1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GetElementPtrTypeIterator.h" 71 #include "llvm/IR/InlineAsm.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsAArch64.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Statepoint.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/Support/AtomicOrdering.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <cstddef> 100 #include <iterator> 101 #include <limits> 102 #include <optional> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace PatternMatch; 107 using namespace SwitchCG; 108 109 #define DEBUG_TYPE "isel" 110 111 /// LimitFloatPrecision - Generate low-precision inline sequences for 112 /// some float libcalls (6, 8 or 12 bits). 113 static unsigned LimitFloatPrecision; 114 115 static cl::opt<bool> 116 InsertAssertAlign("insert-assert-align", cl::init(true), 117 cl::desc("Insert the experimental `assertalign` node."), 118 cl::ReallyHidden); 119 120 static cl::opt<unsigned, true> 121 LimitFPPrecision("limit-float-precision", 122 cl::desc("Generate low-precision inline sequences " 123 "for some float libcalls"), 124 cl::location(LimitFloatPrecision), cl::Hidden, 125 cl::init(0)); 126 127 static cl::opt<unsigned> SwitchPeelThreshold( 128 "switch-peel-threshold", cl::Hidden, cl::init(66), 129 cl::desc("Set the case probability threshold for peeling the case from a " 130 "switch statement. A value greater than 100 will void this " 131 "optimization")); 132 133 // Limit the width of DAG chains. This is important in general to prevent 134 // DAG-based analysis from blowing up. For example, alias analysis and 135 // load clustering may not complete in reasonable time. It is difficult to 136 // recognize and avoid this situation within each individual analysis, and 137 // future analyses are likely to have the same behavior. Limiting DAG width is 138 // the safe approach and will be especially important with global DAGs. 139 // 140 // MaxParallelChains default is arbitrarily high to avoid affecting 141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 142 // sequence over this should have been converted to llvm.memcpy by the 143 // frontend. It is easy to induce this behavior with .ll code such as: 144 // %buffer = alloca [4096 x i8] 145 // %data = load [4096 x i8]* %argPtr 146 // store [4096 x i8] %data, [4096 x i8]* %buffer 147 static const unsigned MaxParallelChains = 64; 148 149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 150 const SDValue *Parts, unsigned NumParts, 151 MVT PartVT, EVT ValueVT, const Value *V, 152 std::optional<CallingConv::ID> CC); 153 154 /// getCopyFromParts - Create a value that contains the specified legal parts 155 /// combined into the value they represent. If the parts combine to a type 156 /// larger than ValueVT then AssertOp can be used to specify whether the extra 157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 158 /// (ISD::AssertSext). 159 static SDValue 160 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 161 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 162 std::optional<CallingConv::ID> CC = std::nullopt, 163 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 164 // Let the target assemble the parts if it wants to 165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 166 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 167 PartVT, ValueVT, CC)) 168 return Val; 169 170 if (ValueVT.isVector()) 171 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 172 CC); 173 174 assert(NumParts > 0 && "No parts to assemble!"); 175 SDValue Val = Parts[0]; 176 177 if (NumParts > 1) { 178 // Assemble the value from multiple parts. 179 if (ValueVT.isInteger()) { 180 unsigned PartBits = PartVT.getSizeInBits(); 181 unsigned ValueBits = ValueVT.getSizeInBits(); 182 183 // Assemble the power of 2 part. 184 unsigned RoundParts = 185 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 std::optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the parts vector has more elements than the value vector, then we 402 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 403 // Extract the elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 421 // Promoted vector extract 422 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 423 } 424 425 // Trivial bitcast if the types are the same size and the destination 426 // vector type is legal. 427 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 428 TLI.isTypeLegal(ValueVT)) 429 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 430 431 if (ValueVT.getVectorNumElements() != 1) { 432 // Certain ABIs require that vectors are passed as integers. For vectors 433 // are the same size, this is an obvious bitcast. 434 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 } else if (ValueVT.bitsLT(PartEVT)) { 437 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 438 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 439 // Drop the extra bits. 440 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 441 return DAG.getBitcast(ValueVT, Val); 442 } 443 444 diagnosePossiblyInvalidConstraint( 445 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 446 return DAG.getUNDEF(ValueVT); 447 } 448 449 // Handle cases such as i8 -> <1 x i1> 450 EVT ValueSVT = ValueVT.getVectorElementType(); 451 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 452 unsigned ValueSize = ValueSVT.getSizeInBits(); 453 if (ValueSize == PartEVT.getSizeInBits()) { 454 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 455 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 456 // It's possible a scalar floating point type gets softened to integer and 457 // then promoted to a larger integer. If PartEVT is the larger integer 458 // we need to truncate it and then bitcast to the FP type. 459 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 Val = DAG.getBitcast(ValueSVT, Val); 463 } else { 464 Val = ValueVT.isFloatingPoint() 465 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 } 468 } 469 470 return DAG.getBuildVector(ValueVT, DL, Val); 471 } 472 473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V, 476 std::optional<CallingConv::ID> CallConv); 477 478 /// getCopyToParts - Create a series of nodes that contain the specified value 479 /// split into legal parts. If the parts contain more bits than Val, then, for 480 /// integers, ExtendKind can be used to specify how to generate the extra bits. 481 static void 482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 483 unsigned NumParts, MVT PartVT, const Value *V, 484 std::optional<CallingConv::ID> CallConv = std::nullopt, 485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 486 // Let the target split the parts if it wants to 487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 488 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 489 CallConv)) 490 return; 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 575 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 619 const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 ElementCount PartNumElts = PartVT.getVectorElementCount(); 625 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 626 627 // We only support widening vectors with equivalent element types and 628 // fixed/scalable properties. If a target needs to widen a fixed-length type 629 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 630 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 631 PartNumElts.isScalable() != ValueNumElts.isScalable() || 632 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 633 return SDValue(); 634 635 // Widening a scalable vector to another scalable vector is done by inserting 636 // the vector into a larger undef one. 637 if (PartNumElts.isScalable()) 638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 639 Val, DAG.getVectorIdxConstant(0, DL)); 640 641 EVT ElementVT = PartVT.getVectorElementType(); 642 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 643 // undef elements. 644 SmallVector<SDValue, 16> Ops; 645 DAG.ExtractVectorElements(Val, Ops); 646 SDValue EltUndef = DAG.getUNDEF(ElementVT); 647 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 /// getCopyToPartsVector - Create a series of nodes that contain the specified 654 /// value split into legal parts. 655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 656 SDValue Val, SDValue *Parts, unsigned NumParts, 657 MVT PartVT, const Value *V, 658 std::optional<CallingConv::ID> CallConv) { 659 EVT ValueVT = Val.getValueType(); 660 assert(ValueVT.isVector() && "Not a vector"); 661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 662 const bool IsABIRegCopy = CallConv.has_value(); 663 664 if (NumParts == 1) { 665 EVT PartEVT = PartVT; 666 if (PartEVT == ValueVT) { 667 // Nothing to do. 668 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 669 // Bitconvert vector->vector case. 670 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 671 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 672 Val = Widened; 673 } else if (PartVT.isVector() && 674 PartEVT.getVectorElementType().bitsGE( 675 ValueVT.getVectorElementType()) && 676 PartEVT.getVectorElementCount() == 677 ValueVT.getVectorElementCount()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else if (PartEVT.isVector() && 682 PartEVT.getVectorElementType() != 683 ValueVT.getVectorElementType() && 684 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 685 TargetLowering::TypeWidenVector) { 686 // Combination of widening and promotion. 687 EVT WidenVT = 688 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 689 PartVT.getVectorElementCount()); 690 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 691 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 692 } else { 693 // Don't extract an integer from a float vector. This can happen if the 694 // FP type gets softened to integer and then promoted. The promotion 695 // prevents it from being picked up by the earlier bitcast case. 696 if (ValueVT.getVectorElementCount().isScalar() && 697 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 698 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 699 DAG.getVectorIdxConstant(0, DL)); 700 } else { 701 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 702 assert(PartVT.getFixedSizeInBits() > ValueSize && 703 "lossy conversion of vector to scalar type"); 704 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 705 Val = DAG.getBitcast(IntermediateType, Val); 706 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 707 } 708 } 709 710 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 711 Parts[0] = Val; 712 return; 713 } 714 715 // Handle a multi-element vector. 716 EVT IntermediateVT; 717 MVT RegisterVT; 718 unsigned NumIntermediates; 719 unsigned NumRegs; 720 if (IsABIRegCopy) { 721 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 722 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 723 NumIntermediates, RegisterVT); 724 } else { 725 NumRegs = 726 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 727 NumIntermediates, RegisterVT); 728 } 729 730 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 731 NumParts = NumRegs; // Silence a compiler warning. 732 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 733 734 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 735 "Mixing scalable and fixed vectors when copying in parts"); 736 737 std::optional<ElementCount> DestEltCnt; 738 739 if (IntermediateVT.isVector()) 740 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 741 else 742 DestEltCnt = ElementCount::getFixed(NumIntermediates); 743 744 EVT BuiltVectorTy = EVT::getVectorVT( 745 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 746 747 if (ValueVT == BuiltVectorTy) { 748 // Nothing to do. 749 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 750 // Bitconvert vector->vector case. 751 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 752 } else { 753 if (BuiltVectorTy.getVectorElementType().bitsGT( 754 ValueVT.getVectorElementType())) { 755 // Integer promotion. 756 ValueVT = EVT::getVectorVT(*DAG.getContext(), 757 BuiltVectorTy.getVectorElementType(), 758 ValueVT.getVectorElementCount()); 759 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 760 } 761 762 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 763 Val = Widened; 764 } 765 } 766 767 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 768 769 // Split the vector into intermediate operands. 770 SmallVector<SDValue, 8> Ops(NumIntermediates); 771 for (unsigned i = 0; i != NumIntermediates; ++i) { 772 if (IntermediateVT.isVector()) { 773 // This does something sensible for scalable vectors - see the 774 // definition of EXTRACT_SUBVECTOR for further details. 775 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 776 Ops[i] = 777 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 778 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 779 } else { 780 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 781 DAG.getVectorIdxConstant(i, DL)); 782 } 783 } 784 785 // Split the intermediate operands into legal parts. 786 if (NumParts == NumIntermediates) { 787 // If the register was not expanded, promote or copy the value, 788 // as appropriate. 789 for (unsigned i = 0; i != NumParts; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 791 } else if (NumParts > 0) { 792 // If the intermediate type was expanded, split each the value into 793 // legal parts. 794 assert(NumIntermediates != 0 && "division by zero"); 795 assert(NumParts % NumIntermediates == 0 && 796 "Must expand into a divisible number of parts!"); 797 unsigned Factor = NumParts / NumIntermediates; 798 for (unsigned i = 0; i != NumIntermediates; ++i) 799 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 800 CallConv); 801 } 802 } 803 804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 805 EVT valuevt, std::optional<CallingConv::ID> CC) 806 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 807 RegCount(1, regs.size()), CallConv(CC) {} 808 809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 810 const DataLayout &DL, unsigned Reg, Type *Ty, 811 std::optional<CallingConv::ID> CC) { 812 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 813 814 CallConv = CC; 815 816 for (EVT ValueVT : ValueVTs) { 817 unsigned NumRegs = 818 isABIMangled() 819 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 820 : TLI.getNumRegisters(Context, ValueVT); 821 MVT RegisterVT = 822 isABIMangled() 823 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 824 : TLI.getRegisterType(Context, ValueVT); 825 for (unsigned i = 0; i != NumRegs; ++i) 826 Regs.push_back(Reg + i); 827 RegVTs.push_back(RegisterVT); 828 RegCount.push_back(NumRegs); 829 Reg += NumRegs; 830 } 831 } 832 833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 834 FunctionLoweringInfo &FuncInfo, 835 const SDLoc &dl, SDValue &Chain, 836 SDValue *Flag, const Value *V) const { 837 // A Value with type {} or [0 x %t] needs no registers. 838 if (ValueVTs.empty()) 839 return SDValue(); 840 841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 842 843 // Assemble the legal parts into the final values. 844 SmallVector<SDValue, 4> Values(ValueVTs.size()); 845 SmallVector<SDValue, 8> Parts; 846 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 // Copy the legal parts from the registers. 848 EVT ValueVT = ValueVTs[Value]; 849 unsigned NumRegs = RegCount[Value]; 850 MVT RegisterVT = 851 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 852 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 853 : RegVTs[Value]; 854 855 Parts.resize(NumRegs); 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 SDValue P; 858 if (!Flag) { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 860 } else { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 862 *Flag = P.getValue(2); 863 } 864 865 Chain = P.getValue(1); 866 Parts[i] = P; 867 868 // If the source register was virtual and if we know something about it, 869 // add an assert node. 870 if (!Register::isVirtualRegister(Regs[Part + i]) || 871 !RegisterVT.isInteger()) 872 continue; 873 874 const FunctionLoweringInfo::LiveOutInfo *LOI = 875 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 876 if (!LOI) 877 continue; 878 879 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 880 unsigned NumSignBits = LOI->NumSignBits; 881 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 882 883 if (NumZeroBits == RegSize) { 884 // The current value is a zero. 885 // Explicitly express that as it would be easier for 886 // optimizations to kick in. 887 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 888 continue; 889 } 890 891 // FIXME: We capture more information than the dag can represent. For 892 // now, just use the tightest assertzext/assertsext possible. 893 bool isSExt; 894 EVT FromVT(MVT::Other); 895 if (NumZeroBits) { 896 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 897 isSExt = false; 898 } else if (NumSignBits > 1) { 899 FromVT = 900 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 901 isSExt = true; 902 } else { 903 continue; 904 } 905 // Add an assertion node. 906 assert(FromVT != MVT::Other); 907 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 908 RegisterVT, P, DAG.getValueType(FromVT)); 909 } 910 911 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 912 RegisterVT, ValueVT, V, CallConv); 913 Part += NumRegs; 914 Parts.clear(); 915 } 916 917 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 918 } 919 920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 921 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 922 const Value *V, 923 ISD::NodeType PreferredExtendType) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 ISD::NodeType ExtendKind = PreferredExtendType; 926 927 // Get the list of the values's legal parts. 928 unsigned NumRegs = Regs.size(); 929 SmallVector<SDValue, 8> Parts(NumRegs); 930 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 931 unsigned NumParts = RegCount[Value]; 932 933 MVT RegisterVT = 934 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 935 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 936 : RegVTs[Value]; 937 938 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 939 ExtendKind = ISD::ZERO_EXTEND; 940 941 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 942 NumParts, RegisterVT, V, CallConv, ExtendKind); 943 Part += NumParts; 944 } 945 946 // Copy the parts into the registers. 947 SmallVector<SDValue, 8> Chains(NumRegs); 948 for (unsigned i = 0; i != NumRegs; ++i) { 949 SDValue Part; 950 if (!Flag) { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 952 } else { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 954 *Flag = Part.getValue(1); 955 } 956 957 Chains[i] = Part.getValue(0); 958 } 959 960 if (NumRegs == 1 || Flag) 961 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 962 // flagged to it. That is the CopyToReg nodes and the user are considered 963 // a single scheduling unit. If we create a TokenFactor and return it as 964 // chain, then the TokenFactor is both a predecessor (operand) of the 965 // user as well as a successor (the TF operands are flagged to the user). 966 // c1, f1 = CopyToReg 967 // c2, f2 = CopyToReg 968 // c3 = TokenFactor c1, c2 969 // ... 970 // = op c3, ..., f2 971 Chain = Chains[NumRegs-1]; 972 else 973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 974 } 975 976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 977 unsigned MatchingIdx, const SDLoc &dl, 978 SelectionDAG &DAG, 979 std::vector<SDValue> &Ops) const { 980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 981 982 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 983 if (HasMatching) 984 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 985 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 986 // Put the register class of the virtual registers in the flag word. That 987 // way, later passes can recompute register class constraints for inline 988 // assembly as well as normal instructions. 989 // Don't do this for tied operands that can use the regclass information 990 // from the def. 991 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 992 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 993 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 994 } 995 996 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 997 Ops.push_back(Res); 998 999 if (Code == InlineAsm::Kind_Clobber) { 1000 // Clobbers should always have a 1:1 mapping with registers, and may 1001 // reference registers that have illegal (e.g. vector) types. Hence, we 1002 // shouldn't try to apply any sort of splitting logic to them. 1003 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1004 "No 1:1 mapping from clobbers to regs?"); 1005 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1006 (void)SP; 1007 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1008 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1009 assert( 1010 (Regs[I] != SP || 1011 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1012 "If we clobbered the stack pointer, MFI should know about it."); 1013 } 1014 return; 1015 } 1016 1017 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1018 MVT RegisterVT = RegVTs[Value]; 1019 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1020 RegisterVT); 1021 for (unsigned i = 0; i != NumRegs; ++i) { 1022 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1023 unsigned TheReg = Regs[Reg++]; 1024 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1025 } 1026 } 1027 } 1028 1029 SmallVector<std::pair<unsigned, TypeSize>, 4> 1030 RegsForValue::getRegsAndSizes() const { 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1032 unsigned I = 0; 1033 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1034 unsigned RegCount = std::get<0>(CountAndVT); 1035 MVT RegisterVT = std::get<1>(CountAndVT); 1036 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1037 for (unsigned E = I + RegCount; I != E; ++I) 1038 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1039 } 1040 return OutVec; 1041 } 1042 1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1044 AssumptionCache *ac, 1045 const TargetLibraryInfo *li) { 1046 AA = aa; 1047 AC = ac; 1048 GFI = gfi; 1049 LibInfo = li; 1050 Context = DAG.getContext(); 1051 LPadToCallSiteMap.clear(); 1052 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1053 } 1054 1055 void SelectionDAGBuilder::clear() { 1056 NodeMap.clear(); 1057 UnusedArgNodeMap.clear(); 1058 PendingLoads.clear(); 1059 PendingExports.clear(); 1060 PendingConstrainedFP.clear(); 1061 PendingConstrainedFPStrict.clear(); 1062 CurInst = nullptr; 1063 HasTailCall = false; 1064 SDNodeOrder = LowestSDNodeOrder; 1065 StatepointLowering.clear(); 1066 } 1067 1068 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1069 DanglingDebugInfoMap.clear(); 1070 } 1071 1072 // Update DAG root to include dependencies on Pending chains. 1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1074 SDValue Root = DAG.getRoot(); 1075 1076 if (Pending.empty()) 1077 return Root; 1078 1079 // Add current root to PendingChains, unless we already indirectly 1080 // depend on it. 1081 if (Root.getOpcode() != ISD::EntryToken) { 1082 unsigned i = 0, e = Pending.size(); 1083 for (; i != e; ++i) { 1084 assert(Pending[i].getNode()->getNumOperands() > 1); 1085 if (Pending[i].getNode()->getOperand(0) == Root) 1086 break; // Don't add the root if we already indirectly depend on it. 1087 } 1088 1089 if (i == e) 1090 Pending.push_back(Root); 1091 } 1092 1093 if (Pending.size() == 1) 1094 Root = Pending[0]; 1095 else 1096 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1097 1098 DAG.setRoot(Root); 1099 Pending.clear(); 1100 return Root; 1101 } 1102 1103 SDValue SelectionDAGBuilder::getMemoryRoot() { 1104 return updateRoot(PendingLoads); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getRoot() { 1108 // Chain up all pending constrained intrinsics together with all 1109 // pending loads, by simply appending them to PendingLoads and 1110 // then calling getMemoryRoot(). 1111 PendingLoads.reserve(PendingLoads.size() + 1112 PendingConstrainedFP.size() + 1113 PendingConstrainedFPStrict.size()); 1114 PendingLoads.append(PendingConstrainedFP.begin(), 1115 PendingConstrainedFP.end()); 1116 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFP.clear(); 1119 PendingConstrainedFPStrict.clear(); 1120 return getMemoryRoot(); 1121 } 1122 1123 SDValue SelectionDAGBuilder::getControlRoot() { 1124 // We need to emit pending fpexcept.strict constrained intrinsics, 1125 // so append them to the PendingExports list. 1126 PendingExports.append(PendingConstrainedFPStrict.begin(), 1127 PendingConstrainedFPStrict.end()); 1128 PendingConstrainedFPStrict.clear(); 1129 return updateRoot(PendingExports); 1130 } 1131 1132 void SelectionDAGBuilder::visit(const Instruction &I) { 1133 // Set up outgoing PHI node register values before emitting the terminator. 1134 if (I.isTerminator()) { 1135 HandlePHINodesInSuccessorBlocks(I.getParent()); 1136 } 1137 1138 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1139 if (!isa<DbgInfoIntrinsic>(I)) 1140 ++SDNodeOrder; 1141 1142 CurInst = &I; 1143 1144 // Set inserted listener only if required. 1145 bool NodeInserted = false; 1146 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1147 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1148 if (PCSectionsMD) { 1149 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1150 DAG, [&](SDNode *) { NodeInserted = true; }); 1151 } 1152 1153 visit(I.getOpcode(), I); 1154 1155 if (!I.isTerminator() && !HasTailCall && 1156 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1157 CopyToExportRegsIfNeeded(&I); 1158 1159 // Handle metadata. 1160 if (PCSectionsMD) { 1161 auto It = NodeMap.find(&I); 1162 if (It != NodeMap.end()) { 1163 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1164 } else if (NodeInserted) { 1165 // This should not happen; if it does, don't let it go unnoticed so we can 1166 // fix it. Relevant visit*() function is probably missing a setValue(). 1167 errs() << "warning: loosing !pcsections metadata [" 1168 << I.getModule()->getName() << "]\n"; 1169 LLVM_DEBUG(I.dump()); 1170 assert(false); 1171 } 1172 } 1173 1174 CurInst = nullptr; 1175 } 1176 1177 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1178 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1179 } 1180 1181 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1182 // Note: this doesn't use InstVisitor, because it has to work with 1183 // ConstantExpr's in addition to instructions. 1184 switch (Opcode) { 1185 default: llvm_unreachable("Unknown instruction type encountered!"); 1186 // Build the switch statement using the Instruction.def file. 1187 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1188 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1189 #include "llvm/IR/Instruction.def" 1190 } 1191 } 1192 1193 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1194 unsigned Order) { 1195 // We treat variadic dbg_values differently at this stage. 1196 if (DI->hasArgList()) { 1197 // For variadic dbg_values we will now insert an undef. 1198 // FIXME: We can potentially recover these! 1199 SmallVector<SDDbgOperand, 2> Locs; 1200 for (const Value *V : DI->getValues()) { 1201 auto Undef = UndefValue::get(V->getType()); 1202 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1203 } 1204 SDDbgValue *SDV = DAG.getDbgValueList( 1205 DI->getVariable(), DI->getExpression(), Locs, {}, 1206 /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true); 1207 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1208 } else { 1209 // TODO: Dangling debug info will eventually either be resolved or produce 1210 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1211 // between the original dbg.value location and its resolved DBG_VALUE, 1212 // which we should ideally fill with an extra Undef DBG_VALUE. 1213 assert(DI->getNumVariableLocationOps() == 1 && 1214 "DbgValueInst without an ArgList should have a single location " 1215 "operand."); 1216 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1217 } 1218 } 1219 1220 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1221 const DIExpression *Expr) { 1222 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1223 DIVariable *DanglingVariable = DDI.getVariable(); 1224 DIExpression *DanglingExpr = DDI.getExpression(); 1225 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1226 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << DDI << "\n"); 1227 return true; 1228 } 1229 return false; 1230 }; 1231 1232 for (auto &DDIMI : DanglingDebugInfoMap) { 1233 DanglingDebugInfoVector &DDIV = DDIMI.second; 1234 1235 // If debug info is to be dropped, run it through final checks to see 1236 // whether it can be salvaged. 1237 for (auto &DDI : DDIV) 1238 if (isMatchingDbgValue(DDI)) 1239 salvageUnresolvedDbgValue(DDI); 1240 1241 erase_if(DDIV, isMatchingDbgValue); 1242 } 1243 } 1244 1245 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1246 // generate the debug data structures now that we've seen its definition. 1247 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1248 SDValue Val) { 1249 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1250 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1251 return; 1252 1253 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1254 for (auto &DDI : DDIV) { 1255 DebugLoc DL = DDI.getDebugLoc(); 1256 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1257 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1258 DILocalVariable *Variable = DDI.getVariable(); 1259 DIExpression *Expr = DDI.getExpression(); 1260 assert(Variable->isValidLocationForIntrinsic(DL) && 1261 "Expected inlined-at fields to agree"); 1262 SDDbgValue *SDV; 1263 if (Val.getNode()) { 1264 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1265 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1266 // we couldn't resolve it directly when examining the DbgValue intrinsic 1267 // in the first place we should not be more successful here). Unless we 1268 // have some test case that prove this to be correct we should avoid 1269 // calling EmitFuncArgumentDbgValue here. 1270 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1271 FuncArgumentDbgValueKind::Value, Val)) { 1272 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << DDI << "\n"); 1273 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1274 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1275 // inserted after the definition of Val when emitting the instructions 1276 // after ISel. An alternative could be to teach 1277 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1278 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1279 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1280 << ValSDNodeOrder << "\n"); 1281 SDV = getDbgValue(Val, Variable, Expr, DL, 1282 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1283 DAG.AddDbgValue(SDV, false); 1284 } else 1285 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << DDI 1286 << "in EmitFuncArgumentDbgValue\n"); 1287 } else { 1288 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DDI << "\n"); 1289 auto Undef = UndefValue::get(V->getType()); 1290 auto SDV = 1291 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1292 DAG.AddDbgValue(SDV, false); 1293 } 1294 } 1295 DDIV.clear(); 1296 } 1297 1298 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1299 // TODO: For the variadic implementation, instead of only checking the fail 1300 // state of `handleDebugValue`, we need know specifically which values were 1301 // invalid, so that we attempt to salvage only those values when processing 1302 // a DIArgList. 1303 Value *V = DDI.getVariableLocationOp(0); 1304 Value *OrigV = V; 1305 DILocalVariable *Var = DDI.getVariable(); 1306 DIExpression *Expr = DDI.getExpression(); 1307 DebugLoc DL = DDI.getDebugLoc(); 1308 unsigned SDOrder = DDI.getSDNodeOrder(); 1309 1310 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1311 // that DW_OP_stack_value is desired. 1312 bool StackValue = true; 1313 1314 // Can this Value can be encoded without any further work? 1315 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1316 return; 1317 1318 // Attempt to salvage back through as many instructions as possible. Bail if 1319 // a non-instruction is seen, such as a constant expression or global 1320 // variable. FIXME: Further work could recover those too. 1321 while (isa<Instruction>(V)) { 1322 Instruction &VAsInst = *cast<Instruction>(V); 1323 // Temporary "0", awaiting real implementation. 1324 SmallVector<uint64_t, 16> Ops; 1325 SmallVector<Value *, 4> AdditionalValues; 1326 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1327 AdditionalValues); 1328 // If we cannot salvage any further, and haven't yet found a suitable debug 1329 // expression, bail out. 1330 if (!V) 1331 break; 1332 1333 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1334 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1335 // here for variadic dbg_values, remove that condition. 1336 if (!AdditionalValues.empty()) 1337 break; 1338 1339 // New value and expr now represent this debuginfo. 1340 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1341 1342 // Some kind of simplification occurred: check whether the operand of the 1343 // salvaged debug expression can be encoded in this DAG. 1344 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1345 LLVM_DEBUG( 1346 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1347 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1348 return; 1349 } 1350 } 1351 1352 // This was the final opportunity to salvage this debug information, and it 1353 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1354 // any earlier variable location. 1355 assert(OrigV && "V shouldn't be null"); 1356 auto *Undef = UndefValue::get(OrigV->getType()); 1357 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1358 DAG.AddDbgValue(SDV, false); 1359 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI << "\n"); 1360 } 1361 1362 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1363 DILocalVariable *Var, 1364 DIExpression *Expr, DebugLoc DbgLoc, 1365 unsigned Order, bool IsVariadic) { 1366 if (Values.empty()) 1367 return true; 1368 SmallVector<SDDbgOperand> LocationOps; 1369 SmallVector<SDNode *> Dependencies; 1370 for (const Value *V : Values) { 1371 // Constant value. 1372 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1373 isa<ConstantPointerNull>(V)) { 1374 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1375 continue; 1376 } 1377 1378 // Look through IntToPtr constants. 1379 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1380 if (CE->getOpcode() == Instruction::IntToPtr) { 1381 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1382 continue; 1383 } 1384 1385 // If the Value is a frame index, we can create a FrameIndex debug value 1386 // without relying on the DAG at all. 1387 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1388 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1389 if (SI != FuncInfo.StaticAllocaMap.end()) { 1390 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1391 continue; 1392 } 1393 } 1394 1395 // Do not use getValue() in here; we don't want to generate code at 1396 // this point if it hasn't been done yet. 1397 SDValue N = NodeMap[V]; 1398 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1399 N = UnusedArgNodeMap[V]; 1400 if (N.getNode()) { 1401 // Only emit func arg dbg value for non-variadic dbg.values for now. 1402 if (!IsVariadic && 1403 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1404 FuncArgumentDbgValueKind::Value, N)) 1405 return true; 1406 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1407 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1408 // describe stack slot locations. 1409 // 1410 // Consider "int x = 0; int *px = &x;". There are two kinds of 1411 // interesting debug values here after optimization: 1412 // 1413 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1414 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1415 // 1416 // Both describe the direct values of their associated variables. 1417 Dependencies.push_back(N.getNode()); 1418 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1419 continue; 1420 } 1421 LocationOps.emplace_back( 1422 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1423 continue; 1424 } 1425 1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1427 // Special rules apply for the first dbg.values of parameter variables in a 1428 // function. Identify them by the fact they reference Argument Values, that 1429 // they're parameters, and they are parameters of the current function. We 1430 // need to let them dangle until they get an SDNode. 1431 bool IsParamOfFunc = 1432 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1433 if (IsParamOfFunc) 1434 return false; 1435 1436 // The value is not used in this block yet (or it would have an SDNode). 1437 // We still want the value to appear for the user if possible -- if it has 1438 // an associated VReg, we can refer to that instead. 1439 auto VMI = FuncInfo.ValueMap.find(V); 1440 if (VMI != FuncInfo.ValueMap.end()) { 1441 unsigned Reg = VMI->second; 1442 // If this is a PHI node, it may be split up into several MI PHI nodes 1443 // (in FunctionLoweringInfo::set). 1444 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1445 V->getType(), std::nullopt); 1446 if (RFV.occupiesMultipleRegs()) { 1447 // FIXME: We could potentially support variadic dbg_values here. 1448 if (IsVariadic) 1449 return false; 1450 unsigned Offset = 0; 1451 unsigned BitsToDescribe = 0; 1452 if (auto VarSize = Var->getSizeInBits()) 1453 BitsToDescribe = *VarSize; 1454 if (auto Fragment = Expr->getFragmentInfo()) 1455 BitsToDescribe = Fragment->SizeInBits; 1456 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1457 // Bail out if all bits are described already. 1458 if (Offset >= BitsToDescribe) 1459 break; 1460 // TODO: handle scalable vectors. 1461 unsigned RegisterSize = RegAndSize.second; 1462 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1463 ? BitsToDescribe - Offset 1464 : RegisterSize; 1465 auto FragmentExpr = DIExpression::createFragmentExpression( 1466 Expr, Offset, FragmentSize); 1467 if (!FragmentExpr) 1468 continue; 1469 SDDbgValue *SDV = DAG.getVRegDbgValue( 1470 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1471 DAG.AddDbgValue(SDV, false); 1472 Offset += RegisterSize; 1473 } 1474 return true; 1475 } 1476 // We can use simple vreg locations for variadic dbg_values as well. 1477 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1478 continue; 1479 } 1480 // We failed to create a SDDbgOperand for V. 1481 return false; 1482 } 1483 1484 // We have created a SDDbgOperand for each Value in Values. 1485 // Should use Order instead of SDNodeOrder? 1486 assert(!LocationOps.empty()); 1487 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1488 /*IsIndirect=*/false, DbgLoc, 1489 SDNodeOrder, IsVariadic); 1490 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1491 return true; 1492 } 1493 1494 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1495 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1496 for (auto &Pair : DanglingDebugInfoMap) 1497 for (auto &DDI : Pair.second) 1498 salvageUnresolvedDbgValue(DDI); 1499 clearDanglingDebugInfo(); 1500 } 1501 1502 /// getCopyFromRegs - If there was virtual register allocated for the value V 1503 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1504 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1505 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1506 SDValue Result; 1507 1508 if (It != FuncInfo.ValueMap.end()) { 1509 Register InReg = It->second; 1510 1511 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1512 DAG.getDataLayout(), InReg, Ty, 1513 std::nullopt); // This is not an ABI copy. 1514 SDValue Chain = DAG.getEntryNode(); 1515 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1516 V); 1517 resolveDanglingDebugInfo(V, Result); 1518 } 1519 1520 return Result; 1521 } 1522 1523 /// getValue - Return an SDValue for the given Value. 1524 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1525 // If we already have an SDValue for this value, use it. It's important 1526 // to do this first, so that we don't create a CopyFromReg if we already 1527 // have a regular SDValue. 1528 SDValue &N = NodeMap[V]; 1529 if (N.getNode()) return N; 1530 1531 // If there's a virtual register allocated and initialized for this 1532 // value, use it. 1533 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1534 return copyFromReg; 1535 1536 // Otherwise create a new SDValue and remember it. 1537 SDValue Val = getValueImpl(V); 1538 NodeMap[V] = Val; 1539 resolveDanglingDebugInfo(V, Val); 1540 return Val; 1541 } 1542 1543 /// getNonRegisterValue - Return an SDValue for the given Value, but 1544 /// don't look in FuncInfo.ValueMap for a virtual register. 1545 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1546 // If we already have an SDValue for this value, use it. 1547 SDValue &N = NodeMap[V]; 1548 if (N.getNode()) { 1549 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1550 // Remove the debug location from the node as the node is about to be used 1551 // in a location which may differ from the original debug location. This 1552 // is relevant to Constant and ConstantFP nodes because they can appear 1553 // as constant expressions inside PHI nodes. 1554 N->setDebugLoc(DebugLoc()); 1555 } 1556 return N; 1557 } 1558 1559 // Otherwise create a new SDValue and remember it. 1560 SDValue Val = getValueImpl(V); 1561 NodeMap[V] = Val; 1562 resolveDanglingDebugInfo(V, Val); 1563 return Val; 1564 } 1565 1566 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1567 /// Create an SDValue for the given value. 1568 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1570 1571 if (const Constant *C = dyn_cast<Constant>(V)) { 1572 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1573 1574 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1575 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1576 1577 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1578 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1579 1580 if (isa<ConstantPointerNull>(C)) { 1581 unsigned AS = V->getType()->getPointerAddressSpace(); 1582 return DAG.getConstant(0, getCurSDLoc(), 1583 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1584 } 1585 1586 if (match(C, m_VScale(DAG.getDataLayout()))) 1587 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1588 1589 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1590 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1591 1592 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1593 return DAG.getUNDEF(VT); 1594 1595 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1596 visit(CE->getOpcode(), *CE); 1597 SDValue N1 = NodeMap[V]; 1598 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1599 return N1; 1600 } 1601 1602 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1603 SmallVector<SDValue, 4> Constants; 1604 for (const Use &U : C->operands()) { 1605 SDNode *Val = getValue(U).getNode(); 1606 // If the operand is an empty aggregate, there are no values. 1607 if (!Val) continue; 1608 // Add each leaf value from the operand to the Constants list 1609 // to form a flattened list of all the values. 1610 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1611 Constants.push_back(SDValue(Val, i)); 1612 } 1613 1614 return DAG.getMergeValues(Constants, getCurSDLoc()); 1615 } 1616 1617 if (const ConstantDataSequential *CDS = 1618 dyn_cast<ConstantDataSequential>(C)) { 1619 SmallVector<SDValue, 4> Ops; 1620 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1621 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1622 // Add each leaf value from the operand to the Constants list 1623 // to form a flattened list of all the values. 1624 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1625 Ops.push_back(SDValue(Val, i)); 1626 } 1627 1628 if (isa<ArrayType>(CDS->getType())) 1629 return DAG.getMergeValues(Ops, getCurSDLoc()); 1630 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1631 } 1632 1633 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1634 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1635 "Unknown struct or array constant!"); 1636 1637 SmallVector<EVT, 4> ValueVTs; 1638 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1639 unsigned NumElts = ValueVTs.size(); 1640 if (NumElts == 0) 1641 return SDValue(); // empty struct 1642 SmallVector<SDValue, 4> Constants(NumElts); 1643 for (unsigned i = 0; i != NumElts; ++i) { 1644 EVT EltVT = ValueVTs[i]; 1645 if (isa<UndefValue>(C)) 1646 Constants[i] = DAG.getUNDEF(EltVT); 1647 else if (EltVT.isFloatingPoint()) 1648 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1649 else 1650 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1651 } 1652 1653 return DAG.getMergeValues(Constants, getCurSDLoc()); 1654 } 1655 1656 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1657 return DAG.getBlockAddress(BA, VT); 1658 1659 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1660 return getValue(Equiv->getGlobalValue()); 1661 1662 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1663 return getValue(NC->getGlobalValue()); 1664 1665 VectorType *VecTy = cast<VectorType>(V->getType()); 1666 1667 // Now that we know the number and type of the elements, get that number of 1668 // elements into the Ops array based on what kind of constant it is. 1669 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1670 SmallVector<SDValue, 16> Ops; 1671 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1672 for (unsigned i = 0; i != NumElements; ++i) 1673 Ops.push_back(getValue(CV->getOperand(i))); 1674 1675 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1676 } 1677 1678 if (isa<ConstantAggregateZero>(C)) { 1679 EVT EltVT = 1680 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1681 1682 SDValue Op; 1683 if (EltVT.isFloatingPoint()) 1684 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1685 else 1686 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1687 1688 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1689 } 1690 1691 llvm_unreachable("Unknown vector constant"); 1692 } 1693 1694 // If this is a static alloca, generate it as the frameindex instead of 1695 // computation. 1696 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1697 DenseMap<const AllocaInst*, int>::iterator SI = 1698 FuncInfo.StaticAllocaMap.find(AI); 1699 if (SI != FuncInfo.StaticAllocaMap.end()) 1700 return DAG.getFrameIndex( 1701 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1702 } 1703 1704 // If this is an instruction which fast-isel has deferred, select it now. 1705 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1706 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1707 1708 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1709 Inst->getType(), std::nullopt); 1710 SDValue Chain = DAG.getEntryNode(); 1711 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1712 } 1713 1714 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1715 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1716 1717 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1718 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1719 1720 llvm_unreachable("Can't get register for value!"); 1721 } 1722 1723 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1724 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1725 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1726 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1727 bool IsSEH = isAsynchronousEHPersonality(Pers); 1728 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1729 if (!IsSEH) 1730 CatchPadMBB->setIsEHScopeEntry(); 1731 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1732 if (IsMSVCCXX || IsCoreCLR) 1733 CatchPadMBB->setIsEHFuncletEntry(); 1734 } 1735 1736 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1737 // Update machine-CFG edge. 1738 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1739 FuncInfo.MBB->addSuccessor(TargetMBB); 1740 TargetMBB->setIsEHCatchretTarget(true); 1741 DAG.getMachineFunction().setHasEHCatchret(true); 1742 1743 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1744 bool IsSEH = isAsynchronousEHPersonality(Pers); 1745 if (IsSEH) { 1746 // If this is not a fall-through branch or optimizations are switched off, 1747 // emit the branch. 1748 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1749 TM.getOptLevel() == CodeGenOpt::None) 1750 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1751 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1752 return; 1753 } 1754 1755 // Figure out the funclet membership for the catchret's successor. 1756 // This will be used by the FuncletLayout pass to determine how to order the 1757 // BB's. 1758 // A 'catchret' returns to the outer scope's color. 1759 Value *ParentPad = I.getCatchSwitchParentPad(); 1760 const BasicBlock *SuccessorColor; 1761 if (isa<ConstantTokenNone>(ParentPad)) 1762 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1763 else 1764 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1765 assert(SuccessorColor && "No parent funclet for catchret!"); 1766 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1767 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1768 1769 // Create the terminator node. 1770 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1771 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1772 DAG.getBasicBlock(SuccessorColorMBB)); 1773 DAG.setRoot(Ret); 1774 } 1775 1776 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1777 // Don't emit any special code for the cleanuppad instruction. It just marks 1778 // the start of an EH scope/funclet. 1779 FuncInfo.MBB->setIsEHScopeEntry(); 1780 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1781 if (Pers != EHPersonality::Wasm_CXX) { 1782 FuncInfo.MBB->setIsEHFuncletEntry(); 1783 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1784 } 1785 } 1786 1787 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1788 // not match, it is OK to add only the first unwind destination catchpad to the 1789 // successors, because there will be at least one invoke instruction within the 1790 // catch scope that points to the next unwind destination, if one exists, so 1791 // CFGSort cannot mess up with BB sorting order. 1792 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1793 // call within them, and catchpads only consisting of 'catch (...)' have a 1794 // '__cxa_end_catch' call within them, both of which generate invokes in case 1795 // the next unwind destination exists, i.e., the next unwind destination is not 1796 // the caller.) 1797 // 1798 // Having at most one EH pad successor is also simpler and helps later 1799 // transformations. 1800 // 1801 // For example, 1802 // current: 1803 // invoke void @foo to ... unwind label %catch.dispatch 1804 // catch.dispatch: 1805 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1806 // catch.start: 1807 // ... 1808 // ... in this BB or some other child BB dominated by this BB there will be an 1809 // invoke that points to 'next' BB as an unwind destination 1810 // 1811 // next: ; We don't need to add this to 'current' BB's successor 1812 // ... 1813 static void findWasmUnwindDestinations( 1814 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1815 BranchProbability Prob, 1816 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1817 &UnwindDests) { 1818 while (EHPadBB) { 1819 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1820 if (isa<CleanupPadInst>(Pad)) { 1821 // Stop on cleanup pads. 1822 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1823 UnwindDests.back().first->setIsEHScopeEntry(); 1824 break; 1825 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1826 // Add the catchpad handlers to the possible destinations. We don't 1827 // continue to the unwind destination of the catchswitch for wasm. 1828 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1829 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1830 UnwindDests.back().first->setIsEHScopeEntry(); 1831 } 1832 break; 1833 } else { 1834 continue; 1835 } 1836 } 1837 } 1838 1839 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1840 /// many places it could ultimately go. In the IR, we have a single unwind 1841 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1842 /// This function skips over imaginary basic blocks that hold catchswitch 1843 /// instructions, and finds all the "real" machine 1844 /// basic block destinations. As those destinations may not be successors of 1845 /// EHPadBB, here we also calculate the edge probability to those destinations. 1846 /// The passed-in Prob is the edge probability to EHPadBB. 1847 static void findUnwindDestinations( 1848 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1849 BranchProbability Prob, 1850 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1851 &UnwindDests) { 1852 EHPersonality Personality = 1853 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1854 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1855 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1856 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1857 bool IsSEH = isAsynchronousEHPersonality(Personality); 1858 1859 if (IsWasmCXX) { 1860 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1861 assert(UnwindDests.size() <= 1 && 1862 "There should be at most one unwind destination for wasm"); 1863 return; 1864 } 1865 1866 while (EHPadBB) { 1867 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1868 BasicBlock *NewEHPadBB = nullptr; 1869 if (isa<LandingPadInst>(Pad)) { 1870 // Stop on landingpads. They are not funclets. 1871 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1872 break; 1873 } else if (isa<CleanupPadInst>(Pad)) { 1874 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1875 // personalities. 1876 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1877 UnwindDests.back().first->setIsEHScopeEntry(); 1878 UnwindDests.back().first->setIsEHFuncletEntry(); 1879 break; 1880 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1881 // Add the catchpad handlers to the possible destinations. 1882 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1883 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1884 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1885 if (IsMSVCCXX || IsCoreCLR) 1886 UnwindDests.back().first->setIsEHFuncletEntry(); 1887 if (!IsSEH) 1888 UnwindDests.back().first->setIsEHScopeEntry(); 1889 } 1890 NewEHPadBB = CatchSwitch->getUnwindDest(); 1891 } else { 1892 continue; 1893 } 1894 1895 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1896 if (BPI && NewEHPadBB) 1897 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1898 EHPadBB = NewEHPadBB; 1899 } 1900 } 1901 1902 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1903 // Update successor info. 1904 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1905 auto UnwindDest = I.getUnwindDest(); 1906 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1907 BranchProbability UnwindDestProb = 1908 (BPI && UnwindDest) 1909 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1910 : BranchProbability::getZero(); 1911 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1912 for (auto &UnwindDest : UnwindDests) { 1913 UnwindDest.first->setIsEHPad(); 1914 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1915 } 1916 FuncInfo.MBB->normalizeSuccProbs(); 1917 1918 // Create the terminator node. 1919 SDValue Ret = 1920 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1921 DAG.setRoot(Ret); 1922 } 1923 1924 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1925 report_fatal_error("visitCatchSwitch not yet implemented!"); 1926 } 1927 1928 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1930 auto &DL = DAG.getDataLayout(); 1931 SDValue Chain = getControlRoot(); 1932 SmallVector<ISD::OutputArg, 8> Outs; 1933 SmallVector<SDValue, 8> OutVals; 1934 1935 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1936 // lower 1937 // 1938 // %val = call <ty> @llvm.experimental.deoptimize() 1939 // ret <ty> %val 1940 // 1941 // differently. 1942 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1943 LowerDeoptimizingReturn(); 1944 return; 1945 } 1946 1947 if (!FuncInfo.CanLowerReturn) { 1948 unsigned DemoteReg = FuncInfo.DemoteRegister; 1949 const Function *F = I.getParent()->getParent(); 1950 1951 // Emit a store of the return value through the virtual register. 1952 // Leave Outs empty so that LowerReturn won't try to load return 1953 // registers the usual way. 1954 SmallVector<EVT, 1> PtrValueVTs; 1955 ComputeValueVTs(TLI, DL, 1956 F->getReturnType()->getPointerTo( 1957 DAG.getDataLayout().getAllocaAddrSpace()), 1958 PtrValueVTs); 1959 1960 SDValue RetPtr = 1961 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1962 SDValue RetOp = getValue(I.getOperand(0)); 1963 1964 SmallVector<EVT, 4> ValueVTs, MemVTs; 1965 SmallVector<uint64_t, 4> Offsets; 1966 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1967 &Offsets); 1968 unsigned NumValues = ValueVTs.size(); 1969 1970 SmallVector<SDValue, 4> Chains(NumValues); 1971 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1972 for (unsigned i = 0; i != NumValues; ++i) { 1973 // An aggregate return value cannot wrap around the address space, so 1974 // offsets to its parts don't wrap either. 1975 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1976 TypeSize::Fixed(Offsets[i])); 1977 1978 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1979 if (MemVTs[i] != ValueVTs[i]) 1980 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1981 Chains[i] = DAG.getStore( 1982 Chain, getCurSDLoc(), Val, 1983 // FIXME: better loc info would be nice. 1984 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1985 commonAlignment(BaseAlign, Offsets[i])); 1986 } 1987 1988 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1989 MVT::Other, Chains); 1990 } else if (I.getNumOperands() != 0) { 1991 SmallVector<EVT, 4> ValueVTs; 1992 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1993 unsigned NumValues = ValueVTs.size(); 1994 if (NumValues) { 1995 SDValue RetOp = getValue(I.getOperand(0)); 1996 1997 const Function *F = I.getParent()->getParent(); 1998 1999 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2000 I.getOperand(0)->getType(), F->getCallingConv(), 2001 /*IsVarArg*/ false, DL); 2002 2003 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2004 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2005 ExtendKind = ISD::SIGN_EXTEND; 2006 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2007 ExtendKind = ISD::ZERO_EXTEND; 2008 2009 LLVMContext &Context = F->getContext(); 2010 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2011 2012 for (unsigned j = 0; j != NumValues; ++j) { 2013 EVT VT = ValueVTs[j]; 2014 2015 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2016 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2017 2018 CallingConv::ID CC = F->getCallingConv(); 2019 2020 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2021 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2022 SmallVector<SDValue, 4> Parts(NumParts); 2023 getCopyToParts(DAG, getCurSDLoc(), 2024 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2025 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2026 2027 // 'inreg' on function refers to return value 2028 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2029 if (RetInReg) 2030 Flags.setInReg(); 2031 2032 if (I.getOperand(0)->getType()->isPointerTy()) { 2033 Flags.setPointer(); 2034 Flags.setPointerAddrSpace( 2035 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2036 } 2037 2038 if (NeedsRegBlock) { 2039 Flags.setInConsecutiveRegs(); 2040 if (j == NumValues - 1) 2041 Flags.setInConsecutiveRegsLast(); 2042 } 2043 2044 // Propagate extension type if any 2045 if (ExtendKind == ISD::SIGN_EXTEND) 2046 Flags.setSExt(); 2047 else if (ExtendKind == ISD::ZERO_EXTEND) 2048 Flags.setZExt(); 2049 2050 for (unsigned i = 0; i < NumParts; ++i) { 2051 Outs.push_back(ISD::OutputArg(Flags, 2052 Parts[i].getValueType().getSimpleVT(), 2053 VT, /*isfixed=*/true, 0, 0)); 2054 OutVals.push_back(Parts[i]); 2055 } 2056 } 2057 } 2058 } 2059 2060 // Push in swifterror virtual register as the last element of Outs. This makes 2061 // sure swifterror virtual register will be returned in the swifterror 2062 // physical register. 2063 const Function *F = I.getParent()->getParent(); 2064 if (TLI.supportSwiftError() && 2065 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2066 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2067 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2068 Flags.setSwiftError(); 2069 Outs.push_back(ISD::OutputArg( 2070 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2071 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2072 // Create SDNode for the swifterror virtual register. 2073 OutVals.push_back( 2074 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2075 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2076 EVT(TLI.getPointerTy(DL)))); 2077 } 2078 2079 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2080 CallingConv::ID CallConv = 2081 DAG.getMachineFunction().getFunction().getCallingConv(); 2082 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2083 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2084 2085 // Verify that the target's LowerReturn behaved as expected. 2086 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2087 "LowerReturn didn't return a valid chain!"); 2088 2089 // Update the DAG with the new chain value resulting from return lowering. 2090 DAG.setRoot(Chain); 2091 } 2092 2093 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2094 /// created for it, emit nodes to copy the value into the virtual 2095 /// registers. 2096 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2097 // Skip empty types 2098 if (V->getType()->isEmptyTy()) 2099 return; 2100 2101 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2102 if (VMI != FuncInfo.ValueMap.end()) { 2103 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2104 CopyValueToVirtualRegister(V, VMI->second); 2105 } 2106 } 2107 2108 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2109 /// the current basic block, add it to ValueMap now so that we'll get a 2110 /// CopyTo/FromReg. 2111 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2112 // No need to export constants. 2113 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2114 2115 // Already exported? 2116 if (FuncInfo.isExportedInst(V)) return; 2117 2118 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2119 CopyValueToVirtualRegister(V, Reg); 2120 } 2121 2122 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2123 const BasicBlock *FromBB) { 2124 // The operands of the setcc have to be in this block. We don't know 2125 // how to export them from some other block. 2126 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2127 // Can export from current BB. 2128 if (VI->getParent() == FromBB) 2129 return true; 2130 2131 // Is already exported, noop. 2132 return FuncInfo.isExportedInst(V); 2133 } 2134 2135 // If this is an argument, we can export it if the BB is the entry block or 2136 // if it is already exported. 2137 if (isa<Argument>(V)) { 2138 if (FromBB->isEntryBlock()) 2139 return true; 2140 2141 // Otherwise, can only export this if it is already exported. 2142 return FuncInfo.isExportedInst(V); 2143 } 2144 2145 // Otherwise, constants can always be exported. 2146 return true; 2147 } 2148 2149 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2150 BranchProbability 2151 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2152 const MachineBasicBlock *Dst) const { 2153 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2154 const BasicBlock *SrcBB = Src->getBasicBlock(); 2155 const BasicBlock *DstBB = Dst->getBasicBlock(); 2156 if (!BPI) { 2157 // If BPI is not available, set the default probability as 1 / N, where N is 2158 // the number of successors. 2159 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2160 return BranchProbability(1, SuccSize); 2161 } 2162 return BPI->getEdgeProbability(SrcBB, DstBB); 2163 } 2164 2165 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2166 MachineBasicBlock *Dst, 2167 BranchProbability Prob) { 2168 if (!FuncInfo.BPI) 2169 Src->addSuccessorWithoutProb(Dst); 2170 else { 2171 if (Prob.isUnknown()) 2172 Prob = getEdgeProbability(Src, Dst); 2173 Src->addSuccessor(Dst, Prob); 2174 } 2175 } 2176 2177 static bool InBlock(const Value *V, const BasicBlock *BB) { 2178 if (const Instruction *I = dyn_cast<Instruction>(V)) 2179 return I->getParent() == BB; 2180 return true; 2181 } 2182 2183 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2184 /// This function emits a branch and is used at the leaves of an OR or an 2185 /// AND operator tree. 2186 void 2187 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2188 MachineBasicBlock *TBB, 2189 MachineBasicBlock *FBB, 2190 MachineBasicBlock *CurBB, 2191 MachineBasicBlock *SwitchBB, 2192 BranchProbability TProb, 2193 BranchProbability FProb, 2194 bool InvertCond) { 2195 const BasicBlock *BB = CurBB->getBasicBlock(); 2196 2197 // If the leaf of the tree is a comparison, merge the condition into 2198 // the caseblock. 2199 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2200 // The operands of the cmp have to be in this block. We don't know 2201 // how to export them from some other block. If this is the first block 2202 // of the sequence, no exporting is needed. 2203 if (CurBB == SwitchBB || 2204 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2205 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2206 ISD::CondCode Condition; 2207 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2208 ICmpInst::Predicate Pred = 2209 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2210 Condition = getICmpCondCode(Pred); 2211 } else { 2212 const FCmpInst *FC = cast<FCmpInst>(Cond); 2213 FCmpInst::Predicate Pred = 2214 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2215 Condition = getFCmpCondCode(Pred); 2216 if (TM.Options.NoNaNsFPMath) 2217 Condition = getFCmpCodeWithoutNaN(Condition); 2218 } 2219 2220 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2221 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2222 SL->SwitchCases.push_back(CB); 2223 return; 2224 } 2225 } 2226 2227 // Create a CaseBlock record representing this branch. 2228 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2229 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2230 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2231 SL->SwitchCases.push_back(CB); 2232 } 2233 2234 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2235 MachineBasicBlock *TBB, 2236 MachineBasicBlock *FBB, 2237 MachineBasicBlock *CurBB, 2238 MachineBasicBlock *SwitchBB, 2239 Instruction::BinaryOps Opc, 2240 BranchProbability TProb, 2241 BranchProbability FProb, 2242 bool InvertCond) { 2243 // Skip over not part of the tree and remember to invert op and operands at 2244 // next level. 2245 Value *NotCond; 2246 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2247 InBlock(NotCond, CurBB->getBasicBlock())) { 2248 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2249 !InvertCond); 2250 return; 2251 } 2252 2253 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2254 const Value *BOpOp0, *BOpOp1; 2255 // Compute the effective opcode for Cond, taking into account whether it needs 2256 // to be inverted, e.g. 2257 // and (not (or A, B)), C 2258 // gets lowered as 2259 // and (and (not A, not B), C) 2260 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2261 if (BOp) { 2262 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2263 ? Instruction::And 2264 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2265 ? Instruction::Or 2266 : (Instruction::BinaryOps)0); 2267 if (InvertCond) { 2268 if (BOpc == Instruction::And) 2269 BOpc = Instruction::Or; 2270 else if (BOpc == Instruction::Or) 2271 BOpc = Instruction::And; 2272 } 2273 } 2274 2275 // If this node is not part of the or/and tree, emit it as a branch. 2276 // Note that all nodes in the tree should have same opcode. 2277 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2278 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2279 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2280 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2281 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2282 TProb, FProb, InvertCond); 2283 return; 2284 } 2285 2286 // Create TmpBB after CurBB. 2287 MachineFunction::iterator BBI(CurBB); 2288 MachineFunction &MF = DAG.getMachineFunction(); 2289 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2290 CurBB->getParent()->insert(++BBI, TmpBB); 2291 2292 if (Opc == Instruction::Or) { 2293 // Codegen X | Y as: 2294 // BB1: 2295 // jmp_if_X TBB 2296 // jmp TmpBB 2297 // TmpBB: 2298 // jmp_if_Y TBB 2299 // jmp FBB 2300 // 2301 2302 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2303 // The requirement is that 2304 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2305 // = TrueProb for original BB. 2306 // Assuming the original probabilities are A and B, one choice is to set 2307 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2308 // A/(1+B) and 2B/(1+B). This choice assumes that 2309 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2310 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2311 // TmpBB, but the math is more complicated. 2312 2313 auto NewTrueProb = TProb / 2; 2314 auto NewFalseProb = TProb / 2 + FProb; 2315 // Emit the LHS condition. 2316 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2317 NewFalseProb, InvertCond); 2318 2319 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2320 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2321 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2322 // Emit the RHS condition into TmpBB. 2323 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2324 Probs[1], InvertCond); 2325 } else { 2326 assert(Opc == Instruction::And && "Unknown merge op!"); 2327 // Codegen X & Y as: 2328 // BB1: 2329 // jmp_if_X TmpBB 2330 // jmp FBB 2331 // TmpBB: 2332 // jmp_if_Y TBB 2333 // jmp FBB 2334 // 2335 // This requires creation of TmpBB after CurBB. 2336 2337 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2338 // The requirement is that 2339 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2340 // = FalseProb for original BB. 2341 // Assuming the original probabilities are A and B, one choice is to set 2342 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2343 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2344 // TrueProb for BB1 * FalseProb for TmpBB. 2345 2346 auto NewTrueProb = TProb + FProb / 2; 2347 auto NewFalseProb = FProb / 2; 2348 // Emit the LHS condition. 2349 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2350 NewFalseProb, InvertCond); 2351 2352 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2353 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2354 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2355 // Emit the RHS condition into TmpBB. 2356 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2357 Probs[1], InvertCond); 2358 } 2359 } 2360 2361 /// If the set of cases should be emitted as a series of branches, return true. 2362 /// If we should emit this as a bunch of and/or'd together conditions, return 2363 /// false. 2364 bool 2365 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2366 if (Cases.size() != 2) return true; 2367 2368 // If this is two comparisons of the same values or'd or and'd together, they 2369 // will get folded into a single comparison, so don't emit two blocks. 2370 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2371 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2372 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2373 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2374 return false; 2375 } 2376 2377 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2378 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2379 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2380 Cases[0].CC == Cases[1].CC && 2381 isa<Constant>(Cases[0].CmpRHS) && 2382 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2383 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2384 return false; 2385 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2386 return false; 2387 } 2388 2389 return true; 2390 } 2391 2392 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2393 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2394 2395 // Update machine-CFG edges. 2396 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2397 2398 if (I.isUnconditional()) { 2399 // Update machine-CFG edges. 2400 BrMBB->addSuccessor(Succ0MBB); 2401 2402 // If this is not a fall-through branch or optimizations are switched off, 2403 // emit the branch. 2404 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2405 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2406 MVT::Other, getControlRoot(), 2407 DAG.getBasicBlock(Succ0MBB))); 2408 2409 return; 2410 } 2411 2412 // If this condition is one of the special cases we handle, do special stuff 2413 // now. 2414 const Value *CondVal = I.getCondition(); 2415 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2416 2417 // If this is a series of conditions that are or'd or and'd together, emit 2418 // this as a sequence of branches instead of setcc's with and/or operations. 2419 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2420 // unpredictable branches, and vector extracts because those jumps are likely 2421 // expensive for any target), this should improve performance. 2422 // For example, instead of something like: 2423 // cmp A, B 2424 // C = seteq 2425 // cmp D, E 2426 // F = setle 2427 // or C, F 2428 // jnz foo 2429 // Emit: 2430 // cmp A, B 2431 // je foo 2432 // cmp D, E 2433 // jle foo 2434 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2435 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2436 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2437 Value *Vec; 2438 const Value *BOp0, *BOp1; 2439 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2440 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2441 Opcode = Instruction::And; 2442 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2443 Opcode = Instruction::Or; 2444 2445 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2446 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2447 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2448 getEdgeProbability(BrMBB, Succ0MBB), 2449 getEdgeProbability(BrMBB, Succ1MBB), 2450 /*InvertCond=*/false); 2451 // If the compares in later blocks need to use values not currently 2452 // exported from this block, export them now. This block should always 2453 // be the first entry. 2454 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2455 2456 // Allow some cases to be rejected. 2457 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2458 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2459 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2460 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2461 } 2462 2463 // Emit the branch for this block. 2464 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2465 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2466 return; 2467 } 2468 2469 // Okay, we decided not to do this, remove any inserted MBB's and clear 2470 // SwitchCases. 2471 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2472 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2473 2474 SL->SwitchCases.clear(); 2475 } 2476 } 2477 2478 // Create a CaseBlock record representing this branch. 2479 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2480 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2481 2482 // Use visitSwitchCase to actually insert the fast branch sequence for this 2483 // cond branch. 2484 visitSwitchCase(CB, BrMBB); 2485 } 2486 2487 /// visitSwitchCase - Emits the necessary code to represent a single node in 2488 /// the binary search tree resulting from lowering a switch instruction. 2489 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2490 MachineBasicBlock *SwitchBB) { 2491 SDValue Cond; 2492 SDValue CondLHS = getValue(CB.CmpLHS); 2493 SDLoc dl = CB.DL; 2494 2495 if (CB.CC == ISD::SETTRUE) { 2496 // Branch or fall through to TrueBB. 2497 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2498 SwitchBB->normalizeSuccProbs(); 2499 if (CB.TrueBB != NextBlock(SwitchBB)) { 2500 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2501 DAG.getBasicBlock(CB.TrueBB))); 2502 } 2503 return; 2504 } 2505 2506 auto &TLI = DAG.getTargetLoweringInfo(); 2507 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2508 2509 // Build the setcc now. 2510 if (!CB.CmpMHS) { 2511 // Fold "(X == true)" to X and "(X == false)" to !X to 2512 // handle common cases produced by branch lowering. 2513 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2514 CB.CC == ISD::SETEQ) 2515 Cond = CondLHS; 2516 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2517 CB.CC == ISD::SETEQ) { 2518 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2519 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2520 } else { 2521 SDValue CondRHS = getValue(CB.CmpRHS); 2522 2523 // If a pointer's DAG type is larger than its memory type then the DAG 2524 // values are zero-extended. This breaks signed comparisons so truncate 2525 // back to the underlying type before doing the compare. 2526 if (CondLHS.getValueType() != MemVT) { 2527 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2528 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2529 } 2530 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2531 } 2532 } else { 2533 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2534 2535 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2536 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2537 2538 SDValue CmpOp = getValue(CB.CmpMHS); 2539 EVT VT = CmpOp.getValueType(); 2540 2541 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2542 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2543 ISD::SETLE); 2544 } else { 2545 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2546 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2547 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2548 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2549 } 2550 } 2551 2552 // Update successor info 2553 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2554 // TrueBB and FalseBB are always different unless the incoming IR is 2555 // degenerate. This only happens when running llc on weird IR. 2556 if (CB.TrueBB != CB.FalseBB) 2557 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2558 SwitchBB->normalizeSuccProbs(); 2559 2560 // If the lhs block is the next block, invert the condition so that we can 2561 // fall through to the lhs instead of the rhs block. 2562 if (CB.TrueBB == NextBlock(SwitchBB)) { 2563 std::swap(CB.TrueBB, CB.FalseBB); 2564 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2565 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2566 } 2567 2568 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2569 MVT::Other, getControlRoot(), Cond, 2570 DAG.getBasicBlock(CB.TrueBB)); 2571 2572 setValue(CurInst, BrCond); 2573 2574 // Insert the false branch. Do this even if it's a fall through branch, 2575 // this makes it easier to do DAG optimizations which require inverting 2576 // the branch condition. 2577 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2578 DAG.getBasicBlock(CB.FalseBB)); 2579 2580 DAG.setRoot(BrCond); 2581 } 2582 2583 /// visitJumpTable - Emit JumpTable node in the current MBB 2584 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2585 // Emit the code for the jump table 2586 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2587 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2588 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2589 JT.Reg, PTy); 2590 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2591 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2592 MVT::Other, Index.getValue(1), 2593 Table, Index); 2594 DAG.setRoot(BrJumpTable); 2595 } 2596 2597 /// visitJumpTableHeader - This function emits necessary code to produce index 2598 /// in the JumpTable from switch case. 2599 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2600 JumpTableHeader &JTH, 2601 MachineBasicBlock *SwitchBB) { 2602 SDLoc dl = getCurSDLoc(); 2603 2604 // Subtract the lowest switch case value from the value being switched on. 2605 SDValue SwitchOp = getValue(JTH.SValue); 2606 EVT VT = SwitchOp.getValueType(); 2607 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2608 DAG.getConstant(JTH.First, dl, VT)); 2609 2610 // The SDNode we just created, which holds the value being switched on minus 2611 // the smallest case value, needs to be copied to a virtual register so it 2612 // can be used as an index into the jump table in a subsequent basic block. 2613 // This value may be smaller or larger than the target's pointer type, and 2614 // therefore require extension or truncating. 2615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2616 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2617 2618 unsigned JumpTableReg = 2619 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2620 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2621 JumpTableReg, SwitchOp); 2622 JT.Reg = JumpTableReg; 2623 2624 if (!JTH.FallthroughUnreachable) { 2625 // Emit the range check for the jump table, and branch to the default block 2626 // for the switch statement if the value being switched on exceeds the 2627 // largest case in the switch. 2628 SDValue CMP = DAG.getSetCC( 2629 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2630 Sub.getValueType()), 2631 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2632 2633 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2634 MVT::Other, CopyTo, CMP, 2635 DAG.getBasicBlock(JT.Default)); 2636 2637 // Avoid emitting unnecessary branches to the next block. 2638 if (JT.MBB != NextBlock(SwitchBB)) 2639 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2640 DAG.getBasicBlock(JT.MBB)); 2641 2642 DAG.setRoot(BrCond); 2643 } else { 2644 // Avoid emitting unnecessary branches to the next block. 2645 if (JT.MBB != NextBlock(SwitchBB)) 2646 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2647 DAG.getBasicBlock(JT.MBB))); 2648 else 2649 DAG.setRoot(CopyTo); 2650 } 2651 } 2652 2653 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2654 /// variable if there exists one. 2655 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2656 SDValue &Chain) { 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2659 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2660 MachineFunction &MF = DAG.getMachineFunction(); 2661 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2662 MachineSDNode *Node = 2663 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2664 if (Global) { 2665 MachinePointerInfo MPInfo(Global); 2666 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2667 MachineMemOperand::MODereferenceable; 2668 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2669 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2670 DAG.setNodeMemRefs(Node, {MemRef}); 2671 } 2672 if (PtrTy != PtrMemTy) 2673 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2674 return SDValue(Node, 0); 2675 } 2676 2677 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2678 /// tail spliced into a stack protector check success bb. 2679 /// 2680 /// For a high level explanation of how this fits into the stack protector 2681 /// generation see the comment on the declaration of class 2682 /// StackProtectorDescriptor. 2683 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2684 MachineBasicBlock *ParentBB) { 2685 2686 // First create the loads to the guard/stack slot for the comparison. 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2689 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2690 2691 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2692 int FI = MFI.getStackProtectorIndex(); 2693 2694 SDValue Guard; 2695 SDLoc dl = getCurSDLoc(); 2696 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2697 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2698 Align Align = 2699 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2700 2701 // Generate code to load the content of the guard slot. 2702 SDValue GuardVal = DAG.getLoad( 2703 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2704 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2705 MachineMemOperand::MOVolatile); 2706 2707 if (TLI.useStackGuardXorFP()) 2708 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2709 2710 // Retrieve guard check function, nullptr if instrumentation is inlined. 2711 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2712 // The target provides a guard check function to validate the guard value. 2713 // Generate a call to that function with the content of the guard slot as 2714 // argument. 2715 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2716 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2717 2718 TargetLowering::ArgListTy Args; 2719 TargetLowering::ArgListEntry Entry; 2720 Entry.Node = GuardVal; 2721 Entry.Ty = FnTy->getParamType(0); 2722 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2723 Entry.IsInReg = true; 2724 Args.push_back(Entry); 2725 2726 TargetLowering::CallLoweringInfo CLI(DAG); 2727 CLI.setDebugLoc(getCurSDLoc()) 2728 .setChain(DAG.getEntryNode()) 2729 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2730 getValue(GuardCheckFn), std::move(Args)); 2731 2732 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2733 DAG.setRoot(Result.second); 2734 return; 2735 } 2736 2737 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2738 // Otherwise, emit a volatile load to retrieve the stack guard value. 2739 SDValue Chain = DAG.getEntryNode(); 2740 if (TLI.useLoadStackGuardNode()) { 2741 Guard = getLoadStackGuard(DAG, dl, Chain); 2742 } else { 2743 const Value *IRGuard = TLI.getSDagStackGuard(M); 2744 SDValue GuardPtr = getValue(IRGuard); 2745 2746 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2747 MachinePointerInfo(IRGuard, 0), Align, 2748 MachineMemOperand::MOVolatile); 2749 } 2750 2751 // Perform the comparison via a getsetcc. 2752 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2753 *DAG.getContext(), 2754 Guard.getValueType()), 2755 Guard, GuardVal, ISD::SETNE); 2756 2757 // If the guard/stackslot do not equal, branch to failure MBB. 2758 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2759 MVT::Other, GuardVal.getOperand(0), 2760 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2761 // Otherwise branch to success MBB. 2762 SDValue Br = DAG.getNode(ISD::BR, dl, 2763 MVT::Other, BrCond, 2764 DAG.getBasicBlock(SPD.getSuccessMBB())); 2765 2766 DAG.setRoot(Br); 2767 } 2768 2769 /// Codegen the failure basic block for a stack protector check. 2770 /// 2771 /// A failure stack protector machine basic block consists simply of a call to 2772 /// __stack_chk_fail(). 2773 /// 2774 /// For a high level explanation of how this fits into the stack protector 2775 /// generation see the comment on the declaration of class 2776 /// StackProtectorDescriptor. 2777 void 2778 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2780 TargetLowering::MakeLibCallOptions CallOptions; 2781 CallOptions.setDiscardResult(true); 2782 SDValue Chain = 2783 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2784 None, CallOptions, getCurSDLoc()).second; 2785 // On PS4/PS5, the "return address" must still be within the calling 2786 // function, even if it's at the very end, so emit an explicit TRAP here. 2787 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2788 if (TM.getTargetTriple().isPS()) 2789 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2790 // WebAssembly needs an unreachable instruction after a non-returning call, 2791 // because the function return type can be different from __stack_chk_fail's 2792 // return type (void). 2793 if (TM.getTargetTriple().isWasm()) 2794 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2795 2796 DAG.setRoot(Chain); 2797 } 2798 2799 /// visitBitTestHeader - This function emits necessary code to produce value 2800 /// suitable for "bit tests" 2801 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2802 MachineBasicBlock *SwitchBB) { 2803 SDLoc dl = getCurSDLoc(); 2804 2805 // Subtract the minimum value. 2806 SDValue SwitchOp = getValue(B.SValue); 2807 EVT VT = SwitchOp.getValueType(); 2808 SDValue RangeSub = 2809 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2810 2811 // Determine the type of the test operands. 2812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2813 bool UsePtrType = false; 2814 if (!TLI.isTypeLegal(VT)) { 2815 UsePtrType = true; 2816 } else { 2817 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2818 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2819 // Switch table case range are encoded into series of masks. 2820 // Just use pointer type, it's guaranteed to fit. 2821 UsePtrType = true; 2822 break; 2823 } 2824 } 2825 SDValue Sub = RangeSub; 2826 if (UsePtrType) { 2827 VT = TLI.getPointerTy(DAG.getDataLayout()); 2828 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2829 } 2830 2831 B.RegVT = VT.getSimpleVT(); 2832 B.Reg = FuncInfo.CreateReg(B.RegVT); 2833 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2834 2835 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2836 2837 if (!B.FallthroughUnreachable) 2838 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2839 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2840 SwitchBB->normalizeSuccProbs(); 2841 2842 SDValue Root = CopyTo; 2843 if (!B.FallthroughUnreachable) { 2844 // Conditional branch to the default block. 2845 SDValue RangeCmp = DAG.getSetCC(dl, 2846 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2847 RangeSub.getValueType()), 2848 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2849 ISD::SETUGT); 2850 2851 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2852 DAG.getBasicBlock(B.Default)); 2853 } 2854 2855 // Avoid emitting unnecessary branches to the next block. 2856 if (MBB != NextBlock(SwitchBB)) 2857 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2858 2859 DAG.setRoot(Root); 2860 } 2861 2862 /// visitBitTestCase - this function produces one "bit test" 2863 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2864 MachineBasicBlock* NextMBB, 2865 BranchProbability BranchProbToNext, 2866 unsigned Reg, 2867 BitTestCase &B, 2868 MachineBasicBlock *SwitchBB) { 2869 SDLoc dl = getCurSDLoc(); 2870 MVT VT = BB.RegVT; 2871 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2872 SDValue Cmp; 2873 unsigned PopCount = countPopulation(B.Mask); 2874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2875 if (PopCount == 1) { 2876 // Testing for a single bit; just compare the shift count with what it 2877 // would need to be to shift a 1 bit in that position. 2878 Cmp = DAG.getSetCC( 2879 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2880 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2881 ISD::SETEQ); 2882 } else if (PopCount == BB.Range) { 2883 // There is only one zero bit in the range, test for it directly. 2884 Cmp = DAG.getSetCC( 2885 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2886 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2887 ISD::SETNE); 2888 } else { 2889 // Make desired shift 2890 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2891 DAG.getConstant(1, dl, VT), ShiftOp); 2892 2893 // Emit bit tests and jumps 2894 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2895 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2896 Cmp = DAG.getSetCC( 2897 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2898 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2899 } 2900 2901 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2902 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2903 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2904 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2905 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2906 // one as they are relative probabilities (and thus work more like weights), 2907 // and hence we need to normalize them to let the sum of them become one. 2908 SwitchBB->normalizeSuccProbs(); 2909 2910 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2911 MVT::Other, getControlRoot(), 2912 Cmp, DAG.getBasicBlock(B.TargetBB)); 2913 2914 // Avoid emitting unnecessary branches to the next block. 2915 if (NextMBB != NextBlock(SwitchBB)) 2916 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2917 DAG.getBasicBlock(NextMBB)); 2918 2919 DAG.setRoot(BrAnd); 2920 } 2921 2922 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2923 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2924 2925 // Retrieve successors. Look through artificial IR level blocks like 2926 // catchswitch for successors. 2927 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2928 const BasicBlock *EHPadBB = I.getSuccessor(1); 2929 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 2930 2931 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2932 // have to do anything here to lower funclet bundles. 2933 assert(!I.hasOperandBundlesOtherThan( 2934 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2935 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2936 LLVMContext::OB_cfguardtarget, 2937 LLVMContext::OB_clang_arc_attachedcall}) && 2938 "Cannot lower invokes with arbitrary operand bundles yet!"); 2939 2940 const Value *Callee(I.getCalledOperand()); 2941 const Function *Fn = dyn_cast<Function>(Callee); 2942 if (isa<InlineAsm>(Callee)) 2943 visitInlineAsm(I, EHPadBB); 2944 else if (Fn && Fn->isIntrinsic()) { 2945 switch (Fn->getIntrinsicID()) { 2946 default: 2947 llvm_unreachable("Cannot invoke this intrinsic"); 2948 case Intrinsic::donothing: 2949 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2950 case Intrinsic::seh_try_begin: 2951 case Intrinsic::seh_scope_begin: 2952 case Intrinsic::seh_try_end: 2953 case Intrinsic::seh_scope_end: 2954 if (EHPadMBB) 2955 // a block referenced by EH table 2956 // so dtor-funclet not removed by opts 2957 EHPadMBB->setMachineBlockAddressTaken(); 2958 break; 2959 case Intrinsic::experimental_patchpoint_void: 2960 case Intrinsic::experimental_patchpoint_i64: 2961 visitPatchpoint(I, EHPadBB); 2962 break; 2963 case Intrinsic::experimental_gc_statepoint: 2964 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2965 break; 2966 case Intrinsic::wasm_rethrow: { 2967 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2968 // special because it can be invoked, so we manually lower it to a DAG 2969 // node here. 2970 SmallVector<SDValue, 8> Ops; 2971 Ops.push_back(getRoot()); // inchain 2972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2973 Ops.push_back( 2974 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2975 TLI.getPointerTy(DAG.getDataLayout()))); 2976 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2977 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2978 break; 2979 } 2980 } 2981 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2982 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2983 // Eventually we will support lowering the @llvm.experimental.deoptimize 2984 // intrinsic, and right now there are no plans to support other intrinsics 2985 // with deopt state. 2986 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2987 } else { 2988 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2989 } 2990 2991 // If the value of the invoke is used outside of its defining block, make it 2992 // available as a virtual register. 2993 // We already took care of the exported value for the statepoint instruction 2994 // during call to the LowerStatepoint. 2995 if (!isa<GCStatepointInst>(I)) { 2996 CopyToExportRegsIfNeeded(&I); 2997 } 2998 2999 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3000 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3001 BranchProbability EHPadBBProb = 3002 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3003 : BranchProbability::getZero(); 3004 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3005 3006 // Update successor info. 3007 addSuccessorWithProb(InvokeMBB, Return); 3008 for (auto &UnwindDest : UnwindDests) { 3009 UnwindDest.first->setIsEHPad(); 3010 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3011 } 3012 InvokeMBB->normalizeSuccProbs(); 3013 3014 // Drop into normal successor. 3015 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3016 DAG.getBasicBlock(Return))); 3017 } 3018 3019 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3020 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3021 3022 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3023 // have to do anything here to lower funclet bundles. 3024 assert(!I.hasOperandBundlesOtherThan( 3025 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3026 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3027 3028 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3029 visitInlineAsm(I); 3030 CopyToExportRegsIfNeeded(&I); 3031 3032 // Retrieve successors. 3033 SmallPtrSet<BasicBlock *, 8> Dests; 3034 Dests.insert(I.getDefaultDest()); 3035 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3036 3037 // Update successor info. 3038 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3039 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3040 BasicBlock *Dest = I.getIndirectDest(i); 3041 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3042 Target->setIsInlineAsmBrIndirectTarget(); 3043 Target->setMachineBlockAddressTaken(); 3044 Target->setLabelMustBeEmitted(); 3045 // Don't add duplicate machine successors. 3046 if (Dests.insert(Dest).second) 3047 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3048 } 3049 CallBrMBB->normalizeSuccProbs(); 3050 3051 // Drop into default successor. 3052 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3053 MVT::Other, getControlRoot(), 3054 DAG.getBasicBlock(Return))); 3055 } 3056 3057 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3058 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3059 } 3060 3061 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3062 assert(FuncInfo.MBB->isEHPad() && 3063 "Call to landingpad not in landing pad!"); 3064 3065 // If there aren't registers to copy the values into (e.g., during SjLj 3066 // exceptions), then don't bother to create these DAG nodes. 3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3068 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3069 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3070 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3071 return; 3072 3073 // If landingpad's return type is token type, we don't create DAG nodes 3074 // for its exception pointer and selector value. The extraction of exception 3075 // pointer or selector value from token type landingpads is not currently 3076 // supported. 3077 if (LP.getType()->isTokenTy()) 3078 return; 3079 3080 SmallVector<EVT, 2> ValueVTs; 3081 SDLoc dl = getCurSDLoc(); 3082 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3083 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3084 3085 // Get the two live-in registers as SDValues. The physregs have already been 3086 // copied into virtual registers. 3087 SDValue Ops[2]; 3088 if (FuncInfo.ExceptionPointerVirtReg) { 3089 Ops[0] = DAG.getZExtOrTrunc( 3090 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3091 FuncInfo.ExceptionPointerVirtReg, 3092 TLI.getPointerTy(DAG.getDataLayout())), 3093 dl, ValueVTs[0]); 3094 } else { 3095 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3096 } 3097 Ops[1] = DAG.getZExtOrTrunc( 3098 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3099 FuncInfo.ExceptionSelectorVirtReg, 3100 TLI.getPointerTy(DAG.getDataLayout())), 3101 dl, ValueVTs[1]); 3102 3103 // Merge into one. 3104 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3105 DAG.getVTList(ValueVTs), Ops); 3106 setValue(&LP, Res); 3107 } 3108 3109 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3110 MachineBasicBlock *Last) { 3111 // Update JTCases. 3112 for (JumpTableBlock &JTB : SL->JTCases) 3113 if (JTB.first.HeaderBB == First) 3114 JTB.first.HeaderBB = Last; 3115 3116 // Update BitTestCases. 3117 for (BitTestBlock &BTB : SL->BitTestCases) 3118 if (BTB.Parent == First) 3119 BTB.Parent = Last; 3120 } 3121 3122 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3123 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3124 3125 // Update machine-CFG edges with unique successors. 3126 SmallSet<BasicBlock*, 32> Done; 3127 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3128 BasicBlock *BB = I.getSuccessor(i); 3129 bool Inserted = Done.insert(BB).second; 3130 if (!Inserted) 3131 continue; 3132 3133 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3134 addSuccessorWithProb(IndirectBrMBB, Succ); 3135 } 3136 IndirectBrMBB->normalizeSuccProbs(); 3137 3138 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3139 MVT::Other, getControlRoot(), 3140 getValue(I.getAddress()))); 3141 } 3142 3143 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3144 if (!DAG.getTarget().Options.TrapUnreachable) 3145 return; 3146 3147 // We may be able to ignore unreachable behind a noreturn call. 3148 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3149 const BasicBlock &BB = *I.getParent(); 3150 if (&I != &BB.front()) { 3151 BasicBlock::const_iterator PredI = 3152 std::prev(BasicBlock::const_iterator(&I)); 3153 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3154 if (Call->doesNotReturn()) 3155 return; 3156 } 3157 } 3158 } 3159 3160 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3161 } 3162 3163 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3164 SDNodeFlags Flags; 3165 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3166 Flags.copyFMF(*FPOp); 3167 3168 SDValue Op = getValue(I.getOperand(0)); 3169 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3170 Op, Flags); 3171 setValue(&I, UnNodeValue); 3172 } 3173 3174 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3175 SDNodeFlags Flags; 3176 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3177 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3178 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3179 } 3180 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3181 Flags.setExact(ExactOp->isExact()); 3182 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3183 Flags.copyFMF(*FPOp); 3184 3185 SDValue Op1 = getValue(I.getOperand(0)); 3186 SDValue Op2 = getValue(I.getOperand(1)); 3187 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3188 Op1, Op2, Flags); 3189 setValue(&I, BinNodeValue); 3190 } 3191 3192 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3193 SDValue Op1 = getValue(I.getOperand(0)); 3194 SDValue Op2 = getValue(I.getOperand(1)); 3195 3196 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3197 Op1.getValueType(), DAG.getDataLayout()); 3198 3199 // Coerce the shift amount to the right type if we can. This exposes the 3200 // truncate or zext to optimization early. 3201 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3202 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3203 "Unexpected shift type"); 3204 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3205 } 3206 3207 bool nuw = false; 3208 bool nsw = false; 3209 bool exact = false; 3210 3211 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3212 3213 if (const OverflowingBinaryOperator *OFBinOp = 3214 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3215 nuw = OFBinOp->hasNoUnsignedWrap(); 3216 nsw = OFBinOp->hasNoSignedWrap(); 3217 } 3218 if (const PossiblyExactOperator *ExactOp = 3219 dyn_cast<const PossiblyExactOperator>(&I)) 3220 exact = ExactOp->isExact(); 3221 } 3222 SDNodeFlags Flags; 3223 Flags.setExact(exact); 3224 Flags.setNoSignedWrap(nsw); 3225 Flags.setNoUnsignedWrap(nuw); 3226 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3227 Flags); 3228 setValue(&I, Res); 3229 } 3230 3231 void SelectionDAGBuilder::visitSDiv(const User &I) { 3232 SDValue Op1 = getValue(I.getOperand(0)); 3233 SDValue Op2 = getValue(I.getOperand(1)); 3234 3235 SDNodeFlags Flags; 3236 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3237 cast<PossiblyExactOperator>(&I)->isExact()); 3238 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3239 Op2, Flags)); 3240 } 3241 3242 void SelectionDAGBuilder::visitICmp(const User &I) { 3243 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3244 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3245 predicate = IC->getPredicate(); 3246 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3247 predicate = ICmpInst::Predicate(IC->getPredicate()); 3248 SDValue Op1 = getValue(I.getOperand(0)); 3249 SDValue Op2 = getValue(I.getOperand(1)); 3250 ISD::CondCode Opcode = getICmpCondCode(predicate); 3251 3252 auto &TLI = DAG.getTargetLoweringInfo(); 3253 EVT MemVT = 3254 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3255 3256 // If a pointer's DAG type is larger than its memory type then the DAG values 3257 // are zero-extended. This breaks signed comparisons so truncate back to the 3258 // underlying type before doing the compare. 3259 if (Op1.getValueType() != MemVT) { 3260 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3261 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3262 } 3263 3264 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3265 I.getType()); 3266 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3267 } 3268 3269 void SelectionDAGBuilder::visitFCmp(const User &I) { 3270 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3271 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3272 predicate = FC->getPredicate(); 3273 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3274 predicate = FCmpInst::Predicate(FC->getPredicate()); 3275 SDValue Op1 = getValue(I.getOperand(0)); 3276 SDValue Op2 = getValue(I.getOperand(1)); 3277 3278 ISD::CondCode Condition = getFCmpCondCode(predicate); 3279 auto *FPMO = cast<FPMathOperator>(&I); 3280 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3281 Condition = getFCmpCodeWithoutNaN(Condition); 3282 3283 SDNodeFlags Flags; 3284 Flags.copyFMF(*FPMO); 3285 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3286 3287 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3288 I.getType()); 3289 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3290 } 3291 3292 // Check if the condition of the select has one use or two users that are both 3293 // selects with the same condition. 3294 static bool hasOnlySelectUsers(const Value *Cond) { 3295 return llvm::all_of(Cond->users(), [](const Value *V) { 3296 return isa<SelectInst>(V); 3297 }); 3298 } 3299 3300 void SelectionDAGBuilder::visitSelect(const User &I) { 3301 SmallVector<EVT, 4> ValueVTs; 3302 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3303 ValueVTs); 3304 unsigned NumValues = ValueVTs.size(); 3305 if (NumValues == 0) return; 3306 3307 SmallVector<SDValue, 4> Values(NumValues); 3308 SDValue Cond = getValue(I.getOperand(0)); 3309 SDValue LHSVal = getValue(I.getOperand(1)); 3310 SDValue RHSVal = getValue(I.getOperand(2)); 3311 SmallVector<SDValue, 1> BaseOps(1, Cond); 3312 ISD::NodeType OpCode = 3313 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3314 3315 bool IsUnaryAbs = false; 3316 bool Negate = false; 3317 3318 SDNodeFlags Flags; 3319 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3320 Flags.copyFMF(*FPOp); 3321 3322 // Min/max matching is only viable if all output VTs are the same. 3323 if (all_equal(ValueVTs)) { 3324 EVT VT = ValueVTs[0]; 3325 LLVMContext &Ctx = *DAG.getContext(); 3326 auto &TLI = DAG.getTargetLoweringInfo(); 3327 3328 // We care about the legality of the operation after it has been type 3329 // legalized. 3330 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3331 VT = TLI.getTypeToTransformTo(Ctx, VT); 3332 3333 // If the vselect is legal, assume we want to leave this as a vector setcc + 3334 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3335 // min/max is legal on the scalar type. 3336 bool UseScalarMinMax = VT.isVector() && 3337 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3338 3339 Value *LHS, *RHS; 3340 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3341 ISD::NodeType Opc = ISD::DELETED_NODE; 3342 switch (SPR.Flavor) { 3343 case SPF_UMAX: Opc = ISD::UMAX; break; 3344 case SPF_UMIN: Opc = ISD::UMIN; break; 3345 case SPF_SMAX: Opc = ISD::SMAX; break; 3346 case SPF_SMIN: Opc = ISD::SMIN; break; 3347 case SPF_FMINNUM: 3348 switch (SPR.NaNBehavior) { 3349 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3350 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3351 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3352 case SPNB_RETURNS_ANY: { 3353 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3354 Opc = ISD::FMINNUM; 3355 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3356 Opc = ISD::FMINIMUM; 3357 else if (UseScalarMinMax) 3358 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3359 ISD::FMINNUM : ISD::FMINIMUM; 3360 break; 3361 } 3362 } 3363 break; 3364 case SPF_FMAXNUM: 3365 switch (SPR.NaNBehavior) { 3366 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3367 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3368 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3369 case SPNB_RETURNS_ANY: 3370 3371 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3372 Opc = ISD::FMAXNUM; 3373 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3374 Opc = ISD::FMAXIMUM; 3375 else if (UseScalarMinMax) 3376 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3377 ISD::FMAXNUM : ISD::FMAXIMUM; 3378 break; 3379 } 3380 break; 3381 case SPF_NABS: 3382 Negate = true; 3383 [[fallthrough]]; 3384 case SPF_ABS: 3385 IsUnaryAbs = true; 3386 Opc = ISD::ABS; 3387 break; 3388 default: break; 3389 } 3390 3391 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3392 (TLI.isOperationLegalOrCustom(Opc, VT) || 3393 (UseScalarMinMax && 3394 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3395 // If the underlying comparison instruction is used by any other 3396 // instruction, the consumed instructions won't be destroyed, so it is 3397 // not profitable to convert to a min/max. 3398 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3399 OpCode = Opc; 3400 LHSVal = getValue(LHS); 3401 RHSVal = getValue(RHS); 3402 BaseOps.clear(); 3403 } 3404 3405 if (IsUnaryAbs) { 3406 OpCode = Opc; 3407 LHSVal = getValue(LHS); 3408 BaseOps.clear(); 3409 } 3410 } 3411 3412 if (IsUnaryAbs) { 3413 for (unsigned i = 0; i != NumValues; ++i) { 3414 SDLoc dl = getCurSDLoc(); 3415 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3416 Values[i] = 3417 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3418 if (Negate) 3419 Values[i] = DAG.getNegative(Values[i], dl, VT); 3420 } 3421 } else { 3422 for (unsigned i = 0; i != NumValues; ++i) { 3423 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3424 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3425 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3426 Values[i] = DAG.getNode( 3427 OpCode, getCurSDLoc(), 3428 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3429 } 3430 } 3431 3432 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3433 DAG.getVTList(ValueVTs), Values)); 3434 } 3435 3436 void SelectionDAGBuilder::visitTrunc(const User &I) { 3437 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3438 SDValue N = getValue(I.getOperand(0)); 3439 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3440 I.getType()); 3441 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3442 } 3443 3444 void SelectionDAGBuilder::visitZExt(const User &I) { 3445 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3446 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3447 SDValue N = getValue(I.getOperand(0)); 3448 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3449 I.getType()); 3450 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3451 } 3452 3453 void SelectionDAGBuilder::visitSExt(const User &I) { 3454 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3455 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3456 SDValue N = getValue(I.getOperand(0)); 3457 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3458 I.getType()); 3459 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3460 } 3461 3462 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3463 // FPTrunc is never a no-op cast, no need to check 3464 SDValue N = getValue(I.getOperand(0)); 3465 SDLoc dl = getCurSDLoc(); 3466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3467 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3468 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3469 DAG.getTargetConstant( 3470 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3471 } 3472 3473 void SelectionDAGBuilder::visitFPExt(const User &I) { 3474 // FPExt is never a no-op cast, no need to check 3475 SDValue N = getValue(I.getOperand(0)); 3476 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3477 I.getType()); 3478 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3479 } 3480 3481 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3482 // FPToUI is never a no-op cast, no need to check 3483 SDValue N = getValue(I.getOperand(0)); 3484 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3485 I.getType()); 3486 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3487 } 3488 3489 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3490 // FPToSI is never a no-op cast, no need to check 3491 SDValue N = getValue(I.getOperand(0)); 3492 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3493 I.getType()); 3494 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3495 } 3496 3497 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3498 // UIToFP is never a no-op cast, no need to check 3499 SDValue N = getValue(I.getOperand(0)); 3500 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3501 I.getType()); 3502 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3503 } 3504 3505 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3506 // SIToFP is never a no-op cast, no need to check 3507 SDValue N = getValue(I.getOperand(0)); 3508 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3509 I.getType()); 3510 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3511 } 3512 3513 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3514 // What to do depends on the size of the integer and the size of the pointer. 3515 // We can either truncate, zero extend, or no-op, accordingly. 3516 SDValue N = getValue(I.getOperand(0)); 3517 auto &TLI = DAG.getTargetLoweringInfo(); 3518 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3519 I.getType()); 3520 EVT PtrMemVT = 3521 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3522 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3523 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3524 setValue(&I, N); 3525 } 3526 3527 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3528 // What to do depends on the size of the integer and the size of the pointer. 3529 // We can either truncate, zero extend, or no-op, accordingly. 3530 SDValue N = getValue(I.getOperand(0)); 3531 auto &TLI = DAG.getTargetLoweringInfo(); 3532 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3533 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3534 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3535 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3536 setValue(&I, N); 3537 } 3538 3539 void SelectionDAGBuilder::visitBitCast(const User &I) { 3540 SDValue N = getValue(I.getOperand(0)); 3541 SDLoc dl = getCurSDLoc(); 3542 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3543 I.getType()); 3544 3545 // BitCast assures us that source and destination are the same size so this is 3546 // either a BITCAST or a no-op. 3547 if (DestVT != N.getValueType()) 3548 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3549 DestVT, N)); // convert types. 3550 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3551 // might fold any kind of constant expression to an integer constant and that 3552 // is not what we are looking for. Only recognize a bitcast of a genuine 3553 // constant integer as an opaque constant. 3554 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3555 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3556 /*isOpaque*/true)); 3557 else 3558 setValue(&I, N); // noop cast. 3559 } 3560 3561 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3563 const Value *SV = I.getOperand(0); 3564 SDValue N = getValue(SV); 3565 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3566 3567 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3568 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3569 3570 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3571 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3572 3573 setValue(&I, N); 3574 } 3575 3576 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3578 SDValue InVec = getValue(I.getOperand(0)); 3579 SDValue InVal = getValue(I.getOperand(1)); 3580 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3581 TLI.getVectorIdxTy(DAG.getDataLayout())); 3582 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3583 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3584 InVec, InVal, InIdx)); 3585 } 3586 3587 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3588 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3589 SDValue InVec = getValue(I.getOperand(0)); 3590 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3591 TLI.getVectorIdxTy(DAG.getDataLayout())); 3592 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3593 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3594 InVec, InIdx)); 3595 } 3596 3597 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3598 SDValue Src1 = getValue(I.getOperand(0)); 3599 SDValue Src2 = getValue(I.getOperand(1)); 3600 ArrayRef<int> Mask; 3601 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3602 Mask = SVI->getShuffleMask(); 3603 else 3604 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3605 SDLoc DL = getCurSDLoc(); 3606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3607 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3608 EVT SrcVT = Src1.getValueType(); 3609 3610 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3611 VT.isScalableVector()) { 3612 // Canonical splat form of first element of first input vector. 3613 SDValue FirstElt = 3614 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3615 DAG.getVectorIdxConstant(0, DL)); 3616 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3617 return; 3618 } 3619 3620 // For now, we only handle splats for scalable vectors. 3621 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3622 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3623 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3624 3625 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3626 unsigned MaskNumElts = Mask.size(); 3627 3628 if (SrcNumElts == MaskNumElts) { 3629 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3630 return; 3631 } 3632 3633 // Normalize the shuffle vector since mask and vector length don't match. 3634 if (SrcNumElts < MaskNumElts) { 3635 // Mask is longer than the source vectors. We can use concatenate vector to 3636 // make the mask and vectors lengths match. 3637 3638 if (MaskNumElts % SrcNumElts == 0) { 3639 // Mask length is a multiple of the source vector length. 3640 // Check if the shuffle is some kind of concatenation of the input 3641 // vectors. 3642 unsigned NumConcat = MaskNumElts / SrcNumElts; 3643 bool IsConcat = true; 3644 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3645 for (unsigned i = 0; i != MaskNumElts; ++i) { 3646 int Idx = Mask[i]; 3647 if (Idx < 0) 3648 continue; 3649 // Ensure the indices in each SrcVT sized piece are sequential and that 3650 // the same source is used for the whole piece. 3651 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3652 (ConcatSrcs[i / SrcNumElts] >= 0 && 3653 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3654 IsConcat = false; 3655 break; 3656 } 3657 // Remember which source this index came from. 3658 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3659 } 3660 3661 // The shuffle is concatenating multiple vectors together. Just emit 3662 // a CONCAT_VECTORS operation. 3663 if (IsConcat) { 3664 SmallVector<SDValue, 8> ConcatOps; 3665 for (auto Src : ConcatSrcs) { 3666 if (Src < 0) 3667 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3668 else if (Src == 0) 3669 ConcatOps.push_back(Src1); 3670 else 3671 ConcatOps.push_back(Src2); 3672 } 3673 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3674 return; 3675 } 3676 } 3677 3678 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3679 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3680 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3681 PaddedMaskNumElts); 3682 3683 // Pad both vectors with undefs to make them the same length as the mask. 3684 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3685 3686 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3687 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3688 MOps1[0] = Src1; 3689 MOps2[0] = Src2; 3690 3691 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3692 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3693 3694 // Readjust mask for new input vector length. 3695 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3696 for (unsigned i = 0; i != MaskNumElts; ++i) { 3697 int Idx = Mask[i]; 3698 if (Idx >= (int)SrcNumElts) 3699 Idx -= SrcNumElts - PaddedMaskNumElts; 3700 MappedOps[i] = Idx; 3701 } 3702 3703 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3704 3705 // If the concatenated vector was padded, extract a subvector with the 3706 // correct number of elements. 3707 if (MaskNumElts != PaddedMaskNumElts) 3708 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3709 DAG.getVectorIdxConstant(0, DL)); 3710 3711 setValue(&I, Result); 3712 return; 3713 } 3714 3715 if (SrcNumElts > MaskNumElts) { 3716 // Analyze the access pattern of the vector to see if we can extract 3717 // two subvectors and do the shuffle. 3718 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3719 bool CanExtract = true; 3720 for (int Idx : Mask) { 3721 unsigned Input = 0; 3722 if (Idx < 0) 3723 continue; 3724 3725 if (Idx >= (int)SrcNumElts) { 3726 Input = 1; 3727 Idx -= SrcNumElts; 3728 } 3729 3730 // If all the indices come from the same MaskNumElts sized portion of 3731 // the sources we can use extract. Also make sure the extract wouldn't 3732 // extract past the end of the source. 3733 int NewStartIdx = alignDown(Idx, MaskNumElts); 3734 if (NewStartIdx + MaskNumElts > SrcNumElts || 3735 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3736 CanExtract = false; 3737 // Make sure we always update StartIdx as we use it to track if all 3738 // elements are undef. 3739 StartIdx[Input] = NewStartIdx; 3740 } 3741 3742 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3743 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3744 return; 3745 } 3746 if (CanExtract) { 3747 // Extract appropriate subvector and generate a vector shuffle 3748 for (unsigned Input = 0; Input < 2; ++Input) { 3749 SDValue &Src = Input == 0 ? Src1 : Src2; 3750 if (StartIdx[Input] < 0) 3751 Src = DAG.getUNDEF(VT); 3752 else { 3753 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3754 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3755 } 3756 } 3757 3758 // Calculate new mask. 3759 SmallVector<int, 8> MappedOps(Mask); 3760 for (int &Idx : MappedOps) { 3761 if (Idx >= (int)SrcNumElts) 3762 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3763 else if (Idx >= 0) 3764 Idx -= StartIdx[0]; 3765 } 3766 3767 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3768 return; 3769 } 3770 } 3771 3772 // We can't use either concat vectors or extract subvectors so fall back to 3773 // replacing the shuffle with extract and build vector. 3774 // to insert and build vector. 3775 EVT EltVT = VT.getVectorElementType(); 3776 SmallVector<SDValue,8> Ops; 3777 for (int Idx : Mask) { 3778 SDValue Res; 3779 3780 if (Idx < 0) { 3781 Res = DAG.getUNDEF(EltVT); 3782 } else { 3783 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3784 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3785 3786 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3787 DAG.getVectorIdxConstant(Idx, DL)); 3788 } 3789 3790 Ops.push_back(Res); 3791 } 3792 3793 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3794 } 3795 3796 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3797 ArrayRef<unsigned> Indices = I.getIndices(); 3798 const Value *Op0 = I.getOperand(0); 3799 const Value *Op1 = I.getOperand(1); 3800 Type *AggTy = I.getType(); 3801 Type *ValTy = Op1->getType(); 3802 bool IntoUndef = isa<UndefValue>(Op0); 3803 bool FromUndef = isa<UndefValue>(Op1); 3804 3805 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3806 3807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3808 SmallVector<EVT, 4> AggValueVTs; 3809 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3810 SmallVector<EVT, 4> ValValueVTs; 3811 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3812 3813 unsigned NumAggValues = AggValueVTs.size(); 3814 unsigned NumValValues = ValValueVTs.size(); 3815 SmallVector<SDValue, 4> Values(NumAggValues); 3816 3817 // Ignore an insertvalue that produces an empty object 3818 if (!NumAggValues) { 3819 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3820 return; 3821 } 3822 3823 SDValue Agg = getValue(Op0); 3824 unsigned i = 0; 3825 // Copy the beginning value(s) from the original aggregate. 3826 for (; i != LinearIndex; ++i) 3827 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3828 SDValue(Agg.getNode(), Agg.getResNo() + i); 3829 // Copy values from the inserted value(s). 3830 if (NumValValues) { 3831 SDValue Val = getValue(Op1); 3832 for (; i != LinearIndex + NumValValues; ++i) 3833 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3834 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3835 } 3836 // Copy remaining value(s) from the original aggregate. 3837 for (; i != NumAggValues; ++i) 3838 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3839 SDValue(Agg.getNode(), Agg.getResNo() + i); 3840 3841 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3842 DAG.getVTList(AggValueVTs), Values)); 3843 } 3844 3845 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3846 ArrayRef<unsigned> Indices = I.getIndices(); 3847 const Value *Op0 = I.getOperand(0); 3848 Type *AggTy = Op0->getType(); 3849 Type *ValTy = I.getType(); 3850 bool OutOfUndef = isa<UndefValue>(Op0); 3851 3852 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3853 3854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3855 SmallVector<EVT, 4> ValValueVTs; 3856 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3857 3858 unsigned NumValValues = ValValueVTs.size(); 3859 3860 // Ignore a extractvalue that produces an empty object 3861 if (!NumValValues) { 3862 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3863 return; 3864 } 3865 3866 SmallVector<SDValue, 4> Values(NumValValues); 3867 3868 SDValue Agg = getValue(Op0); 3869 // Copy out the selected value(s). 3870 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3871 Values[i - LinearIndex] = 3872 OutOfUndef ? 3873 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3874 SDValue(Agg.getNode(), Agg.getResNo() + i); 3875 3876 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3877 DAG.getVTList(ValValueVTs), Values)); 3878 } 3879 3880 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3881 Value *Op0 = I.getOperand(0); 3882 // Note that the pointer operand may be a vector of pointers. Take the scalar 3883 // element which holds a pointer. 3884 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3885 SDValue N = getValue(Op0); 3886 SDLoc dl = getCurSDLoc(); 3887 auto &TLI = DAG.getTargetLoweringInfo(); 3888 3889 // Normalize Vector GEP - all scalar operands should be converted to the 3890 // splat vector. 3891 bool IsVectorGEP = I.getType()->isVectorTy(); 3892 ElementCount VectorElementCount = 3893 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3894 : ElementCount::getFixed(0); 3895 3896 if (IsVectorGEP && !N.getValueType().isVector()) { 3897 LLVMContext &Context = *DAG.getContext(); 3898 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3899 N = DAG.getSplat(VT, dl, N); 3900 } 3901 3902 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3903 GTI != E; ++GTI) { 3904 const Value *Idx = GTI.getOperand(); 3905 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3906 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3907 if (Field) { 3908 // N = N + Offset 3909 uint64_t Offset = 3910 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3911 3912 // In an inbounds GEP with an offset that is nonnegative even when 3913 // interpreted as signed, assume there is no unsigned overflow. 3914 SDNodeFlags Flags; 3915 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3916 Flags.setNoUnsignedWrap(true); 3917 3918 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3919 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3920 } 3921 } else { 3922 // IdxSize is the width of the arithmetic according to IR semantics. 3923 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3924 // (and fix up the result later). 3925 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3926 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3927 TypeSize ElementSize = 3928 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3929 // We intentionally mask away the high bits here; ElementSize may not 3930 // fit in IdxTy. 3931 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3932 bool ElementScalable = ElementSize.isScalable(); 3933 3934 // If this is a scalar constant or a splat vector of constants, 3935 // handle it quickly. 3936 const auto *C = dyn_cast<Constant>(Idx); 3937 if (C && isa<VectorType>(C->getType())) 3938 C = C->getSplatValue(); 3939 3940 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3941 if (CI && CI->isZero()) 3942 continue; 3943 if (CI && !ElementScalable) { 3944 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3945 LLVMContext &Context = *DAG.getContext(); 3946 SDValue OffsVal; 3947 if (IsVectorGEP) 3948 OffsVal = DAG.getConstant( 3949 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3950 else 3951 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3952 3953 // In an inbounds GEP with an offset that is nonnegative even when 3954 // interpreted as signed, assume there is no unsigned overflow. 3955 SDNodeFlags Flags; 3956 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3957 Flags.setNoUnsignedWrap(true); 3958 3959 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3960 3961 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3962 continue; 3963 } 3964 3965 // N = N + Idx * ElementMul; 3966 SDValue IdxN = getValue(Idx); 3967 3968 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3969 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3970 VectorElementCount); 3971 IdxN = DAG.getSplat(VT, dl, IdxN); 3972 } 3973 3974 // If the index is smaller or larger than intptr_t, truncate or extend 3975 // it. 3976 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3977 3978 if (ElementScalable) { 3979 EVT VScaleTy = N.getValueType().getScalarType(); 3980 SDValue VScale = DAG.getNode( 3981 ISD::VSCALE, dl, VScaleTy, 3982 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3983 if (IsVectorGEP) 3984 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3985 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3986 } else { 3987 // If this is a multiply by a power of two, turn it into a shl 3988 // immediately. This is a very common case. 3989 if (ElementMul != 1) { 3990 if (ElementMul.isPowerOf2()) { 3991 unsigned Amt = ElementMul.logBase2(); 3992 IdxN = DAG.getNode(ISD::SHL, dl, 3993 N.getValueType(), IdxN, 3994 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3995 } else { 3996 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3997 IdxN.getValueType()); 3998 IdxN = DAG.getNode(ISD::MUL, dl, 3999 N.getValueType(), IdxN, Scale); 4000 } 4001 } 4002 } 4003 4004 N = DAG.getNode(ISD::ADD, dl, 4005 N.getValueType(), N, IdxN); 4006 } 4007 } 4008 4009 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4010 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4011 if (IsVectorGEP) { 4012 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4013 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4014 } 4015 4016 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4017 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4018 4019 setValue(&I, N); 4020 } 4021 4022 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4023 // If this is a fixed sized alloca in the entry block of the function, 4024 // allocate it statically on the stack. 4025 if (FuncInfo.StaticAllocaMap.count(&I)) 4026 return; // getValue will auto-populate this. 4027 4028 SDLoc dl = getCurSDLoc(); 4029 Type *Ty = I.getAllocatedType(); 4030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4031 auto &DL = DAG.getDataLayout(); 4032 TypeSize TySize = DL.getTypeAllocSize(Ty); 4033 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4034 4035 SDValue AllocSize = getValue(I.getArraySize()); 4036 4037 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4038 if (AllocSize.getValueType() != IntPtr) 4039 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4040 4041 if (TySize.isScalable()) 4042 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4043 DAG.getVScale(dl, IntPtr, 4044 APInt(IntPtr.getScalarSizeInBits(), 4045 TySize.getKnownMinValue()))); 4046 else 4047 AllocSize = 4048 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4049 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4050 4051 // Handle alignment. If the requested alignment is less than or equal to 4052 // the stack alignment, ignore it. If the size is greater than or equal to 4053 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4054 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4055 if (*Alignment <= StackAlign) 4056 Alignment = None; 4057 4058 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4059 // Round the size of the allocation up to the stack alignment size 4060 // by add SA-1 to the size. This doesn't overflow because we're computing 4061 // an address inside an alloca. 4062 SDNodeFlags Flags; 4063 Flags.setNoUnsignedWrap(true); 4064 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4065 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4066 4067 // Mask out the low bits for alignment purposes. 4068 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4069 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4070 4071 SDValue Ops[] = { 4072 getRoot(), AllocSize, 4073 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4074 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4075 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4076 setValue(&I, DSA); 4077 DAG.setRoot(DSA.getValue(1)); 4078 4079 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4080 } 4081 4082 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4083 if (I.isAtomic()) 4084 return visitAtomicLoad(I); 4085 4086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4087 const Value *SV = I.getOperand(0); 4088 if (TLI.supportSwiftError()) { 4089 // Swifterror values can come from either a function parameter with 4090 // swifterror attribute or an alloca with swifterror attribute. 4091 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4092 if (Arg->hasSwiftErrorAttr()) 4093 return visitLoadFromSwiftError(I); 4094 } 4095 4096 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4097 if (Alloca->isSwiftError()) 4098 return visitLoadFromSwiftError(I); 4099 } 4100 } 4101 4102 SDValue Ptr = getValue(SV); 4103 4104 Type *Ty = I.getType(); 4105 SmallVector<EVT, 4> ValueVTs, MemVTs; 4106 SmallVector<uint64_t, 4> Offsets; 4107 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4108 unsigned NumValues = ValueVTs.size(); 4109 if (NumValues == 0) 4110 return; 4111 4112 Align Alignment = I.getAlign(); 4113 AAMDNodes AAInfo = I.getAAMetadata(); 4114 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4115 bool isVolatile = I.isVolatile(); 4116 MachineMemOperand::Flags MMOFlags = 4117 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4118 4119 SDValue Root; 4120 bool ConstantMemory = false; 4121 if (isVolatile) 4122 // Serialize volatile loads with other side effects. 4123 Root = getRoot(); 4124 else if (NumValues > MaxParallelChains) 4125 Root = getMemoryRoot(); 4126 else if (AA && 4127 AA->pointsToConstantMemory(MemoryLocation( 4128 SV, 4129 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4130 AAInfo))) { 4131 // Do not serialize (non-volatile) loads of constant memory with anything. 4132 Root = DAG.getEntryNode(); 4133 ConstantMemory = true; 4134 MMOFlags |= MachineMemOperand::MOInvariant; 4135 } else { 4136 // Do not serialize non-volatile loads against each other. 4137 Root = DAG.getRoot(); 4138 } 4139 4140 if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(), 4141 &I, AC, nullptr, LibInfo)) 4142 MMOFlags |= MachineMemOperand::MODereferenceable; 4143 4144 SDLoc dl = getCurSDLoc(); 4145 4146 if (isVolatile) 4147 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4148 4149 // An aggregate load cannot wrap around the address space, so offsets to its 4150 // parts don't wrap either. 4151 SDNodeFlags Flags; 4152 Flags.setNoUnsignedWrap(true); 4153 4154 SmallVector<SDValue, 4> Values(NumValues); 4155 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4156 EVT PtrVT = Ptr.getValueType(); 4157 4158 unsigned ChainI = 0; 4159 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4160 // Serializing loads here may result in excessive register pressure, and 4161 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4162 // could recover a bit by hoisting nodes upward in the chain by recognizing 4163 // they are side-effect free or do not alias. The optimizer should really 4164 // avoid this case by converting large object/array copies to llvm.memcpy 4165 // (MaxParallelChains should always remain as failsafe). 4166 if (ChainI == MaxParallelChains) { 4167 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4168 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4169 makeArrayRef(Chains.data(), ChainI)); 4170 Root = Chain; 4171 ChainI = 0; 4172 } 4173 SDValue A = DAG.getNode(ISD::ADD, dl, 4174 PtrVT, Ptr, 4175 DAG.getConstant(Offsets[i], dl, PtrVT), 4176 Flags); 4177 4178 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4179 MachinePointerInfo(SV, Offsets[i]), Alignment, 4180 MMOFlags, AAInfo, Ranges); 4181 Chains[ChainI] = L.getValue(1); 4182 4183 if (MemVTs[i] != ValueVTs[i]) 4184 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4185 4186 Values[i] = L; 4187 } 4188 4189 if (!ConstantMemory) { 4190 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4191 makeArrayRef(Chains.data(), ChainI)); 4192 if (isVolatile) 4193 DAG.setRoot(Chain); 4194 else 4195 PendingLoads.push_back(Chain); 4196 } 4197 4198 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4199 DAG.getVTList(ValueVTs), Values)); 4200 } 4201 4202 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4203 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4204 "call visitStoreToSwiftError when backend supports swifterror"); 4205 4206 SmallVector<EVT, 4> ValueVTs; 4207 SmallVector<uint64_t, 4> Offsets; 4208 const Value *SrcV = I.getOperand(0); 4209 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4210 SrcV->getType(), ValueVTs, &Offsets); 4211 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4212 "expect a single EVT for swifterror"); 4213 4214 SDValue Src = getValue(SrcV); 4215 // Create a virtual register, then update the virtual register. 4216 Register VReg = 4217 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4218 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4219 // Chain can be getRoot or getControlRoot. 4220 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4221 SDValue(Src.getNode(), Src.getResNo())); 4222 DAG.setRoot(CopyNode); 4223 } 4224 4225 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4226 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4227 "call visitLoadFromSwiftError when backend supports swifterror"); 4228 4229 assert(!I.isVolatile() && 4230 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4231 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4232 "Support volatile, non temporal, invariant for load_from_swift_error"); 4233 4234 const Value *SV = I.getOperand(0); 4235 Type *Ty = I.getType(); 4236 assert( 4237 (!AA || 4238 !AA->pointsToConstantMemory(MemoryLocation( 4239 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4240 I.getAAMetadata()))) && 4241 "load_from_swift_error should not be constant memory"); 4242 4243 SmallVector<EVT, 4> ValueVTs; 4244 SmallVector<uint64_t, 4> Offsets; 4245 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4246 ValueVTs, &Offsets); 4247 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4248 "expect a single EVT for swifterror"); 4249 4250 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4251 SDValue L = DAG.getCopyFromReg( 4252 getRoot(), getCurSDLoc(), 4253 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4254 4255 setValue(&I, L); 4256 } 4257 4258 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4259 if (I.isAtomic()) 4260 return visitAtomicStore(I); 4261 4262 const Value *SrcV = I.getOperand(0); 4263 const Value *PtrV = I.getOperand(1); 4264 4265 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4266 if (TLI.supportSwiftError()) { 4267 // Swifterror values can come from either a function parameter with 4268 // swifterror attribute or an alloca with swifterror attribute. 4269 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4270 if (Arg->hasSwiftErrorAttr()) 4271 return visitStoreToSwiftError(I); 4272 } 4273 4274 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4275 if (Alloca->isSwiftError()) 4276 return visitStoreToSwiftError(I); 4277 } 4278 } 4279 4280 SmallVector<EVT, 4> ValueVTs, MemVTs; 4281 SmallVector<uint64_t, 4> Offsets; 4282 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4283 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4284 unsigned NumValues = ValueVTs.size(); 4285 if (NumValues == 0) 4286 return; 4287 4288 // Get the lowered operands. Note that we do this after 4289 // checking if NumResults is zero, because with zero results 4290 // the operands won't have values in the map. 4291 SDValue Src = getValue(SrcV); 4292 SDValue Ptr = getValue(PtrV); 4293 4294 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4295 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4296 SDLoc dl = getCurSDLoc(); 4297 Align Alignment = I.getAlign(); 4298 AAMDNodes AAInfo = I.getAAMetadata(); 4299 4300 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4301 4302 // An aggregate load cannot wrap around the address space, so offsets to its 4303 // parts don't wrap either. 4304 SDNodeFlags Flags; 4305 Flags.setNoUnsignedWrap(true); 4306 4307 unsigned ChainI = 0; 4308 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4309 // See visitLoad comments. 4310 if (ChainI == MaxParallelChains) { 4311 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4312 makeArrayRef(Chains.data(), ChainI)); 4313 Root = Chain; 4314 ChainI = 0; 4315 } 4316 SDValue Add = 4317 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4318 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4319 if (MemVTs[i] != ValueVTs[i]) 4320 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4321 SDValue St = 4322 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4323 Alignment, MMOFlags, AAInfo); 4324 Chains[ChainI] = St; 4325 } 4326 4327 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4328 makeArrayRef(Chains.data(), ChainI)); 4329 setValue(&I, StoreNode); 4330 DAG.setRoot(StoreNode); 4331 } 4332 4333 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4334 bool IsCompressing) { 4335 SDLoc sdl = getCurSDLoc(); 4336 4337 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4338 MaybeAlign &Alignment) { 4339 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4340 Src0 = I.getArgOperand(0); 4341 Ptr = I.getArgOperand(1); 4342 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4343 Mask = I.getArgOperand(3); 4344 }; 4345 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4346 MaybeAlign &Alignment) { 4347 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4348 Src0 = I.getArgOperand(0); 4349 Ptr = I.getArgOperand(1); 4350 Mask = I.getArgOperand(2); 4351 Alignment = None; 4352 }; 4353 4354 Value *PtrOperand, *MaskOperand, *Src0Operand; 4355 MaybeAlign Alignment; 4356 if (IsCompressing) 4357 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4358 else 4359 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4360 4361 SDValue Ptr = getValue(PtrOperand); 4362 SDValue Src0 = getValue(Src0Operand); 4363 SDValue Mask = getValue(MaskOperand); 4364 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4365 4366 EVT VT = Src0.getValueType(); 4367 if (!Alignment) 4368 Alignment = DAG.getEVTAlign(VT); 4369 4370 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4371 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4372 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4373 SDValue StoreNode = 4374 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4375 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4376 DAG.setRoot(StoreNode); 4377 setValue(&I, StoreNode); 4378 } 4379 4380 // Get a uniform base for the Gather/Scatter intrinsic. 4381 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4382 // We try to represent it as a base pointer + vector of indices. 4383 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4384 // The first operand of the GEP may be a single pointer or a vector of pointers 4385 // Example: 4386 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4387 // or 4388 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4389 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4390 // 4391 // When the first GEP operand is a single pointer - it is the uniform base we 4392 // are looking for. If first operand of the GEP is a splat vector - we 4393 // extract the splat value and use it as a uniform base. 4394 // In all other cases the function returns 'false'. 4395 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4396 ISD::MemIndexType &IndexType, SDValue &Scale, 4397 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4398 uint64_t ElemSize) { 4399 SelectionDAG& DAG = SDB->DAG; 4400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4401 const DataLayout &DL = DAG.getDataLayout(); 4402 4403 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4404 4405 // Handle splat constant pointer. 4406 if (auto *C = dyn_cast<Constant>(Ptr)) { 4407 C = C->getSplatValue(); 4408 if (!C) 4409 return false; 4410 4411 Base = SDB->getValue(C); 4412 4413 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4414 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4415 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4416 IndexType = ISD::SIGNED_SCALED; 4417 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4418 return true; 4419 } 4420 4421 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4422 if (!GEP || GEP->getParent() != CurBB) 4423 return false; 4424 4425 if (GEP->getNumOperands() != 2) 4426 return false; 4427 4428 const Value *BasePtr = GEP->getPointerOperand(); 4429 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4430 4431 // Make sure the base is scalar and the index is a vector. 4432 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4433 return false; 4434 4435 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4436 4437 // Target may not support the required addressing mode. 4438 if (ScaleVal != 1 && 4439 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4440 return false; 4441 4442 Base = SDB->getValue(BasePtr); 4443 Index = SDB->getValue(IndexVal); 4444 IndexType = ISD::SIGNED_SCALED; 4445 4446 Scale = 4447 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4448 return true; 4449 } 4450 4451 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4452 SDLoc sdl = getCurSDLoc(); 4453 4454 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4455 const Value *Ptr = I.getArgOperand(1); 4456 SDValue Src0 = getValue(I.getArgOperand(0)); 4457 SDValue Mask = getValue(I.getArgOperand(3)); 4458 EVT VT = Src0.getValueType(); 4459 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4460 ->getMaybeAlignValue() 4461 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4463 4464 SDValue Base; 4465 SDValue Index; 4466 ISD::MemIndexType IndexType; 4467 SDValue Scale; 4468 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4469 I.getParent(), VT.getScalarStoreSize()); 4470 4471 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4472 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4473 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4474 // TODO: Make MachineMemOperands aware of scalable 4475 // vectors. 4476 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4477 if (!UniformBase) { 4478 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4479 Index = getValue(Ptr); 4480 IndexType = ISD::SIGNED_SCALED; 4481 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4482 } 4483 4484 EVT IdxVT = Index.getValueType(); 4485 EVT EltTy = IdxVT.getVectorElementType(); 4486 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4487 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4488 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4489 } 4490 4491 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4492 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4493 Ops, MMO, IndexType, false); 4494 DAG.setRoot(Scatter); 4495 setValue(&I, Scatter); 4496 } 4497 4498 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4499 SDLoc sdl = getCurSDLoc(); 4500 4501 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4502 MaybeAlign &Alignment) { 4503 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4504 Ptr = I.getArgOperand(0); 4505 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4506 Mask = I.getArgOperand(2); 4507 Src0 = I.getArgOperand(3); 4508 }; 4509 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4510 MaybeAlign &Alignment) { 4511 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4512 Ptr = I.getArgOperand(0); 4513 Alignment = None; 4514 Mask = I.getArgOperand(1); 4515 Src0 = I.getArgOperand(2); 4516 }; 4517 4518 Value *PtrOperand, *MaskOperand, *Src0Operand; 4519 MaybeAlign Alignment; 4520 if (IsExpanding) 4521 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4522 else 4523 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4524 4525 SDValue Ptr = getValue(PtrOperand); 4526 SDValue Src0 = getValue(Src0Operand); 4527 SDValue Mask = getValue(MaskOperand); 4528 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4529 4530 EVT VT = Src0.getValueType(); 4531 if (!Alignment) 4532 Alignment = DAG.getEVTAlign(VT); 4533 4534 AAMDNodes AAInfo = I.getAAMetadata(); 4535 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4536 4537 // Do not serialize masked loads of constant memory with anything. 4538 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4539 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4540 4541 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4542 4543 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4544 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4545 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4546 4547 SDValue Load = 4548 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4549 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4550 if (AddToChain) 4551 PendingLoads.push_back(Load.getValue(1)); 4552 setValue(&I, Load); 4553 } 4554 4555 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4556 SDLoc sdl = getCurSDLoc(); 4557 4558 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4559 const Value *Ptr = I.getArgOperand(0); 4560 SDValue Src0 = getValue(I.getArgOperand(3)); 4561 SDValue Mask = getValue(I.getArgOperand(2)); 4562 4563 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4564 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4565 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4566 ->getMaybeAlignValue() 4567 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4568 4569 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4570 4571 SDValue Root = DAG.getRoot(); 4572 SDValue Base; 4573 SDValue Index; 4574 ISD::MemIndexType IndexType; 4575 SDValue Scale; 4576 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4577 I.getParent(), VT.getScalarStoreSize()); 4578 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4579 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4580 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4581 // TODO: Make MachineMemOperands aware of scalable 4582 // vectors. 4583 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4584 4585 if (!UniformBase) { 4586 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4587 Index = getValue(Ptr); 4588 IndexType = ISD::SIGNED_SCALED; 4589 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4590 } 4591 4592 EVT IdxVT = Index.getValueType(); 4593 EVT EltTy = IdxVT.getVectorElementType(); 4594 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4595 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4596 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4597 } 4598 4599 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4600 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4601 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4602 4603 PendingLoads.push_back(Gather.getValue(1)); 4604 setValue(&I, Gather); 4605 } 4606 4607 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4608 SDLoc dl = getCurSDLoc(); 4609 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4610 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4611 SyncScope::ID SSID = I.getSyncScopeID(); 4612 4613 SDValue InChain = getRoot(); 4614 4615 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4616 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4617 4618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4619 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4620 4621 MachineFunction &MF = DAG.getMachineFunction(); 4622 MachineMemOperand *MMO = MF.getMachineMemOperand( 4623 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4624 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4625 FailureOrdering); 4626 4627 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4628 dl, MemVT, VTs, InChain, 4629 getValue(I.getPointerOperand()), 4630 getValue(I.getCompareOperand()), 4631 getValue(I.getNewValOperand()), MMO); 4632 4633 SDValue OutChain = L.getValue(2); 4634 4635 setValue(&I, L); 4636 DAG.setRoot(OutChain); 4637 } 4638 4639 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4640 SDLoc dl = getCurSDLoc(); 4641 ISD::NodeType NT; 4642 switch (I.getOperation()) { 4643 default: llvm_unreachable("Unknown atomicrmw operation"); 4644 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4645 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4646 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4647 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4648 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4649 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4650 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4651 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4652 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4653 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4654 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4655 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4656 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4657 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4658 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4659 } 4660 AtomicOrdering Ordering = I.getOrdering(); 4661 SyncScope::ID SSID = I.getSyncScopeID(); 4662 4663 SDValue InChain = getRoot(); 4664 4665 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4667 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4668 4669 MachineFunction &MF = DAG.getMachineFunction(); 4670 MachineMemOperand *MMO = MF.getMachineMemOperand( 4671 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4672 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4673 4674 SDValue L = 4675 DAG.getAtomic(NT, dl, MemVT, InChain, 4676 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4677 MMO); 4678 4679 SDValue OutChain = L.getValue(1); 4680 4681 setValue(&I, L); 4682 DAG.setRoot(OutChain); 4683 } 4684 4685 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4686 SDLoc dl = getCurSDLoc(); 4687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4688 SDValue Ops[3]; 4689 Ops[0] = getRoot(); 4690 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4691 TLI.getFenceOperandTy(DAG.getDataLayout())); 4692 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4693 TLI.getFenceOperandTy(DAG.getDataLayout())); 4694 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4695 setValue(&I, N); 4696 DAG.setRoot(N); 4697 } 4698 4699 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4700 SDLoc dl = getCurSDLoc(); 4701 AtomicOrdering Order = I.getOrdering(); 4702 SyncScope::ID SSID = I.getSyncScopeID(); 4703 4704 SDValue InChain = getRoot(); 4705 4706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4707 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4708 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4709 4710 if (!TLI.supportsUnalignedAtomics() && 4711 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4712 report_fatal_error("Cannot generate unaligned atomic load"); 4713 4714 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4715 4716 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4717 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4718 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4719 4720 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4721 4722 SDValue Ptr = getValue(I.getPointerOperand()); 4723 4724 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4725 // TODO: Once this is better exercised by tests, it should be merged with 4726 // the normal path for loads to prevent future divergence. 4727 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4728 if (MemVT != VT) 4729 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4730 4731 setValue(&I, L); 4732 SDValue OutChain = L.getValue(1); 4733 if (!I.isUnordered()) 4734 DAG.setRoot(OutChain); 4735 else 4736 PendingLoads.push_back(OutChain); 4737 return; 4738 } 4739 4740 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4741 Ptr, MMO); 4742 4743 SDValue OutChain = L.getValue(1); 4744 if (MemVT != VT) 4745 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4746 4747 setValue(&I, L); 4748 DAG.setRoot(OutChain); 4749 } 4750 4751 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4752 SDLoc dl = getCurSDLoc(); 4753 4754 AtomicOrdering Ordering = I.getOrdering(); 4755 SyncScope::ID SSID = I.getSyncScopeID(); 4756 4757 SDValue InChain = getRoot(); 4758 4759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4760 EVT MemVT = 4761 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4762 4763 if (!TLI.supportsUnalignedAtomics() && 4764 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4765 report_fatal_error("Cannot generate unaligned atomic store"); 4766 4767 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4768 4769 MachineFunction &MF = DAG.getMachineFunction(); 4770 MachineMemOperand *MMO = MF.getMachineMemOperand( 4771 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4772 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4773 4774 SDValue Val = getValue(I.getValueOperand()); 4775 if (Val.getValueType() != MemVT) 4776 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4777 SDValue Ptr = getValue(I.getPointerOperand()); 4778 4779 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4780 // TODO: Once this is better exercised by tests, it should be merged with 4781 // the normal path for stores to prevent future divergence. 4782 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4783 setValue(&I, S); 4784 DAG.setRoot(S); 4785 return; 4786 } 4787 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4788 Ptr, Val, MMO); 4789 4790 setValue(&I, OutChain); 4791 DAG.setRoot(OutChain); 4792 } 4793 4794 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4795 /// node. 4796 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4797 unsigned Intrinsic) { 4798 // Ignore the callsite's attributes. A specific call site may be marked with 4799 // readnone, but the lowering code will expect the chain based on the 4800 // definition. 4801 const Function *F = I.getCalledFunction(); 4802 bool HasChain = !F->doesNotAccessMemory(); 4803 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4804 4805 // Build the operand list. 4806 SmallVector<SDValue, 8> Ops; 4807 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4808 if (OnlyLoad) { 4809 // We don't need to serialize loads against other loads. 4810 Ops.push_back(DAG.getRoot()); 4811 } else { 4812 Ops.push_back(getRoot()); 4813 } 4814 } 4815 4816 // Info is set by getTgtMemIntrinsic 4817 TargetLowering::IntrinsicInfo Info; 4818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4819 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4820 DAG.getMachineFunction(), 4821 Intrinsic); 4822 4823 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4824 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4825 Info.opc == ISD::INTRINSIC_W_CHAIN) 4826 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4827 TLI.getPointerTy(DAG.getDataLayout()))); 4828 4829 // Add all operands of the call to the operand list. 4830 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4831 const Value *Arg = I.getArgOperand(i); 4832 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4833 Ops.push_back(getValue(Arg)); 4834 continue; 4835 } 4836 4837 // Use TargetConstant instead of a regular constant for immarg. 4838 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4839 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4840 assert(CI->getBitWidth() <= 64 && 4841 "large intrinsic immediates not handled"); 4842 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4843 } else { 4844 Ops.push_back( 4845 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4846 } 4847 } 4848 4849 SmallVector<EVT, 4> ValueVTs; 4850 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4851 4852 if (HasChain) 4853 ValueVTs.push_back(MVT::Other); 4854 4855 SDVTList VTs = DAG.getVTList(ValueVTs); 4856 4857 // Propagate fast-math-flags from IR to node(s). 4858 SDNodeFlags Flags; 4859 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4860 Flags.copyFMF(*FPMO); 4861 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4862 4863 // Create the node. 4864 SDValue Result; 4865 // In some cases, custom collection of operands from CallInst I may be needed. 4866 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4867 if (IsTgtIntrinsic) { 4868 // This is target intrinsic that touches memory 4869 // 4870 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4871 // didn't yield anything useful. 4872 MachinePointerInfo MPI; 4873 if (Info.ptrVal) 4874 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4875 else if (Info.fallbackAddressSpace) 4876 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4877 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4878 Info.memVT, MPI, Info.align, Info.flags, 4879 Info.size, I.getAAMetadata()); 4880 } else if (!HasChain) { 4881 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4882 } else if (!I.getType()->isVoidTy()) { 4883 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4884 } else { 4885 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4886 } 4887 4888 if (HasChain) { 4889 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4890 if (OnlyLoad) 4891 PendingLoads.push_back(Chain); 4892 else 4893 DAG.setRoot(Chain); 4894 } 4895 4896 if (!I.getType()->isVoidTy()) { 4897 if (!isa<VectorType>(I.getType())) 4898 Result = lowerRangeToAssertZExt(DAG, I, Result); 4899 4900 MaybeAlign Alignment = I.getRetAlign(); 4901 if (!Alignment) 4902 Alignment = F->getAttributes().getRetAlignment(); 4903 // Insert `assertalign` node if there's an alignment. 4904 if (InsertAssertAlign && Alignment) { 4905 Result = 4906 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4907 } 4908 4909 setValue(&I, Result); 4910 } 4911 } 4912 4913 /// GetSignificand - Get the significand and build it into a floating-point 4914 /// number with exponent of 1: 4915 /// 4916 /// Op = (Op & 0x007fffff) | 0x3f800000; 4917 /// 4918 /// where Op is the hexadecimal representation of floating point value. 4919 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4920 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4921 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4922 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4923 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4924 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4925 } 4926 4927 /// GetExponent - Get the exponent: 4928 /// 4929 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4930 /// 4931 /// where Op is the hexadecimal representation of floating point value. 4932 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4933 const TargetLowering &TLI, const SDLoc &dl) { 4934 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4935 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4936 SDValue t1 = DAG.getNode( 4937 ISD::SRL, dl, MVT::i32, t0, 4938 DAG.getConstant(23, dl, 4939 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4940 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4941 DAG.getConstant(127, dl, MVT::i32)); 4942 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4943 } 4944 4945 /// getF32Constant - Get 32-bit floating point constant. 4946 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4947 const SDLoc &dl) { 4948 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4949 MVT::f32); 4950 } 4951 4952 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4953 SelectionDAG &DAG) { 4954 // TODO: What fast-math-flags should be set on the floating-point nodes? 4955 4956 // IntegerPartOfX = ((int32_t)(t0); 4957 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4958 4959 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4960 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4961 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4962 4963 // IntegerPartOfX <<= 23; 4964 IntegerPartOfX = 4965 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4966 DAG.getConstant(23, dl, 4967 DAG.getTargetLoweringInfo().getShiftAmountTy( 4968 MVT::i32, DAG.getDataLayout()))); 4969 4970 SDValue TwoToFractionalPartOfX; 4971 if (LimitFloatPrecision <= 6) { 4972 // For floating-point precision of 6: 4973 // 4974 // TwoToFractionalPartOfX = 4975 // 0.997535578f + 4976 // (0.735607626f + 0.252464424f * x) * x; 4977 // 4978 // error 0.0144103317, which is 6 bits 4979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4980 getF32Constant(DAG, 0x3e814304, dl)); 4981 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4982 getF32Constant(DAG, 0x3f3c50c8, dl)); 4983 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4984 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4985 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4986 } else if (LimitFloatPrecision <= 12) { 4987 // For floating-point precision of 12: 4988 // 4989 // TwoToFractionalPartOfX = 4990 // 0.999892986f + 4991 // (0.696457318f + 4992 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4993 // 4994 // error 0.000107046256, which is 13 to 14 bits 4995 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4996 getF32Constant(DAG, 0x3da235e3, dl)); 4997 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4998 getF32Constant(DAG, 0x3e65b8f3, dl)); 4999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5001 getF32Constant(DAG, 0x3f324b07, dl)); 5002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5003 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5004 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5005 } else { // LimitFloatPrecision <= 18 5006 // For floating-point precision of 18: 5007 // 5008 // TwoToFractionalPartOfX = 5009 // 0.999999982f + 5010 // (0.693148872f + 5011 // (0.240227044f + 5012 // (0.554906021e-1f + 5013 // (0.961591928e-2f + 5014 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5015 // error 2.47208000*10^(-7), which is better than 18 bits 5016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5017 getF32Constant(DAG, 0x3924b03e, dl)); 5018 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5019 getF32Constant(DAG, 0x3ab24b87, dl)); 5020 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5021 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5022 getF32Constant(DAG, 0x3c1d8c17, dl)); 5023 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5024 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5025 getF32Constant(DAG, 0x3d634a1d, dl)); 5026 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5027 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5028 getF32Constant(DAG, 0x3e75fe14, dl)); 5029 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5030 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5031 getF32Constant(DAG, 0x3f317234, dl)); 5032 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5033 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5034 getF32Constant(DAG, 0x3f800000, dl)); 5035 } 5036 5037 // Add the exponent into the result in integer domain. 5038 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5039 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5040 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5041 } 5042 5043 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5044 /// limited-precision mode. 5045 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5046 const TargetLowering &TLI, SDNodeFlags Flags) { 5047 if (Op.getValueType() == MVT::f32 && 5048 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5049 5050 // Put the exponent in the right bit position for later addition to the 5051 // final result: 5052 // 5053 // t0 = Op * log2(e) 5054 5055 // TODO: What fast-math-flags should be set here? 5056 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5057 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5058 return getLimitedPrecisionExp2(t0, dl, DAG); 5059 } 5060 5061 // No special expansion. 5062 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5063 } 5064 5065 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5066 /// limited-precision mode. 5067 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5068 const TargetLowering &TLI, SDNodeFlags Flags) { 5069 // TODO: What fast-math-flags should be set on the floating-point nodes? 5070 5071 if (Op.getValueType() == MVT::f32 && 5072 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5073 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5074 5075 // Scale the exponent by log(2). 5076 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5077 SDValue LogOfExponent = 5078 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5079 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5080 5081 // Get the significand and build it into a floating-point number with 5082 // exponent of 1. 5083 SDValue X = GetSignificand(DAG, Op1, dl); 5084 5085 SDValue LogOfMantissa; 5086 if (LimitFloatPrecision <= 6) { 5087 // For floating-point precision of 6: 5088 // 5089 // LogofMantissa = 5090 // -1.1609546f + 5091 // (1.4034025f - 0.23903021f * x) * x; 5092 // 5093 // error 0.0034276066, which is better than 8 bits 5094 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5095 getF32Constant(DAG, 0xbe74c456, dl)); 5096 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5097 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5098 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5099 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5100 getF32Constant(DAG, 0x3f949a29, dl)); 5101 } else if (LimitFloatPrecision <= 12) { 5102 // For floating-point precision of 12: 5103 // 5104 // LogOfMantissa = 5105 // -1.7417939f + 5106 // (2.8212026f + 5107 // (-1.4699568f + 5108 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5109 // 5110 // error 0.000061011436, which is 14 bits 5111 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5112 getF32Constant(DAG, 0xbd67b6d6, dl)); 5113 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5114 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5115 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5116 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5117 getF32Constant(DAG, 0x3fbc278b, dl)); 5118 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5119 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5120 getF32Constant(DAG, 0x40348e95, dl)); 5121 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5122 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5123 getF32Constant(DAG, 0x3fdef31a, dl)); 5124 } else { // LimitFloatPrecision <= 18 5125 // For floating-point precision of 18: 5126 // 5127 // LogOfMantissa = 5128 // -2.1072184f + 5129 // (4.2372794f + 5130 // (-3.7029485f + 5131 // (2.2781945f + 5132 // (-0.87823314f + 5133 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5134 // 5135 // error 0.0000023660568, which is better than 18 bits 5136 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5137 getF32Constant(DAG, 0xbc91e5ac, dl)); 5138 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5139 getF32Constant(DAG, 0x3e4350aa, dl)); 5140 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5141 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5142 getF32Constant(DAG, 0x3f60d3e3, dl)); 5143 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5144 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5145 getF32Constant(DAG, 0x4011cdf0, dl)); 5146 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5147 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5148 getF32Constant(DAG, 0x406cfd1c, dl)); 5149 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5150 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5151 getF32Constant(DAG, 0x408797cb, dl)); 5152 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5153 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5154 getF32Constant(DAG, 0x4006dcab, dl)); 5155 } 5156 5157 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5158 } 5159 5160 // No special expansion. 5161 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5162 } 5163 5164 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5165 /// limited-precision mode. 5166 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5167 const TargetLowering &TLI, SDNodeFlags Flags) { 5168 // TODO: What fast-math-flags should be set on the floating-point nodes? 5169 5170 if (Op.getValueType() == MVT::f32 && 5171 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5172 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5173 5174 // Get the exponent. 5175 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5176 5177 // Get the significand and build it into a floating-point number with 5178 // exponent of 1. 5179 SDValue X = GetSignificand(DAG, Op1, dl); 5180 5181 // Different possible minimax approximations of significand in 5182 // floating-point for various degrees of accuracy over [1,2]. 5183 SDValue Log2ofMantissa; 5184 if (LimitFloatPrecision <= 6) { 5185 // For floating-point precision of 6: 5186 // 5187 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5188 // 5189 // error 0.0049451742, which is more than 7 bits 5190 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5191 getF32Constant(DAG, 0xbeb08fe0, dl)); 5192 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5193 getF32Constant(DAG, 0x40019463, dl)); 5194 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5195 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5196 getF32Constant(DAG, 0x3fd6633d, dl)); 5197 } else if (LimitFloatPrecision <= 12) { 5198 // For floating-point precision of 12: 5199 // 5200 // Log2ofMantissa = 5201 // -2.51285454f + 5202 // (4.07009056f + 5203 // (-2.12067489f + 5204 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5205 // 5206 // error 0.0000876136000, which is better than 13 bits 5207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5208 getF32Constant(DAG, 0xbda7262e, dl)); 5209 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5210 getF32Constant(DAG, 0x3f25280b, dl)); 5211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5212 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5213 getF32Constant(DAG, 0x4007b923, dl)); 5214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5215 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5216 getF32Constant(DAG, 0x40823e2f, dl)); 5217 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5218 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5219 getF32Constant(DAG, 0x4020d29c, dl)); 5220 } else { // LimitFloatPrecision <= 18 5221 // For floating-point precision of 18: 5222 // 5223 // Log2ofMantissa = 5224 // -3.0400495f + 5225 // (6.1129976f + 5226 // (-5.3420409f + 5227 // (3.2865683f + 5228 // (-1.2669343f + 5229 // (0.27515199f - 5230 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5231 // 5232 // error 0.0000018516, which is better than 18 bits 5233 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5234 getF32Constant(DAG, 0xbcd2769e, dl)); 5235 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5236 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5237 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5238 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5239 getF32Constant(DAG, 0x3fa22ae7, dl)); 5240 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5241 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5242 getF32Constant(DAG, 0x40525723, dl)); 5243 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5244 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5245 getF32Constant(DAG, 0x40aaf200, dl)); 5246 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5247 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5248 getF32Constant(DAG, 0x40c39dad, dl)); 5249 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5250 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5251 getF32Constant(DAG, 0x4042902c, dl)); 5252 } 5253 5254 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5255 } 5256 5257 // No special expansion. 5258 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5259 } 5260 5261 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5262 /// limited-precision mode. 5263 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5264 const TargetLowering &TLI, SDNodeFlags Flags) { 5265 // TODO: What fast-math-flags should be set on the floating-point nodes? 5266 5267 if (Op.getValueType() == MVT::f32 && 5268 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5269 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5270 5271 // Scale the exponent by log10(2) [0.30102999f]. 5272 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5273 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5274 getF32Constant(DAG, 0x3e9a209a, dl)); 5275 5276 // Get the significand and build it into a floating-point number with 5277 // exponent of 1. 5278 SDValue X = GetSignificand(DAG, Op1, dl); 5279 5280 SDValue Log10ofMantissa; 5281 if (LimitFloatPrecision <= 6) { 5282 // For floating-point precision of 6: 5283 // 5284 // Log10ofMantissa = 5285 // -0.50419619f + 5286 // (0.60948995f - 0.10380950f * x) * x; 5287 // 5288 // error 0.0014886165, which is 6 bits 5289 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5290 getF32Constant(DAG, 0xbdd49a13, dl)); 5291 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5292 getF32Constant(DAG, 0x3f1c0789, dl)); 5293 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5294 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5295 getF32Constant(DAG, 0x3f011300, dl)); 5296 } else if (LimitFloatPrecision <= 12) { 5297 // For floating-point precision of 12: 5298 // 5299 // Log10ofMantissa = 5300 // -0.64831180f + 5301 // (0.91751397f + 5302 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5303 // 5304 // error 0.00019228036, which is better than 12 bits 5305 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5306 getF32Constant(DAG, 0x3d431f31, dl)); 5307 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5308 getF32Constant(DAG, 0x3ea21fb2, dl)); 5309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5310 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5311 getF32Constant(DAG, 0x3f6ae232, dl)); 5312 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5313 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5314 getF32Constant(DAG, 0x3f25f7c3, dl)); 5315 } else { // LimitFloatPrecision <= 18 5316 // For floating-point precision of 18: 5317 // 5318 // Log10ofMantissa = 5319 // -0.84299375f + 5320 // (1.5327582f + 5321 // (-1.0688956f + 5322 // (0.49102474f + 5323 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5324 // 5325 // error 0.0000037995730, which is better than 18 bits 5326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5327 getF32Constant(DAG, 0x3c5d51ce, dl)); 5328 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5329 getF32Constant(DAG, 0x3e00685a, dl)); 5330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5331 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5332 getF32Constant(DAG, 0x3efb6798, dl)); 5333 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5334 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5335 getF32Constant(DAG, 0x3f88d192, dl)); 5336 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5337 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5338 getF32Constant(DAG, 0x3fc4316c, dl)); 5339 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5340 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5341 getF32Constant(DAG, 0x3f57ce70, dl)); 5342 } 5343 5344 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5345 } 5346 5347 // No special expansion. 5348 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5349 } 5350 5351 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5352 /// limited-precision mode. 5353 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5354 const TargetLowering &TLI, SDNodeFlags Flags) { 5355 if (Op.getValueType() == MVT::f32 && 5356 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5357 return getLimitedPrecisionExp2(Op, dl, DAG); 5358 5359 // No special expansion. 5360 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5361 } 5362 5363 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5364 /// limited-precision mode with x == 10.0f. 5365 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5366 SelectionDAG &DAG, const TargetLowering &TLI, 5367 SDNodeFlags Flags) { 5368 bool IsExp10 = false; 5369 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5370 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5371 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5372 APFloat Ten(10.0f); 5373 IsExp10 = LHSC->isExactlyValue(Ten); 5374 } 5375 } 5376 5377 // TODO: What fast-math-flags should be set on the FMUL node? 5378 if (IsExp10) { 5379 // Put the exponent in the right bit position for later addition to the 5380 // final result: 5381 // 5382 // #define LOG2OF10 3.3219281f 5383 // t0 = Op * LOG2OF10; 5384 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5385 getF32Constant(DAG, 0x40549a78, dl)); 5386 return getLimitedPrecisionExp2(t0, dl, DAG); 5387 } 5388 5389 // No special expansion. 5390 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5391 } 5392 5393 /// ExpandPowI - Expand a llvm.powi intrinsic. 5394 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5395 SelectionDAG &DAG) { 5396 // If RHS is a constant, we can expand this out to a multiplication tree if 5397 // it's beneficial on the target, otherwise we end up lowering to a call to 5398 // __powidf2 (for example). 5399 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5400 unsigned Val = RHSC->getSExtValue(); 5401 5402 // powi(x, 0) -> 1.0 5403 if (Val == 0) 5404 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5405 5406 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5407 Val, DAG.shouldOptForSize())) { 5408 // Get the exponent as a positive value. 5409 if ((int)Val < 0) 5410 Val = -Val; 5411 // We use the simple binary decomposition method to generate the multiply 5412 // sequence. There are more optimal ways to do this (for example, 5413 // powi(x,15) generates one more multiply than it should), but this has 5414 // the benefit of being both really simple and much better than a libcall. 5415 SDValue Res; // Logically starts equal to 1.0 5416 SDValue CurSquare = LHS; 5417 // TODO: Intrinsics should have fast-math-flags that propagate to these 5418 // nodes. 5419 while (Val) { 5420 if (Val & 1) { 5421 if (Res.getNode()) 5422 Res = 5423 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5424 else 5425 Res = CurSquare; // 1.0*CurSquare. 5426 } 5427 5428 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5429 CurSquare, CurSquare); 5430 Val >>= 1; 5431 } 5432 5433 // If the original was negative, invert the result, producing 1/(x*x*x). 5434 if (RHSC->getSExtValue() < 0) 5435 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5436 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5437 return Res; 5438 } 5439 } 5440 5441 // Otherwise, expand to a libcall. 5442 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5443 } 5444 5445 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5446 SDValue LHS, SDValue RHS, SDValue Scale, 5447 SelectionDAG &DAG, const TargetLowering &TLI) { 5448 EVT VT = LHS.getValueType(); 5449 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5450 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5451 LLVMContext &Ctx = *DAG.getContext(); 5452 5453 // If the type is legal but the operation isn't, this node might survive all 5454 // the way to operation legalization. If we end up there and we do not have 5455 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5456 // node. 5457 5458 // Coax the legalizer into expanding the node during type legalization instead 5459 // by bumping the size by one bit. This will force it to Promote, enabling the 5460 // early expansion and avoiding the need to expand later. 5461 5462 // We don't have to do this if Scale is 0; that can always be expanded, unless 5463 // it's a saturating signed operation. Those can experience true integer 5464 // division overflow, a case which we must avoid. 5465 5466 // FIXME: We wouldn't have to do this (or any of the early 5467 // expansion/promotion) if it was possible to expand a libcall of an 5468 // illegal type during operation legalization. But it's not, so things 5469 // get a bit hacky. 5470 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5471 if ((ScaleInt > 0 || (Saturating && Signed)) && 5472 (TLI.isTypeLegal(VT) || 5473 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5474 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5475 Opcode, VT, ScaleInt); 5476 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5477 EVT PromVT; 5478 if (VT.isScalarInteger()) 5479 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5480 else if (VT.isVector()) { 5481 PromVT = VT.getVectorElementType(); 5482 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5483 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5484 } else 5485 llvm_unreachable("Wrong VT for DIVFIX?"); 5486 if (Signed) { 5487 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5488 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5489 } else { 5490 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5491 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5492 } 5493 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5494 // For saturating operations, we need to shift up the LHS to get the 5495 // proper saturation width, and then shift down again afterwards. 5496 if (Saturating) 5497 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5498 DAG.getConstant(1, DL, ShiftTy)); 5499 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5500 if (Saturating) 5501 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5502 DAG.getConstant(1, DL, ShiftTy)); 5503 return DAG.getZExtOrTrunc(Res, DL, VT); 5504 } 5505 } 5506 5507 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5508 } 5509 5510 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5511 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5512 static void 5513 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5514 const SDValue &N) { 5515 switch (N.getOpcode()) { 5516 case ISD::CopyFromReg: { 5517 SDValue Op = N.getOperand(1); 5518 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5519 Op.getValueType().getSizeInBits()); 5520 return; 5521 } 5522 case ISD::BITCAST: 5523 case ISD::AssertZext: 5524 case ISD::AssertSext: 5525 case ISD::TRUNCATE: 5526 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5527 return; 5528 case ISD::BUILD_PAIR: 5529 case ISD::BUILD_VECTOR: 5530 case ISD::CONCAT_VECTORS: 5531 for (SDValue Op : N->op_values()) 5532 getUnderlyingArgRegs(Regs, Op); 5533 return; 5534 default: 5535 return; 5536 } 5537 } 5538 5539 /// If the DbgValueInst is a dbg_value of a function argument, create the 5540 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5541 /// instruction selection, they will be inserted to the entry BB. 5542 /// We don't currently support this for variadic dbg_values, as they shouldn't 5543 /// appear for function arguments or in the prologue. 5544 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5545 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5546 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5547 const Argument *Arg = dyn_cast<Argument>(V); 5548 if (!Arg) 5549 return false; 5550 5551 MachineFunction &MF = DAG.getMachineFunction(); 5552 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5553 5554 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5555 // we've been asked to pursue. 5556 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5557 bool Indirect) { 5558 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5559 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5560 // pointing at the VReg, which will be patched up later. 5561 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5562 auto MIB = BuildMI(MF, DL, Inst); 5563 MIB.addReg(Reg); 5564 MIB.addImm(0); 5565 MIB.addMetadata(Variable); 5566 auto *NewDIExpr = FragExpr; 5567 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5568 // the DIExpression. 5569 if (Indirect) 5570 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5571 MIB.addMetadata(NewDIExpr); 5572 return MIB; 5573 } else { 5574 // Create a completely standard DBG_VALUE. 5575 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5576 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5577 } 5578 }; 5579 5580 if (Kind == FuncArgumentDbgValueKind::Value) { 5581 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5582 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5583 // the entry block. 5584 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5585 if (!IsInEntryBlock) 5586 return false; 5587 5588 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5589 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5590 // variable that also is a param. 5591 // 5592 // Although, if we are at the top of the entry block already, we can still 5593 // emit using ArgDbgValue. This might catch some situations when the 5594 // dbg.value refers to an argument that isn't used in the entry block, so 5595 // any CopyToReg node would be optimized out and the only way to express 5596 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5597 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5598 // we should only emit as ArgDbgValue if the Variable is an argument to the 5599 // current function, and the dbg.value intrinsic is found in the entry 5600 // block. 5601 bool VariableIsFunctionInputArg = Variable->isParameter() && 5602 !DL->getInlinedAt(); 5603 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5604 if (!IsInPrologue && !VariableIsFunctionInputArg) 5605 return false; 5606 5607 // Here we assume that a function argument on IR level only can be used to 5608 // describe one input parameter on source level. If we for example have 5609 // source code like this 5610 // 5611 // struct A { long x, y; }; 5612 // void foo(struct A a, long b) { 5613 // ... 5614 // b = a.x; 5615 // ... 5616 // } 5617 // 5618 // and IR like this 5619 // 5620 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5621 // entry: 5622 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5623 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5624 // call void @llvm.dbg.value(metadata i32 %b, "b", 5625 // ... 5626 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5627 // ... 5628 // 5629 // then the last dbg.value is describing a parameter "b" using a value that 5630 // is an argument. But since we already has used %a1 to describe a parameter 5631 // we should not handle that last dbg.value here (that would result in an 5632 // incorrect hoisting of the DBG_VALUE to the function entry). 5633 // Notice that we allow one dbg.value per IR level argument, to accommodate 5634 // for the situation with fragments above. 5635 if (VariableIsFunctionInputArg) { 5636 unsigned ArgNo = Arg->getArgNo(); 5637 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5638 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5639 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5640 return false; 5641 FuncInfo.DescribedArgs.set(ArgNo); 5642 } 5643 } 5644 5645 bool IsIndirect = false; 5646 std::optional<MachineOperand> Op; 5647 // Some arguments' frame index is recorded during argument lowering. 5648 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5649 if (FI != std::numeric_limits<int>::max()) 5650 Op = MachineOperand::CreateFI(FI); 5651 5652 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5653 if (!Op && N.getNode()) { 5654 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5655 Register Reg; 5656 if (ArgRegsAndSizes.size() == 1) 5657 Reg = ArgRegsAndSizes.front().first; 5658 5659 if (Reg && Reg.isVirtual()) { 5660 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5661 Register PR = RegInfo.getLiveInPhysReg(Reg); 5662 if (PR) 5663 Reg = PR; 5664 } 5665 if (Reg) { 5666 Op = MachineOperand::CreateReg(Reg, false); 5667 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5668 } 5669 } 5670 5671 if (!Op && N.getNode()) { 5672 // Check if frame index is available. 5673 SDValue LCandidate = peekThroughBitcasts(N); 5674 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5675 if (FrameIndexSDNode *FINode = 5676 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5677 Op = MachineOperand::CreateFI(FINode->getIndex()); 5678 } 5679 5680 if (!Op) { 5681 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5682 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5683 SplitRegs) { 5684 unsigned Offset = 0; 5685 for (const auto &RegAndSize : SplitRegs) { 5686 // If the expression is already a fragment, the current register 5687 // offset+size might extend beyond the fragment. In this case, only 5688 // the register bits that are inside the fragment are relevant. 5689 int RegFragmentSizeInBits = RegAndSize.second; 5690 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5691 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5692 // The register is entirely outside the expression fragment, 5693 // so is irrelevant for debug info. 5694 if (Offset >= ExprFragmentSizeInBits) 5695 break; 5696 // The register is partially outside the expression fragment, only 5697 // the low bits within the fragment are relevant for debug info. 5698 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5699 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5700 } 5701 } 5702 5703 auto FragmentExpr = DIExpression::createFragmentExpression( 5704 Expr, Offset, RegFragmentSizeInBits); 5705 Offset += RegAndSize.second; 5706 // If a valid fragment expression cannot be created, the variable's 5707 // correct value cannot be determined and so it is set as Undef. 5708 if (!FragmentExpr) { 5709 SDDbgValue *SDV = DAG.getConstantDbgValue( 5710 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5711 DAG.AddDbgValue(SDV, false); 5712 continue; 5713 } 5714 MachineInstr *NewMI = 5715 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5716 Kind != FuncArgumentDbgValueKind::Value); 5717 FuncInfo.ArgDbgValues.push_back(NewMI); 5718 } 5719 }; 5720 5721 // Check if ValueMap has reg number. 5722 DenseMap<const Value *, Register>::const_iterator 5723 VMI = FuncInfo.ValueMap.find(V); 5724 if (VMI != FuncInfo.ValueMap.end()) { 5725 const auto &TLI = DAG.getTargetLoweringInfo(); 5726 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5727 V->getType(), None); 5728 if (RFV.occupiesMultipleRegs()) { 5729 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5730 return true; 5731 } 5732 5733 Op = MachineOperand::CreateReg(VMI->second, false); 5734 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5735 } else if (ArgRegsAndSizes.size() > 1) { 5736 // This was split due to the calling convention, and no virtual register 5737 // mapping exists for the value. 5738 splitMultiRegDbgValue(ArgRegsAndSizes); 5739 return true; 5740 } 5741 } 5742 5743 if (!Op) 5744 return false; 5745 5746 assert(Variable->isValidLocationForIntrinsic(DL) && 5747 "Expected inlined-at fields to agree"); 5748 MachineInstr *NewMI = nullptr; 5749 5750 if (Op->isReg()) 5751 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5752 else 5753 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5754 Variable, Expr); 5755 5756 // Otherwise, use ArgDbgValues. 5757 FuncInfo.ArgDbgValues.push_back(NewMI); 5758 return true; 5759 } 5760 5761 /// Return the appropriate SDDbgValue based on N. 5762 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5763 DILocalVariable *Variable, 5764 DIExpression *Expr, 5765 const DebugLoc &dl, 5766 unsigned DbgSDNodeOrder) { 5767 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5768 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5769 // stack slot locations. 5770 // 5771 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5772 // debug values here after optimization: 5773 // 5774 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5775 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5776 // 5777 // Both describe the direct values of their associated variables. 5778 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5779 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5780 } 5781 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5782 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5783 } 5784 5785 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5786 switch (Intrinsic) { 5787 case Intrinsic::smul_fix: 5788 return ISD::SMULFIX; 5789 case Intrinsic::umul_fix: 5790 return ISD::UMULFIX; 5791 case Intrinsic::smul_fix_sat: 5792 return ISD::SMULFIXSAT; 5793 case Intrinsic::umul_fix_sat: 5794 return ISD::UMULFIXSAT; 5795 case Intrinsic::sdiv_fix: 5796 return ISD::SDIVFIX; 5797 case Intrinsic::udiv_fix: 5798 return ISD::UDIVFIX; 5799 case Intrinsic::sdiv_fix_sat: 5800 return ISD::SDIVFIXSAT; 5801 case Intrinsic::udiv_fix_sat: 5802 return ISD::UDIVFIXSAT; 5803 default: 5804 llvm_unreachable("Unhandled fixed point intrinsic"); 5805 } 5806 } 5807 5808 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5809 const char *FunctionName) { 5810 assert(FunctionName && "FunctionName must not be nullptr"); 5811 SDValue Callee = DAG.getExternalSymbol( 5812 FunctionName, 5813 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5814 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5815 } 5816 5817 /// Given a @llvm.call.preallocated.setup, return the corresponding 5818 /// preallocated call. 5819 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5820 assert(cast<CallBase>(PreallocatedSetup) 5821 ->getCalledFunction() 5822 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5823 "expected call_preallocated_setup Value"); 5824 for (const auto *U : PreallocatedSetup->users()) { 5825 auto *UseCall = cast<CallBase>(U); 5826 const Function *Fn = UseCall->getCalledFunction(); 5827 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5828 return UseCall; 5829 } 5830 } 5831 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5832 } 5833 5834 /// Lower the call to the specified intrinsic function. 5835 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5836 unsigned Intrinsic) { 5837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5838 SDLoc sdl = getCurSDLoc(); 5839 DebugLoc dl = getCurDebugLoc(); 5840 SDValue Res; 5841 5842 SDNodeFlags Flags; 5843 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5844 Flags.copyFMF(*FPOp); 5845 5846 switch (Intrinsic) { 5847 default: 5848 // By default, turn this into a target intrinsic node. 5849 visitTargetIntrinsic(I, Intrinsic); 5850 return; 5851 case Intrinsic::vscale: { 5852 match(&I, m_VScale(DAG.getDataLayout())); 5853 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5854 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5855 return; 5856 } 5857 case Intrinsic::vastart: visitVAStart(I); return; 5858 case Intrinsic::vaend: visitVAEnd(I); return; 5859 case Intrinsic::vacopy: visitVACopy(I); return; 5860 case Intrinsic::returnaddress: 5861 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5862 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5863 getValue(I.getArgOperand(0)))); 5864 return; 5865 case Intrinsic::addressofreturnaddress: 5866 setValue(&I, 5867 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5868 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5869 return; 5870 case Intrinsic::sponentry: 5871 setValue(&I, 5872 DAG.getNode(ISD::SPONENTRY, sdl, 5873 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5874 return; 5875 case Intrinsic::frameaddress: 5876 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5877 TLI.getFrameIndexTy(DAG.getDataLayout()), 5878 getValue(I.getArgOperand(0)))); 5879 return; 5880 case Intrinsic::read_volatile_register: 5881 case Intrinsic::read_register: { 5882 Value *Reg = I.getArgOperand(0); 5883 SDValue Chain = getRoot(); 5884 SDValue RegName = 5885 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5886 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5887 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5888 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5889 setValue(&I, Res); 5890 DAG.setRoot(Res.getValue(1)); 5891 return; 5892 } 5893 case Intrinsic::write_register: { 5894 Value *Reg = I.getArgOperand(0); 5895 Value *RegValue = I.getArgOperand(1); 5896 SDValue Chain = getRoot(); 5897 SDValue RegName = 5898 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5899 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5900 RegName, getValue(RegValue))); 5901 return; 5902 } 5903 case Intrinsic::memcpy: { 5904 const auto &MCI = cast<MemCpyInst>(I); 5905 SDValue Op1 = getValue(I.getArgOperand(0)); 5906 SDValue Op2 = getValue(I.getArgOperand(1)); 5907 SDValue Op3 = getValue(I.getArgOperand(2)); 5908 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5909 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5910 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5911 Align Alignment = std::min(DstAlign, SrcAlign); 5912 bool isVol = MCI.isVolatile(); 5913 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5914 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5915 // node. 5916 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5917 SDValue MC = DAG.getMemcpy( 5918 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5919 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5920 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5921 updateDAGForMaybeTailCall(MC); 5922 return; 5923 } 5924 case Intrinsic::memcpy_inline: { 5925 const auto &MCI = cast<MemCpyInlineInst>(I); 5926 SDValue Dst = getValue(I.getArgOperand(0)); 5927 SDValue Src = getValue(I.getArgOperand(1)); 5928 SDValue Size = getValue(I.getArgOperand(2)); 5929 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5930 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5931 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5932 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5933 Align Alignment = std::min(DstAlign, SrcAlign); 5934 bool isVol = MCI.isVolatile(); 5935 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5936 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5937 // node. 5938 SDValue MC = DAG.getMemcpy( 5939 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5940 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5941 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5942 updateDAGForMaybeTailCall(MC); 5943 return; 5944 } 5945 case Intrinsic::memset: { 5946 const auto &MSI = cast<MemSetInst>(I); 5947 SDValue Op1 = getValue(I.getArgOperand(0)); 5948 SDValue Op2 = getValue(I.getArgOperand(1)); 5949 SDValue Op3 = getValue(I.getArgOperand(2)); 5950 // @llvm.memset defines 0 and 1 to both mean no alignment. 5951 Align Alignment = MSI.getDestAlign().valueOrOne(); 5952 bool isVol = MSI.isVolatile(); 5953 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5954 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5955 SDValue MS = DAG.getMemset( 5956 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5957 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5958 updateDAGForMaybeTailCall(MS); 5959 return; 5960 } 5961 case Intrinsic::memset_inline: { 5962 const auto &MSII = cast<MemSetInlineInst>(I); 5963 SDValue Dst = getValue(I.getArgOperand(0)); 5964 SDValue Value = getValue(I.getArgOperand(1)); 5965 SDValue Size = getValue(I.getArgOperand(2)); 5966 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5967 // @llvm.memset defines 0 and 1 to both mean no alignment. 5968 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5969 bool isVol = MSII.isVolatile(); 5970 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5971 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5972 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5973 /* AlwaysInline */ true, isTC, 5974 MachinePointerInfo(I.getArgOperand(0)), 5975 I.getAAMetadata()); 5976 updateDAGForMaybeTailCall(MC); 5977 return; 5978 } 5979 case Intrinsic::memmove: { 5980 const auto &MMI = cast<MemMoveInst>(I); 5981 SDValue Op1 = getValue(I.getArgOperand(0)); 5982 SDValue Op2 = getValue(I.getArgOperand(1)); 5983 SDValue Op3 = getValue(I.getArgOperand(2)); 5984 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5985 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5986 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5987 Align Alignment = std::min(DstAlign, SrcAlign); 5988 bool isVol = MMI.isVolatile(); 5989 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5990 // FIXME: Support passing different dest/src alignments to the memmove DAG 5991 // node. 5992 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5993 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5994 isTC, MachinePointerInfo(I.getArgOperand(0)), 5995 MachinePointerInfo(I.getArgOperand(1)), 5996 I.getAAMetadata(), AA); 5997 updateDAGForMaybeTailCall(MM); 5998 return; 5999 } 6000 case Intrinsic::memcpy_element_unordered_atomic: { 6001 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6002 SDValue Dst = getValue(MI.getRawDest()); 6003 SDValue Src = getValue(MI.getRawSource()); 6004 SDValue Length = getValue(MI.getLength()); 6005 6006 Type *LengthTy = MI.getLength()->getType(); 6007 unsigned ElemSz = MI.getElementSizeInBytes(); 6008 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6009 SDValue MC = 6010 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6011 isTC, MachinePointerInfo(MI.getRawDest()), 6012 MachinePointerInfo(MI.getRawSource())); 6013 updateDAGForMaybeTailCall(MC); 6014 return; 6015 } 6016 case Intrinsic::memmove_element_unordered_atomic: { 6017 auto &MI = cast<AtomicMemMoveInst>(I); 6018 SDValue Dst = getValue(MI.getRawDest()); 6019 SDValue Src = getValue(MI.getRawSource()); 6020 SDValue Length = getValue(MI.getLength()); 6021 6022 Type *LengthTy = MI.getLength()->getType(); 6023 unsigned ElemSz = MI.getElementSizeInBytes(); 6024 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6025 SDValue MC = 6026 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6027 isTC, MachinePointerInfo(MI.getRawDest()), 6028 MachinePointerInfo(MI.getRawSource())); 6029 updateDAGForMaybeTailCall(MC); 6030 return; 6031 } 6032 case Intrinsic::memset_element_unordered_atomic: { 6033 auto &MI = cast<AtomicMemSetInst>(I); 6034 SDValue Dst = getValue(MI.getRawDest()); 6035 SDValue Val = getValue(MI.getValue()); 6036 SDValue Length = getValue(MI.getLength()); 6037 6038 Type *LengthTy = MI.getLength()->getType(); 6039 unsigned ElemSz = MI.getElementSizeInBytes(); 6040 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6041 SDValue MC = 6042 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6043 isTC, MachinePointerInfo(MI.getRawDest())); 6044 updateDAGForMaybeTailCall(MC); 6045 return; 6046 } 6047 case Intrinsic::call_preallocated_setup: { 6048 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6049 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6050 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6051 getRoot(), SrcValue); 6052 setValue(&I, Res); 6053 DAG.setRoot(Res); 6054 return; 6055 } 6056 case Intrinsic::call_preallocated_arg: { 6057 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6058 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6059 SDValue Ops[3]; 6060 Ops[0] = getRoot(); 6061 Ops[1] = SrcValue; 6062 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6063 MVT::i32); // arg index 6064 SDValue Res = DAG.getNode( 6065 ISD::PREALLOCATED_ARG, sdl, 6066 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6067 setValue(&I, Res); 6068 DAG.setRoot(Res.getValue(1)); 6069 return; 6070 } 6071 case Intrinsic::dbg_addr: 6072 case Intrinsic::dbg_declare: { 6073 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6074 // they are non-variadic. 6075 const auto &DI = cast<DbgVariableIntrinsic>(I); 6076 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6077 DILocalVariable *Variable = DI.getVariable(); 6078 DIExpression *Expression = DI.getExpression(); 6079 dropDanglingDebugInfo(Variable, Expression); 6080 assert(Variable && "Missing variable"); 6081 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6082 << "\n"); 6083 // Check if address has undef value. 6084 const Value *Address = DI.getVariableLocationOp(0); 6085 if (!Address || isa<UndefValue>(Address) || 6086 (Address->use_empty() && !isa<Argument>(Address))) { 6087 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6088 << " (bad/undef/unused-arg address)\n"); 6089 return; 6090 } 6091 6092 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6093 6094 // Check if this variable can be described by a frame index, typically 6095 // either as a static alloca or a byval parameter. 6096 int FI = std::numeric_limits<int>::max(); 6097 if (const auto *AI = 6098 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6099 if (AI->isStaticAlloca()) { 6100 auto I = FuncInfo.StaticAllocaMap.find(AI); 6101 if (I != FuncInfo.StaticAllocaMap.end()) 6102 FI = I->second; 6103 } 6104 } else if (const auto *Arg = dyn_cast<Argument>( 6105 Address->stripInBoundsConstantOffsets())) { 6106 FI = FuncInfo.getArgumentFrameIndex(Arg); 6107 } 6108 6109 // llvm.dbg.addr is control dependent and always generates indirect 6110 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6111 // the MachineFunction variable table. 6112 if (FI != std::numeric_limits<int>::max()) { 6113 if (Intrinsic == Intrinsic::dbg_addr) { 6114 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6115 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6116 dl, SDNodeOrder); 6117 DAG.AddDbgValue(SDV, isParameter); 6118 } else { 6119 LLVM_DEBUG(dbgs() << "Skipping " << DI 6120 << " (variable info stashed in MF side table)\n"); 6121 } 6122 return; 6123 } 6124 6125 SDValue &N = NodeMap[Address]; 6126 if (!N.getNode() && isa<Argument>(Address)) 6127 // Check unused arguments map. 6128 N = UnusedArgNodeMap[Address]; 6129 SDDbgValue *SDV; 6130 if (N.getNode()) { 6131 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6132 Address = BCI->getOperand(0); 6133 // Parameters are handled specially. 6134 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6135 if (isParameter && FINode) { 6136 // Byval parameter. We have a frame index at this point. 6137 SDV = 6138 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6139 /*IsIndirect*/ true, dl, SDNodeOrder); 6140 } else if (isa<Argument>(Address)) { 6141 // Address is an argument, so try to emit its dbg value using 6142 // virtual register info from the FuncInfo.ValueMap. 6143 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6144 FuncArgumentDbgValueKind::Declare, N); 6145 return; 6146 } else { 6147 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6148 true, dl, SDNodeOrder); 6149 } 6150 DAG.AddDbgValue(SDV, isParameter); 6151 } else { 6152 // If Address is an argument then try to emit its dbg value using 6153 // virtual register info from the FuncInfo.ValueMap. 6154 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6155 FuncArgumentDbgValueKind::Declare, N)) { 6156 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6157 << " (could not emit func-arg dbg_value)\n"); 6158 } 6159 } 6160 return; 6161 } 6162 case Intrinsic::dbg_label: { 6163 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6164 DILabel *Label = DI.getLabel(); 6165 assert(Label && "Missing label"); 6166 6167 SDDbgLabel *SDV; 6168 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6169 DAG.AddDbgLabel(SDV); 6170 return; 6171 } 6172 case Intrinsic::dbg_value: { 6173 const DbgValueInst &DI = cast<DbgValueInst>(I); 6174 assert(DI.getVariable() && "Missing variable"); 6175 6176 DILocalVariable *Variable = DI.getVariable(); 6177 DIExpression *Expression = DI.getExpression(); 6178 dropDanglingDebugInfo(Variable, Expression); 6179 SmallVector<Value *, 4> Values(DI.getValues()); 6180 if (Values.empty()) 6181 return; 6182 6183 if (llvm::is_contained(Values, nullptr)) 6184 return; 6185 6186 bool IsVariadic = DI.hasArgList(); 6187 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6188 SDNodeOrder, IsVariadic)) 6189 addDanglingDebugInfo(&DI, SDNodeOrder); 6190 return; 6191 } 6192 6193 case Intrinsic::eh_typeid_for: { 6194 // Find the type id for the given typeinfo. 6195 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6196 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6197 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6198 setValue(&I, Res); 6199 return; 6200 } 6201 6202 case Intrinsic::eh_return_i32: 6203 case Intrinsic::eh_return_i64: 6204 DAG.getMachineFunction().setCallsEHReturn(true); 6205 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6206 MVT::Other, 6207 getControlRoot(), 6208 getValue(I.getArgOperand(0)), 6209 getValue(I.getArgOperand(1)))); 6210 return; 6211 case Intrinsic::eh_unwind_init: 6212 DAG.getMachineFunction().setCallsUnwindInit(true); 6213 return; 6214 case Intrinsic::eh_dwarf_cfa: 6215 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6216 TLI.getPointerTy(DAG.getDataLayout()), 6217 getValue(I.getArgOperand(0)))); 6218 return; 6219 case Intrinsic::eh_sjlj_callsite: { 6220 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6221 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6222 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6223 6224 MMI.setCurrentCallSite(CI->getZExtValue()); 6225 return; 6226 } 6227 case Intrinsic::eh_sjlj_functioncontext: { 6228 // Get and store the index of the function context. 6229 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6230 AllocaInst *FnCtx = 6231 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6232 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6233 MFI.setFunctionContextIndex(FI); 6234 return; 6235 } 6236 case Intrinsic::eh_sjlj_setjmp: { 6237 SDValue Ops[2]; 6238 Ops[0] = getRoot(); 6239 Ops[1] = getValue(I.getArgOperand(0)); 6240 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6241 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6242 setValue(&I, Op.getValue(0)); 6243 DAG.setRoot(Op.getValue(1)); 6244 return; 6245 } 6246 case Intrinsic::eh_sjlj_longjmp: 6247 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6248 getRoot(), getValue(I.getArgOperand(0)))); 6249 return; 6250 case Intrinsic::eh_sjlj_setup_dispatch: 6251 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6252 getRoot())); 6253 return; 6254 case Intrinsic::masked_gather: 6255 visitMaskedGather(I); 6256 return; 6257 case Intrinsic::masked_load: 6258 visitMaskedLoad(I); 6259 return; 6260 case Intrinsic::masked_scatter: 6261 visitMaskedScatter(I); 6262 return; 6263 case Intrinsic::masked_store: 6264 visitMaskedStore(I); 6265 return; 6266 case Intrinsic::masked_expandload: 6267 visitMaskedLoad(I, true /* IsExpanding */); 6268 return; 6269 case Intrinsic::masked_compressstore: 6270 visitMaskedStore(I, true /* IsCompressing */); 6271 return; 6272 case Intrinsic::powi: 6273 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6274 getValue(I.getArgOperand(1)), DAG)); 6275 return; 6276 case Intrinsic::log: 6277 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6278 return; 6279 case Intrinsic::log2: 6280 setValue(&I, 6281 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6282 return; 6283 case Intrinsic::log10: 6284 setValue(&I, 6285 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6286 return; 6287 case Intrinsic::exp: 6288 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6289 return; 6290 case Intrinsic::exp2: 6291 setValue(&I, 6292 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6293 return; 6294 case Intrinsic::pow: 6295 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6296 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6297 return; 6298 case Intrinsic::sqrt: 6299 case Intrinsic::fabs: 6300 case Intrinsic::sin: 6301 case Intrinsic::cos: 6302 case Intrinsic::floor: 6303 case Intrinsic::ceil: 6304 case Intrinsic::trunc: 6305 case Intrinsic::rint: 6306 case Intrinsic::nearbyint: 6307 case Intrinsic::round: 6308 case Intrinsic::roundeven: 6309 case Intrinsic::canonicalize: { 6310 unsigned Opcode; 6311 switch (Intrinsic) { 6312 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6313 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6314 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6315 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6316 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6317 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6318 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6319 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6320 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6321 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6322 case Intrinsic::round: Opcode = ISD::FROUND; break; 6323 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6324 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6325 } 6326 6327 setValue(&I, DAG.getNode(Opcode, sdl, 6328 getValue(I.getArgOperand(0)).getValueType(), 6329 getValue(I.getArgOperand(0)), Flags)); 6330 return; 6331 } 6332 case Intrinsic::lround: 6333 case Intrinsic::llround: 6334 case Intrinsic::lrint: 6335 case Intrinsic::llrint: { 6336 unsigned Opcode; 6337 switch (Intrinsic) { 6338 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6339 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6340 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6341 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6342 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6343 } 6344 6345 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6346 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6347 getValue(I.getArgOperand(0)))); 6348 return; 6349 } 6350 case Intrinsic::minnum: 6351 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6352 getValue(I.getArgOperand(0)).getValueType(), 6353 getValue(I.getArgOperand(0)), 6354 getValue(I.getArgOperand(1)), Flags)); 6355 return; 6356 case Intrinsic::maxnum: 6357 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6358 getValue(I.getArgOperand(0)).getValueType(), 6359 getValue(I.getArgOperand(0)), 6360 getValue(I.getArgOperand(1)), Flags)); 6361 return; 6362 case Intrinsic::minimum: 6363 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6364 getValue(I.getArgOperand(0)).getValueType(), 6365 getValue(I.getArgOperand(0)), 6366 getValue(I.getArgOperand(1)), Flags)); 6367 return; 6368 case Intrinsic::maximum: 6369 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6370 getValue(I.getArgOperand(0)).getValueType(), 6371 getValue(I.getArgOperand(0)), 6372 getValue(I.getArgOperand(1)), Flags)); 6373 return; 6374 case Intrinsic::copysign: 6375 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6376 getValue(I.getArgOperand(0)).getValueType(), 6377 getValue(I.getArgOperand(0)), 6378 getValue(I.getArgOperand(1)), Flags)); 6379 return; 6380 case Intrinsic::arithmetic_fence: { 6381 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6382 getValue(I.getArgOperand(0)).getValueType(), 6383 getValue(I.getArgOperand(0)), Flags)); 6384 return; 6385 } 6386 case Intrinsic::fma: 6387 setValue(&I, DAG.getNode( 6388 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6389 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6390 getValue(I.getArgOperand(2)), Flags)); 6391 return; 6392 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6393 case Intrinsic::INTRINSIC: 6394 #include "llvm/IR/ConstrainedOps.def" 6395 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6396 return; 6397 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6398 #include "llvm/IR/VPIntrinsics.def" 6399 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6400 return; 6401 case Intrinsic::fptrunc_round: { 6402 // Get the last argument, the metadata and convert it to an integer in the 6403 // call 6404 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6405 Optional<RoundingMode> RoundMode = 6406 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6407 6408 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6409 6410 // Propagate fast-math-flags from IR to node(s). 6411 SDNodeFlags Flags; 6412 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6413 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6414 6415 SDValue Result; 6416 Result = DAG.getNode( 6417 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6418 DAG.getTargetConstant((int)*RoundMode, sdl, 6419 TLI.getPointerTy(DAG.getDataLayout()))); 6420 setValue(&I, Result); 6421 6422 return; 6423 } 6424 case Intrinsic::fmuladd: { 6425 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6426 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6427 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6428 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6429 getValue(I.getArgOperand(0)).getValueType(), 6430 getValue(I.getArgOperand(0)), 6431 getValue(I.getArgOperand(1)), 6432 getValue(I.getArgOperand(2)), Flags)); 6433 } else { 6434 // TODO: Intrinsic calls should have fast-math-flags. 6435 SDValue Mul = DAG.getNode( 6436 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6437 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6438 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6439 getValue(I.getArgOperand(0)).getValueType(), 6440 Mul, getValue(I.getArgOperand(2)), Flags); 6441 setValue(&I, Add); 6442 } 6443 return; 6444 } 6445 case Intrinsic::convert_to_fp16: 6446 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6447 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6448 getValue(I.getArgOperand(0)), 6449 DAG.getTargetConstant(0, sdl, 6450 MVT::i32)))); 6451 return; 6452 case Intrinsic::convert_from_fp16: 6453 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6454 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6455 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6456 getValue(I.getArgOperand(0))))); 6457 return; 6458 case Intrinsic::fptosi_sat: { 6459 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6460 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6461 getValue(I.getArgOperand(0)), 6462 DAG.getValueType(VT.getScalarType()))); 6463 return; 6464 } 6465 case Intrinsic::fptoui_sat: { 6466 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6467 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6468 getValue(I.getArgOperand(0)), 6469 DAG.getValueType(VT.getScalarType()))); 6470 return; 6471 } 6472 case Intrinsic::set_rounding: 6473 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6474 {getRoot(), getValue(I.getArgOperand(0))}); 6475 setValue(&I, Res); 6476 DAG.setRoot(Res.getValue(0)); 6477 return; 6478 case Intrinsic::is_fpclass: { 6479 const DataLayout DLayout = DAG.getDataLayout(); 6480 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6481 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6482 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6483 MachineFunction &MF = DAG.getMachineFunction(); 6484 const Function &F = MF.getFunction(); 6485 SDValue Op = getValue(I.getArgOperand(0)); 6486 SDNodeFlags Flags; 6487 Flags.setNoFPExcept( 6488 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6489 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6490 // expansion can use illegal types. Making expansion early allows 6491 // legalizing these types prior to selection. 6492 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6493 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6494 setValue(&I, Result); 6495 return; 6496 } 6497 6498 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6499 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6500 setValue(&I, V); 6501 return; 6502 } 6503 case Intrinsic::pcmarker: { 6504 SDValue Tmp = getValue(I.getArgOperand(0)); 6505 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6506 return; 6507 } 6508 case Intrinsic::readcyclecounter: { 6509 SDValue Op = getRoot(); 6510 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6511 DAG.getVTList(MVT::i64, MVT::Other), Op); 6512 setValue(&I, Res); 6513 DAG.setRoot(Res.getValue(1)); 6514 return; 6515 } 6516 case Intrinsic::bitreverse: 6517 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6518 getValue(I.getArgOperand(0)).getValueType(), 6519 getValue(I.getArgOperand(0)))); 6520 return; 6521 case Intrinsic::bswap: 6522 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6523 getValue(I.getArgOperand(0)).getValueType(), 6524 getValue(I.getArgOperand(0)))); 6525 return; 6526 case Intrinsic::cttz: { 6527 SDValue Arg = getValue(I.getArgOperand(0)); 6528 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6529 EVT Ty = Arg.getValueType(); 6530 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6531 sdl, Ty, Arg)); 6532 return; 6533 } 6534 case Intrinsic::ctlz: { 6535 SDValue Arg = getValue(I.getArgOperand(0)); 6536 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6537 EVT Ty = Arg.getValueType(); 6538 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6539 sdl, Ty, Arg)); 6540 return; 6541 } 6542 case Intrinsic::ctpop: { 6543 SDValue Arg = getValue(I.getArgOperand(0)); 6544 EVT Ty = Arg.getValueType(); 6545 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6546 return; 6547 } 6548 case Intrinsic::fshl: 6549 case Intrinsic::fshr: { 6550 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6551 SDValue X = getValue(I.getArgOperand(0)); 6552 SDValue Y = getValue(I.getArgOperand(1)); 6553 SDValue Z = getValue(I.getArgOperand(2)); 6554 EVT VT = X.getValueType(); 6555 6556 if (X == Y) { 6557 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6558 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6559 } else { 6560 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6561 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6562 } 6563 return; 6564 } 6565 case Intrinsic::sadd_sat: { 6566 SDValue Op1 = getValue(I.getArgOperand(0)); 6567 SDValue Op2 = getValue(I.getArgOperand(1)); 6568 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6569 return; 6570 } 6571 case Intrinsic::uadd_sat: { 6572 SDValue Op1 = getValue(I.getArgOperand(0)); 6573 SDValue Op2 = getValue(I.getArgOperand(1)); 6574 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6575 return; 6576 } 6577 case Intrinsic::ssub_sat: { 6578 SDValue Op1 = getValue(I.getArgOperand(0)); 6579 SDValue Op2 = getValue(I.getArgOperand(1)); 6580 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6581 return; 6582 } 6583 case Intrinsic::usub_sat: { 6584 SDValue Op1 = getValue(I.getArgOperand(0)); 6585 SDValue Op2 = getValue(I.getArgOperand(1)); 6586 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6587 return; 6588 } 6589 case Intrinsic::sshl_sat: { 6590 SDValue Op1 = getValue(I.getArgOperand(0)); 6591 SDValue Op2 = getValue(I.getArgOperand(1)); 6592 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6593 return; 6594 } 6595 case Intrinsic::ushl_sat: { 6596 SDValue Op1 = getValue(I.getArgOperand(0)); 6597 SDValue Op2 = getValue(I.getArgOperand(1)); 6598 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6599 return; 6600 } 6601 case Intrinsic::smul_fix: 6602 case Intrinsic::umul_fix: 6603 case Intrinsic::smul_fix_sat: 6604 case Intrinsic::umul_fix_sat: { 6605 SDValue Op1 = getValue(I.getArgOperand(0)); 6606 SDValue Op2 = getValue(I.getArgOperand(1)); 6607 SDValue Op3 = getValue(I.getArgOperand(2)); 6608 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6609 Op1.getValueType(), Op1, Op2, Op3)); 6610 return; 6611 } 6612 case Intrinsic::sdiv_fix: 6613 case Intrinsic::udiv_fix: 6614 case Intrinsic::sdiv_fix_sat: 6615 case Intrinsic::udiv_fix_sat: { 6616 SDValue Op1 = getValue(I.getArgOperand(0)); 6617 SDValue Op2 = getValue(I.getArgOperand(1)); 6618 SDValue Op3 = getValue(I.getArgOperand(2)); 6619 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6620 Op1, Op2, Op3, DAG, TLI)); 6621 return; 6622 } 6623 case Intrinsic::smax: { 6624 SDValue Op1 = getValue(I.getArgOperand(0)); 6625 SDValue Op2 = getValue(I.getArgOperand(1)); 6626 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6627 return; 6628 } 6629 case Intrinsic::smin: { 6630 SDValue Op1 = getValue(I.getArgOperand(0)); 6631 SDValue Op2 = getValue(I.getArgOperand(1)); 6632 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6633 return; 6634 } 6635 case Intrinsic::umax: { 6636 SDValue Op1 = getValue(I.getArgOperand(0)); 6637 SDValue Op2 = getValue(I.getArgOperand(1)); 6638 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6639 return; 6640 } 6641 case Intrinsic::umin: { 6642 SDValue Op1 = getValue(I.getArgOperand(0)); 6643 SDValue Op2 = getValue(I.getArgOperand(1)); 6644 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6645 return; 6646 } 6647 case Intrinsic::abs: { 6648 // TODO: Preserve "int min is poison" arg in SDAG? 6649 SDValue Op1 = getValue(I.getArgOperand(0)); 6650 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6651 return; 6652 } 6653 case Intrinsic::stacksave: { 6654 SDValue Op = getRoot(); 6655 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6656 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6657 setValue(&I, Res); 6658 DAG.setRoot(Res.getValue(1)); 6659 return; 6660 } 6661 case Intrinsic::stackrestore: 6662 Res = getValue(I.getArgOperand(0)); 6663 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6664 return; 6665 case Intrinsic::get_dynamic_area_offset: { 6666 SDValue Op = getRoot(); 6667 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6668 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6669 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6670 // target. 6671 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6672 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6673 " intrinsic!"); 6674 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6675 Op); 6676 DAG.setRoot(Op); 6677 setValue(&I, Res); 6678 return; 6679 } 6680 case Intrinsic::stackguard: { 6681 MachineFunction &MF = DAG.getMachineFunction(); 6682 const Module &M = *MF.getFunction().getParent(); 6683 SDValue Chain = getRoot(); 6684 if (TLI.useLoadStackGuardNode()) { 6685 Res = getLoadStackGuard(DAG, sdl, Chain); 6686 } else { 6687 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6688 const Value *Global = TLI.getSDagStackGuard(M); 6689 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6690 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6691 MachinePointerInfo(Global, 0), Align, 6692 MachineMemOperand::MOVolatile); 6693 } 6694 if (TLI.useStackGuardXorFP()) 6695 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6696 DAG.setRoot(Chain); 6697 setValue(&I, Res); 6698 return; 6699 } 6700 case Intrinsic::stackprotector: { 6701 // Emit code into the DAG to store the stack guard onto the stack. 6702 MachineFunction &MF = DAG.getMachineFunction(); 6703 MachineFrameInfo &MFI = MF.getFrameInfo(); 6704 SDValue Src, Chain = getRoot(); 6705 6706 if (TLI.useLoadStackGuardNode()) 6707 Src = getLoadStackGuard(DAG, sdl, Chain); 6708 else 6709 Src = getValue(I.getArgOperand(0)); // The guard's value. 6710 6711 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6712 6713 int FI = FuncInfo.StaticAllocaMap[Slot]; 6714 MFI.setStackProtectorIndex(FI); 6715 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6716 6717 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6718 6719 // Store the stack protector onto the stack. 6720 Res = DAG.getStore( 6721 Chain, sdl, Src, FIN, 6722 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6723 MaybeAlign(), MachineMemOperand::MOVolatile); 6724 setValue(&I, Res); 6725 DAG.setRoot(Res); 6726 return; 6727 } 6728 case Intrinsic::objectsize: 6729 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6730 6731 case Intrinsic::is_constant: 6732 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6733 6734 case Intrinsic::annotation: 6735 case Intrinsic::ptr_annotation: 6736 case Intrinsic::launder_invariant_group: 6737 case Intrinsic::strip_invariant_group: 6738 // Drop the intrinsic, but forward the value 6739 setValue(&I, getValue(I.getOperand(0))); 6740 return; 6741 6742 case Intrinsic::assume: 6743 case Intrinsic::experimental_noalias_scope_decl: 6744 case Intrinsic::var_annotation: 6745 case Intrinsic::sideeffect: 6746 // Discard annotate attributes, noalias scope declarations, assumptions, and 6747 // artificial side-effects. 6748 return; 6749 6750 case Intrinsic::codeview_annotation: { 6751 // Emit a label associated with this metadata. 6752 MachineFunction &MF = DAG.getMachineFunction(); 6753 MCSymbol *Label = 6754 MF.getMMI().getContext().createTempSymbol("annotation", true); 6755 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6756 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6757 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6758 DAG.setRoot(Res); 6759 return; 6760 } 6761 6762 case Intrinsic::init_trampoline: { 6763 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6764 6765 SDValue Ops[6]; 6766 Ops[0] = getRoot(); 6767 Ops[1] = getValue(I.getArgOperand(0)); 6768 Ops[2] = getValue(I.getArgOperand(1)); 6769 Ops[3] = getValue(I.getArgOperand(2)); 6770 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6771 Ops[5] = DAG.getSrcValue(F); 6772 6773 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6774 6775 DAG.setRoot(Res); 6776 return; 6777 } 6778 case Intrinsic::adjust_trampoline: 6779 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6780 TLI.getPointerTy(DAG.getDataLayout()), 6781 getValue(I.getArgOperand(0)))); 6782 return; 6783 case Intrinsic::gcroot: { 6784 assert(DAG.getMachineFunction().getFunction().hasGC() && 6785 "only valid in functions with gc specified, enforced by Verifier"); 6786 assert(GFI && "implied by previous"); 6787 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6788 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6789 6790 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6791 GFI->addStackRoot(FI->getIndex(), TypeMap); 6792 return; 6793 } 6794 case Intrinsic::gcread: 6795 case Intrinsic::gcwrite: 6796 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6797 case Intrinsic::flt_rounds: 6798 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6799 setValue(&I, Res); 6800 DAG.setRoot(Res.getValue(1)); 6801 return; 6802 6803 case Intrinsic::expect: 6804 // Just replace __builtin_expect(exp, c) with EXP. 6805 setValue(&I, getValue(I.getArgOperand(0))); 6806 return; 6807 6808 case Intrinsic::ubsantrap: 6809 case Intrinsic::debugtrap: 6810 case Intrinsic::trap: { 6811 StringRef TrapFuncName = 6812 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6813 if (TrapFuncName.empty()) { 6814 switch (Intrinsic) { 6815 case Intrinsic::trap: 6816 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6817 break; 6818 case Intrinsic::debugtrap: 6819 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6820 break; 6821 case Intrinsic::ubsantrap: 6822 DAG.setRoot(DAG.getNode( 6823 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6824 DAG.getTargetConstant( 6825 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6826 MVT::i32))); 6827 break; 6828 default: llvm_unreachable("unknown trap intrinsic"); 6829 } 6830 return; 6831 } 6832 TargetLowering::ArgListTy Args; 6833 if (Intrinsic == Intrinsic::ubsantrap) { 6834 Args.push_back(TargetLoweringBase::ArgListEntry()); 6835 Args[0].Val = I.getArgOperand(0); 6836 Args[0].Node = getValue(Args[0].Val); 6837 Args[0].Ty = Args[0].Val->getType(); 6838 } 6839 6840 TargetLowering::CallLoweringInfo CLI(DAG); 6841 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6842 CallingConv::C, I.getType(), 6843 DAG.getExternalSymbol(TrapFuncName.data(), 6844 TLI.getPointerTy(DAG.getDataLayout())), 6845 std::move(Args)); 6846 6847 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6848 DAG.setRoot(Result.second); 6849 return; 6850 } 6851 6852 case Intrinsic::uadd_with_overflow: 6853 case Intrinsic::sadd_with_overflow: 6854 case Intrinsic::usub_with_overflow: 6855 case Intrinsic::ssub_with_overflow: 6856 case Intrinsic::umul_with_overflow: 6857 case Intrinsic::smul_with_overflow: { 6858 ISD::NodeType Op; 6859 switch (Intrinsic) { 6860 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6861 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6862 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6863 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6864 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6865 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6866 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6867 } 6868 SDValue Op1 = getValue(I.getArgOperand(0)); 6869 SDValue Op2 = getValue(I.getArgOperand(1)); 6870 6871 EVT ResultVT = Op1.getValueType(); 6872 EVT OverflowVT = MVT::i1; 6873 if (ResultVT.isVector()) 6874 OverflowVT = EVT::getVectorVT( 6875 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6876 6877 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6878 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6879 return; 6880 } 6881 case Intrinsic::prefetch: { 6882 SDValue Ops[5]; 6883 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6884 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6885 Ops[0] = DAG.getRoot(); 6886 Ops[1] = getValue(I.getArgOperand(0)); 6887 Ops[2] = getValue(I.getArgOperand(1)); 6888 Ops[3] = getValue(I.getArgOperand(2)); 6889 Ops[4] = getValue(I.getArgOperand(3)); 6890 SDValue Result = DAG.getMemIntrinsicNode( 6891 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6892 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6893 /* align */ None, Flags); 6894 6895 // Chain the prefetch in parallell with any pending loads, to stay out of 6896 // the way of later optimizations. 6897 PendingLoads.push_back(Result); 6898 Result = getRoot(); 6899 DAG.setRoot(Result); 6900 return; 6901 } 6902 case Intrinsic::lifetime_start: 6903 case Intrinsic::lifetime_end: { 6904 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6905 // Stack coloring is not enabled in O0, discard region information. 6906 if (TM.getOptLevel() == CodeGenOpt::None) 6907 return; 6908 6909 const int64_t ObjectSize = 6910 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6911 Value *const ObjectPtr = I.getArgOperand(1); 6912 SmallVector<const Value *, 4> Allocas; 6913 getUnderlyingObjects(ObjectPtr, Allocas); 6914 6915 for (const Value *Alloca : Allocas) { 6916 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6917 6918 // Could not find an Alloca. 6919 if (!LifetimeObject) 6920 continue; 6921 6922 // First check that the Alloca is static, otherwise it won't have a 6923 // valid frame index. 6924 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6925 if (SI == FuncInfo.StaticAllocaMap.end()) 6926 return; 6927 6928 const int FrameIndex = SI->second; 6929 int64_t Offset; 6930 if (GetPointerBaseWithConstantOffset( 6931 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6932 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6933 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6934 Offset); 6935 DAG.setRoot(Res); 6936 } 6937 return; 6938 } 6939 case Intrinsic::pseudoprobe: { 6940 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6941 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6942 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6943 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6944 DAG.setRoot(Res); 6945 return; 6946 } 6947 case Intrinsic::invariant_start: 6948 // Discard region information. 6949 setValue(&I, 6950 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6951 return; 6952 case Intrinsic::invariant_end: 6953 // Discard region information. 6954 return; 6955 case Intrinsic::clear_cache: 6956 /// FunctionName may be null. 6957 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6958 lowerCallToExternalSymbol(I, FunctionName); 6959 return; 6960 case Intrinsic::donothing: 6961 case Intrinsic::seh_try_begin: 6962 case Intrinsic::seh_scope_begin: 6963 case Intrinsic::seh_try_end: 6964 case Intrinsic::seh_scope_end: 6965 // ignore 6966 return; 6967 case Intrinsic::experimental_stackmap: 6968 visitStackmap(I); 6969 return; 6970 case Intrinsic::experimental_patchpoint_void: 6971 case Intrinsic::experimental_patchpoint_i64: 6972 visitPatchpoint(I); 6973 return; 6974 case Intrinsic::experimental_gc_statepoint: 6975 LowerStatepoint(cast<GCStatepointInst>(I)); 6976 return; 6977 case Intrinsic::experimental_gc_result: 6978 visitGCResult(cast<GCResultInst>(I)); 6979 return; 6980 case Intrinsic::experimental_gc_relocate: 6981 visitGCRelocate(cast<GCRelocateInst>(I)); 6982 return; 6983 case Intrinsic::instrprof_cover: 6984 llvm_unreachable("instrprof failed to lower a cover"); 6985 case Intrinsic::instrprof_increment: 6986 llvm_unreachable("instrprof failed to lower an increment"); 6987 case Intrinsic::instrprof_value_profile: 6988 llvm_unreachable("instrprof failed to lower a value profiling call"); 6989 case Intrinsic::localescape: { 6990 MachineFunction &MF = DAG.getMachineFunction(); 6991 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6992 6993 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6994 // is the same on all targets. 6995 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6996 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6997 if (isa<ConstantPointerNull>(Arg)) 6998 continue; // Skip null pointers. They represent a hole in index space. 6999 AllocaInst *Slot = cast<AllocaInst>(Arg); 7000 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7001 "can only escape static allocas"); 7002 int FI = FuncInfo.StaticAllocaMap[Slot]; 7003 MCSymbol *FrameAllocSym = 7004 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7005 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7006 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7007 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7008 .addSym(FrameAllocSym) 7009 .addFrameIndex(FI); 7010 } 7011 7012 return; 7013 } 7014 7015 case Intrinsic::localrecover: { 7016 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7017 MachineFunction &MF = DAG.getMachineFunction(); 7018 7019 // Get the symbol that defines the frame offset. 7020 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7021 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7022 unsigned IdxVal = 7023 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7024 MCSymbol *FrameAllocSym = 7025 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7026 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7027 7028 Value *FP = I.getArgOperand(1); 7029 SDValue FPVal = getValue(FP); 7030 EVT PtrVT = FPVal.getValueType(); 7031 7032 // Create a MCSymbol for the label to avoid any target lowering 7033 // that would make this PC relative. 7034 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7035 SDValue OffsetVal = 7036 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7037 7038 // Add the offset to the FP. 7039 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7040 setValue(&I, Add); 7041 7042 return; 7043 } 7044 7045 case Intrinsic::eh_exceptionpointer: 7046 case Intrinsic::eh_exceptioncode: { 7047 // Get the exception pointer vreg, copy from it, and resize it to fit. 7048 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7049 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7050 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7051 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7052 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7053 if (Intrinsic == Intrinsic::eh_exceptioncode) 7054 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7055 setValue(&I, N); 7056 return; 7057 } 7058 case Intrinsic::xray_customevent: { 7059 // Here we want to make sure that the intrinsic behaves as if it has a 7060 // specific calling convention, and only for x86_64. 7061 // FIXME: Support other platforms later. 7062 const auto &Triple = DAG.getTarget().getTargetTriple(); 7063 if (Triple.getArch() != Triple::x86_64) 7064 return; 7065 7066 SmallVector<SDValue, 8> Ops; 7067 7068 // We want to say that we always want the arguments in registers. 7069 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7070 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7071 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7072 SDValue Chain = getRoot(); 7073 Ops.push_back(LogEntryVal); 7074 Ops.push_back(StrSizeVal); 7075 Ops.push_back(Chain); 7076 7077 // We need to enforce the calling convention for the callsite, so that 7078 // argument ordering is enforced correctly, and that register allocation can 7079 // see that some registers may be assumed clobbered and have to preserve 7080 // them across calls to the intrinsic. 7081 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7082 sdl, NodeTys, Ops); 7083 SDValue patchableNode = SDValue(MN, 0); 7084 DAG.setRoot(patchableNode); 7085 setValue(&I, patchableNode); 7086 return; 7087 } 7088 case Intrinsic::xray_typedevent: { 7089 // Here we want to make sure that the intrinsic behaves as if it has a 7090 // specific calling convention, and only for x86_64. 7091 // FIXME: Support other platforms later. 7092 const auto &Triple = DAG.getTarget().getTargetTriple(); 7093 if (Triple.getArch() != Triple::x86_64) 7094 return; 7095 7096 SmallVector<SDValue, 8> Ops; 7097 7098 // We want to say that we always want the arguments in registers. 7099 // It's unclear to me how manipulating the selection DAG here forces callers 7100 // to provide arguments in registers instead of on the stack. 7101 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7102 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7103 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7104 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7105 SDValue Chain = getRoot(); 7106 Ops.push_back(LogTypeId); 7107 Ops.push_back(LogEntryVal); 7108 Ops.push_back(StrSizeVal); 7109 Ops.push_back(Chain); 7110 7111 // We need to enforce the calling convention for the callsite, so that 7112 // argument ordering is enforced correctly, and that register allocation can 7113 // see that some registers may be assumed clobbered and have to preserve 7114 // them across calls to the intrinsic. 7115 MachineSDNode *MN = DAG.getMachineNode( 7116 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7117 SDValue patchableNode = SDValue(MN, 0); 7118 DAG.setRoot(patchableNode); 7119 setValue(&I, patchableNode); 7120 return; 7121 } 7122 case Intrinsic::experimental_deoptimize: 7123 LowerDeoptimizeCall(&I); 7124 return; 7125 case Intrinsic::experimental_stepvector: 7126 visitStepVector(I); 7127 return; 7128 case Intrinsic::vector_reduce_fadd: 7129 case Intrinsic::vector_reduce_fmul: 7130 case Intrinsic::vector_reduce_add: 7131 case Intrinsic::vector_reduce_mul: 7132 case Intrinsic::vector_reduce_and: 7133 case Intrinsic::vector_reduce_or: 7134 case Intrinsic::vector_reduce_xor: 7135 case Intrinsic::vector_reduce_smax: 7136 case Intrinsic::vector_reduce_smin: 7137 case Intrinsic::vector_reduce_umax: 7138 case Intrinsic::vector_reduce_umin: 7139 case Intrinsic::vector_reduce_fmax: 7140 case Intrinsic::vector_reduce_fmin: 7141 visitVectorReduce(I, Intrinsic); 7142 return; 7143 7144 case Intrinsic::icall_branch_funnel: { 7145 SmallVector<SDValue, 16> Ops; 7146 Ops.push_back(getValue(I.getArgOperand(0))); 7147 7148 int64_t Offset; 7149 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7150 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7151 if (!Base) 7152 report_fatal_error( 7153 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7154 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7155 7156 struct BranchFunnelTarget { 7157 int64_t Offset; 7158 SDValue Target; 7159 }; 7160 SmallVector<BranchFunnelTarget, 8> Targets; 7161 7162 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7163 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7164 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7165 if (ElemBase != Base) 7166 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7167 "to the same GlobalValue"); 7168 7169 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7170 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7171 if (!GA) 7172 report_fatal_error( 7173 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7174 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7175 GA->getGlobal(), sdl, Val.getValueType(), 7176 GA->getOffset())}); 7177 } 7178 llvm::sort(Targets, 7179 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7180 return T1.Offset < T2.Offset; 7181 }); 7182 7183 for (auto &T : Targets) { 7184 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7185 Ops.push_back(T.Target); 7186 } 7187 7188 Ops.push_back(DAG.getRoot()); // Chain 7189 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7190 MVT::Other, Ops), 7191 0); 7192 DAG.setRoot(N); 7193 setValue(&I, N); 7194 HasTailCall = true; 7195 return; 7196 } 7197 7198 case Intrinsic::wasm_landingpad_index: 7199 // Information this intrinsic contained has been transferred to 7200 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7201 // delete it now. 7202 return; 7203 7204 case Intrinsic::aarch64_settag: 7205 case Intrinsic::aarch64_settag_zero: { 7206 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7207 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7208 SDValue Val = TSI.EmitTargetCodeForSetTag( 7209 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7210 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7211 ZeroMemory); 7212 DAG.setRoot(Val); 7213 setValue(&I, Val); 7214 return; 7215 } 7216 case Intrinsic::ptrmask: { 7217 SDValue Ptr = getValue(I.getOperand(0)); 7218 SDValue Const = getValue(I.getOperand(1)); 7219 7220 EVT PtrVT = Ptr.getValueType(); 7221 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7222 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7223 return; 7224 } 7225 case Intrinsic::threadlocal_address: { 7226 setValue(&I, getValue(I.getOperand(0))); 7227 return; 7228 } 7229 case Intrinsic::get_active_lane_mask: { 7230 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7231 SDValue Index = getValue(I.getOperand(0)); 7232 EVT ElementVT = Index.getValueType(); 7233 7234 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7235 visitTargetIntrinsic(I, Intrinsic); 7236 return; 7237 } 7238 7239 SDValue TripCount = getValue(I.getOperand(1)); 7240 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7241 7242 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7243 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7244 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7245 SDValue VectorInduction = DAG.getNode( 7246 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7247 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7248 VectorTripCount, ISD::CondCode::SETULT); 7249 setValue(&I, SetCC); 7250 return; 7251 } 7252 case Intrinsic::vector_insert: { 7253 SDValue Vec = getValue(I.getOperand(0)); 7254 SDValue SubVec = getValue(I.getOperand(1)); 7255 SDValue Index = getValue(I.getOperand(2)); 7256 7257 // The intrinsic's index type is i64, but the SDNode requires an index type 7258 // suitable for the target. Convert the index as required. 7259 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7260 if (Index.getValueType() != VectorIdxTy) 7261 Index = DAG.getVectorIdxConstant( 7262 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7263 7264 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7265 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7266 Index)); 7267 return; 7268 } 7269 case Intrinsic::vector_extract: { 7270 SDValue Vec = getValue(I.getOperand(0)); 7271 SDValue Index = getValue(I.getOperand(1)); 7272 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7273 7274 // The intrinsic's index type is i64, but the SDNode requires an index type 7275 // suitable for the target. Convert the index as required. 7276 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7277 if (Index.getValueType() != VectorIdxTy) 7278 Index = DAG.getVectorIdxConstant( 7279 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7280 7281 setValue(&I, 7282 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7283 return; 7284 } 7285 case Intrinsic::experimental_vector_reverse: 7286 visitVectorReverse(I); 7287 return; 7288 case Intrinsic::experimental_vector_splice: 7289 visitVectorSplice(I); 7290 return; 7291 } 7292 } 7293 7294 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7295 const ConstrainedFPIntrinsic &FPI) { 7296 SDLoc sdl = getCurSDLoc(); 7297 7298 // We do not need to serialize constrained FP intrinsics against 7299 // each other or against (nonvolatile) loads, so they can be 7300 // chained like loads. 7301 SDValue Chain = DAG.getRoot(); 7302 SmallVector<SDValue, 4> Opers; 7303 Opers.push_back(Chain); 7304 if (FPI.isUnaryOp()) { 7305 Opers.push_back(getValue(FPI.getArgOperand(0))); 7306 } else if (FPI.isTernaryOp()) { 7307 Opers.push_back(getValue(FPI.getArgOperand(0))); 7308 Opers.push_back(getValue(FPI.getArgOperand(1))); 7309 Opers.push_back(getValue(FPI.getArgOperand(2))); 7310 } else { 7311 Opers.push_back(getValue(FPI.getArgOperand(0))); 7312 Opers.push_back(getValue(FPI.getArgOperand(1))); 7313 } 7314 7315 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7316 assert(Result.getNode()->getNumValues() == 2); 7317 7318 // Push node to the appropriate list so that future instructions can be 7319 // chained up correctly. 7320 SDValue OutChain = Result.getValue(1); 7321 switch (EB) { 7322 case fp::ExceptionBehavior::ebIgnore: 7323 // The only reason why ebIgnore nodes still need to be chained is that 7324 // they might depend on the current rounding mode, and therefore must 7325 // not be moved across instruction that may change that mode. 7326 [[fallthrough]]; 7327 case fp::ExceptionBehavior::ebMayTrap: 7328 // These must not be moved across calls or instructions that may change 7329 // floating-point exception masks. 7330 PendingConstrainedFP.push_back(OutChain); 7331 break; 7332 case fp::ExceptionBehavior::ebStrict: 7333 // These must not be moved across calls or instructions that may change 7334 // floating-point exception masks or read floating-point exception flags. 7335 // In addition, they cannot be optimized out even if unused. 7336 PendingConstrainedFPStrict.push_back(OutChain); 7337 break; 7338 } 7339 }; 7340 7341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7342 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7343 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7344 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7345 7346 SDNodeFlags Flags; 7347 if (EB == fp::ExceptionBehavior::ebIgnore) 7348 Flags.setNoFPExcept(true); 7349 7350 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7351 Flags.copyFMF(*FPOp); 7352 7353 unsigned Opcode; 7354 switch (FPI.getIntrinsicID()) { 7355 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7356 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7357 case Intrinsic::INTRINSIC: \ 7358 Opcode = ISD::STRICT_##DAGN; \ 7359 break; 7360 #include "llvm/IR/ConstrainedOps.def" 7361 case Intrinsic::experimental_constrained_fmuladd: { 7362 Opcode = ISD::STRICT_FMA; 7363 // Break fmuladd into fmul and fadd. 7364 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7365 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7366 Opers.pop_back(); 7367 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7368 pushOutChain(Mul, EB); 7369 Opcode = ISD::STRICT_FADD; 7370 Opers.clear(); 7371 Opers.push_back(Mul.getValue(1)); 7372 Opers.push_back(Mul.getValue(0)); 7373 Opers.push_back(getValue(FPI.getArgOperand(2))); 7374 } 7375 break; 7376 } 7377 } 7378 7379 // A few strict DAG nodes carry additional operands that are not 7380 // set up by the default code above. 7381 switch (Opcode) { 7382 default: break; 7383 case ISD::STRICT_FP_ROUND: 7384 Opers.push_back( 7385 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7386 break; 7387 case ISD::STRICT_FSETCC: 7388 case ISD::STRICT_FSETCCS: { 7389 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7390 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7391 if (TM.Options.NoNaNsFPMath) 7392 Condition = getFCmpCodeWithoutNaN(Condition); 7393 Opers.push_back(DAG.getCondCode(Condition)); 7394 break; 7395 } 7396 } 7397 7398 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7399 pushOutChain(Result, EB); 7400 7401 SDValue FPResult = Result.getValue(0); 7402 setValue(&FPI, FPResult); 7403 } 7404 7405 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7406 std::optional<unsigned> ResOPC; 7407 switch (VPIntrin.getIntrinsicID()) { 7408 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7409 case Intrinsic::VPID: \ 7410 ResOPC = ISD::VPSD; \ 7411 break; 7412 #include "llvm/IR/VPIntrinsics.def" 7413 } 7414 7415 if (!ResOPC) 7416 llvm_unreachable( 7417 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7418 7419 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7420 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7421 if (VPIntrin.getFastMathFlags().allowReassoc()) 7422 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7423 : ISD::VP_REDUCE_FMUL; 7424 } 7425 7426 return *ResOPC; 7427 } 7428 7429 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7430 SmallVector<SDValue, 7> &OpValues) { 7431 SDLoc DL = getCurSDLoc(); 7432 Value *PtrOperand = VPIntrin.getArgOperand(0); 7433 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7434 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7435 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7436 SDValue LD; 7437 bool AddToChain = true; 7438 // Do not serialize variable-length loads of constant memory with 7439 // anything. 7440 if (!Alignment) 7441 Alignment = DAG.getEVTAlign(VT); 7442 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7443 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7444 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7445 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7446 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7447 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7448 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7449 MMO, false /*IsExpanding */); 7450 if (AddToChain) 7451 PendingLoads.push_back(LD.getValue(1)); 7452 setValue(&VPIntrin, LD); 7453 } 7454 7455 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7456 SmallVector<SDValue, 7> &OpValues) { 7457 SDLoc DL = getCurSDLoc(); 7458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7459 Value *PtrOperand = VPIntrin.getArgOperand(0); 7460 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7461 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7462 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7463 SDValue LD; 7464 if (!Alignment) 7465 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7466 unsigned AS = 7467 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7468 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7469 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7470 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7471 SDValue Base, Index, Scale; 7472 ISD::MemIndexType IndexType; 7473 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7474 this, VPIntrin.getParent(), 7475 VT.getScalarStoreSize()); 7476 if (!UniformBase) { 7477 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7478 Index = getValue(PtrOperand); 7479 IndexType = ISD::SIGNED_SCALED; 7480 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7481 } 7482 EVT IdxVT = Index.getValueType(); 7483 EVT EltTy = IdxVT.getVectorElementType(); 7484 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7485 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7486 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7487 } 7488 LD = DAG.getGatherVP( 7489 DAG.getVTList(VT, MVT::Other), VT, DL, 7490 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7491 IndexType); 7492 PendingLoads.push_back(LD.getValue(1)); 7493 setValue(&VPIntrin, LD); 7494 } 7495 7496 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7497 SmallVector<SDValue, 7> &OpValues) { 7498 SDLoc DL = getCurSDLoc(); 7499 Value *PtrOperand = VPIntrin.getArgOperand(1); 7500 EVT VT = OpValues[0].getValueType(); 7501 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7502 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7503 SDValue ST; 7504 if (!Alignment) 7505 Alignment = DAG.getEVTAlign(VT); 7506 SDValue Ptr = OpValues[1]; 7507 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7508 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7509 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7510 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7511 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7512 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7513 /* IsTruncating */ false, /*IsCompressing*/ false); 7514 DAG.setRoot(ST); 7515 setValue(&VPIntrin, ST); 7516 } 7517 7518 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7519 SmallVector<SDValue, 7> &OpValues) { 7520 SDLoc DL = getCurSDLoc(); 7521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7522 Value *PtrOperand = VPIntrin.getArgOperand(1); 7523 EVT VT = OpValues[0].getValueType(); 7524 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7525 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7526 SDValue ST; 7527 if (!Alignment) 7528 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7529 unsigned AS = 7530 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7531 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7532 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7533 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7534 SDValue Base, Index, Scale; 7535 ISD::MemIndexType IndexType; 7536 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7537 this, VPIntrin.getParent(), 7538 VT.getScalarStoreSize()); 7539 if (!UniformBase) { 7540 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7541 Index = getValue(PtrOperand); 7542 IndexType = ISD::SIGNED_SCALED; 7543 Scale = 7544 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7545 } 7546 EVT IdxVT = Index.getValueType(); 7547 EVT EltTy = IdxVT.getVectorElementType(); 7548 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7549 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7550 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7551 } 7552 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7553 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7554 OpValues[2], OpValues[3]}, 7555 MMO, IndexType); 7556 DAG.setRoot(ST); 7557 setValue(&VPIntrin, ST); 7558 } 7559 7560 void SelectionDAGBuilder::visitVPStridedLoad( 7561 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7562 SDLoc DL = getCurSDLoc(); 7563 Value *PtrOperand = VPIntrin.getArgOperand(0); 7564 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7565 if (!Alignment) 7566 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7567 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7568 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7569 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7570 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7571 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7572 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7573 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7574 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7575 7576 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7577 OpValues[2], OpValues[3], MMO, 7578 false /*IsExpanding*/); 7579 7580 if (AddToChain) 7581 PendingLoads.push_back(LD.getValue(1)); 7582 setValue(&VPIntrin, LD); 7583 } 7584 7585 void SelectionDAGBuilder::visitVPStridedStore( 7586 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7587 SDLoc DL = getCurSDLoc(); 7588 Value *PtrOperand = VPIntrin.getArgOperand(1); 7589 EVT VT = OpValues[0].getValueType(); 7590 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7591 if (!Alignment) 7592 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7593 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7594 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7595 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7596 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7597 7598 SDValue ST = DAG.getStridedStoreVP( 7599 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7600 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7601 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7602 /*IsCompressing*/ false); 7603 7604 DAG.setRoot(ST); 7605 setValue(&VPIntrin, ST); 7606 } 7607 7608 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7610 SDLoc DL = getCurSDLoc(); 7611 7612 ISD::CondCode Condition; 7613 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7614 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7615 if (IsFP) { 7616 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7617 // flags, but calls that don't return floating-point types can't be 7618 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7619 Condition = getFCmpCondCode(CondCode); 7620 if (TM.Options.NoNaNsFPMath) 7621 Condition = getFCmpCodeWithoutNaN(Condition); 7622 } else { 7623 Condition = getICmpCondCode(CondCode); 7624 } 7625 7626 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7627 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7628 // #2 is the condition code 7629 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7630 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7631 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7632 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7633 "Unexpected target EVL type"); 7634 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7635 7636 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7637 VPIntrin.getType()); 7638 setValue(&VPIntrin, 7639 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7640 } 7641 7642 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7643 const VPIntrinsic &VPIntrin) { 7644 SDLoc DL = getCurSDLoc(); 7645 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7646 7647 auto IID = VPIntrin.getIntrinsicID(); 7648 7649 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7650 return visitVPCmp(*CmpI); 7651 7652 SmallVector<EVT, 4> ValueVTs; 7653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7654 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7655 SDVTList VTs = DAG.getVTList(ValueVTs); 7656 7657 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7658 7659 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7660 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7661 "Unexpected target EVL type"); 7662 7663 // Request operands. 7664 SmallVector<SDValue, 7> OpValues; 7665 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7666 auto Op = getValue(VPIntrin.getArgOperand(I)); 7667 if (I == EVLParamPos) 7668 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7669 OpValues.push_back(Op); 7670 } 7671 7672 switch (Opcode) { 7673 default: { 7674 SDNodeFlags SDFlags; 7675 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7676 SDFlags.copyFMF(*FPMO); 7677 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7678 setValue(&VPIntrin, Result); 7679 break; 7680 } 7681 case ISD::VP_LOAD: 7682 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7683 break; 7684 case ISD::VP_GATHER: 7685 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7686 break; 7687 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7688 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7689 break; 7690 case ISD::VP_STORE: 7691 visitVPStore(VPIntrin, OpValues); 7692 break; 7693 case ISD::VP_SCATTER: 7694 visitVPScatter(VPIntrin, OpValues); 7695 break; 7696 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7697 visitVPStridedStore(VPIntrin, OpValues); 7698 break; 7699 case ISD::VP_FMULADD: { 7700 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7701 SDNodeFlags SDFlags; 7702 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7703 SDFlags.copyFMF(*FPMO); 7704 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7705 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7706 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7707 } else { 7708 SDValue Mul = DAG.getNode( 7709 ISD::VP_FMUL, DL, VTs, 7710 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7711 SDValue Add = 7712 DAG.getNode(ISD::VP_FADD, DL, VTs, 7713 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7714 setValue(&VPIntrin, Add); 7715 } 7716 break; 7717 } 7718 case ISD::VP_INTTOPTR: { 7719 SDValue N = OpValues[0]; 7720 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7721 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7722 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7723 OpValues[2]); 7724 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7725 OpValues[2]); 7726 setValue(&VPIntrin, N); 7727 break; 7728 } 7729 case ISD::VP_PTRTOINT: { 7730 SDValue N = OpValues[0]; 7731 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7732 VPIntrin.getType()); 7733 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7734 VPIntrin.getOperand(0)->getType()); 7735 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7736 OpValues[2]); 7737 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7738 OpValues[2]); 7739 setValue(&VPIntrin, N); 7740 break; 7741 } 7742 } 7743 } 7744 7745 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7746 const BasicBlock *EHPadBB, 7747 MCSymbol *&BeginLabel) { 7748 MachineFunction &MF = DAG.getMachineFunction(); 7749 MachineModuleInfo &MMI = MF.getMMI(); 7750 7751 // Insert a label before the invoke call to mark the try range. This can be 7752 // used to detect deletion of the invoke via the MachineModuleInfo. 7753 BeginLabel = MMI.getContext().createTempSymbol(); 7754 7755 // For SjLj, keep track of which landing pads go with which invokes 7756 // so as to maintain the ordering of pads in the LSDA. 7757 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7758 if (CallSiteIndex) { 7759 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7760 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7761 7762 // Now that the call site is handled, stop tracking it. 7763 MMI.setCurrentCallSite(0); 7764 } 7765 7766 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7767 } 7768 7769 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7770 const BasicBlock *EHPadBB, 7771 MCSymbol *BeginLabel) { 7772 assert(BeginLabel && "BeginLabel should've been set"); 7773 7774 MachineFunction &MF = DAG.getMachineFunction(); 7775 MachineModuleInfo &MMI = MF.getMMI(); 7776 7777 // Insert a label at the end of the invoke call to mark the try range. This 7778 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7779 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7780 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7781 7782 // Inform MachineModuleInfo of range. 7783 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7784 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7785 // actually use outlined funclets and their LSDA info style. 7786 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7787 assert(II && "II should've been set"); 7788 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7789 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7790 } else if (!isScopedEHPersonality(Pers)) { 7791 assert(EHPadBB); 7792 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7793 } 7794 7795 return Chain; 7796 } 7797 7798 std::pair<SDValue, SDValue> 7799 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7800 const BasicBlock *EHPadBB) { 7801 MCSymbol *BeginLabel = nullptr; 7802 7803 if (EHPadBB) { 7804 // Both PendingLoads and PendingExports must be flushed here; 7805 // this call might not return. 7806 (void)getRoot(); 7807 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7808 CLI.setChain(getRoot()); 7809 } 7810 7811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7812 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7813 7814 assert((CLI.IsTailCall || Result.second.getNode()) && 7815 "Non-null chain expected with non-tail call!"); 7816 assert((Result.second.getNode() || !Result.first.getNode()) && 7817 "Null value expected with tail call!"); 7818 7819 if (!Result.second.getNode()) { 7820 // As a special case, a null chain means that a tail call has been emitted 7821 // and the DAG root is already updated. 7822 HasTailCall = true; 7823 7824 // Since there's no actual continuation from this block, nothing can be 7825 // relying on us setting vregs for them. 7826 PendingExports.clear(); 7827 } else { 7828 DAG.setRoot(Result.second); 7829 } 7830 7831 if (EHPadBB) { 7832 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7833 BeginLabel)); 7834 } 7835 7836 return Result; 7837 } 7838 7839 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7840 bool isTailCall, 7841 bool isMustTailCall, 7842 const BasicBlock *EHPadBB) { 7843 auto &DL = DAG.getDataLayout(); 7844 FunctionType *FTy = CB.getFunctionType(); 7845 Type *RetTy = CB.getType(); 7846 7847 TargetLowering::ArgListTy Args; 7848 Args.reserve(CB.arg_size()); 7849 7850 const Value *SwiftErrorVal = nullptr; 7851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7852 7853 if (isTailCall) { 7854 // Avoid emitting tail calls in functions with the disable-tail-calls 7855 // attribute. 7856 auto *Caller = CB.getParent()->getParent(); 7857 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7858 "true" && !isMustTailCall) 7859 isTailCall = false; 7860 7861 // We can't tail call inside a function with a swifterror argument. Lowering 7862 // does not support this yet. It would have to move into the swifterror 7863 // register before the call. 7864 if (TLI.supportSwiftError() && 7865 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7866 isTailCall = false; 7867 } 7868 7869 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7870 TargetLowering::ArgListEntry Entry; 7871 const Value *V = *I; 7872 7873 // Skip empty types 7874 if (V->getType()->isEmptyTy()) 7875 continue; 7876 7877 SDValue ArgNode = getValue(V); 7878 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7879 7880 Entry.setAttributes(&CB, I - CB.arg_begin()); 7881 7882 // Use swifterror virtual register as input to the call. 7883 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7884 SwiftErrorVal = V; 7885 // We find the virtual register for the actual swifterror argument. 7886 // Instead of using the Value, we use the virtual register instead. 7887 Entry.Node = 7888 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7889 EVT(TLI.getPointerTy(DL))); 7890 } 7891 7892 Args.push_back(Entry); 7893 7894 // If we have an explicit sret argument that is an Instruction, (i.e., it 7895 // might point to function-local memory), we can't meaningfully tail-call. 7896 if (Entry.IsSRet && isa<Instruction>(V)) 7897 isTailCall = false; 7898 } 7899 7900 // If call site has a cfguardtarget operand bundle, create and add an 7901 // additional ArgListEntry. 7902 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7903 TargetLowering::ArgListEntry Entry; 7904 Value *V = Bundle->Inputs[0]; 7905 SDValue ArgNode = getValue(V); 7906 Entry.Node = ArgNode; 7907 Entry.Ty = V->getType(); 7908 Entry.IsCFGuardTarget = true; 7909 Args.push_back(Entry); 7910 } 7911 7912 // Check if target-independent constraints permit a tail call here. 7913 // Target-dependent constraints are checked within TLI->LowerCallTo. 7914 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7915 isTailCall = false; 7916 7917 // Disable tail calls if there is an swifterror argument. Targets have not 7918 // been updated to support tail calls. 7919 if (TLI.supportSwiftError() && SwiftErrorVal) 7920 isTailCall = false; 7921 7922 ConstantInt *CFIType = nullptr; 7923 if (CB.isIndirectCall()) { 7924 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7925 if (!TLI.supportKCFIBundles()) 7926 report_fatal_error( 7927 "Target doesn't support calls with kcfi operand bundles."); 7928 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7929 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7930 } 7931 } 7932 7933 TargetLowering::CallLoweringInfo CLI(DAG); 7934 CLI.setDebugLoc(getCurSDLoc()) 7935 .setChain(getRoot()) 7936 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7937 .setTailCall(isTailCall) 7938 .setConvergent(CB.isConvergent()) 7939 .setIsPreallocated( 7940 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7941 .setCFIType(CFIType); 7942 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7943 7944 if (Result.first.getNode()) { 7945 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7946 setValue(&CB, Result.first); 7947 } 7948 7949 // The last element of CLI.InVals has the SDValue for swifterror return. 7950 // Here we copy it to a virtual register and update SwiftErrorMap for 7951 // book-keeping. 7952 if (SwiftErrorVal && TLI.supportSwiftError()) { 7953 // Get the last element of InVals. 7954 SDValue Src = CLI.InVals.back(); 7955 Register VReg = 7956 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7957 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7958 DAG.setRoot(CopyNode); 7959 } 7960 } 7961 7962 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7963 SelectionDAGBuilder &Builder) { 7964 // Check to see if this load can be trivially constant folded, e.g. if the 7965 // input is from a string literal. 7966 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7967 // Cast pointer to the type we really want to load. 7968 Type *LoadTy = 7969 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7970 if (LoadVT.isVector()) 7971 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7972 7973 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7974 PointerType::getUnqual(LoadTy)); 7975 7976 if (const Constant *LoadCst = 7977 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7978 LoadTy, Builder.DAG.getDataLayout())) 7979 return Builder.getValue(LoadCst); 7980 } 7981 7982 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7983 // still constant memory, the input chain can be the entry node. 7984 SDValue Root; 7985 bool ConstantMemory = false; 7986 7987 // Do not serialize (non-volatile) loads of constant memory with anything. 7988 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7989 Root = Builder.DAG.getEntryNode(); 7990 ConstantMemory = true; 7991 } else { 7992 // Do not serialize non-volatile loads against each other. 7993 Root = Builder.DAG.getRoot(); 7994 } 7995 7996 SDValue Ptr = Builder.getValue(PtrVal); 7997 SDValue LoadVal = 7998 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7999 MachinePointerInfo(PtrVal), Align(1)); 8000 8001 if (!ConstantMemory) 8002 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8003 return LoadVal; 8004 } 8005 8006 /// Record the value for an instruction that produces an integer result, 8007 /// converting the type where necessary. 8008 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8009 SDValue Value, 8010 bool IsSigned) { 8011 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8012 I.getType(), true); 8013 if (IsSigned) 8014 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 8015 else 8016 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 8017 setValue(&I, Value); 8018 } 8019 8020 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8021 /// true and lower it. Otherwise return false, and it will be lowered like a 8022 /// normal call. 8023 /// The caller already checked that \p I calls the appropriate LibFunc with a 8024 /// correct prototype. 8025 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8026 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8027 const Value *Size = I.getArgOperand(2); 8028 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8029 if (CSize && CSize->getZExtValue() == 0) { 8030 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8031 I.getType(), true); 8032 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8033 return true; 8034 } 8035 8036 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8037 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8038 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8039 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8040 if (Res.first.getNode()) { 8041 processIntegerCallValue(I, Res.first, true); 8042 PendingLoads.push_back(Res.second); 8043 return true; 8044 } 8045 8046 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8047 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8048 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8049 return false; 8050 8051 // If the target has a fast compare for the given size, it will return a 8052 // preferred load type for that size. Require that the load VT is legal and 8053 // that the target supports unaligned loads of that type. Otherwise, return 8054 // INVALID. 8055 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8057 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8058 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8059 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8060 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8061 // TODO: Check alignment of src and dest ptrs. 8062 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8063 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8064 if (!TLI.isTypeLegal(LVT) || 8065 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8066 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8067 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8068 } 8069 8070 return LVT; 8071 }; 8072 8073 // This turns into unaligned loads. We only do this if the target natively 8074 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8075 // we'll only produce a small number of byte loads. 8076 MVT LoadVT; 8077 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8078 switch (NumBitsToCompare) { 8079 default: 8080 return false; 8081 case 16: 8082 LoadVT = MVT::i16; 8083 break; 8084 case 32: 8085 LoadVT = MVT::i32; 8086 break; 8087 case 64: 8088 case 128: 8089 case 256: 8090 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8091 break; 8092 } 8093 8094 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8095 return false; 8096 8097 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8098 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8099 8100 // Bitcast to a wide integer type if the loads are vectors. 8101 if (LoadVT.isVector()) { 8102 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8103 LoadL = DAG.getBitcast(CmpVT, LoadL); 8104 LoadR = DAG.getBitcast(CmpVT, LoadR); 8105 } 8106 8107 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8108 processIntegerCallValue(I, Cmp, false); 8109 return true; 8110 } 8111 8112 /// See if we can lower a memchr call into an optimized form. If so, return 8113 /// true and lower it. Otherwise return false, and it will be lowered like a 8114 /// normal call. 8115 /// The caller already checked that \p I calls the appropriate LibFunc with a 8116 /// correct prototype. 8117 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8118 const Value *Src = I.getArgOperand(0); 8119 const Value *Char = I.getArgOperand(1); 8120 const Value *Length = I.getArgOperand(2); 8121 8122 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8123 std::pair<SDValue, SDValue> Res = 8124 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8125 getValue(Src), getValue(Char), getValue(Length), 8126 MachinePointerInfo(Src)); 8127 if (Res.first.getNode()) { 8128 setValue(&I, Res.first); 8129 PendingLoads.push_back(Res.second); 8130 return true; 8131 } 8132 8133 return false; 8134 } 8135 8136 /// See if we can lower a mempcpy call into an optimized form. If so, return 8137 /// true and lower it. Otherwise return false, and it will be lowered like a 8138 /// normal call. 8139 /// The caller already checked that \p I calls the appropriate LibFunc with a 8140 /// correct prototype. 8141 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8142 SDValue Dst = getValue(I.getArgOperand(0)); 8143 SDValue Src = getValue(I.getArgOperand(1)); 8144 SDValue Size = getValue(I.getArgOperand(2)); 8145 8146 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8147 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8148 // DAG::getMemcpy needs Alignment to be defined. 8149 Align Alignment = std::min(DstAlign, SrcAlign); 8150 8151 bool isVol = false; 8152 SDLoc sdl = getCurSDLoc(); 8153 8154 // In the mempcpy context we need to pass in a false value for isTailCall 8155 // because the return pointer needs to be adjusted by the size of 8156 // the copied memory. 8157 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8158 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8159 /*isTailCall=*/false, 8160 MachinePointerInfo(I.getArgOperand(0)), 8161 MachinePointerInfo(I.getArgOperand(1)), 8162 I.getAAMetadata()); 8163 assert(MC.getNode() != nullptr && 8164 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8165 DAG.setRoot(MC); 8166 8167 // Check if Size needs to be truncated or extended. 8168 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8169 8170 // Adjust return pointer to point just past the last dst byte. 8171 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8172 Dst, Size); 8173 setValue(&I, DstPlusSize); 8174 return true; 8175 } 8176 8177 /// See if we can lower a strcpy call into an optimized form. If so, return 8178 /// true and lower it, otherwise return false and it will be lowered like a 8179 /// normal call. 8180 /// The caller already checked that \p I calls the appropriate LibFunc with a 8181 /// correct prototype. 8182 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8183 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8184 8185 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8186 std::pair<SDValue, SDValue> Res = 8187 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8188 getValue(Arg0), getValue(Arg1), 8189 MachinePointerInfo(Arg0), 8190 MachinePointerInfo(Arg1), isStpcpy); 8191 if (Res.first.getNode()) { 8192 setValue(&I, Res.first); 8193 DAG.setRoot(Res.second); 8194 return true; 8195 } 8196 8197 return false; 8198 } 8199 8200 /// See if we can lower a strcmp call into an optimized form. If so, return 8201 /// true and lower it, otherwise return false and it will be lowered like a 8202 /// normal call. 8203 /// The caller already checked that \p I calls the appropriate LibFunc with a 8204 /// correct prototype. 8205 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8206 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8207 8208 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8209 std::pair<SDValue, SDValue> Res = 8210 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8211 getValue(Arg0), getValue(Arg1), 8212 MachinePointerInfo(Arg0), 8213 MachinePointerInfo(Arg1)); 8214 if (Res.first.getNode()) { 8215 processIntegerCallValue(I, Res.first, true); 8216 PendingLoads.push_back(Res.second); 8217 return true; 8218 } 8219 8220 return false; 8221 } 8222 8223 /// See if we can lower a strlen call into an optimized form. If so, return 8224 /// true and lower it, otherwise return false and it will be lowered like a 8225 /// normal call. 8226 /// The caller already checked that \p I calls the appropriate LibFunc with a 8227 /// correct prototype. 8228 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8229 const Value *Arg0 = I.getArgOperand(0); 8230 8231 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8232 std::pair<SDValue, SDValue> Res = 8233 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8234 getValue(Arg0), MachinePointerInfo(Arg0)); 8235 if (Res.first.getNode()) { 8236 processIntegerCallValue(I, Res.first, false); 8237 PendingLoads.push_back(Res.second); 8238 return true; 8239 } 8240 8241 return false; 8242 } 8243 8244 /// See if we can lower a strnlen call into an optimized form. If so, return 8245 /// true and lower it, otherwise return false and it will be lowered like a 8246 /// normal call. 8247 /// The caller already checked that \p I calls the appropriate LibFunc with a 8248 /// correct prototype. 8249 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8250 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8251 8252 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8253 std::pair<SDValue, SDValue> Res = 8254 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8255 getValue(Arg0), getValue(Arg1), 8256 MachinePointerInfo(Arg0)); 8257 if (Res.first.getNode()) { 8258 processIntegerCallValue(I, Res.first, false); 8259 PendingLoads.push_back(Res.second); 8260 return true; 8261 } 8262 8263 return false; 8264 } 8265 8266 /// See if we can lower a unary floating-point operation into an SDNode with 8267 /// the specified Opcode. If so, return true and lower it, otherwise return 8268 /// false and it will be lowered like a normal call. 8269 /// The caller already checked that \p I calls the appropriate LibFunc with a 8270 /// correct prototype. 8271 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8272 unsigned Opcode) { 8273 // We already checked this call's prototype; verify it doesn't modify errno. 8274 if (!I.onlyReadsMemory()) 8275 return false; 8276 8277 SDNodeFlags Flags; 8278 Flags.copyFMF(cast<FPMathOperator>(I)); 8279 8280 SDValue Tmp = getValue(I.getArgOperand(0)); 8281 setValue(&I, 8282 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8283 return true; 8284 } 8285 8286 /// See if we can lower a binary floating-point operation into an SDNode with 8287 /// the specified Opcode. If so, return true and lower it. Otherwise return 8288 /// false, and it will be lowered like a normal call. 8289 /// The caller already checked that \p I calls the appropriate LibFunc with a 8290 /// correct prototype. 8291 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8292 unsigned Opcode) { 8293 // We already checked this call's prototype; verify it doesn't modify errno. 8294 if (!I.onlyReadsMemory()) 8295 return false; 8296 8297 SDNodeFlags Flags; 8298 Flags.copyFMF(cast<FPMathOperator>(I)); 8299 8300 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8301 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8302 EVT VT = Tmp0.getValueType(); 8303 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8304 return true; 8305 } 8306 8307 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8308 // Handle inline assembly differently. 8309 if (I.isInlineAsm()) { 8310 visitInlineAsm(I); 8311 return; 8312 } 8313 8314 if (Function *F = I.getCalledFunction()) { 8315 diagnoseDontCall(I); 8316 8317 if (F->isDeclaration()) { 8318 // Is this an LLVM intrinsic or a target-specific intrinsic? 8319 unsigned IID = F->getIntrinsicID(); 8320 if (!IID) 8321 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8322 IID = II->getIntrinsicID(F); 8323 8324 if (IID) { 8325 visitIntrinsicCall(I, IID); 8326 return; 8327 } 8328 } 8329 8330 // Check for well-known libc/libm calls. If the function is internal, it 8331 // can't be a library call. Don't do the check if marked as nobuiltin for 8332 // some reason or the call site requires strict floating point semantics. 8333 LibFunc Func; 8334 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8335 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8336 LibInfo->hasOptimizedCodeGen(Func)) { 8337 switch (Func) { 8338 default: break; 8339 case LibFunc_bcmp: 8340 if (visitMemCmpBCmpCall(I)) 8341 return; 8342 break; 8343 case LibFunc_copysign: 8344 case LibFunc_copysignf: 8345 case LibFunc_copysignl: 8346 // We already checked this call's prototype; verify it doesn't modify 8347 // errno. 8348 if (I.onlyReadsMemory()) { 8349 SDValue LHS = getValue(I.getArgOperand(0)); 8350 SDValue RHS = getValue(I.getArgOperand(1)); 8351 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8352 LHS.getValueType(), LHS, RHS)); 8353 return; 8354 } 8355 break; 8356 case LibFunc_fabs: 8357 case LibFunc_fabsf: 8358 case LibFunc_fabsl: 8359 if (visitUnaryFloatCall(I, ISD::FABS)) 8360 return; 8361 break; 8362 case LibFunc_fmin: 8363 case LibFunc_fminf: 8364 case LibFunc_fminl: 8365 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8366 return; 8367 break; 8368 case LibFunc_fmax: 8369 case LibFunc_fmaxf: 8370 case LibFunc_fmaxl: 8371 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8372 return; 8373 break; 8374 case LibFunc_sin: 8375 case LibFunc_sinf: 8376 case LibFunc_sinl: 8377 if (visitUnaryFloatCall(I, ISD::FSIN)) 8378 return; 8379 break; 8380 case LibFunc_cos: 8381 case LibFunc_cosf: 8382 case LibFunc_cosl: 8383 if (visitUnaryFloatCall(I, ISD::FCOS)) 8384 return; 8385 break; 8386 case LibFunc_sqrt: 8387 case LibFunc_sqrtf: 8388 case LibFunc_sqrtl: 8389 case LibFunc_sqrt_finite: 8390 case LibFunc_sqrtf_finite: 8391 case LibFunc_sqrtl_finite: 8392 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8393 return; 8394 break; 8395 case LibFunc_floor: 8396 case LibFunc_floorf: 8397 case LibFunc_floorl: 8398 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8399 return; 8400 break; 8401 case LibFunc_nearbyint: 8402 case LibFunc_nearbyintf: 8403 case LibFunc_nearbyintl: 8404 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8405 return; 8406 break; 8407 case LibFunc_ceil: 8408 case LibFunc_ceilf: 8409 case LibFunc_ceill: 8410 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8411 return; 8412 break; 8413 case LibFunc_rint: 8414 case LibFunc_rintf: 8415 case LibFunc_rintl: 8416 if (visitUnaryFloatCall(I, ISD::FRINT)) 8417 return; 8418 break; 8419 case LibFunc_round: 8420 case LibFunc_roundf: 8421 case LibFunc_roundl: 8422 if (visitUnaryFloatCall(I, ISD::FROUND)) 8423 return; 8424 break; 8425 case LibFunc_trunc: 8426 case LibFunc_truncf: 8427 case LibFunc_truncl: 8428 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8429 return; 8430 break; 8431 case LibFunc_log2: 8432 case LibFunc_log2f: 8433 case LibFunc_log2l: 8434 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8435 return; 8436 break; 8437 case LibFunc_exp2: 8438 case LibFunc_exp2f: 8439 case LibFunc_exp2l: 8440 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8441 return; 8442 break; 8443 case LibFunc_memcmp: 8444 if (visitMemCmpBCmpCall(I)) 8445 return; 8446 break; 8447 case LibFunc_mempcpy: 8448 if (visitMemPCpyCall(I)) 8449 return; 8450 break; 8451 case LibFunc_memchr: 8452 if (visitMemChrCall(I)) 8453 return; 8454 break; 8455 case LibFunc_strcpy: 8456 if (visitStrCpyCall(I, false)) 8457 return; 8458 break; 8459 case LibFunc_stpcpy: 8460 if (visitStrCpyCall(I, true)) 8461 return; 8462 break; 8463 case LibFunc_strcmp: 8464 if (visitStrCmpCall(I)) 8465 return; 8466 break; 8467 case LibFunc_strlen: 8468 if (visitStrLenCall(I)) 8469 return; 8470 break; 8471 case LibFunc_strnlen: 8472 if (visitStrNLenCall(I)) 8473 return; 8474 break; 8475 } 8476 } 8477 } 8478 8479 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8480 // have to do anything here to lower funclet bundles. 8481 // CFGuardTarget bundles are lowered in LowerCallTo. 8482 assert(!I.hasOperandBundlesOtherThan( 8483 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8484 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8485 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8486 "Cannot lower calls with arbitrary operand bundles!"); 8487 8488 SDValue Callee = getValue(I.getCalledOperand()); 8489 8490 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8491 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8492 else 8493 // Check if we can potentially perform a tail call. More detailed checking 8494 // is be done within LowerCallTo, after more information about the call is 8495 // known. 8496 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8497 } 8498 8499 namespace { 8500 8501 /// AsmOperandInfo - This contains information for each constraint that we are 8502 /// lowering. 8503 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8504 public: 8505 /// CallOperand - If this is the result output operand or a clobber 8506 /// this is null, otherwise it is the incoming operand to the CallInst. 8507 /// This gets modified as the asm is processed. 8508 SDValue CallOperand; 8509 8510 /// AssignedRegs - If this is a register or register class operand, this 8511 /// contains the set of register corresponding to the operand. 8512 RegsForValue AssignedRegs; 8513 8514 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8515 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8516 } 8517 8518 /// Whether or not this operand accesses memory 8519 bool hasMemory(const TargetLowering &TLI) const { 8520 // Indirect operand accesses access memory. 8521 if (isIndirect) 8522 return true; 8523 8524 for (const auto &Code : Codes) 8525 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8526 return true; 8527 8528 return false; 8529 } 8530 }; 8531 8532 8533 } // end anonymous namespace 8534 8535 /// Make sure that the output operand \p OpInfo and its corresponding input 8536 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8537 /// out). 8538 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8539 SDISelAsmOperandInfo &MatchingOpInfo, 8540 SelectionDAG &DAG) { 8541 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8542 return; 8543 8544 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8545 const auto &TLI = DAG.getTargetLoweringInfo(); 8546 8547 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8548 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8549 OpInfo.ConstraintVT); 8550 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8551 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8552 MatchingOpInfo.ConstraintVT); 8553 if ((OpInfo.ConstraintVT.isInteger() != 8554 MatchingOpInfo.ConstraintVT.isInteger()) || 8555 (MatchRC.second != InputRC.second)) { 8556 // FIXME: error out in a more elegant fashion 8557 report_fatal_error("Unsupported asm: input constraint" 8558 " with a matching output constraint of" 8559 " incompatible type!"); 8560 } 8561 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8562 } 8563 8564 /// Get a direct memory input to behave well as an indirect operand. 8565 /// This may introduce stores, hence the need for a \p Chain. 8566 /// \return The (possibly updated) chain. 8567 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8568 SDISelAsmOperandInfo &OpInfo, 8569 SelectionDAG &DAG) { 8570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8571 8572 // If we don't have an indirect input, put it in the constpool if we can, 8573 // otherwise spill it to a stack slot. 8574 // TODO: This isn't quite right. We need to handle these according to 8575 // the addressing mode that the constraint wants. Also, this may take 8576 // an additional register for the computation and we don't want that 8577 // either. 8578 8579 // If the operand is a float, integer, or vector constant, spill to a 8580 // constant pool entry to get its address. 8581 const Value *OpVal = OpInfo.CallOperandVal; 8582 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8583 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8584 OpInfo.CallOperand = DAG.getConstantPool( 8585 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8586 return Chain; 8587 } 8588 8589 // Otherwise, create a stack slot and emit a store to it before the asm. 8590 Type *Ty = OpVal->getType(); 8591 auto &DL = DAG.getDataLayout(); 8592 uint64_t TySize = DL.getTypeAllocSize(Ty); 8593 MachineFunction &MF = DAG.getMachineFunction(); 8594 int SSFI = MF.getFrameInfo().CreateStackObject( 8595 TySize, DL.getPrefTypeAlign(Ty), false); 8596 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8597 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8598 MachinePointerInfo::getFixedStack(MF, SSFI), 8599 TLI.getMemValueType(DL, Ty)); 8600 OpInfo.CallOperand = StackSlot; 8601 8602 return Chain; 8603 } 8604 8605 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8606 /// specified operand. We prefer to assign virtual registers, to allow the 8607 /// register allocator to handle the assignment process. However, if the asm 8608 /// uses features that we can't model on machineinstrs, we have SDISel do the 8609 /// allocation. This produces generally horrible, but correct, code. 8610 /// 8611 /// OpInfo describes the operand 8612 /// RefOpInfo describes the matching operand if any, the operand otherwise 8613 static std::optional<unsigned> 8614 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8615 SDISelAsmOperandInfo &OpInfo, 8616 SDISelAsmOperandInfo &RefOpInfo) { 8617 LLVMContext &Context = *DAG.getContext(); 8618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8619 8620 MachineFunction &MF = DAG.getMachineFunction(); 8621 SmallVector<unsigned, 4> Regs; 8622 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8623 8624 // No work to do for memory/address operands. 8625 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8626 OpInfo.ConstraintType == TargetLowering::C_Address) 8627 return std::nullopt; 8628 8629 // If this is a constraint for a single physreg, or a constraint for a 8630 // register class, find it. 8631 unsigned AssignedReg; 8632 const TargetRegisterClass *RC; 8633 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8634 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8635 // RC is unset only on failure. Return immediately. 8636 if (!RC) 8637 return std::nullopt; 8638 8639 // Get the actual register value type. This is important, because the user 8640 // may have asked for (e.g.) the AX register in i32 type. We need to 8641 // remember that AX is actually i16 to get the right extension. 8642 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8643 8644 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8645 // If this is an FP operand in an integer register (or visa versa), or more 8646 // generally if the operand value disagrees with the register class we plan 8647 // to stick it in, fix the operand type. 8648 // 8649 // If this is an input value, the bitcast to the new type is done now. 8650 // Bitcast for output value is done at the end of visitInlineAsm(). 8651 if ((OpInfo.Type == InlineAsm::isOutput || 8652 OpInfo.Type == InlineAsm::isInput) && 8653 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8654 // Try to convert to the first EVT that the reg class contains. If the 8655 // types are identical size, use a bitcast to convert (e.g. two differing 8656 // vector types). Note: output bitcast is done at the end of 8657 // visitInlineAsm(). 8658 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8659 // Exclude indirect inputs while they are unsupported because the code 8660 // to perform the load is missing and thus OpInfo.CallOperand still 8661 // refers to the input address rather than the pointed-to value. 8662 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8663 OpInfo.CallOperand = 8664 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8665 OpInfo.ConstraintVT = RegVT; 8666 // If the operand is an FP value and we want it in integer registers, 8667 // use the corresponding integer type. This turns an f64 value into 8668 // i64, which can be passed with two i32 values on a 32-bit machine. 8669 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8670 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8671 if (OpInfo.Type == InlineAsm::isInput) 8672 OpInfo.CallOperand = 8673 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8674 OpInfo.ConstraintVT = VT; 8675 } 8676 } 8677 } 8678 8679 // No need to allocate a matching input constraint since the constraint it's 8680 // matching to has already been allocated. 8681 if (OpInfo.isMatchingInputConstraint()) 8682 return std::nullopt; 8683 8684 EVT ValueVT = OpInfo.ConstraintVT; 8685 if (OpInfo.ConstraintVT == MVT::Other) 8686 ValueVT = RegVT; 8687 8688 // Initialize NumRegs. 8689 unsigned NumRegs = 1; 8690 if (OpInfo.ConstraintVT != MVT::Other) 8691 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8692 8693 // If this is a constraint for a specific physical register, like {r17}, 8694 // assign it now. 8695 8696 // If this associated to a specific register, initialize iterator to correct 8697 // place. If virtual, make sure we have enough registers 8698 8699 // Initialize iterator if necessary 8700 TargetRegisterClass::iterator I = RC->begin(); 8701 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8702 8703 // Do not check for single registers. 8704 if (AssignedReg) { 8705 I = std::find(I, RC->end(), AssignedReg); 8706 if (I == RC->end()) { 8707 // RC does not contain the selected register, which indicates a 8708 // mismatch between the register and the required type/bitwidth. 8709 return {AssignedReg}; 8710 } 8711 } 8712 8713 for (; NumRegs; --NumRegs, ++I) { 8714 assert(I != RC->end() && "Ran out of registers to allocate!"); 8715 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8716 Regs.push_back(R); 8717 } 8718 8719 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8720 return std::nullopt; 8721 } 8722 8723 static unsigned 8724 findMatchingInlineAsmOperand(unsigned OperandNo, 8725 const std::vector<SDValue> &AsmNodeOperands) { 8726 // Scan until we find the definition we already emitted of this operand. 8727 unsigned CurOp = InlineAsm::Op_FirstOperand; 8728 for (; OperandNo; --OperandNo) { 8729 // Advance to the next operand. 8730 unsigned OpFlag = 8731 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8732 assert((InlineAsm::isRegDefKind(OpFlag) || 8733 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8734 InlineAsm::isMemKind(OpFlag)) && 8735 "Skipped past definitions?"); 8736 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8737 } 8738 return CurOp; 8739 } 8740 8741 namespace { 8742 8743 class ExtraFlags { 8744 unsigned Flags = 0; 8745 8746 public: 8747 explicit ExtraFlags(const CallBase &Call) { 8748 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8749 if (IA->hasSideEffects()) 8750 Flags |= InlineAsm::Extra_HasSideEffects; 8751 if (IA->isAlignStack()) 8752 Flags |= InlineAsm::Extra_IsAlignStack; 8753 if (Call.isConvergent()) 8754 Flags |= InlineAsm::Extra_IsConvergent; 8755 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8756 } 8757 8758 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8759 // Ideally, we would only check against memory constraints. However, the 8760 // meaning of an Other constraint can be target-specific and we can't easily 8761 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8762 // for Other constraints as well. 8763 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8764 OpInfo.ConstraintType == TargetLowering::C_Other) { 8765 if (OpInfo.Type == InlineAsm::isInput) 8766 Flags |= InlineAsm::Extra_MayLoad; 8767 else if (OpInfo.Type == InlineAsm::isOutput) 8768 Flags |= InlineAsm::Extra_MayStore; 8769 else if (OpInfo.Type == InlineAsm::isClobber) 8770 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8771 } 8772 } 8773 8774 unsigned get() const { return Flags; } 8775 }; 8776 8777 } // end anonymous namespace 8778 8779 static bool isFunction(SDValue Op) { 8780 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8781 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8782 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8783 8784 // In normal "call dllimport func" instruction (non-inlineasm) it force 8785 // indirect access by specifing call opcode. And usually specially print 8786 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8787 // not do in this way now. (In fact, this is similar with "Data Access" 8788 // action). So here we ignore dllimport function. 8789 if (Fn && !Fn->hasDLLImportStorageClass()) 8790 return true; 8791 } 8792 } 8793 return false; 8794 } 8795 8796 /// visitInlineAsm - Handle a call to an InlineAsm object. 8797 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8798 const BasicBlock *EHPadBB) { 8799 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8800 8801 /// ConstraintOperands - Information about all of the constraints. 8802 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8803 8804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8805 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8806 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8807 8808 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8809 // AsmDialect, MayLoad, MayStore). 8810 bool HasSideEffect = IA->hasSideEffects(); 8811 ExtraFlags ExtraInfo(Call); 8812 8813 for (auto &T : TargetConstraints) { 8814 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8815 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8816 8817 if (OpInfo.CallOperandVal) 8818 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8819 8820 if (!HasSideEffect) 8821 HasSideEffect = OpInfo.hasMemory(TLI); 8822 8823 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8824 // FIXME: Could we compute this on OpInfo rather than T? 8825 8826 // Compute the constraint code and ConstraintType to use. 8827 TLI.ComputeConstraintToUse(T, SDValue()); 8828 8829 if (T.ConstraintType == TargetLowering::C_Immediate && 8830 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8831 // We've delayed emitting a diagnostic like the "n" constraint because 8832 // inlining could cause an integer showing up. 8833 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8834 "' expects an integer constant " 8835 "expression"); 8836 8837 ExtraInfo.update(T); 8838 } 8839 8840 // We won't need to flush pending loads if this asm doesn't touch 8841 // memory and is nonvolatile. 8842 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8843 8844 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8845 if (EmitEHLabels) { 8846 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8847 } 8848 bool IsCallBr = isa<CallBrInst>(Call); 8849 8850 if (IsCallBr || EmitEHLabels) { 8851 // If this is a callbr or invoke we need to flush pending exports since 8852 // inlineasm_br and invoke are terminators. 8853 // We need to do this before nodes are glued to the inlineasm_br node. 8854 Chain = getControlRoot(); 8855 } 8856 8857 MCSymbol *BeginLabel = nullptr; 8858 if (EmitEHLabels) { 8859 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8860 } 8861 8862 int OpNo = -1; 8863 SmallVector<StringRef> AsmStrs; 8864 IA->collectAsmStrs(AsmStrs); 8865 8866 // Second pass over the constraints: compute which constraint option to use. 8867 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8868 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8869 OpNo++; 8870 8871 // If this is an output operand with a matching input operand, look up the 8872 // matching input. If their types mismatch, e.g. one is an integer, the 8873 // other is floating point, or their sizes are different, flag it as an 8874 // error. 8875 if (OpInfo.hasMatchingInput()) { 8876 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8877 patchMatchingInput(OpInfo, Input, DAG); 8878 } 8879 8880 // Compute the constraint code and ConstraintType to use. 8881 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8882 8883 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8884 OpInfo.Type == InlineAsm::isClobber) || 8885 OpInfo.ConstraintType == TargetLowering::C_Address) 8886 continue; 8887 8888 // In Linux PIC model, there are 4 cases about value/label addressing: 8889 // 8890 // 1: Function call or Label jmp inside the module. 8891 // 2: Data access (such as global variable, static variable) inside module. 8892 // 3: Function call or Label jmp outside the module. 8893 // 4: Data access (such as global variable) outside the module. 8894 // 8895 // Due to current llvm inline asm architecture designed to not "recognize" 8896 // the asm code, there are quite troubles for us to treat mem addressing 8897 // differently for same value/adress used in different instuctions. 8898 // For example, in pic model, call a func may in plt way or direclty 8899 // pc-related, but lea/mov a function adress may use got. 8900 // 8901 // Here we try to "recognize" function call for the case 1 and case 3 in 8902 // inline asm. And try to adjust the constraint for them. 8903 // 8904 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8905 // label, so here we don't handle jmp function label now, but we need to 8906 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8907 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8908 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8909 TM.getCodeModel() != CodeModel::Large) { 8910 OpInfo.isIndirect = false; 8911 OpInfo.ConstraintType = TargetLowering::C_Address; 8912 } 8913 8914 // If this is a memory input, and if the operand is not indirect, do what we 8915 // need to provide an address for the memory input. 8916 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8917 !OpInfo.isIndirect) { 8918 assert((OpInfo.isMultipleAlternative || 8919 (OpInfo.Type == InlineAsm::isInput)) && 8920 "Can only indirectify direct input operands!"); 8921 8922 // Memory operands really want the address of the value. 8923 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8924 8925 // There is no longer a Value* corresponding to this operand. 8926 OpInfo.CallOperandVal = nullptr; 8927 8928 // It is now an indirect operand. 8929 OpInfo.isIndirect = true; 8930 } 8931 8932 } 8933 8934 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8935 std::vector<SDValue> AsmNodeOperands; 8936 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8937 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8938 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8939 8940 // If we have a !srcloc metadata node associated with it, we want to attach 8941 // this to the ultimately generated inline asm machineinstr. To do this, we 8942 // pass in the third operand as this (potentially null) inline asm MDNode. 8943 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8944 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8945 8946 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8947 // bits as operand 3. 8948 AsmNodeOperands.push_back(DAG.getTargetConstant( 8949 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8950 8951 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8952 // this, assign virtual and physical registers for inputs and otput. 8953 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8954 // Assign Registers. 8955 SDISelAsmOperandInfo &RefOpInfo = 8956 OpInfo.isMatchingInputConstraint() 8957 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8958 : OpInfo; 8959 const auto RegError = 8960 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8961 if (RegError) { 8962 const MachineFunction &MF = DAG.getMachineFunction(); 8963 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8964 const char *RegName = TRI.getName(RegError.value()); 8965 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8966 "' allocated for constraint '" + 8967 Twine(OpInfo.ConstraintCode) + 8968 "' does not match required type"); 8969 return; 8970 } 8971 8972 auto DetectWriteToReservedRegister = [&]() { 8973 const MachineFunction &MF = DAG.getMachineFunction(); 8974 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8975 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8976 if (Register::isPhysicalRegister(Reg) && 8977 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8978 const char *RegName = TRI.getName(Reg); 8979 emitInlineAsmError(Call, "write to reserved register '" + 8980 Twine(RegName) + "'"); 8981 return true; 8982 } 8983 } 8984 return false; 8985 }; 8986 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8987 (OpInfo.Type == InlineAsm::isInput && 8988 !OpInfo.isMatchingInputConstraint())) && 8989 "Only address as input operand is allowed."); 8990 8991 switch (OpInfo.Type) { 8992 case InlineAsm::isOutput: 8993 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8994 unsigned ConstraintID = 8995 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8996 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8997 "Failed to convert memory constraint code to constraint id."); 8998 8999 // Add information to the INLINEASM node to know about this output. 9000 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9001 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 9002 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9003 MVT::i32)); 9004 AsmNodeOperands.push_back(OpInfo.CallOperand); 9005 } else { 9006 // Otherwise, this outputs to a register (directly for C_Register / 9007 // C_RegisterClass, and a target-defined fashion for 9008 // C_Immediate/C_Other). Find a register that we can use. 9009 if (OpInfo.AssignedRegs.Regs.empty()) { 9010 emitInlineAsmError( 9011 Call, "couldn't allocate output register for constraint '" + 9012 Twine(OpInfo.ConstraintCode) + "'"); 9013 return; 9014 } 9015 9016 if (DetectWriteToReservedRegister()) 9017 return; 9018 9019 // Add information to the INLINEASM node to know that this register is 9020 // set. 9021 OpInfo.AssignedRegs.AddInlineAsmOperands( 9022 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9023 : InlineAsm::Kind_RegDef, 9024 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9025 } 9026 break; 9027 9028 case InlineAsm::isInput: 9029 case InlineAsm::isLabel: { 9030 SDValue InOperandVal = OpInfo.CallOperand; 9031 9032 if (OpInfo.isMatchingInputConstraint()) { 9033 // If this is required to match an output register we have already set, 9034 // just use its register. 9035 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9036 AsmNodeOperands); 9037 unsigned OpFlag = 9038 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9039 if (InlineAsm::isRegDefKind(OpFlag) || 9040 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9041 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9042 if (OpInfo.isIndirect) { 9043 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9044 emitInlineAsmError(Call, "inline asm not supported yet: " 9045 "don't know how to handle tied " 9046 "indirect register inputs"); 9047 return; 9048 } 9049 9050 SmallVector<unsigned, 4> Regs; 9051 MachineFunction &MF = DAG.getMachineFunction(); 9052 MachineRegisterInfo &MRI = MF.getRegInfo(); 9053 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9054 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9055 Register TiedReg = R->getReg(); 9056 MVT RegVT = R->getSimpleValueType(0); 9057 const TargetRegisterClass *RC = 9058 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9059 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9060 : TRI.getMinimalPhysRegClass(TiedReg); 9061 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9062 for (unsigned i = 0; i != NumRegs; ++i) 9063 Regs.push_back(MRI.createVirtualRegister(RC)); 9064 9065 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9066 9067 SDLoc dl = getCurSDLoc(); 9068 // Use the produced MatchedRegs object to 9069 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9070 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9071 true, OpInfo.getMatchedOperand(), dl, 9072 DAG, AsmNodeOperands); 9073 break; 9074 } 9075 9076 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9077 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9078 "Unexpected number of operands"); 9079 // Add information to the INLINEASM node to know about this input. 9080 // See InlineAsm.h isUseOperandTiedToDef. 9081 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9082 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9083 OpInfo.getMatchedOperand()); 9084 AsmNodeOperands.push_back(DAG.getTargetConstant( 9085 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9086 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9087 break; 9088 } 9089 9090 // Treat indirect 'X' constraint as memory. 9091 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9092 OpInfo.isIndirect) 9093 OpInfo.ConstraintType = TargetLowering::C_Memory; 9094 9095 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9096 OpInfo.ConstraintType == TargetLowering::C_Other) { 9097 std::vector<SDValue> Ops; 9098 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9099 Ops, DAG); 9100 if (Ops.empty()) { 9101 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9102 if (isa<ConstantSDNode>(InOperandVal)) { 9103 emitInlineAsmError(Call, "value out of range for constraint '" + 9104 Twine(OpInfo.ConstraintCode) + "'"); 9105 return; 9106 } 9107 9108 emitInlineAsmError(Call, 9109 "invalid operand for inline asm constraint '" + 9110 Twine(OpInfo.ConstraintCode) + "'"); 9111 return; 9112 } 9113 9114 // Add information to the INLINEASM node to know about this input. 9115 unsigned ResOpType = 9116 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9117 AsmNodeOperands.push_back(DAG.getTargetConstant( 9118 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9119 llvm::append_range(AsmNodeOperands, Ops); 9120 break; 9121 } 9122 9123 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9124 assert((OpInfo.isIndirect || 9125 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9126 "Operand must be indirect to be a mem!"); 9127 assert(InOperandVal.getValueType() == 9128 TLI.getPointerTy(DAG.getDataLayout()) && 9129 "Memory operands expect pointer values"); 9130 9131 unsigned ConstraintID = 9132 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9133 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9134 "Failed to convert memory constraint code to constraint id."); 9135 9136 // Add information to the INLINEASM node to know about this input. 9137 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9138 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9139 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9140 getCurSDLoc(), 9141 MVT::i32)); 9142 AsmNodeOperands.push_back(InOperandVal); 9143 break; 9144 } 9145 9146 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9147 assert(InOperandVal.getValueType() == 9148 TLI.getPointerTy(DAG.getDataLayout()) && 9149 "Address operands expect pointer values"); 9150 9151 unsigned ConstraintID = 9152 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9153 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9154 "Failed to convert memory constraint code to constraint id."); 9155 9156 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9157 9158 SDValue AsmOp = InOperandVal; 9159 if (isFunction(InOperandVal)) { 9160 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9161 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9162 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9163 InOperandVal.getValueType(), 9164 GA->getOffset()); 9165 } 9166 9167 // Add information to the INLINEASM node to know about this input. 9168 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9169 9170 AsmNodeOperands.push_back( 9171 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9172 9173 AsmNodeOperands.push_back(AsmOp); 9174 break; 9175 } 9176 9177 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9178 OpInfo.ConstraintType == TargetLowering::C_Register) && 9179 "Unknown constraint type!"); 9180 9181 // TODO: Support this. 9182 if (OpInfo.isIndirect) { 9183 emitInlineAsmError( 9184 Call, "Don't know how to handle indirect register inputs yet " 9185 "for constraint '" + 9186 Twine(OpInfo.ConstraintCode) + "'"); 9187 return; 9188 } 9189 9190 // Copy the input into the appropriate registers. 9191 if (OpInfo.AssignedRegs.Regs.empty()) { 9192 emitInlineAsmError(Call, 9193 "couldn't allocate input reg for constraint '" + 9194 Twine(OpInfo.ConstraintCode) + "'"); 9195 return; 9196 } 9197 9198 if (DetectWriteToReservedRegister()) 9199 return; 9200 9201 SDLoc dl = getCurSDLoc(); 9202 9203 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9204 &Call); 9205 9206 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9207 dl, DAG, AsmNodeOperands); 9208 break; 9209 } 9210 case InlineAsm::isClobber: 9211 // Add the clobbered value to the operand list, so that the register 9212 // allocator is aware that the physreg got clobbered. 9213 if (!OpInfo.AssignedRegs.Regs.empty()) 9214 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9215 false, 0, getCurSDLoc(), DAG, 9216 AsmNodeOperands); 9217 break; 9218 } 9219 } 9220 9221 // Finish up input operands. Set the input chain and add the flag last. 9222 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9223 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9224 9225 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9226 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9227 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9228 Flag = Chain.getValue(1); 9229 9230 // Do additional work to generate outputs. 9231 9232 SmallVector<EVT, 1> ResultVTs; 9233 SmallVector<SDValue, 1> ResultValues; 9234 SmallVector<SDValue, 8> OutChains; 9235 9236 llvm::Type *CallResultType = Call.getType(); 9237 ArrayRef<Type *> ResultTypes; 9238 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9239 ResultTypes = StructResult->elements(); 9240 else if (!CallResultType->isVoidTy()) 9241 ResultTypes = makeArrayRef(CallResultType); 9242 9243 auto CurResultType = ResultTypes.begin(); 9244 auto handleRegAssign = [&](SDValue V) { 9245 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9246 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9247 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9248 ++CurResultType; 9249 // If the type of the inline asm call site return value is different but has 9250 // same size as the type of the asm output bitcast it. One example of this 9251 // is for vectors with different width / number of elements. This can 9252 // happen for register classes that can contain multiple different value 9253 // types. The preg or vreg allocated may not have the same VT as was 9254 // expected. 9255 // 9256 // This can also happen for a return value that disagrees with the register 9257 // class it is put in, eg. a double in a general-purpose register on a 9258 // 32-bit machine. 9259 if (ResultVT != V.getValueType() && 9260 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9261 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9262 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9263 V.getValueType().isInteger()) { 9264 // If a result value was tied to an input value, the computed result 9265 // may have a wider width than the expected result. Extract the 9266 // relevant portion. 9267 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9268 } 9269 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9270 ResultVTs.push_back(ResultVT); 9271 ResultValues.push_back(V); 9272 }; 9273 9274 // Deal with output operands. 9275 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9276 if (OpInfo.Type == InlineAsm::isOutput) { 9277 SDValue Val; 9278 // Skip trivial output operands. 9279 if (OpInfo.AssignedRegs.Regs.empty()) 9280 continue; 9281 9282 switch (OpInfo.ConstraintType) { 9283 case TargetLowering::C_Register: 9284 case TargetLowering::C_RegisterClass: 9285 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9286 Chain, &Flag, &Call); 9287 break; 9288 case TargetLowering::C_Immediate: 9289 case TargetLowering::C_Other: 9290 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9291 OpInfo, DAG); 9292 break; 9293 case TargetLowering::C_Memory: 9294 break; // Already handled. 9295 case TargetLowering::C_Address: 9296 break; // Silence warning. 9297 case TargetLowering::C_Unknown: 9298 assert(false && "Unexpected unknown constraint"); 9299 } 9300 9301 // Indirect output manifest as stores. Record output chains. 9302 if (OpInfo.isIndirect) { 9303 const Value *Ptr = OpInfo.CallOperandVal; 9304 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9305 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9306 MachinePointerInfo(Ptr)); 9307 OutChains.push_back(Store); 9308 } else { 9309 // generate CopyFromRegs to associated registers. 9310 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9311 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9312 for (const SDValue &V : Val->op_values()) 9313 handleRegAssign(V); 9314 } else 9315 handleRegAssign(Val); 9316 } 9317 } 9318 } 9319 9320 // Set results. 9321 if (!ResultValues.empty()) { 9322 assert(CurResultType == ResultTypes.end() && 9323 "Mismatch in number of ResultTypes"); 9324 assert(ResultValues.size() == ResultTypes.size() && 9325 "Mismatch in number of output operands in asm result"); 9326 9327 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9328 DAG.getVTList(ResultVTs), ResultValues); 9329 setValue(&Call, V); 9330 } 9331 9332 // Collect store chains. 9333 if (!OutChains.empty()) 9334 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9335 9336 if (EmitEHLabels) { 9337 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9338 } 9339 9340 // Only Update Root if inline assembly has a memory effect. 9341 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9342 EmitEHLabels) 9343 DAG.setRoot(Chain); 9344 } 9345 9346 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9347 const Twine &Message) { 9348 LLVMContext &Ctx = *DAG.getContext(); 9349 Ctx.emitError(&Call, Message); 9350 9351 // Make sure we leave the DAG in a valid state 9352 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9353 SmallVector<EVT, 1> ValueVTs; 9354 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9355 9356 if (ValueVTs.empty()) 9357 return; 9358 9359 SmallVector<SDValue, 1> Ops; 9360 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9361 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9362 9363 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9364 } 9365 9366 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9367 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9368 MVT::Other, getRoot(), 9369 getValue(I.getArgOperand(0)), 9370 DAG.getSrcValue(I.getArgOperand(0)))); 9371 } 9372 9373 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9375 const DataLayout &DL = DAG.getDataLayout(); 9376 SDValue V = DAG.getVAArg( 9377 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9378 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9379 DL.getABITypeAlign(I.getType()).value()); 9380 DAG.setRoot(V.getValue(1)); 9381 9382 if (I.getType()->isPointerTy()) 9383 V = DAG.getPtrExtOrTrunc( 9384 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9385 setValue(&I, V); 9386 } 9387 9388 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9389 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9390 MVT::Other, getRoot(), 9391 getValue(I.getArgOperand(0)), 9392 DAG.getSrcValue(I.getArgOperand(0)))); 9393 } 9394 9395 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9396 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9397 MVT::Other, getRoot(), 9398 getValue(I.getArgOperand(0)), 9399 getValue(I.getArgOperand(1)), 9400 DAG.getSrcValue(I.getArgOperand(0)), 9401 DAG.getSrcValue(I.getArgOperand(1)))); 9402 } 9403 9404 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9405 const Instruction &I, 9406 SDValue Op) { 9407 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9408 if (!Range) 9409 return Op; 9410 9411 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9412 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9413 return Op; 9414 9415 APInt Lo = CR.getUnsignedMin(); 9416 if (!Lo.isMinValue()) 9417 return Op; 9418 9419 APInt Hi = CR.getUnsignedMax(); 9420 unsigned Bits = std::max(Hi.getActiveBits(), 9421 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9422 9423 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9424 9425 SDLoc SL = getCurSDLoc(); 9426 9427 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9428 DAG.getValueType(SmallVT)); 9429 unsigned NumVals = Op.getNode()->getNumValues(); 9430 if (NumVals == 1) 9431 return ZExt; 9432 9433 SmallVector<SDValue, 4> Ops; 9434 9435 Ops.push_back(ZExt); 9436 for (unsigned I = 1; I != NumVals; ++I) 9437 Ops.push_back(Op.getValue(I)); 9438 9439 return DAG.getMergeValues(Ops, SL); 9440 } 9441 9442 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9443 /// the call being lowered. 9444 /// 9445 /// This is a helper for lowering intrinsics that follow a target calling 9446 /// convention or require stack pointer adjustment. Only a subset of the 9447 /// intrinsic's operands need to participate in the calling convention. 9448 void SelectionDAGBuilder::populateCallLoweringInfo( 9449 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9450 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9451 bool IsPatchPoint) { 9452 TargetLowering::ArgListTy Args; 9453 Args.reserve(NumArgs); 9454 9455 // Populate the argument list. 9456 // Attributes for args start at offset 1, after the return attribute. 9457 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9458 ArgI != ArgE; ++ArgI) { 9459 const Value *V = Call->getOperand(ArgI); 9460 9461 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9462 9463 TargetLowering::ArgListEntry Entry; 9464 Entry.Node = getValue(V); 9465 Entry.Ty = V->getType(); 9466 Entry.setAttributes(Call, ArgI); 9467 Args.push_back(Entry); 9468 } 9469 9470 CLI.setDebugLoc(getCurSDLoc()) 9471 .setChain(getRoot()) 9472 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9473 .setDiscardResult(Call->use_empty()) 9474 .setIsPatchPoint(IsPatchPoint) 9475 .setIsPreallocated( 9476 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9477 } 9478 9479 /// Add a stack map intrinsic call's live variable operands to a stackmap 9480 /// or patchpoint target node's operand list. 9481 /// 9482 /// Constants are converted to TargetConstants purely as an optimization to 9483 /// avoid constant materialization and register allocation. 9484 /// 9485 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9486 /// generate addess computation nodes, and so FinalizeISel can convert the 9487 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9488 /// address materialization and register allocation, but may also be required 9489 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9490 /// alloca in the entry block, then the runtime may assume that the alloca's 9491 /// StackMap location can be read immediately after compilation and that the 9492 /// location is valid at any point during execution (this is similar to the 9493 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9494 /// only available in a register, then the runtime would need to trap when 9495 /// execution reaches the StackMap in order to read the alloca's location. 9496 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9497 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9498 SelectionDAGBuilder &Builder) { 9499 SelectionDAG &DAG = Builder.DAG; 9500 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9501 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9502 9503 // Things on the stack are pointer-typed, meaning that they are already 9504 // legal and can be emitted directly to target nodes. 9505 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9506 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9507 } else { 9508 // Otherwise emit a target independent node to be legalised. 9509 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9510 } 9511 } 9512 } 9513 9514 /// Lower llvm.experimental.stackmap. 9515 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9516 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9517 // [live variables...]) 9518 9519 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9520 9521 SDValue Chain, InFlag, Callee; 9522 SmallVector<SDValue, 32> Ops; 9523 9524 SDLoc DL = getCurSDLoc(); 9525 Callee = getValue(CI.getCalledOperand()); 9526 9527 // The stackmap intrinsic only records the live variables (the arguments 9528 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9529 // intrinsic, this won't be lowered to a function call. This means we don't 9530 // have to worry about calling conventions and target specific lowering code. 9531 // Instead we perform the call lowering right here. 9532 // 9533 // chain, flag = CALLSEQ_START(chain, 0, 0) 9534 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9535 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9536 // 9537 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9538 InFlag = Chain.getValue(1); 9539 9540 // Add the STACKMAP operands, starting with DAG house-keeping. 9541 Ops.push_back(Chain); 9542 Ops.push_back(InFlag); 9543 9544 // Add the <id>, <numShadowBytes> operands. 9545 // 9546 // These do not require legalisation, and can be emitted directly to target 9547 // constant nodes. 9548 SDValue ID = getValue(CI.getArgOperand(0)); 9549 assert(ID.getValueType() == MVT::i64); 9550 SDValue IDConst = DAG.getTargetConstant( 9551 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9552 Ops.push_back(IDConst); 9553 9554 SDValue Shad = getValue(CI.getArgOperand(1)); 9555 assert(Shad.getValueType() == MVT::i32); 9556 SDValue ShadConst = DAG.getTargetConstant( 9557 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9558 Ops.push_back(ShadConst); 9559 9560 // Add the live variables. 9561 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9562 9563 // Create the STACKMAP node. 9564 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9565 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9566 InFlag = Chain.getValue(1); 9567 9568 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9569 9570 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9571 9572 // Set the root to the target-lowered call chain. 9573 DAG.setRoot(Chain); 9574 9575 // Inform the Frame Information that we have a stackmap in this function. 9576 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9577 } 9578 9579 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9580 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9581 const BasicBlock *EHPadBB) { 9582 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9583 // i32 <numBytes>, 9584 // i8* <target>, 9585 // i32 <numArgs>, 9586 // [Args...], 9587 // [live variables...]) 9588 9589 CallingConv::ID CC = CB.getCallingConv(); 9590 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9591 bool HasDef = !CB.getType()->isVoidTy(); 9592 SDLoc dl = getCurSDLoc(); 9593 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9594 9595 // Handle immediate and symbolic callees. 9596 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9597 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9598 /*isTarget=*/true); 9599 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9600 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9601 SDLoc(SymbolicCallee), 9602 SymbolicCallee->getValueType(0)); 9603 9604 // Get the real number of arguments participating in the call <numArgs> 9605 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9606 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9607 9608 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9609 // Intrinsics include all meta-operands up to but not including CC. 9610 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9611 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9612 "Not enough arguments provided to the patchpoint intrinsic"); 9613 9614 // For AnyRegCC the arguments are lowered later on manually. 9615 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9616 Type *ReturnTy = 9617 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9618 9619 TargetLowering::CallLoweringInfo CLI(DAG); 9620 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9621 ReturnTy, true); 9622 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9623 9624 SDNode *CallEnd = Result.second.getNode(); 9625 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9626 CallEnd = CallEnd->getOperand(0).getNode(); 9627 9628 /// Get a call instruction from the call sequence chain. 9629 /// Tail calls are not allowed. 9630 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9631 "Expected a callseq node."); 9632 SDNode *Call = CallEnd->getOperand(0).getNode(); 9633 bool HasGlue = Call->getGluedNode(); 9634 9635 // Replace the target specific call node with the patchable intrinsic. 9636 SmallVector<SDValue, 8> Ops; 9637 9638 // Push the chain. 9639 Ops.push_back(*(Call->op_begin())); 9640 9641 // Optionally, push the glue (if any). 9642 if (HasGlue) 9643 Ops.push_back(*(Call->op_end() - 1)); 9644 9645 // Push the register mask info. 9646 if (HasGlue) 9647 Ops.push_back(*(Call->op_end() - 2)); 9648 else 9649 Ops.push_back(*(Call->op_end() - 1)); 9650 9651 // Add the <id> and <numBytes> constants. 9652 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9653 Ops.push_back(DAG.getTargetConstant( 9654 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9655 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9656 Ops.push_back(DAG.getTargetConstant( 9657 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9658 MVT::i32)); 9659 9660 // Add the callee. 9661 Ops.push_back(Callee); 9662 9663 // Adjust <numArgs> to account for any arguments that have been passed on the 9664 // stack instead. 9665 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9666 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9667 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9668 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9669 9670 // Add the calling convention 9671 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9672 9673 // Add the arguments we omitted previously. The register allocator should 9674 // place these in any free register. 9675 if (IsAnyRegCC) 9676 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9677 Ops.push_back(getValue(CB.getArgOperand(i))); 9678 9679 // Push the arguments from the call instruction. 9680 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9681 Ops.append(Call->op_begin() + 2, e); 9682 9683 // Push live variables for the stack map. 9684 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9685 9686 SDVTList NodeTys; 9687 if (IsAnyRegCC && HasDef) { 9688 // Create the return types based on the intrinsic definition 9689 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9690 SmallVector<EVT, 3> ValueVTs; 9691 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9692 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9693 9694 // There is always a chain and a glue type at the end 9695 ValueVTs.push_back(MVT::Other); 9696 ValueVTs.push_back(MVT::Glue); 9697 NodeTys = DAG.getVTList(ValueVTs); 9698 } else 9699 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9700 9701 // Replace the target specific call node with a PATCHPOINT node. 9702 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9703 9704 // Update the NodeMap. 9705 if (HasDef) { 9706 if (IsAnyRegCC) 9707 setValue(&CB, SDValue(PPV.getNode(), 0)); 9708 else 9709 setValue(&CB, Result.first); 9710 } 9711 9712 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9713 // call sequence. Furthermore the location of the chain and glue can change 9714 // when the AnyReg calling convention is used and the intrinsic returns a 9715 // value. 9716 if (IsAnyRegCC && HasDef) { 9717 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9718 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9719 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9720 } else 9721 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9722 DAG.DeleteNode(Call); 9723 9724 // Inform the Frame Information that we have a patchpoint in this function. 9725 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9726 } 9727 9728 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9729 unsigned Intrinsic) { 9730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9731 SDValue Op1 = getValue(I.getArgOperand(0)); 9732 SDValue Op2; 9733 if (I.arg_size() > 1) 9734 Op2 = getValue(I.getArgOperand(1)); 9735 SDLoc dl = getCurSDLoc(); 9736 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9737 SDValue Res; 9738 SDNodeFlags SDFlags; 9739 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9740 SDFlags.copyFMF(*FPMO); 9741 9742 switch (Intrinsic) { 9743 case Intrinsic::vector_reduce_fadd: 9744 if (SDFlags.hasAllowReassociation()) 9745 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9746 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9747 SDFlags); 9748 else 9749 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9750 break; 9751 case Intrinsic::vector_reduce_fmul: 9752 if (SDFlags.hasAllowReassociation()) 9753 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9754 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9755 SDFlags); 9756 else 9757 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9758 break; 9759 case Intrinsic::vector_reduce_add: 9760 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9761 break; 9762 case Intrinsic::vector_reduce_mul: 9763 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9764 break; 9765 case Intrinsic::vector_reduce_and: 9766 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9767 break; 9768 case Intrinsic::vector_reduce_or: 9769 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9770 break; 9771 case Intrinsic::vector_reduce_xor: 9772 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9773 break; 9774 case Intrinsic::vector_reduce_smax: 9775 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9776 break; 9777 case Intrinsic::vector_reduce_smin: 9778 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9779 break; 9780 case Intrinsic::vector_reduce_umax: 9781 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9782 break; 9783 case Intrinsic::vector_reduce_umin: 9784 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9785 break; 9786 case Intrinsic::vector_reduce_fmax: 9787 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9788 break; 9789 case Intrinsic::vector_reduce_fmin: 9790 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9791 break; 9792 default: 9793 llvm_unreachable("Unhandled vector reduce intrinsic"); 9794 } 9795 setValue(&I, Res); 9796 } 9797 9798 /// Returns an AttributeList representing the attributes applied to the return 9799 /// value of the given call. 9800 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9801 SmallVector<Attribute::AttrKind, 2> Attrs; 9802 if (CLI.RetSExt) 9803 Attrs.push_back(Attribute::SExt); 9804 if (CLI.RetZExt) 9805 Attrs.push_back(Attribute::ZExt); 9806 if (CLI.IsInReg) 9807 Attrs.push_back(Attribute::InReg); 9808 9809 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9810 Attrs); 9811 } 9812 9813 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9814 /// implementation, which just calls LowerCall. 9815 /// FIXME: When all targets are 9816 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9817 std::pair<SDValue, SDValue> 9818 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9819 // Handle the incoming return values from the call. 9820 CLI.Ins.clear(); 9821 Type *OrigRetTy = CLI.RetTy; 9822 SmallVector<EVT, 4> RetTys; 9823 SmallVector<uint64_t, 4> Offsets; 9824 auto &DL = CLI.DAG.getDataLayout(); 9825 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9826 9827 if (CLI.IsPostTypeLegalization) { 9828 // If we are lowering a libcall after legalization, split the return type. 9829 SmallVector<EVT, 4> OldRetTys; 9830 SmallVector<uint64_t, 4> OldOffsets; 9831 RetTys.swap(OldRetTys); 9832 Offsets.swap(OldOffsets); 9833 9834 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9835 EVT RetVT = OldRetTys[i]; 9836 uint64_t Offset = OldOffsets[i]; 9837 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9838 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9839 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9840 RetTys.append(NumRegs, RegisterVT); 9841 for (unsigned j = 0; j != NumRegs; ++j) 9842 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9843 } 9844 } 9845 9846 SmallVector<ISD::OutputArg, 4> Outs; 9847 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9848 9849 bool CanLowerReturn = 9850 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9851 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9852 9853 SDValue DemoteStackSlot; 9854 int DemoteStackIdx = -100; 9855 if (!CanLowerReturn) { 9856 // FIXME: equivalent assert? 9857 // assert(!CS.hasInAllocaArgument() && 9858 // "sret demotion is incompatible with inalloca"); 9859 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9860 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9861 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9862 DemoteStackIdx = 9863 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9864 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9865 DL.getAllocaAddrSpace()); 9866 9867 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9868 ArgListEntry Entry; 9869 Entry.Node = DemoteStackSlot; 9870 Entry.Ty = StackSlotPtrType; 9871 Entry.IsSExt = false; 9872 Entry.IsZExt = false; 9873 Entry.IsInReg = false; 9874 Entry.IsSRet = true; 9875 Entry.IsNest = false; 9876 Entry.IsByVal = false; 9877 Entry.IsByRef = false; 9878 Entry.IsReturned = false; 9879 Entry.IsSwiftSelf = false; 9880 Entry.IsSwiftAsync = false; 9881 Entry.IsSwiftError = false; 9882 Entry.IsCFGuardTarget = false; 9883 Entry.Alignment = Alignment; 9884 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9885 CLI.NumFixedArgs += 1; 9886 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9887 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9888 9889 // sret demotion isn't compatible with tail-calls, since the sret argument 9890 // points into the callers stack frame. 9891 CLI.IsTailCall = false; 9892 } else { 9893 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9894 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9895 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9896 ISD::ArgFlagsTy Flags; 9897 if (NeedsRegBlock) { 9898 Flags.setInConsecutiveRegs(); 9899 if (I == RetTys.size() - 1) 9900 Flags.setInConsecutiveRegsLast(); 9901 } 9902 EVT VT = RetTys[I]; 9903 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9904 CLI.CallConv, VT); 9905 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9906 CLI.CallConv, VT); 9907 for (unsigned i = 0; i != NumRegs; ++i) { 9908 ISD::InputArg MyFlags; 9909 MyFlags.Flags = Flags; 9910 MyFlags.VT = RegisterVT; 9911 MyFlags.ArgVT = VT; 9912 MyFlags.Used = CLI.IsReturnValueUsed; 9913 if (CLI.RetTy->isPointerTy()) { 9914 MyFlags.Flags.setPointer(); 9915 MyFlags.Flags.setPointerAddrSpace( 9916 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9917 } 9918 if (CLI.RetSExt) 9919 MyFlags.Flags.setSExt(); 9920 if (CLI.RetZExt) 9921 MyFlags.Flags.setZExt(); 9922 if (CLI.IsInReg) 9923 MyFlags.Flags.setInReg(); 9924 CLI.Ins.push_back(MyFlags); 9925 } 9926 } 9927 } 9928 9929 // We push in swifterror return as the last element of CLI.Ins. 9930 ArgListTy &Args = CLI.getArgs(); 9931 if (supportSwiftError()) { 9932 for (const ArgListEntry &Arg : Args) { 9933 if (Arg.IsSwiftError) { 9934 ISD::InputArg MyFlags; 9935 MyFlags.VT = getPointerTy(DL); 9936 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9937 MyFlags.Flags.setSwiftError(); 9938 CLI.Ins.push_back(MyFlags); 9939 } 9940 } 9941 } 9942 9943 // Handle all of the outgoing arguments. 9944 CLI.Outs.clear(); 9945 CLI.OutVals.clear(); 9946 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9947 SmallVector<EVT, 4> ValueVTs; 9948 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9949 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9950 Type *FinalType = Args[i].Ty; 9951 if (Args[i].IsByVal) 9952 FinalType = Args[i].IndirectType; 9953 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9954 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9955 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9956 ++Value) { 9957 EVT VT = ValueVTs[Value]; 9958 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9959 SDValue Op = SDValue(Args[i].Node.getNode(), 9960 Args[i].Node.getResNo() + Value); 9961 ISD::ArgFlagsTy Flags; 9962 9963 // Certain targets (such as MIPS), may have a different ABI alignment 9964 // for a type depending on the context. Give the target a chance to 9965 // specify the alignment it wants. 9966 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9967 Flags.setOrigAlign(OriginalAlignment); 9968 9969 if (Args[i].Ty->isPointerTy()) { 9970 Flags.setPointer(); 9971 Flags.setPointerAddrSpace( 9972 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9973 } 9974 if (Args[i].IsZExt) 9975 Flags.setZExt(); 9976 if (Args[i].IsSExt) 9977 Flags.setSExt(); 9978 if (Args[i].IsInReg) { 9979 // If we are using vectorcall calling convention, a structure that is 9980 // passed InReg - is surely an HVA 9981 if (CLI.CallConv == CallingConv::X86_VectorCall && 9982 isa<StructType>(FinalType)) { 9983 // The first value of a structure is marked 9984 if (0 == Value) 9985 Flags.setHvaStart(); 9986 Flags.setHva(); 9987 } 9988 // Set InReg Flag 9989 Flags.setInReg(); 9990 } 9991 if (Args[i].IsSRet) 9992 Flags.setSRet(); 9993 if (Args[i].IsSwiftSelf) 9994 Flags.setSwiftSelf(); 9995 if (Args[i].IsSwiftAsync) 9996 Flags.setSwiftAsync(); 9997 if (Args[i].IsSwiftError) 9998 Flags.setSwiftError(); 9999 if (Args[i].IsCFGuardTarget) 10000 Flags.setCFGuardTarget(); 10001 if (Args[i].IsByVal) 10002 Flags.setByVal(); 10003 if (Args[i].IsByRef) 10004 Flags.setByRef(); 10005 if (Args[i].IsPreallocated) { 10006 Flags.setPreallocated(); 10007 // Set the byval flag for CCAssignFn callbacks that don't know about 10008 // preallocated. This way we can know how many bytes we should've 10009 // allocated and how many bytes a callee cleanup function will pop. If 10010 // we port preallocated to more targets, we'll have to add custom 10011 // preallocated handling in the various CC lowering callbacks. 10012 Flags.setByVal(); 10013 } 10014 if (Args[i].IsInAlloca) { 10015 Flags.setInAlloca(); 10016 // Set the byval flag for CCAssignFn callbacks that don't know about 10017 // inalloca. This way we can know how many bytes we should've allocated 10018 // and how many bytes a callee cleanup function will pop. If we port 10019 // inalloca to more targets, we'll have to add custom inalloca handling 10020 // in the various CC lowering callbacks. 10021 Flags.setByVal(); 10022 } 10023 Align MemAlign; 10024 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10025 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10026 Flags.setByValSize(FrameSize); 10027 10028 // info is not there but there are cases it cannot get right. 10029 if (auto MA = Args[i].Alignment) 10030 MemAlign = *MA; 10031 else 10032 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10033 } else if (auto MA = Args[i].Alignment) { 10034 MemAlign = *MA; 10035 } else { 10036 MemAlign = OriginalAlignment; 10037 } 10038 Flags.setMemAlign(MemAlign); 10039 if (Args[i].IsNest) 10040 Flags.setNest(); 10041 if (NeedsRegBlock) 10042 Flags.setInConsecutiveRegs(); 10043 10044 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10045 CLI.CallConv, VT); 10046 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10047 CLI.CallConv, VT); 10048 SmallVector<SDValue, 4> Parts(NumParts); 10049 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10050 10051 if (Args[i].IsSExt) 10052 ExtendKind = ISD::SIGN_EXTEND; 10053 else if (Args[i].IsZExt) 10054 ExtendKind = ISD::ZERO_EXTEND; 10055 10056 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10057 // for now. 10058 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10059 CanLowerReturn) { 10060 assert((CLI.RetTy == Args[i].Ty || 10061 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10062 CLI.RetTy->getPointerAddressSpace() == 10063 Args[i].Ty->getPointerAddressSpace())) && 10064 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10065 // Before passing 'returned' to the target lowering code, ensure that 10066 // either the register MVT and the actual EVT are the same size or that 10067 // the return value and argument are extended in the same way; in these 10068 // cases it's safe to pass the argument register value unchanged as the 10069 // return register value (although it's at the target's option whether 10070 // to do so) 10071 // TODO: allow code generation to take advantage of partially preserved 10072 // registers rather than clobbering the entire register when the 10073 // parameter extension method is not compatible with the return 10074 // extension method 10075 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10076 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10077 CLI.RetZExt == Args[i].IsZExt)) 10078 Flags.setReturned(); 10079 } 10080 10081 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10082 CLI.CallConv, ExtendKind); 10083 10084 for (unsigned j = 0; j != NumParts; ++j) { 10085 // if it isn't first piece, alignment must be 1 10086 // For scalable vectors the scalable part is currently handled 10087 // by individual targets, so we just use the known minimum size here. 10088 ISD::OutputArg MyFlags( 10089 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10090 i < CLI.NumFixedArgs, i, 10091 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 10092 if (NumParts > 1 && j == 0) 10093 MyFlags.Flags.setSplit(); 10094 else if (j != 0) { 10095 MyFlags.Flags.setOrigAlign(Align(1)); 10096 if (j == NumParts - 1) 10097 MyFlags.Flags.setSplitEnd(); 10098 } 10099 10100 CLI.Outs.push_back(MyFlags); 10101 CLI.OutVals.push_back(Parts[j]); 10102 } 10103 10104 if (NeedsRegBlock && Value == NumValues - 1) 10105 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10106 } 10107 } 10108 10109 SmallVector<SDValue, 4> InVals; 10110 CLI.Chain = LowerCall(CLI, InVals); 10111 10112 // Update CLI.InVals to use outside of this function. 10113 CLI.InVals = InVals; 10114 10115 // Verify that the target's LowerCall behaved as expected. 10116 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10117 "LowerCall didn't return a valid chain!"); 10118 assert((!CLI.IsTailCall || InVals.empty()) && 10119 "LowerCall emitted a return value for a tail call!"); 10120 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10121 "LowerCall didn't emit the correct number of values!"); 10122 10123 // For a tail call, the return value is merely live-out and there aren't 10124 // any nodes in the DAG representing it. Return a special value to 10125 // indicate that a tail call has been emitted and no more Instructions 10126 // should be processed in the current block. 10127 if (CLI.IsTailCall) { 10128 CLI.DAG.setRoot(CLI.Chain); 10129 return std::make_pair(SDValue(), SDValue()); 10130 } 10131 10132 #ifndef NDEBUG 10133 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10134 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10135 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10136 "LowerCall emitted a value with the wrong type!"); 10137 } 10138 #endif 10139 10140 SmallVector<SDValue, 4> ReturnValues; 10141 if (!CanLowerReturn) { 10142 // The instruction result is the result of loading from the 10143 // hidden sret parameter. 10144 SmallVector<EVT, 1> PVTs; 10145 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10146 10147 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10148 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10149 EVT PtrVT = PVTs[0]; 10150 10151 unsigned NumValues = RetTys.size(); 10152 ReturnValues.resize(NumValues); 10153 SmallVector<SDValue, 4> Chains(NumValues); 10154 10155 // An aggregate return value cannot wrap around the address space, so 10156 // offsets to its parts don't wrap either. 10157 SDNodeFlags Flags; 10158 Flags.setNoUnsignedWrap(true); 10159 10160 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10161 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10162 for (unsigned i = 0; i < NumValues; ++i) { 10163 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10164 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10165 PtrVT), Flags); 10166 SDValue L = CLI.DAG.getLoad( 10167 RetTys[i], CLI.DL, CLI.Chain, Add, 10168 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10169 DemoteStackIdx, Offsets[i]), 10170 HiddenSRetAlign); 10171 ReturnValues[i] = L; 10172 Chains[i] = L.getValue(1); 10173 } 10174 10175 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10176 } else { 10177 // Collect the legal value parts into potentially illegal values 10178 // that correspond to the original function's return values. 10179 std::optional<ISD::NodeType> AssertOp; 10180 if (CLI.RetSExt) 10181 AssertOp = ISD::AssertSext; 10182 else if (CLI.RetZExt) 10183 AssertOp = ISD::AssertZext; 10184 unsigned CurReg = 0; 10185 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10186 EVT VT = RetTys[I]; 10187 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10188 CLI.CallConv, VT); 10189 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10190 CLI.CallConv, VT); 10191 10192 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10193 NumRegs, RegisterVT, VT, nullptr, 10194 CLI.CallConv, AssertOp)); 10195 CurReg += NumRegs; 10196 } 10197 10198 // For a function returning void, there is no return value. We can't create 10199 // such a node, so we just return a null return value in that case. In 10200 // that case, nothing will actually look at the value. 10201 if (ReturnValues.empty()) 10202 return std::make_pair(SDValue(), CLI.Chain); 10203 } 10204 10205 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10206 CLI.DAG.getVTList(RetTys), ReturnValues); 10207 return std::make_pair(Res, CLI.Chain); 10208 } 10209 10210 /// Places new result values for the node in Results (their number 10211 /// and types must exactly match those of the original return values of 10212 /// the node), or leaves Results empty, which indicates that the node is not 10213 /// to be custom lowered after all. 10214 void TargetLowering::LowerOperationWrapper(SDNode *N, 10215 SmallVectorImpl<SDValue> &Results, 10216 SelectionDAG &DAG) const { 10217 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10218 10219 if (!Res.getNode()) 10220 return; 10221 10222 // If the original node has one result, take the return value from 10223 // LowerOperation as is. It might not be result number 0. 10224 if (N->getNumValues() == 1) { 10225 Results.push_back(Res); 10226 return; 10227 } 10228 10229 // If the original node has multiple results, then the return node should 10230 // have the same number of results. 10231 assert((N->getNumValues() == Res->getNumValues()) && 10232 "Lowering returned the wrong number of results!"); 10233 10234 // Places new result values base on N result number. 10235 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10236 Results.push_back(Res.getValue(I)); 10237 } 10238 10239 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10240 llvm_unreachable("LowerOperation not implemented for this target!"); 10241 } 10242 10243 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10244 unsigned Reg, 10245 ISD::NodeType ExtendType) { 10246 SDValue Op = getNonRegisterValue(V); 10247 assert((Op.getOpcode() != ISD::CopyFromReg || 10248 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10249 "Copy from a reg to the same reg!"); 10250 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10251 10252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10253 // If this is an InlineAsm we have to match the registers required, not the 10254 // notional registers required by the type. 10255 10256 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10257 None); // This is not an ABI copy. 10258 SDValue Chain = DAG.getEntryNode(); 10259 10260 if (ExtendType == ISD::ANY_EXTEND) { 10261 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10262 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10263 ExtendType = PreferredExtendIt->second; 10264 } 10265 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10266 PendingExports.push_back(Chain); 10267 } 10268 10269 #include "llvm/CodeGen/SelectionDAGISel.h" 10270 10271 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10272 /// entry block, return true. This includes arguments used by switches, since 10273 /// the switch may expand into multiple basic blocks. 10274 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10275 // With FastISel active, we may be splitting blocks, so force creation 10276 // of virtual registers for all non-dead arguments. 10277 if (FastISel) 10278 return A->use_empty(); 10279 10280 const BasicBlock &Entry = A->getParent()->front(); 10281 for (const User *U : A->users()) 10282 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10283 return false; // Use not in entry block. 10284 10285 return true; 10286 } 10287 10288 using ArgCopyElisionMapTy = 10289 DenseMap<const Argument *, 10290 std::pair<const AllocaInst *, const StoreInst *>>; 10291 10292 /// Scan the entry block of the function in FuncInfo for arguments that look 10293 /// like copies into a local alloca. Record any copied arguments in 10294 /// ArgCopyElisionCandidates. 10295 static void 10296 findArgumentCopyElisionCandidates(const DataLayout &DL, 10297 FunctionLoweringInfo *FuncInfo, 10298 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10299 // Record the state of every static alloca used in the entry block. Argument 10300 // allocas are all used in the entry block, so we need approximately as many 10301 // entries as we have arguments. 10302 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10303 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10304 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10305 StaticAllocas.reserve(NumArgs * 2); 10306 10307 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10308 if (!V) 10309 return nullptr; 10310 V = V->stripPointerCasts(); 10311 const auto *AI = dyn_cast<AllocaInst>(V); 10312 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10313 return nullptr; 10314 auto Iter = StaticAllocas.insert({AI, Unknown}); 10315 return &Iter.first->second; 10316 }; 10317 10318 // Look for stores of arguments to static allocas. Look through bitcasts and 10319 // GEPs to handle type coercions, as long as the alloca is fully initialized 10320 // by the store. Any non-store use of an alloca escapes it and any subsequent 10321 // unanalyzed store might write it. 10322 // FIXME: Handle structs initialized with multiple stores. 10323 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10324 // Look for stores, and handle non-store uses conservatively. 10325 const auto *SI = dyn_cast<StoreInst>(&I); 10326 if (!SI) { 10327 // We will look through cast uses, so ignore them completely. 10328 if (I.isCast()) 10329 continue; 10330 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10331 // to allocas. 10332 if (I.isDebugOrPseudoInst()) 10333 continue; 10334 // This is an unknown instruction. Assume it escapes or writes to all 10335 // static alloca operands. 10336 for (const Use &U : I.operands()) { 10337 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10338 *Info = StaticAllocaInfo::Clobbered; 10339 } 10340 continue; 10341 } 10342 10343 // If the stored value is a static alloca, mark it as escaped. 10344 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10345 *Info = StaticAllocaInfo::Clobbered; 10346 10347 // Check if the destination is a static alloca. 10348 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10349 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10350 if (!Info) 10351 continue; 10352 const AllocaInst *AI = cast<AllocaInst>(Dst); 10353 10354 // Skip allocas that have been initialized or clobbered. 10355 if (*Info != StaticAllocaInfo::Unknown) 10356 continue; 10357 10358 // Check if the stored value is an argument, and that this store fully 10359 // initializes the alloca. 10360 // If the argument type has padding bits we can't directly forward a pointer 10361 // as the upper bits may contain garbage. 10362 // Don't elide copies from the same argument twice. 10363 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10364 const auto *Arg = dyn_cast<Argument>(Val); 10365 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10366 Arg->getType()->isEmptyTy() || 10367 DL.getTypeStoreSize(Arg->getType()) != 10368 DL.getTypeAllocSize(AI->getAllocatedType()) || 10369 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10370 ArgCopyElisionCandidates.count(Arg)) { 10371 *Info = StaticAllocaInfo::Clobbered; 10372 continue; 10373 } 10374 10375 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10376 << '\n'); 10377 10378 // Mark this alloca and store for argument copy elision. 10379 *Info = StaticAllocaInfo::Elidable; 10380 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10381 10382 // Stop scanning if we've seen all arguments. This will happen early in -O0 10383 // builds, which is useful, because -O0 builds have large entry blocks and 10384 // many allocas. 10385 if (ArgCopyElisionCandidates.size() == NumArgs) 10386 break; 10387 } 10388 } 10389 10390 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10391 /// ArgVal is a load from a suitable fixed stack object. 10392 static void tryToElideArgumentCopy( 10393 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10394 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10395 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10396 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10397 SDValue ArgVal, bool &ArgHasUses) { 10398 // Check if this is a load from a fixed stack object. 10399 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10400 if (!LNode) 10401 return; 10402 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10403 if (!FINode) 10404 return; 10405 10406 // Check that the fixed stack object is the right size and alignment. 10407 // Look at the alignment that the user wrote on the alloca instead of looking 10408 // at the stack object. 10409 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10410 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10411 const AllocaInst *AI = ArgCopyIter->second.first; 10412 int FixedIndex = FINode->getIndex(); 10413 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10414 int OldIndex = AllocaIndex; 10415 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10416 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10417 LLVM_DEBUG( 10418 dbgs() << " argument copy elision failed due to bad fixed stack " 10419 "object size\n"); 10420 return; 10421 } 10422 Align RequiredAlignment = AI->getAlign(); 10423 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10424 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10425 "greater than stack argument alignment (" 10426 << DebugStr(RequiredAlignment) << " vs " 10427 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10428 return; 10429 } 10430 10431 // Perform the elision. Delete the old stack object and replace its only use 10432 // in the variable info map. Mark the stack object as mutable. 10433 LLVM_DEBUG({ 10434 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10435 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10436 << '\n'; 10437 }); 10438 MFI.RemoveStackObject(OldIndex); 10439 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10440 AllocaIndex = FixedIndex; 10441 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10442 Chains.push_back(ArgVal.getValue(1)); 10443 10444 // Avoid emitting code for the store implementing the copy. 10445 const StoreInst *SI = ArgCopyIter->second.second; 10446 ElidedArgCopyInstrs.insert(SI); 10447 10448 // Check for uses of the argument again so that we can avoid exporting ArgVal 10449 // if it is't used by anything other than the store. 10450 for (const Value *U : Arg.users()) { 10451 if (U != SI) { 10452 ArgHasUses = true; 10453 break; 10454 } 10455 } 10456 } 10457 10458 void SelectionDAGISel::LowerArguments(const Function &F) { 10459 SelectionDAG &DAG = SDB->DAG; 10460 SDLoc dl = SDB->getCurSDLoc(); 10461 const DataLayout &DL = DAG.getDataLayout(); 10462 SmallVector<ISD::InputArg, 16> Ins; 10463 10464 // In Naked functions we aren't going to save any registers. 10465 if (F.hasFnAttribute(Attribute::Naked)) 10466 return; 10467 10468 if (!FuncInfo->CanLowerReturn) { 10469 // Put in an sret pointer parameter before all the other parameters. 10470 SmallVector<EVT, 1> ValueVTs; 10471 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10472 F.getReturnType()->getPointerTo( 10473 DAG.getDataLayout().getAllocaAddrSpace()), 10474 ValueVTs); 10475 10476 // NOTE: Assuming that a pointer will never break down to more than one VT 10477 // or one register. 10478 ISD::ArgFlagsTy Flags; 10479 Flags.setSRet(); 10480 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10481 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10482 ISD::InputArg::NoArgIndex, 0); 10483 Ins.push_back(RetArg); 10484 } 10485 10486 // Look for stores of arguments to static allocas. Mark such arguments with a 10487 // flag to ask the target to give us the memory location of that argument if 10488 // available. 10489 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10490 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10491 ArgCopyElisionCandidates); 10492 10493 // Set up the incoming argument description vector. 10494 for (const Argument &Arg : F.args()) { 10495 unsigned ArgNo = Arg.getArgNo(); 10496 SmallVector<EVT, 4> ValueVTs; 10497 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10498 bool isArgValueUsed = !Arg.use_empty(); 10499 unsigned PartBase = 0; 10500 Type *FinalType = Arg.getType(); 10501 if (Arg.hasAttribute(Attribute::ByVal)) 10502 FinalType = Arg.getParamByValType(); 10503 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10504 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10505 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10506 Value != NumValues; ++Value) { 10507 EVT VT = ValueVTs[Value]; 10508 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10509 ISD::ArgFlagsTy Flags; 10510 10511 10512 if (Arg.getType()->isPointerTy()) { 10513 Flags.setPointer(); 10514 Flags.setPointerAddrSpace( 10515 cast<PointerType>(Arg.getType())->getAddressSpace()); 10516 } 10517 if (Arg.hasAttribute(Attribute::ZExt)) 10518 Flags.setZExt(); 10519 if (Arg.hasAttribute(Attribute::SExt)) 10520 Flags.setSExt(); 10521 if (Arg.hasAttribute(Attribute::InReg)) { 10522 // If we are using vectorcall calling convention, a structure that is 10523 // passed InReg - is surely an HVA 10524 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10525 isa<StructType>(Arg.getType())) { 10526 // The first value of a structure is marked 10527 if (0 == Value) 10528 Flags.setHvaStart(); 10529 Flags.setHva(); 10530 } 10531 // Set InReg Flag 10532 Flags.setInReg(); 10533 } 10534 if (Arg.hasAttribute(Attribute::StructRet)) 10535 Flags.setSRet(); 10536 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10537 Flags.setSwiftSelf(); 10538 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10539 Flags.setSwiftAsync(); 10540 if (Arg.hasAttribute(Attribute::SwiftError)) 10541 Flags.setSwiftError(); 10542 if (Arg.hasAttribute(Attribute::ByVal)) 10543 Flags.setByVal(); 10544 if (Arg.hasAttribute(Attribute::ByRef)) 10545 Flags.setByRef(); 10546 if (Arg.hasAttribute(Attribute::InAlloca)) { 10547 Flags.setInAlloca(); 10548 // Set the byval flag for CCAssignFn callbacks that don't know about 10549 // inalloca. This way we can know how many bytes we should've allocated 10550 // and how many bytes a callee cleanup function will pop. If we port 10551 // inalloca to more targets, we'll have to add custom inalloca handling 10552 // in the various CC lowering callbacks. 10553 Flags.setByVal(); 10554 } 10555 if (Arg.hasAttribute(Attribute::Preallocated)) { 10556 Flags.setPreallocated(); 10557 // Set the byval flag for CCAssignFn callbacks that don't know about 10558 // preallocated. This way we can know how many bytes we should've 10559 // allocated and how many bytes a callee cleanup function will pop. If 10560 // we port preallocated to more targets, we'll have to add custom 10561 // preallocated handling in the various CC lowering callbacks. 10562 Flags.setByVal(); 10563 } 10564 10565 // Certain targets (such as MIPS), may have a different ABI alignment 10566 // for a type depending on the context. Give the target a chance to 10567 // specify the alignment it wants. 10568 const Align OriginalAlignment( 10569 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10570 Flags.setOrigAlign(OriginalAlignment); 10571 10572 Align MemAlign; 10573 Type *ArgMemTy = nullptr; 10574 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10575 Flags.isByRef()) { 10576 if (!ArgMemTy) 10577 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10578 10579 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10580 10581 // For in-memory arguments, size and alignment should be passed from FE. 10582 // BE will guess if this info is not there but there are cases it cannot 10583 // get right. 10584 if (auto ParamAlign = Arg.getParamStackAlign()) 10585 MemAlign = *ParamAlign; 10586 else if ((ParamAlign = Arg.getParamAlign())) 10587 MemAlign = *ParamAlign; 10588 else 10589 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10590 if (Flags.isByRef()) 10591 Flags.setByRefSize(MemSize); 10592 else 10593 Flags.setByValSize(MemSize); 10594 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10595 MemAlign = *ParamAlign; 10596 } else { 10597 MemAlign = OriginalAlignment; 10598 } 10599 Flags.setMemAlign(MemAlign); 10600 10601 if (Arg.hasAttribute(Attribute::Nest)) 10602 Flags.setNest(); 10603 if (NeedsRegBlock) 10604 Flags.setInConsecutiveRegs(); 10605 if (ArgCopyElisionCandidates.count(&Arg)) 10606 Flags.setCopyElisionCandidate(); 10607 if (Arg.hasAttribute(Attribute::Returned)) 10608 Flags.setReturned(); 10609 10610 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10611 *CurDAG->getContext(), F.getCallingConv(), VT); 10612 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10613 *CurDAG->getContext(), F.getCallingConv(), VT); 10614 for (unsigned i = 0; i != NumRegs; ++i) { 10615 // For scalable vectors, use the minimum size; individual targets 10616 // are responsible for handling scalable vector arguments and 10617 // return values. 10618 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10619 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10620 if (NumRegs > 1 && i == 0) 10621 MyFlags.Flags.setSplit(); 10622 // if it isn't first piece, alignment must be 1 10623 else if (i > 0) { 10624 MyFlags.Flags.setOrigAlign(Align(1)); 10625 if (i == NumRegs - 1) 10626 MyFlags.Flags.setSplitEnd(); 10627 } 10628 Ins.push_back(MyFlags); 10629 } 10630 if (NeedsRegBlock && Value == NumValues - 1) 10631 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10632 PartBase += VT.getStoreSize().getKnownMinSize(); 10633 } 10634 } 10635 10636 // Call the target to set up the argument values. 10637 SmallVector<SDValue, 8> InVals; 10638 SDValue NewRoot = TLI->LowerFormalArguments( 10639 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10640 10641 // Verify that the target's LowerFormalArguments behaved as expected. 10642 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10643 "LowerFormalArguments didn't return a valid chain!"); 10644 assert(InVals.size() == Ins.size() && 10645 "LowerFormalArguments didn't emit the correct number of values!"); 10646 LLVM_DEBUG({ 10647 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10648 assert(InVals[i].getNode() && 10649 "LowerFormalArguments emitted a null value!"); 10650 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10651 "LowerFormalArguments emitted a value with the wrong type!"); 10652 } 10653 }); 10654 10655 // Update the DAG with the new chain value resulting from argument lowering. 10656 DAG.setRoot(NewRoot); 10657 10658 // Set up the argument values. 10659 unsigned i = 0; 10660 if (!FuncInfo->CanLowerReturn) { 10661 // Create a virtual register for the sret pointer, and put in a copy 10662 // from the sret argument into it. 10663 SmallVector<EVT, 1> ValueVTs; 10664 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10665 F.getReturnType()->getPointerTo( 10666 DAG.getDataLayout().getAllocaAddrSpace()), 10667 ValueVTs); 10668 MVT VT = ValueVTs[0].getSimpleVT(); 10669 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10670 std::optional<ISD::NodeType> AssertOp; 10671 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10672 nullptr, F.getCallingConv(), AssertOp); 10673 10674 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10675 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10676 Register SRetReg = 10677 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10678 FuncInfo->DemoteRegister = SRetReg; 10679 NewRoot = 10680 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10681 DAG.setRoot(NewRoot); 10682 10683 // i indexes lowered arguments. Bump it past the hidden sret argument. 10684 ++i; 10685 } 10686 10687 SmallVector<SDValue, 4> Chains; 10688 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10689 for (const Argument &Arg : F.args()) { 10690 SmallVector<SDValue, 4> ArgValues; 10691 SmallVector<EVT, 4> ValueVTs; 10692 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10693 unsigned NumValues = ValueVTs.size(); 10694 if (NumValues == 0) 10695 continue; 10696 10697 bool ArgHasUses = !Arg.use_empty(); 10698 10699 // Elide the copying store if the target loaded this argument from a 10700 // suitable fixed stack object. 10701 if (Ins[i].Flags.isCopyElisionCandidate()) { 10702 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10703 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10704 InVals[i], ArgHasUses); 10705 } 10706 10707 // If this argument is unused then remember its value. It is used to generate 10708 // debugging information. 10709 bool isSwiftErrorArg = 10710 TLI->supportSwiftError() && 10711 Arg.hasAttribute(Attribute::SwiftError); 10712 if (!ArgHasUses && !isSwiftErrorArg) { 10713 SDB->setUnusedArgValue(&Arg, InVals[i]); 10714 10715 // Also remember any frame index for use in FastISel. 10716 if (FrameIndexSDNode *FI = 10717 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10718 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10719 } 10720 10721 for (unsigned Val = 0; Val != NumValues; ++Val) { 10722 EVT VT = ValueVTs[Val]; 10723 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10724 F.getCallingConv(), VT); 10725 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10726 *CurDAG->getContext(), F.getCallingConv(), VT); 10727 10728 // Even an apparent 'unused' swifterror argument needs to be returned. So 10729 // we do generate a copy for it that can be used on return from the 10730 // function. 10731 if (ArgHasUses || isSwiftErrorArg) { 10732 std::optional<ISD::NodeType> AssertOp; 10733 if (Arg.hasAttribute(Attribute::SExt)) 10734 AssertOp = ISD::AssertSext; 10735 else if (Arg.hasAttribute(Attribute::ZExt)) 10736 AssertOp = ISD::AssertZext; 10737 10738 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10739 PartVT, VT, nullptr, 10740 F.getCallingConv(), AssertOp)); 10741 } 10742 10743 i += NumParts; 10744 } 10745 10746 // We don't need to do anything else for unused arguments. 10747 if (ArgValues.empty()) 10748 continue; 10749 10750 // Note down frame index. 10751 if (FrameIndexSDNode *FI = 10752 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10753 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10754 10755 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10756 SDB->getCurSDLoc()); 10757 10758 SDB->setValue(&Arg, Res); 10759 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10760 // We want to associate the argument with the frame index, among 10761 // involved operands, that correspond to the lowest address. The 10762 // getCopyFromParts function, called earlier, is swapping the order of 10763 // the operands to BUILD_PAIR depending on endianness. The result of 10764 // that swapping is that the least significant bits of the argument will 10765 // be in the first operand of the BUILD_PAIR node, and the most 10766 // significant bits will be in the second operand. 10767 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10768 if (LoadSDNode *LNode = 10769 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10770 if (FrameIndexSDNode *FI = 10771 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10772 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10773 } 10774 10775 // Analyses past this point are naive and don't expect an assertion. 10776 if (Res.getOpcode() == ISD::AssertZext) 10777 Res = Res.getOperand(0); 10778 10779 // Update the SwiftErrorVRegDefMap. 10780 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10781 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10782 if (Register::isVirtualRegister(Reg)) 10783 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10784 Reg); 10785 } 10786 10787 // If this argument is live outside of the entry block, insert a copy from 10788 // wherever we got it to the vreg that other BB's will reference it as. 10789 if (Res.getOpcode() == ISD::CopyFromReg) { 10790 // If we can, though, try to skip creating an unnecessary vreg. 10791 // FIXME: This isn't very clean... it would be nice to make this more 10792 // general. 10793 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10794 if (Register::isVirtualRegister(Reg)) { 10795 FuncInfo->ValueMap[&Arg] = Reg; 10796 continue; 10797 } 10798 } 10799 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10800 FuncInfo->InitializeRegForValue(&Arg); 10801 SDB->CopyToExportRegsIfNeeded(&Arg); 10802 } 10803 } 10804 10805 if (!Chains.empty()) { 10806 Chains.push_back(NewRoot); 10807 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10808 } 10809 10810 DAG.setRoot(NewRoot); 10811 10812 assert(i == InVals.size() && "Argument register count mismatch!"); 10813 10814 // If any argument copy elisions occurred and we have debug info, update the 10815 // stale frame indices used in the dbg.declare variable info table. 10816 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10817 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10818 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10819 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10820 if (I != ArgCopyElisionFrameIndexMap.end()) 10821 VI.Slot = I->second; 10822 } 10823 } 10824 10825 // Finally, if the target has anything special to do, allow it to do so. 10826 emitFunctionEntryCode(); 10827 } 10828 10829 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10830 /// ensure constants are generated when needed. Remember the virtual registers 10831 /// that need to be added to the Machine PHI nodes as input. We cannot just 10832 /// directly add them, because expansion might result in multiple MBB's for one 10833 /// BB. As such, the start of the BB might correspond to a different MBB than 10834 /// the end. 10835 void 10836 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10838 10839 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10840 10841 // Check PHI nodes in successors that expect a value to be available from this 10842 // block. 10843 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10844 if (!isa<PHINode>(SuccBB->begin())) continue; 10845 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10846 10847 // If this terminator has multiple identical successors (common for 10848 // switches), only handle each succ once. 10849 if (!SuccsHandled.insert(SuccMBB).second) 10850 continue; 10851 10852 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10853 10854 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10855 // nodes and Machine PHI nodes, but the incoming operands have not been 10856 // emitted yet. 10857 for (const PHINode &PN : SuccBB->phis()) { 10858 // Ignore dead phi's. 10859 if (PN.use_empty()) 10860 continue; 10861 10862 // Skip empty types 10863 if (PN.getType()->isEmptyTy()) 10864 continue; 10865 10866 unsigned Reg; 10867 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10868 10869 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10870 unsigned &RegOut = ConstantsOut[C]; 10871 if (RegOut == 0) { 10872 RegOut = FuncInfo.CreateRegs(C); 10873 // We need to zero/sign extend ConstantInt phi operands to match 10874 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10875 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10876 if (auto *CI = dyn_cast<ConstantInt>(C)) 10877 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10878 : ISD::ZERO_EXTEND; 10879 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10880 } 10881 Reg = RegOut; 10882 } else { 10883 DenseMap<const Value *, Register>::iterator I = 10884 FuncInfo.ValueMap.find(PHIOp); 10885 if (I != FuncInfo.ValueMap.end()) 10886 Reg = I->second; 10887 else { 10888 assert(isa<AllocaInst>(PHIOp) && 10889 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10890 "Didn't codegen value into a register!??"); 10891 Reg = FuncInfo.CreateRegs(PHIOp); 10892 CopyValueToVirtualRegister(PHIOp, Reg); 10893 } 10894 } 10895 10896 // Remember that this register needs to added to the machine PHI node as 10897 // the input for this MBB. 10898 SmallVector<EVT, 4> ValueVTs; 10899 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10900 for (EVT VT : ValueVTs) { 10901 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10902 for (unsigned i = 0; i != NumRegisters; ++i) 10903 FuncInfo.PHINodesToUpdate.push_back( 10904 std::make_pair(&*MBBI++, Reg + i)); 10905 Reg += NumRegisters; 10906 } 10907 } 10908 } 10909 10910 ConstantsOut.clear(); 10911 } 10912 10913 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10914 MachineFunction::iterator I(MBB); 10915 if (++I == FuncInfo.MF->end()) 10916 return nullptr; 10917 return &*I; 10918 } 10919 10920 /// During lowering new call nodes can be created (such as memset, etc.). 10921 /// Those will become new roots of the current DAG, but complications arise 10922 /// when they are tail calls. In such cases, the call lowering will update 10923 /// the root, but the builder still needs to know that a tail call has been 10924 /// lowered in order to avoid generating an additional return. 10925 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10926 // If the node is null, we do have a tail call. 10927 if (MaybeTC.getNode() != nullptr) 10928 DAG.setRoot(MaybeTC); 10929 else 10930 HasTailCall = true; 10931 } 10932 10933 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10934 MachineBasicBlock *SwitchMBB, 10935 MachineBasicBlock *DefaultMBB) { 10936 MachineFunction *CurMF = FuncInfo.MF; 10937 MachineBasicBlock *NextMBB = nullptr; 10938 MachineFunction::iterator BBI(W.MBB); 10939 if (++BBI != FuncInfo.MF->end()) 10940 NextMBB = &*BBI; 10941 10942 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10943 10944 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10945 10946 if (Size == 2 && W.MBB == SwitchMBB) { 10947 // If any two of the cases has the same destination, and if one value 10948 // is the same as the other, but has one bit unset that the other has set, 10949 // use bit manipulation to do two compares at once. For example: 10950 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10951 // TODO: This could be extended to merge any 2 cases in switches with 3 10952 // cases. 10953 // TODO: Handle cases where W.CaseBB != SwitchBB. 10954 CaseCluster &Small = *W.FirstCluster; 10955 CaseCluster &Big = *W.LastCluster; 10956 10957 if (Small.Low == Small.High && Big.Low == Big.High && 10958 Small.MBB == Big.MBB) { 10959 const APInt &SmallValue = Small.Low->getValue(); 10960 const APInt &BigValue = Big.Low->getValue(); 10961 10962 // Check that there is only one bit different. 10963 APInt CommonBit = BigValue ^ SmallValue; 10964 if (CommonBit.isPowerOf2()) { 10965 SDValue CondLHS = getValue(Cond); 10966 EVT VT = CondLHS.getValueType(); 10967 SDLoc DL = getCurSDLoc(); 10968 10969 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10970 DAG.getConstant(CommonBit, DL, VT)); 10971 SDValue Cond = DAG.getSetCC( 10972 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10973 ISD::SETEQ); 10974 10975 // Update successor info. 10976 // Both Small and Big will jump to Small.BB, so we sum up the 10977 // probabilities. 10978 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10979 if (BPI) 10980 addSuccessorWithProb( 10981 SwitchMBB, DefaultMBB, 10982 // The default destination is the first successor in IR. 10983 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10984 else 10985 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10986 10987 // Insert the true branch. 10988 SDValue BrCond = 10989 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10990 DAG.getBasicBlock(Small.MBB)); 10991 // Insert the false branch. 10992 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10993 DAG.getBasicBlock(DefaultMBB)); 10994 10995 DAG.setRoot(BrCond); 10996 return; 10997 } 10998 } 10999 } 11000 11001 if (TM.getOptLevel() != CodeGenOpt::None) { 11002 // Here, we order cases by probability so the most likely case will be 11003 // checked first. However, two clusters can have the same probability in 11004 // which case their relative ordering is non-deterministic. So we use Low 11005 // as a tie-breaker as clusters are guaranteed to never overlap. 11006 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11007 [](const CaseCluster &a, const CaseCluster &b) { 11008 return a.Prob != b.Prob ? 11009 a.Prob > b.Prob : 11010 a.Low->getValue().slt(b.Low->getValue()); 11011 }); 11012 11013 // Rearrange the case blocks so that the last one falls through if possible 11014 // without changing the order of probabilities. 11015 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11016 --I; 11017 if (I->Prob > W.LastCluster->Prob) 11018 break; 11019 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11020 std::swap(*I, *W.LastCluster); 11021 break; 11022 } 11023 } 11024 } 11025 11026 // Compute total probability. 11027 BranchProbability DefaultProb = W.DefaultProb; 11028 BranchProbability UnhandledProbs = DefaultProb; 11029 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11030 UnhandledProbs += I->Prob; 11031 11032 MachineBasicBlock *CurMBB = W.MBB; 11033 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11034 bool FallthroughUnreachable = false; 11035 MachineBasicBlock *Fallthrough; 11036 if (I == W.LastCluster) { 11037 // For the last cluster, fall through to the default destination. 11038 Fallthrough = DefaultMBB; 11039 FallthroughUnreachable = isa<UnreachableInst>( 11040 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11041 } else { 11042 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11043 CurMF->insert(BBI, Fallthrough); 11044 // Put Cond in a virtual register to make it available from the new blocks. 11045 ExportFromCurrentBlock(Cond); 11046 } 11047 UnhandledProbs -= I->Prob; 11048 11049 switch (I->Kind) { 11050 case CC_JumpTable: { 11051 // FIXME: Optimize away range check based on pivot comparisons. 11052 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11053 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11054 11055 // The jump block hasn't been inserted yet; insert it here. 11056 MachineBasicBlock *JumpMBB = JT->MBB; 11057 CurMF->insert(BBI, JumpMBB); 11058 11059 auto JumpProb = I->Prob; 11060 auto FallthroughProb = UnhandledProbs; 11061 11062 // If the default statement is a target of the jump table, we evenly 11063 // distribute the default probability to successors of CurMBB. Also 11064 // update the probability on the edge from JumpMBB to Fallthrough. 11065 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11066 SE = JumpMBB->succ_end(); 11067 SI != SE; ++SI) { 11068 if (*SI == DefaultMBB) { 11069 JumpProb += DefaultProb / 2; 11070 FallthroughProb -= DefaultProb / 2; 11071 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11072 JumpMBB->normalizeSuccProbs(); 11073 break; 11074 } 11075 } 11076 11077 if (FallthroughUnreachable) 11078 JTH->FallthroughUnreachable = true; 11079 11080 if (!JTH->FallthroughUnreachable) 11081 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11082 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11083 CurMBB->normalizeSuccProbs(); 11084 11085 // The jump table header will be inserted in our current block, do the 11086 // range check, and fall through to our fallthrough block. 11087 JTH->HeaderBB = CurMBB; 11088 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11089 11090 // If we're in the right place, emit the jump table header right now. 11091 if (CurMBB == SwitchMBB) { 11092 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11093 JTH->Emitted = true; 11094 } 11095 break; 11096 } 11097 case CC_BitTests: { 11098 // FIXME: Optimize away range check based on pivot comparisons. 11099 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11100 11101 // The bit test blocks haven't been inserted yet; insert them here. 11102 for (BitTestCase &BTC : BTB->Cases) 11103 CurMF->insert(BBI, BTC.ThisBB); 11104 11105 // Fill in fields of the BitTestBlock. 11106 BTB->Parent = CurMBB; 11107 BTB->Default = Fallthrough; 11108 11109 BTB->DefaultProb = UnhandledProbs; 11110 // If the cases in bit test don't form a contiguous range, we evenly 11111 // distribute the probability on the edge to Fallthrough to two 11112 // successors of CurMBB. 11113 if (!BTB->ContiguousRange) { 11114 BTB->Prob += DefaultProb / 2; 11115 BTB->DefaultProb -= DefaultProb / 2; 11116 } 11117 11118 if (FallthroughUnreachable) 11119 BTB->FallthroughUnreachable = true; 11120 11121 // If we're in the right place, emit the bit test header right now. 11122 if (CurMBB == SwitchMBB) { 11123 visitBitTestHeader(*BTB, SwitchMBB); 11124 BTB->Emitted = true; 11125 } 11126 break; 11127 } 11128 case CC_Range: { 11129 const Value *RHS, *LHS, *MHS; 11130 ISD::CondCode CC; 11131 if (I->Low == I->High) { 11132 // Check Cond == I->Low. 11133 CC = ISD::SETEQ; 11134 LHS = Cond; 11135 RHS=I->Low; 11136 MHS = nullptr; 11137 } else { 11138 // Check I->Low <= Cond <= I->High. 11139 CC = ISD::SETLE; 11140 LHS = I->Low; 11141 MHS = Cond; 11142 RHS = I->High; 11143 } 11144 11145 // If Fallthrough is unreachable, fold away the comparison. 11146 if (FallthroughUnreachable) 11147 CC = ISD::SETTRUE; 11148 11149 // The false probability is the sum of all unhandled cases. 11150 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11151 getCurSDLoc(), I->Prob, UnhandledProbs); 11152 11153 if (CurMBB == SwitchMBB) 11154 visitSwitchCase(CB, SwitchMBB); 11155 else 11156 SL->SwitchCases.push_back(CB); 11157 11158 break; 11159 } 11160 } 11161 CurMBB = Fallthrough; 11162 } 11163 } 11164 11165 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11166 CaseClusterIt First, 11167 CaseClusterIt Last) { 11168 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11169 if (X.Prob != CC.Prob) 11170 return X.Prob > CC.Prob; 11171 11172 // Ties are broken by comparing the case value. 11173 return X.Low->getValue().slt(CC.Low->getValue()); 11174 }); 11175 } 11176 11177 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11178 const SwitchWorkListItem &W, 11179 Value *Cond, 11180 MachineBasicBlock *SwitchMBB) { 11181 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11182 "Clusters not sorted?"); 11183 11184 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11185 11186 // Balance the tree based on branch probabilities to create a near-optimal (in 11187 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11188 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11189 CaseClusterIt LastLeft = W.FirstCluster; 11190 CaseClusterIt FirstRight = W.LastCluster; 11191 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11192 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11193 11194 // Move LastLeft and FirstRight towards each other from opposite directions to 11195 // find a partitioning of the clusters which balances the probability on both 11196 // sides. If LeftProb and RightProb are equal, alternate which side is 11197 // taken to ensure 0-probability nodes are distributed evenly. 11198 unsigned I = 0; 11199 while (LastLeft + 1 < FirstRight) { 11200 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11201 LeftProb += (++LastLeft)->Prob; 11202 else 11203 RightProb += (--FirstRight)->Prob; 11204 I++; 11205 } 11206 11207 while (true) { 11208 // Our binary search tree differs from a typical BST in that ours can have up 11209 // to three values in each leaf. The pivot selection above doesn't take that 11210 // into account, which means the tree might require more nodes and be less 11211 // efficient. We compensate for this here. 11212 11213 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11214 unsigned NumRight = W.LastCluster - FirstRight + 1; 11215 11216 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11217 // If one side has less than 3 clusters, and the other has more than 3, 11218 // consider taking a cluster from the other side. 11219 11220 if (NumLeft < NumRight) { 11221 // Consider moving the first cluster on the right to the left side. 11222 CaseCluster &CC = *FirstRight; 11223 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11224 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11225 if (LeftSideRank <= RightSideRank) { 11226 // Moving the cluster to the left does not demote it. 11227 ++LastLeft; 11228 ++FirstRight; 11229 continue; 11230 } 11231 } else { 11232 assert(NumRight < NumLeft); 11233 // Consider moving the last element on the left to the right side. 11234 CaseCluster &CC = *LastLeft; 11235 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11236 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11237 if (RightSideRank <= LeftSideRank) { 11238 // Moving the cluster to the right does not demot it. 11239 --LastLeft; 11240 --FirstRight; 11241 continue; 11242 } 11243 } 11244 } 11245 break; 11246 } 11247 11248 assert(LastLeft + 1 == FirstRight); 11249 assert(LastLeft >= W.FirstCluster); 11250 assert(FirstRight <= W.LastCluster); 11251 11252 // Use the first element on the right as pivot since we will make less-than 11253 // comparisons against it. 11254 CaseClusterIt PivotCluster = FirstRight; 11255 assert(PivotCluster > W.FirstCluster); 11256 assert(PivotCluster <= W.LastCluster); 11257 11258 CaseClusterIt FirstLeft = W.FirstCluster; 11259 CaseClusterIt LastRight = W.LastCluster; 11260 11261 const ConstantInt *Pivot = PivotCluster->Low; 11262 11263 // New blocks will be inserted immediately after the current one. 11264 MachineFunction::iterator BBI(W.MBB); 11265 ++BBI; 11266 11267 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11268 // we can branch to its destination directly if it's squeezed exactly in 11269 // between the known lower bound and Pivot - 1. 11270 MachineBasicBlock *LeftMBB; 11271 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11272 FirstLeft->Low == W.GE && 11273 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11274 LeftMBB = FirstLeft->MBB; 11275 } else { 11276 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11277 FuncInfo.MF->insert(BBI, LeftMBB); 11278 WorkList.push_back( 11279 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11280 // Put Cond in a virtual register to make it available from the new blocks. 11281 ExportFromCurrentBlock(Cond); 11282 } 11283 11284 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11285 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11286 // directly if RHS.High equals the current upper bound. 11287 MachineBasicBlock *RightMBB; 11288 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11289 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11290 RightMBB = FirstRight->MBB; 11291 } else { 11292 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11293 FuncInfo.MF->insert(BBI, RightMBB); 11294 WorkList.push_back( 11295 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11296 // Put Cond in a virtual register to make it available from the new blocks. 11297 ExportFromCurrentBlock(Cond); 11298 } 11299 11300 // Create the CaseBlock record that will be used to lower the branch. 11301 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11302 getCurSDLoc(), LeftProb, RightProb); 11303 11304 if (W.MBB == SwitchMBB) 11305 visitSwitchCase(CB, SwitchMBB); 11306 else 11307 SL->SwitchCases.push_back(CB); 11308 } 11309 11310 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11311 // from the swith statement. 11312 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11313 BranchProbability PeeledCaseProb) { 11314 if (PeeledCaseProb == BranchProbability::getOne()) 11315 return BranchProbability::getZero(); 11316 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11317 11318 uint32_t Numerator = CaseProb.getNumerator(); 11319 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11320 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11321 } 11322 11323 // Try to peel the top probability case if it exceeds the threshold. 11324 // Return current MachineBasicBlock for the switch statement if the peeling 11325 // does not occur. 11326 // If the peeling is performed, return the newly created MachineBasicBlock 11327 // for the peeled switch statement. Also update Clusters to remove the peeled 11328 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11329 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11330 const SwitchInst &SI, CaseClusterVector &Clusters, 11331 BranchProbability &PeeledCaseProb) { 11332 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11333 // Don't perform if there is only one cluster or optimizing for size. 11334 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11335 TM.getOptLevel() == CodeGenOpt::None || 11336 SwitchMBB->getParent()->getFunction().hasMinSize()) 11337 return SwitchMBB; 11338 11339 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11340 unsigned PeeledCaseIndex = 0; 11341 bool SwitchPeeled = false; 11342 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11343 CaseCluster &CC = Clusters[Index]; 11344 if (CC.Prob < TopCaseProb) 11345 continue; 11346 TopCaseProb = CC.Prob; 11347 PeeledCaseIndex = Index; 11348 SwitchPeeled = true; 11349 } 11350 if (!SwitchPeeled) 11351 return SwitchMBB; 11352 11353 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11354 << TopCaseProb << "\n"); 11355 11356 // Record the MBB for the peeled switch statement. 11357 MachineFunction::iterator BBI(SwitchMBB); 11358 ++BBI; 11359 MachineBasicBlock *PeeledSwitchMBB = 11360 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11361 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11362 11363 ExportFromCurrentBlock(SI.getCondition()); 11364 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11365 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11366 nullptr, nullptr, TopCaseProb.getCompl()}; 11367 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11368 11369 Clusters.erase(PeeledCaseIt); 11370 for (CaseCluster &CC : Clusters) { 11371 LLVM_DEBUG( 11372 dbgs() << "Scale the probablity for one cluster, before scaling: " 11373 << CC.Prob << "\n"); 11374 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11375 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11376 } 11377 PeeledCaseProb = TopCaseProb; 11378 return PeeledSwitchMBB; 11379 } 11380 11381 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11382 // Extract cases from the switch. 11383 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11384 CaseClusterVector Clusters; 11385 Clusters.reserve(SI.getNumCases()); 11386 for (auto I : SI.cases()) { 11387 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11388 const ConstantInt *CaseVal = I.getCaseValue(); 11389 BranchProbability Prob = 11390 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11391 : BranchProbability(1, SI.getNumCases() + 1); 11392 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11393 } 11394 11395 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11396 11397 // Cluster adjacent cases with the same destination. We do this at all 11398 // optimization levels because it's cheap to do and will make codegen faster 11399 // if there are many clusters. 11400 sortAndRangeify(Clusters); 11401 11402 // The branch probablity of the peeled case. 11403 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11404 MachineBasicBlock *PeeledSwitchMBB = 11405 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11406 11407 // If there is only the default destination, jump there directly. 11408 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11409 if (Clusters.empty()) { 11410 assert(PeeledSwitchMBB == SwitchMBB); 11411 SwitchMBB->addSuccessor(DefaultMBB); 11412 if (DefaultMBB != NextBlock(SwitchMBB)) { 11413 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11414 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11415 } 11416 return; 11417 } 11418 11419 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11420 SL->findBitTestClusters(Clusters, &SI); 11421 11422 LLVM_DEBUG({ 11423 dbgs() << "Case clusters: "; 11424 for (const CaseCluster &C : Clusters) { 11425 if (C.Kind == CC_JumpTable) 11426 dbgs() << "JT:"; 11427 if (C.Kind == CC_BitTests) 11428 dbgs() << "BT:"; 11429 11430 C.Low->getValue().print(dbgs(), true); 11431 if (C.Low != C.High) { 11432 dbgs() << '-'; 11433 C.High->getValue().print(dbgs(), true); 11434 } 11435 dbgs() << ' '; 11436 } 11437 dbgs() << '\n'; 11438 }); 11439 11440 assert(!Clusters.empty()); 11441 SwitchWorkList WorkList; 11442 CaseClusterIt First = Clusters.begin(); 11443 CaseClusterIt Last = Clusters.end() - 1; 11444 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11445 // Scale the branchprobability for DefaultMBB if the peel occurs and 11446 // DefaultMBB is not replaced. 11447 if (PeeledCaseProb != BranchProbability::getZero() && 11448 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11449 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11450 WorkList.push_back( 11451 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11452 11453 while (!WorkList.empty()) { 11454 SwitchWorkListItem W = WorkList.pop_back_val(); 11455 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11456 11457 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11458 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11459 // For optimized builds, lower large range as a balanced binary tree. 11460 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11461 continue; 11462 } 11463 11464 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11465 } 11466 } 11467 11468 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11470 auto DL = getCurSDLoc(); 11471 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11472 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11473 } 11474 11475 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11477 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11478 11479 SDLoc DL = getCurSDLoc(); 11480 SDValue V = getValue(I.getOperand(0)); 11481 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11482 11483 if (VT.isScalableVector()) { 11484 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11485 return; 11486 } 11487 11488 // Use VECTOR_SHUFFLE for the fixed-length vector 11489 // to maintain existing behavior. 11490 SmallVector<int, 8> Mask; 11491 unsigned NumElts = VT.getVectorMinNumElements(); 11492 for (unsigned i = 0; i != NumElts; ++i) 11493 Mask.push_back(NumElts - 1 - i); 11494 11495 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11496 } 11497 11498 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11499 SmallVector<EVT, 4> ValueVTs; 11500 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11501 ValueVTs); 11502 unsigned NumValues = ValueVTs.size(); 11503 if (NumValues == 0) return; 11504 11505 SmallVector<SDValue, 4> Values(NumValues); 11506 SDValue Op = getValue(I.getOperand(0)); 11507 11508 for (unsigned i = 0; i != NumValues; ++i) 11509 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11510 SDValue(Op.getNode(), Op.getResNo() + i)); 11511 11512 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11513 DAG.getVTList(ValueVTs), Values)); 11514 } 11515 11516 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11518 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11519 11520 SDLoc DL = getCurSDLoc(); 11521 SDValue V1 = getValue(I.getOperand(0)); 11522 SDValue V2 = getValue(I.getOperand(1)); 11523 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11524 11525 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11526 if (VT.isScalableVector()) { 11527 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11528 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11529 DAG.getConstant(Imm, DL, IdxVT))); 11530 return; 11531 } 11532 11533 unsigned NumElts = VT.getVectorNumElements(); 11534 11535 uint64_t Idx = (NumElts + Imm) % NumElts; 11536 11537 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11538 SmallVector<int, 8> Mask; 11539 for (unsigned i = 0; i < NumElts; ++i) 11540 Mask.push_back(Idx + i); 11541 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11542 } 11543