7605       case LibFunc_floorf:
7606       case LibFunc_floorl:
7607         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7608           return;
7609         break;
7610       case LibFunc_nearbyint:
7611       case LibFunc_nearbyintf:
7612       case LibFunc_nearbyintl:
7613         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7614           return;
7615         break;
7616       case LibFunc_ceil:
7617       case LibFunc_ceilf:
7618       case LibFunc_ceill:
7619         if (visitUnaryFloatCall(I, ISD::FCEIL))
7620           return;
7621         break;
7622       case LibFunc_rint:
7623       case LibFunc_rintf:
7624       case LibFunc_rintl:
7625         if (visitUnaryFloatCall(I, ISD::FRINT))
7626           return;
7627         break;
7628       case LibFunc_round:
7629       case LibFunc_roundf:
7630       case LibFunc_roundl:
7631         if (visitUnaryFloatCall(I, ISD::FROUND))
7632           return;
7633         break;
7634       case LibFunc_trunc:
7635       case LibFunc_truncf:
7636       case LibFunc_truncl:
7637         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7638           return;
7639         break;
7640       case LibFunc_log2:
7641       case LibFunc_log2f:
7642       case LibFunc_log2l:
7643         if (visitUnaryFloatCall(I, ISD::FLOG2))
7644           return;
7645         break;
7646       case LibFunc_exp2:
7647       case LibFunc_exp2f:
7648       case LibFunc_exp2l:
7649         if (visitUnaryFloatCall(I, ISD::FEXP2))
7650           return;
7651         break;
7652       case LibFunc_memcmp:
7653         if (visitMemCmpCall(I))
7654           return;
7655         break;
7656       case LibFunc_mempcpy:
7657         if (visitMemPCpyCall(I))
7658           return;
7659         break;
7660       case LibFunc_memchr:
7661         if (visitMemChrCall(I))
7662           return;
7663         break;
7664       case LibFunc_strcpy:
7665         if (visitStrCpyCall(I, false))
7666           return;
7667         break;
7668       case LibFunc_stpcpy:
7669         if (visitStrCpyCall(I, true))
7670           return;
7671         break;
7672       case LibFunc_strcmp:
7673         if (visitStrCmpCall(I))
7674           return;
7675         break;
7676       case LibFunc_strlen:
7677         if (visitStrLenCall(I))
7678           return;
7679         break;
7680       case LibFunc_strnlen:
7681         if (visitStrNLenCall(I))
7682           return;
7683         break;
7684       }
7685     }
7686   }
7687 
7688   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7689   // have to do anything here to lower funclet bundles.
7690   // CFGuardTarget bundles are lowered in LowerCallTo.
7691   assert(!I.hasOperandBundlesOtherThan(
7692              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7693               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7694          "Cannot lower calls with arbitrary operand bundles!");
7695 
7696   SDValue Callee = getValue(I.getCalledOperand());
7697 
7698   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7699     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7700   else
7701     // Check if we can potentially perform a tail call. More detailed checking
7702     // is be done within LowerCallTo, after more information about the call is
7703     // known.
7704     LowerCallTo(I, Callee, I.isTailCall());
7705 }
7706 
7707 namespace {
7708 
7709 /// AsmOperandInfo - This contains information for each constraint that we are
7710 /// lowering.
7711 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7712 public:
7713   /// CallOperand - If this is the result output operand or a clobber
7714   /// this is null, otherwise it is the incoming operand to the CallInst.
7715   /// This gets modified as the asm is processed.
7716   SDValue CallOperand;
7717 
7718   /// AssignedRegs - If this is a register or register class operand, this
7719   /// contains the set of register corresponding to the operand.
7720   RegsForValue AssignedRegs;
7721 
7722   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7723     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7724   }
7725 
7726   /// Whether or not this operand accesses memory
7727   bool hasMemory(const TargetLowering &TLI) const {
7728     // Indirect operand accesses access memory.
7729     if (isIndirect)
7730       return true;
7731 
7732     for (const auto &Code : Codes)
7733       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7734         return true;
7735 
7736     return false;
7737   }
7738 
7739   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7740   /// corresponds to.  If there is no Value* for this operand, it returns
7741   /// MVT::Other.
7742   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7743                            const DataLayout &DL) const {
7744     if (!CallOperandVal) return MVT::Other;
7745 
7746     if (isa<BasicBlock>(CallOperandVal))
7747       return TLI.getProgramPointerTy(DL);
7748 
7749     llvm::Type *OpTy = CallOperandVal->getType();
7750 
7751     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7752     // If this is an indirect operand, the operand is a pointer to the
7753     // accessed type.
7754     if (isIndirect) {
7755       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7756       if (!PtrTy)
7757         report_fatal_error("Indirect operand for inline asm not a pointer!");
7758       OpTy = PtrTy->getElementType();
7759     }
7760 
7761     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7762     if (StructType *STy = dyn_cast<StructType>(OpTy))
7763       if (STy->getNumElements() == 1)
7764         OpTy = STy->getElementType(0);
7765 
7766     // If OpTy is not a single value, it may be a struct/union that we
7767     // can tile with integers.
7768     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7769       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7770       switch (BitSize) {
7771       default: break;
7772       case 1:
7773       case 8:
7774       case 16:
7775       case 32:
7776       case 64:
7777       case 128:
7778         OpTy = IntegerType::get(Context, BitSize);
7779         break;
7780       }
7781     }
7782 
7783     return TLI.getValueType(DL, OpTy, true);
7784   }
7785 };
7786 
7787 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7788 
7789 } // end anonymous namespace
7790 
7791 /// Make sure that the output operand \p OpInfo and its corresponding input
7792 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7793 /// out).
7794 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7795                                SDISelAsmOperandInfo &MatchingOpInfo,
7796                                SelectionDAG &DAG) {
7797   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7798     return;
7799 
7800   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7801   const auto &TLI = DAG.getTargetLoweringInfo();
7802 
7803   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7804       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7805                                        OpInfo.ConstraintVT);
7806   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7807       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7808                                        MatchingOpInfo.ConstraintVT);
7809   if ((OpInfo.ConstraintVT.isInteger() !=
7810        MatchingOpInfo.ConstraintVT.isInteger()) ||
7811       (MatchRC.second != InputRC.second)) {
7812     // FIXME: error out in a more elegant fashion
7813     report_fatal_error("Unsupported asm: input constraint"
7814                        " with a matching output constraint of"
7815                        " incompatible type!");
7816   }
7817   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7818 }
7819 
7820 /// Get a direct memory input to behave well as an indirect operand.
7821 /// This may introduce stores, hence the need for a \p Chain.
7822 /// \return The (possibly updated) chain.
7823 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7824                                         SDISelAsmOperandInfo &OpInfo,
7825                                         SelectionDAG &DAG) {
7826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7827 
7828   // If we don't have an indirect input, put it in the constpool if we can,
7829   // otherwise spill it to a stack slot.
7830   // TODO: This isn't quite right. We need to handle these according to
7831   // the addressing mode that the constraint wants. Also, this may take
7832   // an additional register for the computation and we don't want that
7833   // either.
7834 
7835   // If the operand is a float, integer, or vector constant, spill to a
7836   // constant pool entry to get its address.
7837   const Value *OpVal = OpInfo.CallOperandVal;
7838   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7839       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7840     OpInfo.CallOperand = DAG.getConstantPool(
7841         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7842     return Chain;
7843   }
7844 
7845   // Otherwise, create a stack slot and emit a store to it before the asm.
7846   Type *Ty = OpVal->getType();
7847   auto &DL = DAG.getDataLayout();
7848   uint64_t TySize = DL.getTypeAllocSize(Ty);
7849   unsigned Align = DL.getPrefTypeAlignment(Ty);
7850   MachineFunction &MF = DAG.getMachineFunction();
7851   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7852   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7853   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7854                             MachinePointerInfo::getFixedStack(MF, SSFI),
7855                             TLI.getMemValueType(DL, Ty));
7856   OpInfo.CallOperand = StackSlot;
7857 
7858   return Chain;
7859 }
7860 
7861 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7862 /// specified operand.  We prefer to assign virtual registers, to allow the
7863 /// register allocator to handle the assignment process.  However, if the asm
7864 /// uses features that we can't model on machineinstrs, we have SDISel do the
7865 /// allocation.  This produces generally horrible, but correct, code.
7866 ///
7867 ///   OpInfo describes the operand
7868 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7869 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7870                                  SDISelAsmOperandInfo &OpInfo,
7871                                  SDISelAsmOperandInfo &RefOpInfo) {
7872   LLVMContext &Context = *DAG.getContext();
7873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7874 
7875   MachineFunction &MF = DAG.getMachineFunction();
7876   SmallVector<unsigned, 4> Regs;
7877   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7878 
7879   // No work to do for memory operations.
7880   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7881     return;
7882 
7883   // If this is a constraint for a single physreg, or a constraint for a
7884   // register class, find it.
7885   unsigned AssignedReg;
7886   const TargetRegisterClass *RC;
7887   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7888       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7889   // RC is unset only on failure. Return immediately.
7890   if (!RC)
7891     return;
7892 
7893   // Get the actual register value type.  This is important, because the user
7894   // may have asked for (e.g.) the AX register in i32 type.  We need to
7895   // remember that AX is actually i16 to get the right extension.
7896   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7897 
7898   if (OpInfo.ConstraintVT != MVT::Other) {
7899     // If this is an FP operand in an integer register (or visa versa), or more
7900     // generally if the operand value disagrees with the register class we plan
7901     // to stick it in, fix the operand type.
7902     //
7903     // If this is an input value, the bitcast to the new type is done now.
7904     // Bitcast for output value is done at the end of visitInlineAsm().
7905     if ((OpInfo.Type == InlineAsm::isOutput ||
7906          OpInfo.Type == InlineAsm::isInput) &&
7907         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7908       // Try to convert to the first EVT that the reg class contains.  If the
7909       // types are identical size, use a bitcast to convert (e.g. two differing
7910       // vector types).  Note: output bitcast is done at the end of
7911       // visitInlineAsm().
7912       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7913         // Exclude indirect inputs while they are unsupported because the code
7914         // to perform the load is missing and thus OpInfo.CallOperand still
7915         // refers to the input address rather than the pointed-to value.
7916         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7917           OpInfo.CallOperand =
7918               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7919         OpInfo.ConstraintVT = RegVT;
7920         // If the operand is an FP value and we want it in integer registers,
7921         // use the corresponding integer type. This turns an f64 value into
7922         // i64, which can be passed with two i32 values on a 32-bit machine.
7923       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7924         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7925         if (OpInfo.Type == InlineAsm::isInput)
7926           OpInfo.CallOperand =
7927               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7928         OpInfo.ConstraintVT = VT;
7929       }
7930     }
7931   }
7932 
7933   // No need to allocate a matching input constraint since the constraint it's
7934   // matching to has already been allocated.
7935   if (OpInfo.isMatchingInputConstraint())
7936     return;
7937 
7938   EVT ValueVT = OpInfo.ConstraintVT;
7939   if (OpInfo.ConstraintVT == MVT::Other)
7940     ValueVT = RegVT;
7941 
7942   // Initialize NumRegs.
7943   unsigned NumRegs = 1;
7944   if (OpInfo.ConstraintVT != MVT::Other)
7945     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7946 
7947   // If this is a constraint for a specific physical register, like {r17},
7948   // assign it now.
7949 
7950   // If this associated to a specific register, initialize iterator to correct
7951   // place. If virtual, make sure we have enough registers
7952 
7953   // Initialize iterator if necessary
7954   TargetRegisterClass::iterator I = RC->begin();
7955   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7956 
7957   // Do not check for single registers.
7958   if (AssignedReg) {
7959       for (; *I != AssignedReg; ++I)
7960         assert(I != RC->end() && "AssignedReg should be member of RC");
7961   }
7962 
7963   for (; NumRegs; --NumRegs, ++I) {
7964     assert(I != RC->end() && "Ran out of registers to allocate!");
7965     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7966     Regs.push_back(R);
7967   }
7968 
7969   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7970 }
7971 
7972 static unsigned
7973 findMatchingInlineAsmOperand(unsigned OperandNo,
7974                              const std::vector<SDValue> &AsmNodeOperands) {
7975   // Scan until we find the definition we already emitted of this operand.
7976   unsigned CurOp = InlineAsm::Op_FirstOperand;
7977   for (; OperandNo; --OperandNo) {
7978     // Advance to the next operand.
7979     unsigned OpFlag =
7980         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7981     assert((InlineAsm::isRegDefKind(OpFlag) ||
7982             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7983             InlineAsm::isMemKind(OpFlag)) &&
7984            "Skipped past definitions?");
7985     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7986   }
7987   return CurOp;
7988 }
7989 
7990 namespace {
7991 
7992 class ExtraFlags {
7993   unsigned Flags = 0;
7994 
7995 public:
7996   explicit ExtraFlags(const CallBase &Call) {
7997     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
7998     if (IA->hasSideEffects())
7999       Flags |= InlineAsm::Extra_HasSideEffects;
8000     if (IA->isAlignStack())
8001       Flags |= InlineAsm::Extra_IsAlignStack;
8002     if (Call.isConvergent())
8003       Flags |= InlineAsm::Extra_IsConvergent;
8004     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8005   }
8006 
8007   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8008     // Ideally, we would only check against memory constraints.  However, the
8009     // meaning of an Other constraint can be target-specific and we can't easily
8010     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8011     // for Other constraints as well.
8012     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8013         OpInfo.ConstraintType == TargetLowering::C_Other) {
8014       if (OpInfo.Type == InlineAsm::isInput)
8015         Flags |= InlineAsm::Extra_MayLoad;
8016       else if (OpInfo.Type == InlineAsm::isOutput)
8017         Flags |= InlineAsm::Extra_MayStore;
8018       else if (OpInfo.Type == InlineAsm::isClobber)
8019         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8020     }
8021   }
8022 
8023   unsigned get() const { return Flags; }
8024 };
8025 
8026 } // end anonymous namespace
8027 
8028 /// visitInlineAsm - Handle a call to an InlineAsm object.
8029 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8030   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8031 
8032   /// ConstraintOperands - Information about all of the constraints.
8033   SDISelAsmOperandInfoVector ConstraintOperands;
8034 
8035   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8036   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8037       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8038 
8039   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8040   // AsmDialect, MayLoad, MayStore).
8041   bool HasSideEffect = IA->hasSideEffects();
8042   ExtraFlags ExtraInfo(Call);
8043 
8044   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8045   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8046   unsigned NumMatchingOps = 0;
8047   for (auto &T : TargetConstraints) {
8048     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8049     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8050 
8051     // Compute the value type for each operand.
8052     if (OpInfo.Type == InlineAsm::isInput ||
8053         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8054       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8055 
8056       // Process the call argument. BasicBlocks are labels, currently appearing
8057       // only in asm's.
8058       if (isa<CallBrInst>(Call) &&
8059           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8060                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8061                         NumMatchingOps) &&
8062           (NumMatchingOps == 0 ||
8063            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8064                         NumMatchingOps))) {
8065         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8066         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8067         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8068       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8069         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8070       } else {
8071         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8072       }
8073 
8074       OpInfo.ConstraintVT =
8075           OpInfo
8076               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8077               .getSimpleVT();
8078     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8079       // The return value of the call is this value.  As such, there is no
8080       // corresponding argument.
8081       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8082       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8083         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8084             DAG.getDataLayout(), STy->getElementType(ResNo));
8085       } else {
8086         assert(ResNo == 0 && "Asm only has one result!");
8087         OpInfo.ConstraintVT =
8088             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8089       }
8090       ++ResNo;
8091     } else {
8092       OpInfo.ConstraintVT = MVT::Other;
8093     }
8094 
8095     if (OpInfo.hasMatchingInput())
8096       ++NumMatchingOps;
8097 
8098     if (!HasSideEffect)
8099       HasSideEffect = OpInfo.hasMemory(TLI);
8100 
8101     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8102     // FIXME: Could we compute this on OpInfo rather than T?
8103 
8104     // Compute the constraint code and ConstraintType to use.
8105     TLI.ComputeConstraintToUse(T, SDValue());
8106 
8107     if (T.ConstraintType == TargetLowering::C_Immediate &&
8108         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8109       // We've delayed emitting a diagnostic like the "n" constraint because
8110       // inlining could cause an integer showing up.
8111       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8112                                           "' expects an integer constant "
8113                                           "expression");
8114 
8115     ExtraInfo.update(T);
8116   }
8117 
8118 
8119   // We won't need to flush pending loads if this asm doesn't touch
8120   // memory and is nonvolatile.
8121   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8122 
8123   bool IsCallBr = isa<CallBrInst>(Call);
8124   if (IsCallBr) {
8125     // If this is a callbr we need to flush pending exports since inlineasm_br
8126     // is a terminator. We need to do this before nodes are glued to
8127     // the inlineasm_br node.
8128     Chain = getControlRoot();
8129   }
8130 
8131   // Second pass over the constraints: compute which constraint option to use.
8132   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8133     // If this is an output operand with a matching input operand, look up the
8134     // matching input. If their types mismatch, e.g. one is an integer, the
8135     // other is floating point, or their sizes are different, flag it as an
8136     // error.
8137     if (OpInfo.hasMatchingInput()) {
8138       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8139       patchMatchingInput(OpInfo, Input, DAG);
8140     }
8141 
8142     // Compute the constraint code and ConstraintType to use.
8143     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8144 
8145     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8146         OpInfo.Type == InlineAsm::isClobber)
8147       continue;
8148 
8149     // If this is a memory input, and if the operand is not indirect, do what we
8150     // need to provide an address for the memory input.
8151     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8152         !OpInfo.isIndirect) {
8153       assert((OpInfo.isMultipleAlternative ||
8154               (OpInfo.Type == InlineAsm::isInput)) &&
8155              "Can only indirectify direct input operands!");
8156 
8157       // Memory operands really want the address of the value.
8158       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8159 
8160       // There is no longer a Value* corresponding to this operand.
8161       OpInfo.CallOperandVal = nullptr;
8162 
8163       // It is now an indirect operand.
8164       OpInfo.isIndirect = true;
8165     }
8166 
8167   }
8168 
8169   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8170   std::vector<SDValue> AsmNodeOperands;
8171   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8172   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8173       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8174 
8175   // If we have a !srcloc metadata node associated with it, we want to attach
8176   // this to the ultimately generated inline asm machineinstr.  To do this, we
8177   // pass in the third operand as this (potentially null) inline asm MDNode.
8178   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8179   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8180 
8181   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8182   // bits as operand 3.
8183   AsmNodeOperands.push_back(DAG.getTargetConstant(
8184       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8185 
8186   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8187   // this, assign virtual and physical registers for inputs and otput.
8188   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8189     // Assign Registers.
8190     SDISelAsmOperandInfo &RefOpInfo =
8191         OpInfo.isMatchingInputConstraint()
8192             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8193             : OpInfo;
8194     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8195 
8196     auto DetectWriteToReservedRegister = [&]() {
8197       const MachineFunction &MF = DAG.getMachineFunction();
8198       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8199       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8200         if (Register::isPhysicalRegister(Reg) &&
8201             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8202           const char *RegName = TRI.getName(Reg);
8203           emitInlineAsmError(Call, "write to reserved register '" +
8204                                        Twine(RegName) + "'");
8205           return true;
8206         }
8207       }
8208       return false;
8209     };
8210 
8211     switch (OpInfo.Type) {
8212     case InlineAsm::isOutput:
8213       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8214         unsigned ConstraintID =
8215             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8216         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8217                "Failed to convert memory constraint code to constraint id.");
8218 
8219         // Add information to the INLINEASM node to know about this output.
8220         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8221         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8222         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8223                                                         MVT::i32));
8224         AsmNodeOperands.push_back(OpInfo.CallOperand);
8225       } else {
8226         // Otherwise, this outputs to a register (directly for C_Register /
8227         // C_RegisterClass, and a target-defined fashion for
8228         // C_Immediate/C_Other). Find a register that we can use.
8229         if (OpInfo.AssignedRegs.Regs.empty()) {
8230           emitInlineAsmError(
8231               Call, "couldn't allocate output register for constraint '" +
8232                         Twine(OpInfo.ConstraintCode) + "'");
8233           return;
8234         }
8235 
8236         if (DetectWriteToReservedRegister())
8237           return;
8238 
8239         // Add information to the INLINEASM node to know that this register is
8240         // set.
8241         OpInfo.AssignedRegs.AddInlineAsmOperands(
8242             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8243                                   : InlineAsm::Kind_RegDef,
8244             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8245       }
8246       break;
8247 
8248     case InlineAsm::isInput: {
8249       SDValue InOperandVal = OpInfo.CallOperand;
8250 
8251       if (OpInfo.isMatchingInputConstraint()) {
8252         // If this is required to match an output register we have already set,
8253         // just use its register.
8254         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8255                                                   AsmNodeOperands);
8256         unsigned OpFlag =
8257           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8258         if (InlineAsm::isRegDefKind(OpFlag) ||
8259             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8260           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8261           if (OpInfo.isIndirect) {
8262             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8263             emitInlineAsmError(Call, "inline asm not supported yet: "
8264                                      "don't know how to handle tied "
8265                                      "indirect register inputs");
8266             return;
8267           }
8268 
8269           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8270           SmallVector<unsigned, 4> Regs;
8271 
8272           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8273             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8274             MachineRegisterInfo &RegInfo =
8275                 DAG.getMachineFunction().getRegInfo();
8276             for (unsigned i = 0; i != NumRegs; ++i)
8277               Regs.push_back(RegInfo.createVirtualRegister(RC));
8278           } else {
8279             emitInlineAsmError(Call,
8280                                "inline asm error: This value type register "
8281                                "class is not natively supported!");
8282             return;
8283           }
8284 
8285           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8286 
8287           SDLoc dl = getCurSDLoc();
8288           // Use the produced MatchedRegs object to
8289           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8290           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8291                                            true, OpInfo.getMatchedOperand(), dl,
8292                                            DAG, AsmNodeOperands);
8293           break;
8294         }
8295 
8296         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8297         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8298                "Unexpected number of operands");
8299         // Add information to the INLINEASM node to know about this input.
8300         // See InlineAsm.h isUseOperandTiedToDef.
8301         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8302         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8303                                                     OpInfo.getMatchedOperand());
8304         AsmNodeOperands.push_back(DAG.getTargetConstant(
8305             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8306         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8307         break;
8308       }
8309 
8310       // Treat indirect 'X' constraint as memory.
8311       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8312           OpInfo.isIndirect)
8313         OpInfo.ConstraintType = TargetLowering::C_Memory;
8314 
8315       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8316           OpInfo.ConstraintType == TargetLowering::C_Other) {
8317         std::vector<SDValue> Ops;
8318         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8319                                           Ops, DAG);
8320         if (Ops.empty()) {
8321           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8322             if (isa<ConstantSDNode>(InOperandVal)) {
8323               emitInlineAsmError(Call, "value out of range for constraint '" +
8324                                            Twine(OpInfo.ConstraintCode) + "'");
8325               return;
8326             }
8327 
8328           emitInlineAsmError(Call,
8329                              "invalid operand for inline asm constraint '" +
8330                                  Twine(OpInfo.ConstraintCode) + "'");
8331           return;
8332         }
8333 
8334         // Add information to the INLINEASM node to know about this input.
8335         unsigned ResOpType =
8336           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8337         AsmNodeOperands.push_back(DAG.getTargetConstant(
8338             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8339         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8340         break;
8341       }
8342 
8343       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8344         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8345         assert(InOperandVal.getValueType() ==
8346                    TLI.getPointerTy(DAG.getDataLayout()) &&
8347                "Memory operands expect pointer values");
8348 
8349         unsigned ConstraintID =
8350             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8351         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8352                "Failed to convert memory constraint code to constraint id.");
8353 
8354         // Add information to the INLINEASM node to know about this input.
8355         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8356         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8357         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8358                                                         getCurSDLoc(),
8359                                                         MVT::i32));
8360         AsmNodeOperands.push_back(InOperandVal);
8361         break;
8362       }
8363 
8364       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8365               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8366              "Unknown constraint type!");
8367 
8368       // TODO: Support this.
8369       if (OpInfo.isIndirect) {
8370         emitInlineAsmError(
8371             Call, "Don't know how to handle indirect register inputs yet "
8372                   "for constraint '" +
8373                       Twine(OpInfo.ConstraintCode) + "'");
8374         return;
8375       }
8376 
8377       // Copy the input into the appropriate registers.
8378       if (OpInfo.AssignedRegs.Regs.empty()) {
8379         emitInlineAsmError(Call,
8380                            "couldn't allocate input reg for constraint '" +
8381                                Twine(OpInfo.ConstraintCode) + "'");
8382         return;
8383       }
8384 
8385       if (DetectWriteToReservedRegister())
8386         return;
8387 
8388       SDLoc dl = getCurSDLoc();
8389 
8390       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8391                                         &Call);
8392 
8393       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8394                                                dl, DAG, AsmNodeOperands);
8395       break;
8396     }
8397     case InlineAsm::isClobber:
8398       // Add the clobbered value to the operand list, so that the register
8399       // allocator is aware that the physreg got clobbered.
8400       if (!OpInfo.AssignedRegs.Regs.empty())
8401         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8402                                                  false, 0, getCurSDLoc(), DAG,
8403                                                  AsmNodeOperands);
8404       break;
8405     }
8406   }
8407 
8408   // Finish up input operands.  Set the input chain and add the flag last.
8409   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8410   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8411 
8412   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8413   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8414                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8415   Flag = Chain.getValue(1);
8416 
8417   // Do additional work to generate outputs.
8418 
8419   SmallVector<EVT, 1> ResultVTs;
8420   SmallVector<SDValue, 1> ResultValues;
8421   SmallVector<SDValue, 8> OutChains;
8422 
8423   llvm::Type *CallResultType = Call.getType();
8424   ArrayRef<Type *> ResultTypes;
8425   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8426     ResultTypes = StructResult->elements();
8427   else if (!CallResultType->isVoidTy())
8428     ResultTypes = makeArrayRef(CallResultType);
8429 
8430   auto CurResultType = ResultTypes.begin();
8431   auto handleRegAssign = [&](SDValue V) {
8432     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8433     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8434     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8435     ++CurResultType;
8436     // If the type of the inline asm call site return value is different but has
8437     // same size as the type of the asm output bitcast it.  One example of this
8438     // is for vectors with different width / number of elements.  This can
8439     // happen for register classes that can contain multiple different value
8440     // types.  The preg or vreg allocated may not have the same VT as was
8441     // expected.
8442     //
8443     // This can also happen for a return value that disagrees with the register
8444     // class it is put in, eg. a double in a general-purpose register on a
8445     // 32-bit machine.
8446     if (ResultVT != V.getValueType() &&
8447         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8448       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8449     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8450              V.getValueType().isInteger()) {
8451       // If a result value was tied to an input value, the computed result
8452       // may have a wider width than the expected result.  Extract the
8453       // relevant portion.
8454       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8455     }
8456     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8457     ResultVTs.push_back(ResultVT);
8458     ResultValues.push_back(V);
8459   };
8460 
8461   // Deal with output operands.
8462   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8463     if (OpInfo.Type == InlineAsm::isOutput) {
8464       SDValue Val;
8465       // Skip trivial output operands.
8466       if (OpInfo.AssignedRegs.Regs.empty())
8467         continue;
8468 
8469       switch (OpInfo.ConstraintType) {
8470       case TargetLowering::C_Register:
8471       case TargetLowering::C_RegisterClass:
8472         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8473                                                   Chain, &Flag, &Call);
8474         break;
8475       case TargetLowering::C_Immediate:
8476       case TargetLowering::C_Other:
8477         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8478                                               OpInfo, DAG);
8479         break;
8480       case TargetLowering::C_Memory:
8481         break; // Already handled.
8482       case TargetLowering::C_Unknown:
8483         assert(false && "Unexpected unknown constraint");
8484       }
8485 
8486       // Indirect output manifest as stores. Record output chains.
8487       if (OpInfo.isIndirect) {
8488         const Value *Ptr = OpInfo.CallOperandVal;
8489         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8490         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8491                                      MachinePointerInfo(Ptr));
8492         OutChains.push_back(Store);
8493       } else {
8494         // generate CopyFromRegs to associated registers.
8495         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8496         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8497           for (const SDValue &V : Val->op_values())
8498             handleRegAssign(V);
8499         } else
8500           handleRegAssign(Val);
8501       }
8502     }
8503   }
8504 
8505   // Set results.
8506   if (!ResultValues.empty()) {
8507     assert(CurResultType == ResultTypes.end() &&
8508            "Mismatch in number of ResultTypes");
8509     assert(ResultValues.size() == ResultTypes.size() &&
8510            "Mismatch in number of output operands in asm result");
8511 
8512     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8513                             DAG.getVTList(ResultVTs), ResultValues);
8514     setValue(&Call, V);
8515   }
8516 
8517   // Collect store chains.
8518   if (!OutChains.empty())
8519     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8520 
8521   // Only Update Root if inline assembly has a memory effect.
8522   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8523     DAG.setRoot(Chain);
8524 }
8525 
8526 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8527                                              const Twine &Message) {
8528   LLVMContext &Ctx = *DAG.getContext();
8529   Ctx.emitError(&Call, Message);
8530 
8531   // Make sure we leave the DAG in a valid state
8532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8533   SmallVector<EVT, 1> ValueVTs;
8534   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8535 
8536   if (ValueVTs.empty())
8537     return;
8538 
8539   SmallVector<SDValue, 1> Ops;
8540   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8541     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8542 
8543   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8544 }
8545 
8546 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8547   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8548                           MVT::Other, getRoot(),
8549                           getValue(I.getArgOperand(0)),
8550                           DAG.getSrcValue(I.getArgOperand(0))));
8551 }
8552 
8553 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8554   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8555   const DataLayout &DL = DAG.getDataLayout();
8556   SDValue V = DAG.getVAArg(
8557       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8558       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8559       DL.getABITypeAlignment(I.getType()));
8560   DAG.setRoot(V.getValue(1));
8561 
8562   if (I.getType()->isPointerTy())
8563     V = DAG.getPtrExtOrTrunc(
8564         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8565   setValue(&I, V);
8566 }
8567 
8568 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8569   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8570                           MVT::Other, getRoot(),
8571                           getValue(I.getArgOperand(0)),
8572                           DAG.getSrcValue(I.getArgOperand(0))));
8573 }
8574 
8575 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8576   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8577                           MVT::Other, getRoot(),
8578                           getValue(I.getArgOperand(0)),
8579                           getValue(I.getArgOperand(1)),
8580                           DAG.getSrcValue(I.getArgOperand(0)),
8581                           DAG.getSrcValue(I.getArgOperand(1))));
8582 }
8583 
8584 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8585                                                     const Instruction &I,
8586                                                     SDValue Op) {
8587   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8588   if (!Range)
8589     return Op;
8590 
8591   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8592   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8593     return Op;
8594 
8595   APInt Lo = CR.getUnsignedMin();
8596   if (!Lo.isMinValue())
8597     return Op;
8598 
8599   APInt Hi = CR.getUnsignedMax();
8600   unsigned Bits = std::max(Hi.getActiveBits(),
8601                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8602 
8603   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8604 
8605   SDLoc SL = getCurSDLoc();
8606 
8607   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8608                              DAG.getValueType(SmallVT));
8609   unsigned NumVals = Op.getNode()->getNumValues();
8610   if (NumVals == 1)
8611     return ZExt;
8612 
8613   SmallVector<SDValue, 4> Ops;
8614 
8615   Ops.push_back(ZExt);
8616   for (unsigned I = 1; I != NumVals; ++I)
8617     Ops.push_back(Op.getValue(I));
8618 
8619   return DAG.getMergeValues(Ops, SL);
8620 }
8621 
8622 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8623 /// the call being lowered.
8624 ///
8625 /// This is a helper for lowering intrinsics that follow a target calling
8626 /// convention or require stack pointer adjustment. Only a subset of the
8627 /// intrinsic's operands need to participate in the calling convention.
8628 void SelectionDAGBuilder::populateCallLoweringInfo(
8629     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8630     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8631     bool IsPatchPoint) {
8632   TargetLowering::ArgListTy Args;
8633   Args.reserve(NumArgs);
8634 
8635   // Populate the argument list.
8636   // Attributes for args start at offset 1, after the return attribute.
8637   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8638        ArgI != ArgE; ++ArgI) {
8639     const Value *V = Call->getOperand(ArgI);
8640 
8641     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8642 
8643     TargetLowering::ArgListEntry Entry;
8644     Entry.Node = getValue(V);
8645     Entry.Ty = V->getType();
8646     Entry.setAttributes(Call, ArgI);
8647     Args.push_back(Entry);
8648   }
8649 
8650   CLI.setDebugLoc(getCurSDLoc())
8651       .setChain(getRoot())
8652       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8653       .setDiscardResult(Call->use_empty())
8654       .setIsPatchPoint(IsPatchPoint)
8655       .setIsPreallocated(
8656           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8657 }
8658 
8659 /// Add a stack map intrinsic call's live variable operands to a stackmap
8660 /// or patchpoint target node's operand list.
8661 ///
8662 /// Constants are converted to TargetConstants purely as an optimization to
8663 /// avoid constant materialization and register allocation.
8664 ///
8665 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8666 /// generate addess computation nodes, and so FinalizeISel can convert the
8667 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8668 /// address materialization and register allocation, but may also be required
8669 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8670 /// alloca in the entry block, then the runtime may assume that the alloca's
8671 /// StackMap location can be read immediately after compilation and that the
8672 /// location is valid at any point during execution (this is similar to the
8673 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8674 /// only available in a register, then the runtime would need to trap when
8675 /// execution reaches the StackMap in order to read the alloca's location.
8676 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8677                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8678                                 SelectionDAGBuilder &Builder) {
8679   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8680     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8681     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8682       Ops.push_back(
8683         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8684       Ops.push_back(
8685         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8686     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8687       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8688       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8689           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8690     } else
8691       Ops.push_back(OpVal);
8692   }
8693 }
8694 
8695 /// Lower llvm.experimental.stackmap directly to its target opcode.
8696 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8697   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8698   //                                  [live variables...])
8699 
8700   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8701 
8702   SDValue Chain, InFlag, Callee, NullPtr;
8703   SmallVector<SDValue, 32> Ops;
8704 
8705   SDLoc DL = getCurSDLoc();
8706   Callee = getValue(CI.getCalledOperand());
8707   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8708 
8709   // The stackmap intrinsic only records the live variables (the arguments
8710   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8711   // intrinsic, this won't be lowered to a function call. This means we don't
8712   // have to worry about calling conventions and target specific lowering code.
8713   // Instead we perform the call lowering right here.
8714   //
8715   // chain, flag = CALLSEQ_START(chain, 0, 0)
8716   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8717   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8718   //
8719   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8720   InFlag = Chain.getValue(1);
8721 
8722   // Add the <id> and <numBytes> constants.
8723   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8724   Ops.push_back(DAG.getTargetConstant(
8725                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8726   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8727   Ops.push_back(DAG.getTargetConstant(
8728                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8729                   MVT::i32));
8730 
8731   // Push live variables for the stack map.
8732   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8733 
8734   // We are not pushing any register mask info here on the operands list,
8735   // because the stackmap doesn't clobber anything.
8736 
8737   // Push the chain and the glue flag.
8738   Ops.push_back(Chain);
8739   Ops.push_back(InFlag);
8740 
8741   // Create the STACKMAP node.
8742   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8743   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8744   Chain = SDValue(SM, 0);
8745   InFlag = Chain.getValue(1);
8746 
8747   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8748 
8749   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8750 
8751   // Set the root to the target-lowered call chain.
8752   DAG.setRoot(Chain);
8753 
8754   // Inform the Frame Information that we have a stackmap in this function.
8755   FuncInfo.MF->getFrameInfo().setHasStackMap();
8756 }
8757 
8758 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8759 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8760                                           const BasicBlock *EHPadBB) {
8761   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8762   //                                                 i32 <numBytes>,
8763   //                                                 i8* <target>,
8764   //                                                 i32 <numArgs>,
8765   //                                                 [Args...],
8766   //                                                 [live variables...])
8767 
8768   CallingConv::ID CC = CB.getCallingConv();
8769   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8770   bool HasDef = !CB.getType()->isVoidTy();
8771   SDLoc dl = getCurSDLoc();
8772   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8773 
8774   // Handle immediate and symbolic callees.
8775   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8776     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8777                                    /*isTarget=*/true);
8778   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8779     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8780                                          SDLoc(SymbolicCallee),
8781                                          SymbolicCallee->getValueType(0));
8782 
8783   // Get the real number of arguments participating in the call <numArgs>
8784   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8785   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8786 
8787   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8788   // Intrinsics include all meta-operands up to but not including CC.
8789   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8790   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8791          "Not enough arguments provided to the patchpoint intrinsic");
8792 
8793   // For AnyRegCC the arguments are lowered later on manually.
8794   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8795   Type *ReturnTy =
8796       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8797 
8798   TargetLowering::CallLoweringInfo CLI(DAG);
8799   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8800                            ReturnTy, true);
8801   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8802 
8803   SDNode *CallEnd = Result.second.getNode();
8804   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8805     CallEnd = CallEnd->getOperand(0).getNode();
8806 
8807   /// Get a call instruction from the call sequence chain.
8808   /// Tail calls are not allowed.
8809   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8810          "Expected a callseq node.");
8811   SDNode *Call = CallEnd->getOperand(0).getNode();
8812   bool HasGlue = Call->getGluedNode();
8813 
8814   // Replace the target specific call node with the patchable intrinsic.
8815   SmallVector<SDValue, 8> Ops;
8816 
8817   // Add the <id> and <numBytes> constants.
8818   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8819   Ops.push_back(DAG.getTargetConstant(
8820                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8821   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8822   Ops.push_back(DAG.getTargetConstant(
8823                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8824                   MVT::i32));
8825 
8826   // Add the callee.
8827   Ops.push_back(Callee);
8828 
8829   // Adjust <numArgs> to account for any arguments that have been passed on the
8830   // stack instead.
8831   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8832   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8833   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8834   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8835 
8836   // Add the calling convention
8837   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8838 
8839   // Add the arguments we omitted previously. The register allocator should
8840   // place these in any free register.
8841   if (IsAnyRegCC)
8842     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8843       Ops.push_back(getValue(CB.getArgOperand(i)));
8844 
8845   // Push the arguments from the call instruction up to the register mask.
8846   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8847   Ops.append(Call->op_begin() + 2, e);
8848 
8849   // Push live variables for the stack map.
8850   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8851 
8852   // Push the register mask info.
8853   if (HasGlue)
8854     Ops.push_back(*(Call->op_end()-2));
8855   else
8856     Ops.push_back(*(Call->op_end()-1));
8857 
8858   // Push the chain (this is originally the first operand of the call, but
8859   // becomes now the last or second to last operand).
8860   Ops.push_back(*(Call->op_begin()));
8861 
8862   // Push the glue flag (last operand).
8863   if (HasGlue)
8864     Ops.push_back(*(Call->op_end()-1));
8865 
8866   SDVTList NodeTys;
8867   if (IsAnyRegCC && HasDef) {
8868     // Create the return types based on the intrinsic definition
8869     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8870     SmallVector<EVT, 3> ValueVTs;
8871     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8872     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8873 
8874     // There is always a chain and a glue type at the end
8875     ValueVTs.push_back(MVT::Other);
8876     ValueVTs.push_back(MVT::Glue);
8877     NodeTys = DAG.getVTList(ValueVTs);
8878   } else
8879     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8880 
8881   // Replace the target specific call node with a PATCHPOINT node.
8882   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8883                                          dl, NodeTys, Ops);
8884 
8885   // Update the NodeMap.
8886   if (HasDef) {
8887     if (IsAnyRegCC)
8888       setValue(&CB, SDValue(MN, 0));
8889     else
8890       setValue(&CB, Result.first);
8891   }
8892 
8893   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8894   // call sequence. Furthermore the location of the chain and glue can change
8895   // when the AnyReg calling convention is used and the intrinsic returns a
8896   // value.
8897   if (IsAnyRegCC && HasDef) {
8898     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8899     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8900     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8901   } else
8902     DAG.ReplaceAllUsesWith(Call, MN);
8903   DAG.DeleteNode(Call);
8904 
8905   // Inform the Frame Information that we have a patchpoint in this function.
8906   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8907 }
8908 
8909 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8910                                             unsigned Intrinsic) {
8911   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8912   SDValue Op1 = getValue(I.getArgOperand(0));
8913   SDValue Op2;
8914   if (I.getNumArgOperands() > 1)
8915     Op2 = getValue(I.getArgOperand(1));
8916   SDLoc dl = getCurSDLoc();
8917   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8918   SDValue Res;
8919   FastMathFlags FMF;
8920   if (isa<FPMathOperator>(I))
8921     FMF = I.getFastMathFlags();
8922 
8923   switch (Intrinsic) {
8924   case Intrinsic::experimental_vector_reduce_v2_fadd:
8925     if (FMF.allowReassoc())
8926       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8927                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8928     else
8929       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8930     break;
8931   case Intrinsic::experimental_vector_reduce_v2_fmul:
8932     if (FMF.allowReassoc())
8933       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8934                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8935     else
8936       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8937     break;
8938   case Intrinsic::experimental_vector_reduce_add:
8939     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8940     break;
8941   case Intrinsic::experimental_vector_reduce_mul:
8942     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8943     break;
8944   case Intrinsic::experimental_vector_reduce_and:
8945     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8946     break;
8947   case Intrinsic::experimental_vector_reduce_or:
8948     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8949     break;
8950   case Intrinsic::experimental_vector_reduce_xor:
8951     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8952     break;
8953   case Intrinsic::experimental_vector_reduce_smax:
8954     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8955     break;
8956   case Intrinsic::experimental_vector_reduce_smin:
8957     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8958     break;
8959   case Intrinsic::experimental_vector_reduce_umax:
8960     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8961     break;
8962   case Intrinsic::experimental_vector_reduce_umin:
8963     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8964     break;
8965   case Intrinsic::experimental_vector_reduce_fmax:
8966     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8967     break;
8968   case Intrinsic::experimental_vector_reduce_fmin:
8969     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8970     break;
8971   default:
8972     llvm_unreachable("Unhandled vector reduce intrinsic");
8973   }
8974   setValue(&I, Res);
8975 }
8976 
8977 /// Returns an AttributeList representing the attributes applied to the return
8978 /// value of the given call.
8979 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8980   SmallVector<Attribute::AttrKind, 2> Attrs;
8981   if (CLI.RetSExt)
8982     Attrs.push_back(Attribute::SExt);
8983   if (CLI.RetZExt)
8984     Attrs.push_back(Attribute::ZExt);
8985   if (CLI.IsInReg)
8986     Attrs.push_back(Attribute::InReg);
8987 
8988   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8989                             Attrs);
8990 }
8991 
8992 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8993 /// implementation, which just calls LowerCall.
8994 /// FIXME: When all targets are
8995 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8996 std::pair<SDValue, SDValue>
8997 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8998   // Handle the incoming return values from the call.
8999   CLI.Ins.clear();
9000   Type *OrigRetTy = CLI.RetTy;
9001   SmallVector<EVT, 4> RetTys;
9002   SmallVector<uint64_t, 4> Offsets;
9003   auto &DL = CLI.DAG.getDataLayout();
9004   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9005 
9006   if (CLI.IsPostTypeLegalization) {
9007     // If we are lowering a libcall after legalization, split the return type.
9008     SmallVector<EVT, 4> OldRetTys;
9009     SmallVector<uint64_t, 4> OldOffsets;
9010     RetTys.swap(OldRetTys);
9011     Offsets.swap(OldOffsets);
9012 
9013     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9014       EVT RetVT = OldRetTys[i];
9015       uint64_t Offset = OldOffsets[i];
9016       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9017       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9018       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9019       RetTys.append(NumRegs, RegisterVT);
9020       for (unsigned j = 0; j != NumRegs; ++j)
9021         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9022     }
9023   }
9024 
9025   SmallVector<ISD::OutputArg, 4> Outs;
9026   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9027 
9028   bool CanLowerReturn =
9029       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9030                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9031 
9032   SDValue DemoteStackSlot;
9033   int DemoteStackIdx = -100;
9034   if (!CanLowerReturn) {
9035     // FIXME: equivalent assert?
9036     // assert(!CS.hasInAllocaArgument() &&
9037     //        "sret demotion is incompatible with inalloca");
9038     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9039     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9040     MachineFunction &MF = CLI.DAG.getMachineFunction();
9041     DemoteStackIdx =
9042         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9043     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9044                                               DL.getAllocaAddrSpace());
9045 
9046     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9047     ArgListEntry Entry;
9048     Entry.Node = DemoteStackSlot;
9049     Entry.Ty = StackSlotPtrType;
9050     Entry.IsSExt = false;
9051     Entry.IsZExt = false;
9052     Entry.IsInReg = false;
9053     Entry.IsSRet = true;
9054     Entry.IsNest = false;
9055     Entry.IsByVal = false;
9056     Entry.IsReturned = false;
9057     Entry.IsSwiftSelf = false;
9058     Entry.IsSwiftError = false;
9059     Entry.IsCFGuardTarget = false;
9060     Entry.Alignment = Alignment;
9061     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9062     CLI.NumFixedArgs += 1;
9063     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9064 
9065     // sret demotion isn't compatible with tail-calls, since the sret argument
9066     // points into the callers stack frame.
9067     CLI.IsTailCall = false;
9068   } else {
9069     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9070         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9071     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9072       ISD::ArgFlagsTy Flags;
9073       if (NeedsRegBlock) {
9074         Flags.setInConsecutiveRegs();
9075         if (I == RetTys.size() - 1)
9076           Flags.setInConsecutiveRegsLast();
9077       }
9078       EVT VT = RetTys[I];
9079       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9080                                                      CLI.CallConv, VT);
9081       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9082                                                        CLI.CallConv, VT);
9083       for (unsigned i = 0; i != NumRegs; ++i) {
9084         ISD::InputArg MyFlags;
9085         MyFlags.Flags = Flags;
9086         MyFlags.VT = RegisterVT;
9087         MyFlags.ArgVT = VT;
9088         MyFlags.Used = CLI.IsReturnValueUsed;
9089         if (CLI.RetTy->isPointerTy()) {
9090           MyFlags.Flags.setPointer();
9091           MyFlags.Flags.setPointerAddrSpace(
9092               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9093         }
9094         if (CLI.RetSExt)
9095           MyFlags.Flags.setSExt();
9096         if (CLI.RetZExt)
9097           MyFlags.Flags.setZExt();
9098         if (CLI.IsInReg)
9099           MyFlags.Flags.setInReg();
9100         CLI.Ins.push_back(MyFlags);
9101       }
9102     }
9103   }
9104 
9105   // We push in swifterror return as the last element of CLI.Ins.
9106   ArgListTy &Args = CLI.getArgs();
9107   if (supportSwiftError()) {
9108     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9109       if (Args[i].IsSwiftError) {
9110         ISD::InputArg MyFlags;
9111         MyFlags.VT = getPointerTy(DL);
9112         MyFlags.ArgVT = EVT(getPointerTy(DL));
9113         MyFlags.Flags.setSwiftError();
9114         CLI.Ins.push_back(MyFlags);
9115       }
9116     }
9117   }
9118 
9119   // Handle all of the outgoing arguments.
9120   CLI.Outs.clear();
9121   CLI.OutVals.clear();
9122   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9123     SmallVector<EVT, 4> ValueVTs;
9124     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9125     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9126     Type *FinalType = Args[i].Ty;
9127     if (Args[i].IsByVal)
9128       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9129     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9130         FinalType, CLI.CallConv, CLI.IsVarArg);
9131     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9132          ++Value) {
9133       EVT VT = ValueVTs[Value];
9134       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9135       SDValue Op = SDValue(Args[i].Node.getNode(),
9136                            Args[i].Node.getResNo() + Value);
9137       ISD::ArgFlagsTy Flags;
9138 
9139       // Certain targets (such as MIPS), may have a different ABI alignment
9140       // for a type depending on the context. Give the target a chance to
9141       // specify the alignment it wants.
9142       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9143 
9144       if (Args[i].Ty->isPointerTy()) {
9145         Flags.setPointer();
9146         Flags.setPointerAddrSpace(
9147             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9148       }
9149       if (Args[i].IsZExt)
9150         Flags.setZExt();
9151       if (Args[i].IsSExt)
9152         Flags.setSExt();
9153       if (Args[i].IsInReg) {
9154         // If we are using vectorcall calling convention, a structure that is
9155         // passed InReg - is surely an HVA
9156         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9157             isa<StructType>(FinalType)) {
9158           // The first value of a structure is marked
9159           if (0 == Value)
9160             Flags.setHvaStart();
9161           Flags.setHva();
9162         }
9163         // Set InReg Flag
9164         Flags.setInReg();
9165       }
9166       if (Args[i].IsSRet)
9167         Flags.setSRet();
9168       if (Args[i].IsSwiftSelf)
9169         Flags.setSwiftSelf();
9170       if (Args[i].IsSwiftError)
9171         Flags.setSwiftError();
9172       if (Args[i].IsCFGuardTarget)
9173         Flags.setCFGuardTarget();
9174       if (Args[i].IsByVal)
9175         Flags.setByVal();
9176       if (Args[i].IsPreallocated) {
9177         Flags.setPreallocated();
9178         // Set the byval flag for CCAssignFn callbacks that don't know about
9179         // preallocated.  This way we can know how many bytes we should've
9180         // allocated and how many bytes a callee cleanup function will pop.  If
9181         // we port preallocated to more targets, we'll have to add custom
9182         // preallocated handling in the various CC lowering callbacks.
9183         Flags.setByVal();
9184       }
9185       if (Args[i].IsInAlloca) {
9186         Flags.setInAlloca();
9187         // Set the byval flag for CCAssignFn callbacks that don't know about
9188         // inalloca.  This way we can know how many bytes we should've allocated
9189         // and how many bytes a callee cleanup function will pop.  If we port
9190         // inalloca to more targets, we'll have to add custom inalloca handling
9191         // in the various CC lowering callbacks.
9192         Flags.setByVal();
9193       }
9194       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9195         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9196         Type *ElementTy = Ty->getElementType();
9197 
9198         unsigned FrameSize = DL.getTypeAllocSize(
9199             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9200         Flags.setByValSize(FrameSize);
9201 
9202         // info is not there but there are cases it cannot get right.
9203         Align FrameAlign;
9204         if (auto MA = Args[i].Alignment)
9205           FrameAlign = *MA;
9206         else
9207           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9208         Flags.setByValAlign(FrameAlign);
9209       }
9210       if (Args[i].IsNest)
9211         Flags.setNest();
9212       if (NeedsRegBlock)
9213         Flags.setInConsecutiveRegs();
9214       Flags.setOrigAlign(OriginalAlignment);
9215 
9216       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9217                                                  CLI.CallConv, VT);
9218       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9219                                                         CLI.CallConv, VT);
9220       SmallVector<SDValue, 4> Parts(NumParts);
9221       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9222 
9223       if (Args[i].IsSExt)
9224         ExtendKind = ISD::SIGN_EXTEND;
9225       else if (Args[i].IsZExt)
9226         ExtendKind = ISD::ZERO_EXTEND;
9227 
9228       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9229       // for now.
9230       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9231           CanLowerReturn) {
9232         assert((CLI.RetTy == Args[i].Ty ||
9233                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9234                  CLI.RetTy->getPointerAddressSpace() ==
9235                      Args[i].Ty->getPointerAddressSpace())) &&
9236                RetTys.size() == NumValues && "unexpected use of 'returned'");
9237         // Before passing 'returned' to the target lowering code, ensure that
9238         // either the register MVT and the actual EVT are the same size or that
9239         // the return value and argument are extended in the same way; in these
9240         // cases it's safe to pass the argument register value unchanged as the
9241         // return register value (although it's at the target's option whether
9242         // to do so)
9243         // TODO: allow code generation to take advantage of partially preserved
9244         // registers rather than clobbering the entire register when the
9245         // parameter extension method is not compatible with the return
9246         // extension method
9247         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9248             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9249              CLI.RetZExt == Args[i].IsZExt))
9250           Flags.setReturned();
9251       }
9252 
9253       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9254                      CLI.CallConv, ExtendKind);
9255 
9256       for (unsigned j = 0; j != NumParts; ++j) {
9257         // if it isn't first piece, alignment must be 1
9258         // For scalable vectors the scalable part is currently handled
9259         // by individual targets, so we just use the known minimum size here.
9260         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9261                     i < CLI.NumFixedArgs, i,
9262                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9263         if (NumParts > 1 && j == 0)
9264           MyFlags.Flags.setSplit();
9265         else if (j != 0) {
9266           MyFlags.Flags.setOrigAlign(Align(1));
9267           if (j == NumParts - 1)
9268             MyFlags.Flags.setSplitEnd();
9269         }
9270 
9271         CLI.Outs.push_back(MyFlags);
9272         CLI.OutVals.push_back(Parts[j]);
9273       }
9274 
9275       if (NeedsRegBlock && Value == NumValues - 1)
9276         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9277     }
9278   }
9279 
9280   SmallVector<SDValue, 4> InVals;
9281   CLI.Chain = LowerCall(CLI, InVals);
9282 
9283   // Update CLI.InVals to use outside of this function.
9284   CLI.InVals = InVals;
9285 
9286   // Verify that the target's LowerCall behaved as expected.
9287   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9288          "LowerCall didn't return a valid chain!");
9289   assert((!CLI.IsTailCall || InVals.empty()) &&
9290          "LowerCall emitted a return value for a tail call!");
9291   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9292          "LowerCall didn't emit the correct number of values!");
9293 
9294   // For a tail call, the return value is merely live-out and there aren't
9295   // any nodes in the DAG representing it. Return a special value to
9296   // indicate that a tail call has been emitted and no more Instructions
9297   // should be processed in the current block.
9298   if (CLI.IsTailCall) {
9299     CLI.DAG.setRoot(CLI.Chain);
9300     return std::make_pair(SDValue(), SDValue());
9301   }
9302 
9303 #ifndef NDEBUG
9304   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9305     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9306     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9307            "LowerCall emitted a value with the wrong type!");
9308   }
9309 #endif
9310 
9311   SmallVector<SDValue, 4> ReturnValues;
9312   if (!CanLowerReturn) {
9313     // The instruction result is the result of loading from the
9314     // hidden sret parameter.
9315     SmallVector<EVT, 1> PVTs;
9316     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9317 
9318     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9319     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9320     EVT PtrVT = PVTs[0];
9321 
9322     unsigned NumValues = RetTys.size();
9323     ReturnValues.resize(NumValues);
9324     SmallVector<SDValue, 4> Chains(NumValues);
9325 
9326     // An aggregate return value cannot wrap around the address space, so
9327     // offsets to its parts don't wrap either.
9328     SDNodeFlags Flags;
9329     Flags.setNoUnsignedWrap(true);
9330 
9331     MachineFunction &MF = CLI.DAG.getMachineFunction();
9332     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9333     for (unsigned i = 0; i < NumValues; ++i) {
9334       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9335                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9336                                                         PtrVT), Flags);
9337       SDValue L = CLI.DAG.getLoad(
9338           RetTys[i], CLI.DL, CLI.Chain, Add,
9339           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9340                                             DemoteStackIdx, Offsets[i]),
9341           HiddenSRetAlign);
9342       ReturnValues[i] = L;
9343       Chains[i] = L.getValue(1);
9344     }
9345 
9346     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9347   } else {
9348     // Collect the legal value parts into potentially illegal values
9349     // that correspond to the original function's return values.
9350     Optional<ISD::NodeType> AssertOp;
9351     if (CLI.RetSExt)
9352       AssertOp = ISD::AssertSext;
9353     else if (CLI.RetZExt)
9354       AssertOp = ISD::AssertZext;
9355     unsigned CurReg = 0;
9356     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9357       EVT VT = RetTys[I];
9358       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9359                                                      CLI.CallConv, VT);
9360       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9361                                                        CLI.CallConv, VT);
9362 
9363       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9364                                               NumRegs, RegisterVT, VT, nullptr,
9365                                               CLI.CallConv, AssertOp));
9366       CurReg += NumRegs;
9367     }
9368 
9369     // For a function returning void, there is no return value. We can't create
9370     // such a node, so we just return a null return value in that case. In
9371     // that case, nothing will actually look at the value.
9372     if (ReturnValues.empty())
9373       return std::make_pair(SDValue(), CLI.Chain);
9374   }
9375 
9376   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9377                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9378   return std::make_pair(Res, CLI.Chain);
9379 }
9380 
9381 void TargetLowering::LowerOperationWrapper(SDNode *N,
9382                                            SmallVectorImpl<SDValue> &Results,
9383                                            SelectionDAG &DAG) const {
9384   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9385     Results.push_back(Res);
9386 }
9387 
9388 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9389   llvm_unreachable("LowerOperation not implemented for this target!");
9390 }
9391 
9392 void
9393 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9394   SDValue Op = getNonRegisterValue(V);
9395   assert((Op.getOpcode() != ISD::CopyFromReg ||
9396           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9397          "Copy from a reg to the same reg!");
9398   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9399 
9400   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9401   // If this is an InlineAsm we have to match the registers required, not the
9402   // notional registers required by the type.
9403 
9404   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9405                    None); // This is not an ABI copy.
9406   SDValue Chain = DAG.getEntryNode();
9407 
9408   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9409                               FuncInfo.PreferredExtendType.end())
9410                                  ? ISD::ANY_EXTEND
9411                                  : FuncInfo.PreferredExtendType[V];
9412   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9413   PendingExports.push_back(Chain);
9414 }
9415 
9416 #include "llvm/CodeGen/SelectionDAGISel.h"
9417 
9418 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9419 /// entry block, return true.  This includes arguments used by switches, since
9420 /// the switch may expand into multiple basic blocks.
9421 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9422   // With FastISel active, we may be splitting blocks, so force creation
9423   // of virtual registers for all non-dead arguments.
9424   if (FastISel)
9425     return A->use_empty();
9426 
9427   const BasicBlock &Entry = A->getParent()->front();
9428   for (const User *U : A->users())
9429     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9430       return false;  // Use not in entry block.
9431 
9432   return true;
9433 }
9434 
9435 using ArgCopyElisionMapTy =
9436     DenseMap<const Argument *,
9437              std::pair<const AllocaInst *, const StoreInst *>>;
9438 
9439 /// Scan the entry block of the function in FuncInfo for arguments that look
9440 /// like copies into a local alloca. Record any copied arguments in
9441 /// ArgCopyElisionCandidates.
9442 static void
9443 findArgumentCopyElisionCandidates(const DataLayout &DL,
9444                                   FunctionLoweringInfo *FuncInfo,
9445                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9446   // Record the state of every static alloca used in the entry block. Argument
9447   // allocas are all used in the entry block, so we need approximately as many
9448   // entries as we have arguments.
9449   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9450   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9451   unsigned NumArgs = FuncInfo->Fn->arg_size();
9452   StaticAllocas.reserve(NumArgs * 2);
9453 
9454   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9455     if (!V)
9456       return nullptr;
9457     V = V->stripPointerCasts();
9458     const auto *AI = dyn_cast<AllocaInst>(V);
9459     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9460       return nullptr;
9461     auto Iter = StaticAllocas.insert({AI, Unknown});
9462     return &Iter.first->second;
9463   };
9464 
9465   // Look for stores of arguments to static allocas. Look through bitcasts and
9466   // GEPs to handle type coercions, as long as the alloca is fully initialized
9467   // by the store. Any non-store use of an alloca escapes it and any subsequent
9468   // unanalyzed store might write it.
9469   // FIXME: Handle structs initialized with multiple stores.
9470   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9471     // Look for stores, and handle non-store uses conservatively.
9472     const auto *SI = dyn_cast<StoreInst>(&I);
9473     if (!SI) {
9474       // We will look through cast uses, so ignore them completely.
9475       if (I.isCast())
9476         continue;
9477       // Ignore debug info intrinsics, they don't escape or store to allocas.
9478       if (isa<DbgInfoIntrinsic>(I))
9479         continue;
9480       // This is an unknown instruction. Assume it escapes or writes to all
9481       // static alloca operands.
9482       for (const Use &U : I.operands()) {
9483         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9484           *Info = StaticAllocaInfo::Clobbered;
9485       }
9486       continue;
9487     }
9488 
9489     // If the stored value is a static alloca, mark it as escaped.
9490     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9491       *Info = StaticAllocaInfo::Clobbered;
9492 
9493     // Check if the destination is a static alloca.
9494     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9495     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9496     if (!Info)
9497       continue;
9498     const AllocaInst *AI = cast<AllocaInst>(Dst);
9499 
9500     // Skip allocas that have been initialized or clobbered.
9501     if (*Info != StaticAllocaInfo::Unknown)
9502       continue;
9503 
9504     // Check if the stored value is an argument, and that this store fully
9505     // initializes the alloca. Don't elide copies from the same argument twice.
9506     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9507     const auto *Arg = dyn_cast<Argument>(Val);
9508     if (!Arg || Arg->hasPassPointeeByValueAttr() ||
9509         Arg->getType()->isEmptyTy() ||
9510         DL.getTypeStoreSize(Arg->getType()) !=
9511             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9512         ArgCopyElisionCandidates.count(Arg)) {
9513       *Info = StaticAllocaInfo::Clobbered;
9514       continue;
9515     }
9516 
9517     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9518                       << '\n');
9519 
9520     // Mark this alloca and store for argument copy elision.
9521     *Info = StaticAllocaInfo::Elidable;
9522     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9523 
9524     // Stop scanning if we've seen all arguments. This will happen early in -O0
9525     // builds, which is useful, because -O0 builds have large entry blocks and
9526     // many allocas.
9527     if (ArgCopyElisionCandidates.size() == NumArgs)
9528       break;
9529   }
9530 }
9531 
9532 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9533 /// ArgVal is a load from a suitable fixed stack object.
9534 static void tryToElideArgumentCopy(
9535     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9536     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9537     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9538     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9539     SDValue ArgVal, bool &ArgHasUses) {
9540   // Check if this is a load from a fixed stack object.
9541   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9542   if (!LNode)
9543     return;
9544   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9545   if (!FINode)
9546     return;
9547 
9548   // Check that the fixed stack object is the right size and alignment.
9549   // Look at the alignment that the user wrote on the alloca instead of looking
9550   // at the stack object.
9551   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9552   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9553   const AllocaInst *AI = ArgCopyIter->second.first;
9554   int FixedIndex = FINode->getIndex();
9555   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9556   int OldIndex = AllocaIndex;
9557   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9558   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9559     LLVM_DEBUG(
9560         dbgs() << "  argument copy elision failed due to bad fixed stack "
9561                   "object size\n");
9562     return;
9563   }
9564   Align RequiredAlignment = AI->getAlign();
9565   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9566     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9567                          "greater than stack argument alignment ("
9568                       << DebugStr(RequiredAlignment) << " vs "
9569                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9570     return;
9571   }
9572 
9573   // Perform the elision. Delete the old stack object and replace its only use
9574   // in the variable info map. Mark the stack object as mutable.
9575   LLVM_DEBUG({
9576     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9577            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9578            << '\n';
9579   });
9580   MFI.RemoveStackObject(OldIndex);
9581   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9582   AllocaIndex = FixedIndex;
9583   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9584   Chains.push_back(ArgVal.getValue(1));
9585 
9586   // Avoid emitting code for the store implementing the copy.
9587   const StoreInst *SI = ArgCopyIter->second.second;
9588   ElidedArgCopyInstrs.insert(SI);
9589 
9590   // Check for uses of the argument again so that we can avoid exporting ArgVal
9591   // if it is't used by anything other than the store.
9592   for (const Value *U : Arg.users()) {
9593     if (U != SI) {
9594       ArgHasUses = true;
9595       break;
9596     }
9597   }
9598 }
9599 
9600 void SelectionDAGISel::LowerArguments(const Function &F) {
9601   SelectionDAG &DAG = SDB->DAG;
9602   SDLoc dl = SDB->getCurSDLoc();
9603   const DataLayout &DL = DAG.getDataLayout();
9604   SmallVector<ISD::InputArg, 16> Ins;
9605 
9606   if (!FuncInfo->CanLowerReturn) {
9607     // Put in an sret pointer parameter before all the other parameters.
9608     SmallVector<EVT, 1> ValueVTs;
9609     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9610                     F.getReturnType()->getPointerTo(
9611                         DAG.getDataLayout().getAllocaAddrSpace()),
9612                     ValueVTs);
9613 
9614     // NOTE: Assuming that a pointer will never break down to more than one VT
9615     // or one register.
9616     ISD::ArgFlagsTy Flags;
9617     Flags.setSRet();
9618     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9619     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9620                          ISD::InputArg::NoArgIndex, 0);
9621     Ins.push_back(RetArg);
9622   }
9623 
9624   // Look for stores of arguments to static allocas. Mark such arguments with a
9625   // flag to ask the target to give us the memory location of that argument if
9626   // available.
9627   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9628   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9629                                     ArgCopyElisionCandidates);
9630 
9631   // Set up the incoming argument description vector.
9632   for (const Argument &Arg : F.args()) {
9633     unsigned ArgNo = Arg.getArgNo();
9634     SmallVector<EVT, 4> ValueVTs;
9635     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9636     bool isArgValueUsed = !Arg.use_empty();
9637     unsigned PartBase = 0;
9638     Type *FinalType = Arg.getType();
9639     if (Arg.hasAttribute(Attribute::ByVal))
9640       FinalType = Arg.getParamByValType();
9641     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9642         FinalType, F.getCallingConv(), F.isVarArg());
9643     for (unsigned Value = 0, NumValues = ValueVTs.size();
9644          Value != NumValues; ++Value) {
9645       EVT VT = ValueVTs[Value];
9646       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9647       ISD::ArgFlagsTy Flags;
9648 
9649       // Certain targets (such as MIPS), may have a different ABI alignment
9650       // for a type depending on the context. Give the target a chance to
9651       // specify the alignment it wants.
9652       const Align OriginalAlignment(
9653           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9654 
9655       if (Arg.getType()->isPointerTy()) {
9656         Flags.setPointer();
9657         Flags.setPointerAddrSpace(
9658             cast<PointerType>(Arg.getType())->getAddressSpace());
9659       }
9660       if (Arg.hasAttribute(Attribute::ZExt))
9661         Flags.setZExt();
9662       if (Arg.hasAttribute(Attribute::SExt))
9663         Flags.setSExt();
9664       if (Arg.hasAttribute(Attribute::InReg)) {
9665         // If we are using vectorcall calling convention, a structure that is
9666         // passed InReg - is surely an HVA
9667         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9668             isa<StructType>(Arg.getType())) {
9669           // The first value of a structure is marked
9670           if (0 == Value)
9671             Flags.setHvaStart();
9672           Flags.setHva();
9673         }
9674         // Set InReg Flag
9675         Flags.setInReg();
9676       }
9677       if (Arg.hasAttribute(Attribute::StructRet))
9678         Flags.setSRet();
9679       if (Arg.hasAttribute(Attribute::SwiftSelf))
9680         Flags.setSwiftSelf();
9681       if (Arg.hasAttribute(Attribute::SwiftError))
9682         Flags.setSwiftError();
9683       if (Arg.hasAttribute(Attribute::ByVal))
9684         Flags.setByVal();
9685       if (Arg.hasAttribute(Attribute::InAlloca)) {
9686         Flags.setInAlloca();
9687         // Set the byval flag for CCAssignFn callbacks that don't know about
9688         // inalloca.  This way we can know how many bytes we should've allocated
9689         // and how many bytes a callee cleanup function will pop.  If we port
9690         // inalloca to more targets, we'll have to add custom inalloca handling
9691         // in the various CC lowering callbacks.
9692         Flags.setByVal();
9693       }
9694       if (Arg.hasAttribute(Attribute::Preallocated)) {
9695         Flags.setPreallocated();
9696         // Set the byval flag for CCAssignFn callbacks that don't know about
9697         // preallocated.  This way we can know how many bytes we should've
9698         // allocated and how many bytes a callee cleanup function will pop.  If
9699         // we port preallocated to more targets, we'll have to add custom
9700         // preallocated handling in the various CC lowering callbacks.
9701         Flags.setByVal();
9702       }
9703       if (F.getCallingConv() == CallingConv::X86_INTR) {
9704         // IA Interrupt passes frame (1st parameter) by value in the stack.
9705         if (ArgNo == 0)
9706           Flags.setByVal();
9707       }
9708       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
9709         Type *ElementTy = Arg.getParamByValType();
9710 
9711         // For ByVal, size and alignment should be passed from FE.  BE will
9712         // guess if this info is not there but there are cases it cannot get
9713         // right.
9714         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9715         Flags.setByValSize(FrameSize);
9716 
9717         unsigned FrameAlign;
9718         if (Arg.getParamAlignment())
9719           FrameAlign = Arg.getParamAlignment();
9720         else
9721           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9722         Flags.setByValAlign(Align(FrameAlign));
9723       }
9724       if (Arg.hasAttribute(Attribute::Nest))
9725         Flags.setNest();
9726       if (NeedsRegBlock)
9727         Flags.setInConsecutiveRegs();
9728       Flags.setOrigAlign(OriginalAlignment);
9729       if (ArgCopyElisionCandidates.count(&Arg))
9730         Flags.setCopyElisionCandidate();
9731       if (Arg.hasAttribute(Attribute::Returned))
9732         Flags.setReturned();
9733 
9734       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9735           *CurDAG->getContext(), F.getCallingConv(), VT);
9736       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9737           *CurDAG->getContext(), F.getCallingConv(), VT);
9738       for (unsigned i = 0; i != NumRegs; ++i) {
9739         // For scalable vectors, use the minimum size; individual targets
9740         // are responsible for handling scalable vector arguments and
9741         // return values.
9742         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9743                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9744         if (NumRegs > 1 && i == 0)
9745           MyFlags.Flags.setSplit();
9746         // if it isn't first piece, alignment must be 1
9747         else if (i > 0) {
9748           MyFlags.Flags.setOrigAlign(Align(1));
9749           if (i == NumRegs - 1)
9750             MyFlags.Flags.setSplitEnd();
9751         }
9752         Ins.push_back(MyFlags);
9753       }
9754       if (NeedsRegBlock && Value == NumValues - 1)
9755         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9756       PartBase += VT.getStoreSize().getKnownMinSize();
9757     }
9758   }
9759 
9760   // Call the target to set up the argument values.
9761   SmallVector<SDValue, 8> InVals;
9762   SDValue NewRoot = TLI->LowerFormalArguments(
9763       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9764 
9765   // Verify that the target's LowerFormalArguments behaved as expected.
9766   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9767          "LowerFormalArguments didn't return a valid chain!");
9768   assert(InVals.size() == Ins.size() &&
9769          "LowerFormalArguments didn't emit the correct number of values!");
9770   LLVM_DEBUG({
9771     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9772       assert(InVals[i].getNode() &&
9773              "LowerFormalArguments emitted a null value!");
9774       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9775              "LowerFormalArguments emitted a value with the wrong type!");
9776     }
9777   });
9778 
9779   // Update the DAG with the new chain value resulting from argument lowering.
9780   DAG.setRoot(NewRoot);
9781 
9782   // Set up the argument values.
9783   unsigned i = 0;
9784   if (!FuncInfo->CanLowerReturn) {
9785     // Create a virtual register for the sret pointer, and put in a copy
9786     // from the sret argument into it.
9787     SmallVector<EVT, 1> ValueVTs;
9788     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9789                     F.getReturnType()->getPointerTo(
9790                         DAG.getDataLayout().getAllocaAddrSpace()),
9791                     ValueVTs);
9792     MVT VT = ValueVTs[0].getSimpleVT();
9793     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9794     Optional<ISD::NodeType> AssertOp = None;
9795     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9796                                         nullptr, F.getCallingConv(), AssertOp);
9797 
9798     MachineFunction& MF = SDB->DAG.getMachineFunction();
9799     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9800     Register SRetReg =
9801         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9802     FuncInfo->DemoteRegister = SRetReg;
9803     NewRoot =
9804         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9805     DAG.setRoot(NewRoot);
9806 
9807     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9808     ++i;
9809   }
9810 
9811   SmallVector<SDValue, 4> Chains;
9812   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9813   for (const Argument &Arg : F.args()) {
9814     SmallVector<SDValue, 4> ArgValues;
9815     SmallVector<EVT, 4> ValueVTs;
9816     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9817     unsigned NumValues = ValueVTs.size();
9818     if (NumValues == 0)
9819       continue;
9820 
9821     bool ArgHasUses = !Arg.use_empty();
9822 
9823     // Elide the copying store if the target loaded this argument from a
9824     // suitable fixed stack object.
9825     if (Ins[i].Flags.isCopyElisionCandidate()) {
9826       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9827                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9828                              InVals[i], ArgHasUses);
9829     }
9830 
9831     // If this argument is unused then remember its value. It is used to generate
9832     // debugging information.
9833     bool isSwiftErrorArg =
9834         TLI->supportSwiftError() &&
9835         Arg.hasAttribute(Attribute::SwiftError);
9836     if (!ArgHasUses && !isSwiftErrorArg) {
9837       SDB->setUnusedArgValue(&Arg, InVals[i]);
9838 
9839       // Also remember any frame index for use in FastISel.
9840       if (FrameIndexSDNode *FI =
9841           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9842         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9843     }
9844 
9845     for (unsigned Val = 0; Val != NumValues; ++Val) {
9846       EVT VT = ValueVTs[Val];
9847       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9848                                                       F.getCallingConv(), VT);
9849       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9850           *CurDAG->getContext(), F.getCallingConv(), VT);
9851 
9852       // Even an apparent 'unused' swifterror argument needs to be returned. So
9853       // we do generate a copy for it that can be used on return from the
9854       // function.
9855       if (ArgHasUses || isSwiftErrorArg) {
9856         Optional<ISD::NodeType> AssertOp;
9857         if (Arg.hasAttribute(Attribute::SExt))
9858           AssertOp = ISD::AssertSext;
9859         else if (Arg.hasAttribute(Attribute::ZExt))
9860           AssertOp = ISD::AssertZext;
9861 
9862         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9863                                              PartVT, VT, nullptr,
9864                                              F.getCallingConv(), AssertOp));
9865       }
9866 
9867       i += NumParts;
9868     }
9869 
9870     // We don't need to do anything else for unused arguments.
9871     if (ArgValues.empty())
9872       continue;
9873 
9874     // Note down frame index.
9875     if (FrameIndexSDNode *FI =
9876         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9877       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9878 
9879     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9880                                      SDB->getCurSDLoc());
9881 
9882     SDB->setValue(&Arg, Res);
9883     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9884       // We want to associate the argument with the frame index, among
9885       // involved operands, that correspond to the lowest address. The
9886       // getCopyFromParts function, called earlier, is swapping the order of
9887       // the operands to BUILD_PAIR depending on endianness. The result of
9888       // that swapping is that the least significant bits of the argument will
9889       // be in the first operand of the BUILD_PAIR node, and the most
9890       // significant bits will be in the second operand.
9891       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9892       if (LoadSDNode *LNode =
9893           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9894         if (FrameIndexSDNode *FI =
9895             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9896           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9897     }
9898 
9899     // Analyses past this point are naive and don't expect an assertion.
9900     if (Res.getOpcode() == ISD::AssertZext)
9901       Res = Res.getOperand(0);
9902 
9903     // Update the SwiftErrorVRegDefMap.
9904     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9905       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9906       if (Register::isVirtualRegister(Reg))
9907         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9908                                    Reg);
9909     }
9910 
9911     // If this argument is live outside of the entry block, insert a copy from
9912     // wherever we got it to the vreg that other BB's will reference it as.
9913     if (Res.getOpcode() == ISD::CopyFromReg) {
9914       // If we can, though, try to skip creating an unnecessary vreg.
9915       // FIXME: This isn't very clean... it would be nice to make this more
9916       // general.
9917       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9918       if (Register::isVirtualRegister(Reg)) {
9919         FuncInfo->ValueMap[&Arg] = Reg;
9920         continue;
9921       }
9922     }
9923     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9924       FuncInfo->InitializeRegForValue(&Arg);
9925       SDB->CopyToExportRegsIfNeeded(&Arg);
9926     }
9927   }
9928 
9929   if (!Chains.empty()) {
9930     Chains.push_back(NewRoot);
9931     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9932   }
9933 
9934   DAG.setRoot(NewRoot);
9935 
9936   assert(i == InVals.size() && "Argument register count mismatch!");
9937 
9938   // If any argument copy elisions occurred and we have debug info, update the
9939   // stale frame indices used in the dbg.declare variable info table.
9940   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9941   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9942     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9943       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9944       if (I != ArgCopyElisionFrameIndexMap.end())
9945         VI.Slot = I->second;
9946     }
9947   }
9948 
9949   // Finally, if the target has anything special to do, allow it to do so.
9950   emitFunctionEntryCode();
9951 }
9952 
9953 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9954 /// ensure constants are generated when needed.  Remember the virtual registers
9955 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9956 /// directly add them, because expansion might result in multiple MBB's for one
9957 /// BB.  As such, the start of the BB might correspond to a different MBB than
9958 /// the end.
9959 void
9960 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9961   const Instruction *TI = LLVMBB->getTerminator();
9962 
9963   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9964 
9965   // Check PHI nodes in successors that expect a value to be available from this
9966   // block.
9967   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9968     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9969     if (!isa<PHINode>(SuccBB->begin())) continue;
9970     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9971 
9972     // If this terminator has multiple identical successors (common for
9973     // switches), only handle each succ once.
9974     if (!SuccsHandled.insert(SuccMBB).second)
9975       continue;
9976 
9977     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9978 
9979     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9980     // nodes and Machine PHI nodes, but the incoming operands have not been
9981     // emitted yet.
9982     for (const PHINode &PN : SuccBB->phis()) {
9983       // Ignore dead phi's.
9984       if (PN.use_empty())
9985         continue;
9986 
9987       // Skip empty types
9988       if (PN.getType()->isEmptyTy())
9989         continue;
9990 
9991       unsigned Reg;
9992       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9993 
9994       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9995         unsigned &RegOut = ConstantsOut[C];
9996         if (RegOut == 0) {
9997           RegOut = FuncInfo.CreateRegs(C);
9998           CopyValueToVirtualRegister(C, RegOut);
9999         }
10000         Reg = RegOut;
10001       } else {
10002         DenseMap<const Value *, Register>::iterator I =
10003           FuncInfo.ValueMap.find(PHIOp);
10004         if (I != FuncInfo.ValueMap.end())
10005           Reg = I->second;
10006         else {
10007           assert(isa<AllocaInst>(PHIOp) &&
10008                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10009                  "Didn't codegen value into a register!??");
10010           Reg = FuncInfo.CreateRegs(PHIOp);
10011           CopyValueToVirtualRegister(PHIOp, Reg);
10012         }
10013       }
10014 
10015       // Remember that this register needs to added to the machine PHI node as
10016       // the input for this MBB.
10017       SmallVector<EVT, 4> ValueVTs;
10018       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10019       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10020       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10021         EVT VT = ValueVTs[vti];
10022         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10023         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10024           FuncInfo.PHINodesToUpdate.push_back(
10025               std::make_pair(&*MBBI++, Reg + i));
10026         Reg += NumRegisters;
10027       }
10028     }
10029   }
10030 
10031   ConstantsOut.clear();
10032 }
10033 
10034 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10035 /// is 0.
10036 MachineBasicBlock *
10037 SelectionDAGBuilder::StackProtectorDescriptor::
10038 AddSuccessorMBB(const BasicBlock *BB,
10039                 MachineBasicBlock *ParentMBB,
10040                 bool IsLikely,
10041                 MachineBasicBlock *SuccMBB) {
10042   // If SuccBB has not been created yet, create it.
10043   if (!SuccMBB) {
10044     MachineFunction *MF = ParentMBB->getParent();
10045     MachineFunction::iterator BBI(ParentMBB);
10046     SuccMBB = MF->CreateMachineBasicBlock(BB);
10047     MF->insert(++BBI, SuccMBB);
10048   }
10049   // Add it as a successor of ParentMBB.
10050   ParentMBB->addSuccessor(
10051       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10052   return SuccMBB;
10053 }
10054 
10055 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10056   MachineFunction::iterator I(MBB);
10057   if (++I == FuncInfo.MF->end())
10058     return nullptr;
10059   return &*I;
10060 }
10061 
10062 /// During lowering new call nodes can be created (such as memset, etc.).
10063 /// Those will become new roots of the current DAG, but complications arise
10064 /// when they are tail calls. In such cases, the call lowering will update
10065 /// the root, but the builder still needs to know that a tail call has been
10066 /// lowered in order to avoid generating an additional return.
10067 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10068   // If the node is null, we do have a tail call.
10069   if (MaybeTC.getNode() != nullptr)
10070     DAG.setRoot(MaybeTC);
10071   else
10072     HasTailCall = true;
10073 }
10074 
10075 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10076                                         MachineBasicBlock *SwitchMBB,
10077                                         MachineBasicBlock *DefaultMBB) {
10078   MachineFunction *CurMF = FuncInfo.MF;
10079   MachineBasicBlock *NextMBB = nullptr;
10080   MachineFunction::iterator BBI(W.MBB);
10081   if (++BBI != FuncInfo.MF->end())
10082     NextMBB = &*BBI;
10083 
10084   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10085 
10086   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10087 
10088   if (Size == 2 && W.MBB == SwitchMBB) {
10089     // If any two of the cases has the same destination, and if one value
10090     // is the same as the other, but has one bit unset that the other has set,
10091     // use bit manipulation to do two compares at once.  For example:
10092     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10093     // TODO: This could be extended to merge any 2 cases in switches with 3
10094     // cases.
10095     // TODO: Handle cases where W.CaseBB != SwitchBB.
10096     CaseCluster &Small = *W.FirstCluster;
10097     CaseCluster &Big = *W.LastCluster;
10098 
10099     if (Small.Low == Small.High && Big.Low == Big.High &&
10100         Small.MBB == Big.MBB) {
10101       const APInt &SmallValue = Small.Low->getValue();
10102       const APInt &BigValue = Big.Low->getValue();
10103 
10104       // Check that there is only one bit different.
10105       APInt CommonBit = BigValue ^ SmallValue;
10106       if (CommonBit.isPowerOf2()) {
10107         SDValue CondLHS = getValue(Cond);
10108         EVT VT = CondLHS.getValueType();
10109         SDLoc DL = getCurSDLoc();
10110 
10111         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10112                                  DAG.getConstant(CommonBit, DL, VT));
10113         SDValue Cond = DAG.getSetCC(
10114             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10115             ISD::SETEQ);
10116 
10117         // Update successor info.
10118         // Both Small and Big will jump to Small.BB, so we sum up the
10119         // probabilities.
10120         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10121         if (BPI)
10122           addSuccessorWithProb(
10123               SwitchMBB, DefaultMBB,
10124               // The default destination is the first successor in IR.
10125               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10126         else
10127           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10128 
10129         // Insert the true branch.
10130         SDValue BrCond =
10131             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10132                         DAG.getBasicBlock(Small.MBB));
10133         // Insert the false branch.
10134         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10135                              DAG.getBasicBlock(DefaultMBB));
10136 
10137         DAG.setRoot(BrCond);
10138         return;
10139       }
10140     }
10141   }
10142 
10143   if (TM.getOptLevel() != CodeGenOpt::None) {
10144     // Here, we order cases by probability so the most likely case will be
10145     // checked first. However, two clusters can have the same probability in
10146     // which case their relative ordering is non-deterministic. So we use Low
10147     // as a tie-breaker as clusters are guaranteed to never overlap.
10148     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10149                [](const CaseCluster &a, const CaseCluster &b) {
10150       return a.Prob != b.Prob ?
10151              a.Prob > b.Prob :
10152              a.Low->getValue().slt(b.Low->getValue());
10153     });
10154 
10155     // Rearrange the case blocks so that the last one falls through if possible
10156     // without changing the order of probabilities.
10157     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10158       --I;
10159       if (I->Prob > W.LastCluster->Prob)
10160         break;
10161       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10162         std::swap(*I, *W.LastCluster);
10163         break;
10164       }
10165     }
10166   }
10167 
10168   // Compute total probability.
10169   BranchProbability DefaultProb = W.DefaultProb;
10170   BranchProbability UnhandledProbs = DefaultProb;
10171   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10172     UnhandledProbs += I->Prob;
10173 
10174   MachineBasicBlock *CurMBB = W.MBB;
10175   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10176     bool FallthroughUnreachable = false;
10177     MachineBasicBlock *Fallthrough;
10178     if (I == W.LastCluster) {
10179       // For the last cluster, fall through to the default destination.
10180       Fallthrough = DefaultMBB;
10181       FallthroughUnreachable = isa<UnreachableInst>(
10182           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10183     } else {
10184       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10185       CurMF->insert(BBI, Fallthrough);
10186       // Put Cond in a virtual register to make it available from the new blocks.
10187       ExportFromCurrentBlock(Cond);
10188     }
10189     UnhandledProbs -= I->Prob;
10190 
10191     switch (I->Kind) {
10192       case CC_JumpTable: {
10193         // FIXME: Optimize away range check based on pivot comparisons.
10194         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10195         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10196 
10197         // The jump block hasn't been inserted yet; insert it here.
10198         MachineBasicBlock *JumpMBB = JT->MBB;
10199         CurMF->insert(BBI, JumpMBB);
10200 
10201         auto JumpProb = I->Prob;
10202         auto FallthroughProb = UnhandledProbs;
10203 
10204         // If the default statement is a target of the jump table, we evenly
10205         // distribute the default probability to successors of CurMBB. Also
10206         // update the probability on the edge from JumpMBB to Fallthrough.
10207         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10208                                               SE = JumpMBB->succ_end();
10209              SI != SE; ++SI) {
10210           if (*SI == DefaultMBB) {
10211             JumpProb += DefaultProb / 2;
10212             FallthroughProb -= DefaultProb / 2;
10213             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10214             JumpMBB->normalizeSuccProbs();
10215             break;
10216           }
10217         }
10218 
10219         if (FallthroughUnreachable) {
10220           // Skip the range check if the fallthrough block is unreachable.
10221           JTH->OmitRangeCheck = true;
10222         }
10223 
10224         if (!JTH->OmitRangeCheck)
10225           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10226         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10227         CurMBB->normalizeSuccProbs();
10228 
10229         // The jump table header will be inserted in our current block, do the
10230         // range check, and fall through to our fallthrough block.
10231         JTH->HeaderBB = CurMBB;
10232         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10233 
10234         // If we're in the right place, emit the jump table header right now.
10235         if (CurMBB == SwitchMBB) {
10236           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10237           JTH->Emitted = true;
10238         }
10239         break;
10240       }
10241       case CC_BitTests: {
10242         // FIXME: Optimize away range check based on pivot comparisons.
10243         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10244 
10245         // The bit test blocks haven't been inserted yet; insert them here.
10246         for (BitTestCase &BTC : BTB->Cases)
10247           CurMF->insert(BBI, BTC.ThisBB);
10248 
10249         // Fill in fields of the BitTestBlock.
10250         BTB->Parent = CurMBB;
10251         BTB->Default = Fallthrough;
10252 
10253         BTB->DefaultProb = UnhandledProbs;
10254         // If the cases in bit test don't form a contiguous range, we evenly
10255         // distribute the probability on the edge to Fallthrough to two
10256         // successors of CurMBB.
10257         if (!BTB->ContiguousRange) {
10258           BTB->Prob += DefaultProb / 2;
10259           BTB->DefaultProb -= DefaultProb / 2;
10260         }
10261 
10262         if (FallthroughUnreachable) {
10263           // Skip the range check if the fallthrough block is unreachable.
10264           BTB->OmitRangeCheck = true;
10265         }
10266 
10267         // If we're in the right place, emit the bit test header right now.
10268         if (CurMBB == SwitchMBB) {
10269           visitBitTestHeader(*BTB, SwitchMBB);
10270           BTB->Emitted = true;
10271         }
10272         break;
10273       }
10274       case CC_Range: {
10275         const Value *RHS, *LHS, *MHS;
10276         ISD::CondCode CC;
10277         if (I->Low == I->High) {
10278           // Check Cond == I->Low.
10279           CC = ISD::SETEQ;
10280           LHS = Cond;
10281           RHS=I->Low;
10282           MHS = nullptr;
10283         } else {
10284           // Check I->Low <= Cond <= I->High.
10285           CC = ISD::SETLE;
10286           LHS = I->Low;
10287           MHS = Cond;
10288           RHS = I->High;
10289         }
10290 
10291         // If Fallthrough is unreachable, fold away the comparison.
10292         if (FallthroughUnreachable)
10293           CC = ISD::SETTRUE;
10294 
10295         // The false probability is the sum of all unhandled cases.
10296         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10297                      getCurSDLoc(), I->Prob, UnhandledProbs);
10298 
10299         if (CurMBB == SwitchMBB)
10300           visitSwitchCase(CB, SwitchMBB);
10301         else
10302           SL->SwitchCases.push_back(CB);
10303 
10304         break;
10305       }
10306     }
10307     CurMBB = Fallthrough;
10308   }
10309 }
10310 
10311 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10312                                               CaseClusterIt First,
10313                                               CaseClusterIt Last) {
10314   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10315     if (X.Prob != CC.Prob)
10316       return X.Prob > CC.Prob;
10317 
10318     // Ties are broken by comparing the case value.
10319     return X.Low->getValue().slt(CC.Low->getValue());
10320   });
10321 }
10322 
10323 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10324                                         const SwitchWorkListItem &W,
10325                                         Value *Cond,
10326                                         MachineBasicBlock *SwitchMBB) {
10327   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10328          "Clusters not sorted?");
10329 
10330   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10331 
10332   // Balance the tree based on branch probabilities to create a near-optimal (in
10333   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10334   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10335   CaseClusterIt LastLeft = W.FirstCluster;
10336   CaseClusterIt FirstRight = W.LastCluster;
10337   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10338   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10339 
10340   // Move LastLeft and FirstRight towards each other from opposite directions to
10341   // find a partitioning of the clusters which balances the probability on both
10342   // sides. If LeftProb and RightProb are equal, alternate which side is
10343   // taken to ensure 0-probability nodes are distributed evenly.
10344   unsigned I = 0;
10345   while (LastLeft + 1 < FirstRight) {
10346     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10347       LeftProb += (++LastLeft)->Prob;
10348     else
10349       RightProb += (--FirstRight)->Prob;
10350     I++;
10351   }
10352 
10353   while (true) {
10354     // Our binary search tree differs from a typical BST in that ours can have up
10355     // to three values in each leaf. The pivot selection above doesn't take that
10356     // into account, which means the tree might require more nodes and be less
10357     // efficient. We compensate for this here.
10358 
10359     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10360     unsigned NumRight = W.LastCluster - FirstRight + 1;
10361 
10362     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10363       // If one side has less than 3 clusters, and the other has more than 3,
10364       // consider taking a cluster from the other side.
10365 
10366       if (NumLeft < NumRight) {
10367         // Consider moving the first cluster on the right to the left side.
10368         CaseCluster &CC = *FirstRight;
10369         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10370         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10371         if (LeftSideRank <= RightSideRank) {
10372           // Moving the cluster to the left does not demote it.
10373           ++LastLeft;
10374           ++FirstRight;
10375           continue;
10376         }
10377       } else {
10378         assert(NumRight < NumLeft);
10379         // Consider moving the last element on the left to the right side.
10380         CaseCluster &CC = *LastLeft;
10381         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10382         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10383         if (RightSideRank <= LeftSideRank) {
10384           // Moving the cluster to the right does not demot it.
10385           --LastLeft;
10386           --FirstRight;
10387           continue;
10388         }
10389       }
10390     }
10391     break;
10392   }
10393 
10394   assert(LastLeft + 1 == FirstRight);
10395   assert(LastLeft >= W.FirstCluster);
10396   assert(FirstRight <= W.LastCluster);
10397 
10398   // Use the first element on the right as pivot since we will make less-than
10399   // comparisons against it.
10400   CaseClusterIt PivotCluster = FirstRight;
10401   assert(PivotCluster > W.FirstCluster);
10402   assert(PivotCluster <= W.LastCluster);
10403 
10404   CaseClusterIt FirstLeft = W.FirstCluster;
10405   CaseClusterIt LastRight = W.LastCluster;
10406 
10407   const ConstantInt *Pivot = PivotCluster->Low;
10408 
10409   // New blocks will be inserted immediately after the current one.
10410   MachineFunction::iterator BBI(W.MBB);
10411   ++BBI;
10412 
10413   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10414   // we can branch to its destination directly if it's squeezed exactly in
10415   // between the known lower bound and Pivot - 1.
10416   MachineBasicBlock *LeftMBB;
10417   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10418       FirstLeft->Low == W.GE &&
10419       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10420     LeftMBB = FirstLeft->MBB;
10421   } else {
10422     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10423     FuncInfo.MF->insert(BBI, LeftMBB);
10424     WorkList.push_back(
10425         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10426     // Put Cond in a virtual register to make it available from the new blocks.
10427     ExportFromCurrentBlock(Cond);
10428   }
10429 
10430   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10431   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10432   // directly if RHS.High equals the current upper bound.
10433   MachineBasicBlock *RightMBB;
10434   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10435       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10436     RightMBB = FirstRight->MBB;
10437   } else {
10438     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10439     FuncInfo.MF->insert(BBI, RightMBB);
10440     WorkList.push_back(
10441         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10442     // Put Cond in a virtual register to make it available from the new blocks.
10443     ExportFromCurrentBlock(Cond);
10444   }
10445 
10446   // Create the CaseBlock record that will be used to lower the branch.
10447   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10448                getCurSDLoc(), LeftProb, RightProb);
10449 
10450   if (W.MBB == SwitchMBB)
10451     visitSwitchCase(CB, SwitchMBB);
10452   else
10453     SL->SwitchCases.push_back(CB);
10454 }
10455 
10456 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10457 // from the swith statement.
10458 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10459                                             BranchProbability PeeledCaseProb) {
10460   if (PeeledCaseProb == BranchProbability::getOne())
10461     return BranchProbability::getZero();
10462   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10463 
10464   uint32_t Numerator = CaseProb.getNumerator();
10465   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10466   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10467 }
10468 
10469 // Try to peel the top probability case if it exceeds the threshold.
10470 // Return current MachineBasicBlock for the switch statement if the peeling
10471 // does not occur.
10472 // If the peeling is performed, return the newly created MachineBasicBlock
10473 // for the peeled switch statement. Also update Clusters to remove the peeled
10474 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10475 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10476     const SwitchInst &SI, CaseClusterVector &Clusters,
10477     BranchProbability &PeeledCaseProb) {
10478   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10479   // Don't perform if there is only one cluster or optimizing for size.
10480   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10481       TM.getOptLevel() == CodeGenOpt::None ||
10482       SwitchMBB->getParent()->getFunction().hasMinSize())
10483     return SwitchMBB;
10484 
10485   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10486   unsigned PeeledCaseIndex = 0;
10487   bool SwitchPeeled = false;
10488   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10489     CaseCluster &CC = Clusters[Index];
10490     if (CC.Prob < TopCaseProb)
10491       continue;
10492     TopCaseProb = CC.Prob;
10493     PeeledCaseIndex = Index;
10494     SwitchPeeled = true;
10495   }
10496   if (!SwitchPeeled)
10497     return SwitchMBB;
10498 
10499   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10500                     << TopCaseProb << "\n");
10501 
10502   // Record the MBB for the peeled switch statement.
10503   MachineFunction::iterator BBI(SwitchMBB);
10504   ++BBI;
10505   MachineBasicBlock *PeeledSwitchMBB =
10506       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10507   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10508 
10509   ExportFromCurrentBlock(SI.getCondition());
10510   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10511   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10512                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10513   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10514 
10515   Clusters.erase(PeeledCaseIt);
10516   for (CaseCluster &CC : Clusters) {
10517     LLVM_DEBUG(
10518         dbgs() << "Scale the probablity for one cluster, before scaling: "
10519                << CC.Prob << "\n");
10520     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10521     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10522   }
10523   PeeledCaseProb = TopCaseProb;
10524   return PeeledSwitchMBB;
10525 }
10526 
10527 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10528   // Extract cases from the switch.
10529   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10530   CaseClusterVector Clusters;
10531   Clusters.reserve(SI.getNumCases());
10532   for (auto I : SI.cases()) {
10533     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10534     const ConstantInt *CaseVal = I.getCaseValue();
10535     BranchProbability Prob =
10536         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10537             : BranchProbability(1, SI.getNumCases() + 1);
10538     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10539   }
10540 
10541   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10542 
10543   // Cluster adjacent cases with the same destination. We do this at all
10544   // optimization levels because it's cheap to do and will make codegen faster
10545   // if there are many clusters.
10546   sortAndRangeify(Clusters);
10547 
10548   // The branch probablity of the peeled case.
10549   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10550   MachineBasicBlock *PeeledSwitchMBB =
10551       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10552 
10553   // If there is only the default destination, jump there directly.
10554   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10555   if (Clusters.empty()) {
10556     assert(PeeledSwitchMBB == SwitchMBB);
10557     SwitchMBB->addSuccessor(DefaultMBB);
10558     if (DefaultMBB != NextBlock(SwitchMBB)) {
10559       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10560                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10561     }
10562     return;
10563   }
10564 
10565   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10566   SL->findBitTestClusters(Clusters, &SI);
10567 
10568   LLVM_DEBUG({
10569     dbgs() << "Case clusters: ";
10570     for (const CaseCluster &C : Clusters) {
10571       if (C.Kind == CC_JumpTable)
10572         dbgs() << "JT:";
10573       if (C.Kind == CC_BitTests)
10574         dbgs() << "BT:";
10575 
10576       C.Low->getValue().print(dbgs(), true);
10577       if (C.Low != C.High) {
10578         dbgs() << '-';
10579         C.High->getValue().print(dbgs(), true);
10580       }
10581       dbgs() << ' ';
10582     }
10583     dbgs() << '\n';
10584   });
10585 
10586   assert(!Clusters.empty());
10587   SwitchWorkList WorkList;
10588   CaseClusterIt First = Clusters.begin();
10589   CaseClusterIt Last = Clusters.end() - 1;
10590   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10591   // Scale the branchprobability for DefaultMBB if the peel occurs and
10592   // DefaultMBB is not replaced.
10593   if (PeeledCaseProb != BranchProbability::getZero() &&
10594       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10595     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10596   WorkList.push_back(
10597       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10598 
10599   while (!WorkList.empty()) {
10600     SwitchWorkListItem W = WorkList.back();
10601     WorkList.pop_back();
10602     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10603 
10604     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10605         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10606       // For optimized builds, lower large range as a balanced binary tree.
10607       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10608       continue;
10609     }
10610 
10611     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10612   }
10613 }
10614 
10615 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10616   SmallVector<EVT, 4> ValueVTs;
10617   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10618                   ValueVTs);
10619   unsigned NumValues = ValueVTs.size();
10620   if (NumValues == 0) return;
10621 
10622   SmallVector<SDValue, 4> Values(NumValues);
10623   SDValue Op = getValue(I.getOperand(0));
10624 
10625   for (unsigned i = 0; i != NumValues; ++i)
10626     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10627                             SDValue(Op.getNode(), Op.getResNo() + i));
10628 
10629   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10630                            DAG.getVTList(ValueVTs), Values));
10631 }
10632