xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 1ae36b1387e4d023cc00aaa6139bcd90b2e48ff4)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/Loads.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <optional>
104 #include <tuple>
105 
106 using namespace llvm;
107 using namespace PatternMatch;
108 using namespace SwitchCG;
109 
110 #define DEBUG_TYPE "isel"
111 
112 /// LimitFloatPrecision - Generate low-precision inline sequences for
113 /// some float libcalls (6, 8 or 12 bits).
114 static unsigned LimitFloatPrecision;
115 
116 static cl::opt<bool>
117     InsertAssertAlign("insert-assert-align", cl::init(true),
118                       cl::desc("Insert the experimental `assertalign` node."),
119                       cl::ReallyHidden);
120 
121 static cl::opt<unsigned, true>
122     LimitFPPrecision("limit-float-precision",
123                      cl::desc("Generate low-precision inline sequences "
124                               "for some float libcalls"),
125                      cl::location(LimitFloatPrecision), cl::Hidden,
126                      cl::init(0));
127 
128 static cl::opt<unsigned> SwitchPeelThreshold(
129     "switch-peel-threshold", cl::Hidden, cl::init(66),
130     cl::desc("Set the case probability threshold for peeling the case from a "
131              "switch statement. A value greater than 100 will void this "
132              "optimization"));
133 
134 // Limit the width of DAG chains. This is important in general to prevent
135 // DAG-based analysis from blowing up. For example, alias analysis and
136 // load clustering may not complete in reasonable time. It is difficult to
137 // recognize and avoid this situation within each individual analysis, and
138 // future analyses are likely to have the same behavior. Limiting DAG width is
139 // the safe approach and will be especially important with global DAGs.
140 //
141 // MaxParallelChains default is arbitrarily high to avoid affecting
142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
143 // sequence over this should have been converted to llvm.memcpy by the
144 // frontend. It is easy to induce this behavior with .ll code such as:
145 // %buffer = alloca [4096 x i8]
146 // %data = load [4096 x i8]* %argPtr
147 // store [4096 x i8] %data, [4096 x i8]* %buffer
148 static const unsigned MaxParallelChains = 64;
149 
150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
151                                       const SDValue *Parts, unsigned NumParts,
152                                       MVT PartVT, EVT ValueVT, const Value *V,
153                                       std::optional<CallingConv::ID> CC);
154 
155 /// getCopyFromParts - Create a value that contains the specified legal parts
156 /// combined into the value they represent.  If the parts combine to a type
157 /// larger than ValueVT then AssertOp can be used to specify whether the extra
158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
159 /// (ISD::AssertSext).
160 static SDValue
161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
162                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
163                  std::optional<CallingConv::ID> CC = std::nullopt,
164                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
165   // Let the target assemble the parts if it wants to
166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
167   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
168                                                    PartVT, ValueVT, CC))
169     return Val;
170 
171   if (ValueVT.isVector())
172     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
173                                   CC);
174 
175   assert(NumParts > 0 && "No parts to assemble!");
176   SDValue Val = Parts[0];
177 
178   if (NumParts > 1) {
179     // Assemble the value from multiple parts.
180     if (ValueVT.isInteger()) {
181       unsigned PartBits = PartVT.getSizeInBits();
182       unsigned ValueBits = ValueVT.getSizeInBits();
183 
184       // Assemble the power of 2 part.
185       unsigned RoundParts =
186           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
187       unsigned RoundBits = PartBits * RoundParts;
188       EVT RoundVT = RoundBits == ValueBits ?
189         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
190       SDValue Lo, Hi;
191 
192       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
193 
194       if (RoundParts > 2) {
195         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
196                               PartVT, HalfVT, V);
197         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
198                               RoundParts / 2, PartVT, HalfVT, V);
199       } else {
200         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
201         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
202       }
203 
204       if (DAG.getDataLayout().isBigEndian())
205         std::swap(Lo, Hi);
206 
207       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
208 
209       if (RoundParts < NumParts) {
210         // Assemble the trailing non-power-of-2 part.
211         unsigned OddParts = NumParts - RoundParts;
212         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
213         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
214                               OddVT, V, CC);
215 
216         // Combine the round and odd parts.
217         Lo = Val;
218         if (DAG.getDataLayout().isBigEndian())
219           std::swap(Lo, Hi);
220         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
221         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
222         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
223                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
224                                          TLI.getShiftAmountTy(
225                                              TotalVT, DAG.getDataLayout())));
226         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
227         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
228       }
229     } else if (PartVT.isFloatingPoint()) {
230       // FP split into multiple FP parts (for ppcf128)
231       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
232              "Unexpected split");
233       SDValue Lo, Hi;
234       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
235       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
236       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
237         std::swap(Lo, Hi);
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
239     } else {
240       // FP split into integer parts (soft fp)
241       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
242              !PartVT.isVector() && "Unexpected split");
243       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
244       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
245     }
246   }
247 
248   // There is now one part, held in Val.  Correct it to match ValueVT.
249   // PartEVT is the type of the register class that holds the value.
250   // ValueVT is the type of the inline asm operation.
251   EVT PartEVT = Val.getValueType();
252 
253   if (PartEVT == ValueVT)
254     return Val;
255 
256   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
257       ValueVT.bitsLT(PartEVT)) {
258     // For an FP value in an integer part, we need to truncate to the right
259     // width first.
260     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
261     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
262   }
263 
264   // Handle types that have the same size.
265   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
266     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
267 
268   // Handle types with different sizes.
269   if (PartEVT.isInteger() && ValueVT.isInteger()) {
270     if (ValueVT.bitsLT(PartEVT)) {
271       // For a truncate, see if we have any information to
272       // indicate whether the truncated bits will always be
273       // zero or sign-extension.
274       if (AssertOp)
275         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
276                           DAG.getValueType(ValueVT));
277       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
278     }
279     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
280   }
281 
282   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
283     // FP_ROUND's are always exact here.
284     if (ValueVT.bitsLT(Val.getValueType()))
285       return DAG.getNode(
286           ISD::FP_ROUND, DL, ValueVT, Val,
287           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
288 
289     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
290   }
291 
292   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
293   // then truncating.
294   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
295       ValueVT.bitsLT(PartEVT)) {
296     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
297     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
298   }
299 
300   report_fatal_error("Unknown mismatch in getCopyFromParts!");
301 }
302 
303 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
304                                               const Twine &ErrMsg) {
305   const Instruction *I = dyn_cast_or_null<Instruction>(V);
306   if (!V)
307     return Ctx.emitError(ErrMsg);
308 
309   const char *AsmError = ", possible invalid constraint for vector type";
310   if (const CallInst *CI = dyn_cast<CallInst>(I))
311     if (CI->isInlineAsm())
312       return Ctx.emitError(I, ErrMsg + AsmError);
313 
314   return Ctx.emitError(I, ErrMsg);
315 }
316 
317 /// getCopyFromPartsVector - Create a value that contains the specified legal
318 /// parts combined into the value they represent.  If the parts combine to a
319 /// type larger than ValueVT then AssertOp can be used to specify whether the
320 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
321 /// ValueVT (ISD::AssertSext).
322 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
323                                       const SDValue *Parts, unsigned NumParts,
324                                       MVT PartVT, EVT ValueVT, const Value *V,
325                                       std::optional<CallingConv::ID> CallConv) {
326   assert(ValueVT.isVector() && "Not a vector value");
327   assert(NumParts > 0 && "No parts to assemble!");
328   const bool IsABIRegCopy = CallConv.has_value();
329 
330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
331   SDValue Val = Parts[0];
332 
333   // Handle a multi-element vector.
334   if (NumParts > 1) {
335     EVT IntermediateVT;
336     MVT RegisterVT;
337     unsigned NumIntermediates;
338     unsigned NumRegs;
339 
340     if (IsABIRegCopy) {
341       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
342           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
343           NumIntermediates, RegisterVT);
344     } else {
345       NumRegs =
346           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
347                                      NumIntermediates, RegisterVT);
348     }
349 
350     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
351     NumParts = NumRegs; // Silence a compiler warning.
352     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
353     assert(RegisterVT.getSizeInBits() ==
354            Parts[0].getSimpleValueType().getSizeInBits() &&
355            "Part type sizes don't match!");
356 
357     // Assemble the parts into intermediate operands.
358     SmallVector<SDValue, 8> Ops(NumIntermediates);
359     if (NumIntermediates == NumParts) {
360       // If the register was not expanded, truncate or copy the value,
361       // as appropriate.
362       for (unsigned i = 0; i != NumParts; ++i)
363         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
364                                   PartVT, IntermediateVT, V, CallConv);
365     } else if (NumParts > 0) {
366       // If the intermediate type was expanded, build the intermediate
367       // operands from the parts.
368       assert(NumParts % NumIntermediates == 0 &&
369              "Must expand into a divisible number of parts!");
370       unsigned Factor = NumParts / NumIntermediates;
371       for (unsigned i = 0; i != NumIntermediates; ++i)
372         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
373                                   PartVT, IntermediateVT, V, CallConv);
374     }
375 
376     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
377     // intermediate operands.
378     EVT BuiltVectorTy =
379         IntermediateVT.isVector()
380             ? EVT::getVectorVT(
381                   *DAG.getContext(), IntermediateVT.getScalarType(),
382                   IntermediateVT.getVectorElementCount() * NumParts)
383             : EVT::getVectorVT(*DAG.getContext(),
384                                IntermediateVT.getScalarType(),
385                                NumIntermediates);
386     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
387                                                 : ISD::BUILD_VECTOR,
388                       DL, BuiltVectorTy, Ops);
389   }
390 
391   // There is now one part, held in Val.  Correct it to match ValueVT.
392   EVT PartEVT = Val.getValueType();
393 
394   if (PartEVT == ValueVT)
395     return Val;
396 
397   if (PartEVT.isVector()) {
398     // Vector/Vector bitcast.
399     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
400       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401 
402     // If the parts vector has more elements than the value vector, then we
403     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
404     // Extract the elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
419         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420     }
421 
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424   }
425 
426   // Trivial bitcast if the types are the same size and the destination
427   // vector type is legal.
428   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
429       TLI.isTypeLegal(ValueVT))
430     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
431 
432   if (ValueVT.getVectorNumElements() != 1) {
433      // Certain ABIs require that vectors are passed as integers. For vectors
434      // are the same size, this is an obvious bitcast.
435      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
436        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437      } else if (ValueVT.bitsLT(PartEVT)) {
438        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
439        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
440        // Drop the extra bits.
441        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
442        return DAG.getBitcast(ValueVT, Val);
443      }
444 
445      diagnosePossiblyInvalidConstraint(
446          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
447      return DAG.getUNDEF(ValueVT);
448   }
449 
450   // Handle cases such as i8 -> <1 x i1>
451   EVT ValueSVT = ValueVT.getVectorElementType();
452   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
453     unsigned ValueSize = ValueSVT.getSizeInBits();
454     if (ValueSize == PartEVT.getSizeInBits()) {
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
457       // It's possible a scalar floating point type gets softened to integer and
458       // then promoted to a larger integer. If PartEVT is the larger integer
459       // we need to truncate it and then bitcast to the FP type.
460       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
461       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463       Val = DAG.getBitcast(ValueSVT, Val);
464     } else {
465       Val = ValueVT.isFloatingPoint()
466                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
467                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
468     }
469   }
470 
471   return DAG.getBuildVector(ValueVT, DL, Val);
472 }
473 
474 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
475                                  SDValue Val, SDValue *Parts, unsigned NumParts,
476                                  MVT PartVT, const Value *V,
477                                  std::optional<CallingConv::ID> CallConv);
478 
479 /// getCopyToParts - Create a series of nodes that contain the specified value
480 /// split into legal parts.  If the parts contain more bits than Val, then, for
481 /// integers, ExtendKind can be used to specify how to generate the extra bits.
482 static void
483 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
484                unsigned NumParts, MVT PartVT, const Value *V,
485                std::optional<CallingConv::ID> CallConv = std::nullopt,
486                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
487   // Let the target split the parts if it wants to
488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
489   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
490                                       CallConv))
491     return;
492   EVT ValueVT = Val.getValueType();
493 
494   // Handle the vector case separately.
495   if (ValueVT.isVector())
496     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
497                                 CallConv);
498 
499   unsigned PartBits = PartVT.getSizeInBits();
500   unsigned OrigNumParts = NumParts;
501   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
502          "Copying to an illegal type!");
503 
504   if (NumParts == 0)
505     return;
506 
507   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
508   EVT PartEVT = PartVT;
509   if (PartEVT == ValueVT) {
510     assert(NumParts == 1 && "No-op copy with multiple parts!");
511     Parts[0] = Val;
512     return;
513   }
514 
515   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
516     // If the parts cover more bits than the value has, promote the value.
517     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
518       assert(NumParts == 1 && "Do not know what to promote to!");
519       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
520     } else {
521       if (ValueVT.isFloatingPoint()) {
522         // FP values need to be bitcast, then extended if they are being put
523         // into a larger container.
524         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
525         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526       }
527       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528              ValueVT.isInteger() &&
529              "Unknown mismatch!");
530       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
532       if (PartVT == MVT::x86mmx)
533         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534     }
535   } else if (PartBits == ValueVT.getSizeInBits()) {
536     // Different types of the same size.
537     assert(NumParts == 1 && PartEVT != ValueVT);
538     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
540     // If the parts cover less bits than value has, truncate the value.
541     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
542            ValueVT.isInteger() &&
543            "Unknown mismatch!");
544     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
545     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
546     if (PartVT == MVT::x86mmx)
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   }
549 
550   // The value may have changed - recompute ValueVT.
551   ValueVT = Val.getValueType();
552   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
553          "Failed to tile the value with PartVT!");
554 
555   if (NumParts == 1) {
556     if (PartEVT != ValueVT) {
557       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
558                                         "scalar-to-vector conversion failed");
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560     }
561 
562     Parts[0] = Val;
563     return;
564   }
565 
566   // Expand the value into multiple parts.
567   if (NumParts & (NumParts - 1)) {
568     // The number of parts is not a power of 2.  Split off and copy the tail.
569     assert(PartVT.isInteger() && ValueVT.isInteger() &&
570            "Do not know what to expand to!");
571     unsigned RoundParts = 1 << Log2_32(NumParts);
572     unsigned RoundBits = RoundParts * PartBits;
573     unsigned OddParts = NumParts - RoundParts;
574     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
575       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
576 
577     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578                    CallConv);
579 
580     if (DAG.getDataLayout().isBigEndian())
581       // The odd parts were reversed by getCopyToParts - unreverse them.
582       std::reverse(Parts + RoundParts, Parts + NumParts);
583 
584     NumParts = RoundParts;
585     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587   }
588 
589   // The number of parts is a power of 2.  Repeatedly bisect the value using
590   // EXTRACT_ELEMENT.
591   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592                          EVT::getIntegerVT(*DAG.getContext(),
593                                            ValueVT.getSizeInBits()),
594                          Val);
595 
596   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597     for (unsigned i = 0; i < NumParts; i += StepSize) {
598       unsigned ThisBits = StepSize * PartBits / 2;
599       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600       SDValue &Part0 = Parts[i];
601       SDValue &Part1 = Parts[i+StepSize/2];
602 
603       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607 
608       if (ThisBits == PartBits && ThisVT != PartVT) {
609         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611       }
612     }
613   }
614 
615   if (DAG.getDataLayout().isBigEndian())
616     std::reverse(Parts, Parts + OrigNumParts);
617 }
618 
619 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
620                                      const SDLoc &DL, EVT PartVT) {
621   if (!PartVT.isVector())
622     return SDValue();
623 
624   EVT ValueVT = Val.getValueType();
625   ElementCount PartNumElts = PartVT.getVectorElementCount();
626   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
627 
628   // We only support widening vectors with equivalent element types and
629   // fixed/scalable properties. If a target needs to widen a fixed-length type
630   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
631   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
632       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
633       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
634     return SDValue();
635 
636   // Widening a scalable vector to another scalable vector is done by inserting
637   // the vector into a larger undef one.
638   if (PartNumElts.isScalable())
639     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
640                        Val, DAG.getVectorIdxConstant(0, DL));
641 
642   EVT ElementVT = PartVT.getVectorElementType();
643   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
644   // undef elements.
645   SmallVector<SDValue, 16> Ops;
646   DAG.ExtractVectorElements(Val, Ops);
647   SDValue EltUndef = DAG.getUNDEF(ElementVT);
648   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
649 
650   // FIXME: Use CONCAT for 2x -> 4x.
651   return DAG.getBuildVector(PartVT, DL, Ops);
652 }
653 
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657                                  SDValue Val, SDValue *Parts, unsigned NumParts,
658                                  MVT PartVT, const Value *V,
659                                  std::optional<CallingConv::ID> CallConv) {
660   EVT ValueVT = Val.getValueType();
661   assert(ValueVT.isVector() && "Not a vector");
662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663   const bool IsABIRegCopy = CallConv.has_value();
664 
665   if (NumParts == 1) {
666     EVT PartEVT = PartVT;
667     if (PartEVT == ValueVT) {
668       // Nothing to do.
669     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670       // Bitconvert vector->vector case.
671       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673       Val = Widened;
674     } else if (PartVT.isVector() &&
675                PartEVT.getVectorElementType().bitsGE(
676                    ValueVT.getVectorElementType()) &&
677                PartEVT.getVectorElementCount() ==
678                    ValueVT.getVectorElementCount()) {
679 
680       // Promoted vector extract
681       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
682     } else if (PartEVT.isVector() &&
683                PartEVT.getVectorElementType() !=
684                    ValueVT.getVectorElementType() &&
685                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
686                    TargetLowering::TypeWidenVector) {
687       // Combination of widening and promotion.
688       EVT WidenVT =
689           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
690                            PartVT.getVectorElementCount());
691       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
692       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
693     } else {
694       // Don't extract an integer from a float vector. This can happen if the
695       // FP type gets softened to integer and then promoted. The promotion
696       // prevents it from being picked up by the earlier bitcast case.
697       if (ValueVT.getVectorElementCount().isScalar() &&
698           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
699         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
700                           DAG.getVectorIdxConstant(0, DL));
701       } else {
702         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
703         assert(PartVT.getFixedSizeInBits() > ValueSize &&
704                "lossy conversion of vector to scalar type");
705         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
706         Val = DAG.getBitcast(IntermediateType, Val);
707         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
708       }
709     }
710 
711     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
712     Parts[0] = Val;
713     return;
714   }
715 
716   // Handle a multi-element vector.
717   EVT IntermediateVT;
718   MVT RegisterVT;
719   unsigned NumIntermediates;
720   unsigned NumRegs;
721   if (IsABIRegCopy) {
722     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
723         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
724         RegisterVT);
725   } else {
726     NumRegs =
727         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
728                                    NumIntermediates, RegisterVT);
729   }
730 
731   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
732   NumParts = NumRegs; // Silence a compiler warning.
733   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
734 
735   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
736          "Mixing scalable and fixed vectors when copying in parts");
737 
738   std::optional<ElementCount> DestEltCnt;
739 
740   if (IntermediateVT.isVector())
741     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
742   else
743     DestEltCnt = ElementCount::getFixed(NumIntermediates);
744 
745   EVT BuiltVectorTy = EVT::getVectorVT(
746       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
747 
748   if (ValueVT == BuiltVectorTy) {
749     // Nothing to do.
750   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
751     // Bitconvert vector->vector case.
752     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
753   } else {
754     if (BuiltVectorTy.getVectorElementType().bitsGT(
755             ValueVT.getVectorElementType())) {
756       // Integer promotion.
757       ValueVT = EVT::getVectorVT(*DAG.getContext(),
758                                  BuiltVectorTy.getVectorElementType(),
759                                  ValueVT.getVectorElementCount());
760       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
761     }
762 
763     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
764       Val = Widened;
765     }
766   }
767 
768   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
769 
770   // Split the vector into intermediate operands.
771   SmallVector<SDValue, 8> Ops(NumIntermediates);
772   for (unsigned i = 0; i != NumIntermediates; ++i) {
773     if (IntermediateVT.isVector()) {
774       // This does something sensible for scalable vectors - see the
775       // definition of EXTRACT_SUBVECTOR for further details.
776       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
777       Ops[i] =
778           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
779                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
780     } else {
781       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
782                            DAG.getVectorIdxConstant(i, DL));
783     }
784   }
785 
786   // Split the intermediate operands into legal parts.
787   if (NumParts == NumIntermediates) {
788     // If the register was not expanded, promote or copy the value,
789     // as appropriate.
790     for (unsigned i = 0; i != NumParts; ++i)
791       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
792   } else if (NumParts > 0) {
793     // If the intermediate type was expanded, split each the value into
794     // legal parts.
795     assert(NumIntermediates != 0 && "division by zero");
796     assert(NumParts % NumIntermediates == 0 &&
797            "Must expand into a divisible number of parts!");
798     unsigned Factor = NumParts / NumIntermediates;
799     for (unsigned i = 0; i != NumIntermediates; ++i)
800       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
801                      CallConv);
802   }
803 }
804 
805 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
806                            EVT valuevt, std::optional<CallingConv::ID> CC)
807     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
808       RegCount(1, regs.size()), CallConv(CC) {}
809 
810 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
811                            const DataLayout &DL, unsigned Reg, Type *Ty,
812                            std::optional<CallingConv::ID> CC) {
813   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
814 
815   CallConv = CC;
816 
817   for (EVT ValueVT : ValueVTs) {
818     unsigned NumRegs =
819         isABIMangled()
820             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
821             : TLI.getNumRegisters(Context, ValueVT);
822     MVT RegisterVT =
823         isABIMangled()
824             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
825             : TLI.getRegisterType(Context, ValueVT);
826     for (unsigned i = 0; i != NumRegs; ++i)
827       Regs.push_back(Reg + i);
828     RegVTs.push_back(RegisterVT);
829     RegCount.push_back(NumRegs);
830     Reg += NumRegs;
831   }
832 }
833 
834 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
835                                       FunctionLoweringInfo &FuncInfo,
836                                       const SDLoc &dl, SDValue &Chain,
837                                       SDValue *Flag, const Value *V) const {
838   // A Value with type {} or [0 x %t] needs no registers.
839   if (ValueVTs.empty())
840     return SDValue();
841 
842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
843 
844   // Assemble the legal parts into the final values.
845   SmallVector<SDValue, 4> Values(ValueVTs.size());
846   SmallVector<SDValue, 8> Parts;
847   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
848     // Copy the legal parts from the registers.
849     EVT ValueVT = ValueVTs[Value];
850     unsigned NumRegs = RegCount[Value];
851     MVT RegisterVT = isABIMangled()
852                          ? TLI.getRegisterTypeForCallingConv(
853                                *DAG.getContext(), *CallConv, RegVTs[Value])
854                          : RegVTs[Value];
855 
856     Parts.resize(NumRegs);
857     for (unsigned i = 0; i != NumRegs; ++i) {
858       SDValue P;
859       if (!Flag) {
860         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
861       } else {
862         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
863         *Flag = P.getValue(2);
864       }
865 
866       Chain = P.getValue(1);
867       Parts[i] = P;
868 
869       // If the source register was virtual and if we know something about it,
870       // add an assert node.
871       if (!Register::isVirtualRegister(Regs[Part + i]) ||
872           !RegisterVT.isInteger())
873         continue;
874 
875       const FunctionLoweringInfo::LiveOutInfo *LOI =
876         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
877       if (!LOI)
878         continue;
879 
880       unsigned RegSize = RegisterVT.getScalarSizeInBits();
881       unsigned NumSignBits = LOI->NumSignBits;
882       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
883 
884       if (NumZeroBits == RegSize) {
885         // The current value is a zero.
886         // Explicitly express that as it would be easier for
887         // optimizations to kick in.
888         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
889         continue;
890       }
891 
892       // FIXME: We capture more information than the dag can represent.  For
893       // now, just use the tightest assertzext/assertsext possible.
894       bool isSExt;
895       EVT FromVT(MVT::Other);
896       if (NumZeroBits) {
897         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
898         isSExt = false;
899       } else if (NumSignBits > 1) {
900         FromVT =
901             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
902         isSExt = true;
903       } else {
904         continue;
905       }
906       // Add an assertion node.
907       assert(FromVT != MVT::Other);
908       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
909                              RegisterVT, P, DAG.getValueType(FromVT));
910     }
911 
912     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
913                                      RegisterVT, ValueVT, V, CallConv);
914     Part += NumRegs;
915     Parts.clear();
916   }
917 
918   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
919 }
920 
921 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
922                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
923                                  const Value *V,
924                                  ISD::NodeType PreferredExtendType) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926   ISD::NodeType ExtendKind = PreferredExtendType;
927 
928   // Get the list of the values's legal parts.
929   unsigned NumRegs = Regs.size();
930   SmallVector<SDValue, 8> Parts(NumRegs);
931   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
932     unsigned NumParts = RegCount[Value];
933 
934     MVT RegisterVT = isABIMangled()
935                          ? TLI.getRegisterTypeForCallingConv(
936                                *DAG.getContext(), *CallConv, RegVTs[Value])
937                          : RegVTs[Value];
938 
939     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
940       ExtendKind = ISD::ZERO_EXTEND;
941 
942     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
943                    NumParts, RegisterVT, V, CallConv, ExtendKind);
944     Part += NumParts;
945   }
946 
947   // Copy the parts into the registers.
948   SmallVector<SDValue, 8> Chains(NumRegs);
949   for (unsigned i = 0; i != NumRegs; ++i) {
950     SDValue Part;
951     if (!Flag) {
952       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
953     } else {
954       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
955       *Flag = Part.getValue(1);
956     }
957 
958     Chains[i] = Part.getValue(0);
959   }
960 
961   if (NumRegs == 1 || Flag)
962     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
963     // flagged to it. That is the CopyToReg nodes and the user are considered
964     // a single scheduling unit. If we create a TokenFactor and return it as
965     // chain, then the TokenFactor is both a predecessor (operand) of the
966     // user as well as a successor (the TF operands are flagged to the user).
967     // c1, f1 = CopyToReg
968     // c2, f2 = CopyToReg
969     // c3     = TokenFactor c1, c2
970     // ...
971     //        = op c3, ..., f2
972     Chain = Chains[NumRegs-1];
973   else
974     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
975 }
976 
977 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
978                                         unsigned MatchingIdx, const SDLoc &dl,
979                                         SelectionDAG &DAG,
980                                         std::vector<SDValue> &Ops) const {
981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
982 
983   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
984   if (HasMatching)
985     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
986   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
987     // Put the register class of the virtual registers in the flag word.  That
988     // way, later passes can recompute register class constraints for inline
989     // assembly as well as normal instructions.
990     // Don't do this for tied operands that can use the regclass information
991     // from the def.
992     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
993     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
994     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
995   }
996 
997   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
998   Ops.push_back(Res);
999 
1000   if (Code == InlineAsm::Kind_Clobber) {
1001     // Clobbers should always have a 1:1 mapping with registers, and may
1002     // reference registers that have illegal (e.g. vector) types. Hence, we
1003     // shouldn't try to apply any sort of splitting logic to them.
1004     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1005            "No 1:1 mapping from clobbers to regs?");
1006     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1007     (void)SP;
1008     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1009       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1010       assert(
1011           (Regs[I] != SP ||
1012            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1013           "If we clobbered the stack pointer, MFI should know about it.");
1014     }
1015     return;
1016   }
1017 
1018   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1019     MVT RegisterVT = RegVTs[Value];
1020     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1021                                            RegisterVT);
1022     for (unsigned i = 0; i != NumRegs; ++i) {
1023       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1024       unsigned TheReg = Regs[Reg++];
1025       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1026     }
1027   }
1028 }
1029 
1030 SmallVector<std::pair<unsigned, TypeSize>, 4>
1031 RegsForValue::getRegsAndSizes() const {
1032   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1033   unsigned I = 0;
1034   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1035     unsigned RegCount = std::get<0>(CountAndVT);
1036     MVT RegisterVT = std::get<1>(CountAndVT);
1037     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1038     for (unsigned E = I + RegCount; I != E; ++I)
1039       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1040   }
1041   return OutVec;
1042 }
1043 
1044 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1045                                AssumptionCache *ac,
1046                                const TargetLibraryInfo *li) {
1047   AA = aa;
1048   AC = ac;
1049   GFI = gfi;
1050   LibInfo = li;
1051   Context = DAG.getContext();
1052   LPadToCallSiteMap.clear();
1053   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1054 }
1055 
1056 void SelectionDAGBuilder::clear() {
1057   NodeMap.clear();
1058   UnusedArgNodeMap.clear();
1059   PendingLoads.clear();
1060   PendingExports.clear();
1061   PendingConstrainedFP.clear();
1062   PendingConstrainedFPStrict.clear();
1063   CurInst = nullptr;
1064   HasTailCall = false;
1065   SDNodeOrder = LowestSDNodeOrder;
1066   StatepointLowering.clear();
1067 }
1068 
1069 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1070   DanglingDebugInfoMap.clear();
1071 }
1072 
1073 // Update DAG root to include dependencies on Pending chains.
1074 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1075   SDValue Root = DAG.getRoot();
1076 
1077   if (Pending.empty())
1078     return Root;
1079 
1080   // Add current root to PendingChains, unless we already indirectly
1081   // depend on it.
1082   if (Root.getOpcode() != ISD::EntryToken) {
1083     unsigned i = 0, e = Pending.size();
1084     for (; i != e; ++i) {
1085       assert(Pending[i].getNode()->getNumOperands() > 1);
1086       if (Pending[i].getNode()->getOperand(0) == Root)
1087         break;  // Don't add the root if we already indirectly depend on it.
1088     }
1089 
1090     if (i == e)
1091       Pending.push_back(Root);
1092   }
1093 
1094   if (Pending.size() == 1)
1095     Root = Pending[0];
1096   else
1097     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1098 
1099   DAG.setRoot(Root);
1100   Pending.clear();
1101   return Root;
1102 }
1103 
1104 SDValue SelectionDAGBuilder::getMemoryRoot() {
1105   return updateRoot(PendingLoads);
1106 }
1107 
1108 SDValue SelectionDAGBuilder::getRoot() {
1109   // Chain up all pending constrained intrinsics together with all
1110   // pending loads, by simply appending them to PendingLoads and
1111   // then calling getMemoryRoot().
1112   PendingLoads.reserve(PendingLoads.size() +
1113                        PendingConstrainedFP.size() +
1114                        PendingConstrainedFPStrict.size());
1115   PendingLoads.append(PendingConstrainedFP.begin(),
1116                       PendingConstrainedFP.end());
1117   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1118                       PendingConstrainedFPStrict.end());
1119   PendingConstrainedFP.clear();
1120   PendingConstrainedFPStrict.clear();
1121   return getMemoryRoot();
1122 }
1123 
1124 SDValue SelectionDAGBuilder::getControlRoot() {
1125   // We need to emit pending fpexcept.strict constrained intrinsics,
1126   // so append them to the PendingExports list.
1127   PendingExports.append(PendingConstrainedFPStrict.begin(),
1128                         PendingConstrainedFPStrict.end());
1129   PendingConstrainedFPStrict.clear();
1130   return updateRoot(PendingExports);
1131 }
1132 
1133 void SelectionDAGBuilder::visit(const Instruction &I) {
1134   // Set up outgoing PHI node register values before emitting the terminator.
1135   if (I.isTerminator()) {
1136     HandlePHINodesInSuccessorBlocks(I.getParent());
1137   }
1138 
1139   // Add SDDbgValue nodes for any var locs here. Do so before updating
1140   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1141   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1142     // Add SDDbgValue nodes for any var locs here. Do so before updating
1143     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1144     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1145          It != End; ++It) {
1146       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1147       dropDanglingDebugInfo(Var, It->Expr);
1148       if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder,
1149                             /*IsVariadic=*/false))
1150         addDanglingDebugInfo(It, SDNodeOrder);
1151     }
1152   }
1153 
1154   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1155   if (!isa<DbgInfoIntrinsic>(I))
1156     ++SDNodeOrder;
1157 
1158   CurInst = &I;
1159 
1160   // Set inserted listener only if required.
1161   bool NodeInserted = false;
1162   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1163   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1164   if (PCSectionsMD) {
1165     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1166         DAG, [&](SDNode *) { NodeInserted = true; });
1167   }
1168 
1169   visit(I.getOpcode(), I);
1170 
1171   if (!I.isTerminator() && !HasTailCall &&
1172       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1173     CopyToExportRegsIfNeeded(&I);
1174 
1175   // Handle metadata.
1176   if (PCSectionsMD) {
1177     auto It = NodeMap.find(&I);
1178     if (It != NodeMap.end()) {
1179       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1180     } else if (NodeInserted) {
1181       // This should not happen; if it does, don't let it go unnoticed so we can
1182       // fix it. Relevant visit*() function is probably missing a setValue().
1183       errs() << "warning: loosing !pcsections metadata ["
1184              << I.getModule()->getName() << "]\n";
1185       LLVM_DEBUG(I.dump());
1186       assert(false);
1187     }
1188   }
1189 
1190   CurInst = nullptr;
1191 }
1192 
1193 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1194   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1195 }
1196 
1197 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1198   // Note: this doesn't use InstVisitor, because it has to work with
1199   // ConstantExpr's in addition to instructions.
1200   switch (Opcode) {
1201   default: llvm_unreachable("Unknown instruction type encountered!");
1202     // Build the switch statement using the Instruction.def file.
1203 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1204     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1205 #include "llvm/IR/Instruction.def"
1206   }
1207 }
1208 
1209 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1210                                                unsigned Order) {
1211   DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order);
1212 }
1213 
1214 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1215                                                unsigned Order) {
1216   // We treat variadic dbg_values differently at this stage.
1217   if (DI->hasArgList()) {
1218     // For variadic dbg_values we will now insert an undef.
1219     // FIXME: We can potentially recover these!
1220     SmallVector<SDDbgOperand, 2> Locs;
1221     for (const Value *V : DI->getValues()) {
1222       auto Undef = UndefValue::get(V->getType());
1223       Locs.push_back(SDDbgOperand::fromConst(Undef));
1224     }
1225     SDDbgValue *SDV = DAG.getDbgValueList(
1226         DI->getVariable(), DI->getExpression(), Locs, {},
1227         /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true);
1228     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1229   } else {
1230     // TODO: Dangling debug info will eventually either be resolved or produce
1231     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1232     // between the original dbg.value location and its resolved DBG_VALUE,
1233     // which we should ideally fill with an extra Undef DBG_VALUE.
1234     assert(DI->getNumVariableLocationOps() == 1 &&
1235            "DbgValueInst without an ArgList should have a single location "
1236            "operand.");
1237     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1238   }
1239 }
1240 
1241 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1242                                                 const DIExpression *Expr) {
1243   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1244     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1245     DIExpression *DanglingExpr = DDI.getExpression();
1246     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1247       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1248                         << "\n");
1249       return true;
1250     }
1251     return false;
1252   };
1253 
1254   for (auto &DDIMI : DanglingDebugInfoMap) {
1255     DanglingDebugInfoVector &DDIV = DDIMI.second;
1256 
1257     // If debug info is to be dropped, run it through final checks to see
1258     // whether it can be salvaged.
1259     for (auto &DDI : DDIV)
1260       if (isMatchingDbgValue(DDI))
1261         salvageUnresolvedDbgValue(DDI);
1262 
1263     erase_if(DDIV, isMatchingDbgValue);
1264   }
1265 }
1266 
1267 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1268 // generate the debug data structures now that we've seen its definition.
1269 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1270                                                    SDValue Val) {
1271   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1272   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1273     return;
1274 
1275   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1276   for (auto &DDI : DDIV) {
1277     DebugLoc DL = DDI.getDebugLoc();
1278     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1279     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1280     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1281     DIExpression *Expr = DDI.getExpression();
1282     assert(Variable->isValidLocationForIntrinsic(DL) &&
1283            "Expected inlined-at fields to agree");
1284     SDDbgValue *SDV;
1285     if (Val.getNode()) {
1286       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1287       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1288       // we couldn't resolve it directly when examining the DbgValue intrinsic
1289       // in the first place we should not be more successful here). Unless we
1290       // have some test case that prove this to be correct we should avoid
1291       // calling EmitFuncArgumentDbgValue here.
1292       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1293                                     FuncArgumentDbgValueKind::Value, Val)) {
1294         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1295                           << "\n");
1296         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1297         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1298         // inserted after the definition of Val when emitting the instructions
1299         // after ISel. An alternative could be to teach
1300         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1301         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1302                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1303                    << ValSDNodeOrder << "\n");
1304         SDV = getDbgValue(Val, Variable, Expr, DL,
1305                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1306         DAG.AddDbgValue(SDV, false);
1307       } else
1308         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1309                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1310     } else {
1311       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1312       auto Undef = UndefValue::get(V->getType());
1313       auto SDV =
1314           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1315       DAG.AddDbgValue(SDV, false);
1316     }
1317   }
1318   DDIV.clear();
1319 }
1320 
1321 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1322   // TODO: For the variadic implementation, instead of only checking the fail
1323   // state of `handleDebugValue`, we need know specifically which values were
1324   // invalid, so that we attempt to salvage only those values when processing
1325   // a DIArgList.
1326   Value *V = DDI.getVariableLocationOp(0);
1327   Value *OrigV = V;
1328   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1329   DIExpression *Expr = DDI.getExpression();
1330   DebugLoc DL = DDI.getDebugLoc();
1331   unsigned SDOrder = DDI.getSDNodeOrder();
1332 
1333   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1334   // that DW_OP_stack_value is desired.
1335   bool StackValue = true;
1336 
1337   // Can this Value can be encoded without any further work?
1338   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1339     return;
1340 
1341   // Attempt to salvage back through as many instructions as possible. Bail if
1342   // a non-instruction is seen, such as a constant expression or global
1343   // variable. FIXME: Further work could recover those too.
1344   while (isa<Instruction>(V)) {
1345     Instruction &VAsInst = *cast<Instruction>(V);
1346     // Temporary "0", awaiting real implementation.
1347     SmallVector<uint64_t, 16> Ops;
1348     SmallVector<Value *, 4> AdditionalValues;
1349     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1350                              AdditionalValues);
1351     // If we cannot salvage any further, and haven't yet found a suitable debug
1352     // expression, bail out.
1353     if (!V)
1354       break;
1355 
1356     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1357     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1358     // here for variadic dbg_values, remove that condition.
1359     if (!AdditionalValues.empty())
1360       break;
1361 
1362     // New value and expr now represent this debuginfo.
1363     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1364 
1365     // Some kind of simplification occurred: check whether the operand of the
1366     // salvaged debug expression can be encoded in this DAG.
1367     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1368       LLVM_DEBUG(
1369           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1370                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1371       return;
1372     }
1373   }
1374 
1375   // This was the final opportunity to salvage this debug information, and it
1376   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1377   // any earlier variable location.
1378   assert(OrigV && "V shouldn't be null");
1379   auto *Undef = UndefValue::get(OrigV->getType());
1380   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1381   DAG.AddDbgValue(SDV, false);
1382   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1383                     << "\n");
1384 }
1385 
1386 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1387                                            DILocalVariable *Var,
1388                                            DIExpression *Expr, DebugLoc DbgLoc,
1389                                            unsigned Order, bool IsVariadic) {
1390   if (Values.empty())
1391     return true;
1392   SmallVector<SDDbgOperand> LocationOps;
1393   SmallVector<SDNode *> Dependencies;
1394   for (const Value *V : Values) {
1395     // Constant value.
1396     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1397         isa<ConstantPointerNull>(V)) {
1398       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1399       continue;
1400     }
1401 
1402     // Look through IntToPtr constants.
1403     if (auto *CE = dyn_cast<ConstantExpr>(V))
1404       if (CE->getOpcode() == Instruction::IntToPtr) {
1405         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1406         continue;
1407       }
1408 
1409     // If the Value is a frame index, we can create a FrameIndex debug value
1410     // without relying on the DAG at all.
1411     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1412       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1413       if (SI != FuncInfo.StaticAllocaMap.end()) {
1414         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1415         continue;
1416       }
1417     }
1418 
1419     // Do not use getValue() in here; we don't want to generate code at
1420     // this point if it hasn't been done yet.
1421     SDValue N = NodeMap[V];
1422     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1423       N = UnusedArgNodeMap[V];
1424     if (N.getNode()) {
1425       // Only emit func arg dbg value for non-variadic dbg.values for now.
1426       if (!IsVariadic &&
1427           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1428                                    FuncArgumentDbgValueKind::Value, N))
1429         return true;
1430       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1431         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1432         // describe stack slot locations.
1433         //
1434         // Consider "int x = 0; int *px = &x;". There are two kinds of
1435         // interesting debug values here after optimization:
1436         //
1437         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1438         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1439         //
1440         // Both describe the direct values of their associated variables.
1441         Dependencies.push_back(N.getNode());
1442         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1443         continue;
1444       }
1445       LocationOps.emplace_back(
1446           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1447       continue;
1448     }
1449 
1450     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1451     // Special rules apply for the first dbg.values of parameter variables in a
1452     // function. Identify them by the fact they reference Argument Values, that
1453     // they're parameters, and they are parameters of the current function. We
1454     // need to let them dangle until they get an SDNode.
1455     bool IsParamOfFunc =
1456         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1457     if (IsParamOfFunc)
1458       return false;
1459 
1460     // The value is not used in this block yet (or it would have an SDNode).
1461     // We still want the value to appear for the user if possible -- if it has
1462     // an associated VReg, we can refer to that instead.
1463     auto VMI = FuncInfo.ValueMap.find(V);
1464     if (VMI != FuncInfo.ValueMap.end()) {
1465       unsigned Reg = VMI->second;
1466       // If this is a PHI node, it may be split up into several MI PHI nodes
1467       // (in FunctionLoweringInfo::set).
1468       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1469                        V->getType(), std::nullopt);
1470       if (RFV.occupiesMultipleRegs()) {
1471         // FIXME: We could potentially support variadic dbg_values here.
1472         if (IsVariadic)
1473           return false;
1474         unsigned Offset = 0;
1475         unsigned BitsToDescribe = 0;
1476         if (auto VarSize = Var->getSizeInBits())
1477           BitsToDescribe = *VarSize;
1478         if (auto Fragment = Expr->getFragmentInfo())
1479           BitsToDescribe = Fragment->SizeInBits;
1480         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1481           // Bail out if all bits are described already.
1482           if (Offset >= BitsToDescribe)
1483             break;
1484           // TODO: handle scalable vectors.
1485           unsigned RegisterSize = RegAndSize.second;
1486           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1487                                       ? BitsToDescribe - Offset
1488                                       : RegisterSize;
1489           auto FragmentExpr = DIExpression::createFragmentExpression(
1490               Expr, Offset, FragmentSize);
1491           if (!FragmentExpr)
1492             continue;
1493           SDDbgValue *SDV = DAG.getVRegDbgValue(
1494               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1495           DAG.AddDbgValue(SDV, false);
1496           Offset += RegisterSize;
1497         }
1498         return true;
1499       }
1500       // We can use simple vreg locations for variadic dbg_values as well.
1501       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1502       continue;
1503     }
1504     // We failed to create a SDDbgOperand for V.
1505     return false;
1506   }
1507 
1508   // We have created a SDDbgOperand for each Value in Values.
1509   // Should use Order instead of SDNodeOrder?
1510   assert(!LocationOps.empty());
1511   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1512                                         /*IsIndirect=*/false, DbgLoc,
1513                                         SDNodeOrder, IsVariadic);
1514   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1515   return true;
1516 }
1517 
1518 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1519   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1520   for (auto &Pair : DanglingDebugInfoMap)
1521     for (auto &DDI : Pair.second)
1522       salvageUnresolvedDbgValue(DDI);
1523   clearDanglingDebugInfo();
1524 }
1525 
1526 /// getCopyFromRegs - If there was virtual register allocated for the value V
1527 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1528 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1529   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1530   SDValue Result;
1531 
1532   if (It != FuncInfo.ValueMap.end()) {
1533     Register InReg = It->second;
1534 
1535     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1536                      DAG.getDataLayout(), InReg, Ty,
1537                      std::nullopt); // This is not an ABI copy.
1538     SDValue Chain = DAG.getEntryNode();
1539     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1540                                  V);
1541     resolveDanglingDebugInfo(V, Result);
1542   }
1543 
1544   return Result;
1545 }
1546 
1547 /// getValue - Return an SDValue for the given Value.
1548 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1549   // If we already have an SDValue for this value, use it. It's important
1550   // to do this first, so that we don't create a CopyFromReg if we already
1551   // have a regular SDValue.
1552   SDValue &N = NodeMap[V];
1553   if (N.getNode()) return N;
1554 
1555   // If there's a virtual register allocated and initialized for this
1556   // value, use it.
1557   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1558     return copyFromReg;
1559 
1560   // Otherwise create a new SDValue and remember it.
1561   SDValue Val = getValueImpl(V);
1562   NodeMap[V] = Val;
1563   resolveDanglingDebugInfo(V, Val);
1564   return Val;
1565 }
1566 
1567 /// getNonRegisterValue - Return an SDValue for the given Value, but
1568 /// don't look in FuncInfo.ValueMap for a virtual register.
1569 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1570   // If we already have an SDValue for this value, use it.
1571   SDValue &N = NodeMap[V];
1572   if (N.getNode()) {
1573     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1574       // Remove the debug location from the node as the node is about to be used
1575       // in a location which may differ from the original debug location.  This
1576       // is relevant to Constant and ConstantFP nodes because they can appear
1577       // as constant expressions inside PHI nodes.
1578       N->setDebugLoc(DebugLoc());
1579     }
1580     return N;
1581   }
1582 
1583   // Otherwise create a new SDValue and remember it.
1584   SDValue Val = getValueImpl(V);
1585   NodeMap[V] = Val;
1586   resolveDanglingDebugInfo(V, Val);
1587   return Val;
1588 }
1589 
1590 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1591 /// Create an SDValue for the given value.
1592 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1594 
1595   if (const Constant *C = dyn_cast<Constant>(V)) {
1596     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1597 
1598     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1599       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1600 
1601     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1602       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1603 
1604     if (isa<ConstantPointerNull>(C)) {
1605       unsigned AS = V->getType()->getPointerAddressSpace();
1606       return DAG.getConstant(0, getCurSDLoc(),
1607                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1608     }
1609 
1610     if (match(C, m_VScale(DAG.getDataLayout())))
1611       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1612 
1613     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1614       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1615 
1616     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1617       return DAG.getUNDEF(VT);
1618 
1619     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1620       visit(CE->getOpcode(), *CE);
1621       SDValue N1 = NodeMap[V];
1622       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1623       return N1;
1624     }
1625 
1626     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1627       SmallVector<SDValue, 4> Constants;
1628       for (const Use &U : C->operands()) {
1629         SDNode *Val = getValue(U).getNode();
1630         // If the operand is an empty aggregate, there are no values.
1631         if (!Val) continue;
1632         // Add each leaf value from the operand to the Constants list
1633         // to form a flattened list of all the values.
1634         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1635           Constants.push_back(SDValue(Val, i));
1636       }
1637 
1638       return DAG.getMergeValues(Constants, getCurSDLoc());
1639     }
1640 
1641     if (const ConstantDataSequential *CDS =
1642           dyn_cast<ConstantDataSequential>(C)) {
1643       SmallVector<SDValue, 4> Ops;
1644       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1645         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1646         // Add each leaf value from the operand to the Constants list
1647         // to form a flattened list of all the values.
1648         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1649           Ops.push_back(SDValue(Val, i));
1650       }
1651 
1652       if (isa<ArrayType>(CDS->getType()))
1653         return DAG.getMergeValues(Ops, getCurSDLoc());
1654       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1655     }
1656 
1657     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1658       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1659              "Unknown struct or array constant!");
1660 
1661       SmallVector<EVT, 4> ValueVTs;
1662       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1663       unsigned NumElts = ValueVTs.size();
1664       if (NumElts == 0)
1665         return SDValue(); // empty struct
1666       SmallVector<SDValue, 4> Constants(NumElts);
1667       for (unsigned i = 0; i != NumElts; ++i) {
1668         EVT EltVT = ValueVTs[i];
1669         if (isa<UndefValue>(C))
1670           Constants[i] = DAG.getUNDEF(EltVT);
1671         else if (EltVT.isFloatingPoint())
1672           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1673         else
1674           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1675       }
1676 
1677       return DAG.getMergeValues(Constants, getCurSDLoc());
1678     }
1679 
1680     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1681       return DAG.getBlockAddress(BA, VT);
1682 
1683     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1684       return getValue(Equiv->getGlobalValue());
1685 
1686     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1687       return getValue(NC->getGlobalValue());
1688 
1689     VectorType *VecTy = cast<VectorType>(V->getType());
1690 
1691     // Now that we know the number and type of the elements, get that number of
1692     // elements into the Ops array based on what kind of constant it is.
1693     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1694       SmallVector<SDValue, 16> Ops;
1695       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1696       for (unsigned i = 0; i != NumElements; ++i)
1697         Ops.push_back(getValue(CV->getOperand(i)));
1698 
1699       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1700     }
1701 
1702     if (isa<ConstantAggregateZero>(C)) {
1703       EVT EltVT =
1704           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1705 
1706       SDValue Op;
1707       if (EltVT.isFloatingPoint())
1708         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1709       else
1710         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1711 
1712       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1713     }
1714 
1715     llvm_unreachable("Unknown vector constant");
1716   }
1717 
1718   // If this is a static alloca, generate it as the frameindex instead of
1719   // computation.
1720   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1721     DenseMap<const AllocaInst*, int>::iterator SI =
1722       FuncInfo.StaticAllocaMap.find(AI);
1723     if (SI != FuncInfo.StaticAllocaMap.end())
1724       return DAG.getFrameIndex(
1725           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1726   }
1727 
1728   // If this is an instruction which fast-isel has deferred, select it now.
1729   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1730     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1731 
1732     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1733                      Inst->getType(), std::nullopt);
1734     SDValue Chain = DAG.getEntryNode();
1735     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1736   }
1737 
1738   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1739     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1740 
1741   if (const auto *BB = dyn_cast<BasicBlock>(V))
1742     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1743 
1744   llvm_unreachable("Can't get register for value!");
1745 }
1746 
1747 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1748   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1749   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1750   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1751   bool IsSEH = isAsynchronousEHPersonality(Pers);
1752   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1753   if (!IsSEH)
1754     CatchPadMBB->setIsEHScopeEntry();
1755   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1756   if (IsMSVCCXX || IsCoreCLR)
1757     CatchPadMBB->setIsEHFuncletEntry();
1758 }
1759 
1760 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1761   // Update machine-CFG edge.
1762   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1763   FuncInfo.MBB->addSuccessor(TargetMBB);
1764   TargetMBB->setIsEHCatchretTarget(true);
1765   DAG.getMachineFunction().setHasEHCatchret(true);
1766 
1767   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1768   bool IsSEH = isAsynchronousEHPersonality(Pers);
1769   if (IsSEH) {
1770     // If this is not a fall-through branch or optimizations are switched off,
1771     // emit the branch.
1772     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1773         TM.getOptLevel() == CodeGenOpt::None)
1774       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1775                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1776     return;
1777   }
1778 
1779   // Figure out the funclet membership for the catchret's successor.
1780   // This will be used by the FuncletLayout pass to determine how to order the
1781   // BB's.
1782   // A 'catchret' returns to the outer scope's color.
1783   Value *ParentPad = I.getCatchSwitchParentPad();
1784   const BasicBlock *SuccessorColor;
1785   if (isa<ConstantTokenNone>(ParentPad))
1786     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1787   else
1788     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1789   assert(SuccessorColor && "No parent funclet for catchret!");
1790   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1791   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1792 
1793   // Create the terminator node.
1794   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1795                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1796                             DAG.getBasicBlock(SuccessorColorMBB));
1797   DAG.setRoot(Ret);
1798 }
1799 
1800 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1801   // Don't emit any special code for the cleanuppad instruction. It just marks
1802   // the start of an EH scope/funclet.
1803   FuncInfo.MBB->setIsEHScopeEntry();
1804   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1805   if (Pers != EHPersonality::Wasm_CXX) {
1806     FuncInfo.MBB->setIsEHFuncletEntry();
1807     FuncInfo.MBB->setIsCleanupFuncletEntry();
1808   }
1809 }
1810 
1811 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1812 // not match, it is OK to add only the first unwind destination catchpad to the
1813 // successors, because there will be at least one invoke instruction within the
1814 // catch scope that points to the next unwind destination, if one exists, so
1815 // CFGSort cannot mess up with BB sorting order.
1816 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1817 // call within them, and catchpads only consisting of 'catch (...)' have a
1818 // '__cxa_end_catch' call within them, both of which generate invokes in case
1819 // the next unwind destination exists, i.e., the next unwind destination is not
1820 // the caller.)
1821 //
1822 // Having at most one EH pad successor is also simpler and helps later
1823 // transformations.
1824 //
1825 // For example,
1826 // current:
1827 //   invoke void @foo to ... unwind label %catch.dispatch
1828 // catch.dispatch:
1829 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1830 // catch.start:
1831 //   ...
1832 //   ... in this BB or some other child BB dominated by this BB there will be an
1833 //   invoke that points to 'next' BB as an unwind destination
1834 //
1835 // next: ; We don't need to add this to 'current' BB's successor
1836 //   ...
1837 static void findWasmUnwindDestinations(
1838     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1839     BranchProbability Prob,
1840     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1841         &UnwindDests) {
1842   while (EHPadBB) {
1843     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1844     if (isa<CleanupPadInst>(Pad)) {
1845       // Stop on cleanup pads.
1846       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1847       UnwindDests.back().first->setIsEHScopeEntry();
1848       break;
1849     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1850       // Add the catchpad handlers to the possible destinations. We don't
1851       // continue to the unwind destination of the catchswitch for wasm.
1852       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1853         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1854         UnwindDests.back().first->setIsEHScopeEntry();
1855       }
1856       break;
1857     } else {
1858       continue;
1859     }
1860   }
1861 }
1862 
1863 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1864 /// many places it could ultimately go. In the IR, we have a single unwind
1865 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1866 /// This function skips over imaginary basic blocks that hold catchswitch
1867 /// instructions, and finds all the "real" machine
1868 /// basic block destinations. As those destinations may not be successors of
1869 /// EHPadBB, here we also calculate the edge probability to those destinations.
1870 /// The passed-in Prob is the edge probability to EHPadBB.
1871 static void findUnwindDestinations(
1872     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1873     BranchProbability Prob,
1874     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1875         &UnwindDests) {
1876   EHPersonality Personality =
1877     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1878   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1879   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1880   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1881   bool IsSEH = isAsynchronousEHPersonality(Personality);
1882 
1883   if (IsWasmCXX) {
1884     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1885     assert(UnwindDests.size() <= 1 &&
1886            "There should be at most one unwind destination for wasm");
1887     return;
1888   }
1889 
1890   while (EHPadBB) {
1891     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1892     BasicBlock *NewEHPadBB = nullptr;
1893     if (isa<LandingPadInst>(Pad)) {
1894       // Stop on landingpads. They are not funclets.
1895       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1896       break;
1897     } else if (isa<CleanupPadInst>(Pad)) {
1898       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1899       // personalities.
1900       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1901       UnwindDests.back().first->setIsEHScopeEntry();
1902       UnwindDests.back().first->setIsEHFuncletEntry();
1903       break;
1904     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1905       // Add the catchpad handlers to the possible destinations.
1906       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1907         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1908         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1909         if (IsMSVCCXX || IsCoreCLR)
1910           UnwindDests.back().first->setIsEHFuncletEntry();
1911         if (!IsSEH)
1912           UnwindDests.back().first->setIsEHScopeEntry();
1913       }
1914       NewEHPadBB = CatchSwitch->getUnwindDest();
1915     } else {
1916       continue;
1917     }
1918 
1919     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1920     if (BPI && NewEHPadBB)
1921       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1922     EHPadBB = NewEHPadBB;
1923   }
1924 }
1925 
1926 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1927   // Update successor info.
1928   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1929   auto UnwindDest = I.getUnwindDest();
1930   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1931   BranchProbability UnwindDestProb =
1932       (BPI && UnwindDest)
1933           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1934           : BranchProbability::getZero();
1935   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1936   for (auto &UnwindDest : UnwindDests) {
1937     UnwindDest.first->setIsEHPad();
1938     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1939   }
1940   FuncInfo.MBB->normalizeSuccProbs();
1941 
1942   // Create the terminator node.
1943   SDValue Ret =
1944       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1945   DAG.setRoot(Ret);
1946 }
1947 
1948 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1949   report_fatal_error("visitCatchSwitch not yet implemented!");
1950 }
1951 
1952 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1954   auto &DL = DAG.getDataLayout();
1955   SDValue Chain = getControlRoot();
1956   SmallVector<ISD::OutputArg, 8> Outs;
1957   SmallVector<SDValue, 8> OutVals;
1958 
1959   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1960   // lower
1961   //
1962   //   %val = call <ty> @llvm.experimental.deoptimize()
1963   //   ret <ty> %val
1964   //
1965   // differently.
1966   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1967     LowerDeoptimizingReturn();
1968     return;
1969   }
1970 
1971   if (!FuncInfo.CanLowerReturn) {
1972     unsigned DemoteReg = FuncInfo.DemoteRegister;
1973     const Function *F = I.getParent()->getParent();
1974 
1975     // Emit a store of the return value through the virtual register.
1976     // Leave Outs empty so that LowerReturn won't try to load return
1977     // registers the usual way.
1978     SmallVector<EVT, 1> PtrValueVTs;
1979     ComputeValueVTs(TLI, DL,
1980                     F->getReturnType()->getPointerTo(
1981                         DAG.getDataLayout().getAllocaAddrSpace()),
1982                     PtrValueVTs);
1983 
1984     SDValue RetPtr =
1985         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1986     SDValue RetOp = getValue(I.getOperand(0));
1987 
1988     SmallVector<EVT, 4> ValueVTs, MemVTs;
1989     SmallVector<uint64_t, 4> Offsets;
1990     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1991                     &Offsets);
1992     unsigned NumValues = ValueVTs.size();
1993 
1994     SmallVector<SDValue, 4> Chains(NumValues);
1995     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1996     for (unsigned i = 0; i != NumValues; ++i) {
1997       // An aggregate return value cannot wrap around the address space, so
1998       // offsets to its parts don't wrap either.
1999       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2000                                            TypeSize::Fixed(Offsets[i]));
2001 
2002       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2003       if (MemVTs[i] != ValueVTs[i])
2004         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2005       Chains[i] = DAG.getStore(
2006           Chain, getCurSDLoc(), Val,
2007           // FIXME: better loc info would be nice.
2008           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2009           commonAlignment(BaseAlign, Offsets[i]));
2010     }
2011 
2012     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2013                         MVT::Other, Chains);
2014   } else if (I.getNumOperands() != 0) {
2015     SmallVector<EVT, 4> ValueVTs;
2016     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2017     unsigned NumValues = ValueVTs.size();
2018     if (NumValues) {
2019       SDValue RetOp = getValue(I.getOperand(0));
2020 
2021       const Function *F = I.getParent()->getParent();
2022 
2023       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2024           I.getOperand(0)->getType(), F->getCallingConv(),
2025           /*IsVarArg*/ false, DL);
2026 
2027       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2028       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2029         ExtendKind = ISD::SIGN_EXTEND;
2030       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2031         ExtendKind = ISD::ZERO_EXTEND;
2032 
2033       LLVMContext &Context = F->getContext();
2034       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2035 
2036       for (unsigned j = 0; j != NumValues; ++j) {
2037         EVT VT = ValueVTs[j];
2038 
2039         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2040           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2041 
2042         CallingConv::ID CC = F->getCallingConv();
2043 
2044         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2045         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2046         SmallVector<SDValue, 4> Parts(NumParts);
2047         getCopyToParts(DAG, getCurSDLoc(),
2048                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2049                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2050 
2051         // 'inreg' on function refers to return value
2052         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2053         if (RetInReg)
2054           Flags.setInReg();
2055 
2056         if (I.getOperand(0)->getType()->isPointerTy()) {
2057           Flags.setPointer();
2058           Flags.setPointerAddrSpace(
2059               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2060         }
2061 
2062         if (NeedsRegBlock) {
2063           Flags.setInConsecutiveRegs();
2064           if (j == NumValues - 1)
2065             Flags.setInConsecutiveRegsLast();
2066         }
2067 
2068         // Propagate extension type if any
2069         if (ExtendKind == ISD::SIGN_EXTEND)
2070           Flags.setSExt();
2071         else if (ExtendKind == ISD::ZERO_EXTEND)
2072           Flags.setZExt();
2073 
2074         for (unsigned i = 0; i < NumParts; ++i) {
2075           Outs.push_back(ISD::OutputArg(Flags,
2076                                         Parts[i].getValueType().getSimpleVT(),
2077                                         VT, /*isfixed=*/true, 0, 0));
2078           OutVals.push_back(Parts[i]);
2079         }
2080       }
2081     }
2082   }
2083 
2084   // Push in swifterror virtual register as the last element of Outs. This makes
2085   // sure swifterror virtual register will be returned in the swifterror
2086   // physical register.
2087   const Function *F = I.getParent()->getParent();
2088   if (TLI.supportSwiftError() &&
2089       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2090     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2091     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2092     Flags.setSwiftError();
2093     Outs.push_back(ISD::OutputArg(
2094         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2095         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2096     // Create SDNode for the swifterror virtual register.
2097     OutVals.push_back(
2098         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2099                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2100                         EVT(TLI.getPointerTy(DL))));
2101   }
2102 
2103   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2104   CallingConv::ID CallConv =
2105     DAG.getMachineFunction().getFunction().getCallingConv();
2106   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2107       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2108 
2109   // Verify that the target's LowerReturn behaved as expected.
2110   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2111          "LowerReturn didn't return a valid chain!");
2112 
2113   // Update the DAG with the new chain value resulting from return lowering.
2114   DAG.setRoot(Chain);
2115 }
2116 
2117 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2118 /// created for it, emit nodes to copy the value into the virtual
2119 /// registers.
2120 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2121   // Skip empty types
2122   if (V->getType()->isEmptyTy())
2123     return;
2124 
2125   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2126   if (VMI != FuncInfo.ValueMap.end()) {
2127     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2128     CopyValueToVirtualRegister(V, VMI->second);
2129   }
2130 }
2131 
2132 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2133 /// the current basic block, add it to ValueMap now so that we'll get a
2134 /// CopyTo/FromReg.
2135 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2136   // No need to export constants.
2137   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2138 
2139   // Already exported?
2140   if (FuncInfo.isExportedInst(V)) return;
2141 
2142   Register Reg = FuncInfo.InitializeRegForValue(V);
2143   CopyValueToVirtualRegister(V, Reg);
2144 }
2145 
2146 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2147                                                      const BasicBlock *FromBB) {
2148   // The operands of the setcc have to be in this block.  We don't know
2149   // how to export them from some other block.
2150   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2151     // Can export from current BB.
2152     if (VI->getParent() == FromBB)
2153       return true;
2154 
2155     // Is already exported, noop.
2156     return FuncInfo.isExportedInst(V);
2157   }
2158 
2159   // If this is an argument, we can export it if the BB is the entry block or
2160   // if it is already exported.
2161   if (isa<Argument>(V)) {
2162     if (FromBB->isEntryBlock())
2163       return true;
2164 
2165     // Otherwise, can only export this if it is already exported.
2166     return FuncInfo.isExportedInst(V);
2167   }
2168 
2169   // Otherwise, constants can always be exported.
2170   return true;
2171 }
2172 
2173 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2174 BranchProbability
2175 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2176                                         const MachineBasicBlock *Dst) const {
2177   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2178   const BasicBlock *SrcBB = Src->getBasicBlock();
2179   const BasicBlock *DstBB = Dst->getBasicBlock();
2180   if (!BPI) {
2181     // If BPI is not available, set the default probability as 1 / N, where N is
2182     // the number of successors.
2183     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2184     return BranchProbability(1, SuccSize);
2185   }
2186   return BPI->getEdgeProbability(SrcBB, DstBB);
2187 }
2188 
2189 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2190                                                MachineBasicBlock *Dst,
2191                                                BranchProbability Prob) {
2192   if (!FuncInfo.BPI)
2193     Src->addSuccessorWithoutProb(Dst);
2194   else {
2195     if (Prob.isUnknown())
2196       Prob = getEdgeProbability(Src, Dst);
2197     Src->addSuccessor(Dst, Prob);
2198   }
2199 }
2200 
2201 static bool InBlock(const Value *V, const BasicBlock *BB) {
2202   if (const Instruction *I = dyn_cast<Instruction>(V))
2203     return I->getParent() == BB;
2204   return true;
2205 }
2206 
2207 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2208 /// This function emits a branch and is used at the leaves of an OR or an
2209 /// AND operator tree.
2210 void
2211 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2212                                                   MachineBasicBlock *TBB,
2213                                                   MachineBasicBlock *FBB,
2214                                                   MachineBasicBlock *CurBB,
2215                                                   MachineBasicBlock *SwitchBB,
2216                                                   BranchProbability TProb,
2217                                                   BranchProbability FProb,
2218                                                   bool InvertCond) {
2219   const BasicBlock *BB = CurBB->getBasicBlock();
2220 
2221   // If the leaf of the tree is a comparison, merge the condition into
2222   // the caseblock.
2223   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2224     // The operands of the cmp have to be in this block.  We don't know
2225     // how to export them from some other block.  If this is the first block
2226     // of the sequence, no exporting is needed.
2227     if (CurBB == SwitchBB ||
2228         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2229          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2230       ISD::CondCode Condition;
2231       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2232         ICmpInst::Predicate Pred =
2233             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2234         Condition = getICmpCondCode(Pred);
2235       } else {
2236         const FCmpInst *FC = cast<FCmpInst>(Cond);
2237         FCmpInst::Predicate Pred =
2238             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2239         Condition = getFCmpCondCode(Pred);
2240         if (TM.Options.NoNaNsFPMath)
2241           Condition = getFCmpCodeWithoutNaN(Condition);
2242       }
2243 
2244       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2245                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2246       SL->SwitchCases.push_back(CB);
2247       return;
2248     }
2249   }
2250 
2251   // Create a CaseBlock record representing this branch.
2252   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2253   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2254                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2255   SL->SwitchCases.push_back(CB);
2256 }
2257 
2258 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2259                                                MachineBasicBlock *TBB,
2260                                                MachineBasicBlock *FBB,
2261                                                MachineBasicBlock *CurBB,
2262                                                MachineBasicBlock *SwitchBB,
2263                                                Instruction::BinaryOps Opc,
2264                                                BranchProbability TProb,
2265                                                BranchProbability FProb,
2266                                                bool InvertCond) {
2267   // Skip over not part of the tree and remember to invert op and operands at
2268   // next level.
2269   Value *NotCond;
2270   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2271       InBlock(NotCond, CurBB->getBasicBlock())) {
2272     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2273                          !InvertCond);
2274     return;
2275   }
2276 
2277   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2278   const Value *BOpOp0, *BOpOp1;
2279   // Compute the effective opcode for Cond, taking into account whether it needs
2280   // to be inverted, e.g.
2281   //   and (not (or A, B)), C
2282   // gets lowered as
2283   //   and (and (not A, not B), C)
2284   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2285   if (BOp) {
2286     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2287                ? Instruction::And
2288                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2289                       ? Instruction::Or
2290                       : (Instruction::BinaryOps)0);
2291     if (InvertCond) {
2292       if (BOpc == Instruction::And)
2293         BOpc = Instruction::Or;
2294       else if (BOpc == Instruction::Or)
2295         BOpc = Instruction::And;
2296     }
2297   }
2298 
2299   // If this node is not part of the or/and tree, emit it as a branch.
2300   // Note that all nodes in the tree should have same opcode.
2301   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2302   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2303       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2304       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2305     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2306                                  TProb, FProb, InvertCond);
2307     return;
2308   }
2309 
2310   //  Create TmpBB after CurBB.
2311   MachineFunction::iterator BBI(CurBB);
2312   MachineFunction &MF = DAG.getMachineFunction();
2313   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2314   CurBB->getParent()->insert(++BBI, TmpBB);
2315 
2316   if (Opc == Instruction::Or) {
2317     // Codegen X | Y as:
2318     // BB1:
2319     //   jmp_if_X TBB
2320     //   jmp TmpBB
2321     // TmpBB:
2322     //   jmp_if_Y TBB
2323     //   jmp FBB
2324     //
2325 
2326     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2327     // The requirement is that
2328     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2329     //     = TrueProb for original BB.
2330     // Assuming the original probabilities are A and B, one choice is to set
2331     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2332     // A/(1+B) and 2B/(1+B). This choice assumes that
2333     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2334     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2335     // TmpBB, but the math is more complicated.
2336 
2337     auto NewTrueProb = TProb / 2;
2338     auto NewFalseProb = TProb / 2 + FProb;
2339     // Emit the LHS condition.
2340     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2341                          NewFalseProb, InvertCond);
2342 
2343     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2344     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2345     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2346     // Emit the RHS condition into TmpBB.
2347     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2348                          Probs[1], InvertCond);
2349   } else {
2350     assert(Opc == Instruction::And && "Unknown merge op!");
2351     // Codegen X & Y as:
2352     // BB1:
2353     //   jmp_if_X TmpBB
2354     //   jmp FBB
2355     // TmpBB:
2356     //   jmp_if_Y TBB
2357     //   jmp FBB
2358     //
2359     //  This requires creation of TmpBB after CurBB.
2360 
2361     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2362     // The requirement is that
2363     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2364     //     = FalseProb for original BB.
2365     // Assuming the original probabilities are A and B, one choice is to set
2366     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2367     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2368     // TrueProb for BB1 * FalseProb for TmpBB.
2369 
2370     auto NewTrueProb = TProb + FProb / 2;
2371     auto NewFalseProb = FProb / 2;
2372     // Emit the LHS condition.
2373     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2374                          NewFalseProb, InvertCond);
2375 
2376     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2377     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2378     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2379     // Emit the RHS condition into TmpBB.
2380     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2381                          Probs[1], InvertCond);
2382   }
2383 }
2384 
2385 /// If the set of cases should be emitted as a series of branches, return true.
2386 /// If we should emit this as a bunch of and/or'd together conditions, return
2387 /// false.
2388 bool
2389 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2390   if (Cases.size() != 2) return true;
2391 
2392   // If this is two comparisons of the same values or'd or and'd together, they
2393   // will get folded into a single comparison, so don't emit two blocks.
2394   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2395        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2396       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2397        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2398     return false;
2399   }
2400 
2401   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2402   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2403   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2404       Cases[0].CC == Cases[1].CC &&
2405       isa<Constant>(Cases[0].CmpRHS) &&
2406       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2407     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2408       return false;
2409     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2410       return false;
2411   }
2412 
2413   return true;
2414 }
2415 
2416 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2417   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2418 
2419   // Update machine-CFG edges.
2420   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2421 
2422   if (I.isUnconditional()) {
2423     // Update machine-CFG edges.
2424     BrMBB->addSuccessor(Succ0MBB);
2425 
2426     // If this is not a fall-through branch or optimizations are switched off,
2427     // emit the branch.
2428     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2429       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2430                               MVT::Other, getControlRoot(),
2431                               DAG.getBasicBlock(Succ0MBB)));
2432 
2433     return;
2434   }
2435 
2436   // If this condition is one of the special cases we handle, do special stuff
2437   // now.
2438   const Value *CondVal = I.getCondition();
2439   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2440 
2441   // If this is a series of conditions that are or'd or and'd together, emit
2442   // this as a sequence of branches instead of setcc's with and/or operations.
2443   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2444   // unpredictable branches, and vector extracts because those jumps are likely
2445   // expensive for any target), this should improve performance.
2446   // For example, instead of something like:
2447   //     cmp A, B
2448   //     C = seteq
2449   //     cmp D, E
2450   //     F = setle
2451   //     or C, F
2452   //     jnz foo
2453   // Emit:
2454   //     cmp A, B
2455   //     je foo
2456   //     cmp D, E
2457   //     jle foo
2458   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2459   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2460       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2461     Value *Vec;
2462     const Value *BOp0, *BOp1;
2463     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2464     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2465       Opcode = Instruction::And;
2466     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2467       Opcode = Instruction::Or;
2468 
2469     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2470                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2471       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2472                            getEdgeProbability(BrMBB, Succ0MBB),
2473                            getEdgeProbability(BrMBB, Succ1MBB),
2474                            /*InvertCond=*/false);
2475       // If the compares in later blocks need to use values not currently
2476       // exported from this block, export them now.  This block should always
2477       // be the first entry.
2478       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2479 
2480       // Allow some cases to be rejected.
2481       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2482         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2483           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2484           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2485         }
2486 
2487         // Emit the branch for this block.
2488         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2489         SL->SwitchCases.erase(SL->SwitchCases.begin());
2490         return;
2491       }
2492 
2493       // Okay, we decided not to do this, remove any inserted MBB's and clear
2494       // SwitchCases.
2495       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2496         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2497 
2498       SL->SwitchCases.clear();
2499     }
2500   }
2501 
2502   // Create a CaseBlock record representing this branch.
2503   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2504                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2505 
2506   // Use visitSwitchCase to actually insert the fast branch sequence for this
2507   // cond branch.
2508   visitSwitchCase(CB, BrMBB);
2509 }
2510 
2511 /// visitSwitchCase - Emits the necessary code to represent a single node in
2512 /// the binary search tree resulting from lowering a switch instruction.
2513 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2514                                           MachineBasicBlock *SwitchBB) {
2515   SDValue Cond;
2516   SDValue CondLHS = getValue(CB.CmpLHS);
2517   SDLoc dl = CB.DL;
2518 
2519   if (CB.CC == ISD::SETTRUE) {
2520     // Branch or fall through to TrueBB.
2521     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2522     SwitchBB->normalizeSuccProbs();
2523     if (CB.TrueBB != NextBlock(SwitchBB)) {
2524       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2525                               DAG.getBasicBlock(CB.TrueBB)));
2526     }
2527     return;
2528   }
2529 
2530   auto &TLI = DAG.getTargetLoweringInfo();
2531   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2532 
2533   // Build the setcc now.
2534   if (!CB.CmpMHS) {
2535     // Fold "(X == true)" to X and "(X == false)" to !X to
2536     // handle common cases produced by branch lowering.
2537     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2538         CB.CC == ISD::SETEQ)
2539       Cond = CondLHS;
2540     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2541              CB.CC == ISD::SETEQ) {
2542       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2543       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2544     } else {
2545       SDValue CondRHS = getValue(CB.CmpRHS);
2546 
2547       // If a pointer's DAG type is larger than its memory type then the DAG
2548       // values are zero-extended. This breaks signed comparisons so truncate
2549       // back to the underlying type before doing the compare.
2550       if (CondLHS.getValueType() != MemVT) {
2551         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2552         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2553       }
2554       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2555     }
2556   } else {
2557     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2558 
2559     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2560     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2561 
2562     SDValue CmpOp = getValue(CB.CmpMHS);
2563     EVT VT = CmpOp.getValueType();
2564 
2565     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2566       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2567                           ISD::SETLE);
2568     } else {
2569       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2570                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2571       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2572                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2573     }
2574   }
2575 
2576   // Update successor info
2577   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2578   // TrueBB and FalseBB are always different unless the incoming IR is
2579   // degenerate. This only happens when running llc on weird IR.
2580   if (CB.TrueBB != CB.FalseBB)
2581     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2582   SwitchBB->normalizeSuccProbs();
2583 
2584   // If the lhs block is the next block, invert the condition so that we can
2585   // fall through to the lhs instead of the rhs block.
2586   if (CB.TrueBB == NextBlock(SwitchBB)) {
2587     std::swap(CB.TrueBB, CB.FalseBB);
2588     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2589     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2590   }
2591 
2592   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2593                                MVT::Other, getControlRoot(), Cond,
2594                                DAG.getBasicBlock(CB.TrueBB));
2595 
2596   setValue(CurInst, BrCond);
2597 
2598   // Insert the false branch. Do this even if it's a fall through branch,
2599   // this makes it easier to do DAG optimizations which require inverting
2600   // the branch condition.
2601   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2602                        DAG.getBasicBlock(CB.FalseBB));
2603 
2604   DAG.setRoot(BrCond);
2605 }
2606 
2607 /// visitJumpTable - Emit JumpTable node in the current MBB
2608 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2609   // Emit the code for the jump table
2610   assert(JT.Reg != -1U && "Should lower JT Header first!");
2611   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2612   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2613                                      JT.Reg, PTy);
2614   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2615   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2616                                     MVT::Other, Index.getValue(1),
2617                                     Table, Index);
2618   DAG.setRoot(BrJumpTable);
2619 }
2620 
2621 /// visitJumpTableHeader - This function emits necessary code to produce index
2622 /// in the JumpTable from switch case.
2623 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2624                                                JumpTableHeader &JTH,
2625                                                MachineBasicBlock *SwitchBB) {
2626   SDLoc dl = getCurSDLoc();
2627 
2628   // Subtract the lowest switch case value from the value being switched on.
2629   SDValue SwitchOp = getValue(JTH.SValue);
2630   EVT VT = SwitchOp.getValueType();
2631   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2632                             DAG.getConstant(JTH.First, dl, VT));
2633 
2634   // The SDNode we just created, which holds the value being switched on minus
2635   // the smallest case value, needs to be copied to a virtual register so it
2636   // can be used as an index into the jump table in a subsequent basic block.
2637   // This value may be smaller or larger than the target's pointer type, and
2638   // therefore require extension or truncating.
2639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2640   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2641 
2642   unsigned JumpTableReg =
2643       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2644   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2645                                     JumpTableReg, SwitchOp);
2646   JT.Reg = JumpTableReg;
2647 
2648   if (!JTH.FallthroughUnreachable) {
2649     // Emit the range check for the jump table, and branch to the default block
2650     // for the switch statement if the value being switched on exceeds the
2651     // largest case in the switch.
2652     SDValue CMP = DAG.getSetCC(
2653         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2654                                    Sub.getValueType()),
2655         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2656 
2657     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2658                                  MVT::Other, CopyTo, CMP,
2659                                  DAG.getBasicBlock(JT.Default));
2660 
2661     // Avoid emitting unnecessary branches to the next block.
2662     if (JT.MBB != NextBlock(SwitchBB))
2663       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2664                            DAG.getBasicBlock(JT.MBB));
2665 
2666     DAG.setRoot(BrCond);
2667   } else {
2668     // Avoid emitting unnecessary branches to the next block.
2669     if (JT.MBB != NextBlock(SwitchBB))
2670       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2671                               DAG.getBasicBlock(JT.MBB)));
2672     else
2673       DAG.setRoot(CopyTo);
2674   }
2675 }
2676 
2677 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2678 /// variable if there exists one.
2679 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2680                                  SDValue &Chain) {
2681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2682   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2683   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2684   MachineFunction &MF = DAG.getMachineFunction();
2685   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2686   MachineSDNode *Node =
2687       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2688   if (Global) {
2689     MachinePointerInfo MPInfo(Global);
2690     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2691                  MachineMemOperand::MODereferenceable;
2692     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2693         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2694     DAG.setNodeMemRefs(Node, {MemRef});
2695   }
2696   if (PtrTy != PtrMemTy)
2697     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2698   return SDValue(Node, 0);
2699 }
2700 
2701 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2702 /// tail spliced into a stack protector check success bb.
2703 ///
2704 /// For a high level explanation of how this fits into the stack protector
2705 /// generation see the comment on the declaration of class
2706 /// StackProtectorDescriptor.
2707 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2708                                                   MachineBasicBlock *ParentBB) {
2709 
2710   // First create the loads to the guard/stack slot for the comparison.
2711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2712   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2713   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2714 
2715   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2716   int FI = MFI.getStackProtectorIndex();
2717 
2718   SDValue Guard;
2719   SDLoc dl = getCurSDLoc();
2720   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2721   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2722   Align Align =
2723       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2724 
2725   // Generate code to load the content of the guard slot.
2726   SDValue GuardVal = DAG.getLoad(
2727       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2728       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2729       MachineMemOperand::MOVolatile);
2730 
2731   if (TLI.useStackGuardXorFP())
2732     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2733 
2734   // Retrieve guard check function, nullptr if instrumentation is inlined.
2735   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2736     // The target provides a guard check function to validate the guard value.
2737     // Generate a call to that function with the content of the guard slot as
2738     // argument.
2739     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2740     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2741 
2742     TargetLowering::ArgListTy Args;
2743     TargetLowering::ArgListEntry Entry;
2744     Entry.Node = GuardVal;
2745     Entry.Ty = FnTy->getParamType(0);
2746     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2747       Entry.IsInReg = true;
2748     Args.push_back(Entry);
2749 
2750     TargetLowering::CallLoweringInfo CLI(DAG);
2751     CLI.setDebugLoc(getCurSDLoc())
2752         .setChain(DAG.getEntryNode())
2753         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2754                    getValue(GuardCheckFn), std::move(Args));
2755 
2756     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2757     DAG.setRoot(Result.second);
2758     return;
2759   }
2760 
2761   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2762   // Otherwise, emit a volatile load to retrieve the stack guard value.
2763   SDValue Chain = DAG.getEntryNode();
2764   if (TLI.useLoadStackGuardNode()) {
2765     Guard = getLoadStackGuard(DAG, dl, Chain);
2766   } else {
2767     const Value *IRGuard = TLI.getSDagStackGuard(M);
2768     SDValue GuardPtr = getValue(IRGuard);
2769 
2770     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2771                         MachinePointerInfo(IRGuard, 0), Align,
2772                         MachineMemOperand::MOVolatile);
2773   }
2774 
2775   // Perform the comparison via a getsetcc.
2776   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2777                                                         *DAG.getContext(),
2778                                                         Guard.getValueType()),
2779                              Guard, GuardVal, ISD::SETNE);
2780 
2781   // If the guard/stackslot do not equal, branch to failure MBB.
2782   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2783                                MVT::Other, GuardVal.getOperand(0),
2784                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2785   // Otherwise branch to success MBB.
2786   SDValue Br = DAG.getNode(ISD::BR, dl,
2787                            MVT::Other, BrCond,
2788                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2789 
2790   DAG.setRoot(Br);
2791 }
2792 
2793 /// Codegen the failure basic block for a stack protector check.
2794 ///
2795 /// A failure stack protector machine basic block consists simply of a call to
2796 /// __stack_chk_fail().
2797 ///
2798 /// For a high level explanation of how this fits into the stack protector
2799 /// generation see the comment on the declaration of class
2800 /// StackProtectorDescriptor.
2801 void
2802 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2804   TargetLowering::MakeLibCallOptions CallOptions;
2805   CallOptions.setDiscardResult(true);
2806   SDValue Chain =
2807       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2808                       std::nullopt, CallOptions, getCurSDLoc())
2809           .second;
2810   // On PS4/PS5, the "return address" must still be within the calling
2811   // function, even if it's at the very end, so emit an explicit TRAP here.
2812   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2813   if (TM.getTargetTriple().isPS())
2814     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2815   // WebAssembly needs an unreachable instruction after a non-returning call,
2816   // because the function return type can be different from __stack_chk_fail's
2817   // return type (void).
2818   if (TM.getTargetTriple().isWasm())
2819     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2820 
2821   DAG.setRoot(Chain);
2822 }
2823 
2824 /// visitBitTestHeader - This function emits necessary code to produce value
2825 /// suitable for "bit tests"
2826 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2827                                              MachineBasicBlock *SwitchBB) {
2828   SDLoc dl = getCurSDLoc();
2829 
2830   // Subtract the minimum value.
2831   SDValue SwitchOp = getValue(B.SValue);
2832   EVT VT = SwitchOp.getValueType();
2833   SDValue RangeSub =
2834       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2835 
2836   // Determine the type of the test operands.
2837   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2838   bool UsePtrType = false;
2839   if (!TLI.isTypeLegal(VT)) {
2840     UsePtrType = true;
2841   } else {
2842     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2843       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2844         // Switch table case range are encoded into series of masks.
2845         // Just use pointer type, it's guaranteed to fit.
2846         UsePtrType = true;
2847         break;
2848       }
2849   }
2850   SDValue Sub = RangeSub;
2851   if (UsePtrType) {
2852     VT = TLI.getPointerTy(DAG.getDataLayout());
2853     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2854   }
2855 
2856   B.RegVT = VT.getSimpleVT();
2857   B.Reg = FuncInfo.CreateReg(B.RegVT);
2858   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2859 
2860   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2861 
2862   if (!B.FallthroughUnreachable)
2863     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2864   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2865   SwitchBB->normalizeSuccProbs();
2866 
2867   SDValue Root = CopyTo;
2868   if (!B.FallthroughUnreachable) {
2869     // Conditional branch to the default block.
2870     SDValue RangeCmp = DAG.getSetCC(dl,
2871         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2872                                RangeSub.getValueType()),
2873         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2874         ISD::SETUGT);
2875 
2876     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2877                        DAG.getBasicBlock(B.Default));
2878   }
2879 
2880   // Avoid emitting unnecessary branches to the next block.
2881   if (MBB != NextBlock(SwitchBB))
2882     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2883 
2884   DAG.setRoot(Root);
2885 }
2886 
2887 /// visitBitTestCase - this function produces one "bit test"
2888 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2889                                            MachineBasicBlock* NextMBB,
2890                                            BranchProbability BranchProbToNext,
2891                                            unsigned Reg,
2892                                            BitTestCase &B,
2893                                            MachineBasicBlock *SwitchBB) {
2894   SDLoc dl = getCurSDLoc();
2895   MVT VT = BB.RegVT;
2896   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2897   SDValue Cmp;
2898   unsigned PopCount = countPopulation(B.Mask);
2899   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2900   if (PopCount == 1) {
2901     // Testing for a single bit; just compare the shift count with what it
2902     // would need to be to shift a 1 bit in that position.
2903     Cmp = DAG.getSetCC(
2904         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2905         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2906         ISD::SETEQ);
2907   } else if (PopCount == BB.Range) {
2908     // There is only one zero bit in the range, test for it directly.
2909     Cmp = DAG.getSetCC(
2910         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2911         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2912         ISD::SETNE);
2913   } else {
2914     // Make desired shift
2915     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2916                                     DAG.getConstant(1, dl, VT), ShiftOp);
2917 
2918     // Emit bit tests and jumps
2919     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2920                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2921     Cmp = DAG.getSetCC(
2922         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2923         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2924   }
2925 
2926   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2927   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2928   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2929   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2930   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2931   // one as they are relative probabilities (and thus work more like weights),
2932   // and hence we need to normalize them to let the sum of them become one.
2933   SwitchBB->normalizeSuccProbs();
2934 
2935   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2936                               MVT::Other, getControlRoot(),
2937                               Cmp, DAG.getBasicBlock(B.TargetBB));
2938 
2939   // Avoid emitting unnecessary branches to the next block.
2940   if (NextMBB != NextBlock(SwitchBB))
2941     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2942                         DAG.getBasicBlock(NextMBB));
2943 
2944   DAG.setRoot(BrAnd);
2945 }
2946 
2947 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2948   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2949 
2950   // Retrieve successors. Look through artificial IR level blocks like
2951   // catchswitch for successors.
2952   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2953   const BasicBlock *EHPadBB = I.getSuccessor(1);
2954 
2955   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2956   // have to do anything here to lower funclet bundles.
2957   assert(!I.hasOperandBundlesOtherThan(
2958              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2959               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2960               LLVMContext::OB_cfguardtarget,
2961               LLVMContext::OB_clang_arc_attachedcall}) &&
2962          "Cannot lower invokes with arbitrary operand bundles yet!");
2963 
2964   const Value *Callee(I.getCalledOperand());
2965   const Function *Fn = dyn_cast<Function>(Callee);
2966   if (isa<InlineAsm>(Callee))
2967     visitInlineAsm(I, EHPadBB);
2968   else if (Fn && Fn->isIntrinsic()) {
2969     switch (Fn->getIntrinsicID()) {
2970     default:
2971       llvm_unreachable("Cannot invoke this intrinsic");
2972     case Intrinsic::donothing:
2973       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2974     case Intrinsic::seh_try_begin:
2975     case Intrinsic::seh_scope_begin:
2976     case Intrinsic::seh_try_end:
2977     case Intrinsic::seh_scope_end:
2978       break;
2979     case Intrinsic::experimental_patchpoint_void:
2980     case Intrinsic::experimental_patchpoint_i64:
2981       visitPatchpoint(I, EHPadBB);
2982       break;
2983     case Intrinsic::experimental_gc_statepoint:
2984       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2985       break;
2986     case Intrinsic::wasm_rethrow: {
2987       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2988       // special because it can be invoked, so we manually lower it to a DAG
2989       // node here.
2990       SmallVector<SDValue, 8> Ops;
2991       Ops.push_back(getRoot()); // inchain
2992       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2993       Ops.push_back(
2994           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2995                                 TLI.getPointerTy(DAG.getDataLayout())));
2996       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2997       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2998       break;
2999     }
3000     }
3001   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3002     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3003     // Eventually we will support lowering the @llvm.experimental.deoptimize
3004     // intrinsic, and right now there are no plans to support other intrinsics
3005     // with deopt state.
3006     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3007   } else {
3008     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3009   }
3010 
3011   // If the value of the invoke is used outside of its defining block, make it
3012   // available as a virtual register.
3013   // We already took care of the exported value for the statepoint instruction
3014   // during call to the LowerStatepoint.
3015   if (!isa<GCStatepointInst>(I)) {
3016     CopyToExportRegsIfNeeded(&I);
3017   }
3018 
3019   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3020   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3021   BranchProbability EHPadBBProb =
3022       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3023           : BranchProbability::getZero();
3024   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3025 
3026   // Update successor info.
3027   addSuccessorWithProb(InvokeMBB, Return);
3028   for (auto &UnwindDest : UnwindDests) {
3029     UnwindDest.first->setIsEHPad();
3030     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3031   }
3032   InvokeMBB->normalizeSuccProbs();
3033 
3034   // Drop into normal successor.
3035   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3036                           DAG.getBasicBlock(Return)));
3037 }
3038 
3039 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3040   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3041 
3042   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3043   // have to do anything here to lower funclet bundles.
3044   assert(!I.hasOperandBundlesOtherThan(
3045              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3046          "Cannot lower callbrs with arbitrary operand bundles yet!");
3047 
3048   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3049   visitInlineAsm(I);
3050   CopyToExportRegsIfNeeded(&I);
3051 
3052   // Retrieve successors.
3053   SmallPtrSet<BasicBlock *, 8> Dests;
3054   Dests.insert(I.getDefaultDest());
3055   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3056 
3057   // Update successor info.
3058   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3059   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3060     BasicBlock *Dest = I.getIndirectDest(i);
3061     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3062     Target->setIsInlineAsmBrIndirectTarget();
3063     Target->setMachineBlockAddressTaken();
3064     Target->setLabelMustBeEmitted();
3065     // Don't add duplicate machine successors.
3066     if (Dests.insert(Dest).second)
3067       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3068   }
3069   CallBrMBB->normalizeSuccProbs();
3070 
3071   // Drop into default successor.
3072   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3073                           MVT::Other, getControlRoot(),
3074                           DAG.getBasicBlock(Return)));
3075 }
3076 
3077 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3078   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3079 }
3080 
3081 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3082   assert(FuncInfo.MBB->isEHPad() &&
3083          "Call to landingpad not in landing pad!");
3084 
3085   // If there aren't registers to copy the values into (e.g., during SjLj
3086   // exceptions), then don't bother to create these DAG nodes.
3087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3089   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3090       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3091     return;
3092 
3093   // If landingpad's return type is token type, we don't create DAG nodes
3094   // for its exception pointer and selector value. The extraction of exception
3095   // pointer or selector value from token type landingpads is not currently
3096   // supported.
3097   if (LP.getType()->isTokenTy())
3098     return;
3099 
3100   SmallVector<EVT, 2> ValueVTs;
3101   SDLoc dl = getCurSDLoc();
3102   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3103   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3104 
3105   // Get the two live-in registers as SDValues. The physregs have already been
3106   // copied into virtual registers.
3107   SDValue Ops[2];
3108   if (FuncInfo.ExceptionPointerVirtReg) {
3109     Ops[0] = DAG.getZExtOrTrunc(
3110         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3111                            FuncInfo.ExceptionPointerVirtReg,
3112                            TLI.getPointerTy(DAG.getDataLayout())),
3113         dl, ValueVTs[0]);
3114   } else {
3115     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3116   }
3117   Ops[1] = DAG.getZExtOrTrunc(
3118       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3119                          FuncInfo.ExceptionSelectorVirtReg,
3120                          TLI.getPointerTy(DAG.getDataLayout())),
3121       dl, ValueVTs[1]);
3122 
3123   // Merge into one.
3124   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3125                             DAG.getVTList(ValueVTs), Ops);
3126   setValue(&LP, Res);
3127 }
3128 
3129 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3130                                            MachineBasicBlock *Last) {
3131   // Update JTCases.
3132   for (JumpTableBlock &JTB : SL->JTCases)
3133     if (JTB.first.HeaderBB == First)
3134       JTB.first.HeaderBB = Last;
3135 
3136   // Update BitTestCases.
3137   for (BitTestBlock &BTB : SL->BitTestCases)
3138     if (BTB.Parent == First)
3139       BTB.Parent = Last;
3140 }
3141 
3142 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3143   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3144 
3145   // Update machine-CFG edges with unique successors.
3146   SmallSet<BasicBlock*, 32> Done;
3147   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3148     BasicBlock *BB = I.getSuccessor(i);
3149     bool Inserted = Done.insert(BB).second;
3150     if (!Inserted)
3151         continue;
3152 
3153     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3154     addSuccessorWithProb(IndirectBrMBB, Succ);
3155   }
3156   IndirectBrMBB->normalizeSuccProbs();
3157 
3158   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3159                           MVT::Other, getControlRoot(),
3160                           getValue(I.getAddress())));
3161 }
3162 
3163 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3164   if (!DAG.getTarget().Options.TrapUnreachable)
3165     return;
3166 
3167   // We may be able to ignore unreachable behind a noreturn call.
3168   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3169     const BasicBlock &BB = *I.getParent();
3170     if (&I != &BB.front()) {
3171       BasicBlock::const_iterator PredI =
3172         std::prev(BasicBlock::const_iterator(&I));
3173       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3174         if (Call->doesNotReturn())
3175           return;
3176       }
3177     }
3178   }
3179 
3180   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3181 }
3182 
3183 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3184   SDNodeFlags Flags;
3185   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3186     Flags.copyFMF(*FPOp);
3187 
3188   SDValue Op = getValue(I.getOperand(0));
3189   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3190                                     Op, Flags);
3191   setValue(&I, UnNodeValue);
3192 }
3193 
3194 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3195   SDNodeFlags Flags;
3196   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3197     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3198     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3199   }
3200   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3201     Flags.setExact(ExactOp->isExact());
3202   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3203     Flags.copyFMF(*FPOp);
3204 
3205   SDValue Op1 = getValue(I.getOperand(0));
3206   SDValue Op2 = getValue(I.getOperand(1));
3207   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3208                                      Op1, Op2, Flags);
3209   setValue(&I, BinNodeValue);
3210 }
3211 
3212 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3213   SDValue Op1 = getValue(I.getOperand(0));
3214   SDValue Op2 = getValue(I.getOperand(1));
3215 
3216   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3217       Op1.getValueType(), DAG.getDataLayout());
3218 
3219   // Coerce the shift amount to the right type if we can. This exposes the
3220   // truncate or zext to optimization early.
3221   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3222     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3223            "Unexpected shift type");
3224     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3225   }
3226 
3227   bool nuw = false;
3228   bool nsw = false;
3229   bool exact = false;
3230 
3231   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3232 
3233     if (const OverflowingBinaryOperator *OFBinOp =
3234             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3235       nuw = OFBinOp->hasNoUnsignedWrap();
3236       nsw = OFBinOp->hasNoSignedWrap();
3237     }
3238     if (const PossiblyExactOperator *ExactOp =
3239             dyn_cast<const PossiblyExactOperator>(&I))
3240       exact = ExactOp->isExact();
3241   }
3242   SDNodeFlags Flags;
3243   Flags.setExact(exact);
3244   Flags.setNoSignedWrap(nsw);
3245   Flags.setNoUnsignedWrap(nuw);
3246   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3247                             Flags);
3248   setValue(&I, Res);
3249 }
3250 
3251 void SelectionDAGBuilder::visitSDiv(const User &I) {
3252   SDValue Op1 = getValue(I.getOperand(0));
3253   SDValue Op2 = getValue(I.getOperand(1));
3254 
3255   SDNodeFlags Flags;
3256   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3257                  cast<PossiblyExactOperator>(&I)->isExact());
3258   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3259                            Op2, Flags));
3260 }
3261 
3262 void SelectionDAGBuilder::visitICmp(const User &I) {
3263   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3264   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3265     predicate = IC->getPredicate();
3266   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3267     predicate = ICmpInst::Predicate(IC->getPredicate());
3268   SDValue Op1 = getValue(I.getOperand(0));
3269   SDValue Op2 = getValue(I.getOperand(1));
3270   ISD::CondCode Opcode = getICmpCondCode(predicate);
3271 
3272   auto &TLI = DAG.getTargetLoweringInfo();
3273   EVT MemVT =
3274       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3275 
3276   // If a pointer's DAG type is larger than its memory type then the DAG values
3277   // are zero-extended. This breaks signed comparisons so truncate back to the
3278   // underlying type before doing the compare.
3279   if (Op1.getValueType() != MemVT) {
3280     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3281     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3282   }
3283 
3284   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3285                                                         I.getType());
3286   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3287 }
3288 
3289 void SelectionDAGBuilder::visitFCmp(const User &I) {
3290   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3291   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3292     predicate = FC->getPredicate();
3293   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3294     predicate = FCmpInst::Predicate(FC->getPredicate());
3295   SDValue Op1 = getValue(I.getOperand(0));
3296   SDValue Op2 = getValue(I.getOperand(1));
3297 
3298   ISD::CondCode Condition = getFCmpCondCode(predicate);
3299   auto *FPMO = cast<FPMathOperator>(&I);
3300   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3301     Condition = getFCmpCodeWithoutNaN(Condition);
3302 
3303   SDNodeFlags Flags;
3304   Flags.copyFMF(*FPMO);
3305   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3306 
3307   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3308                                                         I.getType());
3309   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3310 }
3311 
3312 // Check if the condition of the select has one use or two users that are both
3313 // selects with the same condition.
3314 static bool hasOnlySelectUsers(const Value *Cond) {
3315   return llvm::all_of(Cond->users(), [](const Value *V) {
3316     return isa<SelectInst>(V);
3317   });
3318 }
3319 
3320 void SelectionDAGBuilder::visitSelect(const User &I) {
3321   SmallVector<EVT, 4> ValueVTs;
3322   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3323                   ValueVTs);
3324   unsigned NumValues = ValueVTs.size();
3325   if (NumValues == 0) return;
3326 
3327   SmallVector<SDValue, 4> Values(NumValues);
3328   SDValue Cond     = getValue(I.getOperand(0));
3329   SDValue LHSVal   = getValue(I.getOperand(1));
3330   SDValue RHSVal   = getValue(I.getOperand(2));
3331   SmallVector<SDValue, 1> BaseOps(1, Cond);
3332   ISD::NodeType OpCode =
3333       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3334 
3335   bool IsUnaryAbs = false;
3336   bool Negate = false;
3337 
3338   SDNodeFlags Flags;
3339   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3340     Flags.copyFMF(*FPOp);
3341 
3342   // Min/max matching is only viable if all output VTs are the same.
3343   if (all_equal(ValueVTs)) {
3344     EVT VT = ValueVTs[0];
3345     LLVMContext &Ctx = *DAG.getContext();
3346     auto &TLI = DAG.getTargetLoweringInfo();
3347 
3348     // We care about the legality of the operation after it has been type
3349     // legalized.
3350     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3351       VT = TLI.getTypeToTransformTo(Ctx, VT);
3352 
3353     // If the vselect is legal, assume we want to leave this as a vector setcc +
3354     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3355     // min/max is legal on the scalar type.
3356     bool UseScalarMinMax = VT.isVector() &&
3357       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3358 
3359     Value *LHS, *RHS;
3360     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3361     ISD::NodeType Opc = ISD::DELETED_NODE;
3362     switch (SPR.Flavor) {
3363     case SPF_UMAX:    Opc = ISD::UMAX; break;
3364     case SPF_UMIN:    Opc = ISD::UMIN; break;
3365     case SPF_SMAX:    Opc = ISD::SMAX; break;
3366     case SPF_SMIN:    Opc = ISD::SMIN; break;
3367     case SPF_FMINNUM:
3368       switch (SPR.NaNBehavior) {
3369       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3370       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3371       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3372       case SPNB_RETURNS_ANY: {
3373         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3374           Opc = ISD::FMINNUM;
3375         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3376           Opc = ISD::FMINIMUM;
3377         else if (UseScalarMinMax)
3378           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3379             ISD::FMINNUM : ISD::FMINIMUM;
3380         break;
3381       }
3382       }
3383       break;
3384     case SPF_FMAXNUM:
3385       switch (SPR.NaNBehavior) {
3386       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3387       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3388       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3389       case SPNB_RETURNS_ANY:
3390 
3391         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3392           Opc = ISD::FMAXNUM;
3393         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3394           Opc = ISD::FMAXIMUM;
3395         else if (UseScalarMinMax)
3396           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3397             ISD::FMAXNUM : ISD::FMAXIMUM;
3398         break;
3399       }
3400       break;
3401     case SPF_NABS:
3402       Negate = true;
3403       [[fallthrough]];
3404     case SPF_ABS:
3405       IsUnaryAbs = true;
3406       Opc = ISD::ABS;
3407       break;
3408     default: break;
3409     }
3410 
3411     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3412         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3413          (UseScalarMinMax &&
3414           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3415         // If the underlying comparison instruction is used by any other
3416         // instruction, the consumed instructions won't be destroyed, so it is
3417         // not profitable to convert to a min/max.
3418         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3419       OpCode = Opc;
3420       LHSVal = getValue(LHS);
3421       RHSVal = getValue(RHS);
3422       BaseOps.clear();
3423     }
3424 
3425     if (IsUnaryAbs) {
3426       OpCode = Opc;
3427       LHSVal = getValue(LHS);
3428       BaseOps.clear();
3429     }
3430   }
3431 
3432   if (IsUnaryAbs) {
3433     for (unsigned i = 0; i != NumValues; ++i) {
3434       SDLoc dl = getCurSDLoc();
3435       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3436       Values[i] =
3437           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3438       if (Negate)
3439         Values[i] = DAG.getNegative(Values[i], dl, VT);
3440     }
3441   } else {
3442     for (unsigned i = 0; i != NumValues; ++i) {
3443       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3444       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3445       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3446       Values[i] = DAG.getNode(
3447           OpCode, getCurSDLoc(),
3448           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3449     }
3450   }
3451 
3452   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3453                            DAG.getVTList(ValueVTs), Values));
3454 }
3455 
3456 void SelectionDAGBuilder::visitTrunc(const User &I) {
3457   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3458   SDValue N = getValue(I.getOperand(0));
3459   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3460                                                         I.getType());
3461   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3462 }
3463 
3464 void SelectionDAGBuilder::visitZExt(const User &I) {
3465   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3466   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3467   SDValue N = getValue(I.getOperand(0));
3468   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3469                                                         I.getType());
3470   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3471 }
3472 
3473 void SelectionDAGBuilder::visitSExt(const User &I) {
3474   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3475   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3476   SDValue N = getValue(I.getOperand(0));
3477   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3478                                                         I.getType());
3479   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3480 }
3481 
3482 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3483   // FPTrunc is never a no-op cast, no need to check
3484   SDValue N = getValue(I.getOperand(0));
3485   SDLoc dl = getCurSDLoc();
3486   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3487   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3488   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3489                            DAG.getTargetConstant(
3490                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3491 }
3492 
3493 void SelectionDAGBuilder::visitFPExt(const User &I) {
3494   // FPExt is never a no-op cast, no need to check
3495   SDValue N = getValue(I.getOperand(0));
3496   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3497                                                         I.getType());
3498   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3499 }
3500 
3501 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3502   // FPToUI is never a no-op cast, no need to check
3503   SDValue N = getValue(I.getOperand(0));
3504   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3505                                                         I.getType());
3506   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3507 }
3508 
3509 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3510   // FPToSI is never a no-op cast, no need to check
3511   SDValue N = getValue(I.getOperand(0));
3512   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3513                                                         I.getType());
3514   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3515 }
3516 
3517 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3518   // UIToFP is never a no-op cast, no need to check
3519   SDValue N = getValue(I.getOperand(0));
3520   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3521                                                         I.getType());
3522   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3523 }
3524 
3525 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3526   // SIToFP is never a no-op cast, no need to check
3527   SDValue N = getValue(I.getOperand(0));
3528   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3529                                                         I.getType());
3530   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3531 }
3532 
3533 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3534   // What to do depends on the size of the integer and the size of the pointer.
3535   // We can either truncate, zero extend, or no-op, accordingly.
3536   SDValue N = getValue(I.getOperand(0));
3537   auto &TLI = DAG.getTargetLoweringInfo();
3538   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3539                                                         I.getType());
3540   EVT PtrMemVT =
3541       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3542   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3543   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3544   setValue(&I, N);
3545 }
3546 
3547 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3548   // What to do depends on the size of the integer and the size of the pointer.
3549   // We can either truncate, zero extend, or no-op, accordingly.
3550   SDValue N = getValue(I.getOperand(0));
3551   auto &TLI = DAG.getTargetLoweringInfo();
3552   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3553   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3554   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3555   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3556   setValue(&I, N);
3557 }
3558 
3559 void SelectionDAGBuilder::visitBitCast(const User &I) {
3560   SDValue N = getValue(I.getOperand(0));
3561   SDLoc dl = getCurSDLoc();
3562   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3563                                                         I.getType());
3564 
3565   // BitCast assures us that source and destination are the same size so this is
3566   // either a BITCAST or a no-op.
3567   if (DestVT != N.getValueType())
3568     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3569                              DestVT, N)); // convert types.
3570   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3571   // might fold any kind of constant expression to an integer constant and that
3572   // is not what we are looking for. Only recognize a bitcast of a genuine
3573   // constant integer as an opaque constant.
3574   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3575     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3576                                  /*isOpaque*/true));
3577   else
3578     setValue(&I, N);            // noop cast.
3579 }
3580 
3581 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3583   const Value *SV = I.getOperand(0);
3584   SDValue N = getValue(SV);
3585   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3586 
3587   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3588   unsigned DestAS = I.getType()->getPointerAddressSpace();
3589 
3590   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3591     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3592 
3593   setValue(&I, N);
3594 }
3595 
3596 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3597   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3598   SDValue InVec = getValue(I.getOperand(0));
3599   SDValue InVal = getValue(I.getOperand(1));
3600   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3601                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3602   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3603                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3604                            InVec, InVal, InIdx));
3605 }
3606 
3607 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3608   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3609   SDValue InVec = getValue(I.getOperand(0));
3610   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3611                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3612   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3613                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3614                            InVec, InIdx));
3615 }
3616 
3617 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3618   SDValue Src1 = getValue(I.getOperand(0));
3619   SDValue Src2 = getValue(I.getOperand(1));
3620   ArrayRef<int> Mask;
3621   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3622     Mask = SVI->getShuffleMask();
3623   else
3624     Mask = cast<ConstantExpr>(I).getShuffleMask();
3625   SDLoc DL = getCurSDLoc();
3626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3627   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3628   EVT SrcVT = Src1.getValueType();
3629 
3630   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3631       VT.isScalableVector()) {
3632     // Canonical splat form of first element of first input vector.
3633     SDValue FirstElt =
3634         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3635                     DAG.getVectorIdxConstant(0, DL));
3636     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3637     return;
3638   }
3639 
3640   // For now, we only handle splats for scalable vectors.
3641   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3642   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3643   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3644 
3645   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3646   unsigned MaskNumElts = Mask.size();
3647 
3648   if (SrcNumElts == MaskNumElts) {
3649     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3650     return;
3651   }
3652 
3653   // Normalize the shuffle vector since mask and vector length don't match.
3654   if (SrcNumElts < MaskNumElts) {
3655     // Mask is longer than the source vectors. We can use concatenate vector to
3656     // make the mask and vectors lengths match.
3657 
3658     if (MaskNumElts % SrcNumElts == 0) {
3659       // Mask length is a multiple of the source vector length.
3660       // Check if the shuffle is some kind of concatenation of the input
3661       // vectors.
3662       unsigned NumConcat = MaskNumElts / SrcNumElts;
3663       bool IsConcat = true;
3664       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3665       for (unsigned i = 0; i != MaskNumElts; ++i) {
3666         int Idx = Mask[i];
3667         if (Idx < 0)
3668           continue;
3669         // Ensure the indices in each SrcVT sized piece are sequential and that
3670         // the same source is used for the whole piece.
3671         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3672             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3673              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3674           IsConcat = false;
3675           break;
3676         }
3677         // Remember which source this index came from.
3678         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3679       }
3680 
3681       // The shuffle is concatenating multiple vectors together. Just emit
3682       // a CONCAT_VECTORS operation.
3683       if (IsConcat) {
3684         SmallVector<SDValue, 8> ConcatOps;
3685         for (auto Src : ConcatSrcs) {
3686           if (Src < 0)
3687             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3688           else if (Src == 0)
3689             ConcatOps.push_back(Src1);
3690           else
3691             ConcatOps.push_back(Src2);
3692         }
3693         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3694         return;
3695       }
3696     }
3697 
3698     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3699     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3700     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3701                                     PaddedMaskNumElts);
3702 
3703     // Pad both vectors with undefs to make them the same length as the mask.
3704     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3705 
3706     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3707     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3708     MOps1[0] = Src1;
3709     MOps2[0] = Src2;
3710 
3711     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3712     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3713 
3714     // Readjust mask for new input vector length.
3715     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3716     for (unsigned i = 0; i != MaskNumElts; ++i) {
3717       int Idx = Mask[i];
3718       if (Idx >= (int)SrcNumElts)
3719         Idx -= SrcNumElts - PaddedMaskNumElts;
3720       MappedOps[i] = Idx;
3721     }
3722 
3723     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3724 
3725     // If the concatenated vector was padded, extract a subvector with the
3726     // correct number of elements.
3727     if (MaskNumElts != PaddedMaskNumElts)
3728       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3729                            DAG.getVectorIdxConstant(0, DL));
3730 
3731     setValue(&I, Result);
3732     return;
3733   }
3734 
3735   if (SrcNumElts > MaskNumElts) {
3736     // Analyze the access pattern of the vector to see if we can extract
3737     // two subvectors and do the shuffle.
3738     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3739     bool CanExtract = true;
3740     for (int Idx : Mask) {
3741       unsigned Input = 0;
3742       if (Idx < 0)
3743         continue;
3744 
3745       if (Idx >= (int)SrcNumElts) {
3746         Input = 1;
3747         Idx -= SrcNumElts;
3748       }
3749 
3750       // If all the indices come from the same MaskNumElts sized portion of
3751       // the sources we can use extract. Also make sure the extract wouldn't
3752       // extract past the end of the source.
3753       int NewStartIdx = alignDown(Idx, MaskNumElts);
3754       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3755           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3756         CanExtract = false;
3757       // Make sure we always update StartIdx as we use it to track if all
3758       // elements are undef.
3759       StartIdx[Input] = NewStartIdx;
3760     }
3761 
3762     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3763       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3764       return;
3765     }
3766     if (CanExtract) {
3767       // Extract appropriate subvector and generate a vector shuffle
3768       for (unsigned Input = 0; Input < 2; ++Input) {
3769         SDValue &Src = Input == 0 ? Src1 : Src2;
3770         if (StartIdx[Input] < 0)
3771           Src = DAG.getUNDEF(VT);
3772         else {
3773           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3774                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3775         }
3776       }
3777 
3778       // Calculate new mask.
3779       SmallVector<int, 8> MappedOps(Mask);
3780       for (int &Idx : MappedOps) {
3781         if (Idx >= (int)SrcNumElts)
3782           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3783         else if (Idx >= 0)
3784           Idx -= StartIdx[0];
3785       }
3786 
3787       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3788       return;
3789     }
3790   }
3791 
3792   // We can't use either concat vectors or extract subvectors so fall back to
3793   // replacing the shuffle with extract and build vector.
3794   // to insert and build vector.
3795   EVT EltVT = VT.getVectorElementType();
3796   SmallVector<SDValue,8> Ops;
3797   for (int Idx : Mask) {
3798     SDValue Res;
3799 
3800     if (Idx < 0) {
3801       Res = DAG.getUNDEF(EltVT);
3802     } else {
3803       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3804       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3805 
3806       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3807                         DAG.getVectorIdxConstant(Idx, DL));
3808     }
3809 
3810     Ops.push_back(Res);
3811   }
3812 
3813   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3814 }
3815 
3816 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3817   ArrayRef<unsigned> Indices = I.getIndices();
3818   const Value *Op0 = I.getOperand(0);
3819   const Value *Op1 = I.getOperand(1);
3820   Type *AggTy = I.getType();
3821   Type *ValTy = Op1->getType();
3822   bool IntoUndef = isa<UndefValue>(Op0);
3823   bool FromUndef = isa<UndefValue>(Op1);
3824 
3825   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3826 
3827   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3828   SmallVector<EVT, 4> AggValueVTs;
3829   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3830   SmallVector<EVT, 4> ValValueVTs;
3831   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3832 
3833   unsigned NumAggValues = AggValueVTs.size();
3834   unsigned NumValValues = ValValueVTs.size();
3835   SmallVector<SDValue, 4> Values(NumAggValues);
3836 
3837   // Ignore an insertvalue that produces an empty object
3838   if (!NumAggValues) {
3839     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3840     return;
3841   }
3842 
3843   SDValue Agg = getValue(Op0);
3844   unsigned i = 0;
3845   // Copy the beginning value(s) from the original aggregate.
3846   for (; i != LinearIndex; ++i)
3847     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3848                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3849   // Copy values from the inserted value(s).
3850   if (NumValValues) {
3851     SDValue Val = getValue(Op1);
3852     for (; i != LinearIndex + NumValValues; ++i)
3853       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3854                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3855   }
3856   // Copy remaining value(s) from the original aggregate.
3857   for (; i != NumAggValues; ++i)
3858     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3859                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3860 
3861   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3862                            DAG.getVTList(AggValueVTs), Values));
3863 }
3864 
3865 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3866   ArrayRef<unsigned> Indices = I.getIndices();
3867   const Value *Op0 = I.getOperand(0);
3868   Type *AggTy = Op0->getType();
3869   Type *ValTy = I.getType();
3870   bool OutOfUndef = isa<UndefValue>(Op0);
3871 
3872   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3873 
3874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3875   SmallVector<EVT, 4> ValValueVTs;
3876   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3877 
3878   unsigned NumValValues = ValValueVTs.size();
3879 
3880   // Ignore a extractvalue that produces an empty object
3881   if (!NumValValues) {
3882     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3883     return;
3884   }
3885 
3886   SmallVector<SDValue, 4> Values(NumValValues);
3887 
3888   SDValue Agg = getValue(Op0);
3889   // Copy out the selected value(s).
3890   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3891     Values[i - LinearIndex] =
3892       OutOfUndef ?
3893         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3894         SDValue(Agg.getNode(), Agg.getResNo() + i);
3895 
3896   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3897                            DAG.getVTList(ValValueVTs), Values));
3898 }
3899 
3900 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3901   Value *Op0 = I.getOperand(0);
3902   // Note that the pointer operand may be a vector of pointers. Take the scalar
3903   // element which holds a pointer.
3904   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3905   SDValue N = getValue(Op0);
3906   SDLoc dl = getCurSDLoc();
3907   auto &TLI = DAG.getTargetLoweringInfo();
3908 
3909   // Normalize Vector GEP - all scalar operands should be converted to the
3910   // splat vector.
3911   bool IsVectorGEP = I.getType()->isVectorTy();
3912   ElementCount VectorElementCount =
3913       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3914                   : ElementCount::getFixed(0);
3915 
3916   if (IsVectorGEP && !N.getValueType().isVector()) {
3917     LLVMContext &Context = *DAG.getContext();
3918     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3919     N = DAG.getSplat(VT, dl, N);
3920   }
3921 
3922   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3923        GTI != E; ++GTI) {
3924     const Value *Idx = GTI.getOperand();
3925     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3926       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3927       if (Field) {
3928         // N = N + Offset
3929         uint64_t Offset =
3930             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3931 
3932         // In an inbounds GEP with an offset that is nonnegative even when
3933         // interpreted as signed, assume there is no unsigned overflow.
3934         SDNodeFlags Flags;
3935         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3936           Flags.setNoUnsignedWrap(true);
3937 
3938         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3939                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3940       }
3941     } else {
3942       // IdxSize is the width of the arithmetic according to IR semantics.
3943       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3944       // (and fix up the result later).
3945       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3946       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3947       TypeSize ElementSize =
3948           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3949       // We intentionally mask away the high bits here; ElementSize may not
3950       // fit in IdxTy.
3951       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3952       bool ElementScalable = ElementSize.isScalable();
3953 
3954       // If this is a scalar constant or a splat vector of constants,
3955       // handle it quickly.
3956       const auto *C = dyn_cast<Constant>(Idx);
3957       if (C && isa<VectorType>(C->getType()))
3958         C = C->getSplatValue();
3959 
3960       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3961       if (CI && CI->isZero())
3962         continue;
3963       if (CI && !ElementScalable) {
3964         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3965         LLVMContext &Context = *DAG.getContext();
3966         SDValue OffsVal;
3967         if (IsVectorGEP)
3968           OffsVal = DAG.getConstant(
3969               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3970         else
3971           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3972 
3973         // In an inbounds GEP with an offset that is nonnegative even when
3974         // interpreted as signed, assume there is no unsigned overflow.
3975         SDNodeFlags Flags;
3976         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3977           Flags.setNoUnsignedWrap(true);
3978 
3979         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3980 
3981         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3982         continue;
3983       }
3984 
3985       // N = N + Idx * ElementMul;
3986       SDValue IdxN = getValue(Idx);
3987 
3988       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3989         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3990                                   VectorElementCount);
3991         IdxN = DAG.getSplat(VT, dl, IdxN);
3992       }
3993 
3994       // If the index is smaller or larger than intptr_t, truncate or extend
3995       // it.
3996       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3997 
3998       if (ElementScalable) {
3999         EVT VScaleTy = N.getValueType().getScalarType();
4000         SDValue VScale = DAG.getNode(
4001             ISD::VSCALE, dl, VScaleTy,
4002             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4003         if (IsVectorGEP)
4004           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4005         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4006       } else {
4007         // If this is a multiply by a power of two, turn it into a shl
4008         // immediately.  This is a very common case.
4009         if (ElementMul != 1) {
4010           if (ElementMul.isPowerOf2()) {
4011             unsigned Amt = ElementMul.logBase2();
4012             IdxN = DAG.getNode(ISD::SHL, dl,
4013                                N.getValueType(), IdxN,
4014                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4015           } else {
4016             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4017                                             IdxN.getValueType());
4018             IdxN = DAG.getNode(ISD::MUL, dl,
4019                                N.getValueType(), IdxN, Scale);
4020           }
4021         }
4022       }
4023 
4024       N = DAG.getNode(ISD::ADD, dl,
4025                       N.getValueType(), N, IdxN);
4026     }
4027   }
4028 
4029   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4030   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4031   if (IsVectorGEP) {
4032     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4033     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4034   }
4035 
4036   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4037     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4038 
4039   setValue(&I, N);
4040 }
4041 
4042 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4043   // If this is a fixed sized alloca in the entry block of the function,
4044   // allocate it statically on the stack.
4045   if (FuncInfo.StaticAllocaMap.count(&I))
4046     return;   // getValue will auto-populate this.
4047 
4048   SDLoc dl = getCurSDLoc();
4049   Type *Ty = I.getAllocatedType();
4050   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4051   auto &DL = DAG.getDataLayout();
4052   TypeSize TySize = DL.getTypeAllocSize(Ty);
4053   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4054 
4055   SDValue AllocSize = getValue(I.getArraySize());
4056 
4057   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4058   if (AllocSize.getValueType() != IntPtr)
4059     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4060 
4061   if (TySize.isScalable())
4062     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4063                             DAG.getVScale(dl, IntPtr,
4064                                           APInt(IntPtr.getScalarSizeInBits(),
4065                                                 TySize.getKnownMinValue())));
4066   else
4067     AllocSize =
4068         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4069                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4070 
4071   // Handle alignment.  If the requested alignment is less than or equal to
4072   // the stack alignment, ignore it.  If the size is greater than or equal to
4073   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4074   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4075   if (*Alignment <= StackAlign)
4076     Alignment = std::nullopt;
4077 
4078   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4079   // Round the size of the allocation up to the stack alignment size
4080   // by add SA-1 to the size. This doesn't overflow because we're computing
4081   // an address inside an alloca.
4082   SDNodeFlags Flags;
4083   Flags.setNoUnsignedWrap(true);
4084   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4085                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4086 
4087   // Mask out the low bits for alignment purposes.
4088   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4089                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4090 
4091   SDValue Ops[] = {
4092       getRoot(), AllocSize,
4093       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4094   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4095   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4096   setValue(&I, DSA);
4097   DAG.setRoot(DSA.getValue(1));
4098 
4099   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4100 }
4101 
4102 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4103   if (I.isAtomic())
4104     return visitAtomicLoad(I);
4105 
4106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4107   const Value *SV = I.getOperand(0);
4108   if (TLI.supportSwiftError()) {
4109     // Swifterror values can come from either a function parameter with
4110     // swifterror attribute or an alloca with swifterror attribute.
4111     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4112       if (Arg->hasSwiftErrorAttr())
4113         return visitLoadFromSwiftError(I);
4114     }
4115 
4116     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4117       if (Alloca->isSwiftError())
4118         return visitLoadFromSwiftError(I);
4119     }
4120   }
4121 
4122   SDValue Ptr = getValue(SV);
4123 
4124   Type *Ty = I.getType();
4125   SmallVector<EVT, 4> ValueVTs, MemVTs;
4126   SmallVector<uint64_t, 4> Offsets;
4127   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4128   unsigned NumValues = ValueVTs.size();
4129   if (NumValues == 0)
4130     return;
4131 
4132   Align Alignment = I.getAlign();
4133   AAMDNodes AAInfo = I.getAAMetadata();
4134   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4135   bool isVolatile = I.isVolatile();
4136   MachineMemOperand::Flags MMOFlags =
4137       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4138 
4139   SDValue Root;
4140   bool ConstantMemory = false;
4141   if (isVolatile)
4142     // Serialize volatile loads with other side effects.
4143     Root = getRoot();
4144   else if (NumValues > MaxParallelChains)
4145     Root = getMemoryRoot();
4146   else if (AA &&
4147            AA->pointsToConstantMemory(MemoryLocation(
4148                SV,
4149                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4150                AAInfo))) {
4151     // Do not serialize (non-volatile) loads of constant memory with anything.
4152     Root = DAG.getEntryNode();
4153     ConstantMemory = true;
4154     MMOFlags |= MachineMemOperand::MOInvariant;
4155   } else {
4156     // Do not serialize non-volatile loads against each other.
4157     Root = DAG.getRoot();
4158   }
4159 
4160   if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(),
4161                                          &I, AC, nullptr, LibInfo))
4162     MMOFlags |= MachineMemOperand::MODereferenceable;
4163 
4164   SDLoc dl = getCurSDLoc();
4165 
4166   if (isVolatile)
4167     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4168 
4169   // An aggregate load cannot wrap around the address space, so offsets to its
4170   // parts don't wrap either.
4171   SDNodeFlags Flags;
4172   Flags.setNoUnsignedWrap(true);
4173 
4174   SmallVector<SDValue, 4> Values(NumValues);
4175   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4176   EVT PtrVT = Ptr.getValueType();
4177 
4178   unsigned ChainI = 0;
4179   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4180     // Serializing loads here may result in excessive register pressure, and
4181     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4182     // could recover a bit by hoisting nodes upward in the chain by recognizing
4183     // they are side-effect free or do not alias. The optimizer should really
4184     // avoid this case by converting large object/array copies to llvm.memcpy
4185     // (MaxParallelChains should always remain as failsafe).
4186     if (ChainI == MaxParallelChains) {
4187       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4188       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4189                                   ArrayRef(Chains.data(), ChainI));
4190       Root = Chain;
4191       ChainI = 0;
4192     }
4193     SDValue A = DAG.getNode(ISD::ADD, dl,
4194                             PtrVT, Ptr,
4195                             DAG.getConstant(Offsets[i], dl, PtrVT),
4196                             Flags);
4197 
4198     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4199                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4200                             MMOFlags, AAInfo, Ranges);
4201     Chains[ChainI] = L.getValue(1);
4202 
4203     if (MemVTs[i] != ValueVTs[i])
4204       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4205 
4206     Values[i] = L;
4207   }
4208 
4209   if (!ConstantMemory) {
4210     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4211                                 ArrayRef(Chains.data(), ChainI));
4212     if (isVolatile)
4213       DAG.setRoot(Chain);
4214     else
4215       PendingLoads.push_back(Chain);
4216   }
4217 
4218   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4219                            DAG.getVTList(ValueVTs), Values));
4220 }
4221 
4222 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4223   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4224          "call visitStoreToSwiftError when backend supports swifterror");
4225 
4226   SmallVector<EVT, 4> ValueVTs;
4227   SmallVector<uint64_t, 4> Offsets;
4228   const Value *SrcV = I.getOperand(0);
4229   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4230                   SrcV->getType(), ValueVTs, &Offsets);
4231   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4232          "expect a single EVT for swifterror");
4233 
4234   SDValue Src = getValue(SrcV);
4235   // Create a virtual register, then update the virtual register.
4236   Register VReg =
4237       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4238   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4239   // Chain can be getRoot or getControlRoot.
4240   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4241                                       SDValue(Src.getNode(), Src.getResNo()));
4242   DAG.setRoot(CopyNode);
4243 }
4244 
4245 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4246   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4247          "call visitLoadFromSwiftError when backend supports swifterror");
4248 
4249   assert(!I.isVolatile() &&
4250          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4251          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4252          "Support volatile, non temporal, invariant for load_from_swift_error");
4253 
4254   const Value *SV = I.getOperand(0);
4255   Type *Ty = I.getType();
4256   assert(
4257       (!AA ||
4258        !AA->pointsToConstantMemory(MemoryLocation(
4259            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4260            I.getAAMetadata()))) &&
4261       "load_from_swift_error should not be constant memory");
4262 
4263   SmallVector<EVT, 4> ValueVTs;
4264   SmallVector<uint64_t, 4> Offsets;
4265   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4266                   ValueVTs, &Offsets);
4267   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4268          "expect a single EVT for swifterror");
4269 
4270   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4271   SDValue L = DAG.getCopyFromReg(
4272       getRoot(), getCurSDLoc(),
4273       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4274 
4275   setValue(&I, L);
4276 }
4277 
4278 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4279   if (I.isAtomic())
4280     return visitAtomicStore(I);
4281 
4282   const Value *SrcV = I.getOperand(0);
4283   const Value *PtrV = I.getOperand(1);
4284 
4285   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4286   if (TLI.supportSwiftError()) {
4287     // Swifterror values can come from either a function parameter with
4288     // swifterror attribute or an alloca with swifterror attribute.
4289     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4290       if (Arg->hasSwiftErrorAttr())
4291         return visitStoreToSwiftError(I);
4292     }
4293 
4294     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4295       if (Alloca->isSwiftError())
4296         return visitStoreToSwiftError(I);
4297     }
4298   }
4299 
4300   SmallVector<EVT, 4> ValueVTs, MemVTs;
4301   SmallVector<uint64_t, 4> Offsets;
4302   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4303                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4304   unsigned NumValues = ValueVTs.size();
4305   if (NumValues == 0)
4306     return;
4307 
4308   // Get the lowered operands. Note that we do this after
4309   // checking if NumResults is zero, because with zero results
4310   // the operands won't have values in the map.
4311   SDValue Src = getValue(SrcV);
4312   SDValue Ptr = getValue(PtrV);
4313 
4314   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4315   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4316   SDLoc dl = getCurSDLoc();
4317   Align Alignment = I.getAlign();
4318   AAMDNodes AAInfo = I.getAAMetadata();
4319 
4320   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4321 
4322   // An aggregate load cannot wrap around the address space, so offsets to its
4323   // parts don't wrap either.
4324   SDNodeFlags Flags;
4325   Flags.setNoUnsignedWrap(true);
4326 
4327   unsigned ChainI = 0;
4328   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4329     // See visitLoad comments.
4330     if (ChainI == MaxParallelChains) {
4331       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4332                                   ArrayRef(Chains.data(), ChainI));
4333       Root = Chain;
4334       ChainI = 0;
4335     }
4336     SDValue Add =
4337         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4338     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4339     if (MemVTs[i] != ValueVTs[i])
4340       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4341     SDValue St =
4342         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4343                      Alignment, MMOFlags, AAInfo);
4344     Chains[ChainI] = St;
4345   }
4346 
4347   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4348                                   ArrayRef(Chains.data(), ChainI));
4349   setValue(&I, StoreNode);
4350   DAG.setRoot(StoreNode);
4351 }
4352 
4353 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4354                                            bool IsCompressing) {
4355   SDLoc sdl = getCurSDLoc();
4356 
4357   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4358                                MaybeAlign &Alignment) {
4359     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4360     Src0 = I.getArgOperand(0);
4361     Ptr = I.getArgOperand(1);
4362     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4363     Mask = I.getArgOperand(3);
4364   };
4365   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4366                                     MaybeAlign &Alignment) {
4367     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4368     Src0 = I.getArgOperand(0);
4369     Ptr = I.getArgOperand(1);
4370     Mask = I.getArgOperand(2);
4371     Alignment = std::nullopt;
4372   };
4373 
4374   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4375   MaybeAlign Alignment;
4376   if (IsCompressing)
4377     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4378   else
4379     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4380 
4381   SDValue Ptr = getValue(PtrOperand);
4382   SDValue Src0 = getValue(Src0Operand);
4383   SDValue Mask = getValue(MaskOperand);
4384   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4385 
4386   EVT VT = Src0.getValueType();
4387   if (!Alignment)
4388     Alignment = DAG.getEVTAlign(VT);
4389 
4390   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4391       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4392       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4393   SDValue StoreNode =
4394       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4395                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4396   DAG.setRoot(StoreNode);
4397   setValue(&I, StoreNode);
4398 }
4399 
4400 // Get a uniform base for the Gather/Scatter intrinsic.
4401 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4402 // We try to represent it as a base pointer + vector of indices.
4403 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4404 // The first operand of the GEP may be a single pointer or a vector of pointers
4405 // Example:
4406 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4407 //  or
4408 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4409 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4410 //
4411 // When the first GEP operand is a single pointer - it is the uniform base we
4412 // are looking for. If first operand of the GEP is a splat vector - we
4413 // extract the splat value and use it as a uniform base.
4414 // In all other cases the function returns 'false'.
4415 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4416                            ISD::MemIndexType &IndexType, SDValue &Scale,
4417                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4418                            uint64_t ElemSize) {
4419   SelectionDAG& DAG = SDB->DAG;
4420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4421   const DataLayout &DL = DAG.getDataLayout();
4422 
4423   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4424 
4425   // Handle splat constant pointer.
4426   if (auto *C = dyn_cast<Constant>(Ptr)) {
4427     C = C->getSplatValue();
4428     if (!C)
4429       return false;
4430 
4431     Base = SDB->getValue(C);
4432 
4433     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4434     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4435     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4436     IndexType = ISD::SIGNED_SCALED;
4437     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4438     return true;
4439   }
4440 
4441   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4442   if (!GEP || GEP->getParent() != CurBB)
4443     return false;
4444 
4445   if (GEP->getNumOperands() != 2)
4446     return false;
4447 
4448   const Value *BasePtr = GEP->getPointerOperand();
4449   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4450 
4451   // Make sure the base is scalar and the index is a vector.
4452   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4453     return false;
4454 
4455   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4456 
4457   // Target may not support the required addressing mode.
4458   if (ScaleVal != 1 &&
4459       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4460     return false;
4461 
4462   Base = SDB->getValue(BasePtr);
4463   Index = SDB->getValue(IndexVal);
4464   IndexType = ISD::SIGNED_SCALED;
4465 
4466   Scale =
4467       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4468   return true;
4469 }
4470 
4471 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4472   SDLoc sdl = getCurSDLoc();
4473 
4474   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4475   const Value *Ptr = I.getArgOperand(1);
4476   SDValue Src0 = getValue(I.getArgOperand(0));
4477   SDValue Mask = getValue(I.getArgOperand(3));
4478   EVT VT = Src0.getValueType();
4479   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4480                         ->getMaybeAlignValue()
4481                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4483 
4484   SDValue Base;
4485   SDValue Index;
4486   ISD::MemIndexType IndexType;
4487   SDValue Scale;
4488   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4489                                     I.getParent(), VT.getScalarStoreSize());
4490 
4491   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4492   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4493       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4494       // TODO: Make MachineMemOperands aware of scalable
4495       // vectors.
4496       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4497   if (!UniformBase) {
4498     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4499     Index = getValue(Ptr);
4500     IndexType = ISD::SIGNED_SCALED;
4501     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4502   }
4503 
4504   EVT IdxVT = Index.getValueType();
4505   EVT EltTy = IdxVT.getVectorElementType();
4506   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4507     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4508     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4509   }
4510 
4511   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4512   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4513                                          Ops, MMO, IndexType, false);
4514   DAG.setRoot(Scatter);
4515   setValue(&I, Scatter);
4516 }
4517 
4518 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4519   SDLoc sdl = getCurSDLoc();
4520 
4521   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4522                               MaybeAlign &Alignment) {
4523     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4524     Ptr = I.getArgOperand(0);
4525     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4526     Mask = I.getArgOperand(2);
4527     Src0 = I.getArgOperand(3);
4528   };
4529   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4530                                  MaybeAlign &Alignment) {
4531     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4532     Ptr = I.getArgOperand(0);
4533     Alignment = std::nullopt;
4534     Mask = I.getArgOperand(1);
4535     Src0 = I.getArgOperand(2);
4536   };
4537 
4538   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4539   MaybeAlign Alignment;
4540   if (IsExpanding)
4541     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4542   else
4543     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4544 
4545   SDValue Ptr = getValue(PtrOperand);
4546   SDValue Src0 = getValue(Src0Operand);
4547   SDValue Mask = getValue(MaskOperand);
4548   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4549 
4550   EVT VT = Src0.getValueType();
4551   if (!Alignment)
4552     Alignment = DAG.getEVTAlign(VT);
4553 
4554   AAMDNodes AAInfo = I.getAAMetadata();
4555   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4556 
4557   // Do not serialize masked loads of constant memory with anything.
4558   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4559   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4560 
4561   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4562 
4563   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4564       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4565       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4566 
4567   SDValue Load =
4568       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4569                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4570   if (AddToChain)
4571     PendingLoads.push_back(Load.getValue(1));
4572   setValue(&I, Load);
4573 }
4574 
4575 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4576   SDLoc sdl = getCurSDLoc();
4577 
4578   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4579   const Value *Ptr = I.getArgOperand(0);
4580   SDValue Src0 = getValue(I.getArgOperand(3));
4581   SDValue Mask = getValue(I.getArgOperand(2));
4582 
4583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4584   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4585   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4586                         ->getMaybeAlignValue()
4587                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4588 
4589   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4590 
4591   SDValue Root = DAG.getRoot();
4592   SDValue Base;
4593   SDValue Index;
4594   ISD::MemIndexType IndexType;
4595   SDValue Scale;
4596   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4597                                     I.getParent(), VT.getScalarStoreSize());
4598   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4599   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4600       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4601       // TODO: Make MachineMemOperands aware of scalable
4602       // vectors.
4603       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4604 
4605   if (!UniformBase) {
4606     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4607     Index = getValue(Ptr);
4608     IndexType = ISD::SIGNED_SCALED;
4609     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4610   }
4611 
4612   EVT IdxVT = Index.getValueType();
4613   EVT EltTy = IdxVT.getVectorElementType();
4614   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4615     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4616     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4617   }
4618 
4619   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4620   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4621                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4622 
4623   PendingLoads.push_back(Gather.getValue(1));
4624   setValue(&I, Gather);
4625 }
4626 
4627 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4628   SDLoc dl = getCurSDLoc();
4629   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4630   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4631   SyncScope::ID SSID = I.getSyncScopeID();
4632 
4633   SDValue InChain = getRoot();
4634 
4635   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4636   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4637 
4638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4639   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4640 
4641   MachineFunction &MF = DAG.getMachineFunction();
4642   MachineMemOperand *MMO = MF.getMachineMemOperand(
4643       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4644       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4645       FailureOrdering);
4646 
4647   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4648                                    dl, MemVT, VTs, InChain,
4649                                    getValue(I.getPointerOperand()),
4650                                    getValue(I.getCompareOperand()),
4651                                    getValue(I.getNewValOperand()), MMO);
4652 
4653   SDValue OutChain = L.getValue(2);
4654 
4655   setValue(&I, L);
4656   DAG.setRoot(OutChain);
4657 }
4658 
4659 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4660   SDLoc dl = getCurSDLoc();
4661   ISD::NodeType NT;
4662   switch (I.getOperation()) {
4663   default: llvm_unreachable("Unknown atomicrmw operation");
4664   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4665   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4666   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4667   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4668   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4669   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4670   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4671   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4672   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4673   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4674   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4675   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4676   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4677   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4678   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4679   }
4680   AtomicOrdering Ordering = I.getOrdering();
4681   SyncScope::ID SSID = I.getSyncScopeID();
4682 
4683   SDValue InChain = getRoot();
4684 
4685   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4687   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4688 
4689   MachineFunction &MF = DAG.getMachineFunction();
4690   MachineMemOperand *MMO = MF.getMachineMemOperand(
4691       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4692       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4693 
4694   SDValue L =
4695     DAG.getAtomic(NT, dl, MemVT, InChain,
4696                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4697                   MMO);
4698 
4699   SDValue OutChain = L.getValue(1);
4700 
4701   setValue(&I, L);
4702   DAG.setRoot(OutChain);
4703 }
4704 
4705 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4706   SDLoc dl = getCurSDLoc();
4707   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4708   SDValue Ops[3];
4709   Ops[0] = getRoot();
4710   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4711                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4712   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4713                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4714   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4715   setValue(&I, N);
4716   DAG.setRoot(N);
4717 }
4718 
4719 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4720   SDLoc dl = getCurSDLoc();
4721   AtomicOrdering Order = I.getOrdering();
4722   SyncScope::ID SSID = I.getSyncScopeID();
4723 
4724   SDValue InChain = getRoot();
4725 
4726   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4727   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4728   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4729 
4730   if (!TLI.supportsUnalignedAtomics() &&
4731       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4732     report_fatal_error("Cannot generate unaligned atomic load");
4733 
4734   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4735 
4736   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4737       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4738       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4739 
4740   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4741 
4742   SDValue Ptr = getValue(I.getPointerOperand());
4743 
4744   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4745     // TODO: Once this is better exercised by tests, it should be merged with
4746     // the normal path for loads to prevent future divergence.
4747     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4748     if (MemVT != VT)
4749       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4750 
4751     setValue(&I, L);
4752     SDValue OutChain = L.getValue(1);
4753     if (!I.isUnordered())
4754       DAG.setRoot(OutChain);
4755     else
4756       PendingLoads.push_back(OutChain);
4757     return;
4758   }
4759 
4760   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4761                             Ptr, MMO);
4762 
4763   SDValue OutChain = L.getValue(1);
4764   if (MemVT != VT)
4765     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4766 
4767   setValue(&I, L);
4768   DAG.setRoot(OutChain);
4769 }
4770 
4771 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4772   SDLoc dl = getCurSDLoc();
4773 
4774   AtomicOrdering Ordering = I.getOrdering();
4775   SyncScope::ID SSID = I.getSyncScopeID();
4776 
4777   SDValue InChain = getRoot();
4778 
4779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4780   EVT MemVT =
4781       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4782 
4783   if (!TLI.supportsUnalignedAtomics() &&
4784       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4785     report_fatal_error("Cannot generate unaligned atomic store");
4786 
4787   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4788 
4789   MachineFunction &MF = DAG.getMachineFunction();
4790   MachineMemOperand *MMO = MF.getMachineMemOperand(
4791       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4792       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4793 
4794   SDValue Val = getValue(I.getValueOperand());
4795   if (Val.getValueType() != MemVT)
4796     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4797   SDValue Ptr = getValue(I.getPointerOperand());
4798 
4799   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4800     // TODO: Once this is better exercised by tests, it should be merged with
4801     // the normal path for stores to prevent future divergence.
4802     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4803     setValue(&I, S);
4804     DAG.setRoot(S);
4805     return;
4806   }
4807   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4808                                    Ptr, Val, MMO);
4809 
4810   setValue(&I, OutChain);
4811   DAG.setRoot(OutChain);
4812 }
4813 
4814 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4815 /// node.
4816 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4817                                                unsigned Intrinsic) {
4818   // Ignore the callsite's attributes. A specific call site may be marked with
4819   // readnone, but the lowering code will expect the chain based on the
4820   // definition.
4821   const Function *F = I.getCalledFunction();
4822   bool HasChain = !F->doesNotAccessMemory();
4823   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4824 
4825   // Build the operand list.
4826   SmallVector<SDValue, 8> Ops;
4827   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4828     if (OnlyLoad) {
4829       // We don't need to serialize loads against other loads.
4830       Ops.push_back(DAG.getRoot());
4831     } else {
4832       Ops.push_back(getRoot());
4833     }
4834   }
4835 
4836   // Info is set by getTgtMemIntrinsic
4837   TargetLowering::IntrinsicInfo Info;
4838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4839   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4840                                                DAG.getMachineFunction(),
4841                                                Intrinsic);
4842 
4843   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4844   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4845       Info.opc == ISD::INTRINSIC_W_CHAIN)
4846     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4847                                         TLI.getPointerTy(DAG.getDataLayout())));
4848 
4849   // Add all operands of the call to the operand list.
4850   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4851     const Value *Arg = I.getArgOperand(i);
4852     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4853       Ops.push_back(getValue(Arg));
4854       continue;
4855     }
4856 
4857     // Use TargetConstant instead of a regular constant for immarg.
4858     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4859     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4860       assert(CI->getBitWidth() <= 64 &&
4861              "large intrinsic immediates not handled");
4862       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4863     } else {
4864       Ops.push_back(
4865           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4866     }
4867   }
4868 
4869   SmallVector<EVT, 4> ValueVTs;
4870   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4871 
4872   if (HasChain)
4873     ValueVTs.push_back(MVT::Other);
4874 
4875   SDVTList VTs = DAG.getVTList(ValueVTs);
4876 
4877   // Propagate fast-math-flags from IR to node(s).
4878   SDNodeFlags Flags;
4879   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4880     Flags.copyFMF(*FPMO);
4881   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4882 
4883   // Create the node.
4884   SDValue Result;
4885   // In some cases, custom collection of operands from CallInst I may be needed.
4886   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4887   if (IsTgtIntrinsic) {
4888     // This is target intrinsic that touches memory
4889     //
4890     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4891     //       didn't yield anything useful.
4892     MachinePointerInfo MPI;
4893     if (Info.ptrVal)
4894       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4895     else if (Info.fallbackAddressSpace)
4896       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4897     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4898                                      Info.memVT, MPI, Info.align, Info.flags,
4899                                      Info.size, I.getAAMetadata());
4900   } else if (!HasChain) {
4901     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4902   } else if (!I.getType()->isVoidTy()) {
4903     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4904   } else {
4905     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4906   }
4907 
4908   if (HasChain) {
4909     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4910     if (OnlyLoad)
4911       PendingLoads.push_back(Chain);
4912     else
4913       DAG.setRoot(Chain);
4914   }
4915 
4916   if (!I.getType()->isVoidTy()) {
4917     if (!isa<VectorType>(I.getType()))
4918       Result = lowerRangeToAssertZExt(DAG, I, Result);
4919 
4920     MaybeAlign Alignment = I.getRetAlign();
4921     if (!Alignment)
4922       Alignment = F->getAttributes().getRetAlignment();
4923     // Insert `assertalign` node if there's an alignment.
4924     if (InsertAssertAlign && Alignment) {
4925       Result =
4926           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4927     }
4928 
4929     setValue(&I, Result);
4930   }
4931 }
4932 
4933 /// GetSignificand - Get the significand and build it into a floating-point
4934 /// number with exponent of 1:
4935 ///
4936 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4937 ///
4938 /// where Op is the hexadecimal representation of floating point value.
4939 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4940   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4941                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4942   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4943                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4944   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4945 }
4946 
4947 /// GetExponent - Get the exponent:
4948 ///
4949 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4950 ///
4951 /// where Op is the hexadecimal representation of floating point value.
4952 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4953                            const TargetLowering &TLI, const SDLoc &dl) {
4954   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4955                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4956   SDValue t1 = DAG.getNode(
4957       ISD::SRL, dl, MVT::i32, t0,
4958       DAG.getConstant(23, dl,
4959                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4960   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4961                            DAG.getConstant(127, dl, MVT::i32));
4962   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4963 }
4964 
4965 /// getF32Constant - Get 32-bit floating point constant.
4966 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4967                               const SDLoc &dl) {
4968   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4969                            MVT::f32);
4970 }
4971 
4972 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4973                                        SelectionDAG &DAG) {
4974   // TODO: What fast-math-flags should be set on the floating-point nodes?
4975 
4976   //   IntegerPartOfX = ((int32_t)(t0);
4977   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4978 
4979   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4980   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4981   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4982 
4983   //   IntegerPartOfX <<= 23;
4984   IntegerPartOfX =
4985       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4986                   DAG.getConstant(23, dl,
4987                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4988                                       MVT::i32, DAG.getDataLayout())));
4989 
4990   SDValue TwoToFractionalPartOfX;
4991   if (LimitFloatPrecision <= 6) {
4992     // For floating-point precision of 6:
4993     //
4994     //   TwoToFractionalPartOfX =
4995     //     0.997535578f +
4996     //       (0.735607626f + 0.252464424f * x) * x;
4997     //
4998     // error 0.0144103317, which is 6 bits
4999     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5000                              getF32Constant(DAG, 0x3e814304, dl));
5001     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5002                              getF32Constant(DAG, 0x3f3c50c8, dl));
5003     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5004     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5005                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5006   } else if (LimitFloatPrecision <= 12) {
5007     // For floating-point precision of 12:
5008     //
5009     //   TwoToFractionalPartOfX =
5010     //     0.999892986f +
5011     //       (0.696457318f +
5012     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5013     //
5014     // error 0.000107046256, which is 13 to 14 bits
5015     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5016                              getF32Constant(DAG, 0x3da235e3, dl));
5017     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5018                              getF32Constant(DAG, 0x3e65b8f3, dl));
5019     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5020     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5021                              getF32Constant(DAG, 0x3f324b07, dl));
5022     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5023     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5024                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5025   } else { // LimitFloatPrecision <= 18
5026     // For floating-point precision of 18:
5027     //
5028     //   TwoToFractionalPartOfX =
5029     //     0.999999982f +
5030     //       (0.693148872f +
5031     //         (0.240227044f +
5032     //           (0.554906021e-1f +
5033     //             (0.961591928e-2f +
5034     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5035     // error 2.47208000*10^(-7), which is better than 18 bits
5036     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5037                              getF32Constant(DAG, 0x3924b03e, dl));
5038     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5039                              getF32Constant(DAG, 0x3ab24b87, dl));
5040     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5041     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5042                              getF32Constant(DAG, 0x3c1d8c17, dl));
5043     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5044     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5045                              getF32Constant(DAG, 0x3d634a1d, dl));
5046     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5047     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5048                              getF32Constant(DAG, 0x3e75fe14, dl));
5049     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5050     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5051                               getF32Constant(DAG, 0x3f317234, dl));
5052     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5053     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5054                                          getF32Constant(DAG, 0x3f800000, dl));
5055   }
5056 
5057   // Add the exponent into the result in integer domain.
5058   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5059   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5060                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5061 }
5062 
5063 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5064 /// limited-precision mode.
5065 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5066                          const TargetLowering &TLI, SDNodeFlags Flags) {
5067   if (Op.getValueType() == MVT::f32 &&
5068       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5069 
5070     // Put the exponent in the right bit position for later addition to the
5071     // final result:
5072     //
5073     // t0 = Op * log2(e)
5074 
5075     // TODO: What fast-math-flags should be set here?
5076     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5077                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5078     return getLimitedPrecisionExp2(t0, dl, DAG);
5079   }
5080 
5081   // No special expansion.
5082   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5083 }
5084 
5085 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5086 /// limited-precision mode.
5087 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5088                          const TargetLowering &TLI, SDNodeFlags Flags) {
5089   // TODO: What fast-math-flags should be set on the floating-point nodes?
5090 
5091   if (Op.getValueType() == MVT::f32 &&
5092       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5093     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5094 
5095     // Scale the exponent by log(2).
5096     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5097     SDValue LogOfExponent =
5098         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5099                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5100 
5101     // Get the significand and build it into a floating-point number with
5102     // exponent of 1.
5103     SDValue X = GetSignificand(DAG, Op1, dl);
5104 
5105     SDValue LogOfMantissa;
5106     if (LimitFloatPrecision <= 6) {
5107       // For floating-point precision of 6:
5108       //
5109       //   LogofMantissa =
5110       //     -1.1609546f +
5111       //       (1.4034025f - 0.23903021f * x) * x;
5112       //
5113       // error 0.0034276066, which is better than 8 bits
5114       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5115                                getF32Constant(DAG, 0xbe74c456, dl));
5116       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5117                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5118       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5119       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5120                                   getF32Constant(DAG, 0x3f949a29, dl));
5121     } else if (LimitFloatPrecision <= 12) {
5122       // For floating-point precision of 12:
5123       //
5124       //   LogOfMantissa =
5125       //     -1.7417939f +
5126       //       (2.8212026f +
5127       //         (-1.4699568f +
5128       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5129       //
5130       // error 0.000061011436, which is 14 bits
5131       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5132                                getF32Constant(DAG, 0xbd67b6d6, dl));
5133       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5134                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5135       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5136       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5137                                getF32Constant(DAG, 0x3fbc278b, dl));
5138       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5139       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5140                                getF32Constant(DAG, 0x40348e95, dl));
5141       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5142       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5143                                   getF32Constant(DAG, 0x3fdef31a, dl));
5144     } else { // LimitFloatPrecision <= 18
5145       // For floating-point precision of 18:
5146       //
5147       //   LogOfMantissa =
5148       //     -2.1072184f +
5149       //       (4.2372794f +
5150       //         (-3.7029485f +
5151       //           (2.2781945f +
5152       //             (-0.87823314f +
5153       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5154       //
5155       // error 0.0000023660568, which is better than 18 bits
5156       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5157                                getF32Constant(DAG, 0xbc91e5ac, dl));
5158       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5159                                getF32Constant(DAG, 0x3e4350aa, dl));
5160       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5161       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5162                                getF32Constant(DAG, 0x3f60d3e3, dl));
5163       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5164       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5165                                getF32Constant(DAG, 0x4011cdf0, dl));
5166       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5167       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5168                                getF32Constant(DAG, 0x406cfd1c, dl));
5169       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5170       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5171                                getF32Constant(DAG, 0x408797cb, dl));
5172       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5173       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5174                                   getF32Constant(DAG, 0x4006dcab, dl));
5175     }
5176 
5177     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5178   }
5179 
5180   // No special expansion.
5181   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5182 }
5183 
5184 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5185 /// limited-precision mode.
5186 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5187                           const TargetLowering &TLI, SDNodeFlags Flags) {
5188   // TODO: What fast-math-flags should be set on the floating-point nodes?
5189 
5190   if (Op.getValueType() == MVT::f32 &&
5191       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5192     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5193 
5194     // Get the exponent.
5195     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5196 
5197     // Get the significand and build it into a floating-point number with
5198     // exponent of 1.
5199     SDValue X = GetSignificand(DAG, Op1, dl);
5200 
5201     // Different possible minimax approximations of significand in
5202     // floating-point for various degrees of accuracy over [1,2].
5203     SDValue Log2ofMantissa;
5204     if (LimitFloatPrecision <= 6) {
5205       // For floating-point precision of 6:
5206       //
5207       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5208       //
5209       // error 0.0049451742, which is more than 7 bits
5210       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5211                                getF32Constant(DAG, 0xbeb08fe0, dl));
5212       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5213                                getF32Constant(DAG, 0x40019463, dl));
5214       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5215       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5216                                    getF32Constant(DAG, 0x3fd6633d, dl));
5217     } else if (LimitFloatPrecision <= 12) {
5218       // For floating-point precision of 12:
5219       //
5220       //   Log2ofMantissa =
5221       //     -2.51285454f +
5222       //       (4.07009056f +
5223       //         (-2.12067489f +
5224       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5225       //
5226       // error 0.0000876136000, which is better than 13 bits
5227       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5228                                getF32Constant(DAG, 0xbda7262e, dl));
5229       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5230                                getF32Constant(DAG, 0x3f25280b, dl));
5231       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5232       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5233                                getF32Constant(DAG, 0x4007b923, dl));
5234       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5235       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5236                                getF32Constant(DAG, 0x40823e2f, dl));
5237       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5238       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5239                                    getF32Constant(DAG, 0x4020d29c, dl));
5240     } else { // LimitFloatPrecision <= 18
5241       // For floating-point precision of 18:
5242       //
5243       //   Log2ofMantissa =
5244       //     -3.0400495f +
5245       //       (6.1129976f +
5246       //         (-5.3420409f +
5247       //           (3.2865683f +
5248       //             (-1.2669343f +
5249       //               (0.27515199f -
5250       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5251       //
5252       // error 0.0000018516, which is better than 18 bits
5253       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5254                                getF32Constant(DAG, 0xbcd2769e, dl));
5255       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5256                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5257       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5258       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5259                                getF32Constant(DAG, 0x3fa22ae7, dl));
5260       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5261       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5262                                getF32Constant(DAG, 0x40525723, dl));
5263       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5264       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5265                                getF32Constant(DAG, 0x40aaf200, dl));
5266       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5267       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5268                                getF32Constant(DAG, 0x40c39dad, dl));
5269       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5270       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5271                                    getF32Constant(DAG, 0x4042902c, dl));
5272     }
5273 
5274     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5275   }
5276 
5277   // No special expansion.
5278   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5279 }
5280 
5281 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5282 /// limited-precision mode.
5283 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5284                            const TargetLowering &TLI, SDNodeFlags Flags) {
5285   // TODO: What fast-math-flags should be set on the floating-point nodes?
5286 
5287   if (Op.getValueType() == MVT::f32 &&
5288       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5289     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5290 
5291     // Scale the exponent by log10(2) [0.30102999f].
5292     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5293     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5294                                         getF32Constant(DAG, 0x3e9a209a, dl));
5295 
5296     // Get the significand and build it into a floating-point number with
5297     // exponent of 1.
5298     SDValue X = GetSignificand(DAG, Op1, dl);
5299 
5300     SDValue Log10ofMantissa;
5301     if (LimitFloatPrecision <= 6) {
5302       // For floating-point precision of 6:
5303       //
5304       //   Log10ofMantissa =
5305       //     -0.50419619f +
5306       //       (0.60948995f - 0.10380950f * x) * x;
5307       //
5308       // error 0.0014886165, which is 6 bits
5309       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5310                                getF32Constant(DAG, 0xbdd49a13, dl));
5311       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5312                                getF32Constant(DAG, 0x3f1c0789, dl));
5313       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5314       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5315                                     getF32Constant(DAG, 0x3f011300, dl));
5316     } else if (LimitFloatPrecision <= 12) {
5317       // For floating-point precision of 12:
5318       //
5319       //   Log10ofMantissa =
5320       //     -0.64831180f +
5321       //       (0.91751397f +
5322       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5323       //
5324       // error 0.00019228036, which is better than 12 bits
5325       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5326                                getF32Constant(DAG, 0x3d431f31, dl));
5327       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5328                                getF32Constant(DAG, 0x3ea21fb2, dl));
5329       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5330       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5331                                getF32Constant(DAG, 0x3f6ae232, dl));
5332       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5333       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5334                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5335     } else { // LimitFloatPrecision <= 18
5336       // For floating-point precision of 18:
5337       //
5338       //   Log10ofMantissa =
5339       //     -0.84299375f +
5340       //       (1.5327582f +
5341       //         (-1.0688956f +
5342       //           (0.49102474f +
5343       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5344       //
5345       // error 0.0000037995730, which is better than 18 bits
5346       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5347                                getF32Constant(DAG, 0x3c5d51ce, dl));
5348       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5349                                getF32Constant(DAG, 0x3e00685a, dl));
5350       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5351       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5352                                getF32Constant(DAG, 0x3efb6798, dl));
5353       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5354       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5355                                getF32Constant(DAG, 0x3f88d192, dl));
5356       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5357       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5358                                getF32Constant(DAG, 0x3fc4316c, dl));
5359       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5360       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5361                                     getF32Constant(DAG, 0x3f57ce70, dl));
5362     }
5363 
5364     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5365   }
5366 
5367   // No special expansion.
5368   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5369 }
5370 
5371 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5372 /// limited-precision mode.
5373 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5374                           const TargetLowering &TLI, SDNodeFlags Flags) {
5375   if (Op.getValueType() == MVT::f32 &&
5376       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5377     return getLimitedPrecisionExp2(Op, dl, DAG);
5378 
5379   // No special expansion.
5380   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5381 }
5382 
5383 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5384 /// limited-precision mode with x == 10.0f.
5385 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5386                          SelectionDAG &DAG, const TargetLowering &TLI,
5387                          SDNodeFlags Flags) {
5388   bool IsExp10 = false;
5389   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5390       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5391     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5392       APFloat Ten(10.0f);
5393       IsExp10 = LHSC->isExactlyValue(Ten);
5394     }
5395   }
5396 
5397   // TODO: What fast-math-flags should be set on the FMUL node?
5398   if (IsExp10) {
5399     // Put the exponent in the right bit position for later addition to the
5400     // final result:
5401     //
5402     //   #define LOG2OF10 3.3219281f
5403     //   t0 = Op * LOG2OF10;
5404     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5405                              getF32Constant(DAG, 0x40549a78, dl));
5406     return getLimitedPrecisionExp2(t0, dl, DAG);
5407   }
5408 
5409   // No special expansion.
5410   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5411 }
5412 
5413 /// ExpandPowI - Expand a llvm.powi intrinsic.
5414 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5415                           SelectionDAG &DAG) {
5416   // If RHS is a constant, we can expand this out to a multiplication tree if
5417   // it's beneficial on the target, otherwise we end up lowering to a call to
5418   // __powidf2 (for example).
5419   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5420     unsigned Val = RHSC->getSExtValue();
5421 
5422     // powi(x, 0) -> 1.0
5423     if (Val == 0)
5424       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5425 
5426     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5427             Val, DAG.shouldOptForSize())) {
5428       // Get the exponent as a positive value.
5429       if ((int)Val < 0)
5430         Val = -Val;
5431       // We use the simple binary decomposition method to generate the multiply
5432       // sequence.  There are more optimal ways to do this (for example,
5433       // powi(x,15) generates one more multiply than it should), but this has
5434       // the benefit of being both really simple and much better than a libcall.
5435       SDValue Res; // Logically starts equal to 1.0
5436       SDValue CurSquare = LHS;
5437       // TODO: Intrinsics should have fast-math-flags that propagate to these
5438       // nodes.
5439       while (Val) {
5440         if (Val & 1) {
5441           if (Res.getNode())
5442             Res =
5443                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5444           else
5445             Res = CurSquare; // 1.0*CurSquare.
5446         }
5447 
5448         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5449                                 CurSquare, CurSquare);
5450         Val >>= 1;
5451       }
5452 
5453       // If the original was negative, invert the result, producing 1/(x*x*x).
5454       if (RHSC->getSExtValue() < 0)
5455         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5456                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5457       return Res;
5458     }
5459   }
5460 
5461   // Otherwise, expand to a libcall.
5462   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5463 }
5464 
5465 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5466                             SDValue LHS, SDValue RHS, SDValue Scale,
5467                             SelectionDAG &DAG, const TargetLowering &TLI) {
5468   EVT VT = LHS.getValueType();
5469   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5470   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5471   LLVMContext &Ctx = *DAG.getContext();
5472 
5473   // If the type is legal but the operation isn't, this node might survive all
5474   // the way to operation legalization. If we end up there and we do not have
5475   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5476   // node.
5477 
5478   // Coax the legalizer into expanding the node during type legalization instead
5479   // by bumping the size by one bit. This will force it to Promote, enabling the
5480   // early expansion and avoiding the need to expand later.
5481 
5482   // We don't have to do this if Scale is 0; that can always be expanded, unless
5483   // it's a saturating signed operation. Those can experience true integer
5484   // division overflow, a case which we must avoid.
5485 
5486   // FIXME: We wouldn't have to do this (or any of the early
5487   // expansion/promotion) if it was possible to expand a libcall of an
5488   // illegal type during operation legalization. But it's not, so things
5489   // get a bit hacky.
5490   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5491   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5492       (TLI.isTypeLegal(VT) ||
5493        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5494     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5495         Opcode, VT, ScaleInt);
5496     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5497       EVT PromVT;
5498       if (VT.isScalarInteger())
5499         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5500       else if (VT.isVector()) {
5501         PromVT = VT.getVectorElementType();
5502         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5503         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5504       } else
5505         llvm_unreachable("Wrong VT for DIVFIX?");
5506       if (Signed) {
5507         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5508         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5509       } else {
5510         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5511         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5512       }
5513       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5514       // For saturating operations, we need to shift up the LHS to get the
5515       // proper saturation width, and then shift down again afterwards.
5516       if (Saturating)
5517         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5518                           DAG.getConstant(1, DL, ShiftTy));
5519       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5520       if (Saturating)
5521         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5522                           DAG.getConstant(1, DL, ShiftTy));
5523       return DAG.getZExtOrTrunc(Res, DL, VT);
5524     }
5525   }
5526 
5527   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5528 }
5529 
5530 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5531 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5532 static void
5533 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5534                      const SDValue &N) {
5535   switch (N.getOpcode()) {
5536   case ISD::CopyFromReg: {
5537     SDValue Op = N.getOperand(1);
5538     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5539                       Op.getValueType().getSizeInBits());
5540     return;
5541   }
5542   case ISD::BITCAST:
5543   case ISD::AssertZext:
5544   case ISD::AssertSext:
5545   case ISD::TRUNCATE:
5546     getUnderlyingArgRegs(Regs, N.getOperand(0));
5547     return;
5548   case ISD::BUILD_PAIR:
5549   case ISD::BUILD_VECTOR:
5550   case ISD::CONCAT_VECTORS:
5551     for (SDValue Op : N->op_values())
5552       getUnderlyingArgRegs(Regs, Op);
5553     return;
5554   default:
5555     return;
5556   }
5557 }
5558 
5559 /// If the DbgValueInst is a dbg_value of a function argument, create the
5560 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5561 /// instruction selection, they will be inserted to the entry BB.
5562 /// We don't currently support this for variadic dbg_values, as they shouldn't
5563 /// appear for function arguments or in the prologue.
5564 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5565     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5566     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5567   const Argument *Arg = dyn_cast<Argument>(V);
5568   if (!Arg)
5569     return false;
5570 
5571   MachineFunction &MF = DAG.getMachineFunction();
5572   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5573 
5574   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5575   // we've been asked to pursue.
5576   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5577                               bool Indirect) {
5578     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5579       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5580       // pointing at the VReg, which will be patched up later.
5581       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5582       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5583           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5584           /* isKill */ false, /* isDead */ false,
5585           /* isUndef */ false, /* isEarlyClobber */ false,
5586           /* SubReg */ 0, /* isDebug */ true)});
5587 
5588       auto *NewDIExpr = FragExpr;
5589       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5590       // the DIExpression.
5591       if (Indirect)
5592         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5593       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5594     } else {
5595       // Create a completely standard DBG_VALUE.
5596       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5597       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5598     }
5599   };
5600 
5601   if (Kind == FuncArgumentDbgValueKind::Value) {
5602     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5603     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5604     // the entry block.
5605     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5606     if (!IsInEntryBlock)
5607       return false;
5608 
5609     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5610     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5611     // variable that also is a param.
5612     //
5613     // Although, if we are at the top of the entry block already, we can still
5614     // emit using ArgDbgValue. This might catch some situations when the
5615     // dbg.value refers to an argument that isn't used in the entry block, so
5616     // any CopyToReg node would be optimized out and the only way to express
5617     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5618     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5619     // we should only emit as ArgDbgValue if the Variable is an argument to the
5620     // current function, and the dbg.value intrinsic is found in the entry
5621     // block.
5622     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5623         !DL->getInlinedAt();
5624     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5625     if (!IsInPrologue && !VariableIsFunctionInputArg)
5626       return false;
5627 
5628     // Here we assume that a function argument on IR level only can be used to
5629     // describe one input parameter on source level. If we for example have
5630     // source code like this
5631     //
5632     //    struct A { long x, y; };
5633     //    void foo(struct A a, long b) {
5634     //      ...
5635     //      b = a.x;
5636     //      ...
5637     //    }
5638     //
5639     // and IR like this
5640     //
5641     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5642     //  entry:
5643     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5644     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5645     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5646     //    ...
5647     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5648     //    ...
5649     //
5650     // then the last dbg.value is describing a parameter "b" using a value that
5651     // is an argument. But since we already has used %a1 to describe a parameter
5652     // we should not handle that last dbg.value here (that would result in an
5653     // incorrect hoisting of the DBG_VALUE to the function entry).
5654     // Notice that we allow one dbg.value per IR level argument, to accommodate
5655     // for the situation with fragments above.
5656     if (VariableIsFunctionInputArg) {
5657       unsigned ArgNo = Arg->getArgNo();
5658       if (ArgNo >= FuncInfo.DescribedArgs.size())
5659         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5660       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5661         return false;
5662       FuncInfo.DescribedArgs.set(ArgNo);
5663     }
5664   }
5665 
5666   bool IsIndirect = false;
5667   std::optional<MachineOperand> Op;
5668   // Some arguments' frame index is recorded during argument lowering.
5669   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5670   if (FI != std::numeric_limits<int>::max())
5671     Op = MachineOperand::CreateFI(FI);
5672 
5673   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5674   if (!Op && N.getNode()) {
5675     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5676     Register Reg;
5677     if (ArgRegsAndSizes.size() == 1)
5678       Reg = ArgRegsAndSizes.front().first;
5679 
5680     if (Reg && Reg.isVirtual()) {
5681       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5682       Register PR = RegInfo.getLiveInPhysReg(Reg);
5683       if (PR)
5684         Reg = PR;
5685     }
5686     if (Reg) {
5687       Op = MachineOperand::CreateReg(Reg, false);
5688       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5689     }
5690   }
5691 
5692   if (!Op && N.getNode()) {
5693     // Check if frame index is available.
5694     SDValue LCandidate = peekThroughBitcasts(N);
5695     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5696       if (FrameIndexSDNode *FINode =
5697           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5698         Op = MachineOperand::CreateFI(FINode->getIndex());
5699   }
5700 
5701   if (!Op) {
5702     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5703     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5704                                          SplitRegs) {
5705       unsigned Offset = 0;
5706       for (const auto &RegAndSize : SplitRegs) {
5707         // If the expression is already a fragment, the current register
5708         // offset+size might extend beyond the fragment. In this case, only
5709         // the register bits that are inside the fragment are relevant.
5710         int RegFragmentSizeInBits = RegAndSize.second;
5711         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5712           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5713           // The register is entirely outside the expression fragment,
5714           // so is irrelevant for debug info.
5715           if (Offset >= ExprFragmentSizeInBits)
5716             break;
5717           // The register is partially outside the expression fragment, only
5718           // the low bits within the fragment are relevant for debug info.
5719           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5720             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5721           }
5722         }
5723 
5724         auto FragmentExpr = DIExpression::createFragmentExpression(
5725             Expr, Offset, RegFragmentSizeInBits);
5726         Offset += RegAndSize.second;
5727         // If a valid fragment expression cannot be created, the variable's
5728         // correct value cannot be determined and so it is set as Undef.
5729         if (!FragmentExpr) {
5730           SDDbgValue *SDV = DAG.getConstantDbgValue(
5731               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5732           DAG.AddDbgValue(SDV, false);
5733           continue;
5734         }
5735         MachineInstr *NewMI =
5736             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5737                              Kind != FuncArgumentDbgValueKind::Value);
5738         FuncInfo.ArgDbgValues.push_back(NewMI);
5739       }
5740     };
5741 
5742     // Check if ValueMap has reg number.
5743     DenseMap<const Value *, Register>::const_iterator
5744       VMI = FuncInfo.ValueMap.find(V);
5745     if (VMI != FuncInfo.ValueMap.end()) {
5746       const auto &TLI = DAG.getTargetLoweringInfo();
5747       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5748                        V->getType(), std::nullopt);
5749       if (RFV.occupiesMultipleRegs()) {
5750         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5751         return true;
5752       }
5753 
5754       Op = MachineOperand::CreateReg(VMI->second, false);
5755       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5756     } else if (ArgRegsAndSizes.size() > 1) {
5757       // This was split due to the calling convention, and no virtual register
5758       // mapping exists for the value.
5759       splitMultiRegDbgValue(ArgRegsAndSizes);
5760       return true;
5761     }
5762   }
5763 
5764   if (!Op)
5765     return false;
5766 
5767   assert(Variable->isValidLocationForIntrinsic(DL) &&
5768          "Expected inlined-at fields to agree");
5769   MachineInstr *NewMI = nullptr;
5770 
5771   if (Op->isReg())
5772     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5773   else
5774     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5775                     Variable, Expr);
5776 
5777   // Otherwise, use ArgDbgValues.
5778   FuncInfo.ArgDbgValues.push_back(NewMI);
5779   return true;
5780 }
5781 
5782 /// Return the appropriate SDDbgValue based on N.
5783 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5784                                              DILocalVariable *Variable,
5785                                              DIExpression *Expr,
5786                                              const DebugLoc &dl,
5787                                              unsigned DbgSDNodeOrder) {
5788   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5789     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5790     // stack slot locations.
5791     //
5792     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5793     // debug values here after optimization:
5794     //
5795     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5796     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5797     //
5798     // Both describe the direct values of their associated variables.
5799     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5800                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5801   }
5802   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5803                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5804 }
5805 
5806 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5807   switch (Intrinsic) {
5808   case Intrinsic::smul_fix:
5809     return ISD::SMULFIX;
5810   case Intrinsic::umul_fix:
5811     return ISD::UMULFIX;
5812   case Intrinsic::smul_fix_sat:
5813     return ISD::SMULFIXSAT;
5814   case Intrinsic::umul_fix_sat:
5815     return ISD::UMULFIXSAT;
5816   case Intrinsic::sdiv_fix:
5817     return ISD::SDIVFIX;
5818   case Intrinsic::udiv_fix:
5819     return ISD::UDIVFIX;
5820   case Intrinsic::sdiv_fix_sat:
5821     return ISD::SDIVFIXSAT;
5822   case Intrinsic::udiv_fix_sat:
5823     return ISD::UDIVFIXSAT;
5824   default:
5825     llvm_unreachable("Unhandled fixed point intrinsic");
5826   }
5827 }
5828 
5829 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5830                                            const char *FunctionName) {
5831   assert(FunctionName && "FunctionName must not be nullptr");
5832   SDValue Callee = DAG.getExternalSymbol(
5833       FunctionName,
5834       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5835   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5836 }
5837 
5838 /// Given a @llvm.call.preallocated.setup, return the corresponding
5839 /// preallocated call.
5840 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5841   assert(cast<CallBase>(PreallocatedSetup)
5842                  ->getCalledFunction()
5843                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5844          "expected call_preallocated_setup Value");
5845   for (const auto *U : PreallocatedSetup->users()) {
5846     auto *UseCall = cast<CallBase>(U);
5847     const Function *Fn = UseCall->getCalledFunction();
5848     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5849       return UseCall;
5850     }
5851   }
5852   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5853 }
5854 
5855 /// Lower the call to the specified intrinsic function.
5856 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5857                                              unsigned Intrinsic) {
5858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5859   SDLoc sdl = getCurSDLoc();
5860   DebugLoc dl = getCurDebugLoc();
5861   SDValue Res;
5862 
5863   SDNodeFlags Flags;
5864   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5865     Flags.copyFMF(*FPOp);
5866 
5867   switch (Intrinsic) {
5868   default:
5869     // By default, turn this into a target intrinsic node.
5870     visitTargetIntrinsic(I, Intrinsic);
5871     return;
5872   case Intrinsic::vscale: {
5873     match(&I, m_VScale(DAG.getDataLayout()));
5874     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5875     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5876     return;
5877   }
5878   case Intrinsic::vastart:  visitVAStart(I); return;
5879   case Intrinsic::vaend:    visitVAEnd(I); return;
5880   case Intrinsic::vacopy:   visitVACopy(I); return;
5881   case Intrinsic::returnaddress:
5882     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5883                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5884                              getValue(I.getArgOperand(0))));
5885     return;
5886   case Intrinsic::addressofreturnaddress:
5887     setValue(&I,
5888              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5889                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5890     return;
5891   case Intrinsic::sponentry:
5892     setValue(&I,
5893              DAG.getNode(ISD::SPONENTRY, sdl,
5894                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5895     return;
5896   case Intrinsic::frameaddress:
5897     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5898                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5899                              getValue(I.getArgOperand(0))));
5900     return;
5901   case Intrinsic::read_volatile_register:
5902   case Intrinsic::read_register: {
5903     Value *Reg = I.getArgOperand(0);
5904     SDValue Chain = getRoot();
5905     SDValue RegName =
5906         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5907     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5908     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5909       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5910     setValue(&I, Res);
5911     DAG.setRoot(Res.getValue(1));
5912     return;
5913   }
5914   case Intrinsic::write_register: {
5915     Value *Reg = I.getArgOperand(0);
5916     Value *RegValue = I.getArgOperand(1);
5917     SDValue Chain = getRoot();
5918     SDValue RegName =
5919         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5920     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5921                             RegName, getValue(RegValue)));
5922     return;
5923   }
5924   case Intrinsic::memcpy: {
5925     const auto &MCI = cast<MemCpyInst>(I);
5926     SDValue Op1 = getValue(I.getArgOperand(0));
5927     SDValue Op2 = getValue(I.getArgOperand(1));
5928     SDValue Op3 = getValue(I.getArgOperand(2));
5929     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5930     Align DstAlign = MCI.getDestAlign().valueOrOne();
5931     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5932     Align Alignment = std::min(DstAlign, SrcAlign);
5933     bool isVol = MCI.isVolatile();
5934     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5935     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5936     // node.
5937     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5938     SDValue MC = DAG.getMemcpy(
5939         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5940         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5941         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5942     updateDAGForMaybeTailCall(MC);
5943     return;
5944   }
5945   case Intrinsic::memcpy_inline: {
5946     const auto &MCI = cast<MemCpyInlineInst>(I);
5947     SDValue Dst = getValue(I.getArgOperand(0));
5948     SDValue Src = getValue(I.getArgOperand(1));
5949     SDValue Size = getValue(I.getArgOperand(2));
5950     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5951     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5952     Align DstAlign = MCI.getDestAlign().valueOrOne();
5953     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5954     Align Alignment = std::min(DstAlign, SrcAlign);
5955     bool isVol = MCI.isVolatile();
5956     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5957     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5958     // node.
5959     SDValue MC = DAG.getMemcpy(
5960         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5961         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5962         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5963     updateDAGForMaybeTailCall(MC);
5964     return;
5965   }
5966   case Intrinsic::memset: {
5967     const auto &MSI = cast<MemSetInst>(I);
5968     SDValue Op1 = getValue(I.getArgOperand(0));
5969     SDValue Op2 = getValue(I.getArgOperand(1));
5970     SDValue Op3 = getValue(I.getArgOperand(2));
5971     // @llvm.memset defines 0 and 1 to both mean no alignment.
5972     Align Alignment = MSI.getDestAlign().valueOrOne();
5973     bool isVol = MSI.isVolatile();
5974     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5975     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5976     SDValue MS = DAG.getMemset(
5977         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5978         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5979     updateDAGForMaybeTailCall(MS);
5980     return;
5981   }
5982   case Intrinsic::memset_inline: {
5983     const auto &MSII = cast<MemSetInlineInst>(I);
5984     SDValue Dst = getValue(I.getArgOperand(0));
5985     SDValue Value = getValue(I.getArgOperand(1));
5986     SDValue Size = getValue(I.getArgOperand(2));
5987     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5988     // @llvm.memset defines 0 and 1 to both mean no alignment.
5989     Align DstAlign = MSII.getDestAlign().valueOrOne();
5990     bool isVol = MSII.isVolatile();
5991     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5992     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5993     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5994                                /* AlwaysInline */ true, isTC,
5995                                MachinePointerInfo(I.getArgOperand(0)),
5996                                I.getAAMetadata());
5997     updateDAGForMaybeTailCall(MC);
5998     return;
5999   }
6000   case Intrinsic::memmove: {
6001     const auto &MMI = cast<MemMoveInst>(I);
6002     SDValue Op1 = getValue(I.getArgOperand(0));
6003     SDValue Op2 = getValue(I.getArgOperand(1));
6004     SDValue Op3 = getValue(I.getArgOperand(2));
6005     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6006     Align DstAlign = MMI.getDestAlign().valueOrOne();
6007     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6008     Align Alignment = std::min(DstAlign, SrcAlign);
6009     bool isVol = MMI.isVolatile();
6010     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6011     // FIXME: Support passing different dest/src alignments to the memmove DAG
6012     // node.
6013     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6014     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6015                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6016                                 MachinePointerInfo(I.getArgOperand(1)),
6017                                 I.getAAMetadata(), AA);
6018     updateDAGForMaybeTailCall(MM);
6019     return;
6020   }
6021   case Intrinsic::memcpy_element_unordered_atomic: {
6022     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6023     SDValue Dst = getValue(MI.getRawDest());
6024     SDValue Src = getValue(MI.getRawSource());
6025     SDValue Length = getValue(MI.getLength());
6026 
6027     Type *LengthTy = MI.getLength()->getType();
6028     unsigned ElemSz = MI.getElementSizeInBytes();
6029     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6030     SDValue MC =
6031         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6032                             isTC, MachinePointerInfo(MI.getRawDest()),
6033                             MachinePointerInfo(MI.getRawSource()));
6034     updateDAGForMaybeTailCall(MC);
6035     return;
6036   }
6037   case Intrinsic::memmove_element_unordered_atomic: {
6038     auto &MI = cast<AtomicMemMoveInst>(I);
6039     SDValue Dst = getValue(MI.getRawDest());
6040     SDValue Src = getValue(MI.getRawSource());
6041     SDValue Length = getValue(MI.getLength());
6042 
6043     Type *LengthTy = MI.getLength()->getType();
6044     unsigned ElemSz = MI.getElementSizeInBytes();
6045     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6046     SDValue MC =
6047         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6048                              isTC, MachinePointerInfo(MI.getRawDest()),
6049                              MachinePointerInfo(MI.getRawSource()));
6050     updateDAGForMaybeTailCall(MC);
6051     return;
6052   }
6053   case Intrinsic::memset_element_unordered_atomic: {
6054     auto &MI = cast<AtomicMemSetInst>(I);
6055     SDValue Dst = getValue(MI.getRawDest());
6056     SDValue Val = getValue(MI.getValue());
6057     SDValue Length = getValue(MI.getLength());
6058 
6059     Type *LengthTy = MI.getLength()->getType();
6060     unsigned ElemSz = MI.getElementSizeInBytes();
6061     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6062     SDValue MC =
6063         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6064                             isTC, MachinePointerInfo(MI.getRawDest()));
6065     updateDAGForMaybeTailCall(MC);
6066     return;
6067   }
6068   case Intrinsic::call_preallocated_setup: {
6069     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6070     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6071     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6072                               getRoot(), SrcValue);
6073     setValue(&I, Res);
6074     DAG.setRoot(Res);
6075     return;
6076   }
6077   case Intrinsic::call_preallocated_arg: {
6078     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6079     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6080     SDValue Ops[3];
6081     Ops[0] = getRoot();
6082     Ops[1] = SrcValue;
6083     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6084                                    MVT::i32); // arg index
6085     SDValue Res = DAG.getNode(
6086         ISD::PREALLOCATED_ARG, sdl,
6087         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6088     setValue(&I, Res);
6089     DAG.setRoot(Res.getValue(1));
6090     return;
6091   }
6092   case Intrinsic::dbg_addr:
6093   case Intrinsic::dbg_declare: {
6094     // Debug intrinsics are handled seperately in assignment tracking mode.
6095     if (getEnableAssignmentTracking())
6096       return;
6097     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6098     // they are non-variadic.
6099     const auto &DI = cast<DbgVariableIntrinsic>(I);
6100     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6101     DILocalVariable *Variable = DI.getVariable();
6102     DIExpression *Expression = DI.getExpression();
6103     dropDanglingDebugInfo(Variable, Expression);
6104     assert(Variable && "Missing variable");
6105     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6106                       << "\n");
6107     // Check if address has undef value.
6108     const Value *Address = DI.getVariableLocationOp(0);
6109     if (!Address || isa<UndefValue>(Address) ||
6110         (Address->use_empty() && !isa<Argument>(Address))) {
6111       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6112                         << " (bad/undef/unused-arg address)\n");
6113       return;
6114     }
6115 
6116     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6117 
6118     // Check if this variable can be described by a frame index, typically
6119     // either as a static alloca or a byval parameter.
6120     int FI = std::numeric_limits<int>::max();
6121     if (const auto *AI =
6122             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6123       if (AI->isStaticAlloca()) {
6124         auto I = FuncInfo.StaticAllocaMap.find(AI);
6125         if (I != FuncInfo.StaticAllocaMap.end())
6126           FI = I->second;
6127       }
6128     } else if (const auto *Arg = dyn_cast<Argument>(
6129                    Address->stripInBoundsConstantOffsets())) {
6130       FI = FuncInfo.getArgumentFrameIndex(Arg);
6131     }
6132 
6133     // llvm.dbg.addr is control dependent and always generates indirect
6134     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6135     // the MachineFunction variable table.
6136     if (FI != std::numeric_limits<int>::max()) {
6137       if (Intrinsic == Intrinsic::dbg_addr) {
6138         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6139             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6140             dl, SDNodeOrder);
6141         DAG.AddDbgValue(SDV, isParameter);
6142       } else {
6143         LLVM_DEBUG(dbgs() << "Skipping " << DI
6144                           << " (variable info stashed in MF side table)\n");
6145       }
6146       return;
6147     }
6148 
6149     SDValue &N = NodeMap[Address];
6150     if (!N.getNode() && isa<Argument>(Address))
6151       // Check unused arguments map.
6152       N = UnusedArgNodeMap[Address];
6153     SDDbgValue *SDV;
6154     if (N.getNode()) {
6155       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6156         Address = BCI->getOperand(0);
6157       // Parameters are handled specially.
6158       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6159       if (isParameter && FINode) {
6160         // Byval parameter. We have a frame index at this point.
6161         SDV =
6162             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6163                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6164       } else if (isa<Argument>(Address)) {
6165         // Address is an argument, so try to emit its dbg value using
6166         // virtual register info from the FuncInfo.ValueMap.
6167         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6168                                  FuncArgumentDbgValueKind::Declare, N);
6169         return;
6170       } else {
6171         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6172                               true, dl, SDNodeOrder);
6173       }
6174       DAG.AddDbgValue(SDV, isParameter);
6175     } else {
6176       // If Address is an argument then try to emit its dbg value using
6177       // virtual register info from the FuncInfo.ValueMap.
6178       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6179                                     FuncArgumentDbgValueKind::Declare, N)) {
6180         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6181                           << " (could not emit func-arg dbg_value)\n");
6182       }
6183     }
6184     return;
6185   }
6186   case Intrinsic::dbg_label: {
6187     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6188     DILabel *Label = DI.getLabel();
6189     assert(Label && "Missing label");
6190 
6191     SDDbgLabel *SDV;
6192     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6193     DAG.AddDbgLabel(SDV);
6194     return;
6195   }
6196   case Intrinsic::dbg_assign: {
6197     // Debug intrinsics are handled seperately in assignment tracking mode.
6198     assert(getEnableAssignmentTracking() &&
6199            "expected assignment tracking to be enabled");
6200     return;
6201   }
6202   case Intrinsic::dbg_value: {
6203     // Debug intrinsics are handled seperately in assignment tracking mode.
6204     if (getEnableAssignmentTracking())
6205       return;
6206     const DbgValueInst &DI = cast<DbgValueInst>(I);
6207     assert(DI.getVariable() && "Missing variable");
6208 
6209     DILocalVariable *Variable = DI.getVariable();
6210     DIExpression *Expression = DI.getExpression();
6211     dropDanglingDebugInfo(Variable, Expression);
6212     SmallVector<Value *, 4> Values(DI.getValues());
6213     if (Values.empty())
6214       return;
6215 
6216     if (llvm::is_contained(Values, nullptr))
6217       return;
6218 
6219     bool IsVariadic = DI.hasArgList();
6220     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6221                           SDNodeOrder, IsVariadic))
6222       addDanglingDebugInfo(&DI, SDNodeOrder);
6223     return;
6224   }
6225 
6226   case Intrinsic::eh_typeid_for: {
6227     // Find the type id for the given typeinfo.
6228     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6229     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6230     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6231     setValue(&I, Res);
6232     return;
6233   }
6234 
6235   case Intrinsic::eh_return_i32:
6236   case Intrinsic::eh_return_i64:
6237     DAG.getMachineFunction().setCallsEHReturn(true);
6238     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6239                             MVT::Other,
6240                             getControlRoot(),
6241                             getValue(I.getArgOperand(0)),
6242                             getValue(I.getArgOperand(1))));
6243     return;
6244   case Intrinsic::eh_unwind_init:
6245     DAG.getMachineFunction().setCallsUnwindInit(true);
6246     return;
6247   case Intrinsic::eh_dwarf_cfa:
6248     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6249                              TLI.getPointerTy(DAG.getDataLayout()),
6250                              getValue(I.getArgOperand(0))));
6251     return;
6252   case Intrinsic::eh_sjlj_callsite: {
6253     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6254     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6255     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6256 
6257     MMI.setCurrentCallSite(CI->getZExtValue());
6258     return;
6259   }
6260   case Intrinsic::eh_sjlj_functioncontext: {
6261     // Get and store the index of the function context.
6262     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6263     AllocaInst *FnCtx =
6264       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6265     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6266     MFI.setFunctionContextIndex(FI);
6267     return;
6268   }
6269   case Intrinsic::eh_sjlj_setjmp: {
6270     SDValue Ops[2];
6271     Ops[0] = getRoot();
6272     Ops[1] = getValue(I.getArgOperand(0));
6273     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6274                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6275     setValue(&I, Op.getValue(0));
6276     DAG.setRoot(Op.getValue(1));
6277     return;
6278   }
6279   case Intrinsic::eh_sjlj_longjmp:
6280     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6281                             getRoot(), getValue(I.getArgOperand(0))));
6282     return;
6283   case Intrinsic::eh_sjlj_setup_dispatch:
6284     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6285                             getRoot()));
6286     return;
6287   case Intrinsic::masked_gather:
6288     visitMaskedGather(I);
6289     return;
6290   case Intrinsic::masked_load:
6291     visitMaskedLoad(I);
6292     return;
6293   case Intrinsic::masked_scatter:
6294     visitMaskedScatter(I);
6295     return;
6296   case Intrinsic::masked_store:
6297     visitMaskedStore(I);
6298     return;
6299   case Intrinsic::masked_expandload:
6300     visitMaskedLoad(I, true /* IsExpanding */);
6301     return;
6302   case Intrinsic::masked_compressstore:
6303     visitMaskedStore(I, true /* IsCompressing */);
6304     return;
6305   case Intrinsic::powi:
6306     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6307                             getValue(I.getArgOperand(1)), DAG));
6308     return;
6309   case Intrinsic::log:
6310     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6311     return;
6312   case Intrinsic::log2:
6313     setValue(&I,
6314              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6315     return;
6316   case Intrinsic::log10:
6317     setValue(&I,
6318              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6319     return;
6320   case Intrinsic::exp:
6321     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6322     return;
6323   case Intrinsic::exp2:
6324     setValue(&I,
6325              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6326     return;
6327   case Intrinsic::pow:
6328     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6329                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6330     return;
6331   case Intrinsic::sqrt:
6332   case Intrinsic::fabs:
6333   case Intrinsic::sin:
6334   case Intrinsic::cos:
6335   case Intrinsic::floor:
6336   case Intrinsic::ceil:
6337   case Intrinsic::trunc:
6338   case Intrinsic::rint:
6339   case Intrinsic::nearbyint:
6340   case Intrinsic::round:
6341   case Intrinsic::roundeven:
6342   case Intrinsic::canonicalize: {
6343     unsigned Opcode;
6344     switch (Intrinsic) {
6345     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6346     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6347     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6348     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6349     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6350     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6351     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6352     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6353     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6354     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6355     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6356     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6357     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6358     }
6359 
6360     setValue(&I, DAG.getNode(Opcode, sdl,
6361                              getValue(I.getArgOperand(0)).getValueType(),
6362                              getValue(I.getArgOperand(0)), Flags));
6363     return;
6364   }
6365   case Intrinsic::lround:
6366   case Intrinsic::llround:
6367   case Intrinsic::lrint:
6368   case Intrinsic::llrint: {
6369     unsigned Opcode;
6370     switch (Intrinsic) {
6371     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6372     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6373     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6374     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6375     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6376     }
6377 
6378     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6379     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6380                              getValue(I.getArgOperand(0))));
6381     return;
6382   }
6383   case Intrinsic::minnum:
6384     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6385                              getValue(I.getArgOperand(0)).getValueType(),
6386                              getValue(I.getArgOperand(0)),
6387                              getValue(I.getArgOperand(1)), Flags));
6388     return;
6389   case Intrinsic::maxnum:
6390     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6391                              getValue(I.getArgOperand(0)).getValueType(),
6392                              getValue(I.getArgOperand(0)),
6393                              getValue(I.getArgOperand(1)), Flags));
6394     return;
6395   case Intrinsic::minimum:
6396     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6397                              getValue(I.getArgOperand(0)).getValueType(),
6398                              getValue(I.getArgOperand(0)),
6399                              getValue(I.getArgOperand(1)), Flags));
6400     return;
6401   case Intrinsic::maximum:
6402     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6403                              getValue(I.getArgOperand(0)).getValueType(),
6404                              getValue(I.getArgOperand(0)),
6405                              getValue(I.getArgOperand(1)), Flags));
6406     return;
6407   case Intrinsic::copysign:
6408     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6409                              getValue(I.getArgOperand(0)).getValueType(),
6410                              getValue(I.getArgOperand(0)),
6411                              getValue(I.getArgOperand(1)), Flags));
6412     return;
6413   case Intrinsic::arithmetic_fence: {
6414     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6415                              getValue(I.getArgOperand(0)).getValueType(),
6416                              getValue(I.getArgOperand(0)), Flags));
6417     return;
6418   }
6419   case Intrinsic::fma:
6420     setValue(&I, DAG.getNode(
6421                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6422                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6423                      getValue(I.getArgOperand(2)), Flags));
6424     return;
6425 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6426   case Intrinsic::INTRINSIC:
6427 #include "llvm/IR/ConstrainedOps.def"
6428     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6429     return;
6430 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6431 #include "llvm/IR/VPIntrinsics.def"
6432     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6433     return;
6434   case Intrinsic::fptrunc_round: {
6435     // Get the last argument, the metadata and convert it to an integer in the
6436     // call
6437     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6438     std::optional<RoundingMode> RoundMode =
6439         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6440 
6441     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6442 
6443     // Propagate fast-math-flags from IR to node(s).
6444     SDNodeFlags Flags;
6445     Flags.copyFMF(*cast<FPMathOperator>(&I));
6446     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6447 
6448     SDValue Result;
6449     Result = DAG.getNode(
6450         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6451         DAG.getTargetConstant((int)*RoundMode, sdl,
6452                               TLI.getPointerTy(DAG.getDataLayout())));
6453     setValue(&I, Result);
6454 
6455     return;
6456   }
6457   case Intrinsic::fmuladd: {
6458     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6459     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6460         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6461       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6462                                getValue(I.getArgOperand(0)).getValueType(),
6463                                getValue(I.getArgOperand(0)),
6464                                getValue(I.getArgOperand(1)),
6465                                getValue(I.getArgOperand(2)), Flags));
6466     } else {
6467       // TODO: Intrinsic calls should have fast-math-flags.
6468       SDValue Mul = DAG.getNode(
6469           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6470           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6471       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6472                                 getValue(I.getArgOperand(0)).getValueType(),
6473                                 Mul, getValue(I.getArgOperand(2)), Flags);
6474       setValue(&I, Add);
6475     }
6476     return;
6477   }
6478   case Intrinsic::convert_to_fp16:
6479     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6480                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6481                                          getValue(I.getArgOperand(0)),
6482                                          DAG.getTargetConstant(0, sdl,
6483                                                                MVT::i32))));
6484     return;
6485   case Intrinsic::convert_from_fp16:
6486     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6487                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6488                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6489                                          getValue(I.getArgOperand(0)))));
6490     return;
6491   case Intrinsic::fptosi_sat: {
6492     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6493     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6494                              getValue(I.getArgOperand(0)),
6495                              DAG.getValueType(VT.getScalarType())));
6496     return;
6497   }
6498   case Intrinsic::fptoui_sat: {
6499     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6500     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6501                              getValue(I.getArgOperand(0)),
6502                              DAG.getValueType(VT.getScalarType())));
6503     return;
6504   }
6505   case Intrinsic::set_rounding:
6506     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6507                       {getRoot(), getValue(I.getArgOperand(0))});
6508     setValue(&I, Res);
6509     DAG.setRoot(Res.getValue(0));
6510     return;
6511   case Intrinsic::is_fpclass: {
6512     const DataLayout DLayout = DAG.getDataLayout();
6513     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6514     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6515     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6516     MachineFunction &MF = DAG.getMachineFunction();
6517     const Function &F = MF.getFunction();
6518     SDValue Op = getValue(I.getArgOperand(0));
6519     SDNodeFlags Flags;
6520     Flags.setNoFPExcept(
6521         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6522     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6523     // expansion can use illegal types. Making expansion early allows
6524     // legalizing these types prior to selection.
6525     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6526       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6527       setValue(&I, Result);
6528       return;
6529     }
6530 
6531     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6532     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6533     setValue(&I, V);
6534     return;
6535   }
6536   case Intrinsic::pcmarker: {
6537     SDValue Tmp = getValue(I.getArgOperand(0));
6538     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6539     return;
6540   }
6541   case Intrinsic::readcyclecounter: {
6542     SDValue Op = getRoot();
6543     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6544                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6545     setValue(&I, Res);
6546     DAG.setRoot(Res.getValue(1));
6547     return;
6548   }
6549   case Intrinsic::bitreverse:
6550     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6551                              getValue(I.getArgOperand(0)).getValueType(),
6552                              getValue(I.getArgOperand(0))));
6553     return;
6554   case Intrinsic::bswap:
6555     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6556                              getValue(I.getArgOperand(0)).getValueType(),
6557                              getValue(I.getArgOperand(0))));
6558     return;
6559   case Intrinsic::cttz: {
6560     SDValue Arg = getValue(I.getArgOperand(0));
6561     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6562     EVT Ty = Arg.getValueType();
6563     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6564                              sdl, Ty, Arg));
6565     return;
6566   }
6567   case Intrinsic::ctlz: {
6568     SDValue Arg = getValue(I.getArgOperand(0));
6569     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6570     EVT Ty = Arg.getValueType();
6571     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6572                              sdl, Ty, Arg));
6573     return;
6574   }
6575   case Intrinsic::ctpop: {
6576     SDValue Arg = getValue(I.getArgOperand(0));
6577     EVT Ty = Arg.getValueType();
6578     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6579     return;
6580   }
6581   case Intrinsic::fshl:
6582   case Intrinsic::fshr: {
6583     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6584     SDValue X = getValue(I.getArgOperand(0));
6585     SDValue Y = getValue(I.getArgOperand(1));
6586     SDValue Z = getValue(I.getArgOperand(2));
6587     EVT VT = X.getValueType();
6588 
6589     if (X == Y) {
6590       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6591       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6592     } else {
6593       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6594       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6595     }
6596     return;
6597   }
6598   case Intrinsic::sadd_sat: {
6599     SDValue Op1 = getValue(I.getArgOperand(0));
6600     SDValue Op2 = getValue(I.getArgOperand(1));
6601     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6602     return;
6603   }
6604   case Intrinsic::uadd_sat: {
6605     SDValue Op1 = getValue(I.getArgOperand(0));
6606     SDValue Op2 = getValue(I.getArgOperand(1));
6607     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6608     return;
6609   }
6610   case Intrinsic::ssub_sat: {
6611     SDValue Op1 = getValue(I.getArgOperand(0));
6612     SDValue Op2 = getValue(I.getArgOperand(1));
6613     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6614     return;
6615   }
6616   case Intrinsic::usub_sat: {
6617     SDValue Op1 = getValue(I.getArgOperand(0));
6618     SDValue Op2 = getValue(I.getArgOperand(1));
6619     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6620     return;
6621   }
6622   case Intrinsic::sshl_sat: {
6623     SDValue Op1 = getValue(I.getArgOperand(0));
6624     SDValue Op2 = getValue(I.getArgOperand(1));
6625     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6626     return;
6627   }
6628   case Intrinsic::ushl_sat: {
6629     SDValue Op1 = getValue(I.getArgOperand(0));
6630     SDValue Op2 = getValue(I.getArgOperand(1));
6631     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6632     return;
6633   }
6634   case Intrinsic::smul_fix:
6635   case Intrinsic::umul_fix:
6636   case Intrinsic::smul_fix_sat:
6637   case Intrinsic::umul_fix_sat: {
6638     SDValue Op1 = getValue(I.getArgOperand(0));
6639     SDValue Op2 = getValue(I.getArgOperand(1));
6640     SDValue Op3 = getValue(I.getArgOperand(2));
6641     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6642                              Op1.getValueType(), Op1, Op2, Op3));
6643     return;
6644   }
6645   case Intrinsic::sdiv_fix:
6646   case Intrinsic::udiv_fix:
6647   case Intrinsic::sdiv_fix_sat:
6648   case Intrinsic::udiv_fix_sat: {
6649     SDValue Op1 = getValue(I.getArgOperand(0));
6650     SDValue Op2 = getValue(I.getArgOperand(1));
6651     SDValue Op3 = getValue(I.getArgOperand(2));
6652     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6653                               Op1, Op2, Op3, DAG, TLI));
6654     return;
6655   }
6656   case Intrinsic::smax: {
6657     SDValue Op1 = getValue(I.getArgOperand(0));
6658     SDValue Op2 = getValue(I.getArgOperand(1));
6659     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6660     return;
6661   }
6662   case Intrinsic::smin: {
6663     SDValue Op1 = getValue(I.getArgOperand(0));
6664     SDValue Op2 = getValue(I.getArgOperand(1));
6665     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6666     return;
6667   }
6668   case Intrinsic::umax: {
6669     SDValue Op1 = getValue(I.getArgOperand(0));
6670     SDValue Op2 = getValue(I.getArgOperand(1));
6671     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6672     return;
6673   }
6674   case Intrinsic::umin: {
6675     SDValue Op1 = getValue(I.getArgOperand(0));
6676     SDValue Op2 = getValue(I.getArgOperand(1));
6677     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6678     return;
6679   }
6680   case Intrinsic::abs: {
6681     // TODO: Preserve "int min is poison" arg in SDAG?
6682     SDValue Op1 = getValue(I.getArgOperand(0));
6683     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6684     return;
6685   }
6686   case Intrinsic::stacksave: {
6687     SDValue Op = getRoot();
6688     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6689     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6690     setValue(&I, Res);
6691     DAG.setRoot(Res.getValue(1));
6692     return;
6693   }
6694   case Intrinsic::stackrestore:
6695     Res = getValue(I.getArgOperand(0));
6696     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6697     return;
6698   case Intrinsic::get_dynamic_area_offset: {
6699     SDValue Op = getRoot();
6700     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6701     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6702     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6703     // target.
6704     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6705       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6706                          " intrinsic!");
6707     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6708                       Op);
6709     DAG.setRoot(Op);
6710     setValue(&I, Res);
6711     return;
6712   }
6713   case Intrinsic::stackguard: {
6714     MachineFunction &MF = DAG.getMachineFunction();
6715     const Module &M = *MF.getFunction().getParent();
6716     SDValue Chain = getRoot();
6717     if (TLI.useLoadStackGuardNode()) {
6718       Res = getLoadStackGuard(DAG, sdl, Chain);
6719     } else {
6720       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6721       const Value *Global = TLI.getSDagStackGuard(M);
6722       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6723       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6724                         MachinePointerInfo(Global, 0), Align,
6725                         MachineMemOperand::MOVolatile);
6726     }
6727     if (TLI.useStackGuardXorFP())
6728       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6729     DAG.setRoot(Chain);
6730     setValue(&I, Res);
6731     return;
6732   }
6733   case Intrinsic::stackprotector: {
6734     // Emit code into the DAG to store the stack guard onto the stack.
6735     MachineFunction &MF = DAG.getMachineFunction();
6736     MachineFrameInfo &MFI = MF.getFrameInfo();
6737     SDValue Src, Chain = getRoot();
6738 
6739     if (TLI.useLoadStackGuardNode())
6740       Src = getLoadStackGuard(DAG, sdl, Chain);
6741     else
6742       Src = getValue(I.getArgOperand(0));   // The guard's value.
6743 
6744     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6745 
6746     int FI = FuncInfo.StaticAllocaMap[Slot];
6747     MFI.setStackProtectorIndex(FI);
6748     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6749 
6750     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6751 
6752     // Store the stack protector onto the stack.
6753     Res = DAG.getStore(
6754         Chain, sdl, Src, FIN,
6755         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6756         MaybeAlign(), MachineMemOperand::MOVolatile);
6757     setValue(&I, Res);
6758     DAG.setRoot(Res);
6759     return;
6760   }
6761   case Intrinsic::objectsize:
6762     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6763 
6764   case Intrinsic::is_constant:
6765     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6766 
6767   case Intrinsic::annotation:
6768   case Intrinsic::ptr_annotation:
6769   case Intrinsic::launder_invariant_group:
6770   case Intrinsic::strip_invariant_group:
6771     // Drop the intrinsic, but forward the value
6772     setValue(&I, getValue(I.getOperand(0)));
6773     return;
6774 
6775   case Intrinsic::assume:
6776   case Intrinsic::experimental_noalias_scope_decl:
6777   case Intrinsic::var_annotation:
6778   case Intrinsic::sideeffect:
6779     // Discard annotate attributes, noalias scope declarations, assumptions, and
6780     // artificial side-effects.
6781     return;
6782 
6783   case Intrinsic::codeview_annotation: {
6784     // Emit a label associated with this metadata.
6785     MachineFunction &MF = DAG.getMachineFunction();
6786     MCSymbol *Label =
6787         MF.getMMI().getContext().createTempSymbol("annotation", true);
6788     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6789     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6790     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6791     DAG.setRoot(Res);
6792     return;
6793   }
6794 
6795   case Intrinsic::init_trampoline: {
6796     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6797 
6798     SDValue Ops[6];
6799     Ops[0] = getRoot();
6800     Ops[1] = getValue(I.getArgOperand(0));
6801     Ops[2] = getValue(I.getArgOperand(1));
6802     Ops[3] = getValue(I.getArgOperand(2));
6803     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6804     Ops[5] = DAG.getSrcValue(F);
6805 
6806     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6807 
6808     DAG.setRoot(Res);
6809     return;
6810   }
6811   case Intrinsic::adjust_trampoline:
6812     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6813                              TLI.getPointerTy(DAG.getDataLayout()),
6814                              getValue(I.getArgOperand(0))));
6815     return;
6816   case Intrinsic::gcroot: {
6817     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6818            "only valid in functions with gc specified, enforced by Verifier");
6819     assert(GFI && "implied by previous");
6820     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6821     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6822 
6823     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6824     GFI->addStackRoot(FI->getIndex(), TypeMap);
6825     return;
6826   }
6827   case Intrinsic::gcread:
6828   case Intrinsic::gcwrite:
6829     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6830   case Intrinsic::get_rounding:
6831     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6832     setValue(&I, Res);
6833     DAG.setRoot(Res.getValue(1));
6834     return;
6835 
6836   case Intrinsic::expect:
6837     // Just replace __builtin_expect(exp, c) with EXP.
6838     setValue(&I, getValue(I.getArgOperand(0)));
6839     return;
6840 
6841   case Intrinsic::ubsantrap:
6842   case Intrinsic::debugtrap:
6843   case Intrinsic::trap: {
6844     StringRef TrapFuncName =
6845         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6846     if (TrapFuncName.empty()) {
6847       switch (Intrinsic) {
6848       case Intrinsic::trap:
6849         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6850         break;
6851       case Intrinsic::debugtrap:
6852         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6853         break;
6854       case Intrinsic::ubsantrap:
6855         DAG.setRoot(DAG.getNode(
6856             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6857             DAG.getTargetConstant(
6858                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6859                 MVT::i32)));
6860         break;
6861       default: llvm_unreachable("unknown trap intrinsic");
6862       }
6863       return;
6864     }
6865     TargetLowering::ArgListTy Args;
6866     if (Intrinsic == Intrinsic::ubsantrap) {
6867       Args.push_back(TargetLoweringBase::ArgListEntry());
6868       Args[0].Val = I.getArgOperand(0);
6869       Args[0].Node = getValue(Args[0].Val);
6870       Args[0].Ty = Args[0].Val->getType();
6871     }
6872 
6873     TargetLowering::CallLoweringInfo CLI(DAG);
6874     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6875         CallingConv::C, I.getType(),
6876         DAG.getExternalSymbol(TrapFuncName.data(),
6877                               TLI.getPointerTy(DAG.getDataLayout())),
6878         std::move(Args));
6879 
6880     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6881     DAG.setRoot(Result.second);
6882     return;
6883   }
6884 
6885   case Intrinsic::uadd_with_overflow:
6886   case Intrinsic::sadd_with_overflow:
6887   case Intrinsic::usub_with_overflow:
6888   case Intrinsic::ssub_with_overflow:
6889   case Intrinsic::umul_with_overflow:
6890   case Intrinsic::smul_with_overflow: {
6891     ISD::NodeType Op;
6892     switch (Intrinsic) {
6893     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6894     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6895     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6896     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6897     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6898     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6899     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6900     }
6901     SDValue Op1 = getValue(I.getArgOperand(0));
6902     SDValue Op2 = getValue(I.getArgOperand(1));
6903 
6904     EVT ResultVT = Op1.getValueType();
6905     EVT OverflowVT = MVT::i1;
6906     if (ResultVT.isVector())
6907       OverflowVT = EVT::getVectorVT(
6908           *Context, OverflowVT, ResultVT.getVectorElementCount());
6909 
6910     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6911     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6912     return;
6913   }
6914   case Intrinsic::prefetch: {
6915     SDValue Ops[5];
6916     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6917     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6918     Ops[0] = DAG.getRoot();
6919     Ops[1] = getValue(I.getArgOperand(0));
6920     Ops[2] = getValue(I.getArgOperand(1));
6921     Ops[3] = getValue(I.getArgOperand(2));
6922     Ops[4] = getValue(I.getArgOperand(3));
6923     SDValue Result = DAG.getMemIntrinsicNode(
6924         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6925         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6926         /* align */ std::nullopt, Flags);
6927 
6928     // Chain the prefetch in parallell with any pending loads, to stay out of
6929     // the way of later optimizations.
6930     PendingLoads.push_back(Result);
6931     Result = getRoot();
6932     DAG.setRoot(Result);
6933     return;
6934   }
6935   case Intrinsic::lifetime_start:
6936   case Intrinsic::lifetime_end: {
6937     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6938     // Stack coloring is not enabled in O0, discard region information.
6939     if (TM.getOptLevel() == CodeGenOpt::None)
6940       return;
6941 
6942     const int64_t ObjectSize =
6943         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6944     Value *const ObjectPtr = I.getArgOperand(1);
6945     SmallVector<const Value *, 4> Allocas;
6946     getUnderlyingObjects(ObjectPtr, Allocas);
6947 
6948     for (const Value *Alloca : Allocas) {
6949       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6950 
6951       // Could not find an Alloca.
6952       if (!LifetimeObject)
6953         continue;
6954 
6955       // First check that the Alloca is static, otherwise it won't have a
6956       // valid frame index.
6957       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6958       if (SI == FuncInfo.StaticAllocaMap.end())
6959         return;
6960 
6961       const int FrameIndex = SI->second;
6962       int64_t Offset;
6963       if (GetPointerBaseWithConstantOffset(
6964               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6965         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6966       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6967                                 Offset);
6968       DAG.setRoot(Res);
6969     }
6970     return;
6971   }
6972   case Intrinsic::pseudoprobe: {
6973     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6974     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6975     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6976     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6977     DAG.setRoot(Res);
6978     return;
6979   }
6980   case Intrinsic::invariant_start:
6981     // Discard region information.
6982     setValue(&I,
6983              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6984     return;
6985   case Intrinsic::invariant_end:
6986     // Discard region information.
6987     return;
6988   case Intrinsic::clear_cache:
6989     /// FunctionName may be null.
6990     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6991       lowerCallToExternalSymbol(I, FunctionName);
6992     return;
6993   case Intrinsic::donothing:
6994   case Intrinsic::seh_try_begin:
6995   case Intrinsic::seh_scope_begin:
6996   case Intrinsic::seh_try_end:
6997   case Intrinsic::seh_scope_end:
6998     // ignore
6999     return;
7000   case Intrinsic::experimental_stackmap:
7001     visitStackmap(I);
7002     return;
7003   case Intrinsic::experimental_patchpoint_void:
7004   case Intrinsic::experimental_patchpoint_i64:
7005     visitPatchpoint(I);
7006     return;
7007   case Intrinsic::experimental_gc_statepoint:
7008     LowerStatepoint(cast<GCStatepointInst>(I));
7009     return;
7010   case Intrinsic::experimental_gc_result:
7011     visitGCResult(cast<GCResultInst>(I));
7012     return;
7013   case Intrinsic::experimental_gc_relocate:
7014     visitGCRelocate(cast<GCRelocateInst>(I));
7015     return;
7016   case Intrinsic::instrprof_cover:
7017     llvm_unreachable("instrprof failed to lower a cover");
7018   case Intrinsic::instrprof_increment:
7019     llvm_unreachable("instrprof failed to lower an increment");
7020   case Intrinsic::instrprof_value_profile:
7021     llvm_unreachable("instrprof failed to lower a value profiling call");
7022   case Intrinsic::localescape: {
7023     MachineFunction &MF = DAG.getMachineFunction();
7024     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7025 
7026     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7027     // is the same on all targets.
7028     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7029       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7030       if (isa<ConstantPointerNull>(Arg))
7031         continue; // Skip null pointers. They represent a hole in index space.
7032       AllocaInst *Slot = cast<AllocaInst>(Arg);
7033       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7034              "can only escape static allocas");
7035       int FI = FuncInfo.StaticAllocaMap[Slot];
7036       MCSymbol *FrameAllocSym =
7037           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7038               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7039       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7040               TII->get(TargetOpcode::LOCAL_ESCAPE))
7041           .addSym(FrameAllocSym)
7042           .addFrameIndex(FI);
7043     }
7044 
7045     return;
7046   }
7047 
7048   case Intrinsic::localrecover: {
7049     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7050     MachineFunction &MF = DAG.getMachineFunction();
7051 
7052     // Get the symbol that defines the frame offset.
7053     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7054     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7055     unsigned IdxVal =
7056         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7057     MCSymbol *FrameAllocSym =
7058         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7059             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7060 
7061     Value *FP = I.getArgOperand(1);
7062     SDValue FPVal = getValue(FP);
7063     EVT PtrVT = FPVal.getValueType();
7064 
7065     // Create a MCSymbol for the label to avoid any target lowering
7066     // that would make this PC relative.
7067     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7068     SDValue OffsetVal =
7069         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7070 
7071     // Add the offset to the FP.
7072     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7073     setValue(&I, Add);
7074 
7075     return;
7076   }
7077 
7078   case Intrinsic::eh_exceptionpointer:
7079   case Intrinsic::eh_exceptioncode: {
7080     // Get the exception pointer vreg, copy from it, and resize it to fit.
7081     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7082     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7083     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7084     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7085     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7086     if (Intrinsic == Intrinsic::eh_exceptioncode)
7087       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7088     setValue(&I, N);
7089     return;
7090   }
7091   case Intrinsic::xray_customevent: {
7092     // Here we want to make sure that the intrinsic behaves as if it has a
7093     // specific calling convention, and only for x86_64.
7094     // FIXME: Support other platforms later.
7095     const auto &Triple = DAG.getTarget().getTargetTriple();
7096     if (Triple.getArch() != Triple::x86_64)
7097       return;
7098 
7099     SmallVector<SDValue, 8> Ops;
7100 
7101     // We want to say that we always want the arguments in registers.
7102     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7103     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7104     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7105     SDValue Chain = getRoot();
7106     Ops.push_back(LogEntryVal);
7107     Ops.push_back(StrSizeVal);
7108     Ops.push_back(Chain);
7109 
7110     // We need to enforce the calling convention for the callsite, so that
7111     // argument ordering is enforced correctly, and that register allocation can
7112     // see that some registers may be assumed clobbered and have to preserve
7113     // them across calls to the intrinsic.
7114     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7115                                            sdl, NodeTys, Ops);
7116     SDValue patchableNode = SDValue(MN, 0);
7117     DAG.setRoot(patchableNode);
7118     setValue(&I, patchableNode);
7119     return;
7120   }
7121   case Intrinsic::xray_typedevent: {
7122     // Here we want to make sure that the intrinsic behaves as if it has a
7123     // specific calling convention, and only for x86_64.
7124     // FIXME: Support other platforms later.
7125     const auto &Triple = DAG.getTarget().getTargetTriple();
7126     if (Triple.getArch() != Triple::x86_64)
7127       return;
7128 
7129     SmallVector<SDValue, 8> Ops;
7130 
7131     // We want to say that we always want the arguments in registers.
7132     // It's unclear to me how manipulating the selection DAG here forces callers
7133     // to provide arguments in registers instead of on the stack.
7134     SDValue LogTypeId = getValue(I.getArgOperand(0));
7135     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7136     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7137     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7138     SDValue Chain = getRoot();
7139     Ops.push_back(LogTypeId);
7140     Ops.push_back(LogEntryVal);
7141     Ops.push_back(StrSizeVal);
7142     Ops.push_back(Chain);
7143 
7144     // We need to enforce the calling convention for the callsite, so that
7145     // argument ordering is enforced correctly, and that register allocation can
7146     // see that some registers may be assumed clobbered and have to preserve
7147     // them across calls to the intrinsic.
7148     MachineSDNode *MN = DAG.getMachineNode(
7149         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7150     SDValue patchableNode = SDValue(MN, 0);
7151     DAG.setRoot(patchableNode);
7152     setValue(&I, patchableNode);
7153     return;
7154   }
7155   case Intrinsic::experimental_deoptimize:
7156     LowerDeoptimizeCall(&I);
7157     return;
7158   case Intrinsic::experimental_stepvector:
7159     visitStepVector(I);
7160     return;
7161   case Intrinsic::vector_reduce_fadd:
7162   case Intrinsic::vector_reduce_fmul:
7163   case Intrinsic::vector_reduce_add:
7164   case Intrinsic::vector_reduce_mul:
7165   case Intrinsic::vector_reduce_and:
7166   case Intrinsic::vector_reduce_or:
7167   case Intrinsic::vector_reduce_xor:
7168   case Intrinsic::vector_reduce_smax:
7169   case Intrinsic::vector_reduce_smin:
7170   case Intrinsic::vector_reduce_umax:
7171   case Intrinsic::vector_reduce_umin:
7172   case Intrinsic::vector_reduce_fmax:
7173   case Intrinsic::vector_reduce_fmin:
7174     visitVectorReduce(I, Intrinsic);
7175     return;
7176 
7177   case Intrinsic::icall_branch_funnel: {
7178     SmallVector<SDValue, 16> Ops;
7179     Ops.push_back(getValue(I.getArgOperand(0)));
7180 
7181     int64_t Offset;
7182     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7183         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7184     if (!Base)
7185       report_fatal_error(
7186           "llvm.icall.branch.funnel operand must be a GlobalValue");
7187     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7188 
7189     struct BranchFunnelTarget {
7190       int64_t Offset;
7191       SDValue Target;
7192     };
7193     SmallVector<BranchFunnelTarget, 8> Targets;
7194 
7195     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7196       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7197           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7198       if (ElemBase != Base)
7199         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7200                            "to the same GlobalValue");
7201 
7202       SDValue Val = getValue(I.getArgOperand(Op + 1));
7203       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7204       if (!GA)
7205         report_fatal_error(
7206             "llvm.icall.branch.funnel operand must be a GlobalValue");
7207       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7208                                      GA->getGlobal(), sdl, Val.getValueType(),
7209                                      GA->getOffset())});
7210     }
7211     llvm::sort(Targets,
7212                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7213                  return T1.Offset < T2.Offset;
7214                });
7215 
7216     for (auto &T : Targets) {
7217       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7218       Ops.push_back(T.Target);
7219     }
7220 
7221     Ops.push_back(DAG.getRoot()); // Chain
7222     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7223                                  MVT::Other, Ops),
7224               0);
7225     DAG.setRoot(N);
7226     setValue(&I, N);
7227     HasTailCall = true;
7228     return;
7229   }
7230 
7231   case Intrinsic::wasm_landingpad_index:
7232     // Information this intrinsic contained has been transferred to
7233     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7234     // delete it now.
7235     return;
7236 
7237   case Intrinsic::aarch64_settag:
7238   case Intrinsic::aarch64_settag_zero: {
7239     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7240     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7241     SDValue Val = TSI.EmitTargetCodeForSetTag(
7242         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7243         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7244         ZeroMemory);
7245     DAG.setRoot(Val);
7246     setValue(&I, Val);
7247     return;
7248   }
7249   case Intrinsic::ptrmask: {
7250     SDValue Ptr = getValue(I.getOperand(0));
7251     SDValue Const = getValue(I.getOperand(1));
7252 
7253     EVT PtrVT = Ptr.getValueType();
7254     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7255                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7256     return;
7257   }
7258   case Intrinsic::threadlocal_address: {
7259     setValue(&I, getValue(I.getOperand(0)));
7260     return;
7261   }
7262   case Intrinsic::get_active_lane_mask: {
7263     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7264     SDValue Index = getValue(I.getOperand(0));
7265     EVT ElementVT = Index.getValueType();
7266 
7267     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7268       visitTargetIntrinsic(I, Intrinsic);
7269       return;
7270     }
7271 
7272     SDValue TripCount = getValue(I.getOperand(1));
7273     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7274 
7275     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7276     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7277     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7278     SDValue VectorInduction = DAG.getNode(
7279         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7280     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7281                                  VectorTripCount, ISD::CondCode::SETULT);
7282     setValue(&I, SetCC);
7283     return;
7284   }
7285   case Intrinsic::vector_insert: {
7286     SDValue Vec = getValue(I.getOperand(0));
7287     SDValue SubVec = getValue(I.getOperand(1));
7288     SDValue Index = getValue(I.getOperand(2));
7289 
7290     // The intrinsic's index type is i64, but the SDNode requires an index type
7291     // suitable for the target. Convert the index as required.
7292     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7293     if (Index.getValueType() != VectorIdxTy)
7294       Index = DAG.getVectorIdxConstant(
7295           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7296 
7297     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7298     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7299                              Index));
7300     return;
7301   }
7302   case Intrinsic::vector_extract: {
7303     SDValue Vec = getValue(I.getOperand(0));
7304     SDValue Index = getValue(I.getOperand(1));
7305     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7306 
7307     // The intrinsic's index type is i64, but the SDNode requires an index type
7308     // suitable for the target. Convert the index as required.
7309     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7310     if (Index.getValueType() != VectorIdxTy)
7311       Index = DAG.getVectorIdxConstant(
7312           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7313 
7314     setValue(&I,
7315              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7316     return;
7317   }
7318   case Intrinsic::experimental_vector_reverse:
7319     visitVectorReverse(I);
7320     return;
7321   case Intrinsic::experimental_vector_splice:
7322     visitVectorSplice(I);
7323     return;
7324   }
7325 }
7326 
7327 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7328     const ConstrainedFPIntrinsic &FPI) {
7329   SDLoc sdl = getCurSDLoc();
7330 
7331   // We do not need to serialize constrained FP intrinsics against
7332   // each other or against (nonvolatile) loads, so they can be
7333   // chained like loads.
7334   SDValue Chain = DAG.getRoot();
7335   SmallVector<SDValue, 4> Opers;
7336   Opers.push_back(Chain);
7337   if (FPI.isUnaryOp()) {
7338     Opers.push_back(getValue(FPI.getArgOperand(0)));
7339   } else if (FPI.isTernaryOp()) {
7340     Opers.push_back(getValue(FPI.getArgOperand(0)));
7341     Opers.push_back(getValue(FPI.getArgOperand(1)));
7342     Opers.push_back(getValue(FPI.getArgOperand(2)));
7343   } else {
7344     Opers.push_back(getValue(FPI.getArgOperand(0)));
7345     Opers.push_back(getValue(FPI.getArgOperand(1)));
7346   }
7347 
7348   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7349     assert(Result.getNode()->getNumValues() == 2);
7350 
7351     // Push node to the appropriate list so that future instructions can be
7352     // chained up correctly.
7353     SDValue OutChain = Result.getValue(1);
7354     switch (EB) {
7355     case fp::ExceptionBehavior::ebIgnore:
7356       // The only reason why ebIgnore nodes still need to be chained is that
7357       // they might depend on the current rounding mode, and therefore must
7358       // not be moved across instruction that may change that mode.
7359       [[fallthrough]];
7360     case fp::ExceptionBehavior::ebMayTrap:
7361       // These must not be moved across calls or instructions that may change
7362       // floating-point exception masks.
7363       PendingConstrainedFP.push_back(OutChain);
7364       break;
7365     case fp::ExceptionBehavior::ebStrict:
7366       // These must not be moved across calls or instructions that may change
7367       // floating-point exception masks or read floating-point exception flags.
7368       // In addition, they cannot be optimized out even if unused.
7369       PendingConstrainedFPStrict.push_back(OutChain);
7370       break;
7371     }
7372   };
7373 
7374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7375   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7376   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7377   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7378 
7379   SDNodeFlags Flags;
7380   if (EB == fp::ExceptionBehavior::ebIgnore)
7381     Flags.setNoFPExcept(true);
7382 
7383   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7384     Flags.copyFMF(*FPOp);
7385 
7386   unsigned Opcode;
7387   switch (FPI.getIntrinsicID()) {
7388   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7389 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7390   case Intrinsic::INTRINSIC:                                                   \
7391     Opcode = ISD::STRICT_##DAGN;                                               \
7392     break;
7393 #include "llvm/IR/ConstrainedOps.def"
7394   case Intrinsic::experimental_constrained_fmuladd: {
7395     Opcode = ISD::STRICT_FMA;
7396     // Break fmuladd into fmul and fadd.
7397     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7398         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7399       Opers.pop_back();
7400       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7401       pushOutChain(Mul, EB);
7402       Opcode = ISD::STRICT_FADD;
7403       Opers.clear();
7404       Opers.push_back(Mul.getValue(1));
7405       Opers.push_back(Mul.getValue(0));
7406       Opers.push_back(getValue(FPI.getArgOperand(2)));
7407     }
7408     break;
7409   }
7410   }
7411 
7412   // A few strict DAG nodes carry additional operands that are not
7413   // set up by the default code above.
7414   switch (Opcode) {
7415   default: break;
7416   case ISD::STRICT_FP_ROUND:
7417     Opers.push_back(
7418         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7419     break;
7420   case ISD::STRICT_FSETCC:
7421   case ISD::STRICT_FSETCCS: {
7422     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7423     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7424     if (TM.Options.NoNaNsFPMath)
7425       Condition = getFCmpCodeWithoutNaN(Condition);
7426     Opers.push_back(DAG.getCondCode(Condition));
7427     break;
7428   }
7429   }
7430 
7431   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7432   pushOutChain(Result, EB);
7433 
7434   SDValue FPResult = Result.getValue(0);
7435   setValue(&FPI, FPResult);
7436 }
7437 
7438 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7439   std::optional<unsigned> ResOPC;
7440   switch (VPIntrin.getIntrinsicID()) {
7441   case Intrinsic::vp_ctlz: {
7442     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7443     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7444     break;
7445   }
7446   case Intrinsic::vp_cttz: {
7447     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7448     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7449     break;
7450   }
7451 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7452   case Intrinsic::VPID:                                                        \
7453     ResOPC = ISD::VPSD;                                                        \
7454     break;
7455 #include "llvm/IR/VPIntrinsics.def"
7456   }
7457 
7458   if (!ResOPC)
7459     llvm_unreachable(
7460         "Inconsistency: no SDNode available for this VPIntrinsic!");
7461 
7462   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7463       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7464     if (VPIntrin.getFastMathFlags().allowReassoc())
7465       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7466                                                 : ISD::VP_REDUCE_FMUL;
7467   }
7468 
7469   return *ResOPC;
7470 }
7471 
7472 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7473                                       SmallVector<SDValue, 7> &OpValues) {
7474   SDLoc DL = getCurSDLoc();
7475   Value *PtrOperand = VPIntrin.getArgOperand(0);
7476   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7477   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7478   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7479   SDValue LD;
7480   bool AddToChain = true;
7481   // Do not serialize variable-length loads of constant memory with
7482   // anything.
7483   if (!Alignment)
7484     Alignment = DAG.getEVTAlign(VT);
7485   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7486   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7487   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7488   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7489       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7490       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7491   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7492                      MMO, false /*IsExpanding */);
7493   if (AddToChain)
7494     PendingLoads.push_back(LD.getValue(1));
7495   setValue(&VPIntrin, LD);
7496 }
7497 
7498 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7499                                         SmallVector<SDValue, 7> &OpValues) {
7500   SDLoc DL = getCurSDLoc();
7501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7502   Value *PtrOperand = VPIntrin.getArgOperand(0);
7503   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7504   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7505   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7506   SDValue LD;
7507   if (!Alignment)
7508     Alignment = DAG.getEVTAlign(VT.getScalarType());
7509   unsigned AS =
7510     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7511   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7512      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7513      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7514   SDValue Base, Index, Scale;
7515   ISD::MemIndexType IndexType;
7516   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7517                                     this, VPIntrin.getParent(),
7518                                     VT.getScalarStoreSize());
7519   if (!UniformBase) {
7520     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7521     Index = getValue(PtrOperand);
7522     IndexType = ISD::SIGNED_SCALED;
7523     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7524   }
7525   EVT IdxVT = Index.getValueType();
7526   EVT EltTy = IdxVT.getVectorElementType();
7527   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7528     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7529     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7530   }
7531   LD = DAG.getGatherVP(
7532       DAG.getVTList(VT, MVT::Other), VT, DL,
7533       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7534       IndexType);
7535   PendingLoads.push_back(LD.getValue(1));
7536   setValue(&VPIntrin, LD);
7537 }
7538 
7539 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7540                                        SmallVector<SDValue, 7> &OpValues) {
7541   SDLoc DL = getCurSDLoc();
7542   Value *PtrOperand = VPIntrin.getArgOperand(1);
7543   EVT VT = OpValues[0].getValueType();
7544   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7545   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7546   SDValue ST;
7547   if (!Alignment)
7548     Alignment = DAG.getEVTAlign(VT);
7549   SDValue Ptr = OpValues[1];
7550   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7551   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7552       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7553       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7554   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7555                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7556                       /* IsTruncating */ false, /*IsCompressing*/ false);
7557   DAG.setRoot(ST);
7558   setValue(&VPIntrin, ST);
7559 }
7560 
7561 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7562                                               SmallVector<SDValue, 7> &OpValues) {
7563   SDLoc DL = getCurSDLoc();
7564   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7565   Value *PtrOperand = VPIntrin.getArgOperand(1);
7566   EVT VT = OpValues[0].getValueType();
7567   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7568   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7569   SDValue ST;
7570   if (!Alignment)
7571     Alignment = DAG.getEVTAlign(VT.getScalarType());
7572   unsigned AS =
7573       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7574   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7575       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7576       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7577   SDValue Base, Index, Scale;
7578   ISD::MemIndexType IndexType;
7579   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7580                                     this, VPIntrin.getParent(),
7581                                     VT.getScalarStoreSize());
7582   if (!UniformBase) {
7583     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7584     Index = getValue(PtrOperand);
7585     IndexType = ISD::SIGNED_SCALED;
7586     Scale =
7587       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7588   }
7589   EVT IdxVT = Index.getValueType();
7590   EVT EltTy = IdxVT.getVectorElementType();
7591   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7592     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7593     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7594   }
7595   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7596                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7597                          OpValues[2], OpValues[3]},
7598                         MMO, IndexType);
7599   DAG.setRoot(ST);
7600   setValue(&VPIntrin, ST);
7601 }
7602 
7603 void SelectionDAGBuilder::visitVPStridedLoad(
7604     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7605   SDLoc DL = getCurSDLoc();
7606   Value *PtrOperand = VPIntrin.getArgOperand(0);
7607   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7608   if (!Alignment)
7609     Alignment = DAG.getEVTAlign(VT.getScalarType());
7610   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7611   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7612   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7613   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7614   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7615   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7616       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7617       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7618 
7619   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7620                                     OpValues[2], OpValues[3], MMO,
7621                                     false /*IsExpanding*/);
7622 
7623   if (AddToChain)
7624     PendingLoads.push_back(LD.getValue(1));
7625   setValue(&VPIntrin, LD);
7626 }
7627 
7628 void SelectionDAGBuilder::visitVPStridedStore(
7629     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7630   SDLoc DL = getCurSDLoc();
7631   Value *PtrOperand = VPIntrin.getArgOperand(1);
7632   EVT VT = OpValues[0].getValueType();
7633   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7634   if (!Alignment)
7635     Alignment = DAG.getEVTAlign(VT.getScalarType());
7636   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7637   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7638       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7639       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7640 
7641   SDValue ST = DAG.getStridedStoreVP(
7642       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7643       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7644       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7645       /*IsCompressing*/ false);
7646 
7647   DAG.setRoot(ST);
7648   setValue(&VPIntrin, ST);
7649 }
7650 
7651 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7653   SDLoc DL = getCurSDLoc();
7654 
7655   ISD::CondCode Condition;
7656   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7657   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7658   if (IsFP) {
7659     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7660     // flags, but calls that don't return floating-point types can't be
7661     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7662     Condition = getFCmpCondCode(CondCode);
7663     if (TM.Options.NoNaNsFPMath)
7664       Condition = getFCmpCodeWithoutNaN(Condition);
7665   } else {
7666     Condition = getICmpCondCode(CondCode);
7667   }
7668 
7669   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7670   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7671   // #2 is the condition code
7672   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7673   SDValue EVL = getValue(VPIntrin.getOperand(4));
7674   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7675   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7676          "Unexpected target EVL type");
7677   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7678 
7679   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7680                                                         VPIntrin.getType());
7681   setValue(&VPIntrin,
7682            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7683 }
7684 
7685 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7686     const VPIntrinsic &VPIntrin) {
7687   SDLoc DL = getCurSDLoc();
7688   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7689 
7690   auto IID = VPIntrin.getIntrinsicID();
7691 
7692   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7693     return visitVPCmp(*CmpI);
7694 
7695   SmallVector<EVT, 4> ValueVTs;
7696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7697   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7698   SDVTList VTs = DAG.getVTList(ValueVTs);
7699 
7700   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7701 
7702   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7703   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7704          "Unexpected target EVL type");
7705 
7706   // Request operands.
7707   SmallVector<SDValue, 7> OpValues;
7708   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7709     auto Op = getValue(VPIntrin.getArgOperand(I));
7710     if (I == EVLParamPos)
7711       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7712     OpValues.push_back(Op);
7713   }
7714 
7715   switch (Opcode) {
7716   default: {
7717     SDNodeFlags SDFlags;
7718     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7719       SDFlags.copyFMF(*FPMO);
7720     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7721     setValue(&VPIntrin, Result);
7722     break;
7723   }
7724   case ISD::VP_LOAD:
7725     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7726     break;
7727   case ISD::VP_GATHER:
7728     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7729     break;
7730   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7731     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7732     break;
7733   case ISD::VP_STORE:
7734     visitVPStore(VPIntrin, OpValues);
7735     break;
7736   case ISD::VP_SCATTER:
7737     visitVPScatter(VPIntrin, OpValues);
7738     break;
7739   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7740     visitVPStridedStore(VPIntrin, OpValues);
7741     break;
7742   case ISD::VP_FMULADD: {
7743     assert(OpValues.size() == 5 && "Unexpected number of operands");
7744     SDNodeFlags SDFlags;
7745     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7746       SDFlags.copyFMF(*FPMO);
7747     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7748         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7749       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7750     } else {
7751       SDValue Mul = DAG.getNode(
7752           ISD::VP_FMUL, DL, VTs,
7753           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7754       SDValue Add =
7755           DAG.getNode(ISD::VP_FADD, DL, VTs,
7756                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7757       setValue(&VPIntrin, Add);
7758     }
7759     break;
7760   }
7761   case ISD::VP_INTTOPTR: {
7762     SDValue N = OpValues[0];
7763     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7764     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7765     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7766                                OpValues[2]);
7767     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7768                              OpValues[2]);
7769     setValue(&VPIntrin, N);
7770     break;
7771   }
7772   case ISD::VP_PTRTOINT: {
7773     SDValue N = OpValues[0];
7774     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7775                                                           VPIntrin.getType());
7776     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7777                                        VPIntrin.getOperand(0)->getType());
7778     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7779                                OpValues[2]);
7780     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7781                              OpValues[2]);
7782     setValue(&VPIntrin, N);
7783     break;
7784   }
7785   case ISD::VP_ABS:
7786   case ISD::VP_CTLZ:
7787   case ISD::VP_CTLZ_ZERO_UNDEF:
7788   case ISD::VP_CTTZ:
7789   case ISD::VP_CTTZ_ZERO_UNDEF: {
7790     // Pop is_zero_poison operand for cp.ctlz/cttz or
7791     // is_int_min_poison operand for vp.abs.
7792     OpValues.pop_back();
7793     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7794     setValue(&VPIntrin, Result);
7795     break;
7796   }
7797   }
7798 }
7799 
7800 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7801                                           const BasicBlock *EHPadBB,
7802                                           MCSymbol *&BeginLabel) {
7803   MachineFunction &MF = DAG.getMachineFunction();
7804   MachineModuleInfo &MMI = MF.getMMI();
7805 
7806   // Insert a label before the invoke call to mark the try range.  This can be
7807   // used to detect deletion of the invoke via the MachineModuleInfo.
7808   BeginLabel = MMI.getContext().createTempSymbol();
7809 
7810   // For SjLj, keep track of which landing pads go with which invokes
7811   // so as to maintain the ordering of pads in the LSDA.
7812   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7813   if (CallSiteIndex) {
7814     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7815     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7816 
7817     // Now that the call site is handled, stop tracking it.
7818     MMI.setCurrentCallSite(0);
7819   }
7820 
7821   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7822 }
7823 
7824 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7825                                         const BasicBlock *EHPadBB,
7826                                         MCSymbol *BeginLabel) {
7827   assert(BeginLabel && "BeginLabel should've been set");
7828 
7829   MachineFunction &MF = DAG.getMachineFunction();
7830   MachineModuleInfo &MMI = MF.getMMI();
7831 
7832   // Insert a label at the end of the invoke call to mark the try range.  This
7833   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7834   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7835   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7836 
7837   // Inform MachineModuleInfo of range.
7838   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7839   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7840   // actually use outlined funclets and their LSDA info style.
7841   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7842     assert(II && "II should've been set");
7843     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7844     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7845   } else if (!isScopedEHPersonality(Pers)) {
7846     assert(EHPadBB);
7847     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7848   }
7849 
7850   return Chain;
7851 }
7852 
7853 std::pair<SDValue, SDValue>
7854 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7855                                     const BasicBlock *EHPadBB) {
7856   MCSymbol *BeginLabel = nullptr;
7857 
7858   if (EHPadBB) {
7859     // Both PendingLoads and PendingExports must be flushed here;
7860     // this call might not return.
7861     (void)getRoot();
7862     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7863     CLI.setChain(getRoot());
7864   }
7865 
7866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7867   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7868 
7869   assert((CLI.IsTailCall || Result.second.getNode()) &&
7870          "Non-null chain expected with non-tail call!");
7871   assert((Result.second.getNode() || !Result.first.getNode()) &&
7872          "Null value expected with tail call!");
7873 
7874   if (!Result.second.getNode()) {
7875     // As a special case, a null chain means that a tail call has been emitted
7876     // and the DAG root is already updated.
7877     HasTailCall = true;
7878 
7879     // Since there's no actual continuation from this block, nothing can be
7880     // relying on us setting vregs for them.
7881     PendingExports.clear();
7882   } else {
7883     DAG.setRoot(Result.second);
7884   }
7885 
7886   if (EHPadBB) {
7887     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7888                            BeginLabel));
7889   }
7890 
7891   return Result;
7892 }
7893 
7894 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7895                                       bool isTailCall,
7896                                       bool isMustTailCall,
7897                                       const BasicBlock *EHPadBB) {
7898   auto &DL = DAG.getDataLayout();
7899   FunctionType *FTy = CB.getFunctionType();
7900   Type *RetTy = CB.getType();
7901 
7902   TargetLowering::ArgListTy Args;
7903   Args.reserve(CB.arg_size());
7904 
7905   const Value *SwiftErrorVal = nullptr;
7906   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7907 
7908   if (isTailCall) {
7909     // Avoid emitting tail calls in functions with the disable-tail-calls
7910     // attribute.
7911     auto *Caller = CB.getParent()->getParent();
7912     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7913         "true" && !isMustTailCall)
7914       isTailCall = false;
7915 
7916     // We can't tail call inside a function with a swifterror argument. Lowering
7917     // does not support this yet. It would have to move into the swifterror
7918     // register before the call.
7919     if (TLI.supportSwiftError() &&
7920         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7921       isTailCall = false;
7922   }
7923 
7924   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7925     TargetLowering::ArgListEntry Entry;
7926     const Value *V = *I;
7927 
7928     // Skip empty types
7929     if (V->getType()->isEmptyTy())
7930       continue;
7931 
7932     SDValue ArgNode = getValue(V);
7933     Entry.Node = ArgNode; Entry.Ty = V->getType();
7934 
7935     Entry.setAttributes(&CB, I - CB.arg_begin());
7936 
7937     // Use swifterror virtual register as input to the call.
7938     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7939       SwiftErrorVal = V;
7940       // We find the virtual register for the actual swifterror argument.
7941       // Instead of using the Value, we use the virtual register instead.
7942       Entry.Node =
7943           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7944                           EVT(TLI.getPointerTy(DL)));
7945     }
7946 
7947     Args.push_back(Entry);
7948 
7949     // If we have an explicit sret argument that is an Instruction, (i.e., it
7950     // might point to function-local memory), we can't meaningfully tail-call.
7951     if (Entry.IsSRet && isa<Instruction>(V))
7952       isTailCall = false;
7953   }
7954 
7955   // If call site has a cfguardtarget operand bundle, create and add an
7956   // additional ArgListEntry.
7957   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7958     TargetLowering::ArgListEntry Entry;
7959     Value *V = Bundle->Inputs[0];
7960     SDValue ArgNode = getValue(V);
7961     Entry.Node = ArgNode;
7962     Entry.Ty = V->getType();
7963     Entry.IsCFGuardTarget = true;
7964     Args.push_back(Entry);
7965   }
7966 
7967   // Check if target-independent constraints permit a tail call here.
7968   // Target-dependent constraints are checked within TLI->LowerCallTo.
7969   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7970     isTailCall = false;
7971 
7972   // Disable tail calls if there is an swifterror argument. Targets have not
7973   // been updated to support tail calls.
7974   if (TLI.supportSwiftError() && SwiftErrorVal)
7975     isTailCall = false;
7976 
7977   ConstantInt *CFIType = nullptr;
7978   if (CB.isIndirectCall()) {
7979     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7980       if (!TLI.supportKCFIBundles())
7981         report_fatal_error(
7982             "Target doesn't support calls with kcfi operand bundles.");
7983       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7984       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7985     }
7986   }
7987 
7988   TargetLowering::CallLoweringInfo CLI(DAG);
7989   CLI.setDebugLoc(getCurSDLoc())
7990       .setChain(getRoot())
7991       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7992       .setTailCall(isTailCall)
7993       .setConvergent(CB.isConvergent())
7994       .setIsPreallocated(
7995           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
7996       .setCFIType(CFIType);
7997   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7998 
7999   if (Result.first.getNode()) {
8000     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8001     setValue(&CB, Result.first);
8002   }
8003 
8004   // The last element of CLI.InVals has the SDValue for swifterror return.
8005   // Here we copy it to a virtual register and update SwiftErrorMap for
8006   // book-keeping.
8007   if (SwiftErrorVal && TLI.supportSwiftError()) {
8008     // Get the last element of InVals.
8009     SDValue Src = CLI.InVals.back();
8010     Register VReg =
8011         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8012     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8013     DAG.setRoot(CopyNode);
8014   }
8015 }
8016 
8017 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8018                              SelectionDAGBuilder &Builder) {
8019   // Check to see if this load can be trivially constant folded, e.g. if the
8020   // input is from a string literal.
8021   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8022     // Cast pointer to the type we really want to load.
8023     Type *LoadTy =
8024         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8025     if (LoadVT.isVector())
8026       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8027 
8028     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8029                                          PointerType::getUnqual(LoadTy));
8030 
8031     if (const Constant *LoadCst =
8032             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8033                                          LoadTy, Builder.DAG.getDataLayout()))
8034       return Builder.getValue(LoadCst);
8035   }
8036 
8037   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8038   // still constant memory, the input chain can be the entry node.
8039   SDValue Root;
8040   bool ConstantMemory = false;
8041 
8042   // Do not serialize (non-volatile) loads of constant memory with anything.
8043   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8044     Root = Builder.DAG.getEntryNode();
8045     ConstantMemory = true;
8046   } else {
8047     // Do not serialize non-volatile loads against each other.
8048     Root = Builder.DAG.getRoot();
8049   }
8050 
8051   SDValue Ptr = Builder.getValue(PtrVal);
8052   SDValue LoadVal =
8053       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8054                           MachinePointerInfo(PtrVal), Align(1));
8055 
8056   if (!ConstantMemory)
8057     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8058   return LoadVal;
8059 }
8060 
8061 /// Record the value for an instruction that produces an integer result,
8062 /// converting the type where necessary.
8063 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8064                                                   SDValue Value,
8065                                                   bool IsSigned) {
8066   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8067                                                     I.getType(), true);
8068   if (IsSigned)
8069     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8070   else
8071     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8072   setValue(&I, Value);
8073 }
8074 
8075 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8076 /// true and lower it. Otherwise return false, and it will be lowered like a
8077 /// normal call.
8078 /// The caller already checked that \p I calls the appropriate LibFunc with a
8079 /// correct prototype.
8080 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8081   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8082   const Value *Size = I.getArgOperand(2);
8083   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8084   if (CSize && CSize->getZExtValue() == 0) {
8085     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8086                                                           I.getType(), true);
8087     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8088     return true;
8089   }
8090 
8091   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8092   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8093       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8094       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8095   if (Res.first.getNode()) {
8096     processIntegerCallValue(I, Res.first, true);
8097     PendingLoads.push_back(Res.second);
8098     return true;
8099   }
8100 
8101   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8102   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8103   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8104     return false;
8105 
8106   // If the target has a fast compare for the given size, it will return a
8107   // preferred load type for that size. Require that the load VT is legal and
8108   // that the target supports unaligned loads of that type. Otherwise, return
8109   // INVALID.
8110   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8111     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8112     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8113     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8114       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8115       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8116       // TODO: Check alignment of src and dest ptrs.
8117       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8118       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8119       if (!TLI.isTypeLegal(LVT) ||
8120           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8121           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8122         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8123     }
8124 
8125     return LVT;
8126   };
8127 
8128   // This turns into unaligned loads. We only do this if the target natively
8129   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8130   // we'll only produce a small number of byte loads.
8131   MVT LoadVT;
8132   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8133   switch (NumBitsToCompare) {
8134   default:
8135     return false;
8136   case 16:
8137     LoadVT = MVT::i16;
8138     break;
8139   case 32:
8140     LoadVT = MVT::i32;
8141     break;
8142   case 64:
8143   case 128:
8144   case 256:
8145     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8146     break;
8147   }
8148 
8149   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8150     return false;
8151 
8152   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8153   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8154 
8155   // Bitcast to a wide integer type if the loads are vectors.
8156   if (LoadVT.isVector()) {
8157     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8158     LoadL = DAG.getBitcast(CmpVT, LoadL);
8159     LoadR = DAG.getBitcast(CmpVT, LoadR);
8160   }
8161 
8162   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8163   processIntegerCallValue(I, Cmp, false);
8164   return true;
8165 }
8166 
8167 /// See if we can lower a memchr call into an optimized form. If so, return
8168 /// true and lower it. Otherwise return false, and it will be lowered like a
8169 /// normal call.
8170 /// The caller already checked that \p I calls the appropriate LibFunc with a
8171 /// correct prototype.
8172 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8173   const Value *Src = I.getArgOperand(0);
8174   const Value *Char = I.getArgOperand(1);
8175   const Value *Length = I.getArgOperand(2);
8176 
8177   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8178   std::pair<SDValue, SDValue> Res =
8179     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8180                                 getValue(Src), getValue(Char), getValue(Length),
8181                                 MachinePointerInfo(Src));
8182   if (Res.first.getNode()) {
8183     setValue(&I, Res.first);
8184     PendingLoads.push_back(Res.second);
8185     return true;
8186   }
8187 
8188   return false;
8189 }
8190 
8191 /// See if we can lower a mempcpy call into an optimized form. If so, return
8192 /// true and lower it. Otherwise return false, and it will be lowered like a
8193 /// normal call.
8194 /// The caller already checked that \p I calls the appropriate LibFunc with a
8195 /// correct prototype.
8196 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8197   SDValue Dst = getValue(I.getArgOperand(0));
8198   SDValue Src = getValue(I.getArgOperand(1));
8199   SDValue Size = getValue(I.getArgOperand(2));
8200 
8201   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8202   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8203   // DAG::getMemcpy needs Alignment to be defined.
8204   Align Alignment = std::min(DstAlign, SrcAlign);
8205 
8206   bool isVol = false;
8207   SDLoc sdl = getCurSDLoc();
8208 
8209   // In the mempcpy context we need to pass in a false value for isTailCall
8210   // because the return pointer needs to be adjusted by the size of
8211   // the copied memory.
8212   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8213   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8214                              /*isTailCall=*/false,
8215                              MachinePointerInfo(I.getArgOperand(0)),
8216                              MachinePointerInfo(I.getArgOperand(1)),
8217                              I.getAAMetadata());
8218   assert(MC.getNode() != nullptr &&
8219          "** memcpy should not be lowered as TailCall in mempcpy context **");
8220   DAG.setRoot(MC);
8221 
8222   // Check if Size needs to be truncated or extended.
8223   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8224 
8225   // Adjust return pointer to point just past the last dst byte.
8226   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8227                                     Dst, Size);
8228   setValue(&I, DstPlusSize);
8229   return true;
8230 }
8231 
8232 /// See if we can lower a strcpy call into an optimized form.  If so, return
8233 /// true and lower it, otherwise return false and it will be lowered like a
8234 /// normal call.
8235 /// The caller already checked that \p I calls the appropriate LibFunc with a
8236 /// correct prototype.
8237 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8238   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8239 
8240   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8241   std::pair<SDValue, SDValue> Res =
8242     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8243                                 getValue(Arg0), getValue(Arg1),
8244                                 MachinePointerInfo(Arg0),
8245                                 MachinePointerInfo(Arg1), isStpcpy);
8246   if (Res.first.getNode()) {
8247     setValue(&I, Res.first);
8248     DAG.setRoot(Res.second);
8249     return true;
8250   }
8251 
8252   return false;
8253 }
8254 
8255 /// See if we can lower a strcmp call into an optimized form.  If so, return
8256 /// true and lower it, otherwise return false and it will be lowered like a
8257 /// normal call.
8258 /// The caller already checked that \p I calls the appropriate LibFunc with a
8259 /// correct prototype.
8260 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8261   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8262 
8263   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8264   std::pair<SDValue, SDValue> Res =
8265     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8266                                 getValue(Arg0), getValue(Arg1),
8267                                 MachinePointerInfo(Arg0),
8268                                 MachinePointerInfo(Arg1));
8269   if (Res.first.getNode()) {
8270     processIntegerCallValue(I, Res.first, true);
8271     PendingLoads.push_back(Res.second);
8272     return true;
8273   }
8274 
8275   return false;
8276 }
8277 
8278 /// See if we can lower a strlen call into an optimized form.  If so, return
8279 /// true and lower it, otherwise return false and it will be lowered like a
8280 /// normal call.
8281 /// The caller already checked that \p I calls the appropriate LibFunc with a
8282 /// correct prototype.
8283 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8284   const Value *Arg0 = I.getArgOperand(0);
8285 
8286   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8287   std::pair<SDValue, SDValue> Res =
8288     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8289                                 getValue(Arg0), MachinePointerInfo(Arg0));
8290   if (Res.first.getNode()) {
8291     processIntegerCallValue(I, Res.first, false);
8292     PendingLoads.push_back(Res.second);
8293     return true;
8294   }
8295 
8296   return false;
8297 }
8298 
8299 /// See if we can lower a strnlen call into an optimized form.  If so, return
8300 /// true and lower it, otherwise return false and it will be lowered like a
8301 /// normal call.
8302 /// The caller already checked that \p I calls the appropriate LibFunc with a
8303 /// correct prototype.
8304 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8305   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8306 
8307   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8308   std::pair<SDValue, SDValue> Res =
8309     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8310                                  getValue(Arg0), getValue(Arg1),
8311                                  MachinePointerInfo(Arg0));
8312   if (Res.first.getNode()) {
8313     processIntegerCallValue(I, Res.first, false);
8314     PendingLoads.push_back(Res.second);
8315     return true;
8316   }
8317 
8318   return false;
8319 }
8320 
8321 /// See if we can lower a unary floating-point operation into an SDNode with
8322 /// the specified Opcode.  If so, return true and lower it, otherwise return
8323 /// false and it will be lowered like a normal call.
8324 /// The caller already checked that \p I calls the appropriate LibFunc with a
8325 /// correct prototype.
8326 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8327                                               unsigned Opcode) {
8328   // We already checked this call's prototype; verify it doesn't modify errno.
8329   if (!I.onlyReadsMemory())
8330     return false;
8331 
8332   SDNodeFlags Flags;
8333   Flags.copyFMF(cast<FPMathOperator>(I));
8334 
8335   SDValue Tmp = getValue(I.getArgOperand(0));
8336   setValue(&I,
8337            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8338   return true;
8339 }
8340 
8341 /// See if we can lower a binary floating-point operation into an SDNode with
8342 /// the specified Opcode. If so, return true and lower it. Otherwise return
8343 /// false, and it will be lowered like a normal call.
8344 /// The caller already checked that \p I calls the appropriate LibFunc with a
8345 /// correct prototype.
8346 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8347                                                unsigned Opcode) {
8348   // We already checked this call's prototype; verify it doesn't modify errno.
8349   if (!I.onlyReadsMemory())
8350     return false;
8351 
8352   SDNodeFlags Flags;
8353   Flags.copyFMF(cast<FPMathOperator>(I));
8354 
8355   SDValue Tmp0 = getValue(I.getArgOperand(0));
8356   SDValue Tmp1 = getValue(I.getArgOperand(1));
8357   EVT VT = Tmp0.getValueType();
8358   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8359   return true;
8360 }
8361 
8362 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8363   // Handle inline assembly differently.
8364   if (I.isInlineAsm()) {
8365     visitInlineAsm(I);
8366     return;
8367   }
8368 
8369   if (Function *F = I.getCalledFunction()) {
8370     diagnoseDontCall(I);
8371 
8372     if (F->isDeclaration()) {
8373       // Is this an LLVM intrinsic or a target-specific intrinsic?
8374       unsigned IID = F->getIntrinsicID();
8375       if (!IID)
8376         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8377           IID = II->getIntrinsicID(F);
8378 
8379       if (IID) {
8380         visitIntrinsicCall(I, IID);
8381         return;
8382       }
8383     }
8384 
8385     // Check for well-known libc/libm calls.  If the function is internal, it
8386     // can't be a library call.  Don't do the check if marked as nobuiltin for
8387     // some reason or the call site requires strict floating point semantics.
8388     LibFunc Func;
8389     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8390         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8391         LibInfo->hasOptimizedCodeGen(Func)) {
8392       switch (Func) {
8393       default: break;
8394       case LibFunc_bcmp:
8395         if (visitMemCmpBCmpCall(I))
8396           return;
8397         break;
8398       case LibFunc_copysign:
8399       case LibFunc_copysignf:
8400       case LibFunc_copysignl:
8401         // We already checked this call's prototype; verify it doesn't modify
8402         // errno.
8403         if (I.onlyReadsMemory()) {
8404           SDValue LHS = getValue(I.getArgOperand(0));
8405           SDValue RHS = getValue(I.getArgOperand(1));
8406           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8407                                    LHS.getValueType(), LHS, RHS));
8408           return;
8409         }
8410         break;
8411       case LibFunc_fabs:
8412       case LibFunc_fabsf:
8413       case LibFunc_fabsl:
8414         if (visitUnaryFloatCall(I, ISD::FABS))
8415           return;
8416         break;
8417       case LibFunc_fmin:
8418       case LibFunc_fminf:
8419       case LibFunc_fminl:
8420         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8421           return;
8422         break;
8423       case LibFunc_fmax:
8424       case LibFunc_fmaxf:
8425       case LibFunc_fmaxl:
8426         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8427           return;
8428         break;
8429       case LibFunc_sin:
8430       case LibFunc_sinf:
8431       case LibFunc_sinl:
8432         if (visitUnaryFloatCall(I, ISD::FSIN))
8433           return;
8434         break;
8435       case LibFunc_cos:
8436       case LibFunc_cosf:
8437       case LibFunc_cosl:
8438         if (visitUnaryFloatCall(I, ISD::FCOS))
8439           return;
8440         break;
8441       case LibFunc_sqrt:
8442       case LibFunc_sqrtf:
8443       case LibFunc_sqrtl:
8444       case LibFunc_sqrt_finite:
8445       case LibFunc_sqrtf_finite:
8446       case LibFunc_sqrtl_finite:
8447         if (visitUnaryFloatCall(I, ISD::FSQRT))
8448           return;
8449         break;
8450       case LibFunc_floor:
8451       case LibFunc_floorf:
8452       case LibFunc_floorl:
8453         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8454           return;
8455         break;
8456       case LibFunc_nearbyint:
8457       case LibFunc_nearbyintf:
8458       case LibFunc_nearbyintl:
8459         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8460           return;
8461         break;
8462       case LibFunc_ceil:
8463       case LibFunc_ceilf:
8464       case LibFunc_ceill:
8465         if (visitUnaryFloatCall(I, ISD::FCEIL))
8466           return;
8467         break;
8468       case LibFunc_rint:
8469       case LibFunc_rintf:
8470       case LibFunc_rintl:
8471         if (visitUnaryFloatCall(I, ISD::FRINT))
8472           return;
8473         break;
8474       case LibFunc_round:
8475       case LibFunc_roundf:
8476       case LibFunc_roundl:
8477         if (visitUnaryFloatCall(I, ISD::FROUND))
8478           return;
8479         break;
8480       case LibFunc_trunc:
8481       case LibFunc_truncf:
8482       case LibFunc_truncl:
8483         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8484           return;
8485         break;
8486       case LibFunc_log2:
8487       case LibFunc_log2f:
8488       case LibFunc_log2l:
8489         if (visitUnaryFloatCall(I, ISD::FLOG2))
8490           return;
8491         break;
8492       case LibFunc_exp2:
8493       case LibFunc_exp2f:
8494       case LibFunc_exp2l:
8495         if (visitUnaryFloatCall(I, ISD::FEXP2))
8496           return;
8497         break;
8498       case LibFunc_memcmp:
8499         if (visitMemCmpBCmpCall(I))
8500           return;
8501         break;
8502       case LibFunc_mempcpy:
8503         if (visitMemPCpyCall(I))
8504           return;
8505         break;
8506       case LibFunc_memchr:
8507         if (visitMemChrCall(I))
8508           return;
8509         break;
8510       case LibFunc_strcpy:
8511         if (visitStrCpyCall(I, false))
8512           return;
8513         break;
8514       case LibFunc_stpcpy:
8515         if (visitStrCpyCall(I, true))
8516           return;
8517         break;
8518       case LibFunc_strcmp:
8519         if (visitStrCmpCall(I))
8520           return;
8521         break;
8522       case LibFunc_strlen:
8523         if (visitStrLenCall(I))
8524           return;
8525         break;
8526       case LibFunc_strnlen:
8527         if (visitStrNLenCall(I))
8528           return;
8529         break;
8530       }
8531     }
8532   }
8533 
8534   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8535   // have to do anything here to lower funclet bundles.
8536   // CFGuardTarget bundles are lowered in LowerCallTo.
8537   assert(!I.hasOperandBundlesOtherThan(
8538              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8539               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8540               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8541          "Cannot lower calls with arbitrary operand bundles!");
8542 
8543   SDValue Callee = getValue(I.getCalledOperand());
8544 
8545   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8546     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8547   else
8548     // Check if we can potentially perform a tail call. More detailed checking
8549     // is be done within LowerCallTo, after more information about the call is
8550     // known.
8551     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8552 }
8553 
8554 namespace {
8555 
8556 /// AsmOperandInfo - This contains information for each constraint that we are
8557 /// lowering.
8558 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8559 public:
8560   /// CallOperand - If this is the result output operand or a clobber
8561   /// this is null, otherwise it is the incoming operand to the CallInst.
8562   /// This gets modified as the asm is processed.
8563   SDValue CallOperand;
8564 
8565   /// AssignedRegs - If this is a register or register class operand, this
8566   /// contains the set of register corresponding to the operand.
8567   RegsForValue AssignedRegs;
8568 
8569   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8570     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8571   }
8572 
8573   /// Whether or not this operand accesses memory
8574   bool hasMemory(const TargetLowering &TLI) const {
8575     // Indirect operand accesses access memory.
8576     if (isIndirect)
8577       return true;
8578 
8579     for (const auto &Code : Codes)
8580       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8581         return true;
8582 
8583     return false;
8584   }
8585 };
8586 
8587 
8588 } // end anonymous namespace
8589 
8590 /// Make sure that the output operand \p OpInfo and its corresponding input
8591 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8592 /// out).
8593 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8594                                SDISelAsmOperandInfo &MatchingOpInfo,
8595                                SelectionDAG &DAG) {
8596   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8597     return;
8598 
8599   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8600   const auto &TLI = DAG.getTargetLoweringInfo();
8601 
8602   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8603       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8604                                        OpInfo.ConstraintVT);
8605   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8606       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8607                                        MatchingOpInfo.ConstraintVT);
8608   if ((OpInfo.ConstraintVT.isInteger() !=
8609        MatchingOpInfo.ConstraintVT.isInteger()) ||
8610       (MatchRC.second != InputRC.second)) {
8611     // FIXME: error out in a more elegant fashion
8612     report_fatal_error("Unsupported asm: input constraint"
8613                        " with a matching output constraint of"
8614                        " incompatible type!");
8615   }
8616   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8617 }
8618 
8619 /// Get a direct memory input to behave well as an indirect operand.
8620 /// This may introduce stores, hence the need for a \p Chain.
8621 /// \return The (possibly updated) chain.
8622 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8623                                         SDISelAsmOperandInfo &OpInfo,
8624                                         SelectionDAG &DAG) {
8625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8626 
8627   // If we don't have an indirect input, put it in the constpool if we can,
8628   // otherwise spill it to a stack slot.
8629   // TODO: This isn't quite right. We need to handle these according to
8630   // the addressing mode that the constraint wants. Also, this may take
8631   // an additional register for the computation and we don't want that
8632   // either.
8633 
8634   // If the operand is a float, integer, or vector constant, spill to a
8635   // constant pool entry to get its address.
8636   const Value *OpVal = OpInfo.CallOperandVal;
8637   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8638       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8639     OpInfo.CallOperand = DAG.getConstantPool(
8640         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8641     return Chain;
8642   }
8643 
8644   // Otherwise, create a stack slot and emit a store to it before the asm.
8645   Type *Ty = OpVal->getType();
8646   auto &DL = DAG.getDataLayout();
8647   uint64_t TySize = DL.getTypeAllocSize(Ty);
8648   MachineFunction &MF = DAG.getMachineFunction();
8649   int SSFI = MF.getFrameInfo().CreateStackObject(
8650       TySize, DL.getPrefTypeAlign(Ty), false);
8651   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8652   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8653                             MachinePointerInfo::getFixedStack(MF, SSFI),
8654                             TLI.getMemValueType(DL, Ty));
8655   OpInfo.CallOperand = StackSlot;
8656 
8657   return Chain;
8658 }
8659 
8660 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8661 /// specified operand.  We prefer to assign virtual registers, to allow the
8662 /// register allocator to handle the assignment process.  However, if the asm
8663 /// uses features that we can't model on machineinstrs, we have SDISel do the
8664 /// allocation.  This produces generally horrible, but correct, code.
8665 ///
8666 ///   OpInfo describes the operand
8667 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8668 static std::optional<unsigned>
8669 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8670                      SDISelAsmOperandInfo &OpInfo,
8671                      SDISelAsmOperandInfo &RefOpInfo) {
8672   LLVMContext &Context = *DAG.getContext();
8673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8674 
8675   MachineFunction &MF = DAG.getMachineFunction();
8676   SmallVector<unsigned, 4> Regs;
8677   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8678 
8679   // No work to do for memory/address operands.
8680   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8681       OpInfo.ConstraintType == TargetLowering::C_Address)
8682     return std::nullopt;
8683 
8684   // If this is a constraint for a single physreg, or a constraint for a
8685   // register class, find it.
8686   unsigned AssignedReg;
8687   const TargetRegisterClass *RC;
8688   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8689       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8690   // RC is unset only on failure. Return immediately.
8691   if (!RC)
8692     return std::nullopt;
8693 
8694   // Get the actual register value type.  This is important, because the user
8695   // may have asked for (e.g.) the AX register in i32 type.  We need to
8696   // remember that AX is actually i16 to get the right extension.
8697   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8698 
8699   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8700     // If this is an FP operand in an integer register (or visa versa), or more
8701     // generally if the operand value disagrees with the register class we plan
8702     // to stick it in, fix the operand type.
8703     //
8704     // If this is an input value, the bitcast to the new type is done now.
8705     // Bitcast for output value is done at the end of visitInlineAsm().
8706     if ((OpInfo.Type == InlineAsm::isOutput ||
8707          OpInfo.Type == InlineAsm::isInput) &&
8708         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8709       // Try to convert to the first EVT that the reg class contains.  If the
8710       // types are identical size, use a bitcast to convert (e.g. two differing
8711       // vector types).  Note: output bitcast is done at the end of
8712       // visitInlineAsm().
8713       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8714         // Exclude indirect inputs while they are unsupported because the code
8715         // to perform the load is missing and thus OpInfo.CallOperand still
8716         // refers to the input address rather than the pointed-to value.
8717         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8718           OpInfo.CallOperand =
8719               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8720         OpInfo.ConstraintVT = RegVT;
8721         // If the operand is an FP value and we want it in integer registers,
8722         // use the corresponding integer type. This turns an f64 value into
8723         // i64, which can be passed with two i32 values on a 32-bit machine.
8724       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8725         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8726         if (OpInfo.Type == InlineAsm::isInput)
8727           OpInfo.CallOperand =
8728               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8729         OpInfo.ConstraintVT = VT;
8730       }
8731     }
8732   }
8733 
8734   // No need to allocate a matching input constraint since the constraint it's
8735   // matching to has already been allocated.
8736   if (OpInfo.isMatchingInputConstraint())
8737     return std::nullopt;
8738 
8739   EVT ValueVT = OpInfo.ConstraintVT;
8740   if (OpInfo.ConstraintVT == MVT::Other)
8741     ValueVT = RegVT;
8742 
8743   // Initialize NumRegs.
8744   unsigned NumRegs = 1;
8745   if (OpInfo.ConstraintVT != MVT::Other)
8746     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8747 
8748   // If this is a constraint for a specific physical register, like {r17},
8749   // assign it now.
8750 
8751   // If this associated to a specific register, initialize iterator to correct
8752   // place. If virtual, make sure we have enough registers
8753 
8754   // Initialize iterator if necessary
8755   TargetRegisterClass::iterator I = RC->begin();
8756   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8757 
8758   // Do not check for single registers.
8759   if (AssignedReg) {
8760     I = std::find(I, RC->end(), AssignedReg);
8761     if (I == RC->end()) {
8762       // RC does not contain the selected register, which indicates a
8763       // mismatch between the register and the required type/bitwidth.
8764       return {AssignedReg};
8765     }
8766   }
8767 
8768   for (; NumRegs; --NumRegs, ++I) {
8769     assert(I != RC->end() && "Ran out of registers to allocate!");
8770     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8771     Regs.push_back(R);
8772   }
8773 
8774   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8775   return std::nullopt;
8776 }
8777 
8778 static unsigned
8779 findMatchingInlineAsmOperand(unsigned OperandNo,
8780                              const std::vector<SDValue> &AsmNodeOperands) {
8781   // Scan until we find the definition we already emitted of this operand.
8782   unsigned CurOp = InlineAsm::Op_FirstOperand;
8783   for (; OperandNo; --OperandNo) {
8784     // Advance to the next operand.
8785     unsigned OpFlag =
8786         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8787     assert((InlineAsm::isRegDefKind(OpFlag) ||
8788             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8789             InlineAsm::isMemKind(OpFlag)) &&
8790            "Skipped past definitions?");
8791     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8792   }
8793   return CurOp;
8794 }
8795 
8796 namespace {
8797 
8798 class ExtraFlags {
8799   unsigned Flags = 0;
8800 
8801 public:
8802   explicit ExtraFlags(const CallBase &Call) {
8803     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8804     if (IA->hasSideEffects())
8805       Flags |= InlineAsm::Extra_HasSideEffects;
8806     if (IA->isAlignStack())
8807       Flags |= InlineAsm::Extra_IsAlignStack;
8808     if (Call.isConvergent())
8809       Flags |= InlineAsm::Extra_IsConvergent;
8810     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8811   }
8812 
8813   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8814     // Ideally, we would only check against memory constraints.  However, the
8815     // meaning of an Other constraint can be target-specific and we can't easily
8816     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8817     // for Other constraints as well.
8818     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8819         OpInfo.ConstraintType == TargetLowering::C_Other) {
8820       if (OpInfo.Type == InlineAsm::isInput)
8821         Flags |= InlineAsm::Extra_MayLoad;
8822       else if (OpInfo.Type == InlineAsm::isOutput)
8823         Flags |= InlineAsm::Extra_MayStore;
8824       else if (OpInfo.Type == InlineAsm::isClobber)
8825         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8826     }
8827   }
8828 
8829   unsigned get() const { return Flags; }
8830 };
8831 
8832 } // end anonymous namespace
8833 
8834 static bool isFunction(SDValue Op) {
8835   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8836     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8837       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8838 
8839       // In normal "call dllimport func" instruction (non-inlineasm) it force
8840       // indirect access by specifing call opcode. And usually specially print
8841       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8842       // not do in this way now. (In fact, this is similar with "Data Access"
8843       // action). So here we ignore dllimport function.
8844       if (Fn && !Fn->hasDLLImportStorageClass())
8845         return true;
8846     }
8847   }
8848   return false;
8849 }
8850 
8851 /// visitInlineAsm - Handle a call to an InlineAsm object.
8852 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8853                                          const BasicBlock *EHPadBB) {
8854   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8855 
8856   /// ConstraintOperands - Information about all of the constraints.
8857   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8858 
8859   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8860   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8861       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8862 
8863   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8864   // AsmDialect, MayLoad, MayStore).
8865   bool HasSideEffect = IA->hasSideEffects();
8866   ExtraFlags ExtraInfo(Call);
8867 
8868   for (auto &T : TargetConstraints) {
8869     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8870     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8871 
8872     if (OpInfo.CallOperandVal)
8873       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8874 
8875     if (!HasSideEffect)
8876       HasSideEffect = OpInfo.hasMemory(TLI);
8877 
8878     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8879     // FIXME: Could we compute this on OpInfo rather than T?
8880 
8881     // Compute the constraint code and ConstraintType to use.
8882     TLI.ComputeConstraintToUse(T, SDValue());
8883 
8884     if (T.ConstraintType == TargetLowering::C_Immediate &&
8885         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8886       // We've delayed emitting a diagnostic like the "n" constraint because
8887       // inlining could cause an integer showing up.
8888       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8889                                           "' expects an integer constant "
8890                                           "expression");
8891 
8892     ExtraInfo.update(T);
8893   }
8894 
8895   // We won't need to flush pending loads if this asm doesn't touch
8896   // memory and is nonvolatile.
8897   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8898 
8899   bool EmitEHLabels = isa<InvokeInst>(Call);
8900   if (EmitEHLabels) {
8901     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8902   }
8903   bool IsCallBr = isa<CallBrInst>(Call);
8904 
8905   if (IsCallBr || EmitEHLabels) {
8906     // If this is a callbr or invoke we need to flush pending exports since
8907     // inlineasm_br and invoke are terminators.
8908     // We need to do this before nodes are glued to the inlineasm_br node.
8909     Chain = getControlRoot();
8910   }
8911 
8912   MCSymbol *BeginLabel = nullptr;
8913   if (EmitEHLabels) {
8914     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8915   }
8916 
8917   int OpNo = -1;
8918   SmallVector<StringRef> AsmStrs;
8919   IA->collectAsmStrs(AsmStrs);
8920 
8921   // Second pass over the constraints: compute which constraint option to use.
8922   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8923     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8924       OpNo++;
8925 
8926     // If this is an output operand with a matching input operand, look up the
8927     // matching input. If their types mismatch, e.g. one is an integer, the
8928     // other is floating point, or their sizes are different, flag it as an
8929     // error.
8930     if (OpInfo.hasMatchingInput()) {
8931       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8932       patchMatchingInput(OpInfo, Input, DAG);
8933     }
8934 
8935     // Compute the constraint code and ConstraintType to use.
8936     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8937 
8938     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8939          OpInfo.Type == InlineAsm::isClobber) ||
8940         OpInfo.ConstraintType == TargetLowering::C_Address)
8941       continue;
8942 
8943     // In Linux PIC model, there are 4 cases about value/label addressing:
8944     //
8945     // 1: Function call or Label jmp inside the module.
8946     // 2: Data access (such as global variable, static variable) inside module.
8947     // 3: Function call or Label jmp outside the module.
8948     // 4: Data access (such as global variable) outside the module.
8949     //
8950     // Due to current llvm inline asm architecture designed to not "recognize"
8951     // the asm code, there are quite troubles for us to treat mem addressing
8952     // differently for same value/adress used in different instuctions.
8953     // For example, in pic model, call a func may in plt way or direclty
8954     // pc-related, but lea/mov a function adress may use got.
8955     //
8956     // Here we try to "recognize" function call for the case 1 and case 3 in
8957     // inline asm. And try to adjust the constraint for them.
8958     //
8959     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8960     // label, so here we don't handle jmp function label now, but we need to
8961     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8962     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8963         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8964         TM.getCodeModel() != CodeModel::Large) {
8965       OpInfo.isIndirect = false;
8966       OpInfo.ConstraintType = TargetLowering::C_Address;
8967     }
8968 
8969     // If this is a memory input, and if the operand is not indirect, do what we
8970     // need to provide an address for the memory input.
8971     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8972         !OpInfo.isIndirect) {
8973       assert((OpInfo.isMultipleAlternative ||
8974               (OpInfo.Type == InlineAsm::isInput)) &&
8975              "Can only indirectify direct input operands!");
8976 
8977       // Memory operands really want the address of the value.
8978       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8979 
8980       // There is no longer a Value* corresponding to this operand.
8981       OpInfo.CallOperandVal = nullptr;
8982 
8983       // It is now an indirect operand.
8984       OpInfo.isIndirect = true;
8985     }
8986 
8987   }
8988 
8989   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8990   std::vector<SDValue> AsmNodeOperands;
8991   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8992   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8993       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8994 
8995   // If we have a !srcloc metadata node associated with it, we want to attach
8996   // this to the ultimately generated inline asm machineinstr.  To do this, we
8997   // pass in the third operand as this (potentially null) inline asm MDNode.
8998   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8999   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9000 
9001   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9002   // bits as operand 3.
9003   AsmNodeOperands.push_back(DAG.getTargetConstant(
9004       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9005 
9006   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9007   // this, assign virtual and physical registers for inputs and otput.
9008   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9009     // Assign Registers.
9010     SDISelAsmOperandInfo &RefOpInfo =
9011         OpInfo.isMatchingInputConstraint()
9012             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9013             : OpInfo;
9014     const auto RegError =
9015         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9016     if (RegError) {
9017       const MachineFunction &MF = DAG.getMachineFunction();
9018       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9019       const char *RegName = TRI.getName(*RegError);
9020       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9021                                    "' allocated for constraint '" +
9022                                    Twine(OpInfo.ConstraintCode) +
9023                                    "' does not match required type");
9024       return;
9025     }
9026 
9027     auto DetectWriteToReservedRegister = [&]() {
9028       const MachineFunction &MF = DAG.getMachineFunction();
9029       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9030       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9031         if (Register::isPhysicalRegister(Reg) &&
9032             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9033           const char *RegName = TRI.getName(Reg);
9034           emitInlineAsmError(Call, "write to reserved register '" +
9035                                        Twine(RegName) + "'");
9036           return true;
9037         }
9038       }
9039       return false;
9040     };
9041     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9042             (OpInfo.Type == InlineAsm::isInput &&
9043              !OpInfo.isMatchingInputConstraint())) &&
9044            "Only address as input operand is allowed.");
9045 
9046     switch (OpInfo.Type) {
9047     case InlineAsm::isOutput:
9048       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9049         unsigned ConstraintID =
9050             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9051         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9052                "Failed to convert memory constraint code to constraint id.");
9053 
9054         // Add information to the INLINEASM node to know about this output.
9055         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9056         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9057         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9058                                                         MVT::i32));
9059         AsmNodeOperands.push_back(OpInfo.CallOperand);
9060       } else {
9061         // Otherwise, this outputs to a register (directly for C_Register /
9062         // C_RegisterClass, and a target-defined fashion for
9063         // C_Immediate/C_Other). Find a register that we can use.
9064         if (OpInfo.AssignedRegs.Regs.empty()) {
9065           emitInlineAsmError(
9066               Call, "couldn't allocate output register for constraint '" +
9067                         Twine(OpInfo.ConstraintCode) + "'");
9068           return;
9069         }
9070 
9071         if (DetectWriteToReservedRegister())
9072           return;
9073 
9074         // Add information to the INLINEASM node to know that this register is
9075         // set.
9076         OpInfo.AssignedRegs.AddInlineAsmOperands(
9077             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9078                                   : InlineAsm::Kind_RegDef,
9079             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9080       }
9081       break;
9082 
9083     case InlineAsm::isInput:
9084     case InlineAsm::isLabel: {
9085       SDValue InOperandVal = OpInfo.CallOperand;
9086 
9087       if (OpInfo.isMatchingInputConstraint()) {
9088         // If this is required to match an output register we have already set,
9089         // just use its register.
9090         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9091                                                   AsmNodeOperands);
9092         unsigned OpFlag =
9093           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9094         if (InlineAsm::isRegDefKind(OpFlag) ||
9095             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9096           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9097           if (OpInfo.isIndirect) {
9098             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9099             emitInlineAsmError(Call, "inline asm not supported yet: "
9100                                      "don't know how to handle tied "
9101                                      "indirect register inputs");
9102             return;
9103           }
9104 
9105           SmallVector<unsigned, 4> Regs;
9106           MachineFunction &MF = DAG.getMachineFunction();
9107           MachineRegisterInfo &MRI = MF.getRegInfo();
9108           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9109           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9110           Register TiedReg = R->getReg();
9111           MVT RegVT = R->getSimpleValueType(0);
9112           const TargetRegisterClass *RC =
9113               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9114               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9115                                       : TRI.getMinimalPhysRegClass(TiedReg);
9116           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9117           for (unsigned i = 0; i != NumRegs; ++i)
9118             Regs.push_back(MRI.createVirtualRegister(RC));
9119 
9120           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9121 
9122           SDLoc dl = getCurSDLoc();
9123           // Use the produced MatchedRegs object to
9124           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9125           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9126                                            true, OpInfo.getMatchedOperand(), dl,
9127                                            DAG, AsmNodeOperands);
9128           break;
9129         }
9130 
9131         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9132         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9133                "Unexpected number of operands");
9134         // Add information to the INLINEASM node to know about this input.
9135         // See InlineAsm.h isUseOperandTiedToDef.
9136         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9137         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9138                                                     OpInfo.getMatchedOperand());
9139         AsmNodeOperands.push_back(DAG.getTargetConstant(
9140             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9141         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9142         break;
9143       }
9144 
9145       // Treat indirect 'X' constraint as memory.
9146       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9147           OpInfo.isIndirect)
9148         OpInfo.ConstraintType = TargetLowering::C_Memory;
9149 
9150       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9151           OpInfo.ConstraintType == TargetLowering::C_Other) {
9152         std::vector<SDValue> Ops;
9153         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9154                                           Ops, DAG);
9155         if (Ops.empty()) {
9156           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9157             if (isa<ConstantSDNode>(InOperandVal)) {
9158               emitInlineAsmError(Call, "value out of range for constraint '" +
9159                                            Twine(OpInfo.ConstraintCode) + "'");
9160               return;
9161             }
9162 
9163           emitInlineAsmError(Call,
9164                              "invalid operand for inline asm constraint '" +
9165                                  Twine(OpInfo.ConstraintCode) + "'");
9166           return;
9167         }
9168 
9169         // Add information to the INLINEASM node to know about this input.
9170         unsigned ResOpType =
9171           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9172         AsmNodeOperands.push_back(DAG.getTargetConstant(
9173             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9174         llvm::append_range(AsmNodeOperands, Ops);
9175         break;
9176       }
9177 
9178       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9179         assert((OpInfo.isIndirect ||
9180                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9181                "Operand must be indirect to be a mem!");
9182         assert(InOperandVal.getValueType() ==
9183                    TLI.getPointerTy(DAG.getDataLayout()) &&
9184                "Memory operands expect pointer values");
9185 
9186         unsigned ConstraintID =
9187             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9188         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9189                "Failed to convert memory constraint code to constraint id.");
9190 
9191         // Add information to the INLINEASM node to know about this input.
9192         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9193         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9194         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9195                                                         getCurSDLoc(),
9196                                                         MVT::i32));
9197         AsmNodeOperands.push_back(InOperandVal);
9198         break;
9199       }
9200 
9201       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9202         assert(InOperandVal.getValueType() ==
9203                    TLI.getPointerTy(DAG.getDataLayout()) &&
9204                "Address operands expect pointer values");
9205 
9206         unsigned ConstraintID =
9207             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9208         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9209                "Failed to convert memory constraint code to constraint id.");
9210 
9211         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9212 
9213         SDValue AsmOp = InOperandVal;
9214         if (isFunction(InOperandVal)) {
9215           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9216           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9217           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9218                                              InOperandVal.getValueType(),
9219                                              GA->getOffset());
9220         }
9221 
9222         // Add information to the INLINEASM node to know about this input.
9223         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9224 
9225         AsmNodeOperands.push_back(
9226             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9227 
9228         AsmNodeOperands.push_back(AsmOp);
9229         break;
9230       }
9231 
9232       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9233               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9234              "Unknown constraint type!");
9235 
9236       // TODO: Support this.
9237       if (OpInfo.isIndirect) {
9238         emitInlineAsmError(
9239             Call, "Don't know how to handle indirect register inputs yet "
9240                   "for constraint '" +
9241                       Twine(OpInfo.ConstraintCode) + "'");
9242         return;
9243       }
9244 
9245       // Copy the input into the appropriate registers.
9246       if (OpInfo.AssignedRegs.Regs.empty()) {
9247         emitInlineAsmError(Call,
9248                            "couldn't allocate input reg for constraint '" +
9249                                Twine(OpInfo.ConstraintCode) + "'");
9250         return;
9251       }
9252 
9253       if (DetectWriteToReservedRegister())
9254         return;
9255 
9256       SDLoc dl = getCurSDLoc();
9257 
9258       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9259                                         &Call);
9260 
9261       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9262                                                dl, DAG, AsmNodeOperands);
9263       break;
9264     }
9265     case InlineAsm::isClobber:
9266       // Add the clobbered value to the operand list, so that the register
9267       // allocator is aware that the physreg got clobbered.
9268       if (!OpInfo.AssignedRegs.Regs.empty())
9269         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9270                                                  false, 0, getCurSDLoc(), DAG,
9271                                                  AsmNodeOperands);
9272       break;
9273     }
9274   }
9275 
9276   // Finish up input operands.  Set the input chain and add the flag last.
9277   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9278   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9279 
9280   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9281   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9282                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9283   Flag = Chain.getValue(1);
9284 
9285   // Do additional work to generate outputs.
9286 
9287   SmallVector<EVT, 1> ResultVTs;
9288   SmallVector<SDValue, 1> ResultValues;
9289   SmallVector<SDValue, 8> OutChains;
9290 
9291   llvm::Type *CallResultType = Call.getType();
9292   ArrayRef<Type *> ResultTypes;
9293   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9294     ResultTypes = StructResult->elements();
9295   else if (!CallResultType->isVoidTy())
9296     ResultTypes = ArrayRef(CallResultType);
9297 
9298   auto CurResultType = ResultTypes.begin();
9299   auto handleRegAssign = [&](SDValue V) {
9300     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9301     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9302     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9303     ++CurResultType;
9304     // If the type of the inline asm call site return value is different but has
9305     // same size as the type of the asm output bitcast it.  One example of this
9306     // is for vectors with different width / number of elements.  This can
9307     // happen for register classes that can contain multiple different value
9308     // types.  The preg or vreg allocated may not have the same VT as was
9309     // expected.
9310     //
9311     // This can also happen for a return value that disagrees with the register
9312     // class it is put in, eg. a double in a general-purpose register on a
9313     // 32-bit machine.
9314     if (ResultVT != V.getValueType() &&
9315         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9316       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9317     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9318              V.getValueType().isInteger()) {
9319       // If a result value was tied to an input value, the computed result
9320       // may have a wider width than the expected result.  Extract the
9321       // relevant portion.
9322       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9323     }
9324     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9325     ResultVTs.push_back(ResultVT);
9326     ResultValues.push_back(V);
9327   };
9328 
9329   // Deal with output operands.
9330   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9331     if (OpInfo.Type == InlineAsm::isOutput) {
9332       SDValue Val;
9333       // Skip trivial output operands.
9334       if (OpInfo.AssignedRegs.Regs.empty())
9335         continue;
9336 
9337       switch (OpInfo.ConstraintType) {
9338       case TargetLowering::C_Register:
9339       case TargetLowering::C_RegisterClass:
9340         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9341                                                   Chain, &Flag, &Call);
9342         break;
9343       case TargetLowering::C_Immediate:
9344       case TargetLowering::C_Other:
9345         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9346                                               OpInfo, DAG);
9347         break;
9348       case TargetLowering::C_Memory:
9349         break; // Already handled.
9350       case TargetLowering::C_Address:
9351         break; // Silence warning.
9352       case TargetLowering::C_Unknown:
9353         assert(false && "Unexpected unknown constraint");
9354       }
9355 
9356       // Indirect output manifest as stores. Record output chains.
9357       if (OpInfo.isIndirect) {
9358         const Value *Ptr = OpInfo.CallOperandVal;
9359         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9360         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9361                                      MachinePointerInfo(Ptr));
9362         OutChains.push_back(Store);
9363       } else {
9364         // generate CopyFromRegs to associated registers.
9365         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9366         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9367           for (const SDValue &V : Val->op_values())
9368             handleRegAssign(V);
9369         } else
9370           handleRegAssign(Val);
9371       }
9372     }
9373   }
9374 
9375   // Set results.
9376   if (!ResultValues.empty()) {
9377     assert(CurResultType == ResultTypes.end() &&
9378            "Mismatch in number of ResultTypes");
9379     assert(ResultValues.size() == ResultTypes.size() &&
9380            "Mismatch in number of output operands in asm result");
9381 
9382     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9383                             DAG.getVTList(ResultVTs), ResultValues);
9384     setValue(&Call, V);
9385   }
9386 
9387   // Collect store chains.
9388   if (!OutChains.empty())
9389     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9390 
9391   if (EmitEHLabels) {
9392     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9393   }
9394 
9395   // Only Update Root if inline assembly has a memory effect.
9396   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9397       EmitEHLabels)
9398     DAG.setRoot(Chain);
9399 }
9400 
9401 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9402                                              const Twine &Message) {
9403   LLVMContext &Ctx = *DAG.getContext();
9404   Ctx.emitError(&Call, Message);
9405 
9406   // Make sure we leave the DAG in a valid state
9407   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9408   SmallVector<EVT, 1> ValueVTs;
9409   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9410 
9411   if (ValueVTs.empty())
9412     return;
9413 
9414   SmallVector<SDValue, 1> Ops;
9415   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9416     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9417 
9418   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9419 }
9420 
9421 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9422   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9423                           MVT::Other, getRoot(),
9424                           getValue(I.getArgOperand(0)),
9425                           DAG.getSrcValue(I.getArgOperand(0))));
9426 }
9427 
9428 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9430   const DataLayout &DL = DAG.getDataLayout();
9431   SDValue V = DAG.getVAArg(
9432       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9433       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9434       DL.getABITypeAlign(I.getType()).value());
9435   DAG.setRoot(V.getValue(1));
9436 
9437   if (I.getType()->isPointerTy())
9438     V = DAG.getPtrExtOrTrunc(
9439         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9440   setValue(&I, V);
9441 }
9442 
9443 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9444   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9445                           MVT::Other, getRoot(),
9446                           getValue(I.getArgOperand(0)),
9447                           DAG.getSrcValue(I.getArgOperand(0))));
9448 }
9449 
9450 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9451   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9452                           MVT::Other, getRoot(),
9453                           getValue(I.getArgOperand(0)),
9454                           getValue(I.getArgOperand(1)),
9455                           DAG.getSrcValue(I.getArgOperand(0)),
9456                           DAG.getSrcValue(I.getArgOperand(1))));
9457 }
9458 
9459 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9460                                                     const Instruction &I,
9461                                                     SDValue Op) {
9462   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9463   if (!Range)
9464     return Op;
9465 
9466   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9467   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9468     return Op;
9469 
9470   APInt Lo = CR.getUnsignedMin();
9471   if (!Lo.isMinValue())
9472     return Op;
9473 
9474   APInt Hi = CR.getUnsignedMax();
9475   unsigned Bits = std::max(Hi.getActiveBits(),
9476                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9477 
9478   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9479 
9480   SDLoc SL = getCurSDLoc();
9481 
9482   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9483                              DAG.getValueType(SmallVT));
9484   unsigned NumVals = Op.getNode()->getNumValues();
9485   if (NumVals == 1)
9486     return ZExt;
9487 
9488   SmallVector<SDValue, 4> Ops;
9489 
9490   Ops.push_back(ZExt);
9491   for (unsigned I = 1; I != NumVals; ++I)
9492     Ops.push_back(Op.getValue(I));
9493 
9494   return DAG.getMergeValues(Ops, SL);
9495 }
9496 
9497 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9498 /// the call being lowered.
9499 ///
9500 /// This is a helper for lowering intrinsics that follow a target calling
9501 /// convention or require stack pointer adjustment. Only a subset of the
9502 /// intrinsic's operands need to participate in the calling convention.
9503 void SelectionDAGBuilder::populateCallLoweringInfo(
9504     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9505     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9506     bool IsPatchPoint) {
9507   TargetLowering::ArgListTy Args;
9508   Args.reserve(NumArgs);
9509 
9510   // Populate the argument list.
9511   // Attributes for args start at offset 1, after the return attribute.
9512   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9513        ArgI != ArgE; ++ArgI) {
9514     const Value *V = Call->getOperand(ArgI);
9515 
9516     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9517 
9518     TargetLowering::ArgListEntry Entry;
9519     Entry.Node = getValue(V);
9520     Entry.Ty = V->getType();
9521     Entry.setAttributes(Call, ArgI);
9522     Args.push_back(Entry);
9523   }
9524 
9525   CLI.setDebugLoc(getCurSDLoc())
9526       .setChain(getRoot())
9527       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9528       .setDiscardResult(Call->use_empty())
9529       .setIsPatchPoint(IsPatchPoint)
9530       .setIsPreallocated(
9531           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9532 }
9533 
9534 /// Add a stack map intrinsic call's live variable operands to a stackmap
9535 /// or patchpoint target node's operand list.
9536 ///
9537 /// Constants are converted to TargetConstants purely as an optimization to
9538 /// avoid constant materialization and register allocation.
9539 ///
9540 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9541 /// generate addess computation nodes, and so FinalizeISel can convert the
9542 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9543 /// address materialization and register allocation, but may also be required
9544 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9545 /// alloca in the entry block, then the runtime may assume that the alloca's
9546 /// StackMap location can be read immediately after compilation and that the
9547 /// location is valid at any point during execution (this is similar to the
9548 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9549 /// only available in a register, then the runtime would need to trap when
9550 /// execution reaches the StackMap in order to read the alloca's location.
9551 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9552                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9553                                 SelectionDAGBuilder &Builder) {
9554   SelectionDAG &DAG = Builder.DAG;
9555   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9556     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9557 
9558     // Things on the stack are pointer-typed, meaning that they are already
9559     // legal and can be emitted directly to target nodes.
9560     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9561       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9562     } else {
9563       // Otherwise emit a target independent node to be legalised.
9564       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9565     }
9566   }
9567 }
9568 
9569 /// Lower llvm.experimental.stackmap.
9570 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9571   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9572   //                                  [live variables...])
9573 
9574   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9575 
9576   SDValue Chain, InFlag, Callee;
9577   SmallVector<SDValue, 32> Ops;
9578 
9579   SDLoc DL = getCurSDLoc();
9580   Callee = getValue(CI.getCalledOperand());
9581 
9582   // The stackmap intrinsic only records the live variables (the arguments
9583   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9584   // intrinsic, this won't be lowered to a function call. This means we don't
9585   // have to worry about calling conventions and target specific lowering code.
9586   // Instead we perform the call lowering right here.
9587   //
9588   // chain, flag = CALLSEQ_START(chain, 0, 0)
9589   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9590   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9591   //
9592   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9593   InFlag = Chain.getValue(1);
9594 
9595   // Add the STACKMAP operands, starting with DAG house-keeping.
9596   Ops.push_back(Chain);
9597   Ops.push_back(InFlag);
9598 
9599   // Add the <id>, <numShadowBytes> operands.
9600   //
9601   // These do not require legalisation, and can be emitted directly to target
9602   // constant nodes.
9603   SDValue ID = getValue(CI.getArgOperand(0));
9604   assert(ID.getValueType() == MVT::i64);
9605   SDValue IDConst = DAG.getTargetConstant(
9606       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9607   Ops.push_back(IDConst);
9608 
9609   SDValue Shad = getValue(CI.getArgOperand(1));
9610   assert(Shad.getValueType() == MVT::i32);
9611   SDValue ShadConst = DAG.getTargetConstant(
9612       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9613   Ops.push_back(ShadConst);
9614 
9615   // Add the live variables.
9616   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9617 
9618   // Create the STACKMAP node.
9619   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9620   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9621   InFlag = Chain.getValue(1);
9622 
9623   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9624 
9625   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9626 
9627   // Set the root to the target-lowered call chain.
9628   DAG.setRoot(Chain);
9629 
9630   // Inform the Frame Information that we have a stackmap in this function.
9631   FuncInfo.MF->getFrameInfo().setHasStackMap();
9632 }
9633 
9634 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9635 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9636                                           const BasicBlock *EHPadBB) {
9637   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9638   //                                                 i32 <numBytes>,
9639   //                                                 i8* <target>,
9640   //                                                 i32 <numArgs>,
9641   //                                                 [Args...],
9642   //                                                 [live variables...])
9643 
9644   CallingConv::ID CC = CB.getCallingConv();
9645   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9646   bool HasDef = !CB.getType()->isVoidTy();
9647   SDLoc dl = getCurSDLoc();
9648   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9649 
9650   // Handle immediate and symbolic callees.
9651   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9652     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9653                                    /*isTarget=*/true);
9654   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9655     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9656                                          SDLoc(SymbolicCallee),
9657                                          SymbolicCallee->getValueType(0));
9658 
9659   // Get the real number of arguments participating in the call <numArgs>
9660   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9661   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9662 
9663   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9664   // Intrinsics include all meta-operands up to but not including CC.
9665   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9666   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9667          "Not enough arguments provided to the patchpoint intrinsic");
9668 
9669   // For AnyRegCC the arguments are lowered later on manually.
9670   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9671   Type *ReturnTy =
9672       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9673 
9674   TargetLowering::CallLoweringInfo CLI(DAG);
9675   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9676                            ReturnTy, true);
9677   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9678 
9679   SDNode *CallEnd = Result.second.getNode();
9680   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9681     CallEnd = CallEnd->getOperand(0).getNode();
9682 
9683   /// Get a call instruction from the call sequence chain.
9684   /// Tail calls are not allowed.
9685   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9686          "Expected a callseq node.");
9687   SDNode *Call = CallEnd->getOperand(0).getNode();
9688   bool HasGlue = Call->getGluedNode();
9689 
9690   // Replace the target specific call node with the patchable intrinsic.
9691   SmallVector<SDValue, 8> Ops;
9692 
9693   // Push the chain.
9694   Ops.push_back(*(Call->op_begin()));
9695 
9696   // Optionally, push the glue (if any).
9697   if (HasGlue)
9698     Ops.push_back(*(Call->op_end() - 1));
9699 
9700   // Push the register mask info.
9701   if (HasGlue)
9702     Ops.push_back(*(Call->op_end() - 2));
9703   else
9704     Ops.push_back(*(Call->op_end() - 1));
9705 
9706   // Add the <id> and <numBytes> constants.
9707   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9708   Ops.push_back(DAG.getTargetConstant(
9709                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9710   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9711   Ops.push_back(DAG.getTargetConstant(
9712                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9713                   MVT::i32));
9714 
9715   // Add the callee.
9716   Ops.push_back(Callee);
9717 
9718   // Adjust <numArgs> to account for any arguments that have been passed on the
9719   // stack instead.
9720   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9721   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9722   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9723   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9724 
9725   // Add the calling convention
9726   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9727 
9728   // Add the arguments we omitted previously. The register allocator should
9729   // place these in any free register.
9730   if (IsAnyRegCC)
9731     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9732       Ops.push_back(getValue(CB.getArgOperand(i)));
9733 
9734   // Push the arguments from the call instruction.
9735   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9736   Ops.append(Call->op_begin() + 2, e);
9737 
9738   // Push live variables for the stack map.
9739   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9740 
9741   SDVTList NodeTys;
9742   if (IsAnyRegCC && HasDef) {
9743     // Create the return types based on the intrinsic definition
9744     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9745     SmallVector<EVT, 3> ValueVTs;
9746     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9747     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9748 
9749     // There is always a chain and a glue type at the end
9750     ValueVTs.push_back(MVT::Other);
9751     ValueVTs.push_back(MVT::Glue);
9752     NodeTys = DAG.getVTList(ValueVTs);
9753   } else
9754     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9755 
9756   // Replace the target specific call node with a PATCHPOINT node.
9757   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9758 
9759   // Update the NodeMap.
9760   if (HasDef) {
9761     if (IsAnyRegCC)
9762       setValue(&CB, SDValue(PPV.getNode(), 0));
9763     else
9764       setValue(&CB, Result.first);
9765   }
9766 
9767   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9768   // call sequence. Furthermore the location of the chain and glue can change
9769   // when the AnyReg calling convention is used and the intrinsic returns a
9770   // value.
9771   if (IsAnyRegCC && HasDef) {
9772     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9773     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9774     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9775   } else
9776     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9777   DAG.DeleteNode(Call);
9778 
9779   // Inform the Frame Information that we have a patchpoint in this function.
9780   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9781 }
9782 
9783 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9784                                             unsigned Intrinsic) {
9785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9786   SDValue Op1 = getValue(I.getArgOperand(0));
9787   SDValue Op2;
9788   if (I.arg_size() > 1)
9789     Op2 = getValue(I.getArgOperand(1));
9790   SDLoc dl = getCurSDLoc();
9791   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9792   SDValue Res;
9793   SDNodeFlags SDFlags;
9794   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9795     SDFlags.copyFMF(*FPMO);
9796 
9797   switch (Intrinsic) {
9798   case Intrinsic::vector_reduce_fadd:
9799     if (SDFlags.hasAllowReassociation())
9800       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9801                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9802                         SDFlags);
9803     else
9804       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9805     break;
9806   case Intrinsic::vector_reduce_fmul:
9807     if (SDFlags.hasAllowReassociation())
9808       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9809                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9810                         SDFlags);
9811     else
9812       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9813     break;
9814   case Intrinsic::vector_reduce_add:
9815     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9816     break;
9817   case Intrinsic::vector_reduce_mul:
9818     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9819     break;
9820   case Intrinsic::vector_reduce_and:
9821     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9822     break;
9823   case Intrinsic::vector_reduce_or:
9824     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9825     break;
9826   case Intrinsic::vector_reduce_xor:
9827     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9828     break;
9829   case Intrinsic::vector_reduce_smax:
9830     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9831     break;
9832   case Intrinsic::vector_reduce_smin:
9833     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9834     break;
9835   case Intrinsic::vector_reduce_umax:
9836     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9837     break;
9838   case Intrinsic::vector_reduce_umin:
9839     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9840     break;
9841   case Intrinsic::vector_reduce_fmax:
9842     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9843     break;
9844   case Intrinsic::vector_reduce_fmin:
9845     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9846     break;
9847   default:
9848     llvm_unreachable("Unhandled vector reduce intrinsic");
9849   }
9850   setValue(&I, Res);
9851 }
9852 
9853 /// Returns an AttributeList representing the attributes applied to the return
9854 /// value of the given call.
9855 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9856   SmallVector<Attribute::AttrKind, 2> Attrs;
9857   if (CLI.RetSExt)
9858     Attrs.push_back(Attribute::SExt);
9859   if (CLI.RetZExt)
9860     Attrs.push_back(Attribute::ZExt);
9861   if (CLI.IsInReg)
9862     Attrs.push_back(Attribute::InReg);
9863 
9864   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9865                             Attrs);
9866 }
9867 
9868 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9869 /// implementation, which just calls LowerCall.
9870 /// FIXME: When all targets are
9871 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9872 std::pair<SDValue, SDValue>
9873 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9874   // Handle the incoming return values from the call.
9875   CLI.Ins.clear();
9876   Type *OrigRetTy = CLI.RetTy;
9877   SmallVector<EVT, 4> RetTys;
9878   SmallVector<uint64_t, 4> Offsets;
9879   auto &DL = CLI.DAG.getDataLayout();
9880   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9881 
9882   if (CLI.IsPostTypeLegalization) {
9883     // If we are lowering a libcall after legalization, split the return type.
9884     SmallVector<EVT, 4> OldRetTys;
9885     SmallVector<uint64_t, 4> OldOffsets;
9886     RetTys.swap(OldRetTys);
9887     Offsets.swap(OldOffsets);
9888 
9889     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9890       EVT RetVT = OldRetTys[i];
9891       uint64_t Offset = OldOffsets[i];
9892       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9893       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9894       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9895       RetTys.append(NumRegs, RegisterVT);
9896       for (unsigned j = 0; j != NumRegs; ++j)
9897         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9898     }
9899   }
9900 
9901   SmallVector<ISD::OutputArg, 4> Outs;
9902   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9903 
9904   bool CanLowerReturn =
9905       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9906                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9907 
9908   SDValue DemoteStackSlot;
9909   int DemoteStackIdx = -100;
9910   if (!CanLowerReturn) {
9911     // FIXME: equivalent assert?
9912     // assert(!CS.hasInAllocaArgument() &&
9913     //        "sret demotion is incompatible with inalloca");
9914     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9915     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9916     MachineFunction &MF = CLI.DAG.getMachineFunction();
9917     DemoteStackIdx =
9918         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9919     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9920                                               DL.getAllocaAddrSpace());
9921 
9922     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9923     ArgListEntry Entry;
9924     Entry.Node = DemoteStackSlot;
9925     Entry.Ty = StackSlotPtrType;
9926     Entry.IsSExt = false;
9927     Entry.IsZExt = false;
9928     Entry.IsInReg = false;
9929     Entry.IsSRet = true;
9930     Entry.IsNest = false;
9931     Entry.IsByVal = false;
9932     Entry.IsByRef = false;
9933     Entry.IsReturned = false;
9934     Entry.IsSwiftSelf = false;
9935     Entry.IsSwiftAsync = false;
9936     Entry.IsSwiftError = false;
9937     Entry.IsCFGuardTarget = false;
9938     Entry.Alignment = Alignment;
9939     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9940     CLI.NumFixedArgs += 1;
9941     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9942     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9943 
9944     // sret demotion isn't compatible with tail-calls, since the sret argument
9945     // points into the callers stack frame.
9946     CLI.IsTailCall = false;
9947   } else {
9948     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9949         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9950     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9951       ISD::ArgFlagsTy Flags;
9952       if (NeedsRegBlock) {
9953         Flags.setInConsecutiveRegs();
9954         if (I == RetTys.size() - 1)
9955           Flags.setInConsecutiveRegsLast();
9956       }
9957       EVT VT = RetTys[I];
9958       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9959                                                      CLI.CallConv, VT);
9960       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9961                                                        CLI.CallConv, VT);
9962       for (unsigned i = 0; i != NumRegs; ++i) {
9963         ISD::InputArg MyFlags;
9964         MyFlags.Flags = Flags;
9965         MyFlags.VT = RegisterVT;
9966         MyFlags.ArgVT = VT;
9967         MyFlags.Used = CLI.IsReturnValueUsed;
9968         if (CLI.RetTy->isPointerTy()) {
9969           MyFlags.Flags.setPointer();
9970           MyFlags.Flags.setPointerAddrSpace(
9971               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9972         }
9973         if (CLI.RetSExt)
9974           MyFlags.Flags.setSExt();
9975         if (CLI.RetZExt)
9976           MyFlags.Flags.setZExt();
9977         if (CLI.IsInReg)
9978           MyFlags.Flags.setInReg();
9979         CLI.Ins.push_back(MyFlags);
9980       }
9981     }
9982   }
9983 
9984   // We push in swifterror return as the last element of CLI.Ins.
9985   ArgListTy &Args = CLI.getArgs();
9986   if (supportSwiftError()) {
9987     for (const ArgListEntry &Arg : Args) {
9988       if (Arg.IsSwiftError) {
9989         ISD::InputArg MyFlags;
9990         MyFlags.VT = getPointerTy(DL);
9991         MyFlags.ArgVT = EVT(getPointerTy(DL));
9992         MyFlags.Flags.setSwiftError();
9993         CLI.Ins.push_back(MyFlags);
9994       }
9995     }
9996   }
9997 
9998   // Handle all of the outgoing arguments.
9999   CLI.Outs.clear();
10000   CLI.OutVals.clear();
10001   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10002     SmallVector<EVT, 4> ValueVTs;
10003     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10004     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10005     Type *FinalType = Args[i].Ty;
10006     if (Args[i].IsByVal)
10007       FinalType = Args[i].IndirectType;
10008     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10009         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10010     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10011          ++Value) {
10012       EVT VT = ValueVTs[Value];
10013       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10014       SDValue Op = SDValue(Args[i].Node.getNode(),
10015                            Args[i].Node.getResNo() + Value);
10016       ISD::ArgFlagsTy Flags;
10017 
10018       // Certain targets (such as MIPS), may have a different ABI alignment
10019       // for a type depending on the context. Give the target a chance to
10020       // specify the alignment it wants.
10021       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10022       Flags.setOrigAlign(OriginalAlignment);
10023 
10024       if (Args[i].Ty->isPointerTy()) {
10025         Flags.setPointer();
10026         Flags.setPointerAddrSpace(
10027             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10028       }
10029       if (Args[i].IsZExt)
10030         Flags.setZExt();
10031       if (Args[i].IsSExt)
10032         Flags.setSExt();
10033       if (Args[i].IsInReg) {
10034         // If we are using vectorcall calling convention, a structure that is
10035         // passed InReg - is surely an HVA
10036         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10037             isa<StructType>(FinalType)) {
10038           // The first value of a structure is marked
10039           if (0 == Value)
10040             Flags.setHvaStart();
10041           Flags.setHva();
10042         }
10043         // Set InReg Flag
10044         Flags.setInReg();
10045       }
10046       if (Args[i].IsSRet)
10047         Flags.setSRet();
10048       if (Args[i].IsSwiftSelf)
10049         Flags.setSwiftSelf();
10050       if (Args[i].IsSwiftAsync)
10051         Flags.setSwiftAsync();
10052       if (Args[i].IsSwiftError)
10053         Flags.setSwiftError();
10054       if (Args[i].IsCFGuardTarget)
10055         Flags.setCFGuardTarget();
10056       if (Args[i].IsByVal)
10057         Flags.setByVal();
10058       if (Args[i].IsByRef)
10059         Flags.setByRef();
10060       if (Args[i].IsPreallocated) {
10061         Flags.setPreallocated();
10062         // Set the byval flag for CCAssignFn callbacks that don't know about
10063         // preallocated.  This way we can know how many bytes we should've
10064         // allocated and how many bytes a callee cleanup function will pop.  If
10065         // we port preallocated to more targets, we'll have to add custom
10066         // preallocated handling in the various CC lowering callbacks.
10067         Flags.setByVal();
10068       }
10069       if (Args[i].IsInAlloca) {
10070         Flags.setInAlloca();
10071         // Set the byval flag for CCAssignFn callbacks that don't know about
10072         // inalloca.  This way we can know how many bytes we should've allocated
10073         // and how many bytes a callee cleanup function will pop.  If we port
10074         // inalloca to more targets, we'll have to add custom inalloca handling
10075         // in the various CC lowering callbacks.
10076         Flags.setByVal();
10077       }
10078       Align MemAlign;
10079       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10080         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10081         Flags.setByValSize(FrameSize);
10082 
10083         // info is not there but there are cases it cannot get right.
10084         if (auto MA = Args[i].Alignment)
10085           MemAlign = *MA;
10086         else
10087           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10088       } else if (auto MA = Args[i].Alignment) {
10089         MemAlign = *MA;
10090       } else {
10091         MemAlign = OriginalAlignment;
10092       }
10093       Flags.setMemAlign(MemAlign);
10094       if (Args[i].IsNest)
10095         Flags.setNest();
10096       if (NeedsRegBlock)
10097         Flags.setInConsecutiveRegs();
10098 
10099       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10100                                                  CLI.CallConv, VT);
10101       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10102                                                         CLI.CallConv, VT);
10103       SmallVector<SDValue, 4> Parts(NumParts);
10104       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10105 
10106       if (Args[i].IsSExt)
10107         ExtendKind = ISD::SIGN_EXTEND;
10108       else if (Args[i].IsZExt)
10109         ExtendKind = ISD::ZERO_EXTEND;
10110 
10111       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10112       // for now.
10113       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10114           CanLowerReturn) {
10115         assert((CLI.RetTy == Args[i].Ty ||
10116                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10117                  CLI.RetTy->getPointerAddressSpace() ==
10118                      Args[i].Ty->getPointerAddressSpace())) &&
10119                RetTys.size() == NumValues && "unexpected use of 'returned'");
10120         // Before passing 'returned' to the target lowering code, ensure that
10121         // either the register MVT and the actual EVT are the same size or that
10122         // the return value and argument are extended in the same way; in these
10123         // cases it's safe to pass the argument register value unchanged as the
10124         // return register value (although it's at the target's option whether
10125         // to do so)
10126         // TODO: allow code generation to take advantage of partially preserved
10127         // registers rather than clobbering the entire register when the
10128         // parameter extension method is not compatible with the return
10129         // extension method
10130         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10131             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10132              CLI.RetZExt == Args[i].IsZExt))
10133           Flags.setReturned();
10134       }
10135 
10136       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10137                      CLI.CallConv, ExtendKind);
10138 
10139       for (unsigned j = 0; j != NumParts; ++j) {
10140         // if it isn't first piece, alignment must be 1
10141         // For scalable vectors the scalable part is currently handled
10142         // by individual targets, so we just use the known minimum size here.
10143         ISD::OutputArg MyFlags(
10144             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10145             i < CLI.NumFixedArgs, i,
10146             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
10147         if (NumParts > 1 && j == 0)
10148           MyFlags.Flags.setSplit();
10149         else if (j != 0) {
10150           MyFlags.Flags.setOrigAlign(Align(1));
10151           if (j == NumParts - 1)
10152             MyFlags.Flags.setSplitEnd();
10153         }
10154 
10155         CLI.Outs.push_back(MyFlags);
10156         CLI.OutVals.push_back(Parts[j]);
10157       }
10158 
10159       if (NeedsRegBlock && Value == NumValues - 1)
10160         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10161     }
10162   }
10163 
10164   SmallVector<SDValue, 4> InVals;
10165   CLI.Chain = LowerCall(CLI, InVals);
10166 
10167   // Update CLI.InVals to use outside of this function.
10168   CLI.InVals = InVals;
10169 
10170   // Verify that the target's LowerCall behaved as expected.
10171   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10172          "LowerCall didn't return a valid chain!");
10173   assert((!CLI.IsTailCall || InVals.empty()) &&
10174          "LowerCall emitted a return value for a tail call!");
10175   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10176          "LowerCall didn't emit the correct number of values!");
10177 
10178   // For a tail call, the return value is merely live-out and there aren't
10179   // any nodes in the DAG representing it. Return a special value to
10180   // indicate that a tail call has been emitted and no more Instructions
10181   // should be processed in the current block.
10182   if (CLI.IsTailCall) {
10183     CLI.DAG.setRoot(CLI.Chain);
10184     return std::make_pair(SDValue(), SDValue());
10185   }
10186 
10187 #ifndef NDEBUG
10188   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10189     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10190     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10191            "LowerCall emitted a value with the wrong type!");
10192   }
10193 #endif
10194 
10195   SmallVector<SDValue, 4> ReturnValues;
10196   if (!CanLowerReturn) {
10197     // The instruction result is the result of loading from the
10198     // hidden sret parameter.
10199     SmallVector<EVT, 1> PVTs;
10200     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10201 
10202     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10203     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10204     EVT PtrVT = PVTs[0];
10205 
10206     unsigned NumValues = RetTys.size();
10207     ReturnValues.resize(NumValues);
10208     SmallVector<SDValue, 4> Chains(NumValues);
10209 
10210     // An aggregate return value cannot wrap around the address space, so
10211     // offsets to its parts don't wrap either.
10212     SDNodeFlags Flags;
10213     Flags.setNoUnsignedWrap(true);
10214 
10215     MachineFunction &MF = CLI.DAG.getMachineFunction();
10216     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10217     for (unsigned i = 0; i < NumValues; ++i) {
10218       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10219                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10220                                                         PtrVT), Flags);
10221       SDValue L = CLI.DAG.getLoad(
10222           RetTys[i], CLI.DL, CLI.Chain, Add,
10223           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10224                                             DemoteStackIdx, Offsets[i]),
10225           HiddenSRetAlign);
10226       ReturnValues[i] = L;
10227       Chains[i] = L.getValue(1);
10228     }
10229 
10230     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10231   } else {
10232     // Collect the legal value parts into potentially illegal values
10233     // that correspond to the original function's return values.
10234     std::optional<ISD::NodeType> AssertOp;
10235     if (CLI.RetSExt)
10236       AssertOp = ISD::AssertSext;
10237     else if (CLI.RetZExt)
10238       AssertOp = ISD::AssertZext;
10239     unsigned CurReg = 0;
10240     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10241       EVT VT = RetTys[I];
10242       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10243                                                      CLI.CallConv, VT);
10244       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10245                                                        CLI.CallConv, VT);
10246 
10247       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10248                                               NumRegs, RegisterVT, VT, nullptr,
10249                                               CLI.CallConv, AssertOp));
10250       CurReg += NumRegs;
10251     }
10252 
10253     // For a function returning void, there is no return value. We can't create
10254     // such a node, so we just return a null return value in that case. In
10255     // that case, nothing will actually look at the value.
10256     if (ReturnValues.empty())
10257       return std::make_pair(SDValue(), CLI.Chain);
10258   }
10259 
10260   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10261                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10262   return std::make_pair(Res, CLI.Chain);
10263 }
10264 
10265 /// Places new result values for the node in Results (their number
10266 /// and types must exactly match those of the original return values of
10267 /// the node), or leaves Results empty, which indicates that the node is not
10268 /// to be custom lowered after all.
10269 void TargetLowering::LowerOperationWrapper(SDNode *N,
10270                                            SmallVectorImpl<SDValue> &Results,
10271                                            SelectionDAG &DAG) const {
10272   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10273 
10274   if (!Res.getNode())
10275     return;
10276 
10277   // If the original node has one result, take the return value from
10278   // LowerOperation as is. It might not be result number 0.
10279   if (N->getNumValues() == 1) {
10280     Results.push_back(Res);
10281     return;
10282   }
10283 
10284   // If the original node has multiple results, then the return node should
10285   // have the same number of results.
10286   assert((N->getNumValues() == Res->getNumValues()) &&
10287       "Lowering returned the wrong number of results!");
10288 
10289   // Places new result values base on N result number.
10290   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10291     Results.push_back(Res.getValue(I));
10292 }
10293 
10294 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10295   llvm_unreachable("LowerOperation not implemented for this target!");
10296 }
10297 
10298 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10299                                                      unsigned Reg,
10300                                                      ISD::NodeType ExtendType) {
10301   SDValue Op = getNonRegisterValue(V);
10302   assert((Op.getOpcode() != ISD::CopyFromReg ||
10303           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10304          "Copy from a reg to the same reg!");
10305   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10306 
10307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10308   // If this is an InlineAsm we have to match the registers required, not the
10309   // notional registers required by the type.
10310 
10311   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10312                    std::nullopt); // This is not an ABI copy.
10313   SDValue Chain = DAG.getEntryNode();
10314 
10315   if (ExtendType == ISD::ANY_EXTEND) {
10316     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10317     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10318       ExtendType = PreferredExtendIt->second;
10319   }
10320   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10321   PendingExports.push_back(Chain);
10322 }
10323 
10324 #include "llvm/CodeGen/SelectionDAGISel.h"
10325 
10326 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10327 /// entry block, return true.  This includes arguments used by switches, since
10328 /// the switch may expand into multiple basic blocks.
10329 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10330   // With FastISel active, we may be splitting blocks, so force creation
10331   // of virtual registers for all non-dead arguments.
10332   if (FastISel)
10333     return A->use_empty();
10334 
10335   const BasicBlock &Entry = A->getParent()->front();
10336   for (const User *U : A->users())
10337     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10338       return false;  // Use not in entry block.
10339 
10340   return true;
10341 }
10342 
10343 using ArgCopyElisionMapTy =
10344     DenseMap<const Argument *,
10345              std::pair<const AllocaInst *, const StoreInst *>>;
10346 
10347 /// Scan the entry block of the function in FuncInfo for arguments that look
10348 /// like copies into a local alloca. Record any copied arguments in
10349 /// ArgCopyElisionCandidates.
10350 static void
10351 findArgumentCopyElisionCandidates(const DataLayout &DL,
10352                                   FunctionLoweringInfo *FuncInfo,
10353                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10354   // Record the state of every static alloca used in the entry block. Argument
10355   // allocas are all used in the entry block, so we need approximately as many
10356   // entries as we have arguments.
10357   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10358   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10359   unsigned NumArgs = FuncInfo->Fn->arg_size();
10360   StaticAllocas.reserve(NumArgs * 2);
10361 
10362   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10363     if (!V)
10364       return nullptr;
10365     V = V->stripPointerCasts();
10366     const auto *AI = dyn_cast<AllocaInst>(V);
10367     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10368       return nullptr;
10369     auto Iter = StaticAllocas.insert({AI, Unknown});
10370     return &Iter.first->second;
10371   };
10372 
10373   // Look for stores of arguments to static allocas. Look through bitcasts and
10374   // GEPs to handle type coercions, as long as the alloca is fully initialized
10375   // by the store. Any non-store use of an alloca escapes it and any subsequent
10376   // unanalyzed store might write it.
10377   // FIXME: Handle structs initialized with multiple stores.
10378   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10379     // Look for stores, and handle non-store uses conservatively.
10380     const auto *SI = dyn_cast<StoreInst>(&I);
10381     if (!SI) {
10382       // We will look through cast uses, so ignore them completely.
10383       if (I.isCast())
10384         continue;
10385       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10386       // to allocas.
10387       if (I.isDebugOrPseudoInst())
10388         continue;
10389       // This is an unknown instruction. Assume it escapes or writes to all
10390       // static alloca operands.
10391       for (const Use &U : I.operands()) {
10392         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10393           *Info = StaticAllocaInfo::Clobbered;
10394       }
10395       continue;
10396     }
10397 
10398     // If the stored value is a static alloca, mark it as escaped.
10399     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10400       *Info = StaticAllocaInfo::Clobbered;
10401 
10402     // Check if the destination is a static alloca.
10403     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10404     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10405     if (!Info)
10406       continue;
10407     const AllocaInst *AI = cast<AllocaInst>(Dst);
10408 
10409     // Skip allocas that have been initialized or clobbered.
10410     if (*Info != StaticAllocaInfo::Unknown)
10411       continue;
10412 
10413     // Check if the stored value is an argument, and that this store fully
10414     // initializes the alloca.
10415     // If the argument type has padding bits we can't directly forward a pointer
10416     // as the upper bits may contain garbage.
10417     // Don't elide copies from the same argument twice.
10418     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10419     const auto *Arg = dyn_cast<Argument>(Val);
10420     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10421         Arg->getType()->isEmptyTy() ||
10422         DL.getTypeStoreSize(Arg->getType()) !=
10423             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10424         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10425         ArgCopyElisionCandidates.count(Arg)) {
10426       *Info = StaticAllocaInfo::Clobbered;
10427       continue;
10428     }
10429 
10430     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10431                       << '\n');
10432 
10433     // Mark this alloca and store for argument copy elision.
10434     *Info = StaticAllocaInfo::Elidable;
10435     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10436 
10437     // Stop scanning if we've seen all arguments. This will happen early in -O0
10438     // builds, which is useful, because -O0 builds have large entry blocks and
10439     // many allocas.
10440     if (ArgCopyElisionCandidates.size() == NumArgs)
10441       break;
10442   }
10443 }
10444 
10445 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10446 /// ArgVal is a load from a suitable fixed stack object.
10447 static void tryToElideArgumentCopy(
10448     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10449     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10450     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10451     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10452     SDValue ArgVal, bool &ArgHasUses) {
10453   // Check if this is a load from a fixed stack object.
10454   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10455   if (!LNode)
10456     return;
10457   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10458   if (!FINode)
10459     return;
10460 
10461   // Check that the fixed stack object is the right size and alignment.
10462   // Look at the alignment that the user wrote on the alloca instead of looking
10463   // at the stack object.
10464   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10465   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10466   const AllocaInst *AI = ArgCopyIter->second.first;
10467   int FixedIndex = FINode->getIndex();
10468   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10469   int OldIndex = AllocaIndex;
10470   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10471   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10472     LLVM_DEBUG(
10473         dbgs() << "  argument copy elision failed due to bad fixed stack "
10474                   "object size\n");
10475     return;
10476   }
10477   Align RequiredAlignment = AI->getAlign();
10478   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10479     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10480                          "greater than stack argument alignment ("
10481                       << DebugStr(RequiredAlignment) << " vs "
10482                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10483     return;
10484   }
10485 
10486   // Perform the elision. Delete the old stack object and replace its only use
10487   // in the variable info map. Mark the stack object as mutable.
10488   LLVM_DEBUG({
10489     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10490            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10491            << '\n';
10492   });
10493   MFI.RemoveStackObject(OldIndex);
10494   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10495   AllocaIndex = FixedIndex;
10496   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10497   Chains.push_back(ArgVal.getValue(1));
10498 
10499   // Avoid emitting code for the store implementing the copy.
10500   const StoreInst *SI = ArgCopyIter->second.second;
10501   ElidedArgCopyInstrs.insert(SI);
10502 
10503   // Check for uses of the argument again so that we can avoid exporting ArgVal
10504   // if it is't used by anything other than the store.
10505   for (const Value *U : Arg.users()) {
10506     if (U != SI) {
10507       ArgHasUses = true;
10508       break;
10509     }
10510   }
10511 }
10512 
10513 void SelectionDAGISel::LowerArguments(const Function &F) {
10514   SelectionDAG &DAG = SDB->DAG;
10515   SDLoc dl = SDB->getCurSDLoc();
10516   const DataLayout &DL = DAG.getDataLayout();
10517   SmallVector<ISD::InputArg, 16> Ins;
10518 
10519   // In Naked functions we aren't going to save any registers.
10520   if (F.hasFnAttribute(Attribute::Naked))
10521     return;
10522 
10523   if (!FuncInfo->CanLowerReturn) {
10524     // Put in an sret pointer parameter before all the other parameters.
10525     SmallVector<EVT, 1> ValueVTs;
10526     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10527                     F.getReturnType()->getPointerTo(
10528                         DAG.getDataLayout().getAllocaAddrSpace()),
10529                     ValueVTs);
10530 
10531     // NOTE: Assuming that a pointer will never break down to more than one VT
10532     // or one register.
10533     ISD::ArgFlagsTy Flags;
10534     Flags.setSRet();
10535     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10536     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10537                          ISD::InputArg::NoArgIndex, 0);
10538     Ins.push_back(RetArg);
10539   }
10540 
10541   // Look for stores of arguments to static allocas. Mark such arguments with a
10542   // flag to ask the target to give us the memory location of that argument if
10543   // available.
10544   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10545   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10546                                     ArgCopyElisionCandidates);
10547 
10548   // Set up the incoming argument description vector.
10549   for (const Argument &Arg : F.args()) {
10550     unsigned ArgNo = Arg.getArgNo();
10551     SmallVector<EVT, 4> ValueVTs;
10552     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10553     bool isArgValueUsed = !Arg.use_empty();
10554     unsigned PartBase = 0;
10555     Type *FinalType = Arg.getType();
10556     if (Arg.hasAttribute(Attribute::ByVal))
10557       FinalType = Arg.getParamByValType();
10558     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10559         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10560     for (unsigned Value = 0, NumValues = ValueVTs.size();
10561          Value != NumValues; ++Value) {
10562       EVT VT = ValueVTs[Value];
10563       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10564       ISD::ArgFlagsTy Flags;
10565 
10566 
10567       if (Arg.getType()->isPointerTy()) {
10568         Flags.setPointer();
10569         Flags.setPointerAddrSpace(
10570             cast<PointerType>(Arg.getType())->getAddressSpace());
10571       }
10572       if (Arg.hasAttribute(Attribute::ZExt))
10573         Flags.setZExt();
10574       if (Arg.hasAttribute(Attribute::SExt))
10575         Flags.setSExt();
10576       if (Arg.hasAttribute(Attribute::InReg)) {
10577         // If we are using vectorcall calling convention, a structure that is
10578         // passed InReg - is surely an HVA
10579         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10580             isa<StructType>(Arg.getType())) {
10581           // The first value of a structure is marked
10582           if (0 == Value)
10583             Flags.setHvaStart();
10584           Flags.setHva();
10585         }
10586         // Set InReg Flag
10587         Flags.setInReg();
10588       }
10589       if (Arg.hasAttribute(Attribute::StructRet))
10590         Flags.setSRet();
10591       if (Arg.hasAttribute(Attribute::SwiftSelf))
10592         Flags.setSwiftSelf();
10593       if (Arg.hasAttribute(Attribute::SwiftAsync))
10594         Flags.setSwiftAsync();
10595       if (Arg.hasAttribute(Attribute::SwiftError))
10596         Flags.setSwiftError();
10597       if (Arg.hasAttribute(Attribute::ByVal))
10598         Flags.setByVal();
10599       if (Arg.hasAttribute(Attribute::ByRef))
10600         Flags.setByRef();
10601       if (Arg.hasAttribute(Attribute::InAlloca)) {
10602         Flags.setInAlloca();
10603         // Set the byval flag for CCAssignFn callbacks that don't know about
10604         // inalloca.  This way we can know how many bytes we should've allocated
10605         // and how many bytes a callee cleanup function will pop.  If we port
10606         // inalloca to more targets, we'll have to add custom inalloca handling
10607         // in the various CC lowering callbacks.
10608         Flags.setByVal();
10609       }
10610       if (Arg.hasAttribute(Attribute::Preallocated)) {
10611         Flags.setPreallocated();
10612         // Set the byval flag for CCAssignFn callbacks that don't know about
10613         // preallocated.  This way we can know how many bytes we should've
10614         // allocated and how many bytes a callee cleanup function will pop.  If
10615         // we port preallocated to more targets, we'll have to add custom
10616         // preallocated handling in the various CC lowering callbacks.
10617         Flags.setByVal();
10618       }
10619 
10620       // Certain targets (such as MIPS), may have a different ABI alignment
10621       // for a type depending on the context. Give the target a chance to
10622       // specify the alignment it wants.
10623       const Align OriginalAlignment(
10624           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10625       Flags.setOrigAlign(OriginalAlignment);
10626 
10627       Align MemAlign;
10628       Type *ArgMemTy = nullptr;
10629       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10630           Flags.isByRef()) {
10631         if (!ArgMemTy)
10632           ArgMemTy = Arg.getPointeeInMemoryValueType();
10633 
10634         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10635 
10636         // For in-memory arguments, size and alignment should be passed from FE.
10637         // BE will guess if this info is not there but there are cases it cannot
10638         // get right.
10639         if (auto ParamAlign = Arg.getParamStackAlign())
10640           MemAlign = *ParamAlign;
10641         else if ((ParamAlign = Arg.getParamAlign()))
10642           MemAlign = *ParamAlign;
10643         else
10644           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10645         if (Flags.isByRef())
10646           Flags.setByRefSize(MemSize);
10647         else
10648           Flags.setByValSize(MemSize);
10649       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10650         MemAlign = *ParamAlign;
10651       } else {
10652         MemAlign = OriginalAlignment;
10653       }
10654       Flags.setMemAlign(MemAlign);
10655 
10656       if (Arg.hasAttribute(Attribute::Nest))
10657         Flags.setNest();
10658       if (NeedsRegBlock)
10659         Flags.setInConsecutiveRegs();
10660       if (ArgCopyElisionCandidates.count(&Arg))
10661         Flags.setCopyElisionCandidate();
10662       if (Arg.hasAttribute(Attribute::Returned))
10663         Flags.setReturned();
10664 
10665       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10666           *CurDAG->getContext(), F.getCallingConv(), VT);
10667       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10668           *CurDAG->getContext(), F.getCallingConv(), VT);
10669       for (unsigned i = 0; i != NumRegs; ++i) {
10670         // For scalable vectors, use the minimum size; individual targets
10671         // are responsible for handling scalable vector arguments and
10672         // return values.
10673         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10674                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10675         if (NumRegs > 1 && i == 0)
10676           MyFlags.Flags.setSplit();
10677         // if it isn't first piece, alignment must be 1
10678         else if (i > 0) {
10679           MyFlags.Flags.setOrigAlign(Align(1));
10680           if (i == NumRegs - 1)
10681             MyFlags.Flags.setSplitEnd();
10682         }
10683         Ins.push_back(MyFlags);
10684       }
10685       if (NeedsRegBlock && Value == NumValues - 1)
10686         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10687       PartBase += VT.getStoreSize().getKnownMinSize();
10688     }
10689   }
10690 
10691   // Call the target to set up the argument values.
10692   SmallVector<SDValue, 8> InVals;
10693   SDValue NewRoot = TLI->LowerFormalArguments(
10694       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10695 
10696   // Verify that the target's LowerFormalArguments behaved as expected.
10697   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10698          "LowerFormalArguments didn't return a valid chain!");
10699   assert(InVals.size() == Ins.size() &&
10700          "LowerFormalArguments didn't emit the correct number of values!");
10701   LLVM_DEBUG({
10702     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10703       assert(InVals[i].getNode() &&
10704              "LowerFormalArguments emitted a null value!");
10705       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10706              "LowerFormalArguments emitted a value with the wrong type!");
10707     }
10708   });
10709 
10710   // Update the DAG with the new chain value resulting from argument lowering.
10711   DAG.setRoot(NewRoot);
10712 
10713   // Set up the argument values.
10714   unsigned i = 0;
10715   if (!FuncInfo->CanLowerReturn) {
10716     // Create a virtual register for the sret pointer, and put in a copy
10717     // from the sret argument into it.
10718     SmallVector<EVT, 1> ValueVTs;
10719     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10720                     F.getReturnType()->getPointerTo(
10721                         DAG.getDataLayout().getAllocaAddrSpace()),
10722                     ValueVTs);
10723     MVT VT = ValueVTs[0].getSimpleVT();
10724     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10725     std::optional<ISD::NodeType> AssertOp;
10726     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10727                                         nullptr, F.getCallingConv(), AssertOp);
10728 
10729     MachineFunction& MF = SDB->DAG.getMachineFunction();
10730     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10731     Register SRetReg =
10732         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10733     FuncInfo->DemoteRegister = SRetReg;
10734     NewRoot =
10735         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10736     DAG.setRoot(NewRoot);
10737 
10738     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10739     ++i;
10740   }
10741 
10742   SmallVector<SDValue, 4> Chains;
10743   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10744   for (const Argument &Arg : F.args()) {
10745     SmallVector<SDValue, 4> ArgValues;
10746     SmallVector<EVT, 4> ValueVTs;
10747     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10748     unsigned NumValues = ValueVTs.size();
10749     if (NumValues == 0)
10750       continue;
10751 
10752     bool ArgHasUses = !Arg.use_empty();
10753 
10754     // Elide the copying store if the target loaded this argument from a
10755     // suitable fixed stack object.
10756     if (Ins[i].Flags.isCopyElisionCandidate()) {
10757       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10758                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10759                              InVals[i], ArgHasUses);
10760     }
10761 
10762     // If this argument is unused then remember its value. It is used to generate
10763     // debugging information.
10764     bool isSwiftErrorArg =
10765         TLI->supportSwiftError() &&
10766         Arg.hasAttribute(Attribute::SwiftError);
10767     if (!ArgHasUses && !isSwiftErrorArg) {
10768       SDB->setUnusedArgValue(&Arg, InVals[i]);
10769 
10770       // Also remember any frame index for use in FastISel.
10771       if (FrameIndexSDNode *FI =
10772           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10773         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10774     }
10775 
10776     for (unsigned Val = 0; Val != NumValues; ++Val) {
10777       EVT VT = ValueVTs[Val];
10778       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10779                                                       F.getCallingConv(), VT);
10780       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10781           *CurDAG->getContext(), F.getCallingConv(), VT);
10782 
10783       // Even an apparent 'unused' swifterror argument needs to be returned. So
10784       // we do generate a copy for it that can be used on return from the
10785       // function.
10786       if (ArgHasUses || isSwiftErrorArg) {
10787         std::optional<ISD::NodeType> AssertOp;
10788         if (Arg.hasAttribute(Attribute::SExt))
10789           AssertOp = ISD::AssertSext;
10790         else if (Arg.hasAttribute(Attribute::ZExt))
10791           AssertOp = ISD::AssertZext;
10792 
10793         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10794                                              PartVT, VT, nullptr,
10795                                              F.getCallingConv(), AssertOp));
10796       }
10797 
10798       i += NumParts;
10799     }
10800 
10801     // We don't need to do anything else for unused arguments.
10802     if (ArgValues.empty())
10803       continue;
10804 
10805     // Note down frame index.
10806     if (FrameIndexSDNode *FI =
10807         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10808       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10809 
10810     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10811                                      SDB->getCurSDLoc());
10812 
10813     SDB->setValue(&Arg, Res);
10814     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10815       // We want to associate the argument with the frame index, among
10816       // involved operands, that correspond to the lowest address. The
10817       // getCopyFromParts function, called earlier, is swapping the order of
10818       // the operands to BUILD_PAIR depending on endianness. The result of
10819       // that swapping is that the least significant bits of the argument will
10820       // be in the first operand of the BUILD_PAIR node, and the most
10821       // significant bits will be in the second operand.
10822       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10823       if (LoadSDNode *LNode =
10824           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10825         if (FrameIndexSDNode *FI =
10826             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10827           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10828     }
10829 
10830     // Analyses past this point are naive and don't expect an assertion.
10831     if (Res.getOpcode() == ISD::AssertZext)
10832       Res = Res.getOperand(0);
10833 
10834     // Update the SwiftErrorVRegDefMap.
10835     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10836       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10837       if (Register::isVirtualRegister(Reg))
10838         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10839                                    Reg);
10840     }
10841 
10842     // If this argument is live outside of the entry block, insert a copy from
10843     // wherever we got it to the vreg that other BB's will reference it as.
10844     if (Res.getOpcode() == ISD::CopyFromReg) {
10845       // If we can, though, try to skip creating an unnecessary vreg.
10846       // FIXME: This isn't very clean... it would be nice to make this more
10847       // general.
10848       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10849       if (Register::isVirtualRegister(Reg)) {
10850         FuncInfo->ValueMap[&Arg] = Reg;
10851         continue;
10852       }
10853     }
10854     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10855       FuncInfo->InitializeRegForValue(&Arg);
10856       SDB->CopyToExportRegsIfNeeded(&Arg);
10857     }
10858   }
10859 
10860   if (!Chains.empty()) {
10861     Chains.push_back(NewRoot);
10862     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10863   }
10864 
10865   DAG.setRoot(NewRoot);
10866 
10867   assert(i == InVals.size() && "Argument register count mismatch!");
10868 
10869   // If any argument copy elisions occurred and we have debug info, update the
10870   // stale frame indices used in the dbg.declare variable info table.
10871   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10872   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10873     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10874       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10875       if (I != ArgCopyElisionFrameIndexMap.end())
10876         VI.Slot = I->second;
10877     }
10878   }
10879 
10880   // Finally, if the target has anything special to do, allow it to do so.
10881   emitFunctionEntryCode();
10882 }
10883 
10884 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10885 /// ensure constants are generated when needed.  Remember the virtual registers
10886 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10887 /// directly add them, because expansion might result in multiple MBB's for one
10888 /// BB.  As such, the start of the BB might correspond to a different MBB than
10889 /// the end.
10890 void
10891 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10893 
10894   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10895 
10896   // Check PHI nodes in successors that expect a value to be available from this
10897   // block.
10898   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10899     if (!isa<PHINode>(SuccBB->begin())) continue;
10900     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10901 
10902     // If this terminator has multiple identical successors (common for
10903     // switches), only handle each succ once.
10904     if (!SuccsHandled.insert(SuccMBB).second)
10905       continue;
10906 
10907     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10908 
10909     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10910     // nodes and Machine PHI nodes, but the incoming operands have not been
10911     // emitted yet.
10912     for (const PHINode &PN : SuccBB->phis()) {
10913       // Ignore dead phi's.
10914       if (PN.use_empty())
10915         continue;
10916 
10917       // Skip empty types
10918       if (PN.getType()->isEmptyTy())
10919         continue;
10920 
10921       unsigned Reg;
10922       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10923 
10924       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10925         unsigned &RegOut = ConstantsOut[C];
10926         if (RegOut == 0) {
10927           RegOut = FuncInfo.CreateRegs(C);
10928           // We need to zero/sign extend ConstantInt phi operands to match
10929           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10930           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10931           if (auto *CI = dyn_cast<ConstantInt>(C))
10932             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10933                                                     : ISD::ZERO_EXTEND;
10934           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10935         }
10936         Reg = RegOut;
10937       } else {
10938         DenseMap<const Value *, Register>::iterator I =
10939           FuncInfo.ValueMap.find(PHIOp);
10940         if (I != FuncInfo.ValueMap.end())
10941           Reg = I->second;
10942         else {
10943           assert(isa<AllocaInst>(PHIOp) &&
10944                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10945                  "Didn't codegen value into a register!??");
10946           Reg = FuncInfo.CreateRegs(PHIOp);
10947           CopyValueToVirtualRegister(PHIOp, Reg);
10948         }
10949       }
10950 
10951       // Remember that this register needs to added to the machine PHI node as
10952       // the input for this MBB.
10953       SmallVector<EVT, 4> ValueVTs;
10954       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10955       for (EVT VT : ValueVTs) {
10956         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10957         for (unsigned i = 0; i != NumRegisters; ++i)
10958           FuncInfo.PHINodesToUpdate.push_back(
10959               std::make_pair(&*MBBI++, Reg + i));
10960         Reg += NumRegisters;
10961       }
10962     }
10963   }
10964 
10965   ConstantsOut.clear();
10966 }
10967 
10968 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10969   MachineFunction::iterator I(MBB);
10970   if (++I == FuncInfo.MF->end())
10971     return nullptr;
10972   return &*I;
10973 }
10974 
10975 /// During lowering new call nodes can be created (such as memset, etc.).
10976 /// Those will become new roots of the current DAG, but complications arise
10977 /// when they are tail calls. In such cases, the call lowering will update
10978 /// the root, but the builder still needs to know that a tail call has been
10979 /// lowered in order to avoid generating an additional return.
10980 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10981   // If the node is null, we do have a tail call.
10982   if (MaybeTC.getNode() != nullptr)
10983     DAG.setRoot(MaybeTC);
10984   else
10985     HasTailCall = true;
10986 }
10987 
10988 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10989                                         MachineBasicBlock *SwitchMBB,
10990                                         MachineBasicBlock *DefaultMBB) {
10991   MachineFunction *CurMF = FuncInfo.MF;
10992   MachineBasicBlock *NextMBB = nullptr;
10993   MachineFunction::iterator BBI(W.MBB);
10994   if (++BBI != FuncInfo.MF->end())
10995     NextMBB = &*BBI;
10996 
10997   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10998 
10999   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11000 
11001   if (Size == 2 && W.MBB == SwitchMBB) {
11002     // If any two of the cases has the same destination, and if one value
11003     // is the same as the other, but has one bit unset that the other has set,
11004     // use bit manipulation to do two compares at once.  For example:
11005     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11006     // TODO: This could be extended to merge any 2 cases in switches with 3
11007     // cases.
11008     // TODO: Handle cases where W.CaseBB != SwitchBB.
11009     CaseCluster &Small = *W.FirstCluster;
11010     CaseCluster &Big = *W.LastCluster;
11011 
11012     if (Small.Low == Small.High && Big.Low == Big.High &&
11013         Small.MBB == Big.MBB) {
11014       const APInt &SmallValue = Small.Low->getValue();
11015       const APInt &BigValue = Big.Low->getValue();
11016 
11017       // Check that there is only one bit different.
11018       APInt CommonBit = BigValue ^ SmallValue;
11019       if (CommonBit.isPowerOf2()) {
11020         SDValue CondLHS = getValue(Cond);
11021         EVT VT = CondLHS.getValueType();
11022         SDLoc DL = getCurSDLoc();
11023 
11024         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11025                                  DAG.getConstant(CommonBit, DL, VT));
11026         SDValue Cond = DAG.getSetCC(
11027             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11028             ISD::SETEQ);
11029 
11030         // Update successor info.
11031         // Both Small and Big will jump to Small.BB, so we sum up the
11032         // probabilities.
11033         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11034         if (BPI)
11035           addSuccessorWithProb(
11036               SwitchMBB, DefaultMBB,
11037               // The default destination is the first successor in IR.
11038               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11039         else
11040           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11041 
11042         // Insert the true branch.
11043         SDValue BrCond =
11044             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11045                         DAG.getBasicBlock(Small.MBB));
11046         // Insert the false branch.
11047         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11048                              DAG.getBasicBlock(DefaultMBB));
11049 
11050         DAG.setRoot(BrCond);
11051         return;
11052       }
11053     }
11054   }
11055 
11056   if (TM.getOptLevel() != CodeGenOpt::None) {
11057     // Here, we order cases by probability so the most likely case will be
11058     // checked first. However, two clusters can have the same probability in
11059     // which case their relative ordering is non-deterministic. So we use Low
11060     // as a tie-breaker as clusters are guaranteed to never overlap.
11061     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11062                [](const CaseCluster &a, const CaseCluster &b) {
11063       return a.Prob != b.Prob ?
11064              a.Prob > b.Prob :
11065              a.Low->getValue().slt(b.Low->getValue());
11066     });
11067 
11068     // Rearrange the case blocks so that the last one falls through if possible
11069     // without changing the order of probabilities.
11070     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11071       --I;
11072       if (I->Prob > W.LastCluster->Prob)
11073         break;
11074       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11075         std::swap(*I, *W.LastCluster);
11076         break;
11077       }
11078     }
11079   }
11080 
11081   // Compute total probability.
11082   BranchProbability DefaultProb = W.DefaultProb;
11083   BranchProbability UnhandledProbs = DefaultProb;
11084   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11085     UnhandledProbs += I->Prob;
11086 
11087   MachineBasicBlock *CurMBB = W.MBB;
11088   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11089     bool FallthroughUnreachable = false;
11090     MachineBasicBlock *Fallthrough;
11091     if (I == W.LastCluster) {
11092       // For the last cluster, fall through to the default destination.
11093       Fallthrough = DefaultMBB;
11094       FallthroughUnreachable = isa<UnreachableInst>(
11095           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11096     } else {
11097       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11098       CurMF->insert(BBI, Fallthrough);
11099       // Put Cond in a virtual register to make it available from the new blocks.
11100       ExportFromCurrentBlock(Cond);
11101     }
11102     UnhandledProbs -= I->Prob;
11103 
11104     switch (I->Kind) {
11105       case CC_JumpTable: {
11106         // FIXME: Optimize away range check based on pivot comparisons.
11107         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11108         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11109 
11110         // The jump block hasn't been inserted yet; insert it here.
11111         MachineBasicBlock *JumpMBB = JT->MBB;
11112         CurMF->insert(BBI, JumpMBB);
11113 
11114         auto JumpProb = I->Prob;
11115         auto FallthroughProb = UnhandledProbs;
11116 
11117         // If the default statement is a target of the jump table, we evenly
11118         // distribute the default probability to successors of CurMBB. Also
11119         // update the probability on the edge from JumpMBB to Fallthrough.
11120         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11121                                               SE = JumpMBB->succ_end();
11122              SI != SE; ++SI) {
11123           if (*SI == DefaultMBB) {
11124             JumpProb += DefaultProb / 2;
11125             FallthroughProb -= DefaultProb / 2;
11126             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11127             JumpMBB->normalizeSuccProbs();
11128             break;
11129           }
11130         }
11131 
11132         if (FallthroughUnreachable)
11133           JTH->FallthroughUnreachable = true;
11134 
11135         if (!JTH->FallthroughUnreachable)
11136           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11137         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11138         CurMBB->normalizeSuccProbs();
11139 
11140         // The jump table header will be inserted in our current block, do the
11141         // range check, and fall through to our fallthrough block.
11142         JTH->HeaderBB = CurMBB;
11143         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11144 
11145         // If we're in the right place, emit the jump table header right now.
11146         if (CurMBB == SwitchMBB) {
11147           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11148           JTH->Emitted = true;
11149         }
11150         break;
11151       }
11152       case CC_BitTests: {
11153         // FIXME: Optimize away range check based on pivot comparisons.
11154         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11155 
11156         // The bit test blocks haven't been inserted yet; insert them here.
11157         for (BitTestCase &BTC : BTB->Cases)
11158           CurMF->insert(BBI, BTC.ThisBB);
11159 
11160         // Fill in fields of the BitTestBlock.
11161         BTB->Parent = CurMBB;
11162         BTB->Default = Fallthrough;
11163 
11164         BTB->DefaultProb = UnhandledProbs;
11165         // If the cases in bit test don't form a contiguous range, we evenly
11166         // distribute the probability on the edge to Fallthrough to two
11167         // successors of CurMBB.
11168         if (!BTB->ContiguousRange) {
11169           BTB->Prob += DefaultProb / 2;
11170           BTB->DefaultProb -= DefaultProb / 2;
11171         }
11172 
11173         if (FallthroughUnreachable)
11174           BTB->FallthroughUnreachable = true;
11175 
11176         // If we're in the right place, emit the bit test header right now.
11177         if (CurMBB == SwitchMBB) {
11178           visitBitTestHeader(*BTB, SwitchMBB);
11179           BTB->Emitted = true;
11180         }
11181         break;
11182       }
11183       case CC_Range: {
11184         const Value *RHS, *LHS, *MHS;
11185         ISD::CondCode CC;
11186         if (I->Low == I->High) {
11187           // Check Cond == I->Low.
11188           CC = ISD::SETEQ;
11189           LHS = Cond;
11190           RHS=I->Low;
11191           MHS = nullptr;
11192         } else {
11193           // Check I->Low <= Cond <= I->High.
11194           CC = ISD::SETLE;
11195           LHS = I->Low;
11196           MHS = Cond;
11197           RHS = I->High;
11198         }
11199 
11200         // If Fallthrough is unreachable, fold away the comparison.
11201         if (FallthroughUnreachable)
11202           CC = ISD::SETTRUE;
11203 
11204         // The false probability is the sum of all unhandled cases.
11205         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11206                      getCurSDLoc(), I->Prob, UnhandledProbs);
11207 
11208         if (CurMBB == SwitchMBB)
11209           visitSwitchCase(CB, SwitchMBB);
11210         else
11211           SL->SwitchCases.push_back(CB);
11212 
11213         break;
11214       }
11215     }
11216     CurMBB = Fallthrough;
11217   }
11218 }
11219 
11220 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11221                                               CaseClusterIt First,
11222                                               CaseClusterIt Last) {
11223   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11224     if (X.Prob != CC.Prob)
11225       return X.Prob > CC.Prob;
11226 
11227     // Ties are broken by comparing the case value.
11228     return X.Low->getValue().slt(CC.Low->getValue());
11229   });
11230 }
11231 
11232 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11233                                         const SwitchWorkListItem &W,
11234                                         Value *Cond,
11235                                         MachineBasicBlock *SwitchMBB) {
11236   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11237          "Clusters not sorted?");
11238 
11239   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11240 
11241   // Balance the tree based on branch probabilities to create a near-optimal (in
11242   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11243   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11244   CaseClusterIt LastLeft = W.FirstCluster;
11245   CaseClusterIt FirstRight = W.LastCluster;
11246   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11247   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11248 
11249   // Move LastLeft and FirstRight towards each other from opposite directions to
11250   // find a partitioning of the clusters which balances the probability on both
11251   // sides. If LeftProb and RightProb are equal, alternate which side is
11252   // taken to ensure 0-probability nodes are distributed evenly.
11253   unsigned I = 0;
11254   while (LastLeft + 1 < FirstRight) {
11255     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11256       LeftProb += (++LastLeft)->Prob;
11257     else
11258       RightProb += (--FirstRight)->Prob;
11259     I++;
11260   }
11261 
11262   while (true) {
11263     // Our binary search tree differs from a typical BST in that ours can have up
11264     // to three values in each leaf. The pivot selection above doesn't take that
11265     // into account, which means the tree might require more nodes and be less
11266     // efficient. We compensate for this here.
11267 
11268     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11269     unsigned NumRight = W.LastCluster - FirstRight + 1;
11270 
11271     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11272       // If one side has less than 3 clusters, and the other has more than 3,
11273       // consider taking a cluster from the other side.
11274 
11275       if (NumLeft < NumRight) {
11276         // Consider moving the first cluster on the right to the left side.
11277         CaseCluster &CC = *FirstRight;
11278         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11279         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11280         if (LeftSideRank <= RightSideRank) {
11281           // Moving the cluster to the left does not demote it.
11282           ++LastLeft;
11283           ++FirstRight;
11284           continue;
11285         }
11286       } else {
11287         assert(NumRight < NumLeft);
11288         // Consider moving the last element on the left to the right side.
11289         CaseCluster &CC = *LastLeft;
11290         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11291         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11292         if (RightSideRank <= LeftSideRank) {
11293           // Moving the cluster to the right does not demot it.
11294           --LastLeft;
11295           --FirstRight;
11296           continue;
11297         }
11298       }
11299     }
11300     break;
11301   }
11302 
11303   assert(LastLeft + 1 == FirstRight);
11304   assert(LastLeft >= W.FirstCluster);
11305   assert(FirstRight <= W.LastCluster);
11306 
11307   // Use the first element on the right as pivot since we will make less-than
11308   // comparisons against it.
11309   CaseClusterIt PivotCluster = FirstRight;
11310   assert(PivotCluster > W.FirstCluster);
11311   assert(PivotCluster <= W.LastCluster);
11312 
11313   CaseClusterIt FirstLeft = W.FirstCluster;
11314   CaseClusterIt LastRight = W.LastCluster;
11315 
11316   const ConstantInt *Pivot = PivotCluster->Low;
11317 
11318   // New blocks will be inserted immediately after the current one.
11319   MachineFunction::iterator BBI(W.MBB);
11320   ++BBI;
11321 
11322   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11323   // we can branch to its destination directly if it's squeezed exactly in
11324   // between the known lower bound and Pivot - 1.
11325   MachineBasicBlock *LeftMBB;
11326   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11327       FirstLeft->Low == W.GE &&
11328       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11329     LeftMBB = FirstLeft->MBB;
11330   } else {
11331     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11332     FuncInfo.MF->insert(BBI, LeftMBB);
11333     WorkList.push_back(
11334         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11335     // Put Cond in a virtual register to make it available from the new blocks.
11336     ExportFromCurrentBlock(Cond);
11337   }
11338 
11339   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11340   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11341   // directly if RHS.High equals the current upper bound.
11342   MachineBasicBlock *RightMBB;
11343   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11344       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11345     RightMBB = FirstRight->MBB;
11346   } else {
11347     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11348     FuncInfo.MF->insert(BBI, RightMBB);
11349     WorkList.push_back(
11350         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11351     // Put Cond in a virtual register to make it available from the new blocks.
11352     ExportFromCurrentBlock(Cond);
11353   }
11354 
11355   // Create the CaseBlock record that will be used to lower the branch.
11356   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11357                getCurSDLoc(), LeftProb, RightProb);
11358 
11359   if (W.MBB == SwitchMBB)
11360     visitSwitchCase(CB, SwitchMBB);
11361   else
11362     SL->SwitchCases.push_back(CB);
11363 }
11364 
11365 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11366 // from the swith statement.
11367 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11368                                             BranchProbability PeeledCaseProb) {
11369   if (PeeledCaseProb == BranchProbability::getOne())
11370     return BranchProbability::getZero();
11371   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11372 
11373   uint32_t Numerator = CaseProb.getNumerator();
11374   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11375   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11376 }
11377 
11378 // Try to peel the top probability case if it exceeds the threshold.
11379 // Return current MachineBasicBlock for the switch statement if the peeling
11380 // does not occur.
11381 // If the peeling is performed, return the newly created MachineBasicBlock
11382 // for the peeled switch statement. Also update Clusters to remove the peeled
11383 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11384 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11385     const SwitchInst &SI, CaseClusterVector &Clusters,
11386     BranchProbability &PeeledCaseProb) {
11387   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11388   // Don't perform if there is only one cluster or optimizing for size.
11389   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11390       TM.getOptLevel() == CodeGenOpt::None ||
11391       SwitchMBB->getParent()->getFunction().hasMinSize())
11392     return SwitchMBB;
11393 
11394   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11395   unsigned PeeledCaseIndex = 0;
11396   bool SwitchPeeled = false;
11397   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11398     CaseCluster &CC = Clusters[Index];
11399     if (CC.Prob < TopCaseProb)
11400       continue;
11401     TopCaseProb = CC.Prob;
11402     PeeledCaseIndex = Index;
11403     SwitchPeeled = true;
11404   }
11405   if (!SwitchPeeled)
11406     return SwitchMBB;
11407 
11408   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11409                     << TopCaseProb << "\n");
11410 
11411   // Record the MBB for the peeled switch statement.
11412   MachineFunction::iterator BBI(SwitchMBB);
11413   ++BBI;
11414   MachineBasicBlock *PeeledSwitchMBB =
11415       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11416   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11417 
11418   ExportFromCurrentBlock(SI.getCondition());
11419   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11420   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11421                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11422   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11423 
11424   Clusters.erase(PeeledCaseIt);
11425   for (CaseCluster &CC : Clusters) {
11426     LLVM_DEBUG(
11427         dbgs() << "Scale the probablity for one cluster, before scaling: "
11428                << CC.Prob << "\n");
11429     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11430     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11431   }
11432   PeeledCaseProb = TopCaseProb;
11433   return PeeledSwitchMBB;
11434 }
11435 
11436 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11437   // Extract cases from the switch.
11438   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11439   CaseClusterVector Clusters;
11440   Clusters.reserve(SI.getNumCases());
11441   for (auto I : SI.cases()) {
11442     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11443     const ConstantInt *CaseVal = I.getCaseValue();
11444     BranchProbability Prob =
11445         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11446             : BranchProbability(1, SI.getNumCases() + 1);
11447     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11448   }
11449 
11450   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11451 
11452   // Cluster adjacent cases with the same destination. We do this at all
11453   // optimization levels because it's cheap to do and will make codegen faster
11454   // if there are many clusters.
11455   sortAndRangeify(Clusters);
11456 
11457   // The branch probablity of the peeled case.
11458   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11459   MachineBasicBlock *PeeledSwitchMBB =
11460       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11461 
11462   // If there is only the default destination, jump there directly.
11463   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11464   if (Clusters.empty()) {
11465     assert(PeeledSwitchMBB == SwitchMBB);
11466     SwitchMBB->addSuccessor(DefaultMBB);
11467     if (DefaultMBB != NextBlock(SwitchMBB)) {
11468       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11469                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11470     }
11471     return;
11472   }
11473 
11474   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11475   SL->findBitTestClusters(Clusters, &SI);
11476 
11477   LLVM_DEBUG({
11478     dbgs() << "Case clusters: ";
11479     for (const CaseCluster &C : Clusters) {
11480       if (C.Kind == CC_JumpTable)
11481         dbgs() << "JT:";
11482       if (C.Kind == CC_BitTests)
11483         dbgs() << "BT:";
11484 
11485       C.Low->getValue().print(dbgs(), true);
11486       if (C.Low != C.High) {
11487         dbgs() << '-';
11488         C.High->getValue().print(dbgs(), true);
11489       }
11490       dbgs() << ' ';
11491     }
11492     dbgs() << '\n';
11493   });
11494 
11495   assert(!Clusters.empty());
11496   SwitchWorkList WorkList;
11497   CaseClusterIt First = Clusters.begin();
11498   CaseClusterIt Last = Clusters.end() - 1;
11499   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11500   // Scale the branchprobability for DefaultMBB if the peel occurs and
11501   // DefaultMBB is not replaced.
11502   if (PeeledCaseProb != BranchProbability::getZero() &&
11503       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11504     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11505   WorkList.push_back(
11506       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11507 
11508   while (!WorkList.empty()) {
11509     SwitchWorkListItem W = WorkList.pop_back_val();
11510     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11511 
11512     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11513         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11514       // For optimized builds, lower large range as a balanced binary tree.
11515       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11516       continue;
11517     }
11518 
11519     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11520   }
11521 }
11522 
11523 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11525   auto DL = getCurSDLoc();
11526   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11527   setValue(&I, DAG.getStepVector(DL, ResultVT));
11528 }
11529 
11530 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11532   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11533 
11534   SDLoc DL = getCurSDLoc();
11535   SDValue V = getValue(I.getOperand(0));
11536   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11537 
11538   if (VT.isScalableVector()) {
11539     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11540     return;
11541   }
11542 
11543   // Use VECTOR_SHUFFLE for the fixed-length vector
11544   // to maintain existing behavior.
11545   SmallVector<int, 8> Mask;
11546   unsigned NumElts = VT.getVectorMinNumElements();
11547   for (unsigned i = 0; i != NumElts; ++i)
11548     Mask.push_back(NumElts - 1 - i);
11549 
11550   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11551 }
11552 
11553 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11554   SmallVector<EVT, 4> ValueVTs;
11555   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11556                   ValueVTs);
11557   unsigned NumValues = ValueVTs.size();
11558   if (NumValues == 0) return;
11559 
11560   SmallVector<SDValue, 4> Values(NumValues);
11561   SDValue Op = getValue(I.getOperand(0));
11562 
11563   for (unsigned i = 0; i != NumValues; ++i)
11564     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11565                             SDValue(Op.getNode(), Op.getResNo() + i));
11566 
11567   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11568                            DAG.getVTList(ValueVTs), Values));
11569 }
11570 
11571 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11573   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11574 
11575   SDLoc DL = getCurSDLoc();
11576   SDValue V1 = getValue(I.getOperand(0));
11577   SDValue V2 = getValue(I.getOperand(1));
11578   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11579 
11580   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11581   if (VT.isScalableVector()) {
11582     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11583     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11584                              DAG.getConstant(Imm, DL, IdxVT)));
11585     return;
11586   }
11587 
11588   unsigned NumElts = VT.getVectorNumElements();
11589 
11590   uint64_t Idx = (NumElts + Imm) % NumElts;
11591 
11592   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11593   SmallVector<int, 8> Mask;
11594   for (unsigned i = 0; i < NumElts; ++i)
11595     Mask.push_back(Idx + i);
11596   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11597 }
11598