1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "FunctionLoweringInfo.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Constants.h" 21 #include "llvm/CallingConv.h" 22 #include "llvm/DerivedTypes.h" 23 #include "llvm/Function.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/InlineAsm.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/Intrinsics.h" 28 #include "llvm/IntrinsicInst.h" 29 #include "llvm/LLVMContext.h" 30 #include "llvm/Module.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/GCStrategy.h" 33 #include "llvm/CodeGen/GCMetadata.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/PseudoSourceValue.h" 41 #include "llvm/CodeGen/SelectionDAG.h" 42 #include "llvm/CodeGen/DwarfWriter.h" 43 #include "llvm/Analysis/DebugInfo.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Target/TargetFrameInfo.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetIntrinsicInfo.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 using namespace llvm; 59 60 /// LimitFloatPrecision - Generate low-precision inline sequences for 61 /// some float libcalls (6, 8 or 12 bits). 62 static unsigned LimitFloatPrecision; 63 64 static cl::opt<unsigned, true> 65 LimitFPPrecision("limit-float-precision", 66 cl::desc("Generate low-precision inline sequences " 67 "for some float libcalls"), 68 cl::location(LimitFloatPrecision), 69 cl::init(0)); 70 71 namespace { 72 /// RegsForValue - This struct represents the registers (physical or virtual) 73 /// that a particular set of values is assigned, and the type information about 74 /// the value. The most common situation is to represent one value at a time, 75 /// but struct or array values are handled element-wise as multiple values. 76 /// The splitting of aggregates is performed recursively, so that we never 77 /// have aggregate-typed registers. The values at this point do not necessarily 78 /// have legal types, so each value may require one or more registers of some 79 /// legal type. 80 /// 81 struct RegsForValue { 82 /// TLI - The TargetLowering object. 83 /// 84 const TargetLowering *TLI; 85 86 /// ValueVTs - The value types of the values, which may not be legal, and 87 /// may need be promoted or synthesized from one or more registers. 88 /// 89 SmallVector<EVT, 4> ValueVTs; 90 91 /// RegVTs - The value types of the registers. This is the same size as 92 /// ValueVTs and it records, for each value, what the type of the assigned 93 /// register or registers are. (Individual values are never synthesized 94 /// from more than one type of register.) 95 /// 96 /// With virtual registers, the contents of RegVTs is redundant with TLI's 97 /// getRegisterType member function, however when with physical registers 98 /// it is necessary to have a separate record of the types. 99 /// 100 SmallVector<EVT, 4> RegVTs; 101 102 /// Regs - This list holds the registers assigned to the values. 103 /// Each legal or promoted value requires one register, and each 104 /// expanded value requires multiple registers. 105 /// 106 SmallVector<unsigned, 4> Regs; 107 108 RegsForValue() : TLI(0) {} 109 110 RegsForValue(const TargetLowering &tli, 111 const SmallVector<unsigned, 4> ®s, 112 EVT regvt, EVT valuevt) 113 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 114 RegsForValue(const TargetLowering &tli, 115 const SmallVector<unsigned, 4> ®s, 116 const SmallVector<EVT, 4> ®vts, 117 const SmallVector<EVT, 4> &valuevts) 118 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 119 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 120 unsigned Reg, const Type *Ty) : TLI(&tli) { 121 ComputeValueVTs(tli, Ty, ValueVTs); 122 123 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 124 EVT ValueVT = ValueVTs[Value]; 125 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 126 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 127 for (unsigned i = 0; i != NumRegs; ++i) 128 Regs.push_back(Reg + i); 129 RegVTs.push_back(RegisterVT); 130 Reg += NumRegs; 131 } 132 } 133 134 /// append - Add the specified values to this one. 135 void append(const RegsForValue &RHS) { 136 TLI = RHS.TLI; 137 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 138 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 139 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 140 } 141 142 143 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 144 /// this value and returns the result as a ValueVTs value. This uses 145 /// Chain/Flag as the input and updates them for the output Chain/Flag. 146 /// If the Flag pointer is NULL, no flag is used. 147 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 148 SDValue &Chain, SDValue *Flag) const; 149 150 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 151 /// specified value into the registers specified by this object. This uses 152 /// Chain/Flag as the input and updates them for the output Chain/Flag. 153 /// If the Flag pointer is NULL, no flag is used. 154 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 155 SDValue &Chain, SDValue *Flag) const; 156 157 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 158 /// operand list. This adds the code marker, matching input operand index 159 /// (if applicable), and includes the number of values added into it. 160 void AddInlineAsmOperands(unsigned Code, 161 bool HasMatching, unsigned MatchingIdx, 162 SelectionDAG &DAG, std::vector<SDValue> &Ops) const; 163 }; 164 } 165 166 /// getCopyFromParts - Create a value that contains the specified legal parts 167 /// combined into the value they represent. If the parts combine to a type 168 /// larger then ValueVT then AssertOp can be used to specify whether the extra 169 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 170 /// (ISD::AssertSext). 171 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 172 const SDValue *Parts, 173 unsigned NumParts, EVT PartVT, EVT ValueVT, 174 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 175 assert(NumParts > 0 && "No parts to assemble!"); 176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 177 SDValue Val = Parts[0]; 178 179 if (NumParts > 1) { 180 // Assemble the value from multiple parts. 181 if (!ValueVT.isVector() && ValueVT.isInteger()) { 182 unsigned PartBits = PartVT.getSizeInBits(); 183 unsigned ValueBits = ValueVT.getSizeInBits(); 184 185 // Assemble the power of 2 part. 186 unsigned RoundParts = NumParts & (NumParts - 1) ? 187 1 << Log2_32(NumParts) : NumParts; 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); 197 Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, 198 PartVT, HalfVT); 199 } else { 200 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 201 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 202 } 203 if (TLI.isBigEndian()) 204 std::swap(Lo, Hi); 205 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, dl, 212 Parts+RoundParts, OddParts, PartVT, OddVT); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (TLI.isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueType().getSizeInBits(), 222 TLI.getPointerTy())); 223 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 224 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 225 } 226 } else if (ValueVT.isVector()) { 227 // Handle a multi-element vector. 228 EVT IntermediateVT, RegisterVT; 229 unsigned NumIntermediates; 230 unsigned NumRegs = 231 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 232 NumIntermediates, RegisterVT); 233 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 234 NumParts = NumRegs; // Silence a compiler warning. 235 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 236 assert(RegisterVT == Parts[0].getValueType() && 237 "Part type doesn't match part!"); 238 239 // Assemble the parts into intermediate operands. 240 SmallVector<SDValue, 8> Ops(NumIntermediates); 241 if (NumIntermediates == NumParts) { 242 // If the register was not expanded, truncate or copy the value, 243 // as appropriate. 244 for (unsigned i = 0; i != NumParts; ++i) 245 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 246 PartVT, IntermediateVT); 247 } else if (NumParts > 0) { 248 // If the intermediate type was expanded, build the intermediate operands 249 // from the parts. 250 assert(NumParts % NumIntermediates == 0 && 251 "Must expand into a divisible number of parts!"); 252 unsigned Factor = NumParts / NumIntermediates; 253 for (unsigned i = 0; i != NumIntermediates; ++i) 254 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 255 PartVT, IntermediateVT); 256 } 257 258 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate 259 // operands. 260 Val = DAG.getNode(IntermediateVT.isVector() ? 261 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 262 ValueVT, &Ops[0], NumIntermediates); 263 } else if (PartVT.isFloatingPoint()) { 264 // FP split into multiple FP parts (for ppcf128) 265 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 266 "Unexpected split"); 267 SDValue Lo, Hi; 268 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 269 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 270 if (TLI.isBigEndian()) 271 std::swap(Lo, Hi); 272 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 273 } else { 274 // FP split into integer parts (soft fp) 275 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 276 !PartVT.isVector() && "Unexpected split"); 277 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 278 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 279 } 280 } 281 282 // There is now one part, held in Val. Correct it to match ValueVT. 283 PartVT = Val.getValueType(); 284 285 if (PartVT == ValueVT) 286 return Val; 287 288 if (PartVT.isVector()) { 289 assert(ValueVT.isVector() && "Unknown vector conversion!"); 290 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 291 } 292 293 if (ValueVT.isVector()) { 294 assert(ValueVT.getVectorElementType() == PartVT && 295 ValueVT.getVectorNumElements() == 1 && 296 "Only trivial scalar-to-vector conversions should get here!"); 297 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 298 } 299 300 if (PartVT.isInteger() && 301 ValueVT.isInteger()) { 302 if (ValueVT.bitsLT(PartVT)) { 303 // For a truncate, see if we have any information to 304 // indicate whether the truncated bits will always be 305 // zero or sign-extension. 306 if (AssertOp != ISD::DELETED_NODE) 307 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 308 DAG.getValueType(ValueVT)); 309 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 310 } else { 311 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 312 } 313 } 314 315 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 if (ValueVT.bitsLT(Val.getValueType())) 317 // FP_ROUND's are always exact here. 318 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 319 DAG.getIntPtrConstant(1)); 320 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 321 } 322 323 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 324 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 325 326 llvm_unreachable("Unknown mismatch!"); 327 return SDValue(); 328 } 329 330 /// getCopyToParts - Create a series of nodes that contain the specified value 331 /// split into legal parts. If the parts contain more bits than Val, then, for 332 /// integers, ExtendKind can be used to specify how to generate the extra bits. 333 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, 334 SDValue *Parts, unsigned NumParts, EVT PartVT, 335 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 337 EVT PtrVT = TLI.getPointerTy(); 338 EVT ValueVT = Val.getValueType(); 339 unsigned PartBits = PartVT.getSizeInBits(); 340 unsigned OrigNumParts = NumParts; 341 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 342 343 if (!NumParts) 344 return; 345 346 if (!ValueVT.isVector()) { 347 if (PartVT == ValueVT) { 348 assert(NumParts == 1 && "No-op copy with multiple parts!"); 349 Parts[0] = Val; 350 return; 351 } 352 353 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 354 // If the parts cover more bits than the value has, promote the value. 355 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 356 assert(NumParts == 1 && "Do not know what to promote to!"); 357 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 358 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 361 } else { 362 llvm_unreachable("Unknown mismatch!"); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 if (PartVT.isInteger() && ValueVT.isInteger()) { 371 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 372 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 373 } else { 374 llvm_unreachable("Unknown mismatch!"); 375 } 376 } 377 378 // The value may have changed - recompute ValueVT. 379 ValueVT = Val.getValueType(); 380 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 381 "Failed to tile the value with PartVT!"); 382 383 if (NumParts == 1) { 384 assert(PartVT == ValueVT && "Type conversion failed!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 // Expand the value into multiple parts. 390 if (NumParts & (NumParts - 1)) { 391 // The number of parts is not a power of 2. Split off and copy the tail. 392 assert(PartVT.isInteger() && ValueVT.isInteger() && 393 "Do not know what to expand to!"); 394 unsigned RoundParts = 1 << Log2_32(NumParts); 395 unsigned RoundBits = RoundParts * PartBits; 396 unsigned OddParts = NumParts - RoundParts; 397 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 398 DAG.getConstant(RoundBits, 399 TLI.getPointerTy())); 400 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); 401 if (TLI.isBigEndian()) 402 // The odd parts were reversed by getCopyToParts - unreverse them. 403 std::reverse(Parts + RoundParts, Parts + NumParts); 404 NumParts = RoundParts; 405 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 406 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 407 } 408 409 // The number of parts is a power of 2. Repeatedly bisect the value using 410 // EXTRACT_ELEMENT. 411 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 412 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), 413 Val); 414 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 415 for (unsigned i = 0; i < NumParts; i += StepSize) { 416 unsigned ThisBits = StepSize * PartBits / 2; 417 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 418 SDValue &Part0 = Parts[i]; 419 SDValue &Part1 = Parts[i+StepSize/2]; 420 421 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 422 ThisVT, Part0, 423 DAG.getConstant(1, PtrVT)); 424 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 425 ThisVT, Part0, 426 DAG.getConstant(0, PtrVT)); 427 428 if (ThisBits == PartBits && ThisVT != PartVT) { 429 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 430 PartVT, Part0); 431 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 432 PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 440 return; 441 } 442 443 // Vector ValueVT. 444 if (NumParts == 1) { 445 if (PartVT != ValueVT) { 446 if (PartVT.isVector()) { 447 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 448 } else { 449 assert(ValueVT.getVectorElementType() == PartVT && 450 ValueVT.getVectorNumElements() == 1 && 451 "Only trivial vector-to-scalar conversions should get here!"); 452 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 453 PartVT, Val, 454 DAG.getConstant(0, PtrVT)); 455 } 456 } 457 458 Parts[0] = Val; 459 return; 460 } 461 462 // Handle a multi-element vector. 463 EVT IntermediateVT, RegisterVT; 464 unsigned NumIntermediates; 465 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 466 IntermediateVT, NumIntermediates, RegisterVT); 467 unsigned NumElements = ValueVT.getVectorNumElements(); 468 469 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 470 NumParts = NumRegs; // Silence a compiler warning. 471 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 472 473 // Split the vector into intermediate operands. 474 SmallVector<SDValue, 8> Ops(NumIntermediates); 475 for (unsigned i = 0; i != NumIntermediates; ++i) 476 if (IntermediateVT.isVector()) 477 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 478 IntermediateVT, Val, 479 DAG.getConstant(i * (NumElements / NumIntermediates), 480 PtrVT)); 481 else 482 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 483 IntermediateVT, Val, 484 DAG.getConstant(i, PtrVT)); 485 486 // Split the intermediate operands into legal parts. 487 if (NumParts == NumIntermediates) { 488 // If the register was not expanded, promote or copy the value, 489 // as appropriate. 490 for (unsigned i = 0; i != NumParts; ++i) 491 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 492 } else if (NumParts > 0) { 493 // If the intermediate type was expanded, split each the value into 494 // legal parts. 495 assert(NumParts % NumIntermediates == 0 && 496 "Must expand into a divisible number of parts!"); 497 unsigned Factor = NumParts / NumIntermediates; 498 for (unsigned i = 0; i != NumIntermediates; ++i) 499 getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); 500 } 501 } 502 503 504 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 505 AA = &aa; 506 GFI = gfi; 507 TD = DAG.getTarget().getTargetData(); 508 } 509 510 /// clear - Clear out the curret SelectionDAG and the associated 511 /// state and prepare this SelectionDAGBuilder object to be used 512 /// for a new block. This doesn't clear out information about 513 /// additional blocks that are needed to complete switch lowering 514 /// or PHI node updating; that information is cleared out as it is 515 /// consumed. 516 void SelectionDAGBuilder::clear() { 517 NodeMap.clear(); 518 PendingLoads.clear(); 519 PendingExports.clear(); 520 EdgeMapping.clear(); 521 DAG.clear(); 522 CurDebugLoc = DebugLoc::getUnknownLoc(); 523 HasTailCall = false; 524 } 525 526 /// getRoot - Return the current virtual root of the Selection DAG, 527 /// flushing any PendingLoad items. This must be done before emitting 528 /// a store or any other node that may need to be ordered after any 529 /// prior load instructions. 530 /// 531 SDValue SelectionDAGBuilder::getRoot() { 532 if (PendingLoads.empty()) 533 return DAG.getRoot(); 534 535 if (PendingLoads.size() == 1) { 536 SDValue Root = PendingLoads[0]; 537 DAG.setRoot(Root); 538 PendingLoads.clear(); 539 return Root; 540 } 541 542 // Otherwise, we have to make a token factor node. 543 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 544 &PendingLoads[0], PendingLoads.size()); 545 PendingLoads.clear(); 546 DAG.setRoot(Root); 547 return Root; 548 } 549 550 /// getControlRoot - Similar to getRoot, but instead of flushing all the 551 /// PendingLoad items, flush all the PendingExports items. It is necessary 552 /// to do this before emitting a terminator instruction. 553 /// 554 SDValue SelectionDAGBuilder::getControlRoot() { 555 SDValue Root = DAG.getRoot(); 556 557 if (PendingExports.empty()) 558 return Root; 559 560 // Turn all of the CopyToReg chains into one factored node. 561 if (Root.getOpcode() != ISD::EntryToken) { 562 unsigned i = 0, e = PendingExports.size(); 563 for (; i != e; ++i) { 564 assert(PendingExports[i].getNode()->getNumOperands() > 1); 565 if (PendingExports[i].getNode()->getOperand(0) == Root) 566 break; // Don't add the root if we already indirectly depend on it. 567 } 568 569 if (i == e) 570 PendingExports.push_back(Root); 571 } 572 573 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 574 &PendingExports[0], 575 PendingExports.size()); 576 PendingExports.clear(); 577 DAG.setRoot(Root); 578 return Root; 579 } 580 581 void SelectionDAGBuilder::visit(Instruction &I) { 582 visit(I.getOpcode(), I); 583 } 584 585 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { 586 // Note: this doesn't use InstVisitor, because it has to work with 587 // ConstantExpr's in addition to instructions. 588 switch (Opcode) { 589 default: llvm_unreachable("Unknown instruction type encountered!"); 590 // Build the switch statement using the Instruction.def file. 591 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 592 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); 593 #include "llvm/Instruction.def" 594 } 595 } 596 597 SDValue SelectionDAGBuilder::getValue(const Value *V) { 598 SDValue &N = NodeMap[V]; 599 if (N.getNode()) return N; 600 601 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { 602 EVT VT = TLI.getValueType(V->getType(), true); 603 604 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 605 return N = DAG.getConstant(*CI, VT); 606 607 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 608 return N = DAG.getGlobalAddress(GV, VT); 609 610 if (isa<ConstantPointerNull>(C)) 611 return N = DAG.getConstant(0, TLI.getPointerTy()); 612 613 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 614 return N = DAG.getConstantFP(*CFP, VT); 615 616 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 617 return N = DAG.getUNDEF(VT); 618 619 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 620 visit(CE->getOpcode(), *CE); 621 SDValue N1 = NodeMap[V]; 622 assert(N1.getNode() && "visit didn't populate the ValueMap!"); 623 return N1; 624 } 625 626 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 627 SmallVector<SDValue, 4> Constants; 628 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 629 OI != OE; ++OI) { 630 SDNode *Val = getValue(*OI).getNode(); 631 // If the operand is an empty aggregate, there are no values. 632 if (!Val) continue; 633 // Add each leaf value from the operand to the Constants list 634 // to form a flattened list of all the values. 635 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 636 Constants.push_back(SDValue(Val, i)); 637 } 638 return DAG.getMergeValues(&Constants[0], Constants.size(), 639 getCurDebugLoc()); 640 } 641 642 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { 643 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 644 "Unknown struct or array constant!"); 645 646 SmallVector<EVT, 4> ValueVTs; 647 ComputeValueVTs(TLI, C->getType(), ValueVTs); 648 unsigned NumElts = ValueVTs.size(); 649 if (NumElts == 0) 650 return SDValue(); // empty struct 651 SmallVector<SDValue, 4> Constants(NumElts); 652 for (unsigned i = 0; i != NumElts; ++i) { 653 EVT EltVT = ValueVTs[i]; 654 if (isa<UndefValue>(C)) 655 Constants[i] = DAG.getUNDEF(EltVT); 656 else if (EltVT.isFloatingPoint()) 657 Constants[i] = DAG.getConstantFP(0, EltVT); 658 else 659 Constants[i] = DAG.getConstant(0, EltVT); 660 } 661 return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc()); 662 } 663 664 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 665 return DAG.getBlockAddress(BA, VT); 666 667 const VectorType *VecTy = cast<VectorType>(V->getType()); 668 unsigned NumElements = VecTy->getNumElements(); 669 670 // Now that we know the number and type of the elements, get that number of 671 // elements into the Ops array based on what kind of constant it is. 672 SmallVector<SDValue, 16> Ops; 673 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 674 for (unsigned i = 0; i != NumElements; ++i) 675 Ops.push_back(getValue(CP->getOperand(i))); 676 } else { 677 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 678 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 679 680 SDValue Op; 681 if (EltVT.isFloatingPoint()) 682 Op = DAG.getConstantFP(0, EltVT); 683 else 684 Op = DAG.getConstant(0, EltVT); 685 Ops.assign(NumElements, Op); 686 } 687 688 // Create a BUILD_VECTOR node. 689 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 690 VT, &Ops[0], Ops.size()); 691 } 692 693 // If this is a static alloca, generate it as the frameindex instead of 694 // computation. 695 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 696 DenseMap<const AllocaInst*, int>::iterator SI = 697 FuncInfo.StaticAllocaMap.find(AI); 698 if (SI != FuncInfo.StaticAllocaMap.end()) 699 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 700 } 701 702 unsigned InReg = FuncInfo.ValueMap[V]; 703 assert(InReg && "Value not in map!"); 704 705 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 706 SDValue Chain = DAG.getEntryNode(); 707 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 708 } 709 710 /// Get the EVTs and ArgFlags collections that represent the return type 711 /// of the given function. This does not require a DAG or a return value, and 712 /// is suitable for use before any DAGs for the function are constructed. 713 static void getReturnInfo(const Type* ReturnType, 714 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 715 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 716 TargetLowering &TLI, 717 SmallVectorImpl<uint64_t> *Offsets = 0) { 718 SmallVector<EVT, 4> ValueVTs; 719 ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets); 720 unsigned NumValues = ValueVTs.size(); 721 if ( NumValues == 0 ) return; 722 723 for (unsigned j = 0, f = NumValues; j != f; ++j) { 724 EVT VT = ValueVTs[j]; 725 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 726 727 if (attr & Attribute::SExt) 728 ExtendKind = ISD::SIGN_EXTEND; 729 else if (attr & Attribute::ZExt) 730 ExtendKind = ISD::ZERO_EXTEND; 731 732 // FIXME: C calling convention requires the return type to be promoted to 733 // at least 32-bit. But this is not necessary for non-C calling 734 // conventions. The frontend should mark functions whose return values 735 // require promoting with signext or zeroext attributes. 736 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 737 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 738 if (VT.bitsLT(MinVT)) 739 VT = MinVT; 740 } 741 742 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 743 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 744 // 'inreg' on function refers to return value 745 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 746 if (attr & Attribute::InReg) 747 Flags.setInReg(); 748 749 // Propagate extension type if any 750 if (attr & Attribute::SExt) 751 Flags.setSExt(); 752 else if (attr & Attribute::ZExt) 753 Flags.setZExt(); 754 755 for (unsigned i = 0; i < NumParts; ++i) { 756 OutVTs.push_back(PartVT); 757 OutFlags.push_back(Flags); 758 } 759 } 760 } 761 762 void SelectionDAGBuilder::visitRet(ReturnInst &I) { 763 SDValue Chain = getControlRoot(); 764 SmallVector<ISD::OutputArg, 8> Outs; 765 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 766 767 if (!FLI.CanLowerReturn) { 768 unsigned DemoteReg = FLI.DemoteRegister; 769 const Function *F = I.getParent()->getParent(); 770 771 // Emit a store of the return value through the virtual register. 772 // Leave Outs empty so that LowerReturn won't try to load return 773 // registers the usual way. 774 SmallVector<EVT, 1> PtrValueVTs; 775 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 776 PtrValueVTs); 777 778 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 779 SDValue RetOp = getValue(I.getOperand(0)); 780 781 SmallVector<EVT, 4> ValueVTs; 782 SmallVector<uint64_t, 4> Offsets; 783 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 784 unsigned NumValues = ValueVTs.size(); 785 786 SmallVector<SDValue, 4> Chains(NumValues); 787 EVT PtrVT = PtrValueVTs[0]; 788 for (unsigned i = 0; i != NumValues; ++i) 789 Chains[i] = DAG.getStore(Chain, getCurDebugLoc(), 790 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 791 DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 792 DAG.getConstant(Offsets[i], PtrVT)), 793 NULL, Offsets[i], false, 0); 794 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 795 MVT::Other, &Chains[0], NumValues); 796 } 797 else { 798 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 799 SmallVector<EVT, 4> ValueVTs; 800 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); 801 unsigned NumValues = ValueVTs.size(); 802 if (NumValues == 0) continue; 803 804 SDValue RetOp = getValue(I.getOperand(i)); 805 for (unsigned j = 0, f = NumValues; j != f; ++j) { 806 EVT VT = ValueVTs[j]; 807 808 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 809 810 const Function *F = I.getParent()->getParent(); 811 if (F->paramHasAttr(0, Attribute::SExt)) 812 ExtendKind = ISD::SIGN_EXTEND; 813 else if (F->paramHasAttr(0, Attribute::ZExt)) 814 ExtendKind = ISD::ZERO_EXTEND; 815 816 // FIXME: C calling convention requires the return type to be promoted to 817 // at least 32-bit. But this is not necessary for non-C calling 818 // conventions. The frontend should mark functions whose return values 819 // require promoting with signext or zeroext attributes. 820 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 821 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 822 if (VT.bitsLT(MinVT)) 823 VT = MinVT; 824 } 825 826 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 827 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 828 SmallVector<SDValue, 4> Parts(NumParts); 829 getCopyToParts(DAG, getCurDebugLoc(), 830 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 831 &Parts[0], NumParts, PartVT, ExtendKind); 832 833 // 'inreg' on function refers to return value 834 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 835 if (F->paramHasAttr(0, Attribute::InReg)) 836 Flags.setInReg(); 837 838 // Propagate extension type if any 839 if (F->paramHasAttr(0, Attribute::SExt)) 840 Flags.setSExt(); 841 else if (F->paramHasAttr(0, Attribute::ZExt)) 842 Flags.setZExt(); 843 844 for (unsigned i = 0; i < NumParts; ++i) 845 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 846 } 847 } 848 } 849 850 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 851 CallingConv::ID CallConv = 852 DAG.getMachineFunction().getFunction()->getCallingConv(); 853 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 854 Outs, getCurDebugLoc(), DAG); 855 856 // Verify that the target's LowerReturn behaved as expected. 857 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 858 "LowerReturn didn't return a valid chain!"); 859 860 // Update the DAG with the new chain value resulting from return lowering. 861 DAG.setRoot(Chain); 862 } 863 864 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 865 /// created for it, emit nodes to copy the value into the virtual 866 /// registers. 867 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { 868 if (!V->use_empty()) { 869 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 870 if (VMI != FuncInfo.ValueMap.end()) 871 CopyValueToVirtualRegister(V, VMI->second); 872 } 873 } 874 875 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 876 /// the current basic block, add it to ValueMap now so that we'll get a 877 /// CopyTo/FromReg. 878 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { 879 // No need to export constants. 880 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 881 882 // Already exported? 883 if (FuncInfo.isExportedInst(V)) return; 884 885 unsigned Reg = FuncInfo.InitializeRegForValue(V); 886 CopyValueToVirtualRegister(V, Reg); 887 } 888 889 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, 890 const BasicBlock *FromBB) { 891 // The operands of the setcc have to be in this block. We don't know 892 // how to export them from some other block. 893 if (Instruction *VI = dyn_cast<Instruction>(V)) { 894 // Can export from current BB. 895 if (VI->getParent() == FromBB) 896 return true; 897 898 // Is already exported, noop. 899 return FuncInfo.isExportedInst(V); 900 } 901 902 // If this is an argument, we can export it if the BB is the entry block or 903 // if it is already exported. 904 if (isa<Argument>(V)) { 905 if (FromBB == &FromBB->getParent()->getEntryBlock()) 906 return true; 907 908 // Otherwise, can only export this if it is already exported. 909 return FuncInfo.isExportedInst(V); 910 } 911 912 // Otherwise, constants can always be exported. 913 return true; 914 } 915 916 static bool InBlock(const Value *V, const BasicBlock *BB) { 917 if (const Instruction *I = dyn_cast<Instruction>(V)) 918 return I->getParent() == BB; 919 return true; 920 } 921 922 /// getFCmpCondCode - Return the ISD condition code corresponding to 923 /// the given LLVM IR floating-point condition code. This includes 924 /// consideration of global floating-point math flags. 925 /// 926 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { 927 ISD::CondCode FPC, FOC; 928 switch (Pred) { 929 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 930 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 931 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 932 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 933 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 934 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 935 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 936 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 937 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 938 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 939 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 940 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 941 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 942 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 943 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 944 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 945 default: 946 llvm_unreachable("Invalid FCmp predicate opcode!"); 947 FOC = FPC = ISD::SETFALSE; 948 break; 949 } 950 if (FiniteOnlyFPMath()) 951 return FOC; 952 else 953 return FPC; 954 } 955 956 /// getICmpCondCode - Return the ISD condition code corresponding to 957 /// the given LLVM IR integer condition code. 958 /// 959 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { 960 switch (Pred) { 961 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 962 case ICmpInst::ICMP_NE: return ISD::SETNE; 963 case ICmpInst::ICMP_SLE: return ISD::SETLE; 964 case ICmpInst::ICMP_ULE: return ISD::SETULE; 965 case ICmpInst::ICMP_SGE: return ISD::SETGE; 966 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 967 case ICmpInst::ICMP_SLT: return ISD::SETLT; 968 case ICmpInst::ICMP_ULT: return ISD::SETULT; 969 case ICmpInst::ICMP_SGT: return ISD::SETGT; 970 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 971 default: 972 llvm_unreachable("Invalid ICmp predicate opcode!"); 973 return ISD::SETNE; 974 } 975 } 976 977 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 978 /// This function emits a branch and is used at the leaves of an OR or an 979 /// AND operator tree. 980 /// 981 void 982 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, 983 MachineBasicBlock *TBB, 984 MachineBasicBlock *FBB, 985 MachineBasicBlock *CurBB) { 986 const BasicBlock *BB = CurBB->getBasicBlock(); 987 988 // If the leaf of the tree is a comparison, merge the condition into 989 // the caseblock. 990 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 991 // The operands of the cmp have to be in this block. We don't know 992 // how to export them from some other block. If this is the first block 993 // of the sequence, no exporting is needed. 994 if (CurBB == CurMBB || 995 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 996 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 997 ISD::CondCode Condition; 998 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 999 Condition = getICmpCondCode(IC->getPredicate()); 1000 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1001 Condition = getFCmpCondCode(FC->getPredicate()); 1002 } else { 1003 Condition = ISD::SETEQ; // silence warning. 1004 llvm_unreachable("Unknown compare instruction"); 1005 } 1006 1007 CaseBlock CB(Condition, BOp->getOperand(0), 1008 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1009 SwitchCases.push_back(CB); 1010 return; 1011 } 1012 } 1013 1014 // Create a CaseBlock record representing this branch. 1015 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1016 NULL, TBB, FBB, CurBB); 1017 SwitchCases.push_back(CB); 1018 } 1019 1020 /// FindMergedConditions - If Cond is an expression like 1021 void SelectionDAGBuilder::FindMergedConditions(Value *Cond, 1022 MachineBasicBlock *TBB, 1023 MachineBasicBlock *FBB, 1024 MachineBasicBlock *CurBB, 1025 unsigned Opc) { 1026 // If this node is not part of the or/and tree, emit it as a branch. 1027 Instruction *BOp = dyn_cast<Instruction>(Cond); 1028 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1029 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1030 BOp->getParent() != CurBB->getBasicBlock() || 1031 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1032 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1033 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); 1034 return; 1035 } 1036 1037 // Create TmpBB after CurBB. 1038 MachineFunction::iterator BBI = CurBB; 1039 MachineFunction &MF = DAG.getMachineFunction(); 1040 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1041 CurBB->getParent()->insert(++BBI, TmpBB); 1042 1043 if (Opc == Instruction::Or) { 1044 // Codegen X | Y as: 1045 // jmp_if_X TBB 1046 // jmp TmpBB 1047 // TmpBB: 1048 // jmp_if_Y TBB 1049 // jmp FBB 1050 // 1051 1052 // Emit the LHS condition. 1053 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); 1054 1055 // Emit the RHS condition into TmpBB. 1056 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1057 } else { 1058 assert(Opc == Instruction::And && "Unknown merge op!"); 1059 // Codegen X & Y as: 1060 // jmp_if_X TmpBB 1061 // jmp FBB 1062 // TmpBB: 1063 // jmp_if_Y TBB 1064 // jmp FBB 1065 // 1066 // This requires creation of TmpBB after CurBB. 1067 1068 // Emit the LHS condition. 1069 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); 1070 1071 // Emit the RHS condition into TmpBB. 1072 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1073 } 1074 } 1075 1076 /// If the set of cases should be emitted as a series of branches, return true. 1077 /// If we should emit this as a bunch of and/or'd together conditions, return 1078 /// false. 1079 bool 1080 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1081 if (Cases.size() != 2) return true; 1082 1083 // If this is two comparisons of the same values or'd or and'd together, they 1084 // will get folded into a single comparison, so don't emit two blocks. 1085 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1086 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1087 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1088 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1089 return false; 1090 } 1091 1092 return true; 1093 } 1094 1095 void SelectionDAGBuilder::visitBr(BranchInst &I) { 1096 // Update machine-CFG edges. 1097 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1098 1099 // Figure out which block is immediately after the current one. 1100 MachineBasicBlock *NextBlock = 0; 1101 MachineFunction::iterator BBI = CurMBB; 1102 if (++BBI != FuncInfo.MF->end()) 1103 NextBlock = BBI; 1104 1105 if (I.isUnconditional()) { 1106 // Update machine-CFG edges. 1107 CurMBB->addSuccessor(Succ0MBB); 1108 1109 // If this is not a fall-through branch, emit the branch. 1110 if (Succ0MBB != NextBlock) 1111 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1112 MVT::Other, getControlRoot(), 1113 DAG.getBasicBlock(Succ0MBB))); 1114 return; 1115 } 1116 1117 // If this condition is one of the special cases we handle, do special stuff 1118 // now. 1119 Value *CondVal = I.getCondition(); 1120 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1121 1122 // If this is a series of conditions that are or'd or and'd together, emit 1123 // this as a sequence of branches instead of setcc's with and/or operations. 1124 // For example, instead of something like: 1125 // cmp A, B 1126 // C = seteq 1127 // cmp D, E 1128 // F = setle 1129 // or C, F 1130 // jnz foo 1131 // Emit: 1132 // cmp A, B 1133 // je foo 1134 // cmp D, E 1135 // jle foo 1136 // 1137 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1138 if (BOp->hasOneUse() && 1139 (BOp->getOpcode() == Instruction::And || 1140 BOp->getOpcode() == Instruction::Or)) { 1141 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); 1142 // If the compares in later blocks need to use values not currently 1143 // exported from this block, export them now. This block should always 1144 // be the first entry. 1145 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); 1146 1147 // Allow some cases to be rejected. 1148 if (ShouldEmitAsBranches(SwitchCases)) { 1149 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1150 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1151 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1152 } 1153 1154 // Emit the branch for this block. 1155 visitSwitchCase(SwitchCases[0]); 1156 SwitchCases.erase(SwitchCases.begin()); 1157 return; 1158 } 1159 1160 // Okay, we decided not to do this, remove any inserted MBB's and clear 1161 // SwitchCases. 1162 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1163 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1164 1165 SwitchCases.clear(); 1166 } 1167 } 1168 1169 // Create a CaseBlock record representing this branch. 1170 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1171 NULL, Succ0MBB, Succ1MBB, CurMBB); 1172 // Use visitSwitchCase to actually insert the fast branch sequence for this 1173 // cond branch. 1174 visitSwitchCase(CB); 1175 } 1176 1177 /// visitSwitchCase - Emits the necessary code to represent a single node in 1178 /// the binary search tree resulting from lowering a switch instruction. 1179 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { 1180 SDValue Cond; 1181 SDValue CondLHS = getValue(CB.CmpLHS); 1182 DebugLoc dl = getCurDebugLoc(); 1183 1184 // Build the setcc now. 1185 if (CB.CmpMHS == NULL) { 1186 // Fold "(X == true)" to X and "(X == false)" to !X to 1187 // handle common cases produced by branch lowering. 1188 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1189 CB.CC == ISD::SETEQ) 1190 Cond = CondLHS; 1191 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1192 CB.CC == ISD::SETEQ) { 1193 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1194 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1195 } else 1196 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1197 } else { 1198 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1199 1200 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1201 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1202 1203 SDValue CmpOp = getValue(CB.CmpMHS); 1204 EVT VT = CmpOp.getValueType(); 1205 1206 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1207 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1208 ISD::SETLE); 1209 } else { 1210 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1211 VT, CmpOp, DAG.getConstant(Low, VT)); 1212 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1213 DAG.getConstant(High-Low, VT), ISD::SETULE); 1214 } 1215 } 1216 1217 // Update successor info 1218 CurMBB->addSuccessor(CB.TrueBB); 1219 CurMBB->addSuccessor(CB.FalseBB); 1220 1221 // Set NextBlock to be the MBB immediately after the current one, if any. 1222 // This is used to avoid emitting unnecessary branches to the next block. 1223 MachineBasicBlock *NextBlock = 0; 1224 MachineFunction::iterator BBI = CurMBB; 1225 if (++BBI != FuncInfo.MF->end()) 1226 NextBlock = BBI; 1227 1228 // If the lhs block is the next block, invert the condition so that we can 1229 // fall through to the lhs instead of the rhs block. 1230 if (CB.TrueBB == NextBlock) { 1231 std::swap(CB.TrueBB, CB.FalseBB); 1232 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1233 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1234 } 1235 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1236 MVT::Other, getControlRoot(), Cond, 1237 DAG.getBasicBlock(CB.TrueBB)); 1238 1239 // If the branch was constant folded, fix up the CFG. 1240 if (BrCond.getOpcode() == ISD::BR) { 1241 CurMBB->removeSuccessor(CB.FalseBB); 1242 DAG.setRoot(BrCond); 1243 } else { 1244 // Otherwise, go ahead and insert the false branch. 1245 if (BrCond == getControlRoot()) 1246 CurMBB->removeSuccessor(CB.TrueBB); 1247 1248 if (CB.FalseBB == NextBlock) 1249 DAG.setRoot(BrCond); 1250 else 1251 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1252 DAG.getBasicBlock(CB.FalseBB))); 1253 } 1254 } 1255 1256 /// visitJumpTable - Emit JumpTable node in the current MBB 1257 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1258 // Emit the code for the jump table 1259 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1260 EVT PTy = TLI.getPointerTy(); 1261 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1262 JT.Reg, PTy); 1263 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1264 DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1265 MVT::Other, Index.getValue(1), 1266 Table, Index)); 1267 } 1268 1269 /// visitJumpTableHeader - This function emits necessary code to produce index 1270 /// in the JumpTable from switch case. 1271 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1272 JumpTableHeader &JTH) { 1273 // Subtract the lowest switch case value from the value being switched on and 1274 // conditional branch to default mbb if the result is greater than the 1275 // difference between smallest and largest cases. 1276 SDValue SwitchOp = getValue(JTH.SValue); 1277 EVT VT = SwitchOp.getValueType(); 1278 SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1279 DAG.getConstant(JTH.First, VT)); 1280 1281 // The SDNode we just created, which holds the value being switched on minus 1282 // the the smallest case value, needs to be copied to a virtual register so it 1283 // can be used as an index into the jump table in a subsequent basic block. 1284 // This value may be smaller or larger than the target's pointer type, and 1285 // therefore require extension or truncating. 1286 SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); 1287 1288 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1289 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1290 JumpTableReg, SwitchOp); 1291 JT.Reg = JumpTableReg; 1292 1293 // Emit the range check for the jump table, and branch to the default block 1294 // for the switch statement if the value being switched on exceeds the largest 1295 // case in the switch. 1296 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1297 TLI.getSetCCResultType(SUB.getValueType()), SUB, 1298 DAG.getConstant(JTH.Last-JTH.First,VT), 1299 ISD::SETUGT); 1300 1301 // Set NextBlock to be the MBB immediately after the current one, if any. 1302 // This is used to avoid emitting unnecessary branches to the next block. 1303 MachineBasicBlock *NextBlock = 0; 1304 MachineFunction::iterator BBI = CurMBB; 1305 if (++BBI != FuncInfo.MF->end()) 1306 NextBlock = BBI; 1307 1308 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1309 MVT::Other, CopyTo, CMP, 1310 DAG.getBasicBlock(JT.Default)); 1311 1312 if (JT.MBB == NextBlock) 1313 DAG.setRoot(BrCond); 1314 else 1315 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1316 DAG.getBasicBlock(JT.MBB))); 1317 } 1318 1319 /// visitBitTestHeader - This function emits necessary code to produce value 1320 /// suitable for "bit tests" 1321 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { 1322 // Subtract the minimum value 1323 SDValue SwitchOp = getValue(B.SValue); 1324 EVT VT = SwitchOp.getValueType(); 1325 SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1326 DAG.getConstant(B.First, VT)); 1327 1328 // Check range 1329 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1330 TLI.getSetCCResultType(SUB.getValueType()), 1331 SUB, DAG.getConstant(B.Range, VT), 1332 ISD::SETUGT); 1333 1334 SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); 1335 1336 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1337 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1338 B.Reg, ShiftOp); 1339 1340 // Set NextBlock to be the MBB immediately after the current one, if any. 1341 // This is used to avoid emitting unnecessary branches to the next block. 1342 MachineBasicBlock *NextBlock = 0; 1343 MachineFunction::iterator BBI = CurMBB; 1344 if (++BBI != FuncInfo.MF->end()) 1345 NextBlock = BBI; 1346 1347 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1348 1349 CurMBB->addSuccessor(B.Default); 1350 CurMBB->addSuccessor(MBB); 1351 1352 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1353 MVT::Other, CopyTo, RangeCmp, 1354 DAG.getBasicBlock(B.Default)); 1355 1356 if (MBB == NextBlock) 1357 DAG.setRoot(BrRange); 1358 else 1359 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1360 DAG.getBasicBlock(MBB))); 1361 } 1362 1363 /// visitBitTestCase - this function produces one "bit test" 1364 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1365 unsigned Reg, 1366 BitTestCase &B) { 1367 // Make desired shift 1368 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1369 TLI.getPointerTy()); 1370 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1371 TLI.getPointerTy(), 1372 DAG.getConstant(1, TLI.getPointerTy()), 1373 ShiftOp); 1374 1375 // Emit bit tests and jumps 1376 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1377 TLI.getPointerTy(), SwitchVal, 1378 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1379 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1380 TLI.getSetCCResultType(AndOp.getValueType()), 1381 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1382 ISD::SETNE); 1383 1384 CurMBB->addSuccessor(B.TargetBB); 1385 CurMBB->addSuccessor(NextMBB); 1386 1387 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1388 MVT::Other, getControlRoot(), 1389 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1390 1391 // Set NextBlock to be the MBB immediately after the current one, if any. 1392 // This is used to avoid emitting unnecessary branches to the next block. 1393 MachineBasicBlock *NextBlock = 0; 1394 MachineFunction::iterator BBI = CurMBB; 1395 if (++BBI != FuncInfo.MF->end()) 1396 NextBlock = BBI; 1397 1398 if (NextMBB == NextBlock) 1399 DAG.setRoot(BrAnd); 1400 else 1401 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1402 DAG.getBasicBlock(NextMBB))); 1403 } 1404 1405 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { 1406 // Retrieve successors. 1407 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1408 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1409 1410 const Value *Callee(I.getCalledValue()); 1411 if (isa<InlineAsm>(Callee)) 1412 visitInlineAsm(&I); 1413 else 1414 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1415 1416 // If the value of the invoke is used outside of its defining block, make it 1417 // available as a virtual register. 1418 CopyToExportRegsIfNeeded(&I); 1419 1420 // Update successor info 1421 CurMBB->addSuccessor(Return); 1422 CurMBB->addSuccessor(LandingPad); 1423 1424 // Drop into normal successor. 1425 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1426 MVT::Other, getControlRoot(), 1427 DAG.getBasicBlock(Return))); 1428 } 1429 1430 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { 1431 } 1432 1433 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1434 /// small case ranges). 1435 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1436 CaseRecVector& WorkList, 1437 Value* SV, 1438 MachineBasicBlock* Default) { 1439 Case& BackCase = *(CR.Range.second-1); 1440 1441 // Size is the number of Cases represented by this range. 1442 size_t Size = CR.Range.second - CR.Range.first; 1443 if (Size > 3) 1444 return false; 1445 1446 // Get the MachineFunction which holds the current MBB. This is used when 1447 // inserting any additional MBBs necessary to represent the switch. 1448 MachineFunction *CurMF = FuncInfo.MF; 1449 1450 // Figure out which block is immediately after the current one. 1451 MachineBasicBlock *NextBlock = 0; 1452 MachineFunction::iterator BBI = CR.CaseBB; 1453 1454 if (++BBI != FuncInfo.MF->end()) 1455 NextBlock = BBI; 1456 1457 // TODO: If any two of the cases has the same destination, and if one value 1458 // is the same as the other, but has one bit unset that the other has set, 1459 // use bit manipulation to do two compares at once. For example: 1460 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1461 1462 // Rearrange the case blocks so that the last one falls through if possible. 1463 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1464 // The last case block won't fall through into 'NextBlock' if we emit the 1465 // branches in this order. See if rearranging a case value would help. 1466 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1467 if (I->BB == NextBlock) { 1468 std::swap(*I, BackCase); 1469 break; 1470 } 1471 } 1472 } 1473 1474 // Create a CaseBlock record representing a conditional branch to 1475 // the Case's target mbb if the value being switched on SV is equal 1476 // to C. 1477 MachineBasicBlock *CurBlock = CR.CaseBB; 1478 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1479 MachineBasicBlock *FallThrough; 1480 if (I != E-1) { 1481 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1482 CurMF->insert(BBI, FallThrough); 1483 1484 // Put SV in a virtual register to make it available from the new blocks. 1485 ExportFromCurrentBlock(SV); 1486 } else { 1487 // If the last case doesn't match, go to the default block. 1488 FallThrough = Default; 1489 } 1490 1491 Value *RHS, *LHS, *MHS; 1492 ISD::CondCode CC; 1493 if (I->High == I->Low) { 1494 // This is just small small case range :) containing exactly 1 case 1495 CC = ISD::SETEQ; 1496 LHS = SV; RHS = I->High; MHS = NULL; 1497 } else { 1498 CC = ISD::SETLE; 1499 LHS = I->Low; MHS = SV; RHS = I->High; 1500 } 1501 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1502 1503 // If emitting the first comparison, just call visitSwitchCase to emit the 1504 // code into the current block. Otherwise, push the CaseBlock onto the 1505 // vector to be later processed by SDISel, and insert the node's MBB 1506 // before the next MBB. 1507 if (CurBlock == CurMBB) 1508 visitSwitchCase(CB); 1509 else 1510 SwitchCases.push_back(CB); 1511 1512 CurBlock = FallThrough; 1513 } 1514 1515 return true; 1516 } 1517 1518 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1519 return !DisableJumpTables && 1520 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1521 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1522 } 1523 1524 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1525 APInt LastExt(Last), FirstExt(First); 1526 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1527 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1528 return (LastExt - FirstExt + 1ULL); 1529 } 1530 1531 /// handleJTSwitchCase - Emit jumptable for current switch case range 1532 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1533 CaseRecVector& WorkList, 1534 Value* SV, 1535 MachineBasicBlock* Default) { 1536 Case& FrontCase = *CR.Range.first; 1537 Case& BackCase = *(CR.Range.second-1); 1538 1539 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1540 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1541 1542 APInt TSize(First.getBitWidth(), 0); 1543 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1544 I!=E; ++I) 1545 TSize += I->size(); 1546 1547 if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) 1548 return false; 1549 1550 APInt Range = ComputeRange(First, Last); 1551 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1552 if (Density < 0.4) 1553 return false; 1554 1555 DEBUG(errs() << "Lowering jump table\n" 1556 << "First entry: " << First << ". Last entry: " << Last << '\n' 1557 << "Range: " << Range 1558 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1559 1560 // Get the MachineFunction which holds the current MBB. This is used when 1561 // inserting any additional MBBs necessary to represent the switch. 1562 MachineFunction *CurMF = FuncInfo.MF; 1563 1564 // Figure out which block is immediately after the current one. 1565 MachineFunction::iterator BBI = CR.CaseBB; 1566 ++BBI; 1567 1568 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1569 1570 // Create a new basic block to hold the code for loading the address 1571 // of the jump table, and jumping to it. Update successor information; 1572 // we will either branch to the default case for the switch, or the jump 1573 // table. 1574 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1575 CurMF->insert(BBI, JumpTableBB); 1576 CR.CaseBB->addSuccessor(Default); 1577 CR.CaseBB->addSuccessor(JumpTableBB); 1578 1579 // Build a vector of destination BBs, corresponding to each target 1580 // of the jump table. If the value of the jump table slot corresponds to 1581 // a case statement, push the case's BB onto the vector, otherwise, push 1582 // the default BB. 1583 std::vector<MachineBasicBlock*> DestBBs; 1584 APInt TEI = First; 1585 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1586 const APInt& Low = cast<ConstantInt>(I->Low)->getValue(); 1587 const APInt& High = cast<ConstantInt>(I->High)->getValue(); 1588 1589 if (Low.sle(TEI) && TEI.sle(High)) { 1590 DestBBs.push_back(I->BB); 1591 if (TEI==High) 1592 ++I; 1593 } else { 1594 DestBBs.push_back(Default); 1595 } 1596 } 1597 1598 // Update successor info. Add one edge to each unique successor. 1599 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1600 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1601 E = DestBBs.end(); I != E; ++I) { 1602 if (!SuccsHandled[(*I)->getNumber()]) { 1603 SuccsHandled[(*I)->getNumber()] = true; 1604 JumpTableBB->addSuccessor(*I); 1605 } 1606 } 1607 1608 // Create a jump table index for this jump table, or return an existing 1609 // one. 1610 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); 1611 1612 // Set the jump table information so that we can codegen it as a second 1613 // MachineBasicBlock 1614 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1615 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); 1616 if (CR.CaseBB == CurMBB) 1617 visitJumpTableHeader(JT, JTH); 1618 1619 JTCases.push_back(JumpTableBlock(JTH, JT)); 1620 1621 return true; 1622 } 1623 1624 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1625 /// 2 subtrees. 1626 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1627 CaseRecVector& WorkList, 1628 Value* SV, 1629 MachineBasicBlock* Default) { 1630 // Get the MachineFunction which holds the current MBB. This is used when 1631 // inserting any additional MBBs necessary to represent the switch. 1632 MachineFunction *CurMF = FuncInfo.MF; 1633 1634 // Figure out which block is immediately after the current one. 1635 MachineFunction::iterator BBI = CR.CaseBB; 1636 ++BBI; 1637 1638 Case& FrontCase = *CR.Range.first; 1639 Case& BackCase = *(CR.Range.second-1); 1640 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1641 1642 // Size is the number of Cases represented by this range. 1643 unsigned Size = CR.Range.second - CR.Range.first; 1644 1645 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1646 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1647 double FMetric = 0; 1648 CaseItr Pivot = CR.Range.first + Size/2; 1649 1650 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1651 // (heuristically) allow us to emit JumpTable's later. 1652 APInt TSize(First.getBitWidth(), 0); 1653 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1654 I!=E; ++I) 1655 TSize += I->size(); 1656 1657 APInt LSize = FrontCase.size(); 1658 APInt RSize = TSize-LSize; 1659 DEBUG(errs() << "Selecting best pivot: \n" 1660 << "First: " << First << ", Last: " << Last <<'\n' 1661 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1662 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1663 J!=E; ++I, ++J) { 1664 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1665 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1666 APInt Range = ComputeRange(LEnd, RBegin); 1667 assert((Range - 2ULL).isNonNegative() && 1668 "Invalid case distance"); 1669 double LDensity = (double)LSize.roundToDouble() / 1670 (LEnd - First + 1ULL).roundToDouble(); 1671 double RDensity = (double)RSize.roundToDouble() / 1672 (Last - RBegin + 1ULL).roundToDouble(); 1673 double Metric = Range.logBase2()*(LDensity+RDensity); 1674 // Should always split in some non-trivial place 1675 DEBUG(errs() <<"=>Step\n" 1676 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1677 << "LDensity: " << LDensity 1678 << ", RDensity: " << RDensity << '\n' 1679 << "Metric: " << Metric << '\n'); 1680 if (FMetric < Metric) { 1681 Pivot = J; 1682 FMetric = Metric; 1683 DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); 1684 } 1685 1686 LSize += J->size(); 1687 RSize -= J->size(); 1688 } 1689 if (areJTsAllowed(TLI)) { 1690 // If our case is dense we *really* should handle it earlier! 1691 assert((FMetric > 0) && "Should handle dense range earlier!"); 1692 } else { 1693 Pivot = CR.Range.first + Size/2; 1694 } 1695 1696 CaseRange LHSR(CR.Range.first, Pivot); 1697 CaseRange RHSR(Pivot, CR.Range.second); 1698 Constant *C = Pivot->Low; 1699 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1700 1701 // We know that we branch to the LHS if the Value being switched on is 1702 // less than the Pivot value, C. We use this to optimize our binary 1703 // tree a bit, by recognizing that if SV is greater than or equal to the 1704 // LHS's Case Value, and that Case Value is exactly one less than the 1705 // Pivot's Value, then we can branch directly to the LHS's Target, 1706 // rather than creating a leaf node for it. 1707 if ((LHSR.second - LHSR.first) == 1 && 1708 LHSR.first->High == CR.GE && 1709 cast<ConstantInt>(C)->getValue() == 1710 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1711 TrueBB = LHSR.first->BB; 1712 } else { 1713 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1714 CurMF->insert(BBI, TrueBB); 1715 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1716 1717 // Put SV in a virtual register to make it available from the new blocks. 1718 ExportFromCurrentBlock(SV); 1719 } 1720 1721 // Similar to the optimization above, if the Value being switched on is 1722 // known to be less than the Constant CR.LT, and the current Case Value 1723 // is CR.LT - 1, then we can branch directly to the target block for 1724 // the current Case Value, rather than emitting a RHS leaf node for it. 1725 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1726 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1727 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1728 FalseBB = RHSR.first->BB; 1729 } else { 1730 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1731 CurMF->insert(BBI, FalseBB); 1732 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1733 1734 // Put SV in a virtual register to make it available from the new blocks. 1735 ExportFromCurrentBlock(SV); 1736 } 1737 1738 // Create a CaseBlock record representing a conditional branch to 1739 // the LHS node if the value being switched on SV is less than C. 1740 // Otherwise, branch to LHS. 1741 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1742 1743 if (CR.CaseBB == CurMBB) 1744 visitSwitchCase(CB); 1745 else 1746 SwitchCases.push_back(CB); 1747 1748 return true; 1749 } 1750 1751 /// handleBitTestsSwitchCase - if current case range has few destination and 1752 /// range span less, than machine word bitwidth, encode case range into series 1753 /// of masks and emit bit tests with these masks. 1754 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1755 CaseRecVector& WorkList, 1756 Value* SV, 1757 MachineBasicBlock* Default){ 1758 EVT PTy = TLI.getPointerTy(); 1759 unsigned IntPtrBits = PTy.getSizeInBits(); 1760 1761 Case& FrontCase = *CR.Range.first; 1762 Case& BackCase = *(CR.Range.second-1); 1763 1764 // Get the MachineFunction which holds the current MBB. This is used when 1765 // inserting any additional MBBs necessary to represent the switch. 1766 MachineFunction *CurMF = FuncInfo.MF; 1767 1768 // If target does not have legal shift left, do not emit bit tests at all. 1769 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1770 return false; 1771 1772 size_t numCmps = 0; 1773 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1774 I!=E; ++I) { 1775 // Single case counts one, case range - two. 1776 numCmps += (I->Low == I->High ? 1 : 2); 1777 } 1778 1779 // Count unique destinations 1780 SmallSet<MachineBasicBlock*, 4> Dests; 1781 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1782 Dests.insert(I->BB); 1783 if (Dests.size() > 3) 1784 // Don't bother the code below, if there are too much unique destinations 1785 return false; 1786 } 1787 DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' 1788 << "Total number of comparisons: " << numCmps << '\n'); 1789 1790 // Compute span of values. 1791 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1792 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1793 APInt cmpRange = maxValue - minValue; 1794 1795 DEBUG(errs() << "Compare range: " << cmpRange << '\n' 1796 << "Low bound: " << minValue << '\n' 1797 << "High bound: " << maxValue << '\n'); 1798 1799 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || 1800 (!(Dests.size() == 1 && numCmps >= 3) && 1801 !(Dests.size() == 2 && numCmps >= 5) && 1802 !(Dests.size() >= 3 && numCmps >= 6))) 1803 return false; 1804 1805 DEBUG(errs() << "Emitting bit tests\n"); 1806 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1807 1808 // Optimize the case where all the case values fit in a 1809 // word without having to subtract minValue. In this case, 1810 // we can optimize away the subtraction. 1811 if (minValue.isNonNegative() && 1812 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { 1813 cmpRange = maxValue; 1814 } else { 1815 lowBound = minValue; 1816 } 1817 1818 CaseBitsVector CasesBits; 1819 unsigned i, count = 0; 1820 1821 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1822 MachineBasicBlock* Dest = I->BB; 1823 for (i = 0; i < count; ++i) 1824 if (Dest == CasesBits[i].BB) 1825 break; 1826 1827 if (i == count) { 1828 assert((count < 3) && "Too much destinations to test!"); 1829 CasesBits.push_back(CaseBits(0, Dest, 0)); 1830 count++; 1831 } 1832 1833 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1834 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1835 1836 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1837 uint64_t hi = (highValue - lowBound).getZExtValue(); 1838 1839 for (uint64_t j = lo; j <= hi; j++) { 1840 CasesBits[i].Mask |= 1ULL << j; 1841 CasesBits[i].Bits++; 1842 } 1843 1844 } 1845 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1846 1847 BitTestInfo BTC; 1848 1849 // Figure out which block is immediately after the current one. 1850 MachineFunction::iterator BBI = CR.CaseBB; 1851 ++BBI; 1852 1853 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1854 1855 DEBUG(errs() << "Cases:\n"); 1856 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1857 DEBUG(errs() << "Mask: " << CasesBits[i].Mask 1858 << ", Bits: " << CasesBits[i].Bits 1859 << ", BB: " << CasesBits[i].BB << '\n'); 1860 1861 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1862 CurMF->insert(BBI, CaseBB); 1863 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1864 CaseBB, 1865 CasesBits[i].BB)); 1866 1867 // Put SV in a virtual register to make it available from the new blocks. 1868 ExportFromCurrentBlock(SV); 1869 } 1870 1871 BitTestBlock BTB(lowBound, cmpRange, SV, 1872 -1U, (CR.CaseBB == CurMBB), 1873 CR.CaseBB, Default, BTC); 1874 1875 if (CR.CaseBB == CurMBB) 1876 visitBitTestHeader(BTB); 1877 1878 BitTestCases.push_back(BTB); 1879 1880 return true; 1881 } 1882 1883 1884 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1885 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1886 const SwitchInst& SI) { 1887 size_t numCmps = 0; 1888 1889 // Start with "simple" cases 1890 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1891 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1892 Cases.push_back(Case(SI.getSuccessorValue(i), 1893 SI.getSuccessorValue(i), 1894 SMBB)); 1895 } 1896 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1897 1898 // Merge case into clusters 1899 if (Cases.size() >= 2) 1900 // Must recompute end() each iteration because it may be 1901 // invalidated by erase if we hold on to it 1902 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1903 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1904 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1905 MachineBasicBlock* nextBB = J->BB; 1906 MachineBasicBlock* currentBB = I->BB; 1907 1908 // If the two neighboring cases go to the same destination, merge them 1909 // into a single case. 1910 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1911 I->High = J->High; 1912 J = Cases.erase(J); 1913 } else { 1914 I = J++; 1915 } 1916 } 1917 1918 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1919 if (I->Low != I->High) 1920 // A range counts double, since it requires two compares. 1921 ++numCmps; 1922 } 1923 1924 return numCmps; 1925 } 1926 1927 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { 1928 // Figure out which block is immediately after the current one. 1929 MachineBasicBlock *NextBlock = 0; 1930 1931 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 1932 1933 // If there is only the default destination, branch to it if it is not the 1934 // next basic block. Otherwise, just fall through. 1935 if (SI.getNumOperands() == 2) { 1936 // Update machine-CFG edges. 1937 1938 // If this is not a fall-through branch, emit the branch. 1939 CurMBB->addSuccessor(Default); 1940 if (Default != NextBlock) 1941 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1942 MVT::Other, getControlRoot(), 1943 DAG.getBasicBlock(Default))); 1944 return; 1945 } 1946 1947 // If there are any non-default case statements, create a vector of Cases 1948 // representing each one, and sort the vector so that we can efficiently 1949 // create a binary search tree from them. 1950 CaseVector Cases; 1951 size_t numCmps = Clusterify(Cases, SI); 1952 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() 1953 << ". Total compares: " << numCmps << '\n'); 1954 numCmps = 0; 1955 1956 // Get the Value to be switched on and default basic blocks, which will be 1957 // inserted into CaseBlock records, representing basic blocks in the binary 1958 // search tree. 1959 Value *SV = SI.getOperand(0); 1960 1961 // Push the initial CaseRec onto the worklist 1962 CaseRecVector WorkList; 1963 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); 1964 1965 while (!WorkList.empty()) { 1966 // Grab a record representing a case range to process off the worklist 1967 CaseRec CR = WorkList.back(); 1968 WorkList.pop_back(); 1969 1970 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) 1971 continue; 1972 1973 // If the range has few cases (two or less) emit a series of specific 1974 // tests. 1975 if (handleSmallSwitchRange(CR, WorkList, SV, Default)) 1976 continue; 1977 1978 // If the switch has more than 5 blocks, and at least 40% dense, and the 1979 // target supports indirect branches, then emit a jump table rather than 1980 // lowering the switch to a binary tree of conditional branches. 1981 if (handleJTSwitchCase(CR, WorkList, SV, Default)) 1982 continue; 1983 1984 // Emit binary tree. We need to pick a pivot, and push left and right ranges 1985 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 1986 handleBTSplitSwitchCase(CR, WorkList, SV, Default); 1987 } 1988 } 1989 1990 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { 1991 // Update machine-CFG edges. 1992 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 1993 CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); 1994 1995 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 1996 MVT::Other, getControlRoot(), 1997 getValue(I.getAddress()))); 1998 } 1999 2000 2001 void SelectionDAGBuilder::visitFSub(User &I) { 2002 // -0.0 - X --> fneg 2003 const Type *Ty = I.getType(); 2004 if (isa<VectorType>(Ty)) { 2005 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2006 const VectorType *DestTy = cast<VectorType>(I.getType()); 2007 const Type *ElTy = DestTy->getElementType(); 2008 unsigned VL = DestTy->getNumElements(); 2009 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2010 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2011 if (CV == CNZ) { 2012 SDValue Op2 = getValue(I.getOperand(1)); 2013 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2014 Op2.getValueType(), Op2)); 2015 return; 2016 } 2017 } 2018 } 2019 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2020 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2021 SDValue Op2 = getValue(I.getOperand(1)); 2022 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2023 Op2.getValueType(), Op2)); 2024 return; 2025 } 2026 2027 visitBinary(I, ISD::FSUB); 2028 } 2029 2030 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { 2031 SDValue Op1 = getValue(I.getOperand(0)); 2032 SDValue Op2 = getValue(I.getOperand(1)); 2033 2034 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2035 Op1.getValueType(), Op1, Op2)); 2036 } 2037 2038 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { 2039 SDValue Op1 = getValue(I.getOperand(0)); 2040 SDValue Op2 = getValue(I.getOperand(1)); 2041 if (!isa<VectorType>(I.getType()) && 2042 Op2.getValueType() != TLI.getShiftAmountTy()) { 2043 // If the operand is smaller than the shift count type, promote it. 2044 EVT PTy = TLI.getPointerTy(); 2045 EVT STy = TLI.getShiftAmountTy(); 2046 if (STy.bitsGT(Op2.getValueType())) 2047 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2048 TLI.getShiftAmountTy(), Op2); 2049 // If the operand is larger than the shift count type but the shift 2050 // count type has enough bits to represent any shift value, truncate 2051 // it now. This is a common case and it exposes the truncate to 2052 // optimization early. 2053 else if (STy.getSizeInBits() >= 2054 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2055 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2056 TLI.getShiftAmountTy(), Op2); 2057 // Otherwise we'll need to temporarily settle for some other 2058 // convenient type; type legalization will make adjustments as 2059 // needed. 2060 else if (PTy.bitsLT(Op2.getValueType())) 2061 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2062 TLI.getPointerTy(), Op2); 2063 else if (PTy.bitsGT(Op2.getValueType())) 2064 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2065 TLI.getPointerTy(), Op2); 2066 } 2067 2068 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2069 Op1.getValueType(), Op1, Op2)); 2070 } 2071 2072 void SelectionDAGBuilder::visitICmp(User &I) { 2073 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2074 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2075 predicate = IC->getPredicate(); 2076 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2077 predicate = ICmpInst::Predicate(IC->getPredicate()); 2078 SDValue Op1 = getValue(I.getOperand(0)); 2079 SDValue Op2 = getValue(I.getOperand(1)); 2080 ISD::CondCode Opcode = getICmpCondCode(predicate); 2081 2082 EVT DestVT = TLI.getValueType(I.getType()); 2083 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2084 } 2085 2086 void SelectionDAGBuilder::visitFCmp(User &I) { 2087 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2088 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2089 predicate = FC->getPredicate(); 2090 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2091 predicate = FCmpInst::Predicate(FC->getPredicate()); 2092 SDValue Op1 = getValue(I.getOperand(0)); 2093 SDValue Op2 = getValue(I.getOperand(1)); 2094 ISD::CondCode Condition = getFCmpCondCode(predicate); 2095 EVT DestVT = TLI.getValueType(I.getType()); 2096 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2097 } 2098 2099 void SelectionDAGBuilder::visitSelect(User &I) { 2100 SmallVector<EVT, 4> ValueVTs; 2101 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2102 unsigned NumValues = ValueVTs.size(); 2103 if (NumValues != 0) { 2104 SmallVector<SDValue, 4> Values(NumValues); 2105 SDValue Cond = getValue(I.getOperand(0)); 2106 SDValue TrueVal = getValue(I.getOperand(1)); 2107 SDValue FalseVal = getValue(I.getOperand(2)); 2108 2109 for (unsigned i = 0; i != NumValues; ++i) 2110 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2111 TrueVal.getValueType(), Cond, 2112 SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), 2113 SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); 2114 2115 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2116 DAG.getVTList(&ValueVTs[0], NumValues), 2117 &Values[0], NumValues)); 2118 } 2119 } 2120 2121 2122 void SelectionDAGBuilder::visitTrunc(User &I) { 2123 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2124 SDValue N = getValue(I.getOperand(0)); 2125 EVT DestVT = TLI.getValueType(I.getType()); 2126 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2127 } 2128 2129 void SelectionDAGBuilder::visitZExt(User &I) { 2130 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2131 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2132 SDValue N = getValue(I.getOperand(0)); 2133 EVT DestVT = TLI.getValueType(I.getType()); 2134 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2135 } 2136 2137 void SelectionDAGBuilder::visitSExt(User &I) { 2138 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2139 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2140 SDValue N = getValue(I.getOperand(0)); 2141 EVT DestVT = TLI.getValueType(I.getType()); 2142 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2143 } 2144 2145 void SelectionDAGBuilder::visitFPTrunc(User &I) { 2146 // FPTrunc is never a no-op cast, no need to check 2147 SDValue N = getValue(I.getOperand(0)); 2148 EVT DestVT = TLI.getValueType(I.getType()); 2149 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2150 DestVT, N, DAG.getIntPtrConstant(0))); 2151 } 2152 2153 void SelectionDAGBuilder::visitFPExt(User &I){ 2154 // FPTrunc is never a no-op cast, no need to check 2155 SDValue N = getValue(I.getOperand(0)); 2156 EVT DestVT = TLI.getValueType(I.getType()); 2157 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2158 } 2159 2160 void SelectionDAGBuilder::visitFPToUI(User &I) { 2161 // FPToUI is never a no-op cast, no need to check 2162 SDValue N = getValue(I.getOperand(0)); 2163 EVT DestVT = TLI.getValueType(I.getType()); 2164 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2165 } 2166 2167 void SelectionDAGBuilder::visitFPToSI(User &I) { 2168 // FPToSI is never a no-op cast, no need to check 2169 SDValue N = getValue(I.getOperand(0)); 2170 EVT DestVT = TLI.getValueType(I.getType()); 2171 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2172 } 2173 2174 void SelectionDAGBuilder::visitUIToFP(User &I) { 2175 // UIToFP is never a no-op cast, no need to check 2176 SDValue N = getValue(I.getOperand(0)); 2177 EVT DestVT = TLI.getValueType(I.getType()); 2178 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2179 } 2180 2181 void SelectionDAGBuilder::visitSIToFP(User &I){ 2182 // SIToFP is never a no-op cast, no need to check 2183 SDValue N = getValue(I.getOperand(0)); 2184 EVT DestVT = TLI.getValueType(I.getType()); 2185 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2186 } 2187 2188 void SelectionDAGBuilder::visitPtrToInt(User &I) { 2189 // What to do depends on the size of the integer and the size of the pointer. 2190 // We can either truncate, zero extend, or no-op, accordingly. 2191 SDValue N = getValue(I.getOperand(0)); 2192 EVT SrcVT = N.getValueType(); 2193 EVT DestVT = TLI.getValueType(I.getType()); 2194 SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); 2195 setValue(&I, Result); 2196 } 2197 2198 void SelectionDAGBuilder::visitIntToPtr(User &I) { 2199 // What to do depends on the size of the integer and the size of the pointer. 2200 // We can either truncate, zero extend, or no-op, accordingly. 2201 SDValue N = getValue(I.getOperand(0)); 2202 EVT SrcVT = N.getValueType(); 2203 EVT DestVT = TLI.getValueType(I.getType()); 2204 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2205 } 2206 2207 void SelectionDAGBuilder::visitBitCast(User &I) { 2208 SDValue N = getValue(I.getOperand(0)); 2209 EVT DestVT = TLI.getValueType(I.getType()); 2210 2211 // BitCast assures us that source and destination are the same size so this 2212 // is either a BIT_CONVERT or a no-op. 2213 if (DestVT != N.getValueType()) 2214 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2215 DestVT, N)); // convert types 2216 else 2217 setValue(&I, N); // noop cast. 2218 } 2219 2220 void SelectionDAGBuilder::visitInsertElement(User &I) { 2221 SDValue InVec = getValue(I.getOperand(0)); 2222 SDValue InVal = getValue(I.getOperand(1)); 2223 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2224 TLI.getPointerTy(), 2225 getValue(I.getOperand(2))); 2226 2227 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2228 TLI.getValueType(I.getType()), 2229 InVec, InVal, InIdx)); 2230 } 2231 2232 void SelectionDAGBuilder::visitExtractElement(User &I) { 2233 SDValue InVec = getValue(I.getOperand(0)); 2234 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2235 TLI.getPointerTy(), 2236 getValue(I.getOperand(1))); 2237 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2238 TLI.getValueType(I.getType()), InVec, InIdx)); 2239 } 2240 2241 2242 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2243 // from SIndx and increasing to the element length (undefs are allowed). 2244 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2245 unsigned MaskNumElts = Mask.size(); 2246 for (unsigned i = 0; i != MaskNumElts; ++i) 2247 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2248 return false; 2249 return true; 2250 } 2251 2252 void SelectionDAGBuilder::visitShuffleVector(User &I) { 2253 SmallVector<int, 8> Mask; 2254 SDValue Src1 = getValue(I.getOperand(0)); 2255 SDValue Src2 = getValue(I.getOperand(1)); 2256 2257 // Convert the ConstantVector mask operand into an array of ints, with -1 2258 // representing undef values. 2259 SmallVector<Constant*, 8> MaskElts; 2260 cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), 2261 MaskElts); 2262 unsigned MaskNumElts = MaskElts.size(); 2263 for (unsigned i = 0; i != MaskNumElts; ++i) { 2264 if (isa<UndefValue>(MaskElts[i])) 2265 Mask.push_back(-1); 2266 else 2267 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2268 } 2269 2270 EVT VT = TLI.getValueType(I.getType()); 2271 EVT SrcVT = Src1.getValueType(); 2272 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2273 2274 if (SrcNumElts == MaskNumElts) { 2275 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2276 &Mask[0])); 2277 return; 2278 } 2279 2280 // Normalize the shuffle vector since mask and vector length don't match. 2281 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2282 // Mask is longer than the source vectors and is a multiple of the source 2283 // vectors. We can use concatenate vector to make the mask and vectors 2284 // lengths match. 2285 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2286 // The shuffle is concatenating two vectors together. 2287 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2288 VT, Src1, Src2)); 2289 return; 2290 } 2291 2292 // Pad both vectors with undefs to make them the same length as the mask. 2293 unsigned NumConcat = MaskNumElts / SrcNumElts; 2294 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2295 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2296 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2297 2298 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2299 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2300 MOps1[0] = Src1; 2301 MOps2[0] = Src2; 2302 2303 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2304 getCurDebugLoc(), VT, 2305 &MOps1[0], NumConcat); 2306 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2307 getCurDebugLoc(), VT, 2308 &MOps2[0], NumConcat); 2309 2310 // Readjust mask for new input vector length. 2311 SmallVector<int, 8> MappedOps; 2312 for (unsigned i = 0; i != MaskNumElts; ++i) { 2313 int Idx = Mask[i]; 2314 if (Idx < (int)SrcNumElts) 2315 MappedOps.push_back(Idx); 2316 else 2317 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2318 } 2319 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2320 &MappedOps[0])); 2321 return; 2322 } 2323 2324 if (SrcNumElts > MaskNumElts) { 2325 // Analyze the access pattern of the vector to see if we can extract 2326 // two subvectors and do the shuffle. The analysis is done by calculating 2327 // the range of elements the mask access on both vectors. 2328 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2329 int MaxRange[2] = {-1, -1}; 2330 2331 for (unsigned i = 0; i != MaskNumElts; ++i) { 2332 int Idx = Mask[i]; 2333 int Input = 0; 2334 if (Idx < 0) 2335 continue; 2336 2337 if (Idx >= (int)SrcNumElts) { 2338 Input = 1; 2339 Idx -= SrcNumElts; 2340 } 2341 if (Idx > MaxRange[Input]) 2342 MaxRange[Input] = Idx; 2343 if (Idx < MinRange[Input]) 2344 MinRange[Input] = Idx; 2345 } 2346 2347 // Check if the access is smaller than the vector size and can we find 2348 // a reasonable extract index. 2349 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract. 2350 int StartIdx[2]; // StartIdx to extract from 2351 for (int Input=0; Input < 2; ++Input) { 2352 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2353 RangeUse[Input] = 0; // Unused 2354 StartIdx[Input] = 0; 2355 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2356 // Fits within range but we should see if we can find a good 2357 // start index that is a multiple of the mask length. 2358 if (MaxRange[Input] < (int)MaskNumElts) { 2359 RangeUse[Input] = 1; // Extract from beginning of the vector 2360 StartIdx[Input] = 0; 2361 } else { 2362 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2363 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2364 StartIdx[Input] + MaskNumElts < SrcNumElts) 2365 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2366 } 2367 } 2368 } 2369 2370 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2371 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2372 return; 2373 } 2374 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2375 // Extract appropriate subvector and generate a vector shuffle 2376 for (int Input=0; Input < 2; ++Input) { 2377 SDValue& Src = Input == 0 ? Src1 : Src2; 2378 if (RangeUse[Input] == 0) { 2379 Src = DAG.getUNDEF(VT); 2380 } else { 2381 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2382 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2383 } 2384 } 2385 // Calculate new mask. 2386 SmallVector<int, 8> MappedOps; 2387 for (unsigned i = 0; i != MaskNumElts; ++i) { 2388 int Idx = Mask[i]; 2389 if (Idx < 0) 2390 MappedOps.push_back(Idx); 2391 else if (Idx < (int)SrcNumElts) 2392 MappedOps.push_back(Idx - StartIdx[0]); 2393 else 2394 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2395 } 2396 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2397 &MappedOps[0])); 2398 return; 2399 } 2400 } 2401 2402 // We can't use either concat vectors or extract subvectors so fall back to 2403 // replacing the shuffle with extract and build vector. 2404 // to insert and build vector. 2405 EVT EltVT = VT.getVectorElementType(); 2406 EVT PtrVT = TLI.getPointerTy(); 2407 SmallVector<SDValue,8> Ops; 2408 for (unsigned i = 0; i != MaskNumElts; ++i) { 2409 if (Mask[i] < 0) { 2410 Ops.push_back(DAG.getUNDEF(EltVT)); 2411 } else { 2412 int Idx = Mask[i]; 2413 if (Idx < (int)SrcNumElts) 2414 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2415 EltVT, Src1, DAG.getConstant(Idx, PtrVT))); 2416 else 2417 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2418 EltVT, Src2, 2419 DAG.getConstant(Idx - SrcNumElts, PtrVT))); 2420 } 2421 } 2422 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2423 VT, &Ops[0], Ops.size())); 2424 } 2425 2426 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { 2427 const Value *Op0 = I.getOperand(0); 2428 const Value *Op1 = I.getOperand(1); 2429 const Type *AggTy = I.getType(); 2430 const Type *ValTy = Op1->getType(); 2431 bool IntoUndef = isa<UndefValue>(Op0); 2432 bool FromUndef = isa<UndefValue>(Op1); 2433 2434 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2435 I.idx_begin(), I.idx_end()); 2436 2437 SmallVector<EVT, 4> AggValueVTs; 2438 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2439 SmallVector<EVT, 4> ValValueVTs; 2440 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2441 2442 unsigned NumAggValues = AggValueVTs.size(); 2443 unsigned NumValValues = ValValueVTs.size(); 2444 SmallVector<SDValue, 4> Values(NumAggValues); 2445 2446 SDValue Agg = getValue(Op0); 2447 SDValue Val = getValue(Op1); 2448 unsigned i = 0; 2449 // Copy the beginning value(s) from the original aggregate. 2450 for (; i != LinearIndex; ++i) 2451 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2452 SDValue(Agg.getNode(), Agg.getResNo() + i); 2453 // Copy values from the inserted value(s). 2454 for (; i != LinearIndex + NumValValues; ++i) 2455 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2456 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2457 // Copy remaining value(s) from the original aggregate. 2458 for (; i != NumAggValues; ++i) 2459 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2460 SDValue(Agg.getNode(), Agg.getResNo() + i); 2461 2462 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2463 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2464 &Values[0], NumAggValues)); 2465 } 2466 2467 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { 2468 const Value *Op0 = I.getOperand(0); 2469 const Type *AggTy = Op0->getType(); 2470 const Type *ValTy = I.getType(); 2471 bool OutOfUndef = isa<UndefValue>(Op0); 2472 2473 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2474 I.idx_begin(), I.idx_end()); 2475 2476 SmallVector<EVT, 4> ValValueVTs; 2477 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2478 2479 unsigned NumValValues = ValValueVTs.size(); 2480 SmallVector<SDValue, 4> Values(NumValValues); 2481 2482 SDValue Agg = getValue(Op0); 2483 // Copy out the selected value(s). 2484 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2485 Values[i - LinearIndex] = 2486 OutOfUndef ? 2487 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2488 SDValue(Agg.getNode(), Agg.getResNo() + i); 2489 2490 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2491 DAG.getVTList(&ValValueVTs[0], NumValValues), 2492 &Values[0], NumValValues)); 2493 } 2494 2495 2496 void SelectionDAGBuilder::visitGetElementPtr(User &I) { 2497 SDValue N = getValue(I.getOperand(0)); 2498 const Type *Ty = I.getOperand(0)->getType(); 2499 2500 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); 2501 OI != E; ++OI) { 2502 Value *Idx = *OI; 2503 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2504 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2505 if (Field) { 2506 // N = N + Offset 2507 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2508 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2509 DAG.getIntPtrConstant(Offset)); 2510 } 2511 Ty = StTy->getElementType(Field); 2512 } else { 2513 Ty = cast<SequentialType>(Ty)->getElementType(); 2514 2515 // If this is a constant subscript, handle it quickly. 2516 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2517 if (CI->getZExtValue() == 0) continue; 2518 uint64_t Offs = 2519 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2520 SDValue OffsVal; 2521 EVT PTy = TLI.getPointerTy(); 2522 unsigned PtrBits = PTy.getSizeInBits(); 2523 if (PtrBits < 64) { 2524 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2525 TLI.getPointerTy(), 2526 DAG.getConstant(Offs, MVT::i64)); 2527 } else 2528 OffsVal = DAG.getIntPtrConstant(Offs); 2529 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2530 OffsVal); 2531 continue; 2532 } 2533 2534 // N = N + Idx * ElementSize; 2535 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2536 TD->getTypeAllocSize(Ty)); 2537 SDValue IdxN = getValue(Idx); 2538 2539 // If the index is smaller or larger than intptr_t, truncate or extend 2540 // it. 2541 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2542 2543 // If this is a multiply by a power of two, turn it into a shl 2544 // immediately. This is a very common case. 2545 if (ElementSize != 1) { 2546 if (ElementSize.isPowerOf2()) { 2547 unsigned Amt = ElementSize.logBase2(); 2548 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2549 N.getValueType(), IdxN, 2550 DAG.getConstant(Amt, TLI.getPointerTy())); 2551 } else { 2552 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2553 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2554 N.getValueType(), IdxN, Scale); 2555 } 2556 } 2557 2558 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2559 N.getValueType(), N, IdxN); 2560 } 2561 } 2562 setValue(&I, N); 2563 } 2564 2565 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { 2566 // If this is a fixed sized alloca in the entry block of the function, 2567 // allocate it statically on the stack. 2568 if (FuncInfo.StaticAllocaMap.count(&I)) 2569 return; // getValue will auto-populate this. 2570 2571 const Type *Ty = I.getAllocatedType(); 2572 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2573 unsigned Align = 2574 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2575 I.getAlignment()); 2576 2577 SDValue AllocSize = getValue(I.getArraySize()); 2578 2579 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2580 AllocSize, 2581 DAG.getConstant(TySize, AllocSize.getValueType())); 2582 2583 2584 2585 EVT IntPtr = TLI.getPointerTy(); 2586 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2587 2588 // Handle alignment. If the requested alignment is less than or equal to 2589 // the stack alignment, ignore it. If the size is greater than or equal to 2590 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2591 unsigned StackAlign = 2592 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 2593 if (Align <= StackAlign) 2594 Align = 0; 2595 2596 // Round the size of the allocation up to the stack alignment size 2597 // by add SA-1 to the size. 2598 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2599 AllocSize.getValueType(), AllocSize, 2600 DAG.getIntPtrConstant(StackAlign-1)); 2601 // Mask out the low bits for alignment purposes. 2602 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2603 AllocSize.getValueType(), AllocSize, 2604 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2605 2606 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2607 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2608 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2609 VTs, Ops, 3); 2610 setValue(&I, DSA); 2611 DAG.setRoot(DSA.getValue(1)); 2612 2613 // Inform the Frame Information that we have just allocated a variable-sized 2614 // object. 2615 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2616 } 2617 2618 void SelectionDAGBuilder::visitLoad(LoadInst &I) { 2619 const Value *SV = I.getOperand(0); 2620 SDValue Ptr = getValue(SV); 2621 2622 const Type *Ty = I.getType(); 2623 bool isVolatile = I.isVolatile(); 2624 unsigned Alignment = I.getAlignment(); 2625 2626 SmallVector<EVT, 4> ValueVTs; 2627 SmallVector<uint64_t, 4> Offsets; 2628 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2629 unsigned NumValues = ValueVTs.size(); 2630 if (NumValues == 0) 2631 return; 2632 2633 SDValue Root; 2634 bool ConstantMemory = false; 2635 if (I.isVolatile()) 2636 // Serialize volatile loads with other side effects. 2637 Root = getRoot(); 2638 else if (AA->pointsToConstantMemory(SV)) { 2639 // Do not serialize (non-volatile) loads of constant memory with anything. 2640 Root = DAG.getEntryNode(); 2641 ConstantMemory = true; 2642 } else { 2643 // Do not serialize non-volatile loads against each other. 2644 Root = DAG.getRoot(); 2645 } 2646 2647 SmallVector<SDValue, 4> Values(NumValues); 2648 SmallVector<SDValue, 4> Chains(NumValues); 2649 EVT PtrVT = Ptr.getValueType(); 2650 for (unsigned i = 0; i != NumValues; ++i) { 2651 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2652 DAG.getNode(ISD::ADD, getCurDebugLoc(), 2653 PtrVT, Ptr, 2654 DAG.getConstant(Offsets[i], PtrVT)), 2655 SV, Offsets[i], isVolatile, Alignment); 2656 Values[i] = L; 2657 Chains[i] = L.getValue(1); 2658 } 2659 2660 if (!ConstantMemory) { 2661 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2662 MVT::Other, 2663 &Chains[0], NumValues); 2664 if (isVolatile) 2665 DAG.setRoot(Chain); 2666 else 2667 PendingLoads.push_back(Chain); 2668 } 2669 2670 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2671 DAG.getVTList(&ValueVTs[0], NumValues), 2672 &Values[0], NumValues)); 2673 } 2674 2675 2676 void SelectionDAGBuilder::visitStore(StoreInst &I) { 2677 Value *SrcV = I.getOperand(0); 2678 Value *PtrV = I.getOperand(1); 2679 2680 SmallVector<EVT, 4> ValueVTs; 2681 SmallVector<uint64_t, 4> Offsets; 2682 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2683 unsigned NumValues = ValueVTs.size(); 2684 if (NumValues == 0) 2685 return; 2686 2687 // Get the lowered operands. Note that we do this after 2688 // checking if NumResults is zero, because with zero results 2689 // the operands won't have values in the map. 2690 SDValue Src = getValue(SrcV); 2691 SDValue Ptr = getValue(PtrV); 2692 2693 SDValue Root = getRoot(); 2694 SmallVector<SDValue, 4> Chains(NumValues); 2695 EVT PtrVT = Ptr.getValueType(); 2696 bool isVolatile = I.isVolatile(); 2697 unsigned Alignment = I.getAlignment(); 2698 for (unsigned i = 0; i != NumValues; ++i) 2699 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2700 SDValue(Src.getNode(), Src.getResNo() + i), 2701 DAG.getNode(ISD::ADD, getCurDebugLoc(), 2702 PtrVT, Ptr, 2703 DAG.getConstant(Offsets[i], PtrVT)), 2704 PtrV, Offsets[i], isVolatile, Alignment); 2705 2706 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2707 MVT::Other, &Chains[0], NumValues)); 2708 } 2709 2710 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2711 /// node. 2712 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, 2713 unsigned Intrinsic) { 2714 bool HasChain = !I.doesNotAccessMemory(); 2715 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2716 2717 // Build the operand list. 2718 SmallVector<SDValue, 8> Ops; 2719 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2720 if (OnlyLoad) { 2721 // We don't need to serialize loads against other loads. 2722 Ops.push_back(DAG.getRoot()); 2723 } else { 2724 Ops.push_back(getRoot()); 2725 } 2726 } 2727 2728 // Info is set by getTgtMemInstrinsic 2729 TargetLowering::IntrinsicInfo Info; 2730 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2731 2732 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2733 if (!IsTgtIntrinsic) 2734 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2735 2736 // Add all operands of the call to the operand list. 2737 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2738 SDValue Op = getValue(I.getOperand(i)); 2739 assert(TLI.isTypeLegal(Op.getValueType()) && 2740 "Intrinsic uses a non-legal type?"); 2741 Ops.push_back(Op); 2742 } 2743 2744 SmallVector<EVT, 4> ValueVTs; 2745 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2746 #ifndef NDEBUG 2747 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2748 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2749 "Intrinsic uses a non-legal type?"); 2750 } 2751 #endif // NDEBUG 2752 if (HasChain) 2753 ValueVTs.push_back(MVT::Other); 2754 2755 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2756 2757 // Create the node. 2758 SDValue Result; 2759 if (IsTgtIntrinsic) { 2760 // This is target intrinsic that touches memory 2761 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2762 VTs, &Ops[0], Ops.size(), 2763 Info.memVT, Info.ptrVal, Info.offset, 2764 Info.align, Info.vol, 2765 Info.readMem, Info.writeMem); 2766 } 2767 else if (!HasChain) 2768 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2769 VTs, &Ops[0], Ops.size()); 2770 else if (I.getType() != Type::getVoidTy(*DAG.getContext())) 2771 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2772 VTs, &Ops[0], Ops.size()); 2773 else 2774 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2775 VTs, &Ops[0], Ops.size()); 2776 2777 if (HasChain) { 2778 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2779 if (OnlyLoad) 2780 PendingLoads.push_back(Chain); 2781 else 2782 DAG.setRoot(Chain); 2783 } 2784 if (I.getType() != Type::getVoidTy(*DAG.getContext())) { 2785 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2786 EVT VT = TLI.getValueType(PTy); 2787 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2788 } 2789 setValue(&I, Result); 2790 } 2791 } 2792 2793 /// GetSignificand - Get the significand and build it into a floating-point 2794 /// number with exponent of 1: 2795 /// 2796 /// Op = (Op & 0x007fffff) | 0x3f800000; 2797 /// 2798 /// where Op is the hexidecimal representation of floating point value. 2799 static SDValue 2800 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2801 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2802 DAG.getConstant(0x007fffff, MVT::i32)); 2803 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2804 DAG.getConstant(0x3f800000, MVT::i32)); 2805 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2806 } 2807 2808 /// GetExponent - Get the exponent: 2809 /// 2810 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2811 /// 2812 /// where Op is the hexidecimal representation of floating point value. 2813 static SDValue 2814 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2815 DebugLoc dl) { 2816 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2817 DAG.getConstant(0x7f800000, MVT::i32)); 2818 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2819 DAG.getConstant(23, TLI.getPointerTy())); 2820 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2821 DAG.getConstant(127, MVT::i32)); 2822 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2823 } 2824 2825 /// getF32Constant - Get 32-bit floating point constant. 2826 static SDValue 2827 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2828 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2829 } 2830 2831 /// Inlined utility function to implement binary input atomic intrinsics for 2832 /// visitIntrinsicCall: I is a call instruction 2833 /// Op is the associated NodeType for I 2834 const char * 2835 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { 2836 SDValue Root = getRoot(); 2837 SDValue L = 2838 DAG.getAtomic(Op, getCurDebugLoc(), 2839 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2840 Root, 2841 getValue(I.getOperand(1)), 2842 getValue(I.getOperand(2)), 2843 I.getOperand(1)); 2844 setValue(&I, L); 2845 DAG.setRoot(L.getValue(1)); 2846 return 0; 2847 } 2848 2849 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2850 const char * 2851 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { 2852 SDValue Op1 = getValue(I.getOperand(1)); 2853 SDValue Op2 = getValue(I.getOperand(2)); 2854 2855 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2856 SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); 2857 2858 setValue(&I, Result); 2859 return 0; 2860 } 2861 2862 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2863 /// limited-precision mode. 2864 void 2865 SelectionDAGBuilder::visitExp(CallInst &I) { 2866 SDValue result; 2867 DebugLoc dl = getCurDebugLoc(); 2868 2869 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2870 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2871 SDValue Op = getValue(I.getOperand(1)); 2872 2873 // Put the exponent in the right bit position for later addition to the 2874 // final result: 2875 // 2876 // #define LOG2OFe 1.4426950f 2877 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 2878 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 2879 getF32Constant(DAG, 0x3fb8aa3b)); 2880 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 2881 2882 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 2883 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 2884 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 2885 2886 // IntegerPartOfX <<= 23; 2887 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 2888 DAG.getConstant(23, TLI.getPointerTy())); 2889 2890 if (LimitFloatPrecision <= 6) { 2891 // For floating-point precision of 6: 2892 // 2893 // TwoToFractionalPartOfX = 2894 // 0.997535578f + 2895 // (0.735607626f + 0.252464424f * x) * x; 2896 // 2897 // error 0.0144103317, which is 6 bits 2898 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2899 getF32Constant(DAG, 0x3e814304)); 2900 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2901 getF32Constant(DAG, 0x3f3c50c8)); 2902 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2903 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2904 getF32Constant(DAG, 0x3f7f5e7e)); 2905 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 2906 2907 // Add the exponent into the result in integer domain. 2908 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2909 TwoToFracPartOfX, IntegerPartOfX); 2910 2911 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 2912 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 2913 // For floating-point precision of 12: 2914 // 2915 // TwoToFractionalPartOfX = 2916 // 0.999892986f + 2917 // (0.696457318f + 2918 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 2919 // 2920 // 0.000107046256 error, which is 13 to 14 bits 2921 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2922 getF32Constant(DAG, 0x3da235e3)); 2923 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2924 getF32Constant(DAG, 0x3e65b8f3)); 2925 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2926 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2927 getF32Constant(DAG, 0x3f324b07)); 2928 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 2929 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 2930 getF32Constant(DAG, 0x3f7ff8fd)); 2931 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 2932 2933 // Add the exponent into the result in integer domain. 2934 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2935 TwoToFracPartOfX, IntegerPartOfX); 2936 2937 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 2938 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 2939 // For floating-point precision of 18: 2940 // 2941 // TwoToFractionalPartOfX = 2942 // 0.999999982f + 2943 // (0.693148872f + 2944 // (0.240227044f + 2945 // (0.554906021e-1f + 2946 // (0.961591928e-2f + 2947 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 2948 // 2949 // error 2.47208000*10^(-7), which is better than 18 bits 2950 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2951 getF32Constant(DAG, 0x3924b03e)); 2952 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2953 getF32Constant(DAG, 0x3ab24b87)); 2954 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2955 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2956 getF32Constant(DAG, 0x3c1d8c17)); 2957 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 2958 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 2959 getF32Constant(DAG, 0x3d634a1d)); 2960 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 2961 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 2962 getF32Constant(DAG, 0x3e75fe14)); 2963 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 2964 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 2965 getF32Constant(DAG, 0x3f317234)); 2966 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 2967 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 2968 getF32Constant(DAG, 0x3f800000)); 2969 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 2970 MVT::i32, t13); 2971 2972 // Add the exponent into the result in integer domain. 2973 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2974 TwoToFracPartOfX, IntegerPartOfX); 2975 2976 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 2977 } 2978 } else { 2979 // No special expansion. 2980 result = DAG.getNode(ISD::FEXP, dl, 2981 getValue(I.getOperand(1)).getValueType(), 2982 getValue(I.getOperand(1))); 2983 } 2984 2985 setValue(&I, result); 2986 } 2987 2988 /// visitLog - Lower a log intrinsic. Handles the special sequences for 2989 /// limited-precision mode. 2990 void 2991 SelectionDAGBuilder::visitLog(CallInst &I) { 2992 SDValue result; 2993 DebugLoc dl = getCurDebugLoc(); 2994 2995 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2996 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2997 SDValue Op = getValue(I.getOperand(1)); 2998 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 2999 3000 // Scale the exponent by log(2) [0.69314718f]. 3001 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3002 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3003 getF32Constant(DAG, 0x3f317218)); 3004 3005 // Get the significand and build it into a floating-point number with 3006 // exponent of 1. 3007 SDValue X = GetSignificand(DAG, Op1, dl); 3008 3009 if (LimitFloatPrecision <= 6) { 3010 // For floating-point precision of 6: 3011 // 3012 // LogofMantissa = 3013 // -1.1609546f + 3014 // (1.4034025f - 0.23903021f * x) * x; 3015 // 3016 // error 0.0034276066, which is better than 8 bits 3017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3018 getF32Constant(DAG, 0xbe74c456)); 3019 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3020 getF32Constant(DAG, 0x3fb3a2b1)); 3021 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3022 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3023 getF32Constant(DAG, 0x3f949a29)); 3024 3025 result = DAG.getNode(ISD::FADD, dl, 3026 MVT::f32, LogOfExponent, LogOfMantissa); 3027 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3028 // For floating-point precision of 12: 3029 // 3030 // LogOfMantissa = 3031 // -1.7417939f + 3032 // (2.8212026f + 3033 // (-1.4699568f + 3034 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3035 // 3036 // error 0.000061011436, which is 14 bits 3037 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3038 getF32Constant(DAG, 0xbd67b6d6)); 3039 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3040 getF32Constant(DAG, 0x3ee4f4b8)); 3041 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3042 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3043 getF32Constant(DAG, 0x3fbc278b)); 3044 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3045 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3046 getF32Constant(DAG, 0x40348e95)); 3047 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3048 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3049 getF32Constant(DAG, 0x3fdef31a)); 3050 3051 result = DAG.getNode(ISD::FADD, dl, 3052 MVT::f32, LogOfExponent, LogOfMantissa); 3053 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3054 // For floating-point precision of 18: 3055 // 3056 // LogOfMantissa = 3057 // -2.1072184f + 3058 // (4.2372794f + 3059 // (-3.7029485f + 3060 // (2.2781945f + 3061 // (-0.87823314f + 3062 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3063 // 3064 // error 0.0000023660568, which is better than 18 bits 3065 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3066 getF32Constant(DAG, 0xbc91e5ac)); 3067 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3068 getF32Constant(DAG, 0x3e4350aa)); 3069 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3070 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3071 getF32Constant(DAG, 0x3f60d3e3)); 3072 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3073 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3074 getF32Constant(DAG, 0x4011cdf0)); 3075 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3076 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3077 getF32Constant(DAG, 0x406cfd1c)); 3078 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3079 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3080 getF32Constant(DAG, 0x408797cb)); 3081 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3082 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3083 getF32Constant(DAG, 0x4006dcab)); 3084 3085 result = DAG.getNode(ISD::FADD, dl, 3086 MVT::f32, LogOfExponent, LogOfMantissa); 3087 } 3088 } else { 3089 // No special expansion. 3090 result = DAG.getNode(ISD::FLOG, dl, 3091 getValue(I.getOperand(1)).getValueType(), 3092 getValue(I.getOperand(1))); 3093 } 3094 3095 setValue(&I, result); 3096 } 3097 3098 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3099 /// limited-precision mode. 3100 void 3101 SelectionDAGBuilder::visitLog2(CallInst &I) { 3102 SDValue result; 3103 DebugLoc dl = getCurDebugLoc(); 3104 3105 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3106 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3107 SDValue Op = getValue(I.getOperand(1)); 3108 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3109 3110 // Get the exponent. 3111 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3112 3113 // Get the significand and build it into a floating-point number with 3114 // exponent of 1. 3115 SDValue X = GetSignificand(DAG, Op1, dl); 3116 3117 // Different possible minimax approximations of significand in 3118 // floating-point for various degrees of accuracy over [1,2]. 3119 if (LimitFloatPrecision <= 6) { 3120 // For floating-point precision of 6: 3121 // 3122 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3123 // 3124 // error 0.0049451742, which is more than 7 bits 3125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3126 getF32Constant(DAG, 0xbeb08fe0)); 3127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3128 getF32Constant(DAG, 0x40019463)); 3129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3130 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3131 getF32Constant(DAG, 0x3fd6633d)); 3132 3133 result = DAG.getNode(ISD::FADD, dl, 3134 MVT::f32, LogOfExponent, Log2ofMantissa); 3135 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3136 // For floating-point precision of 12: 3137 // 3138 // Log2ofMantissa = 3139 // -2.51285454f + 3140 // (4.07009056f + 3141 // (-2.12067489f + 3142 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3143 // 3144 // error 0.0000876136000, which is better than 13 bits 3145 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3146 getF32Constant(DAG, 0xbda7262e)); 3147 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3148 getF32Constant(DAG, 0x3f25280b)); 3149 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3150 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3151 getF32Constant(DAG, 0x4007b923)); 3152 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3153 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3154 getF32Constant(DAG, 0x40823e2f)); 3155 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3156 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3157 getF32Constant(DAG, 0x4020d29c)); 3158 3159 result = DAG.getNode(ISD::FADD, dl, 3160 MVT::f32, LogOfExponent, Log2ofMantissa); 3161 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3162 // For floating-point precision of 18: 3163 // 3164 // Log2ofMantissa = 3165 // -3.0400495f + 3166 // (6.1129976f + 3167 // (-5.3420409f + 3168 // (3.2865683f + 3169 // (-1.2669343f + 3170 // (0.27515199f - 3171 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3172 // 3173 // error 0.0000018516, which is better than 18 bits 3174 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3175 getF32Constant(DAG, 0xbcd2769e)); 3176 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3177 getF32Constant(DAG, 0x3e8ce0b9)); 3178 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3179 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3180 getF32Constant(DAG, 0x3fa22ae7)); 3181 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3182 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3183 getF32Constant(DAG, 0x40525723)); 3184 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3185 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3186 getF32Constant(DAG, 0x40aaf200)); 3187 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3188 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3189 getF32Constant(DAG, 0x40c39dad)); 3190 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3191 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3192 getF32Constant(DAG, 0x4042902c)); 3193 3194 result = DAG.getNode(ISD::FADD, dl, 3195 MVT::f32, LogOfExponent, Log2ofMantissa); 3196 } 3197 } else { 3198 // No special expansion. 3199 result = DAG.getNode(ISD::FLOG2, dl, 3200 getValue(I.getOperand(1)).getValueType(), 3201 getValue(I.getOperand(1))); 3202 } 3203 3204 setValue(&I, result); 3205 } 3206 3207 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3208 /// limited-precision mode. 3209 void 3210 SelectionDAGBuilder::visitLog10(CallInst &I) { 3211 SDValue result; 3212 DebugLoc dl = getCurDebugLoc(); 3213 3214 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3215 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3216 SDValue Op = getValue(I.getOperand(1)); 3217 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3218 3219 // Scale the exponent by log10(2) [0.30102999f]. 3220 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3221 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3222 getF32Constant(DAG, 0x3e9a209a)); 3223 3224 // Get the significand and build it into a floating-point number with 3225 // exponent of 1. 3226 SDValue X = GetSignificand(DAG, Op1, dl); 3227 3228 if (LimitFloatPrecision <= 6) { 3229 // For floating-point precision of 6: 3230 // 3231 // Log10ofMantissa = 3232 // -0.50419619f + 3233 // (0.60948995f - 0.10380950f * x) * x; 3234 // 3235 // error 0.0014886165, which is 6 bits 3236 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3237 getF32Constant(DAG, 0xbdd49a13)); 3238 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3239 getF32Constant(DAG, 0x3f1c0789)); 3240 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3241 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3242 getF32Constant(DAG, 0x3f011300)); 3243 3244 result = DAG.getNode(ISD::FADD, dl, 3245 MVT::f32, LogOfExponent, Log10ofMantissa); 3246 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3247 // For floating-point precision of 12: 3248 // 3249 // Log10ofMantissa = 3250 // -0.64831180f + 3251 // (0.91751397f + 3252 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3253 // 3254 // error 0.00019228036, which is better than 12 bits 3255 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3256 getF32Constant(DAG, 0x3d431f31)); 3257 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3258 getF32Constant(DAG, 0x3ea21fb2)); 3259 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3260 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3261 getF32Constant(DAG, 0x3f6ae232)); 3262 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3263 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3264 getF32Constant(DAG, 0x3f25f7c3)); 3265 3266 result = DAG.getNode(ISD::FADD, dl, 3267 MVT::f32, LogOfExponent, Log10ofMantissa); 3268 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3269 // For floating-point precision of 18: 3270 // 3271 // Log10ofMantissa = 3272 // -0.84299375f + 3273 // (1.5327582f + 3274 // (-1.0688956f + 3275 // (0.49102474f + 3276 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3277 // 3278 // error 0.0000037995730, which is better than 18 bits 3279 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3280 getF32Constant(DAG, 0x3c5d51ce)); 3281 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3282 getF32Constant(DAG, 0x3e00685a)); 3283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3284 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3285 getF32Constant(DAG, 0x3efb6798)); 3286 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3287 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3288 getF32Constant(DAG, 0x3f88d192)); 3289 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3290 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3291 getF32Constant(DAG, 0x3fc4316c)); 3292 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3293 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3294 getF32Constant(DAG, 0x3f57ce70)); 3295 3296 result = DAG.getNode(ISD::FADD, dl, 3297 MVT::f32, LogOfExponent, Log10ofMantissa); 3298 } 3299 } else { 3300 // No special expansion. 3301 result = DAG.getNode(ISD::FLOG10, dl, 3302 getValue(I.getOperand(1)).getValueType(), 3303 getValue(I.getOperand(1))); 3304 } 3305 3306 setValue(&I, result); 3307 } 3308 3309 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3310 /// limited-precision mode. 3311 void 3312 SelectionDAGBuilder::visitExp2(CallInst &I) { 3313 SDValue result; 3314 DebugLoc dl = getCurDebugLoc(); 3315 3316 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3317 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3318 SDValue Op = getValue(I.getOperand(1)); 3319 3320 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3321 3322 // FractionalPartOfX = x - (float)IntegerPartOfX; 3323 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3324 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3325 3326 // IntegerPartOfX <<= 23; 3327 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3328 DAG.getConstant(23, TLI.getPointerTy())); 3329 3330 if (LimitFloatPrecision <= 6) { 3331 // For floating-point precision of 6: 3332 // 3333 // TwoToFractionalPartOfX = 3334 // 0.997535578f + 3335 // (0.735607626f + 0.252464424f * x) * x; 3336 // 3337 // error 0.0144103317, which is 6 bits 3338 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3339 getF32Constant(DAG, 0x3e814304)); 3340 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3341 getF32Constant(DAG, 0x3f3c50c8)); 3342 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3343 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3344 getF32Constant(DAG, 0x3f7f5e7e)); 3345 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3346 SDValue TwoToFractionalPartOfX = 3347 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3348 3349 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3350 MVT::f32, TwoToFractionalPartOfX); 3351 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3352 // For floating-point precision of 12: 3353 // 3354 // TwoToFractionalPartOfX = 3355 // 0.999892986f + 3356 // (0.696457318f + 3357 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3358 // 3359 // error 0.000107046256, which is 13 to 14 bits 3360 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3361 getF32Constant(DAG, 0x3da235e3)); 3362 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3363 getF32Constant(DAG, 0x3e65b8f3)); 3364 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3365 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3366 getF32Constant(DAG, 0x3f324b07)); 3367 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3368 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3369 getF32Constant(DAG, 0x3f7ff8fd)); 3370 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3371 SDValue TwoToFractionalPartOfX = 3372 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3373 3374 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3375 MVT::f32, TwoToFractionalPartOfX); 3376 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3377 // For floating-point precision of 18: 3378 // 3379 // TwoToFractionalPartOfX = 3380 // 0.999999982f + 3381 // (0.693148872f + 3382 // (0.240227044f + 3383 // (0.554906021e-1f + 3384 // (0.961591928e-2f + 3385 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3386 // error 2.47208000*10^(-7), which is better than 18 bits 3387 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3388 getF32Constant(DAG, 0x3924b03e)); 3389 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3390 getF32Constant(DAG, 0x3ab24b87)); 3391 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3392 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3393 getF32Constant(DAG, 0x3c1d8c17)); 3394 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3395 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3396 getF32Constant(DAG, 0x3d634a1d)); 3397 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3398 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3399 getF32Constant(DAG, 0x3e75fe14)); 3400 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3401 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3402 getF32Constant(DAG, 0x3f317234)); 3403 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3404 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3405 getF32Constant(DAG, 0x3f800000)); 3406 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3407 SDValue TwoToFractionalPartOfX = 3408 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3409 3410 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3411 MVT::f32, TwoToFractionalPartOfX); 3412 } 3413 } else { 3414 // No special expansion. 3415 result = DAG.getNode(ISD::FEXP2, dl, 3416 getValue(I.getOperand(1)).getValueType(), 3417 getValue(I.getOperand(1))); 3418 } 3419 3420 setValue(&I, result); 3421 } 3422 3423 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3424 /// limited-precision mode with x == 10.0f. 3425 void 3426 SelectionDAGBuilder::visitPow(CallInst &I) { 3427 SDValue result; 3428 Value *Val = I.getOperand(1); 3429 DebugLoc dl = getCurDebugLoc(); 3430 bool IsExp10 = false; 3431 3432 if (getValue(Val).getValueType() == MVT::f32 && 3433 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3434 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3435 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3436 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3437 APFloat Ten(10.0f); 3438 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3439 } 3440 } 3441 } 3442 3443 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3444 SDValue Op = getValue(I.getOperand(2)); 3445 3446 // Put the exponent in the right bit position for later addition to the 3447 // final result: 3448 // 3449 // #define LOG2OF10 3.3219281f 3450 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3451 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3452 getF32Constant(DAG, 0x40549a78)); 3453 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3454 3455 // FractionalPartOfX = x - (float)IntegerPartOfX; 3456 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3457 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3458 3459 // IntegerPartOfX <<= 23; 3460 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3461 DAG.getConstant(23, TLI.getPointerTy())); 3462 3463 if (LimitFloatPrecision <= 6) { 3464 // For floating-point precision of 6: 3465 // 3466 // twoToFractionalPartOfX = 3467 // 0.997535578f + 3468 // (0.735607626f + 0.252464424f * x) * x; 3469 // 3470 // error 0.0144103317, which is 6 bits 3471 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3472 getF32Constant(DAG, 0x3e814304)); 3473 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3474 getF32Constant(DAG, 0x3f3c50c8)); 3475 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3476 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3477 getF32Constant(DAG, 0x3f7f5e7e)); 3478 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3479 SDValue TwoToFractionalPartOfX = 3480 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3481 3482 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3483 MVT::f32, TwoToFractionalPartOfX); 3484 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3485 // For floating-point precision of 12: 3486 // 3487 // TwoToFractionalPartOfX = 3488 // 0.999892986f + 3489 // (0.696457318f + 3490 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3491 // 3492 // error 0.000107046256, which is 13 to 14 bits 3493 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3494 getF32Constant(DAG, 0x3da235e3)); 3495 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3496 getF32Constant(DAG, 0x3e65b8f3)); 3497 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3498 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3499 getF32Constant(DAG, 0x3f324b07)); 3500 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3501 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3502 getF32Constant(DAG, 0x3f7ff8fd)); 3503 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3504 SDValue TwoToFractionalPartOfX = 3505 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3506 3507 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3508 MVT::f32, TwoToFractionalPartOfX); 3509 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3510 // For floating-point precision of 18: 3511 // 3512 // TwoToFractionalPartOfX = 3513 // 0.999999982f + 3514 // (0.693148872f + 3515 // (0.240227044f + 3516 // (0.554906021e-1f + 3517 // (0.961591928e-2f + 3518 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3519 // error 2.47208000*10^(-7), which is better than 18 bits 3520 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3521 getF32Constant(DAG, 0x3924b03e)); 3522 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3523 getF32Constant(DAG, 0x3ab24b87)); 3524 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3525 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3526 getF32Constant(DAG, 0x3c1d8c17)); 3527 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3528 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3529 getF32Constant(DAG, 0x3d634a1d)); 3530 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3531 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3532 getF32Constant(DAG, 0x3e75fe14)); 3533 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3534 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3535 getF32Constant(DAG, 0x3f317234)); 3536 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3537 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3538 getF32Constant(DAG, 0x3f800000)); 3539 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3540 SDValue TwoToFractionalPartOfX = 3541 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3542 3543 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3544 MVT::f32, TwoToFractionalPartOfX); 3545 } 3546 } else { 3547 // No special expansion. 3548 result = DAG.getNode(ISD::FPOW, dl, 3549 getValue(I.getOperand(1)).getValueType(), 3550 getValue(I.getOperand(1)), 3551 getValue(I.getOperand(2))); 3552 } 3553 3554 setValue(&I, result); 3555 } 3556 3557 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3558 /// we want to emit this as a call to a named external function, return the name 3559 /// otherwise lower it and return null. 3560 const char * 3561 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { 3562 DebugLoc dl = getCurDebugLoc(); 3563 switch (Intrinsic) { 3564 default: 3565 // By default, turn this into a target intrinsic node. 3566 visitTargetIntrinsic(I, Intrinsic); 3567 return 0; 3568 case Intrinsic::vastart: visitVAStart(I); return 0; 3569 case Intrinsic::vaend: visitVAEnd(I); return 0; 3570 case Intrinsic::vacopy: visitVACopy(I); return 0; 3571 case Intrinsic::returnaddress: 3572 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3573 getValue(I.getOperand(1)))); 3574 return 0; 3575 case Intrinsic::frameaddress: 3576 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3577 getValue(I.getOperand(1)))); 3578 return 0; 3579 case Intrinsic::setjmp: 3580 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3581 break; 3582 case Intrinsic::longjmp: 3583 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3584 break; 3585 case Intrinsic::memcpy: { 3586 SDValue Op1 = getValue(I.getOperand(1)); 3587 SDValue Op2 = getValue(I.getOperand(2)); 3588 SDValue Op3 = getValue(I.getOperand(3)); 3589 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3590 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 3591 I.getOperand(1), 0, I.getOperand(2), 0)); 3592 return 0; 3593 } 3594 case Intrinsic::memset: { 3595 SDValue Op1 = getValue(I.getOperand(1)); 3596 SDValue Op2 = getValue(I.getOperand(2)); 3597 SDValue Op3 = getValue(I.getOperand(3)); 3598 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3599 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, 3600 I.getOperand(1), 0)); 3601 return 0; 3602 } 3603 case Intrinsic::memmove: { 3604 SDValue Op1 = getValue(I.getOperand(1)); 3605 SDValue Op2 = getValue(I.getOperand(2)); 3606 SDValue Op3 = getValue(I.getOperand(3)); 3607 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3608 3609 // If the source and destination are known to not be aliases, we can 3610 // lower memmove as memcpy. 3611 uint64_t Size = -1ULL; 3612 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3613 Size = C->getZExtValue(); 3614 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3615 AliasAnalysis::NoAlias) { 3616 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 3617 I.getOperand(1), 0, I.getOperand(2), 0)); 3618 return 0; 3619 } 3620 3621 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, 3622 I.getOperand(1), 0, I.getOperand(2), 0)); 3623 return 0; 3624 } 3625 case Intrinsic::dbg_stoppoint: 3626 case Intrinsic::dbg_region_start: 3627 case Intrinsic::dbg_region_end: 3628 case Intrinsic::dbg_func_start: 3629 // FIXME - Remove this instructions once the dust settles. 3630 return 0; 3631 case Intrinsic::dbg_declare: { 3632 if (OptLevel != CodeGenOpt::None) 3633 // FIXME: Variable debug info is not supported here. 3634 return 0; 3635 DwarfWriter *DW = DAG.getDwarfWriter(); 3636 if (!DW) 3637 return 0; 3638 DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3639 if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) 3640 return 0; 3641 3642 MDNode *Variable = DI.getVariable(); 3643 Value *Address = DI.getAddress(); 3644 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3645 Address = BCI->getOperand(0); 3646 AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3647 // Don't handle byval struct arguments or VLAs, for example. 3648 if (!AI) 3649 return 0; 3650 DenseMap<const AllocaInst*, int>::iterator SI = 3651 FuncInfo.StaticAllocaMap.find(AI); 3652 if (SI == FuncInfo.StaticAllocaMap.end()) 3653 return 0; // VLAs. 3654 int FI = SI->second; 3655 3656 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3657 if (MMI) { 3658 MetadataContext &TheMetadata = 3659 DI.getParent()->getContext().getMetadata(); 3660 unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); 3661 MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI); 3662 MMI->setVariableDbgInfo(Variable, FI, Dbg); 3663 } 3664 return 0; 3665 } 3666 case Intrinsic::eh_exception: { 3667 // Insert the EXCEPTIONADDR instruction. 3668 assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); 3669 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3670 SDValue Ops[1]; 3671 Ops[0] = DAG.getRoot(); 3672 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3673 setValue(&I, Op); 3674 DAG.setRoot(Op.getValue(1)); 3675 return 0; 3676 } 3677 3678 case Intrinsic::eh_selector: { 3679 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3680 3681 if (CurMBB->isLandingPad()) 3682 AddCatchInfo(I, MMI, CurMBB); 3683 else { 3684 #ifndef NDEBUG 3685 FuncInfo.CatchInfoLost.insert(&I); 3686 #endif 3687 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3688 unsigned Reg = TLI.getExceptionSelectorRegister(); 3689 if (Reg) CurMBB->addLiveIn(Reg); 3690 } 3691 3692 // Insert the EHSELECTION instruction. 3693 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3694 SDValue Ops[2]; 3695 Ops[0] = getValue(I.getOperand(1)); 3696 Ops[1] = getRoot(); 3697 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3698 3699 DAG.setRoot(Op.getValue(1)); 3700 3701 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3702 return 0; 3703 } 3704 3705 case Intrinsic::eh_typeid_for: { 3706 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3707 3708 if (MMI) { 3709 // Find the type id for the given typeinfo. 3710 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3711 3712 unsigned TypeID = MMI->getTypeIDFor(GV); 3713 setValue(&I, DAG.getConstant(TypeID, MVT::i32)); 3714 } else { 3715 // Return something different to eh_selector. 3716 setValue(&I, DAG.getConstant(1, MVT::i32)); 3717 } 3718 3719 return 0; 3720 } 3721 3722 case Intrinsic::eh_return_i32: 3723 case Intrinsic::eh_return_i64: 3724 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3725 MMI->setCallsEHReturn(true); 3726 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3727 MVT::Other, 3728 getControlRoot(), 3729 getValue(I.getOperand(1)), 3730 getValue(I.getOperand(2)))); 3731 } else { 3732 setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); 3733 } 3734 3735 return 0; 3736 case Intrinsic::eh_unwind_init: 3737 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3738 MMI->setCallsUnwindInit(true); 3739 } 3740 3741 return 0; 3742 3743 case Intrinsic::eh_dwarf_cfa: { 3744 EVT VT = getValue(I.getOperand(1)).getValueType(); 3745 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3746 TLI.getPointerTy()); 3747 3748 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3749 TLI.getPointerTy(), 3750 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3751 TLI.getPointerTy()), 3752 CfaArg); 3753 setValue(&I, DAG.getNode(ISD::ADD, dl, 3754 TLI.getPointerTy(), 3755 DAG.getNode(ISD::FRAMEADDR, dl, 3756 TLI.getPointerTy(), 3757 DAG.getConstant(0, 3758 TLI.getPointerTy())), 3759 Offset)); 3760 return 0; 3761 } 3762 case Intrinsic::convertff: 3763 case Intrinsic::convertfsi: 3764 case Intrinsic::convertfui: 3765 case Intrinsic::convertsif: 3766 case Intrinsic::convertuif: 3767 case Intrinsic::convertss: 3768 case Intrinsic::convertsu: 3769 case Intrinsic::convertus: 3770 case Intrinsic::convertuu: { 3771 ISD::CvtCode Code = ISD::CVT_INVALID; 3772 switch (Intrinsic) { 3773 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 3774 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 3775 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 3776 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 3777 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 3778 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 3779 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 3780 case Intrinsic::convertus: Code = ISD::CVT_US; break; 3781 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 3782 } 3783 EVT DestVT = TLI.getValueType(I.getType()); 3784 Value* Op1 = I.getOperand(1); 3785 setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 3786 DAG.getValueType(DestVT), 3787 DAG.getValueType(getValue(Op1).getValueType()), 3788 getValue(I.getOperand(2)), 3789 getValue(I.getOperand(3)), 3790 Code)); 3791 return 0; 3792 } 3793 3794 case Intrinsic::sqrt: 3795 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 3796 getValue(I.getOperand(1)).getValueType(), 3797 getValue(I.getOperand(1)))); 3798 return 0; 3799 case Intrinsic::powi: 3800 setValue(&I, DAG.getNode(ISD::FPOWI, dl, 3801 getValue(I.getOperand(1)).getValueType(), 3802 getValue(I.getOperand(1)), 3803 getValue(I.getOperand(2)))); 3804 return 0; 3805 case Intrinsic::sin: 3806 setValue(&I, DAG.getNode(ISD::FSIN, dl, 3807 getValue(I.getOperand(1)).getValueType(), 3808 getValue(I.getOperand(1)))); 3809 return 0; 3810 case Intrinsic::cos: 3811 setValue(&I, DAG.getNode(ISD::FCOS, dl, 3812 getValue(I.getOperand(1)).getValueType(), 3813 getValue(I.getOperand(1)))); 3814 return 0; 3815 case Intrinsic::log: 3816 visitLog(I); 3817 return 0; 3818 case Intrinsic::log2: 3819 visitLog2(I); 3820 return 0; 3821 case Intrinsic::log10: 3822 visitLog10(I); 3823 return 0; 3824 case Intrinsic::exp: 3825 visitExp(I); 3826 return 0; 3827 case Intrinsic::exp2: 3828 visitExp2(I); 3829 return 0; 3830 case Intrinsic::pow: 3831 visitPow(I); 3832 return 0; 3833 case Intrinsic::pcmarker: { 3834 SDValue Tmp = getValue(I.getOperand(1)); 3835 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 3836 return 0; 3837 } 3838 case Intrinsic::readcyclecounter: { 3839 SDValue Op = getRoot(); 3840 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, 3841 DAG.getVTList(MVT::i64, MVT::Other), 3842 &Op, 1); 3843 setValue(&I, Tmp); 3844 DAG.setRoot(Tmp.getValue(1)); 3845 return 0; 3846 } 3847 case Intrinsic::bswap: 3848 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 3849 getValue(I.getOperand(1)).getValueType(), 3850 getValue(I.getOperand(1)))); 3851 return 0; 3852 case Intrinsic::cttz: { 3853 SDValue Arg = getValue(I.getOperand(1)); 3854 EVT Ty = Arg.getValueType(); 3855 SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); 3856 setValue(&I, result); 3857 return 0; 3858 } 3859 case Intrinsic::ctlz: { 3860 SDValue Arg = getValue(I.getOperand(1)); 3861 EVT Ty = Arg.getValueType(); 3862 SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); 3863 setValue(&I, result); 3864 return 0; 3865 } 3866 case Intrinsic::ctpop: { 3867 SDValue Arg = getValue(I.getOperand(1)); 3868 EVT Ty = Arg.getValueType(); 3869 SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); 3870 setValue(&I, result); 3871 return 0; 3872 } 3873 case Intrinsic::stacksave: { 3874 SDValue Op = getRoot(); 3875 SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, 3876 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 3877 setValue(&I, Tmp); 3878 DAG.setRoot(Tmp.getValue(1)); 3879 return 0; 3880 } 3881 case Intrinsic::stackrestore: { 3882 SDValue Tmp = getValue(I.getOperand(1)); 3883 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); 3884 return 0; 3885 } 3886 case Intrinsic::stackprotector: { 3887 // Emit code into the DAG to store the stack guard onto the stack. 3888 MachineFunction &MF = DAG.getMachineFunction(); 3889 MachineFrameInfo *MFI = MF.getFrameInfo(); 3890 EVT PtrTy = TLI.getPointerTy(); 3891 3892 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 3893 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 3894 3895 int FI = FuncInfo.StaticAllocaMap[Slot]; 3896 MFI->setStackProtectorIndex(FI); 3897 3898 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 3899 3900 // Store the stack protector onto the stack. 3901 SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 3902 PseudoSourceValue::getFixedStack(FI), 3903 0, true); 3904 setValue(&I, Result); 3905 DAG.setRoot(Result); 3906 return 0; 3907 } 3908 case Intrinsic::objectsize: { 3909 // If we don't know by now, we're never going to know. 3910 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 3911 3912 assert(CI && "Non-constant type in __builtin_object_size?"); 3913 3914 SDValue Arg = getValue(I.getOperand(0)); 3915 EVT Ty = Arg.getValueType(); 3916 3917 if (CI->getZExtValue() < 2) 3918 setValue(&I, DAG.getConstant(-1ULL, Ty)); 3919 else 3920 setValue(&I, DAG.getConstant(0, Ty)); 3921 return 0; 3922 } 3923 case Intrinsic::var_annotation: 3924 // Discard annotate attributes 3925 return 0; 3926 3927 case Intrinsic::init_trampoline: { 3928 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 3929 3930 SDValue Ops[6]; 3931 Ops[0] = getRoot(); 3932 Ops[1] = getValue(I.getOperand(1)); 3933 Ops[2] = getValue(I.getOperand(2)); 3934 Ops[3] = getValue(I.getOperand(3)); 3935 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 3936 Ops[5] = DAG.getSrcValue(F); 3937 3938 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, 3939 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 3940 Ops, 6); 3941 3942 setValue(&I, Tmp); 3943 DAG.setRoot(Tmp.getValue(1)); 3944 return 0; 3945 } 3946 3947 case Intrinsic::gcroot: 3948 if (GFI) { 3949 Value *Alloca = I.getOperand(1); 3950 Constant *TypeMap = cast<Constant>(I.getOperand(2)); 3951 3952 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 3953 GFI->addStackRoot(FI->getIndex(), TypeMap); 3954 } 3955 return 0; 3956 3957 case Intrinsic::gcread: 3958 case Intrinsic::gcwrite: 3959 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 3960 return 0; 3961 3962 case Intrinsic::flt_rounds: { 3963 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 3964 return 0; 3965 } 3966 3967 case Intrinsic::trap: { 3968 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 3969 return 0; 3970 } 3971 3972 case Intrinsic::uadd_with_overflow: 3973 return implVisitAluOverflow(I, ISD::UADDO); 3974 case Intrinsic::sadd_with_overflow: 3975 return implVisitAluOverflow(I, ISD::SADDO); 3976 case Intrinsic::usub_with_overflow: 3977 return implVisitAluOverflow(I, ISD::USUBO); 3978 case Intrinsic::ssub_with_overflow: 3979 return implVisitAluOverflow(I, ISD::SSUBO); 3980 case Intrinsic::umul_with_overflow: 3981 return implVisitAluOverflow(I, ISD::UMULO); 3982 case Intrinsic::smul_with_overflow: 3983 return implVisitAluOverflow(I, ISD::SMULO); 3984 3985 case Intrinsic::prefetch: { 3986 SDValue Ops[4]; 3987 Ops[0] = getRoot(); 3988 Ops[1] = getValue(I.getOperand(1)); 3989 Ops[2] = getValue(I.getOperand(2)); 3990 Ops[3] = getValue(I.getOperand(3)); 3991 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 3992 return 0; 3993 } 3994 3995 case Intrinsic::memory_barrier: { 3996 SDValue Ops[6]; 3997 Ops[0] = getRoot(); 3998 for (int x = 1; x < 6; ++x) 3999 Ops[x] = getValue(I.getOperand(x)); 4000 4001 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4002 return 0; 4003 } 4004 case Intrinsic::atomic_cmp_swap: { 4005 SDValue Root = getRoot(); 4006 SDValue L = 4007 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4008 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4009 Root, 4010 getValue(I.getOperand(1)), 4011 getValue(I.getOperand(2)), 4012 getValue(I.getOperand(3)), 4013 I.getOperand(1)); 4014 setValue(&I, L); 4015 DAG.setRoot(L.getValue(1)); 4016 return 0; 4017 } 4018 case Intrinsic::atomic_load_add: 4019 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4020 case Intrinsic::atomic_load_sub: 4021 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4022 case Intrinsic::atomic_load_or: 4023 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4024 case Intrinsic::atomic_load_xor: 4025 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4026 case Intrinsic::atomic_load_and: 4027 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4028 case Intrinsic::atomic_load_nand: 4029 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4030 case Intrinsic::atomic_load_max: 4031 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4032 case Intrinsic::atomic_load_min: 4033 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4034 case Intrinsic::atomic_load_umin: 4035 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4036 case Intrinsic::atomic_load_umax: 4037 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4038 case Intrinsic::atomic_swap: 4039 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4040 4041 case Intrinsic::invariant_start: 4042 case Intrinsic::lifetime_start: 4043 // Discard region information. 4044 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4045 return 0; 4046 case Intrinsic::invariant_end: 4047 case Intrinsic::lifetime_end: 4048 // Discard region information. 4049 return 0; 4050 } 4051 } 4052 4053 /// Test if the given instruction is in a position to be optimized 4054 /// with a tail-call. This roughly means that it's in a block with 4055 /// a return and there's nothing that needs to be scheduled 4056 /// between it and the return. 4057 /// 4058 /// This function only tests target-independent requirements. 4059 /// For target-dependent requirements, a target should override 4060 /// TargetLowering::IsEligibleForTailCallOptimization. 4061 /// 4062 static bool 4063 isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr, 4064 const TargetLowering &TLI) { 4065 const BasicBlock *ExitBB = I->getParent(); 4066 const TerminatorInst *Term = ExitBB->getTerminator(); 4067 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 4068 const Function *F = ExitBB->getParent(); 4069 4070 // The block must end in a return statement or an unreachable. 4071 if (!Ret && !isa<UnreachableInst>(Term)) return false; 4072 4073 // If I will have a chain, make sure no other instruction that will have a 4074 // chain interposes between I and the return. 4075 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 4076 !I->isSafeToSpeculativelyExecute()) 4077 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 4078 --BBI) { 4079 if (&*BBI == I) 4080 break; 4081 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 4082 !BBI->isSafeToSpeculativelyExecute()) 4083 return false; 4084 } 4085 4086 // If the block ends with a void return or unreachable, it doesn't matter 4087 // what the call's return type is. 4088 if (!Ret || Ret->getNumOperands() == 0) return true; 4089 4090 // If the return value is undef, it doesn't matter what the call's 4091 // return type is. 4092 if (isa<UndefValue>(Ret->getOperand(0))) return true; 4093 4094 // Conservatively require the attributes of the call to match those of 4095 // the return. Ignore noalias because it doesn't affect the call sequence. 4096 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 4097 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 4098 return false; 4099 4100 // Otherwise, make sure the unmodified return value of I is the return value. 4101 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 4102 U = dyn_cast<Instruction>(U->getOperand(0))) { 4103 if (!U) 4104 return false; 4105 if (!U->hasOneUse()) 4106 return false; 4107 if (U == I) 4108 break; 4109 // Check for a truly no-op truncate. 4110 if (isa<TruncInst>(U) && 4111 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 4112 continue; 4113 // Check for a truly no-op bitcast. 4114 if (isa<BitCastInst>(U) && 4115 (U->getOperand(0)->getType() == U->getType() || 4116 (isa<PointerType>(U->getOperand(0)->getType()) && 4117 isa<PointerType>(U->getType())))) 4118 continue; 4119 // Otherwise it's not a true no-op. 4120 return false; 4121 } 4122 4123 return true; 4124 } 4125 4126 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, 4127 bool isTailCall, 4128 MachineBasicBlock *LandingPad) { 4129 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4130 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4131 const Type *RetTy = FTy->getReturnType(); 4132 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4133 unsigned BeginLabel = 0, EndLabel = 0; 4134 4135 TargetLowering::ArgListTy Args; 4136 TargetLowering::ArgListEntry Entry; 4137 Args.reserve(CS.arg_size()); 4138 4139 // Check whether the function can return without sret-demotion. 4140 SmallVector<EVT, 4> OutVTs; 4141 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4142 SmallVector<uint64_t, 4> Offsets; 4143 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4144 OutVTs, OutsFlags, TLI, &Offsets); 4145 4146 4147 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4148 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4149 4150 SDValue DemoteStackSlot; 4151 4152 if (!CanLowerReturn) { 4153 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4154 FTy->getReturnType()); 4155 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4156 FTy->getReturnType()); 4157 MachineFunction &MF = DAG.getMachineFunction(); 4158 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4159 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4160 4161 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4162 Entry.Node = DemoteStackSlot; 4163 Entry.Ty = StackSlotPtrType; 4164 Entry.isSExt = false; 4165 Entry.isZExt = false; 4166 Entry.isInReg = false; 4167 Entry.isSRet = true; 4168 Entry.isNest = false; 4169 Entry.isByVal = false; 4170 Entry.Alignment = Align; 4171 Args.push_back(Entry); 4172 RetTy = Type::getVoidTy(FTy->getContext()); 4173 } 4174 4175 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4176 i != e; ++i) { 4177 SDValue ArgNode = getValue(*i); 4178 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4179 4180 unsigned attrInd = i - CS.arg_begin() + 1; 4181 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4182 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4183 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4184 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4185 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4186 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4187 Entry.Alignment = CS.getParamAlignment(attrInd); 4188 Args.push_back(Entry); 4189 } 4190 4191 if (LandingPad && MMI) { 4192 // Insert a label before the invoke call to mark the try range. This can be 4193 // used to detect deletion of the invoke via the MachineModuleInfo. 4194 BeginLabel = MMI->NextLabelID(); 4195 4196 // Both PendingLoads and PendingExports must be flushed here; 4197 // this call might not return. 4198 (void)getRoot(); 4199 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 4200 getControlRoot(), BeginLabel)); 4201 } 4202 4203 // Check if target-independent constraints permit a tail call here. 4204 // Target-dependent constraints are checked within TLI.LowerCallTo. 4205 if (isTailCall && 4206 !isInTailCallPosition(CS.getInstruction(), 4207 CS.getAttributes().getRetAttributes(), 4208 TLI)) 4209 isTailCall = false; 4210 4211 std::pair<SDValue,SDValue> Result = 4212 TLI.LowerCallTo(getRoot(), RetTy, 4213 CS.paramHasAttr(0, Attribute::SExt), 4214 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4215 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4216 CS.getCallingConv(), 4217 isTailCall, 4218 !CS.getInstruction()->use_empty(), 4219 Callee, Args, DAG, getCurDebugLoc()); 4220 assert((isTailCall || Result.second.getNode()) && 4221 "Non-null chain expected with non-tail call!"); 4222 assert((Result.second.getNode() || !Result.first.getNode()) && 4223 "Null value expected with tail call!"); 4224 if (Result.first.getNode()) 4225 setValue(CS.getInstruction(), Result.first); 4226 else if (!CanLowerReturn && Result.second.getNode()) { 4227 // The instruction result is the result of loading from the 4228 // hidden sret parameter. 4229 SmallVector<EVT, 1> PVTs; 4230 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4231 4232 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4233 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4234 EVT PtrVT = PVTs[0]; 4235 unsigned NumValues = OutVTs.size(); 4236 SmallVector<SDValue, 4> Values(NumValues); 4237 SmallVector<SDValue, 4> Chains(NumValues); 4238 4239 for (unsigned i = 0; i < NumValues; ++i) { 4240 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4241 DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot, 4242 DAG.getConstant(Offsets[i], PtrVT)), 4243 NULL, Offsets[i], false, 1); 4244 Values[i] = L; 4245 Chains[i] = L.getValue(1); 4246 } 4247 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4248 MVT::Other, &Chains[0], NumValues); 4249 PendingLoads.push_back(Chain); 4250 4251 setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES, 4252 getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues), 4253 &Values[0], NumValues)); 4254 } 4255 // As a special case, a null chain means that a tail call has 4256 // been emitted and the DAG root is already updated. 4257 if (Result.second.getNode()) 4258 DAG.setRoot(Result.second); 4259 else 4260 HasTailCall = true; 4261 4262 if (LandingPad && MMI) { 4263 // Insert a label at the end of the invoke call to mark the try range. This 4264 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4265 EndLabel = MMI->NextLabelID(); 4266 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 4267 getRoot(), EndLabel)); 4268 4269 // Inform MachineModuleInfo of range. 4270 MMI->addInvoke(LandingPad, BeginLabel, EndLabel); 4271 } 4272 } 4273 4274 4275 void SelectionDAGBuilder::visitCall(CallInst &I) { 4276 const char *RenameFn = 0; 4277 if (Function *F = I.getCalledFunction()) { 4278 if (F->isDeclaration()) { 4279 const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); 4280 if (II) { 4281 if (unsigned IID = II->getIntrinsicID(F)) { 4282 RenameFn = visitIntrinsicCall(I, IID); 4283 if (!RenameFn) 4284 return; 4285 } 4286 } 4287 if (unsigned IID = F->getIntrinsicID()) { 4288 RenameFn = visitIntrinsicCall(I, IID); 4289 if (!RenameFn) 4290 return; 4291 } 4292 } 4293 4294 // Check for well-known libc/libm calls. If the function is internal, it 4295 // can't be a library call. 4296 if (!F->hasLocalLinkage() && F->hasName()) { 4297 StringRef Name = F->getName(); 4298 if (Name == "copysign" || Name == "copysignf") { 4299 if (I.getNumOperands() == 3 && // Basic sanity checks. 4300 I.getOperand(1)->getType()->isFloatingPoint() && 4301 I.getType() == I.getOperand(1)->getType() && 4302 I.getType() == I.getOperand(2)->getType()) { 4303 SDValue LHS = getValue(I.getOperand(1)); 4304 SDValue RHS = getValue(I.getOperand(2)); 4305 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4306 LHS.getValueType(), LHS, RHS)); 4307 return; 4308 } 4309 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4310 if (I.getNumOperands() == 2 && // Basic sanity checks. 4311 I.getOperand(1)->getType()->isFloatingPoint() && 4312 I.getType() == I.getOperand(1)->getType()) { 4313 SDValue Tmp = getValue(I.getOperand(1)); 4314 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4315 Tmp.getValueType(), Tmp)); 4316 return; 4317 } 4318 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4319 if (I.getNumOperands() == 2 && // Basic sanity checks. 4320 I.getOperand(1)->getType()->isFloatingPoint() && 4321 I.getType() == I.getOperand(1)->getType() && 4322 I.onlyReadsMemory()) { 4323 SDValue Tmp = getValue(I.getOperand(1)); 4324 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4325 Tmp.getValueType(), Tmp)); 4326 return; 4327 } 4328 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4329 if (I.getNumOperands() == 2 && // Basic sanity checks. 4330 I.getOperand(1)->getType()->isFloatingPoint() && 4331 I.getType() == I.getOperand(1)->getType() && 4332 I.onlyReadsMemory()) { 4333 SDValue Tmp = getValue(I.getOperand(1)); 4334 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4335 Tmp.getValueType(), Tmp)); 4336 return; 4337 } 4338 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4339 if (I.getNumOperands() == 2 && // Basic sanity checks. 4340 I.getOperand(1)->getType()->isFloatingPoint() && 4341 I.getType() == I.getOperand(1)->getType() && 4342 I.onlyReadsMemory()) { 4343 SDValue Tmp = getValue(I.getOperand(1)); 4344 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4345 Tmp.getValueType(), Tmp)); 4346 return; 4347 } 4348 } 4349 } 4350 } else if (isa<InlineAsm>(I.getOperand(0))) { 4351 visitInlineAsm(&I); 4352 return; 4353 } 4354 4355 SDValue Callee; 4356 if (!RenameFn) 4357 Callee = getValue(I.getOperand(0)); 4358 else 4359 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4360 4361 // Check if we can potentially perform a tail call. More detailed 4362 // checking is be done within LowerCallTo, after more information 4363 // about the call is known. 4364 bool isTailCall = PerformTailCallOpt && I.isTailCall(); 4365 4366 LowerCallTo(&I, Callee, isTailCall); 4367 } 4368 4369 4370 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4371 /// this value and returns the result as a ValueVT value. This uses 4372 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4373 /// If the Flag pointer is NULL, no flag is used. 4374 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4375 SDValue &Chain, 4376 SDValue *Flag) const { 4377 // Assemble the legal parts into the final values. 4378 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4379 SmallVector<SDValue, 8> Parts; 4380 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4381 // Copy the legal parts from the registers. 4382 EVT ValueVT = ValueVTs[Value]; 4383 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4384 EVT RegisterVT = RegVTs[Value]; 4385 4386 Parts.resize(NumRegs); 4387 for (unsigned i = 0; i != NumRegs; ++i) { 4388 SDValue P; 4389 if (Flag == 0) 4390 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4391 else { 4392 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4393 *Flag = P.getValue(2); 4394 } 4395 Chain = P.getValue(1); 4396 4397 // If the source register was virtual and if we know something about it, 4398 // add an assert node. 4399 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4400 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4401 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4402 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4403 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4404 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4405 4406 unsigned RegSize = RegisterVT.getSizeInBits(); 4407 unsigned NumSignBits = LOI.NumSignBits; 4408 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4409 4410 // FIXME: We capture more information than the dag can represent. For 4411 // now, just use the tightest assertzext/assertsext possible. 4412 bool isSExt = true; 4413 EVT FromVT(MVT::Other); 4414 if (NumSignBits == RegSize) 4415 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4416 else if (NumZeroBits >= RegSize-1) 4417 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4418 else if (NumSignBits > RegSize-8) 4419 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4420 else if (NumZeroBits >= RegSize-8) 4421 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4422 else if (NumSignBits > RegSize-16) 4423 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4424 else if (NumZeroBits >= RegSize-16) 4425 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4426 else if (NumSignBits > RegSize-32) 4427 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4428 else if (NumZeroBits >= RegSize-32) 4429 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4430 4431 if (FromVT != MVT::Other) { 4432 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4433 RegisterVT, P, DAG.getValueType(FromVT)); 4434 4435 } 4436 } 4437 } 4438 4439 Parts[i] = P; 4440 } 4441 4442 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4443 NumRegs, RegisterVT, ValueVT); 4444 Part += NumRegs; 4445 Parts.clear(); 4446 } 4447 4448 return DAG.getNode(ISD::MERGE_VALUES, dl, 4449 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4450 &Values[0], ValueVTs.size()); 4451 } 4452 4453 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4454 /// specified value into the registers specified by this object. This uses 4455 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4456 /// If the Flag pointer is NULL, no flag is used. 4457 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4458 SDValue &Chain, SDValue *Flag) const { 4459 // Get the list of the values's legal parts. 4460 unsigned NumRegs = Regs.size(); 4461 SmallVector<SDValue, 8> Parts(NumRegs); 4462 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4463 EVT ValueVT = ValueVTs[Value]; 4464 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4465 EVT RegisterVT = RegVTs[Value]; 4466 4467 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 4468 &Parts[Part], NumParts, RegisterVT); 4469 Part += NumParts; 4470 } 4471 4472 // Copy the parts into the registers. 4473 SmallVector<SDValue, 8> Chains(NumRegs); 4474 for (unsigned i = 0; i != NumRegs; ++i) { 4475 SDValue Part; 4476 if (Flag == 0) 4477 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4478 else { 4479 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4480 *Flag = Part.getValue(1); 4481 } 4482 Chains[i] = Part.getValue(0); 4483 } 4484 4485 if (NumRegs == 1 || Flag) 4486 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4487 // flagged to it. That is the CopyToReg nodes and the user are considered 4488 // a single scheduling unit. If we create a TokenFactor and return it as 4489 // chain, then the TokenFactor is both a predecessor (operand) of the 4490 // user as well as a successor (the TF operands are flagged to the user). 4491 // c1, f1 = CopyToReg 4492 // c2, f2 = CopyToReg 4493 // c3 = TokenFactor c1, c2 4494 // ... 4495 // = op c3, ..., f2 4496 Chain = Chains[NumRegs-1]; 4497 else 4498 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4499 } 4500 4501 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4502 /// operand list. This adds the code marker and includes the number of 4503 /// values added into it. 4504 void RegsForValue::AddInlineAsmOperands(unsigned Code, 4505 bool HasMatching,unsigned MatchingIdx, 4506 SelectionDAG &DAG, 4507 std::vector<SDValue> &Ops) const { 4508 EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); 4509 assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); 4510 unsigned Flag = Code | (Regs.size() << 3); 4511 if (HasMatching) 4512 Flag |= 0x80000000 | (MatchingIdx << 16); 4513 Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); 4514 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4515 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4516 EVT RegisterVT = RegVTs[Value]; 4517 for (unsigned i = 0; i != NumRegs; ++i) { 4518 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4519 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4520 } 4521 } 4522 } 4523 4524 /// isAllocatableRegister - If the specified register is safe to allocate, 4525 /// i.e. it isn't a stack pointer or some other special register, return the 4526 /// register class for the register. Otherwise, return null. 4527 static const TargetRegisterClass * 4528 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4529 const TargetLowering &TLI, 4530 const TargetRegisterInfo *TRI) { 4531 EVT FoundVT = MVT::Other; 4532 const TargetRegisterClass *FoundRC = 0; 4533 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4534 E = TRI->regclass_end(); RCI != E; ++RCI) { 4535 EVT ThisVT = MVT::Other; 4536 4537 const TargetRegisterClass *RC = *RCI; 4538 // If none of the the value types for this register class are valid, we 4539 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4540 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4541 I != E; ++I) { 4542 if (TLI.isTypeLegal(*I)) { 4543 // If we have already found this register in a different register class, 4544 // choose the one with the largest VT specified. For example, on 4545 // PowerPC, we favor f64 register classes over f32. 4546 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4547 ThisVT = *I; 4548 break; 4549 } 4550 } 4551 } 4552 4553 if (ThisVT == MVT::Other) continue; 4554 4555 // NOTE: This isn't ideal. In particular, this might allocate the 4556 // frame pointer in functions that need it (due to them not being taken 4557 // out of allocation, because a variable sized allocation hasn't been seen 4558 // yet). This is a slight code pessimization, but should still work. 4559 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4560 E = RC->allocation_order_end(MF); I != E; ++I) 4561 if (*I == Reg) { 4562 // We found a matching register class. Keep looking at others in case 4563 // we find one with larger registers that this physreg is also in. 4564 FoundRC = RC; 4565 FoundVT = ThisVT; 4566 break; 4567 } 4568 } 4569 return FoundRC; 4570 } 4571 4572 4573 namespace llvm { 4574 /// AsmOperandInfo - This contains information for each constraint that we are 4575 /// lowering. 4576 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4577 public TargetLowering::AsmOperandInfo { 4578 public: 4579 /// CallOperand - If this is the result output operand or a clobber 4580 /// this is null, otherwise it is the incoming operand to the CallInst. 4581 /// This gets modified as the asm is processed. 4582 SDValue CallOperand; 4583 4584 /// AssignedRegs - If this is a register or register class operand, this 4585 /// contains the set of register corresponding to the operand. 4586 RegsForValue AssignedRegs; 4587 4588 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4589 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4590 } 4591 4592 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4593 /// busy in OutputRegs/InputRegs. 4594 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4595 std::set<unsigned> &OutputRegs, 4596 std::set<unsigned> &InputRegs, 4597 const TargetRegisterInfo &TRI) const { 4598 if (isOutReg) { 4599 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4600 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4601 } 4602 if (isInReg) { 4603 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4604 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4605 } 4606 } 4607 4608 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4609 /// corresponds to. If there is no Value* for this operand, it returns 4610 /// MVT::Other. 4611 EVT getCallOperandValEVT(LLVMContext &Context, 4612 const TargetLowering &TLI, 4613 const TargetData *TD) const { 4614 if (CallOperandVal == 0) return MVT::Other; 4615 4616 if (isa<BasicBlock>(CallOperandVal)) 4617 return TLI.getPointerTy(); 4618 4619 const llvm::Type *OpTy = CallOperandVal->getType(); 4620 4621 // If this is an indirect operand, the operand is a pointer to the 4622 // accessed type. 4623 if (isIndirect) 4624 OpTy = cast<PointerType>(OpTy)->getElementType(); 4625 4626 // If OpTy is not a single value, it may be a struct/union that we 4627 // can tile with integers. 4628 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4629 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4630 switch (BitSize) { 4631 default: break; 4632 case 1: 4633 case 8: 4634 case 16: 4635 case 32: 4636 case 64: 4637 case 128: 4638 OpTy = IntegerType::get(Context, BitSize); 4639 break; 4640 } 4641 } 4642 4643 return TLI.getValueType(OpTy, true); 4644 } 4645 4646 private: 4647 /// MarkRegAndAliases - Mark the specified register and all aliases in the 4648 /// specified set. 4649 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 4650 const TargetRegisterInfo &TRI) { 4651 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 4652 Regs.insert(Reg); 4653 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 4654 for (; *Aliases; ++Aliases) 4655 Regs.insert(*Aliases); 4656 } 4657 }; 4658 } // end llvm namespace. 4659 4660 4661 /// GetRegistersForValue - Assign registers (virtual or physical) for the 4662 /// specified operand. We prefer to assign virtual registers, to allow the 4663 /// register allocator handle the assignment process. However, if the asm uses 4664 /// features that we can't model on machineinstrs, we have SDISel do the 4665 /// allocation. This produces generally horrible, but correct, code. 4666 /// 4667 /// OpInfo describes the operand. 4668 /// Input and OutputRegs are the set of already allocated physical registers. 4669 /// 4670 void SelectionDAGBuilder:: 4671 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 4672 std::set<unsigned> &OutputRegs, 4673 std::set<unsigned> &InputRegs) { 4674 LLVMContext &Context = FuncInfo.Fn->getContext(); 4675 4676 // Compute whether this value requires an input register, an output register, 4677 // or both. 4678 bool isOutReg = false; 4679 bool isInReg = false; 4680 switch (OpInfo.Type) { 4681 case InlineAsm::isOutput: 4682 isOutReg = true; 4683 4684 // If there is an input constraint that matches this, we need to reserve 4685 // the input register so no other inputs allocate to it. 4686 isInReg = OpInfo.hasMatchingInput(); 4687 break; 4688 case InlineAsm::isInput: 4689 isInReg = true; 4690 isOutReg = false; 4691 break; 4692 case InlineAsm::isClobber: 4693 isOutReg = true; 4694 isInReg = true; 4695 break; 4696 } 4697 4698 4699 MachineFunction &MF = DAG.getMachineFunction(); 4700 SmallVector<unsigned, 4> Regs; 4701 4702 // If this is a constraint for a single physreg, or a constraint for a 4703 // register class, find it. 4704 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 4705 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 4706 OpInfo.ConstraintVT); 4707 4708 unsigned NumRegs = 1; 4709 if (OpInfo.ConstraintVT != MVT::Other) { 4710 // If this is a FP input in an integer register (or visa versa) insert a bit 4711 // cast of the input value. More generally, handle any case where the input 4712 // value disagrees with the register class we plan to stick this in. 4713 if (OpInfo.Type == InlineAsm::isInput && 4714 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 4715 // Try to convert to the first EVT that the reg class contains. If the 4716 // types are identical size, use a bitcast to convert (e.g. two differing 4717 // vector types). 4718 EVT RegVT = *PhysReg.second->vt_begin(); 4719 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 4720 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4721 RegVT, OpInfo.CallOperand); 4722 OpInfo.ConstraintVT = RegVT; 4723 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 4724 // If the input is a FP value and we want it in FP registers, do a 4725 // bitcast to the corresponding integer type. This turns an f64 value 4726 // into i64, which can be passed with two i32 values on a 32-bit 4727 // machine. 4728 RegVT = EVT::getIntegerVT(Context, 4729 OpInfo.ConstraintVT.getSizeInBits()); 4730 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4731 RegVT, OpInfo.CallOperand); 4732 OpInfo.ConstraintVT = RegVT; 4733 } 4734 } 4735 4736 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 4737 } 4738 4739 EVT RegVT; 4740 EVT ValueVT = OpInfo.ConstraintVT; 4741 4742 // If this is a constraint for a specific physical register, like {r17}, 4743 // assign it now. 4744 if (unsigned AssignedReg = PhysReg.first) { 4745 const TargetRegisterClass *RC = PhysReg.second; 4746 if (OpInfo.ConstraintVT == MVT::Other) 4747 ValueVT = *RC->vt_begin(); 4748 4749 // Get the actual register value type. This is important, because the user 4750 // may have asked for (e.g.) the AX register in i32 type. We need to 4751 // remember that AX is actually i16 to get the right extension. 4752 RegVT = *RC->vt_begin(); 4753 4754 // This is a explicit reference to a physical register. 4755 Regs.push_back(AssignedReg); 4756 4757 // If this is an expanded reference, add the rest of the regs to Regs. 4758 if (NumRegs != 1) { 4759 TargetRegisterClass::iterator I = RC->begin(); 4760 for (; *I != AssignedReg; ++I) 4761 assert(I != RC->end() && "Didn't find reg!"); 4762 4763 // Already added the first reg. 4764 --NumRegs; ++I; 4765 for (; NumRegs; --NumRegs, ++I) { 4766 assert(I != RC->end() && "Ran out of registers to allocate!"); 4767 Regs.push_back(*I); 4768 } 4769 } 4770 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 4771 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4772 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 4773 return; 4774 } 4775 4776 // Otherwise, if this was a reference to an LLVM register class, create vregs 4777 // for this reference. 4778 if (const TargetRegisterClass *RC = PhysReg.second) { 4779 RegVT = *RC->vt_begin(); 4780 if (OpInfo.ConstraintVT == MVT::Other) 4781 ValueVT = RegVT; 4782 4783 // Create the appropriate number of virtual registers. 4784 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4785 for (; NumRegs; --NumRegs) 4786 Regs.push_back(RegInfo.createVirtualRegister(RC)); 4787 4788 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 4789 return; 4790 } 4791 4792 // This is a reference to a register class that doesn't directly correspond 4793 // to an LLVM register class. Allocate NumRegs consecutive, available, 4794 // registers from the class. 4795 std::vector<unsigned> RegClassRegs 4796 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 4797 OpInfo.ConstraintVT); 4798 4799 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4800 unsigned NumAllocated = 0; 4801 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 4802 unsigned Reg = RegClassRegs[i]; 4803 // See if this register is available. 4804 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 4805 (isInReg && InputRegs.count(Reg))) { // Already used. 4806 // Make sure we find consecutive registers. 4807 NumAllocated = 0; 4808 continue; 4809 } 4810 4811 // Check to see if this register is allocatable (i.e. don't give out the 4812 // stack pointer). 4813 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 4814 if (!RC) { // Couldn't allocate this register. 4815 // Reset NumAllocated to make sure we return consecutive registers. 4816 NumAllocated = 0; 4817 continue; 4818 } 4819 4820 // Okay, this register is good, we can use it. 4821 ++NumAllocated; 4822 4823 // If we allocated enough consecutive registers, succeed. 4824 if (NumAllocated == NumRegs) { 4825 unsigned RegStart = (i-NumAllocated)+1; 4826 unsigned RegEnd = i+1; 4827 // Mark all of the allocated registers used. 4828 for (unsigned i = RegStart; i != RegEnd; ++i) 4829 Regs.push_back(RegClassRegs[i]); 4830 4831 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 4832 OpInfo.ConstraintVT); 4833 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 4834 return; 4835 } 4836 } 4837 4838 // Otherwise, we couldn't allocate enough registers for this. 4839 } 4840 4841 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 4842 /// processed uses a memory 'm' constraint. 4843 static bool 4844 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, 4845 const TargetLowering &TLI) { 4846 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 4847 InlineAsm::ConstraintInfo &CI = CInfos[i]; 4848 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 4849 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 4850 if (CType == TargetLowering::C_Memory) 4851 return true; 4852 } 4853 4854 // Indirect operand accesses access memory. 4855 if (CI.isIndirect) 4856 return true; 4857 } 4858 4859 return false; 4860 } 4861 4862 /// visitInlineAsm - Handle a call to an InlineAsm object. 4863 /// 4864 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { 4865 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4866 4867 /// ConstraintOperands - Information about all of the constraints. 4868 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 4869 4870 std::set<unsigned> OutputRegs, InputRegs; 4871 4872 // Do a prepass over the constraints, canonicalizing them, and building up the 4873 // ConstraintOperands list. 4874 std::vector<InlineAsm::ConstraintInfo> 4875 ConstraintInfos = IA->ParseConstraints(); 4876 4877 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 4878 4879 SDValue Chain, Flag; 4880 4881 // We won't need to flush pending loads if this asm doesn't touch 4882 // memory and is nonvolatile. 4883 if (hasMemory || IA->hasSideEffects()) 4884 Chain = getRoot(); 4885 else 4886 Chain = DAG.getRoot(); 4887 4888 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4889 unsigned ResNo = 0; // ResNo - The result number of the next output. 4890 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 4891 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 4892 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 4893 4894 EVT OpVT = MVT::Other; 4895 4896 // Compute the value type for each operand. 4897 switch (OpInfo.Type) { 4898 case InlineAsm::isOutput: 4899 // Indirect outputs just consume an argument. 4900 if (OpInfo.isIndirect) { 4901 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 4902 break; 4903 } 4904 4905 // The return value of the call is this value. As such, there is no 4906 // corresponding argument. 4907 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 4908 "Bad inline asm!"); 4909 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 4910 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 4911 } else { 4912 assert(ResNo == 0 && "Asm only has one result!"); 4913 OpVT = TLI.getValueType(CS.getType()); 4914 } 4915 ++ResNo; 4916 break; 4917 case InlineAsm::isInput: 4918 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 4919 break; 4920 case InlineAsm::isClobber: 4921 // Nothing to do. 4922 break; 4923 } 4924 4925 // If this is an input or an indirect output, process the call argument. 4926 // BasicBlocks are labels, currently appearing only in asm's. 4927 if (OpInfo.CallOperandVal) { 4928 // Strip bitcasts, if any. This mostly comes up for functions. 4929 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 4930 4931 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 4932 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 4933 } else { 4934 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 4935 } 4936 4937 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 4938 } 4939 4940 OpInfo.ConstraintVT = OpVT; 4941 } 4942 4943 // Second pass over the constraints: compute which constraint option to use 4944 // and assign registers to constraints that want a specific physreg. 4945 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 4946 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 4947 4948 // If this is an output operand with a matching input operand, look up the 4949 // matching input. If their types mismatch, e.g. one is an integer, the 4950 // other is floating point, or their sizes are different, flag it as an 4951 // error. 4952 if (OpInfo.hasMatchingInput()) { 4953 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4954 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4955 if ((OpInfo.ConstraintVT.isInteger() != 4956 Input.ConstraintVT.isInteger()) || 4957 (OpInfo.ConstraintVT.getSizeInBits() != 4958 Input.ConstraintVT.getSizeInBits())) { 4959 llvm_report_error("Unsupported asm: input constraint" 4960 " with a matching output constraint of incompatible" 4961 " type!"); 4962 } 4963 Input.ConstraintVT = OpInfo.ConstraintVT; 4964 } 4965 } 4966 4967 // Compute the constraint code and ConstraintType to use. 4968 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 4969 4970 // If this is a memory input, and if the operand is not indirect, do what we 4971 // need to to provide an address for the memory input. 4972 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4973 !OpInfo.isIndirect) { 4974 assert(OpInfo.Type == InlineAsm::isInput && 4975 "Can only indirectify direct input operands!"); 4976 4977 // Memory operands really want the address of the value. If we don't have 4978 // an indirect input, put it in the constpool if we can, otherwise spill 4979 // it to a stack slot. 4980 4981 // If the operand is a float, integer, or vector constant, spill to a 4982 // constant pool entry to get its address. 4983 Value *OpVal = OpInfo.CallOperandVal; 4984 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 4985 isa<ConstantVector>(OpVal)) { 4986 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 4987 TLI.getPointerTy()); 4988 } else { 4989 // Otherwise, create a stack slot and emit a store to it before the 4990 // asm. 4991 const Type *Ty = OpVal->getType(); 4992 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 4993 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 4994 MachineFunction &MF = DAG.getMachineFunction(); 4995 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4996 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4997 Chain = DAG.getStore(Chain, getCurDebugLoc(), 4998 OpInfo.CallOperand, StackSlot, NULL, 0); 4999 OpInfo.CallOperand = StackSlot; 5000 } 5001 5002 // There is no longer a Value* corresponding to this operand. 5003 OpInfo.CallOperandVal = 0; 5004 // It is now an indirect operand. 5005 OpInfo.isIndirect = true; 5006 } 5007 5008 // If this constraint is for a specific register, allocate it before 5009 // anything else. 5010 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5011 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5012 } 5013 ConstraintInfos.clear(); 5014 5015 5016 // Second pass - Loop over all of the operands, assigning virtual or physregs 5017 // to register class operands. 5018 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5019 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5020 5021 // C_Register operands have already been allocated, Other/Memory don't need 5022 // to be. 5023 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5024 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5025 } 5026 5027 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5028 std::vector<SDValue> AsmNodeOperands; 5029 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5030 AsmNodeOperands.push_back( 5031 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); 5032 5033 5034 // Loop over all of the inputs, copying the operand values into the 5035 // appropriate registers and processing the output regs. 5036 RegsForValue RetValRegs; 5037 5038 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5039 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5040 5041 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5042 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5043 5044 switch (OpInfo.Type) { 5045 case InlineAsm::isOutput: { 5046 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5047 OpInfo.ConstraintType != TargetLowering::C_Register) { 5048 // Memory output, or 'other' output (e.g. 'X' constraint). 5049 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5050 5051 // Add information to the INLINEASM node to know about this output. 5052 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5053 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5054 TLI.getPointerTy())); 5055 AsmNodeOperands.push_back(OpInfo.CallOperand); 5056 break; 5057 } 5058 5059 // Otherwise, this is a register or register class output. 5060 5061 // Copy the output from the appropriate register. Find a register that 5062 // we can use. 5063 if (OpInfo.AssignedRegs.Regs.empty()) { 5064 llvm_report_error("Couldn't allocate output reg for" 5065 " constraint '" + OpInfo.ConstraintCode + "'!"); 5066 } 5067 5068 // If this is an indirect operand, store through the pointer after the 5069 // asm. 5070 if (OpInfo.isIndirect) { 5071 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5072 OpInfo.CallOperandVal)); 5073 } else { 5074 // This is the result value of the call. 5075 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 5076 "Bad inline asm!"); 5077 // Concatenate this output onto the outputs list. 5078 RetValRegs.append(OpInfo.AssignedRegs); 5079 } 5080 5081 // Add information to the INLINEASM node to know that this register is 5082 // set. 5083 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5084 6 /* EARLYCLOBBER REGDEF */ : 5085 2 /* REGDEF */ , 5086 false, 5087 0, 5088 DAG, AsmNodeOperands); 5089 break; 5090 } 5091 case InlineAsm::isInput: { 5092 SDValue InOperandVal = OpInfo.CallOperand; 5093 5094 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5095 // If this is required to match an output register we have already set, 5096 // just use its register. 5097 unsigned OperandNo = OpInfo.getMatchedOperand(); 5098 5099 // Scan until we find the definition we already emitted of this operand. 5100 // When we find it, create a RegsForValue operand. 5101 unsigned CurOp = 2; // The first operand. 5102 for (; OperandNo; --OperandNo) { 5103 // Advance to the next operand. 5104 unsigned OpFlag = 5105 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5106 assert(((OpFlag & 7) == 2 /*REGDEF*/ || 5107 (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || 5108 (OpFlag & 7) == 4 /*MEM*/) && 5109 "Skipped past definitions?"); 5110 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5111 } 5112 5113 unsigned OpFlag = 5114 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5115 if ((OpFlag & 7) == 2 /*REGDEF*/ 5116 || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { 5117 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5118 if (OpInfo.isIndirect) { 5119 llvm_report_error("Don't know how to handle tied indirect " 5120 "register inputs yet!"); 5121 } 5122 RegsForValue MatchedRegs; 5123 MatchedRegs.TLI = &TLI; 5124 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5125 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5126 MatchedRegs.RegVTs.push_back(RegVT); 5127 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5128 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5129 i != e; ++i) 5130 MatchedRegs.Regs. 5131 push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5132 5133 // Use the produced MatchedRegs object to 5134 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5135 Chain, &Flag); 5136 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, 5137 true, OpInfo.getMatchedOperand(), 5138 DAG, AsmNodeOperands); 5139 break; 5140 } else { 5141 assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); 5142 assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && 5143 "Unexpected number of operands"); 5144 // Add information to the INLINEASM node to know about this input. 5145 // See InlineAsm.h isUseOperandTiedToDef. 5146 OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); 5147 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5148 TLI.getPointerTy())); 5149 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5150 break; 5151 } 5152 } 5153 5154 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5155 assert(!OpInfo.isIndirect && 5156 "Don't know how to handle indirect other inputs yet!"); 5157 5158 std::vector<SDValue> Ops; 5159 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5160 hasMemory, Ops, DAG); 5161 if (Ops.empty()) { 5162 llvm_report_error("Invalid operand for inline asm" 5163 " constraint '" + OpInfo.ConstraintCode + "'!"); 5164 } 5165 5166 // Add information to the INLINEASM node to know about this input. 5167 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); 5168 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5169 TLI.getPointerTy())); 5170 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5171 break; 5172 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5173 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5174 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5175 "Memory operands expect pointer values"); 5176 5177 // Add information to the INLINEASM node to know about this input. 5178 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5179 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5180 TLI.getPointerTy())); 5181 AsmNodeOperands.push_back(InOperandVal); 5182 break; 5183 } 5184 5185 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5186 OpInfo.ConstraintType == TargetLowering::C_Register) && 5187 "Unknown constraint type!"); 5188 assert(!OpInfo.isIndirect && 5189 "Don't know how to handle indirect register inputs yet!"); 5190 5191 // Copy the input into the appropriate registers. 5192 if (OpInfo.AssignedRegs.Regs.empty()) { 5193 llvm_report_error("Couldn't allocate input reg for" 5194 " constraint '"+ OpInfo.ConstraintCode +"'!"); 5195 } 5196 5197 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5198 Chain, &Flag); 5199 5200 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, 5201 DAG, AsmNodeOperands); 5202 break; 5203 } 5204 case InlineAsm::isClobber: { 5205 // Add the clobbered value to the operand list, so that the register 5206 // allocator is aware that the physreg got clobbered. 5207 if (!OpInfo.AssignedRegs.Regs.empty()) 5208 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, 5209 false, 0, DAG,AsmNodeOperands); 5210 break; 5211 } 5212 } 5213 } 5214 5215 // Finish up input operands. 5216 AsmNodeOperands[0] = Chain; 5217 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5218 5219 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5220 DAG.getVTList(MVT::Other, MVT::Flag), 5221 &AsmNodeOperands[0], AsmNodeOperands.size()); 5222 Flag = Chain.getValue(1); 5223 5224 // If this asm returns a register value, copy the result from that register 5225 // and set it as the value of the call. 5226 if (!RetValRegs.Regs.empty()) { 5227 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5228 Chain, &Flag); 5229 5230 // FIXME: Why don't we do this for inline asms with MRVs? 5231 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5232 EVT ResultType = TLI.getValueType(CS.getType()); 5233 5234 // If any of the results of the inline asm is a vector, it may have the 5235 // wrong width/num elts. This can happen for register classes that can 5236 // contain multiple different value types. The preg or vreg allocated may 5237 // not have the same VT as was expected. Convert it to the right type 5238 // with bit_convert. 5239 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5240 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5241 ResultType, Val); 5242 5243 } else if (ResultType != Val.getValueType() && 5244 ResultType.isInteger() && Val.getValueType().isInteger()) { 5245 // If a result value was tied to an input value, the computed result may 5246 // have a wider width than the expected result. Extract the relevant 5247 // portion. 5248 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5249 } 5250 5251 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5252 } 5253 5254 setValue(CS.getInstruction(), Val); 5255 // Don't need to use this as a chain in this case. 5256 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5257 return; 5258 } 5259 5260 std::vector<std::pair<SDValue, Value*> > StoresToEmit; 5261 5262 // Process indirect outputs, first output all of the flagged copies out of 5263 // physregs. 5264 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5265 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5266 Value *Ptr = IndirectStoresToEmit[i].second; 5267 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5268 Chain, &Flag); 5269 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5270 5271 } 5272 5273 // Emit the non-flagged stores from the physregs. 5274 SmallVector<SDValue, 8> OutChains; 5275 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) 5276 OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), 5277 StoresToEmit[i].first, 5278 getValue(StoresToEmit[i].second), 5279 StoresToEmit[i].second, 0)); 5280 if (!OutChains.empty()) 5281 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5282 &OutChains[0], OutChains.size()); 5283 DAG.setRoot(Chain); 5284 } 5285 5286 void SelectionDAGBuilder::visitVAStart(CallInst &I) { 5287 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5288 MVT::Other, getRoot(), 5289 getValue(I.getOperand(1)), 5290 DAG.getSrcValue(I.getOperand(1)))); 5291 } 5292 5293 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { 5294 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5295 getRoot(), getValue(I.getOperand(0)), 5296 DAG.getSrcValue(I.getOperand(0))); 5297 setValue(&I, V); 5298 DAG.setRoot(V.getValue(1)); 5299 } 5300 5301 void SelectionDAGBuilder::visitVAEnd(CallInst &I) { 5302 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5303 MVT::Other, getRoot(), 5304 getValue(I.getOperand(1)), 5305 DAG.getSrcValue(I.getOperand(1)))); 5306 } 5307 5308 void SelectionDAGBuilder::visitVACopy(CallInst &I) { 5309 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5310 MVT::Other, getRoot(), 5311 getValue(I.getOperand(1)), 5312 getValue(I.getOperand(2)), 5313 DAG.getSrcValue(I.getOperand(1)), 5314 DAG.getSrcValue(I.getOperand(2)))); 5315 } 5316 5317 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5318 /// implementation, which just calls LowerCall. 5319 /// FIXME: When all targets are 5320 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5321 std::pair<SDValue, SDValue> 5322 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5323 bool RetSExt, bool RetZExt, bool isVarArg, 5324 bool isInreg, unsigned NumFixedArgs, 5325 CallingConv::ID CallConv, bool isTailCall, 5326 bool isReturnValueUsed, 5327 SDValue Callee, 5328 ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { 5329 5330 assert((!isTailCall || PerformTailCallOpt) && 5331 "isTailCall set when tail-call optimizations are disabled!"); 5332 5333 // Handle all of the outgoing arguments. 5334 SmallVector<ISD::OutputArg, 32> Outs; 5335 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5336 SmallVector<EVT, 4> ValueVTs; 5337 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5338 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5339 Value != NumValues; ++Value) { 5340 EVT VT = ValueVTs[Value]; 5341 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5342 SDValue Op = SDValue(Args[i].Node.getNode(), 5343 Args[i].Node.getResNo() + Value); 5344 ISD::ArgFlagsTy Flags; 5345 unsigned OriginalAlignment = 5346 getTargetData()->getABITypeAlignment(ArgTy); 5347 5348 if (Args[i].isZExt) 5349 Flags.setZExt(); 5350 if (Args[i].isSExt) 5351 Flags.setSExt(); 5352 if (Args[i].isInReg) 5353 Flags.setInReg(); 5354 if (Args[i].isSRet) 5355 Flags.setSRet(); 5356 if (Args[i].isByVal) { 5357 Flags.setByVal(); 5358 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5359 const Type *ElementTy = Ty->getElementType(); 5360 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5361 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5362 // For ByVal, alignment should come from FE. BE will guess if this 5363 // info is not there but there are cases it cannot get right. 5364 if (Args[i].Alignment) 5365 FrameAlign = Args[i].Alignment; 5366 Flags.setByValAlign(FrameAlign); 5367 Flags.setByValSize(FrameSize); 5368 } 5369 if (Args[i].isNest) 5370 Flags.setNest(); 5371 Flags.setOrigAlign(OriginalAlignment); 5372 5373 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5374 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5375 SmallVector<SDValue, 4> Parts(NumParts); 5376 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5377 5378 if (Args[i].isSExt) 5379 ExtendKind = ISD::SIGN_EXTEND; 5380 else if (Args[i].isZExt) 5381 ExtendKind = ISD::ZERO_EXTEND; 5382 5383 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); 5384 5385 for (unsigned j = 0; j != NumParts; ++j) { 5386 // if it isn't first piece, alignment must be 1 5387 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5388 if (NumParts > 1 && j == 0) 5389 MyFlags.Flags.setSplit(); 5390 else if (j != 0) 5391 MyFlags.Flags.setOrigAlign(1); 5392 5393 Outs.push_back(MyFlags); 5394 } 5395 } 5396 } 5397 5398 // Handle the incoming return values from the call. 5399 SmallVector<ISD::InputArg, 32> Ins; 5400 SmallVector<EVT, 4> RetTys; 5401 ComputeValueVTs(*this, RetTy, RetTys); 5402 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5403 EVT VT = RetTys[I]; 5404 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5405 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5406 for (unsigned i = 0; i != NumRegs; ++i) { 5407 ISD::InputArg MyFlags; 5408 MyFlags.VT = RegisterVT; 5409 MyFlags.Used = isReturnValueUsed; 5410 if (RetSExt) 5411 MyFlags.Flags.setSExt(); 5412 if (RetZExt) 5413 MyFlags.Flags.setZExt(); 5414 if (isInreg) 5415 MyFlags.Flags.setInReg(); 5416 Ins.push_back(MyFlags); 5417 } 5418 } 5419 5420 // Check if target-dependent constraints permit a tail call here. 5421 // Target-independent constraints should be checked by the caller. 5422 if (isTailCall && 5423 !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) 5424 isTailCall = false; 5425 5426 SmallVector<SDValue, 4> InVals; 5427 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5428 Outs, Ins, dl, DAG, InVals); 5429 5430 // Verify that the target's LowerCall behaved as expected. 5431 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5432 "LowerCall didn't return a valid chain!"); 5433 assert((!isTailCall || InVals.empty()) && 5434 "LowerCall emitted a return value for a tail call!"); 5435 assert((isTailCall || InVals.size() == Ins.size()) && 5436 "LowerCall didn't emit the correct number of values!"); 5437 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5438 assert(InVals[i].getNode() && 5439 "LowerCall emitted a null value!"); 5440 assert(Ins[i].VT == InVals[i].getValueType() && 5441 "LowerCall emitted a value with the wrong type!"); 5442 }); 5443 5444 // For a tail call, the return value is merely live-out and there aren't 5445 // any nodes in the DAG representing it. Return a special value to 5446 // indicate that a tail call has been emitted and no more Instructions 5447 // should be processed in the current block. 5448 if (isTailCall) { 5449 DAG.setRoot(Chain); 5450 return std::make_pair(SDValue(), SDValue()); 5451 } 5452 5453 // Collect the legal value parts into potentially illegal values 5454 // that correspond to the original function's return values. 5455 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5456 if (RetSExt) 5457 AssertOp = ISD::AssertSext; 5458 else if (RetZExt) 5459 AssertOp = ISD::AssertZext; 5460 SmallVector<SDValue, 4> ReturnValues; 5461 unsigned CurReg = 0; 5462 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5463 EVT VT = RetTys[I]; 5464 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5465 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5466 5467 SDValue ReturnValue = 5468 getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT, 5469 AssertOp); 5470 ReturnValues.push_back(ReturnValue); 5471 CurReg += NumRegs; 5472 } 5473 5474 // For a function returning void, there is no return value. We can't create 5475 // such a node, so we just return a null return value in that case. In 5476 // that case, nothing will actualy look at the value. 5477 if (ReturnValues.empty()) 5478 return std::make_pair(SDValue(), Chain); 5479 5480 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5481 DAG.getVTList(&RetTys[0], RetTys.size()), 5482 &ReturnValues[0], ReturnValues.size()); 5483 5484 return std::make_pair(Res, Chain); 5485 } 5486 5487 void TargetLowering::LowerOperationWrapper(SDNode *N, 5488 SmallVectorImpl<SDValue> &Results, 5489 SelectionDAG &DAG) { 5490 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5491 if (Res.getNode()) 5492 Results.push_back(Res); 5493 } 5494 5495 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 5496 llvm_unreachable("LowerOperation not implemented for this target!"); 5497 return SDValue(); 5498 } 5499 5500 5501 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { 5502 SDValue Op = getValue(V); 5503 assert((Op.getOpcode() != ISD::CopyFromReg || 5504 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5505 "Copy from a reg to the same reg!"); 5506 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5507 5508 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5509 SDValue Chain = DAG.getEntryNode(); 5510 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5511 PendingExports.push_back(Chain); 5512 } 5513 5514 #include "llvm/CodeGen/SelectionDAGISel.h" 5515 5516 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { 5517 // If this is the entry block, emit arguments. 5518 Function &F = *LLVMBB->getParent(); 5519 SelectionDAG &DAG = SDB->DAG; 5520 SDValue OldRoot = DAG.getRoot(); 5521 DebugLoc dl = SDB->getCurDebugLoc(); 5522 const TargetData *TD = TLI.getTargetData(); 5523 SmallVector<ISD::InputArg, 16> Ins; 5524 5525 // Check whether the function can return without sret-demotion. 5526 SmallVector<EVT, 4> OutVTs; 5527 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5528 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5529 OutVTs, OutsFlags, TLI); 5530 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5531 5532 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5533 OutVTs, OutsFlags, DAG); 5534 if (!FLI.CanLowerReturn) { 5535 // Put in an sret pointer parameter before all the other parameters. 5536 SmallVector<EVT, 1> ValueVTs; 5537 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5538 5539 // NOTE: Assuming that a pointer will never break down to more than one VT 5540 // or one register. 5541 ISD::ArgFlagsTy Flags; 5542 Flags.setSRet(); 5543 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 5544 ISD::InputArg RetArg(Flags, RegisterVT, true); 5545 Ins.push_back(RetArg); 5546 } 5547 5548 // Set up the incoming argument description vector. 5549 unsigned Idx = 1; 5550 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 5551 I != E; ++I, ++Idx) { 5552 SmallVector<EVT, 4> ValueVTs; 5553 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5554 bool isArgValueUsed = !I->use_empty(); 5555 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5556 Value != NumValues; ++Value) { 5557 EVT VT = ValueVTs[Value]; 5558 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5559 ISD::ArgFlagsTy Flags; 5560 unsigned OriginalAlignment = 5561 TD->getABITypeAlignment(ArgTy); 5562 5563 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5564 Flags.setZExt(); 5565 if (F.paramHasAttr(Idx, Attribute::SExt)) 5566 Flags.setSExt(); 5567 if (F.paramHasAttr(Idx, Attribute::InReg)) 5568 Flags.setInReg(); 5569 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5570 Flags.setSRet(); 5571 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5572 Flags.setByVal(); 5573 const PointerType *Ty = cast<PointerType>(I->getType()); 5574 const Type *ElementTy = Ty->getElementType(); 5575 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5576 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5577 // For ByVal, alignment should be passed from FE. BE will guess if 5578 // this info is not there but there are cases it cannot get right. 5579 if (F.getParamAlignment(Idx)) 5580 FrameAlign = F.getParamAlignment(Idx); 5581 Flags.setByValAlign(FrameAlign); 5582 Flags.setByValSize(FrameSize); 5583 } 5584 if (F.paramHasAttr(Idx, Attribute::Nest)) 5585 Flags.setNest(); 5586 Flags.setOrigAlign(OriginalAlignment); 5587 5588 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5589 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5590 for (unsigned i = 0; i != NumRegs; ++i) { 5591 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5592 if (NumRegs > 1 && i == 0) 5593 MyFlags.Flags.setSplit(); 5594 // if it isn't first piece, alignment must be 1 5595 else if (i > 0) 5596 MyFlags.Flags.setOrigAlign(1); 5597 Ins.push_back(MyFlags); 5598 } 5599 } 5600 } 5601 5602 // Call the target to set up the argument values. 5603 SmallVector<SDValue, 8> InVals; 5604 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 5605 F.isVarArg(), Ins, 5606 dl, DAG, InVals); 5607 5608 // Verify that the target's LowerFormalArguments behaved as expected. 5609 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 5610 "LowerFormalArguments didn't return a valid chain!"); 5611 assert(InVals.size() == Ins.size() && 5612 "LowerFormalArguments didn't emit the correct number of values!"); 5613 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5614 assert(InVals[i].getNode() && 5615 "LowerFormalArguments emitted a null value!"); 5616 assert(Ins[i].VT == InVals[i].getValueType() && 5617 "LowerFormalArguments emitted a value with the wrong type!"); 5618 }); 5619 5620 // Update the DAG with the new chain value resulting from argument lowering. 5621 DAG.setRoot(NewRoot); 5622 5623 // Set up the argument values. 5624 unsigned i = 0; 5625 Idx = 1; 5626 if (!FLI.CanLowerReturn) { 5627 // Create a virtual register for the sret pointer, and put in a copy 5628 // from the sret argument into it. 5629 SmallVector<EVT, 1> ValueVTs; 5630 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5631 EVT VT = ValueVTs[0]; 5632 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5633 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5634 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, 5635 VT, AssertOp); 5636 5637 MachineFunction& MF = SDB->DAG.getMachineFunction(); 5638 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 5639 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 5640 FLI.DemoteRegister = SRetReg; 5641 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue); 5642 DAG.setRoot(NewRoot); 5643 5644 // i indexes lowered arguments. Bump it past the hidden sret argument. 5645 // Idx indexes LLVM arguments. Don't touch it. 5646 ++i; 5647 } 5648 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 5649 ++I, ++Idx) { 5650 SmallVector<SDValue, 4> ArgValues; 5651 SmallVector<EVT, 4> ValueVTs; 5652 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5653 unsigned NumValues = ValueVTs.size(); 5654 for (unsigned Value = 0; Value != NumValues; ++Value) { 5655 EVT VT = ValueVTs[Value]; 5656 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5657 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5658 5659 if (!I->use_empty()) { 5660 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5661 if (F.paramHasAttr(Idx, Attribute::SExt)) 5662 AssertOp = ISD::AssertSext; 5663 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 5664 AssertOp = ISD::AssertZext; 5665 5666 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 5667 PartVT, VT, AssertOp)); 5668 } 5669 i += NumParts; 5670 } 5671 if (!I->use_empty()) { 5672 SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues, 5673 SDB->getCurDebugLoc())); 5674 // If this argument is live outside of the entry block, insert a copy from 5675 // whereever we got it to the vreg that other BB's will reference it as. 5676 SDB->CopyToExportRegsIfNeeded(I); 5677 } 5678 } 5679 assert(i == InVals.size() && "Argument register count mismatch!"); 5680 5681 // Finally, if the target has anything special to do, allow it to do so. 5682 // FIXME: this should insert code into the DAG! 5683 EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); 5684 } 5685 5686 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 5687 /// ensure constants are generated when needed. Remember the virtual registers 5688 /// that need to be added to the Machine PHI nodes as input. We cannot just 5689 /// directly add them, because expansion might result in multiple MBB's for one 5690 /// BB. As such, the start of the BB might correspond to a different MBB than 5691 /// the end. 5692 /// 5693 void 5694 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { 5695 TerminatorInst *TI = LLVMBB->getTerminator(); 5696 5697 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5698 5699 // Check successor nodes' PHI nodes that expect a constant to be available 5700 // from this block. 5701 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5702 BasicBlock *SuccBB = TI->getSuccessor(succ); 5703 if (!isa<PHINode>(SuccBB->begin())) continue; 5704 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 5705 5706 // If this terminator has multiple identical successors (common for 5707 // switches), only handle each succ once. 5708 if (!SuccsHandled.insert(SuccMBB)) continue; 5709 5710 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5711 PHINode *PN; 5712 5713 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5714 // nodes and Machine PHI nodes, but the incoming operands have not been 5715 // emitted yet. 5716 for (BasicBlock::iterator I = SuccBB->begin(); 5717 (PN = dyn_cast<PHINode>(I)); ++I) { 5718 // Ignore dead phi's. 5719 if (PN->use_empty()) continue; 5720 5721 unsigned Reg; 5722 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5723 5724 if (Constant *C = dyn_cast<Constant>(PHIOp)) { 5725 unsigned &RegOut = SDB->ConstantsOut[C]; 5726 if (RegOut == 0) { 5727 RegOut = FuncInfo->CreateRegForValue(C); 5728 SDB->CopyValueToVirtualRegister(C, RegOut); 5729 } 5730 Reg = RegOut; 5731 } else { 5732 Reg = FuncInfo->ValueMap[PHIOp]; 5733 if (Reg == 0) { 5734 assert(isa<AllocaInst>(PHIOp) && 5735 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 5736 "Didn't codegen value into a register!??"); 5737 Reg = FuncInfo->CreateRegForValue(PHIOp); 5738 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 5739 } 5740 } 5741 5742 // Remember that this register needs to added to the machine PHI node as 5743 // the input for this MBB. 5744 SmallVector<EVT, 4> ValueVTs; 5745 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 5746 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 5747 EVT VT = ValueVTs[vti]; 5748 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5749 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 5750 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 5751 Reg += NumRegisters; 5752 } 5753 } 5754 } 5755 SDB->ConstantsOut.clear(); 5756 } 5757 5758 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 5759 /// supports legal types, and it emits MachineInstrs directly instead of 5760 /// creating SelectionDAG nodes. 5761 /// 5762 bool 5763 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, 5764 FastISel *F) { 5765 TerminatorInst *TI = LLVMBB->getTerminator(); 5766 5767 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5768 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 5769 5770 // Check successor nodes' PHI nodes that expect a constant to be available 5771 // from this block. 5772 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5773 BasicBlock *SuccBB = TI->getSuccessor(succ); 5774 if (!isa<PHINode>(SuccBB->begin())) continue; 5775 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 5776 5777 // If this terminator has multiple identical successors (common for 5778 // switches), only handle each succ once. 5779 if (!SuccsHandled.insert(SuccMBB)) continue; 5780 5781 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5782 PHINode *PN; 5783 5784 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5785 // nodes and Machine PHI nodes, but the incoming operands have not been 5786 // emitted yet. 5787 for (BasicBlock::iterator I = SuccBB->begin(); 5788 (PN = dyn_cast<PHINode>(I)); ++I) { 5789 // Ignore dead phi's. 5790 if (PN->use_empty()) continue; 5791 5792 // Only handle legal types. Two interesting things to note here. First, 5793 // by bailing out early, we may leave behind some dead instructions, 5794 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 5795 // own moves. Second, this check is necessary becuase FastISel doesn't 5796 // use CreateRegForValue to create registers, so it always creates 5797 // exactly one register for each non-void instruction. 5798 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 5799 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 5800 // Promote MVT::i1. 5801 if (VT == MVT::i1) 5802 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 5803 else { 5804 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 5805 return false; 5806 } 5807 } 5808 5809 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5810 5811 unsigned Reg = F->getRegForValue(PHIOp); 5812 if (Reg == 0) { 5813 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 5814 return false; 5815 } 5816 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 5817 } 5818 } 5819 5820 return true; 5821 } 5822