1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 SDDbgValue *SDV; 954 if (Val.getNode()) { 955 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 956 Val)) { 957 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 958 false, Offset, dl, DbgSDNodeOrder); 959 DAG.AddDbgValue(SDV, Val.getNode(), false); 960 } 961 } else 962 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 963 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 964 } 965 } 966 967 /// getCopyFromRegs - If there was virtual register allocated for the value V 968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 970 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 971 SDValue Result; 972 973 if (It != FuncInfo.ValueMap.end()) { 974 unsigned InReg = It->second; 975 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 976 DAG.getDataLayout(), InReg, Ty); 977 SDValue Chain = DAG.getEntryNode(); 978 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 979 resolveDanglingDebugInfo(V, Result); 980 } 981 982 return Result; 983 } 984 985 /// getValue - Return an SDValue for the given Value. 986 SDValue SelectionDAGBuilder::getValue(const Value *V) { 987 // If we already have an SDValue for this value, use it. It's important 988 // to do this first, so that we don't create a CopyFromReg if we already 989 // have a regular SDValue. 990 SDValue &N = NodeMap[V]; 991 if (N.getNode()) return N; 992 993 // If there's a virtual register allocated and initialized for this 994 // value, use it. 995 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 996 if (copyFromReg.getNode()) { 997 return copyFromReg; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 // Return true if SDValue exists for the given Value 1008 bool SelectionDAGBuilder::findValue(const Value *V) const { 1009 return (NodeMap.find(V) != NodeMap.end()) || 1010 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1011 } 1012 1013 /// getNonRegisterValue - Return an SDValue for the given Value, but 1014 /// don't look in FuncInfo.ValueMap for a virtual register. 1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. 1017 SDValue &N = NodeMap[V]; 1018 if (N.getNode()) { 1019 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1020 // Remove the debug location from the node as the node is about to be used 1021 // in a location which may differ from the original debug location. This 1022 // is relevant to Constant and ConstantFP nodes because they can appear 1023 // as constant expressions inside PHI nodes. 1024 N->setDebugLoc(DebugLoc()); 1025 } 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1037 /// Create an SDValue for the given value. 1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1040 1041 if (const Constant *C = dyn_cast<Constant>(V)) { 1042 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1043 1044 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1045 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1046 1047 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1048 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1049 1050 if (isa<ConstantPointerNull>(C)) { 1051 unsigned AS = V->getType()->getPointerAddressSpace(); 1052 return DAG.getConstant(0, getCurSDLoc(), 1053 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1054 } 1055 1056 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1057 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1058 1059 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1060 return DAG.getUNDEF(VT); 1061 1062 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1063 visit(CE->getOpcode(), *CE); 1064 SDValue N1 = NodeMap[V]; 1065 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1066 return N1; 1067 } 1068 1069 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1070 SmallVector<SDValue, 4> Constants; 1071 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1072 OI != OE; ++OI) { 1073 SDNode *Val = getValue(*OI).getNode(); 1074 // If the operand is an empty aggregate, there are no values. 1075 if (!Val) continue; 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Constants.push_back(SDValue(Val, i)); 1080 } 1081 1082 return DAG.getMergeValues(Constants, getCurSDLoc()); 1083 } 1084 1085 if (const ConstantDataSequential *CDS = 1086 dyn_cast<ConstantDataSequential>(C)) { 1087 SmallVector<SDValue, 4> Ops; 1088 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1089 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1090 // Add each leaf value from the operand to the Constants list 1091 // to form a flattened list of all the values. 1092 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1093 Ops.push_back(SDValue(Val, i)); 1094 } 1095 1096 if (isa<ArrayType>(CDS->getType())) 1097 return DAG.getMergeValues(Ops, getCurSDLoc()); 1098 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1099 VT, Ops); 1100 } 1101 1102 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1103 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1104 "Unknown struct or array constant!"); 1105 1106 SmallVector<EVT, 4> ValueVTs; 1107 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1108 unsigned NumElts = ValueVTs.size(); 1109 if (NumElts == 0) 1110 return SDValue(); // empty struct 1111 SmallVector<SDValue, 4> Constants(NumElts); 1112 for (unsigned i = 0; i != NumElts; ++i) { 1113 EVT EltVT = ValueVTs[i]; 1114 if (isa<UndefValue>(C)) 1115 Constants[i] = DAG.getUNDEF(EltVT); 1116 else if (EltVT.isFloatingPoint()) 1117 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1118 else 1119 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1120 } 1121 1122 return DAG.getMergeValues(Constants, getCurSDLoc()); 1123 } 1124 1125 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1126 return DAG.getBlockAddress(BA, VT); 1127 1128 VectorType *VecTy = cast<VectorType>(V->getType()); 1129 unsigned NumElements = VecTy->getNumElements(); 1130 1131 // Now that we know the number and type of the elements, get that number of 1132 // elements into the Ops array based on what kind of constant it is. 1133 SmallVector<SDValue, 16> Ops; 1134 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1135 for (unsigned i = 0; i != NumElements; ++i) 1136 Ops.push_back(getValue(CV->getOperand(i))); 1137 } else { 1138 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1139 EVT EltVT = 1140 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1141 1142 SDValue Op; 1143 if (EltVT.isFloatingPoint()) 1144 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1145 else 1146 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1147 Ops.assign(NumElements, Op); 1148 } 1149 1150 // Create a BUILD_VECTOR node. 1151 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1152 } 1153 1154 // If this is a static alloca, generate it as the frameindex instead of 1155 // computation. 1156 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1157 DenseMap<const AllocaInst*, int>::iterator SI = 1158 FuncInfo.StaticAllocaMap.find(AI); 1159 if (SI != FuncInfo.StaticAllocaMap.end()) 1160 return DAG.getFrameIndex(SI->second, 1161 TLI.getPointerTy(DAG.getDataLayout())); 1162 } 1163 1164 // If this is an instruction which fast-isel has deferred, select it now. 1165 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1166 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1167 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1168 Inst->getType()); 1169 SDValue Chain = DAG.getEntryNode(); 1170 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1171 } 1172 1173 llvm_unreachable("Can't get register for value!"); 1174 } 1175 1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1177 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1178 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1179 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1180 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1181 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1182 if (IsMSVCCXX || IsCoreCLR) 1183 CatchPadMBB->setIsEHFuncletEntry(); 1184 1185 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1186 } 1187 1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1189 // Update machine-CFG edge. 1190 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1191 FuncInfo.MBB->addSuccessor(TargetMBB); 1192 1193 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1194 bool IsSEH = isAsynchronousEHPersonality(Pers); 1195 if (IsSEH) { 1196 // If this is not a fall-through branch or optimizations are switched off, 1197 // emit the branch. 1198 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1199 TM.getOptLevel() == CodeGenOpt::None) 1200 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1201 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1202 return; 1203 } 1204 1205 // Figure out the funclet membership for the catchret's successor. 1206 // This will be used by the FuncletLayout pass to determine how to order the 1207 // BB's. 1208 // A 'catchret' returns to the outer scope's color. 1209 Value *ParentPad = I.getCatchSwitchParentPad(); 1210 const BasicBlock *SuccessorColor; 1211 if (isa<ConstantTokenNone>(ParentPad)) 1212 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1213 else 1214 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1215 assert(SuccessorColor && "No parent funclet for catchret!"); 1216 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1217 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1218 1219 // Create the terminator node. 1220 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1221 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1222 DAG.getBasicBlock(SuccessorColorMBB)); 1223 DAG.setRoot(Ret); 1224 } 1225 1226 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1227 // Don't emit any special code for the cleanuppad instruction. It just marks 1228 // the start of a funclet. 1229 FuncInfo.MBB->setIsEHFuncletEntry(); 1230 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1231 } 1232 1233 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1234 /// many places it could ultimately go. In the IR, we have a single unwind 1235 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1236 /// This function skips over imaginary basic blocks that hold catchswitch 1237 /// instructions, and finds all the "real" machine 1238 /// basic block destinations. As those destinations may not be successors of 1239 /// EHPadBB, here we also calculate the edge probability to those destinations. 1240 /// The passed-in Prob is the edge probability to EHPadBB. 1241 static void findUnwindDestinations( 1242 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1243 BranchProbability Prob, 1244 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1245 &UnwindDests) { 1246 EHPersonality Personality = 1247 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1248 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1249 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1250 1251 while (EHPadBB) { 1252 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1253 BasicBlock *NewEHPadBB = nullptr; 1254 if (isa<LandingPadInst>(Pad)) { 1255 // Stop on landingpads. They are not funclets. 1256 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1257 break; 1258 } else if (isa<CleanupPadInst>(Pad)) { 1259 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1260 // personalities. 1261 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1262 UnwindDests.back().first->setIsEHFuncletEntry(); 1263 break; 1264 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1265 // Add the catchpad handlers to the possible destinations. 1266 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1267 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1268 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1269 if (IsMSVCCXX || IsCoreCLR) 1270 UnwindDests.back().first->setIsEHFuncletEntry(); 1271 } 1272 NewEHPadBB = CatchSwitch->getUnwindDest(); 1273 } else { 1274 continue; 1275 } 1276 1277 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1278 if (BPI && NewEHPadBB) 1279 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1280 EHPadBB = NewEHPadBB; 1281 } 1282 } 1283 1284 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1285 // Update successor info. 1286 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1287 auto UnwindDest = I.getUnwindDest(); 1288 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1289 BranchProbability UnwindDestProb = 1290 (BPI && UnwindDest) 1291 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1292 : BranchProbability::getZero(); 1293 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1294 for (auto &UnwindDest : UnwindDests) { 1295 UnwindDest.first->setIsEHPad(); 1296 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1297 } 1298 FuncInfo.MBB->normalizeSuccProbs(); 1299 1300 // Create the terminator node. 1301 SDValue Ret = 1302 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1303 DAG.setRoot(Ret); 1304 } 1305 1306 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1307 report_fatal_error("visitCatchSwitch not yet implemented!"); 1308 } 1309 1310 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1312 auto &DL = DAG.getDataLayout(); 1313 SDValue Chain = getControlRoot(); 1314 SmallVector<ISD::OutputArg, 8> Outs; 1315 SmallVector<SDValue, 8> OutVals; 1316 1317 if (!FuncInfo.CanLowerReturn) { 1318 unsigned DemoteReg = FuncInfo.DemoteRegister; 1319 const Function *F = I.getParent()->getParent(); 1320 1321 // Emit a store of the return value through the virtual register. 1322 // Leave Outs empty so that LowerReturn won't try to load return 1323 // registers the usual way. 1324 SmallVector<EVT, 1> PtrValueVTs; 1325 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1326 PtrValueVTs); 1327 1328 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1329 DemoteReg, PtrValueVTs[0]); 1330 SDValue RetOp = getValue(I.getOperand(0)); 1331 1332 SmallVector<EVT, 4> ValueVTs; 1333 SmallVector<uint64_t, 4> Offsets; 1334 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1335 unsigned NumValues = ValueVTs.size(); 1336 1337 // An aggregate return value cannot wrap around the address space, so 1338 // offsets to its parts don't wrap either. 1339 SDNodeFlags Flags; 1340 Flags.setNoUnsignedWrap(true); 1341 1342 SmallVector<SDValue, 4> Chains(NumValues); 1343 for (unsigned i = 0; i != NumValues; ++i) { 1344 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1345 RetPtr.getValueType(), RetPtr, 1346 DAG.getIntPtrConstant(Offsets[i], 1347 getCurSDLoc()), 1348 &Flags); 1349 Chains[i] = 1350 DAG.getStore(Chain, getCurSDLoc(), 1351 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1352 // FIXME: better loc info would be nice. 1353 Add, MachinePointerInfo(), false, false, 0); 1354 } 1355 1356 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1357 MVT::Other, Chains); 1358 } else if (I.getNumOperands() != 0) { 1359 SmallVector<EVT, 4> ValueVTs; 1360 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1361 unsigned NumValues = ValueVTs.size(); 1362 if (NumValues) { 1363 SDValue RetOp = getValue(I.getOperand(0)); 1364 1365 const Function *F = I.getParent()->getParent(); 1366 1367 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1368 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1369 Attribute::SExt)) 1370 ExtendKind = ISD::SIGN_EXTEND; 1371 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1372 Attribute::ZExt)) 1373 ExtendKind = ISD::ZERO_EXTEND; 1374 1375 LLVMContext &Context = F->getContext(); 1376 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1377 Attribute::InReg); 1378 1379 for (unsigned j = 0; j != NumValues; ++j) { 1380 EVT VT = ValueVTs[j]; 1381 1382 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1383 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1384 1385 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1386 MVT PartVT = TLI.getRegisterType(Context, VT); 1387 SmallVector<SDValue, 4> Parts(NumParts); 1388 getCopyToParts(DAG, getCurSDLoc(), 1389 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1390 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1391 1392 // 'inreg' on function refers to return value 1393 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1394 if (RetInReg) 1395 Flags.setInReg(); 1396 1397 // Propagate extension type if any 1398 if (ExtendKind == ISD::SIGN_EXTEND) 1399 Flags.setSExt(); 1400 else if (ExtendKind == ISD::ZERO_EXTEND) 1401 Flags.setZExt(); 1402 1403 for (unsigned i = 0; i < NumParts; ++i) { 1404 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1405 VT, /*isfixed=*/true, 0, 0)); 1406 OutVals.push_back(Parts[i]); 1407 } 1408 } 1409 } 1410 } 1411 1412 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1413 CallingConv::ID CallConv = 1414 DAG.getMachineFunction().getFunction()->getCallingConv(); 1415 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1416 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1417 1418 // Verify that the target's LowerReturn behaved as expected. 1419 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1420 "LowerReturn didn't return a valid chain!"); 1421 1422 // Update the DAG with the new chain value resulting from return lowering. 1423 DAG.setRoot(Chain); 1424 } 1425 1426 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1427 /// created for it, emit nodes to copy the value into the virtual 1428 /// registers. 1429 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1430 // Skip empty types 1431 if (V->getType()->isEmptyTy()) 1432 return; 1433 1434 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1435 if (VMI != FuncInfo.ValueMap.end()) { 1436 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1437 CopyValueToVirtualRegister(V, VMI->second); 1438 } 1439 } 1440 1441 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1442 /// the current basic block, add it to ValueMap now so that we'll get a 1443 /// CopyTo/FromReg. 1444 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1445 // No need to export constants. 1446 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1447 1448 // Already exported? 1449 if (FuncInfo.isExportedInst(V)) return; 1450 1451 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1452 CopyValueToVirtualRegister(V, Reg); 1453 } 1454 1455 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1456 const BasicBlock *FromBB) { 1457 // The operands of the setcc have to be in this block. We don't know 1458 // how to export them from some other block. 1459 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1460 // Can export from current BB. 1461 if (VI->getParent() == FromBB) 1462 return true; 1463 1464 // Is already exported, noop. 1465 return FuncInfo.isExportedInst(V); 1466 } 1467 1468 // If this is an argument, we can export it if the BB is the entry block or 1469 // if it is already exported. 1470 if (isa<Argument>(V)) { 1471 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1472 return true; 1473 1474 // Otherwise, can only export this if it is already exported. 1475 return FuncInfo.isExportedInst(V); 1476 } 1477 1478 // Otherwise, constants can always be exported. 1479 return true; 1480 } 1481 1482 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1483 BranchProbability 1484 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1485 const MachineBasicBlock *Dst) const { 1486 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1487 const BasicBlock *SrcBB = Src->getBasicBlock(); 1488 const BasicBlock *DstBB = Dst->getBasicBlock(); 1489 if (!BPI) { 1490 // If BPI is not available, set the default probability as 1 / N, where N is 1491 // the number of successors. 1492 auto SuccSize = std::max<uint32_t>( 1493 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1494 return BranchProbability(1, SuccSize); 1495 } 1496 return BPI->getEdgeProbability(SrcBB, DstBB); 1497 } 1498 1499 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1500 MachineBasicBlock *Dst, 1501 BranchProbability Prob) { 1502 if (!FuncInfo.BPI) 1503 Src->addSuccessorWithoutProb(Dst); 1504 else { 1505 if (Prob.isUnknown()) 1506 Prob = getEdgeProbability(Src, Dst); 1507 Src->addSuccessor(Dst, Prob); 1508 } 1509 } 1510 1511 static bool InBlock(const Value *V, const BasicBlock *BB) { 1512 if (const Instruction *I = dyn_cast<Instruction>(V)) 1513 return I->getParent() == BB; 1514 return true; 1515 } 1516 1517 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1518 /// This function emits a branch and is used at the leaves of an OR or an 1519 /// AND operator tree. 1520 /// 1521 void 1522 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1523 MachineBasicBlock *TBB, 1524 MachineBasicBlock *FBB, 1525 MachineBasicBlock *CurBB, 1526 MachineBasicBlock *SwitchBB, 1527 BranchProbability TProb, 1528 BranchProbability FProb) { 1529 const BasicBlock *BB = CurBB->getBasicBlock(); 1530 1531 // If the leaf of the tree is a comparison, merge the condition into 1532 // the caseblock. 1533 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1534 // The operands of the cmp have to be in this block. We don't know 1535 // how to export them from some other block. If this is the first block 1536 // of the sequence, no exporting is needed. 1537 if (CurBB == SwitchBB || 1538 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1539 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1540 ISD::CondCode Condition; 1541 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1542 Condition = getICmpCondCode(IC->getPredicate()); 1543 } else { 1544 const FCmpInst *FC = cast<FCmpInst>(Cond); 1545 Condition = getFCmpCondCode(FC->getPredicate()); 1546 if (TM.Options.NoNaNsFPMath) 1547 Condition = getFCmpCodeWithoutNaN(Condition); 1548 } 1549 1550 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1551 TBB, FBB, CurBB, TProb, FProb); 1552 SwitchCases.push_back(CB); 1553 return; 1554 } 1555 } 1556 1557 // Create a CaseBlock record representing this branch. 1558 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1559 nullptr, TBB, FBB, CurBB, TProb, FProb); 1560 SwitchCases.push_back(CB); 1561 } 1562 1563 /// FindMergedConditions - If Cond is an expression like 1564 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1565 MachineBasicBlock *TBB, 1566 MachineBasicBlock *FBB, 1567 MachineBasicBlock *CurBB, 1568 MachineBasicBlock *SwitchBB, 1569 Instruction::BinaryOps Opc, 1570 BranchProbability TProb, 1571 BranchProbability FProb) { 1572 // If this node is not part of the or/and tree, emit it as a branch. 1573 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1574 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1575 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1576 BOp->getParent() != CurBB->getBasicBlock() || 1577 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1578 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1579 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1580 TProb, FProb); 1581 return; 1582 } 1583 1584 // Create TmpBB after CurBB. 1585 MachineFunction::iterator BBI(CurBB); 1586 MachineFunction &MF = DAG.getMachineFunction(); 1587 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1588 CurBB->getParent()->insert(++BBI, TmpBB); 1589 1590 if (Opc == Instruction::Or) { 1591 // Codegen X | Y as: 1592 // BB1: 1593 // jmp_if_X TBB 1594 // jmp TmpBB 1595 // TmpBB: 1596 // jmp_if_Y TBB 1597 // jmp FBB 1598 // 1599 1600 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1601 // The requirement is that 1602 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1603 // = TrueProb for original BB. 1604 // Assuming the original probabilities are A and B, one choice is to set 1605 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1606 // A/(1+B) and 2B/(1+B). This choice assumes that 1607 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1608 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1609 // TmpBB, but the math is more complicated. 1610 1611 auto NewTrueProb = TProb / 2; 1612 auto NewFalseProb = TProb / 2 + FProb; 1613 // Emit the LHS condition. 1614 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1615 NewTrueProb, NewFalseProb); 1616 1617 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1618 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1619 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1620 // Emit the RHS condition into TmpBB. 1621 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1622 Probs[0], Probs[1]); 1623 } else { 1624 assert(Opc == Instruction::And && "Unknown merge op!"); 1625 // Codegen X & Y as: 1626 // BB1: 1627 // jmp_if_X TmpBB 1628 // jmp FBB 1629 // TmpBB: 1630 // jmp_if_Y TBB 1631 // jmp FBB 1632 // 1633 // This requires creation of TmpBB after CurBB. 1634 1635 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1636 // The requirement is that 1637 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1638 // = FalseProb for original BB. 1639 // Assuming the original probabilities are A and B, one choice is to set 1640 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1641 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1642 // TrueProb for BB1 * FalseProb for TmpBB. 1643 1644 auto NewTrueProb = TProb + FProb / 2; 1645 auto NewFalseProb = FProb / 2; 1646 // Emit the LHS condition. 1647 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1648 NewTrueProb, NewFalseProb); 1649 1650 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1651 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1652 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1653 // Emit the RHS condition into TmpBB. 1654 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1655 Probs[0], Probs[1]); 1656 } 1657 } 1658 1659 /// If the set of cases should be emitted as a series of branches, return true. 1660 /// If we should emit this as a bunch of and/or'd together conditions, return 1661 /// false. 1662 bool 1663 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1664 if (Cases.size() != 2) return true; 1665 1666 // If this is two comparisons of the same values or'd or and'd together, they 1667 // will get folded into a single comparison, so don't emit two blocks. 1668 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1669 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1670 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1671 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1672 return false; 1673 } 1674 1675 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1676 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1677 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1678 Cases[0].CC == Cases[1].CC && 1679 isa<Constant>(Cases[0].CmpRHS) && 1680 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1681 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1682 return false; 1683 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1684 return false; 1685 } 1686 1687 return true; 1688 } 1689 1690 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1691 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1692 1693 // Update machine-CFG edges. 1694 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1695 1696 if (I.isUnconditional()) { 1697 // Update machine-CFG edges. 1698 BrMBB->addSuccessor(Succ0MBB); 1699 1700 // If this is not a fall-through branch or optimizations are switched off, 1701 // emit the branch. 1702 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1703 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1704 MVT::Other, getControlRoot(), 1705 DAG.getBasicBlock(Succ0MBB))); 1706 1707 return; 1708 } 1709 1710 // If this condition is one of the special cases we handle, do special stuff 1711 // now. 1712 const Value *CondVal = I.getCondition(); 1713 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1714 1715 // If this is a series of conditions that are or'd or and'd together, emit 1716 // this as a sequence of branches instead of setcc's with and/or operations. 1717 // As long as jumps are not expensive, this should improve performance. 1718 // For example, instead of something like: 1719 // cmp A, B 1720 // C = seteq 1721 // cmp D, E 1722 // F = setle 1723 // or C, F 1724 // jnz foo 1725 // Emit: 1726 // cmp A, B 1727 // je foo 1728 // cmp D, E 1729 // jle foo 1730 // 1731 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1732 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1733 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1734 !I.getMetadata(LLVMContext::MD_unpredictable) && 1735 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1736 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1737 Opcode, 1738 getEdgeProbability(BrMBB, Succ0MBB), 1739 getEdgeProbability(BrMBB, Succ1MBB)); 1740 // If the compares in later blocks need to use values not currently 1741 // exported from this block, export them now. This block should always 1742 // be the first entry. 1743 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1744 1745 // Allow some cases to be rejected. 1746 if (ShouldEmitAsBranches(SwitchCases)) { 1747 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1748 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1749 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1750 } 1751 1752 // Emit the branch for this block. 1753 visitSwitchCase(SwitchCases[0], BrMBB); 1754 SwitchCases.erase(SwitchCases.begin()); 1755 return; 1756 } 1757 1758 // Okay, we decided not to do this, remove any inserted MBB's and clear 1759 // SwitchCases. 1760 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1761 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1762 1763 SwitchCases.clear(); 1764 } 1765 } 1766 1767 // Create a CaseBlock record representing this branch. 1768 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1769 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1770 1771 // Use visitSwitchCase to actually insert the fast branch sequence for this 1772 // cond branch. 1773 visitSwitchCase(CB, BrMBB); 1774 } 1775 1776 /// visitSwitchCase - Emits the necessary code to represent a single node in 1777 /// the binary search tree resulting from lowering a switch instruction. 1778 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1779 MachineBasicBlock *SwitchBB) { 1780 SDValue Cond; 1781 SDValue CondLHS = getValue(CB.CmpLHS); 1782 SDLoc dl = getCurSDLoc(); 1783 1784 // Build the setcc now. 1785 if (!CB.CmpMHS) { 1786 // Fold "(X == true)" to X and "(X == false)" to !X to 1787 // handle common cases produced by branch lowering. 1788 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1789 CB.CC == ISD::SETEQ) 1790 Cond = CondLHS; 1791 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1792 CB.CC == ISD::SETEQ) { 1793 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1794 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1795 } else 1796 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1797 } else { 1798 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1799 1800 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1801 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1802 1803 SDValue CmpOp = getValue(CB.CmpMHS); 1804 EVT VT = CmpOp.getValueType(); 1805 1806 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1807 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1808 ISD::SETLE); 1809 } else { 1810 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1811 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1812 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1813 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1814 } 1815 } 1816 1817 // Update successor info 1818 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1819 // TrueBB and FalseBB are always different unless the incoming IR is 1820 // degenerate. This only happens when running llc on weird IR. 1821 if (CB.TrueBB != CB.FalseBB) 1822 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1823 SwitchBB->normalizeSuccProbs(); 1824 1825 // If the lhs block is the next block, invert the condition so that we can 1826 // fall through to the lhs instead of the rhs block. 1827 if (CB.TrueBB == NextBlock(SwitchBB)) { 1828 std::swap(CB.TrueBB, CB.FalseBB); 1829 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1830 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1831 } 1832 1833 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1834 MVT::Other, getControlRoot(), Cond, 1835 DAG.getBasicBlock(CB.TrueBB)); 1836 1837 // Insert the false branch. Do this even if it's a fall through branch, 1838 // this makes it easier to do DAG optimizations which require inverting 1839 // the branch condition. 1840 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1841 DAG.getBasicBlock(CB.FalseBB)); 1842 1843 DAG.setRoot(BrCond); 1844 } 1845 1846 /// visitJumpTable - Emit JumpTable node in the current MBB 1847 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1848 // Emit the code for the jump table 1849 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1850 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1851 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1852 JT.Reg, PTy); 1853 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1854 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1855 MVT::Other, Index.getValue(1), 1856 Table, Index); 1857 DAG.setRoot(BrJumpTable); 1858 } 1859 1860 /// visitJumpTableHeader - This function emits necessary code to produce index 1861 /// in the JumpTable from switch case. 1862 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1863 JumpTableHeader &JTH, 1864 MachineBasicBlock *SwitchBB) { 1865 SDLoc dl = getCurSDLoc(); 1866 1867 // Subtract the lowest switch case value from the value being switched on and 1868 // conditional branch to default mbb if the result is greater than the 1869 // difference between smallest and largest cases. 1870 SDValue SwitchOp = getValue(JTH.SValue); 1871 EVT VT = SwitchOp.getValueType(); 1872 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1873 DAG.getConstant(JTH.First, dl, VT)); 1874 1875 // The SDNode we just created, which holds the value being switched on minus 1876 // the smallest case value, needs to be copied to a virtual register so it 1877 // can be used as an index into the jump table in a subsequent basic block. 1878 // This value may be smaller or larger than the target's pointer type, and 1879 // therefore require extension or truncating. 1880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1881 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1882 1883 unsigned JumpTableReg = 1884 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1885 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1886 JumpTableReg, SwitchOp); 1887 JT.Reg = JumpTableReg; 1888 1889 // Emit the range check for the jump table, and branch to the default block 1890 // for the switch statement if the value being switched on exceeds the largest 1891 // case in the switch. 1892 SDValue CMP = DAG.getSetCC( 1893 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1894 Sub.getValueType()), 1895 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1896 1897 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1898 MVT::Other, CopyTo, CMP, 1899 DAG.getBasicBlock(JT.Default)); 1900 1901 // Avoid emitting unnecessary branches to the next block. 1902 if (JT.MBB != NextBlock(SwitchBB)) 1903 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1904 DAG.getBasicBlock(JT.MBB)); 1905 1906 DAG.setRoot(BrCond); 1907 } 1908 1909 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1910 /// tail spliced into a stack protector check success bb. 1911 /// 1912 /// For a high level explanation of how this fits into the stack protector 1913 /// generation see the comment on the declaration of class 1914 /// StackProtectorDescriptor. 1915 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1916 MachineBasicBlock *ParentBB) { 1917 1918 // First create the loads to the guard/stack slot for the comparison. 1919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1920 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1921 1922 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1923 int FI = MFI->getStackProtectorIndex(); 1924 1925 const Value *IRGuard = SPD.getGuard(); 1926 SDValue GuardPtr = getValue(IRGuard); 1927 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1928 1929 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1930 1931 SDValue Guard; 1932 SDLoc dl = getCurSDLoc(); 1933 1934 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1935 // guard value from the virtual register holding the value. Otherwise, emit a 1936 // volatile load to retrieve the stack guard value. 1937 unsigned GuardReg = SPD.getGuardReg(); 1938 1939 if (GuardReg && TLI.useLoadStackGuardNode()) 1940 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1941 PtrTy); 1942 else 1943 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1944 GuardPtr, MachinePointerInfo(IRGuard, 0), 1945 true, false, false, Align); 1946 1947 SDValue StackSlot = DAG.getLoad( 1948 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1949 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1950 false, false, Align); 1951 1952 // Perform the comparison via a subtract/getsetcc. 1953 EVT VT = Guard.getValueType(); 1954 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1955 1956 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1957 *DAG.getContext(), 1958 Sub.getValueType()), 1959 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1960 1961 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1962 // branch to failure MBB. 1963 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1964 MVT::Other, StackSlot.getOperand(0), 1965 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1966 // Otherwise branch to success MBB. 1967 SDValue Br = DAG.getNode(ISD::BR, dl, 1968 MVT::Other, BrCond, 1969 DAG.getBasicBlock(SPD.getSuccessMBB())); 1970 1971 DAG.setRoot(Br); 1972 } 1973 1974 /// Codegen the failure basic block for a stack protector check. 1975 /// 1976 /// A failure stack protector machine basic block consists simply of a call to 1977 /// __stack_chk_fail(). 1978 /// 1979 /// For a high level explanation of how this fits into the stack protector 1980 /// generation see the comment on the declaration of class 1981 /// StackProtectorDescriptor. 1982 void 1983 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1985 SDValue Chain = 1986 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1987 None, false, getCurSDLoc(), false, false).second; 1988 DAG.setRoot(Chain); 1989 } 1990 1991 /// visitBitTestHeader - This function emits necessary code to produce value 1992 /// suitable for "bit tests" 1993 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1994 MachineBasicBlock *SwitchBB) { 1995 SDLoc dl = getCurSDLoc(); 1996 1997 // Subtract the minimum value 1998 SDValue SwitchOp = getValue(B.SValue); 1999 EVT VT = SwitchOp.getValueType(); 2000 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2001 DAG.getConstant(B.First, dl, VT)); 2002 2003 // Check range 2004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2005 SDValue RangeCmp = DAG.getSetCC( 2006 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2007 Sub.getValueType()), 2008 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2009 2010 // Determine the type of the test operands. 2011 bool UsePtrType = false; 2012 if (!TLI.isTypeLegal(VT)) 2013 UsePtrType = true; 2014 else { 2015 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2016 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2017 // Switch table case range are encoded into series of masks. 2018 // Just use pointer type, it's guaranteed to fit. 2019 UsePtrType = true; 2020 break; 2021 } 2022 } 2023 if (UsePtrType) { 2024 VT = TLI.getPointerTy(DAG.getDataLayout()); 2025 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2026 } 2027 2028 B.RegVT = VT.getSimpleVT(); 2029 B.Reg = FuncInfo.CreateReg(B.RegVT); 2030 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2031 2032 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2033 2034 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2035 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2036 SwitchBB->normalizeSuccProbs(); 2037 2038 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2039 MVT::Other, CopyTo, RangeCmp, 2040 DAG.getBasicBlock(B.Default)); 2041 2042 // Avoid emitting unnecessary branches to the next block. 2043 if (MBB != NextBlock(SwitchBB)) 2044 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2045 DAG.getBasicBlock(MBB)); 2046 2047 DAG.setRoot(BrRange); 2048 } 2049 2050 /// visitBitTestCase - this function produces one "bit test" 2051 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2052 MachineBasicBlock* NextMBB, 2053 BranchProbability BranchProbToNext, 2054 unsigned Reg, 2055 BitTestCase &B, 2056 MachineBasicBlock *SwitchBB) { 2057 SDLoc dl = getCurSDLoc(); 2058 MVT VT = BB.RegVT; 2059 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2060 SDValue Cmp; 2061 unsigned PopCount = countPopulation(B.Mask); 2062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2063 if (PopCount == 1) { 2064 // Testing for a single bit; just compare the shift count with what it 2065 // would need to be to shift a 1 bit in that position. 2066 Cmp = DAG.getSetCC( 2067 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2068 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2069 ISD::SETEQ); 2070 } else if (PopCount == BB.Range) { 2071 // There is only one zero bit in the range, test for it directly. 2072 Cmp = DAG.getSetCC( 2073 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2074 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2075 ISD::SETNE); 2076 } else { 2077 // Make desired shift 2078 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2079 DAG.getConstant(1, dl, VT), ShiftOp); 2080 2081 // Emit bit tests and jumps 2082 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2083 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2084 Cmp = DAG.getSetCC( 2085 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2086 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2087 } 2088 2089 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2090 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2091 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2092 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2093 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2094 // one as they are relative probabilities (and thus work more like weights), 2095 // and hence we need to normalize them to let the sum of them become one. 2096 SwitchBB->normalizeSuccProbs(); 2097 2098 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2099 MVT::Other, getControlRoot(), 2100 Cmp, DAG.getBasicBlock(B.TargetBB)); 2101 2102 // Avoid emitting unnecessary branches to the next block. 2103 if (NextMBB != NextBlock(SwitchBB)) 2104 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2105 DAG.getBasicBlock(NextMBB)); 2106 2107 DAG.setRoot(BrAnd); 2108 } 2109 2110 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2111 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2112 2113 // Retrieve successors. Look through artificial IR level blocks like 2114 // catchswitch for successors. 2115 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2116 const BasicBlock *EHPadBB = I.getSuccessor(1); 2117 2118 const Value *Callee(I.getCalledValue()); 2119 const Function *Fn = dyn_cast<Function>(Callee); 2120 if (isa<InlineAsm>(Callee)) 2121 visitInlineAsm(&I); 2122 else if (Fn && Fn->isIntrinsic()) { 2123 switch (Fn->getIntrinsicID()) { 2124 default: 2125 llvm_unreachable("Cannot invoke this intrinsic"); 2126 case Intrinsic::donothing: 2127 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2128 break; 2129 case Intrinsic::experimental_patchpoint_void: 2130 case Intrinsic::experimental_patchpoint_i64: 2131 visitPatchpoint(&I, EHPadBB); 2132 break; 2133 case Intrinsic::experimental_gc_statepoint: 2134 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2135 break; 2136 } 2137 } else 2138 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2139 2140 // If the value of the invoke is used outside of its defining block, make it 2141 // available as a virtual register. 2142 // We already took care of the exported value for the statepoint instruction 2143 // during call to the LowerStatepoint. 2144 if (!isStatepoint(I)) { 2145 CopyToExportRegsIfNeeded(&I); 2146 } 2147 2148 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2149 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2150 BranchProbability EHPadBBProb = 2151 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2152 : BranchProbability::getZero(); 2153 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2154 2155 // Update successor info. 2156 addSuccessorWithProb(InvokeMBB, Return); 2157 for (auto &UnwindDest : UnwindDests) { 2158 UnwindDest.first->setIsEHPad(); 2159 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2160 } 2161 InvokeMBB->normalizeSuccProbs(); 2162 2163 // Drop into normal successor. 2164 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2165 MVT::Other, getControlRoot(), 2166 DAG.getBasicBlock(Return))); 2167 } 2168 2169 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2170 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2171 } 2172 2173 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2174 assert(FuncInfo.MBB->isEHPad() && 2175 "Call to landingpad not in landing pad!"); 2176 2177 MachineBasicBlock *MBB = FuncInfo.MBB; 2178 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2179 AddLandingPadInfo(LP, MMI, MBB); 2180 2181 // If there aren't registers to copy the values into (e.g., during SjLj 2182 // exceptions), then don't bother to create these DAG nodes. 2183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2184 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2185 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2186 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2187 return; 2188 2189 // If landingpad's return type is token type, we don't create DAG nodes 2190 // for its exception pointer and selector value. The extraction of exception 2191 // pointer or selector value from token type landingpads is not currently 2192 // supported. 2193 if (LP.getType()->isTokenTy()) 2194 return; 2195 2196 SmallVector<EVT, 2> ValueVTs; 2197 SDLoc dl = getCurSDLoc(); 2198 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2199 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2200 2201 // Get the two live-in registers as SDValues. The physregs have already been 2202 // copied into virtual registers. 2203 SDValue Ops[2]; 2204 if (FuncInfo.ExceptionPointerVirtReg) { 2205 Ops[0] = DAG.getZExtOrTrunc( 2206 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2207 FuncInfo.ExceptionPointerVirtReg, 2208 TLI.getPointerTy(DAG.getDataLayout())), 2209 dl, ValueVTs[0]); 2210 } else { 2211 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2212 } 2213 Ops[1] = DAG.getZExtOrTrunc( 2214 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2215 FuncInfo.ExceptionSelectorVirtReg, 2216 TLI.getPointerTy(DAG.getDataLayout())), 2217 dl, ValueVTs[1]); 2218 2219 // Merge into one. 2220 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2221 DAG.getVTList(ValueVTs), Ops); 2222 setValue(&LP, Res); 2223 } 2224 2225 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2226 #ifndef NDEBUG 2227 for (const CaseCluster &CC : Clusters) 2228 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2229 #endif 2230 2231 std::sort(Clusters.begin(), Clusters.end(), 2232 [](const CaseCluster &a, const CaseCluster &b) { 2233 return a.Low->getValue().slt(b.Low->getValue()); 2234 }); 2235 2236 // Merge adjacent clusters with the same destination. 2237 const unsigned N = Clusters.size(); 2238 unsigned DstIndex = 0; 2239 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2240 CaseCluster &CC = Clusters[SrcIndex]; 2241 const ConstantInt *CaseVal = CC.Low; 2242 MachineBasicBlock *Succ = CC.MBB; 2243 2244 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2245 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2246 // If this case has the same successor and is a neighbour, merge it into 2247 // the previous cluster. 2248 Clusters[DstIndex - 1].High = CaseVal; 2249 Clusters[DstIndex - 1].Prob += CC.Prob; 2250 } else { 2251 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2252 sizeof(Clusters[SrcIndex])); 2253 } 2254 } 2255 Clusters.resize(DstIndex); 2256 } 2257 2258 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2259 MachineBasicBlock *Last) { 2260 // Update JTCases. 2261 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2262 if (JTCases[i].first.HeaderBB == First) 2263 JTCases[i].first.HeaderBB = Last; 2264 2265 // Update BitTestCases. 2266 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2267 if (BitTestCases[i].Parent == First) 2268 BitTestCases[i].Parent = Last; 2269 } 2270 2271 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2272 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2273 2274 // Update machine-CFG edges with unique successors. 2275 SmallSet<BasicBlock*, 32> Done; 2276 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2277 BasicBlock *BB = I.getSuccessor(i); 2278 bool Inserted = Done.insert(BB).second; 2279 if (!Inserted) 2280 continue; 2281 2282 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2283 addSuccessorWithProb(IndirectBrMBB, Succ); 2284 } 2285 IndirectBrMBB->normalizeSuccProbs(); 2286 2287 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2288 MVT::Other, getControlRoot(), 2289 getValue(I.getAddress()))); 2290 } 2291 2292 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2293 if (DAG.getTarget().Options.TrapUnreachable) 2294 DAG.setRoot( 2295 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2296 } 2297 2298 void SelectionDAGBuilder::visitFSub(const User &I) { 2299 // -0.0 - X --> fneg 2300 Type *Ty = I.getType(); 2301 if (isa<Constant>(I.getOperand(0)) && 2302 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2303 SDValue Op2 = getValue(I.getOperand(1)); 2304 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2305 Op2.getValueType(), Op2)); 2306 return; 2307 } 2308 2309 visitBinary(I, ISD::FSUB); 2310 } 2311 2312 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2313 SDValue Op1 = getValue(I.getOperand(0)); 2314 SDValue Op2 = getValue(I.getOperand(1)); 2315 2316 bool nuw = false; 2317 bool nsw = false; 2318 bool exact = false; 2319 FastMathFlags FMF; 2320 2321 if (const OverflowingBinaryOperator *OFBinOp = 2322 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2323 nuw = OFBinOp->hasNoUnsignedWrap(); 2324 nsw = OFBinOp->hasNoSignedWrap(); 2325 } 2326 if (const PossiblyExactOperator *ExactOp = 2327 dyn_cast<const PossiblyExactOperator>(&I)) 2328 exact = ExactOp->isExact(); 2329 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2330 FMF = FPOp->getFastMathFlags(); 2331 2332 SDNodeFlags Flags; 2333 Flags.setExact(exact); 2334 Flags.setNoSignedWrap(nsw); 2335 Flags.setNoUnsignedWrap(nuw); 2336 if (EnableFMFInDAG) { 2337 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2338 Flags.setNoInfs(FMF.noInfs()); 2339 Flags.setNoNaNs(FMF.noNaNs()); 2340 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2341 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2342 } 2343 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2344 Op1, Op2, &Flags); 2345 setValue(&I, BinNodeValue); 2346 } 2347 2348 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2349 SDValue Op1 = getValue(I.getOperand(0)); 2350 SDValue Op2 = getValue(I.getOperand(1)); 2351 2352 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2353 Op2.getValueType(), DAG.getDataLayout()); 2354 2355 // Coerce the shift amount to the right type if we can. 2356 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2357 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2358 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2359 SDLoc DL = getCurSDLoc(); 2360 2361 // If the operand is smaller than the shift count type, promote it. 2362 if (ShiftSize > Op2Size) 2363 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2364 2365 // If the operand is larger than the shift count type but the shift 2366 // count type has enough bits to represent any shift value, truncate 2367 // it now. This is a common case and it exposes the truncate to 2368 // optimization early. 2369 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2370 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2371 // Otherwise we'll need to temporarily settle for some other convenient 2372 // type. Type legalization will make adjustments once the shiftee is split. 2373 else 2374 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2375 } 2376 2377 bool nuw = false; 2378 bool nsw = false; 2379 bool exact = false; 2380 2381 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2382 2383 if (const OverflowingBinaryOperator *OFBinOp = 2384 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2385 nuw = OFBinOp->hasNoUnsignedWrap(); 2386 nsw = OFBinOp->hasNoSignedWrap(); 2387 } 2388 if (const PossiblyExactOperator *ExactOp = 2389 dyn_cast<const PossiblyExactOperator>(&I)) 2390 exact = ExactOp->isExact(); 2391 } 2392 SDNodeFlags Flags; 2393 Flags.setExact(exact); 2394 Flags.setNoSignedWrap(nsw); 2395 Flags.setNoUnsignedWrap(nuw); 2396 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2397 &Flags); 2398 setValue(&I, Res); 2399 } 2400 2401 void SelectionDAGBuilder::visitSDiv(const User &I) { 2402 SDValue Op1 = getValue(I.getOperand(0)); 2403 SDValue Op2 = getValue(I.getOperand(1)); 2404 2405 SDNodeFlags Flags; 2406 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2407 cast<PossiblyExactOperator>(&I)->isExact()); 2408 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2409 Op2, &Flags)); 2410 } 2411 2412 void SelectionDAGBuilder::visitICmp(const User &I) { 2413 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2414 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2415 predicate = IC->getPredicate(); 2416 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2417 predicate = ICmpInst::Predicate(IC->getPredicate()); 2418 SDValue Op1 = getValue(I.getOperand(0)); 2419 SDValue Op2 = getValue(I.getOperand(1)); 2420 ISD::CondCode Opcode = getICmpCondCode(predicate); 2421 2422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2423 I.getType()); 2424 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2425 } 2426 2427 void SelectionDAGBuilder::visitFCmp(const User &I) { 2428 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2429 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2430 predicate = FC->getPredicate(); 2431 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2432 predicate = FCmpInst::Predicate(FC->getPredicate()); 2433 SDValue Op1 = getValue(I.getOperand(0)); 2434 SDValue Op2 = getValue(I.getOperand(1)); 2435 ISD::CondCode Condition = getFCmpCondCode(predicate); 2436 2437 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2438 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2439 // further optimization, but currently FMF is only applicable to binary nodes. 2440 if (TM.Options.NoNaNsFPMath) 2441 Condition = getFCmpCodeWithoutNaN(Condition); 2442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2443 I.getType()); 2444 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2445 } 2446 2447 void SelectionDAGBuilder::visitSelect(const User &I) { 2448 SmallVector<EVT, 4> ValueVTs; 2449 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2450 ValueVTs); 2451 unsigned NumValues = ValueVTs.size(); 2452 if (NumValues == 0) return; 2453 2454 SmallVector<SDValue, 4> Values(NumValues); 2455 SDValue Cond = getValue(I.getOperand(0)); 2456 SDValue LHSVal = getValue(I.getOperand(1)); 2457 SDValue RHSVal = getValue(I.getOperand(2)); 2458 auto BaseOps = {Cond}; 2459 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2460 ISD::VSELECT : ISD::SELECT; 2461 2462 // Min/max matching is only viable if all output VTs are the same. 2463 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2464 EVT VT = ValueVTs[0]; 2465 LLVMContext &Ctx = *DAG.getContext(); 2466 auto &TLI = DAG.getTargetLoweringInfo(); 2467 2468 // We care about the legality of the operation after it has been type 2469 // legalized. 2470 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2471 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2472 VT = TLI.getTypeToTransformTo(Ctx, VT); 2473 2474 // If the vselect is legal, assume we want to leave this as a vector setcc + 2475 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2476 // min/max is legal on the scalar type. 2477 bool UseScalarMinMax = VT.isVector() && 2478 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2479 2480 Value *LHS, *RHS; 2481 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2482 ISD::NodeType Opc = ISD::DELETED_NODE; 2483 switch (SPR.Flavor) { 2484 case SPF_UMAX: Opc = ISD::UMAX; break; 2485 case SPF_UMIN: Opc = ISD::UMIN; break; 2486 case SPF_SMAX: Opc = ISD::SMAX; break; 2487 case SPF_SMIN: Opc = ISD::SMIN; break; 2488 case SPF_FMINNUM: 2489 switch (SPR.NaNBehavior) { 2490 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2491 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2492 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2493 case SPNB_RETURNS_ANY: { 2494 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2495 Opc = ISD::FMINNUM; 2496 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2497 Opc = ISD::FMINNAN; 2498 else if (UseScalarMinMax) 2499 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2500 ISD::FMINNUM : ISD::FMINNAN; 2501 break; 2502 } 2503 } 2504 break; 2505 case SPF_FMAXNUM: 2506 switch (SPR.NaNBehavior) { 2507 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2508 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2509 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2510 case SPNB_RETURNS_ANY: 2511 2512 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2513 Opc = ISD::FMAXNUM; 2514 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2515 Opc = ISD::FMAXNAN; 2516 else if (UseScalarMinMax) 2517 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2518 ISD::FMAXNUM : ISD::FMAXNAN; 2519 break; 2520 } 2521 break; 2522 default: break; 2523 } 2524 2525 if (Opc != ISD::DELETED_NODE && 2526 (TLI.isOperationLegalOrCustom(Opc, VT) || 2527 (UseScalarMinMax && 2528 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2529 // If the underlying comparison instruction is used by any other 2530 // instruction, the consumed instructions won't be destroyed, so it is 2531 // not profitable to convert to a min/max. 2532 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2533 OpCode = Opc; 2534 LHSVal = getValue(LHS); 2535 RHSVal = getValue(RHS); 2536 BaseOps = {}; 2537 } 2538 } 2539 2540 for (unsigned i = 0; i != NumValues; ++i) { 2541 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2542 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2543 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2544 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2545 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2546 Ops); 2547 } 2548 2549 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2550 DAG.getVTList(ValueVTs), Values)); 2551 } 2552 2553 void SelectionDAGBuilder::visitTrunc(const User &I) { 2554 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2555 SDValue N = getValue(I.getOperand(0)); 2556 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2557 I.getType()); 2558 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2559 } 2560 2561 void SelectionDAGBuilder::visitZExt(const User &I) { 2562 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2563 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2564 SDValue N = getValue(I.getOperand(0)); 2565 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2566 I.getType()); 2567 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2568 } 2569 2570 void SelectionDAGBuilder::visitSExt(const User &I) { 2571 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2572 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2573 SDValue N = getValue(I.getOperand(0)); 2574 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2575 I.getType()); 2576 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2577 } 2578 2579 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2580 // FPTrunc is never a no-op cast, no need to check 2581 SDValue N = getValue(I.getOperand(0)); 2582 SDLoc dl = getCurSDLoc(); 2583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2584 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2585 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2586 DAG.getTargetConstant( 2587 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2588 } 2589 2590 void SelectionDAGBuilder::visitFPExt(const User &I) { 2591 // FPExt is never a no-op cast, no need to check 2592 SDValue N = getValue(I.getOperand(0)); 2593 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2594 I.getType()); 2595 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2596 } 2597 2598 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2599 // FPToUI is never a no-op cast, no need to check 2600 SDValue N = getValue(I.getOperand(0)); 2601 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2602 I.getType()); 2603 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2604 } 2605 2606 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2607 // FPToSI is never a no-op cast, no need to check 2608 SDValue N = getValue(I.getOperand(0)); 2609 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2610 I.getType()); 2611 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2612 } 2613 2614 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2615 // UIToFP is never a no-op cast, no need to check 2616 SDValue N = getValue(I.getOperand(0)); 2617 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2618 I.getType()); 2619 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2620 } 2621 2622 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2623 // SIToFP is never a no-op cast, no need to check 2624 SDValue N = getValue(I.getOperand(0)); 2625 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2626 I.getType()); 2627 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2628 } 2629 2630 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2631 // What to do depends on the size of the integer and the size of the pointer. 2632 // We can either truncate, zero extend, or no-op, accordingly. 2633 SDValue N = getValue(I.getOperand(0)); 2634 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2635 I.getType()); 2636 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2637 } 2638 2639 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2640 // What to do depends on the size of the integer and the size of the pointer. 2641 // We can either truncate, zero extend, or no-op, accordingly. 2642 SDValue N = getValue(I.getOperand(0)); 2643 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2644 I.getType()); 2645 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2646 } 2647 2648 void SelectionDAGBuilder::visitBitCast(const User &I) { 2649 SDValue N = getValue(I.getOperand(0)); 2650 SDLoc dl = getCurSDLoc(); 2651 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2652 I.getType()); 2653 2654 // BitCast assures us that source and destination are the same size so this is 2655 // either a BITCAST or a no-op. 2656 if (DestVT != N.getValueType()) 2657 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2658 DestVT, N)); // convert types. 2659 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2660 // might fold any kind of constant expression to an integer constant and that 2661 // is not what we are looking for. Only regcognize a bitcast of a genuine 2662 // constant integer as an opaque constant. 2663 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2664 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2665 /*isOpaque*/true)); 2666 else 2667 setValue(&I, N); // noop cast. 2668 } 2669 2670 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2672 const Value *SV = I.getOperand(0); 2673 SDValue N = getValue(SV); 2674 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2675 2676 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2677 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2678 2679 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2680 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2681 2682 setValue(&I, N); 2683 } 2684 2685 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2687 SDValue InVec = getValue(I.getOperand(0)); 2688 SDValue InVal = getValue(I.getOperand(1)); 2689 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2690 TLI.getVectorIdxTy(DAG.getDataLayout())); 2691 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2692 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2693 InVec, InVal, InIdx)); 2694 } 2695 2696 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2698 SDValue InVec = getValue(I.getOperand(0)); 2699 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2700 TLI.getVectorIdxTy(DAG.getDataLayout())); 2701 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2702 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2703 InVec, InIdx)); 2704 } 2705 2706 // Utility for visitShuffleVector - Return true if every element in Mask, 2707 // beginning from position Pos and ending in Pos+Size, falls within the 2708 // specified sequential range [L, L+Pos). or is undef. 2709 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2710 unsigned Pos, unsigned Size, int Low) { 2711 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2712 if (Mask[i] >= 0 && Mask[i] != Low) 2713 return false; 2714 return true; 2715 } 2716 2717 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2718 SDValue Src1 = getValue(I.getOperand(0)); 2719 SDValue Src2 = getValue(I.getOperand(1)); 2720 2721 SmallVector<int, 8> Mask; 2722 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2723 unsigned MaskNumElts = Mask.size(); 2724 2725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2726 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2727 EVT SrcVT = Src1.getValueType(); 2728 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2729 2730 if (SrcNumElts == MaskNumElts) { 2731 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2732 &Mask[0])); 2733 return; 2734 } 2735 2736 // Normalize the shuffle vector since mask and vector length don't match. 2737 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2738 // Mask is longer than the source vectors and is a multiple of the source 2739 // vectors. We can use concatenate vector to make the mask and vectors 2740 // lengths match. 2741 if (SrcNumElts*2 == MaskNumElts) { 2742 // First check for Src1 in low and Src2 in high 2743 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2744 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2745 // The shuffle is concatenating two vectors together. 2746 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2747 VT, Src1, Src2)); 2748 return; 2749 } 2750 // Then check for Src2 in low and Src1 in high 2751 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2752 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2753 // The shuffle is concatenating two vectors together. 2754 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2755 VT, Src2, Src1)); 2756 return; 2757 } 2758 } 2759 2760 // Pad both vectors with undefs to make them the same length as the mask. 2761 unsigned NumConcat = MaskNumElts / SrcNumElts; 2762 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2763 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2764 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2765 2766 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2767 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2768 MOps1[0] = Src1; 2769 MOps2[0] = Src2; 2770 2771 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2772 getCurSDLoc(), VT, MOps1); 2773 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2774 getCurSDLoc(), VT, MOps2); 2775 2776 // Readjust mask for new input vector length. 2777 SmallVector<int, 8> MappedOps; 2778 for (unsigned i = 0; i != MaskNumElts; ++i) { 2779 int Idx = Mask[i]; 2780 if (Idx >= (int)SrcNumElts) 2781 Idx -= SrcNumElts - MaskNumElts; 2782 MappedOps.push_back(Idx); 2783 } 2784 2785 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2786 &MappedOps[0])); 2787 return; 2788 } 2789 2790 if (SrcNumElts > MaskNumElts) { 2791 // Analyze the access pattern of the vector to see if we can extract 2792 // two subvectors and do the shuffle. The analysis is done by calculating 2793 // the range of elements the mask access on both vectors. 2794 int MinRange[2] = { static_cast<int>(SrcNumElts), 2795 static_cast<int>(SrcNumElts)}; 2796 int MaxRange[2] = {-1, -1}; 2797 2798 for (unsigned i = 0; i != MaskNumElts; ++i) { 2799 int Idx = Mask[i]; 2800 unsigned Input = 0; 2801 if (Idx < 0) 2802 continue; 2803 2804 if (Idx >= (int)SrcNumElts) { 2805 Input = 1; 2806 Idx -= SrcNumElts; 2807 } 2808 if (Idx > MaxRange[Input]) 2809 MaxRange[Input] = Idx; 2810 if (Idx < MinRange[Input]) 2811 MinRange[Input] = Idx; 2812 } 2813 2814 // Check if the access is smaller than the vector size and can we find 2815 // a reasonable extract index. 2816 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2817 // Extract. 2818 int StartIdx[2]; // StartIdx to extract from 2819 for (unsigned Input = 0; Input < 2; ++Input) { 2820 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2821 RangeUse[Input] = 0; // Unused 2822 StartIdx[Input] = 0; 2823 continue; 2824 } 2825 2826 // Find a good start index that is a multiple of the mask length. Then 2827 // see if the rest of the elements are in range. 2828 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2829 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2830 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2831 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2832 } 2833 2834 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2835 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2836 return; 2837 } 2838 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2839 // Extract appropriate subvector and generate a vector shuffle 2840 for (unsigned Input = 0; Input < 2; ++Input) { 2841 SDValue &Src = Input == 0 ? Src1 : Src2; 2842 if (RangeUse[Input] == 0) 2843 Src = DAG.getUNDEF(VT); 2844 else { 2845 SDLoc dl = getCurSDLoc(); 2846 Src = DAG.getNode( 2847 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2848 DAG.getConstant(StartIdx[Input], dl, 2849 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2850 } 2851 } 2852 2853 // Calculate new mask. 2854 SmallVector<int, 8> MappedOps; 2855 for (unsigned i = 0; i != MaskNumElts; ++i) { 2856 int Idx = Mask[i]; 2857 if (Idx >= 0) { 2858 if (Idx < (int)SrcNumElts) 2859 Idx -= StartIdx[0]; 2860 else 2861 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2862 } 2863 MappedOps.push_back(Idx); 2864 } 2865 2866 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2867 &MappedOps[0])); 2868 return; 2869 } 2870 } 2871 2872 // We can't use either concat vectors or extract subvectors so fall back to 2873 // replacing the shuffle with extract and build vector. 2874 // to insert and build vector. 2875 EVT EltVT = VT.getVectorElementType(); 2876 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2877 SDLoc dl = getCurSDLoc(); 2878 SmallVector<SDValue,8> Ops; 2879 for (unsigned i = 0; i != MaskNumElts; ++i) { 2880 int Idx = Mask[i]; 2881 SDValue Res; 2882 2883 if (Idx < 0) { 2884 Res = DAG.getUNDEF(EltVT); 2885 } else { 2886 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2887 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2888 2889 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2890 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2891 } 2892 2893 Ops.push_back(Res); 2894 } 2895 2896 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2897 } 2898 2899 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2900 const Value *Op0 = I.getOperand(0); 2901 const Value *Op1 = I.getOperand(1); 2902 Type *AggTy = I.getType(); 2903 Type *ValTy = Op1->getType(); 2904 bool IntoUndef = isa<UndefValue>(Op0); 2905 bool FromUndef = isa<UndefValue>(Op1); 2906 2907 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2908 2909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2910 SmallVector<EVT, 4> AggValueVTs; 2911 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2912 SmallVector<EVT, 4> ValValueVTs; 2913 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2914 2915 unsigned NumAggValues = AggValueVTs.size(); 2916 unsigned NumValValues = ValValueVTs.size(); 2917 SmallVector<SDValue, 4> Values(NumAggValues); 2918 2919 // Ignore an insertvalue that produces an empty object 2920 if (!NumAggValues) { 2921 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2922 return; 2923 } 2924 2925 SDValue Agg = getValue(Op0); 2926 unsigned i = 0; 2927 // Copy the beginning value(s) from the original aggregate. 2928 for (; i != LinearIndex; ++i) 2929 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2930 SDValue(Agg.getNode(), Agg.getResNo() + i); 2931 // Copy values from the inserted value(s). 2932 if (NumValValues) { 2933 SDValue Val = getValue(Op1); 2934 for (; i != LinearIndex + NumValValues; ++i) 2935 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2936 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2937 } 2938 // Copy remaining value(s) from the original aggregate. 2939 for (; i != NumAggValues; ++i) 2940 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2941 SDValue(Agg.getNode(), Agg.getResNo() + i); 2942 2943 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2944 DAG.getVTList(AggValueVTs), Values)); 2945 } 2946 2947 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2948 const Value *Op0 = I.getOperand(0); 2949 Type *AggTy = Op0->getType(); 2950 Type *ValTy = I.getType(); 2951 bool OutOfUndef = isa<UndefValue>(Op0); 2952 2953 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2954 2955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2956 SmallVector<EVT, 4> ValValueVTs; 2957 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2958 2959 unsigned NumValValues = ValValueVTs.size(); 2960 2961 // Ignore a extractvalue that produces an empty object 2962 if (!NumValValues) { 2963 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2964 return; 2965 } 2966 2967 SmallVector<SDValue, 4> Values(NumValValues); 2968 2969 SDValue Agg = getValue(Op0); 2970 // Copy out the selected value(s). 2971 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2972 Values[i - LinearIndex] = 2973 OutOfUndef ? 2974 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2975 SDValue(Agg.getNode(), Agg.getResNo() + i); 2976 2977 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2978 DAG.getVTList(ValValueVTs), Values)); 2979 } 2980 2981 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2982 Value *Op0 = I.getOperand(0); 2983 // Note that the pointer operand may be a vector of pointers. Take the scalar 2984 // element which holds a pointer. 2985 Type *Ty = Op0->getType()->getScalarType(); 2986 unsigned AS = Ty->getPointerAddressSpace(); 2987 SDValue N = getValue(Op0); 2988 SDLoc dl = getCurSDLoc(); 2989 2990 // Normalize Vector GEP - all scalar operands should be converted to the 2991 // splat vector. 2992 unsigned VectorWidth = I.getType()->isVectorTy() ? 2993 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2994 2995 if (VectorWidth && !N.getValueType().isVector()) { 2996 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2997 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2998 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2999 } 3000 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3001 OI != E; ++OI) { 3002 const Value *Idx = *OI; 3003 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3004 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3005 if (Field) { 3006 // N = N + Offset 3007 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3008 3009 // In an inbouds GEP with an offset that is nonnegative even when 3010 // interpreted as signed, assume there is no unsigned overflow. 3011 SDNodeFlags Flags; 3012 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3013 Flags.setNoUnsignedWrap(true); 3014 3015 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3016 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3017 } 3018 3019 Ty = StTy->getElementType(Field); 3020 } else { 3021 if (Ty->isPointerTy()) { 3022 // The only pointer type is for the very first index, 3023 // therefore the next type is the source element type. 3024 Ty = cast<GEPOperator>(&I)->getSourceElementType(); 3025 } else { 3026 Ty = cast<SequentialType>(Ty)->getElementType(); 3027 } 3028 3029 MVT PtrTy = 3030 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3031 unsigned PtrSize = PtrTy.getSizeInBits(); 3032 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3033 3034 // If this is a scalar constant or a splat vector of constants, 3035 // handle it quickly. 3036 const auto *CI = dyn_cast<ConstantInt>(Idx); 3037 if (!CI && isa<ConstantDataVector>(Idx) && 3038 cast<ConstantDataVector>(Idx)->getSplatValue()) 3039 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3040 3041 if (CI) { 3042 if (CI->isZero()) 3043 continue; 3044 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3045 SDValue OffsVal = VectorWidth ? 3046 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3047 DAG.getConstant(Offs, dl, PtrTy); 3048 3049 // In an inbouds GEP with an offset that is nonnegative even when 3050 // interpreted as signed, assume there is no unsigned overflow. 3051 SDNodeFlags Flags; 3052 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3053 Flags.setNoUnsignedWrap(true); 3054 3055 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3056 continue; 3057 } 3058 3059 // N = N + Idx * ElementSize; 3060 SDValue IdxN = getValue(Idx); 3061 3062 if (!IdxN.getValueType().isVector() && VectorWidth) { 3063 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3064 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3065 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3066 } 3067 // If the index is smaller or larger than intptr_t, truncate or extend 3068 // it. 3069 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3070 3071 // If this is a multiply by a power of two, turn it into a shl 3072 // immediately. This is a very common case. 3073 if (ElementSize != 1) { 3074 if (ElementSize.isPowerOf2()) { 3075 unsigned Amt = ElementSize.logBase2(); 3076 IdxN = DAG.getNode(ISD::SHL, dl, 3077 N.getValueType(), IdxN, 3078 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3079 } else { 3080 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3081 IdxN = DAG.getNode(ISD::MUL, dl, 3082 N.getValueType(), IdxN, Scale); 3083 } 3084 } 3085 3086 N = DAG.getNode(ISD::ADD, dl, 3087 N.getValueType(), N, IdxN); 3088 } 3089 } 3090 3091 setValue(&I, N); 3092 } 3093 3094 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3095 // If this is a fixed sized alloca in the entry block of the function, 3096 // allocate it statically on the stack. 3097 if (FuncInfo.StaticAllocaMap.count(&I)) 3098 return; // getValue will auto-populate this. 3099 3100 SDLoc dl = getCurSDLoc(); 3101 Type *Ty = I.getAllocatedType(); 3102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3103 auto &DL = DAG.getDataLayout(); 3104 uint64_t TySize = DL.getTypeAllocSize(Ty); 3105 unsigned Align = 3106 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3107 3108 SDValue AllocSize = getValue(I.getArraySize()); 3109 3110 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3111 if (AllocSize.getValueType() != IntPtr) 3112 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3113 3114 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3115 AllocSize, 3116 DAG.getConstant(TySize, dl, IntPtr)); 3117 3118 // Handle alignment. If the requested alignment is less than or equal to 3119 // the stack alignment, ignore it. If the size is greater than or equal to 3120 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3121 unsigned StackAlign = 3122 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3123 if (Align <= StackAlign) 3124 Align = 0; 3125 3126 // Round the size of the allocation up to the stack alignment size 3127 // by add SA-1 to the size. This doesn't overflow because we're computing 3128 // an address inside an alloca. 3129 SDNodeFlags Flags; 3130 Flags.setNoUnsignedWrap(true); 3131 AllocSize = DAG.getNode(ISD::ADD, dl, 3132 AllocSize.getValueType(), AllocSize, 3133 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3134 3135 // Mask out the low bits for alignment purposes. 3136 AllocSize = DAG.getNode(ISD::AND, dl, 3137 AllocSize.getValueType(), AllocSize, 3138 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3139 dl)); 3140 3141 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3142 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3143 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3144 setValue(&I, DSA); 3145 DAG.setRoot(DSA.getValue(1)); 3146 3147 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3148 } 3149 3150 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3151 if (I.isAtomic()) 3152 return visitAtomicLoad(I); 3153 3154 const Value *SV = I.getOperand(0); 3155 SDValue Ptr = getValue(SV); 3156 3157 Type *Ty = I.getType(); 3158 3159 bool isVolatile = I.isVolatile(); 3160 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3161 3162 // The IR notion of invariant_load only guarantees that all *non-faulting* 3163 // invariant loads result in the same value. The MI notion of invariant load 3164 // guarantees that the load can be legally moved to any location within its 3165 // containing function. The MI notion of invariant_load is stronger than the 3166 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3167 // with a guarantee that the location being loaded from is dereferenceable 3168 // throughout the function's lifetime. 3169 3170 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3171 isDereferenceablePointer(SV, DAG.getDataLayout()); 3172 unsigned Alignment = I.getAlignment(); 3173 3174 AAMDNodes AAInfo; 3175 I.getAAMetadata(AAInfo); 3176 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3177 3178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3179 SmallVector<EVT, 4> ValueVTs; 3180 SmallVector<uint64_t, 4> Offsets; 3181 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3182 unsigned NumValues = ValueVTs.size(); 3183 if (NumValues == 0) 3184 return; 3185 3186 SDValue Root; 3187 bool ConstantMemory = false; 3188 if (isVolatile || NumValues > MaxParallelChains) 3189 // Serialize volatile loads with other side effects. 3190 Root = getRoot(); 3191 else if (AA->pointsToConstantMemory(MemoryLocation( 3192 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3193 // Do not serialize (non-volatile) loads of constant memory with anything. 3194 Root = DAG.getEntryNode(); 3195 ConstantMemory = true; 3196 } else { 3197 // Do not serialize non-volatile loads against each other. 3198 Root = DAG.getRoot(); 3199 } 3200 3201 SDLoc dl = getCurSDLoc(); 3202 3203 if (isVolatile) 3204 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3205 3206 // An aggregate load cannot wrap around the address space, so offsets to its 3207 // parts don't wrap either. 3208 SDNodeFlags Flags; 3209 Flags.setNoUnsignedWrap(true); 3210 3211 SmallVector<SDValue, 4> Values(NumValues); 3212 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3213 EVT PtrVT = Ptr.getValueType(); 3214 unsigned ChainI = 0; 3215 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3216 // Serializing loads here may result in excessive register pressure, and 3217 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3218 // could recover a bit by hoisting nodes upward in the chain by recognizing 3219 // they are side-effect free or do not alias. The optimizer should really 3220 // avoid this case by converting large object/array copies to llvm.memcpy 3221 // (MaxParallelChains should always remain as failsafe). 3222 if (ChainI == MaxParallelChains) { 3223 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3224 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3225 makeArrayRef(Chains.data(), ChainI)); 3226 Root = Chain; 3227 ChainI = 0; 3228 } 3229 SDValue A = DAG.getNode(ISD::ADD, dl, 3230 PtrVT, Ptr, 3231 DAG.getConstant(Offsets[i], dl, PtrVT), 3232 &Flags); 3233 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3234 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3235 isNonTemporal, isInvariant, Alignment, AAInfo, 3236 Ranges); 3237 3238 Values[i] = L; 3239 Chains[ChainI] = L.getValue(1); 3240 } 3241 3242 if (!ConstantMemory) { 3243 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3244 makeArrayRef(Chains.data(), ChainI)); 3245 if (isVolatile) 3246 DAG.setRoot(Chain); 3247 else 3248 PendingLoads.push_back(Chain); 3249 } 3250 3251 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3252 DAG.getVTList(ValueVTs), Values)); 3253 } 3254 3255 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3256 if (I.isAtomic()) 3257 return visitAtomicStore(I); 3258 3259 const Value *SrcV = I.getOperand(0); 3260 const Value *PtrV = I.getOperand(1); 3261 3262 SmallVector<EVT, 4> ValueVTs; 3263 SmallVector<uint64_t, 4> Offsets; 3264 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3265 SrcV->getType(), ValueVTs, &Offsets); 3266 unsigned NumValues = ValueVTs.size(); 3267 if (NumValues == 0) 3268 return; 3269 3270 // Get the lowered operands. Note that we do this after 3271 // checking if NumResults is zero, because with zero results 3272 // the operands won't have values in the map. 3273 SDValue Src = getValue(SrcV); 3274 SDValue Ptr = getValue(PtrV); 3275 3276 SDValue Root = getRoot(); 3277 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3278 EVT PtrVT = Ptr.getValueType(); 3279 bool isVolatile = I.isVolatile(); 3280 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3281 unsigned Alignment = I.getAlignment(); 3282 SDLoc dl = getCurSDLoc(); 3283 3284 AAMDNodes AAInfo; 3285 I.getAAMetadata(AAInfo); 3286 3287 // An aggregate load cannot wrap around the address space, so offsets to its 3288 // parts don't wrap either. 3289 SDNodeFlags Flags; 3290 Flags.setNoUnsignedWrap(true); 3291 3292 unsigned ChainI = 0; 3293 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3294 // See visitLoad comments. 3295 if (ChainI == MaxParallelChains) { 3296 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3297 makeArrayRef(Chains.data(), ChainI)); 3298 Root = Chain; 3299 ChainI = 0; 3300 } 3301 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3302 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3303 SDValue St = DAG.getStore(Root, dl, 3304 SDValue(Src.getNode(), Src.getResNo() + i), 3305 Add, MachinePointerInfo(PtrV, Offsets[i]), 3306 isVolatile, isNonTemporal, Alignment, AAInfo); 3307 Chains[ChainI] = St; 3308 } 3309 3310 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3311 makeArrayRef(Chains.data(), ChainI)); 3312 DAG.setRoot(StoreNode); 3313 } 3314 3315 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3316 SDLoc sdl = getCurSDLoc(); 3317 3318 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3319 Value *PtrOperand = I.getArgOperand(1); 3320 SDValue Ptr = getValue(PtrOperand); 3321 SDValue Src0 = getValue(I.getArgOperand(0)); 3322 SDValue Mask = getValue(I.getArgOperand(3)); 3323 EVT VT = Src0.getValueType(); 3324 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3325 if (!Alignment) 3326 Alignment = DAG.getEVTAlignment(VT); 3327 3328 AAMDNodes AAInfo; 3329 I.getAAMetadata(AAInfo); 3330 3331 MachineMemOperand *MMO = 3332 DAG.getMachineFunction(). 3333 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3334 MachineMemOperand::MOStore, VT.getStoreSize(), 3335 Alignment, AAInfo); 3336 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3337 MMO, false); 3338 DAG.setRoot(StoreNode); 3339 setValue(&I, StoreNode); 3340 } 3341 3342 // Get a uniform base for the Gather/Scatter intrinsic. 3343 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3344 // We try to represent it as a base pointer + vector of indices. 3345 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3346 // The first operand of the GEP may be a single pointer or a vector of pointers 3347 // Example: 3348 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3349 // or 3350 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3351 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3352 // 3353 // When the first GEP operand is a single pointer - it is the uniform base we 3354 // are looking for. If first operand of the GEP is a splat vector - we 3355 // extract the spalt value and use it as a uniform base. 3356 // In all other cases the function returns 'false'. 3357 // 3358 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3359 SelectionDAGBuilder* SDB) { 3360 3361 SelectionDAG& DAG = SDB->DAG; 3362 LLVMContext &Context = *DAG.getContext(); 3363 3364 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3365 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3366 if (!GEP || GEP->getNumOperands() > 2) 3367 return false; 3368 3369 const Value *GEPPtr = GEP->getPointerOperand(); 3370 if (!GEPPtr->getType()->isVectorTy()) 3371 Ptr = GEPPtr; 3372 else if (!(Ptr = getSplatValue(GEPPtr))) 3373 return false; 3374 3375 Value *IndexVal = GEP->getOperand(1); 3376 3377 // The operands of the GEP may be defined in another basic block. 3378 // In this case we'll not find nodes for the operands. 3379 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3380 return false; 3381 3382 Base = SDB->getValue(Ptr); 3383 Index = SDB->getValue(IndexVal); 3384 3385 // Suppress sign extension. 3386 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3387 if (SDB->findValue(Sext->getOperand(0))) { 3388 IndexVal = Sext->getOperand(0); 3389 Index = SDB->getValue(IndexVal); 3390 } 3391 } 3392 if (!Index.getValueType().isVector()) { 3393 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3394 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3395 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3396 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3397 } 3398 return true; 3399 } 3400 3401 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3402 SDLoc sdl = getCurSDLoc(); 3403 3404 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3405 const Value *Ptr = I.getArgOperand(1); 3406 SDValue Src0 = getValue(I.getArgOperand(0)); 3407 SDValue Mask = getValue(I.getArgOperand(3)); 3408 EVT VT = Src0.getValueType(); 3409 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3410 if (!Alignment) 3411 Alignment = DAG.getEVTAlignment(VT); 3412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3413 3414 AAMDNodes AAInfo; 3415 I.getAAMetadata(AAInfo); 3416 3417 SDValue Base; 3418 SDValue Index; 3419 const Value *BasePtr = Ptr; 3420 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3421 3422 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3423 MachineMemOperand *MMO = DAG.getMachineFunction(). 3424 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3425 MachineMemOperand::MOStore, VT.getStoreSize(), 3426 Alignment, AAInfo); 3427 if (!UniformBase) { 3428 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3429 Index = getValue(Ptr); 3430 } 3431 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3432 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3433 Ops, MMO); 3434 DAG.setRoot(Scatter); 3435 setValue(&I, Scatter); 3436 } 3437 3438 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3439 SDLoc sdl = getCurSDLoc(); 3440 3441 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3442 Value *PtrOperand = I.getArgOperand(0); 3443 SDValue Ptr = getValue(PtrOperand); 3444 SDValue Src0 = getValue(I.getArgOperand(3)); 3445 SDValue Mask = getValue(I.getArgOperand(2)); 3446 3447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3448 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3449 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3450 if (!Alignment) 3451 Alignment = DAG.getEVTAlignment(VT); 3452 3453 AAMDNodes AAInfo; 3454 I.getAAMetadata(AAInfo); 3455 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3456 3457 SDValue InChain = DAG.getRoot(); 3458 if (AA->pointsToConstantMemory(MemoryLocation( 3459 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3460 AAInfo))) { 3461 // Do not serialize (non-volatile) loads of constant memory with anything. 3462 InChain = DAG.getEntryNode(); 3463 } 3464 3465 MachineMemOperand *MMO = 3466 DAG.getMachineFunction(). 3467 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3468 MachineMemOperand::MOLoad, VT.getStoreSize(), 3469 Alignment, AAInfo, Ranges); 3470 3471 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3472 ISD::NON_EXTLOAD); 3473 SDValue OutChain = Load.getValue(1); 3474 DAG.setRoot(OutChain); 3475 setValue(&I, Load); 3476 } 3477 3478 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3479 SDLoc sdl = getCurSDLoc(); 3480 3481 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3482 const Value *Ptr = I.getArgOperand(0); 3483 SDValue Src0 = getValue(I.getArgOperand(3)); 3484 SDValue Mask = getValue(I.getArgOperand(2)); 3485 3486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3487 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3488 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3489 if (!Alignment) 3490 Alignment = DAG.getEVTAlignment(VT); 3491 3492 AAMDNodes AAInfo; 3493 I.getAAMetadata(AAInfo); 3494 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3495 3496 SDValue Root = DAG.getRoot(); 3497 SDValue Base; 3498 SDValue Index; 3499 const Value *BasePtr = Ptr; 3500 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3501 bool ConstantMemory = false; 3502 if (UniformBase && 3503 AA->pointsToConstantMemory(MemoryLocation( 3504 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3505 AAInfo))) { 3506 // Do not serialize (non-volatile) loads of constant memory with anything. 3507 Root = DAG.getEntryNode(); 3508 ConstantMemory = true; 3509 } 3510 3511 MachineMemOperand *MMO = 3512 DAG.getMachineFunction(). 3513 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3514 MachineMemOperand::MOLoad, VT.getStoreSize(), 3515 Alignment, AAInfo, Ranges); 3516 3517 if (!UniformBase) { 3518 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3519 Index = getValue(Ptr); 3520 } 3521 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3522 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3523 Ops, MMO); 3524 3525 SDValue OutChain = Gather.getValue(1); 3526 if (!ConstantMemory) 3527 PendingLoads.push_back(OutChain); 3528 setValue(&I, Gather); 3529 } 3530 3531 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3532 SDLoc dl = getCurSDLoc(); 3533 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3534 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3535 SynchronizationScope Scope = I.getSynchScope(); 3536 3537 SDValue InChain = getRoot(); 3538 3539 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3540 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3541 SDValue L = DAG.getAtomicCmpSwap( 3542 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3543 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3544 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3545 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3546 3547 SDValue OutChain = L.getValue(2); 3548 3549 setValue(&I, L); 3550 DAG.setRoot(OutChain); 3551 } 3552 3553 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3554 SDLoc dl = getCurSDLoc(); 3555 ISD::NodeType NT; 3556 switch (I.getOperation()) { 3557 default: llvm_unreachable("Unknown atomicrmw operation"); 3558 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3559 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3560 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3561 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3562 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3563 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3564 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3565 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3566 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3567 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3568 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3569 } 3570 AtomicOrdering Order = I.getOrdering(); 3571 SynchronizationScope Scope = I.getSynchScope(); 3572 3573 SDValue InChain = getRoot(); 3574 3575 SDValue L = 3576 DAG.getAtomic(NT, dl, 3577 getValue(I.getValOperand()).getSimpleValueType(), 3578 InChain, 3579 getValue(I.getPointerOperand()), 3580 getValue(I.getValOperand()), 3581 I.getPointerOperand(), 3582 /* Alignment=*/ 0, Order, Scope); 3583 3584 SDValue OutChain = L.getValue(1); 3585 3586 setValue(&I, L); 3587 DAG.setRoot(OutChain); 3588 } 3589 3590 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3591 SDLoc dl = getCurSDLoc(); 3592 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3593 SDValue Ops[3]; 3594 Ops[0] = getRoot(); 3595 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3596 TLI.getPointerTy(DAG.getDataLayout())); 3597 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3598 TLI.getPointerTy(DAG.getDataLayout())); 3599 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3600 } 3601 3602 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3603 SDLoc dl = getCurSDLoc(); 3604 AtomicOrdering Order = I.getOrdering(); 3605 SynchronizationScope Scope = I.getSynchScope(); 3606 3607 SDValue InChain = getRoot(); 3608 3609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3610 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3611 3612 if (I.getAlignment() < VT.getSizeInBits() / 8) 3613 report_fatal_error("Cannot generate unaligned atomic load"); 3614 3615 MachineMemOperand *MMO = 3616 DAG.getMachineFunction(). 3617 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3618 MachineMemOperand::MOVolatile | 3619 MachineMemOperand::MOLoad, 3620 VT.getStoreSize(), 3621 I.getAlignment() ? I.getAlignment() : 3622 DAG.getEVTAlignment(VT)); 3623 3624 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3625 SDValue L = 3626 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3627 getValue(I.getPointerOperand()), MMO, 3628 Order, Scope); 3629 3630 SDValue OutChain = L.getValue(1); 3631 3632 setValue(&I, L); 3633 DAG.setRoot(OutChain); 3634 } 3635 3636 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3637 SDLoc dl = getCurSDLoc(); 3638 3639 AtomicOrdering Order = I.getOrdering(); 3640 SynchronizationScope Scope = I.getSynchScope(); 3641 3642 SDValue InChain = getRoot(); 3643 3644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3645 EVT VT = 3646 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3647 3648 if (I.getAlignment() < VT.getSizeInBits() / 8) 3649 report_fatal_error("Cannot generate unaligned atomic store"); 3650 3651 SDValue OutChain = 3652 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3653 InChain, 3654 getValue(I.getPointerOperand()), 3655 getValue(I.getValueOperand()), 3656 I.getPointerOperand(), I.getAlignment(), 3657 Order, Scope); 3658 3659 DAG.setRoot(OutChain); 3660 } 3661 3662 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3663 /// node. 3664 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3665 unsigned Intrinsic) { 3666 bool HasChain = !I.doesNotAccessMemory(); 3667 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3668 3669 // Build the operand list. 3670 SmallVector<SDValue, 8> Ops; 3671 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3672 if (OnlyLoad) { 3673 // We don't need to serialize loads against other loads. 3674 Ops.push_back(DAG.getRoot()); 3675 } else { 3676 Ops.push_back(getRoot()); 3677 } 3678 } 3679 3680 // Info is set by getTgtMemInstrinsic 3681 TargetLowering::IntrinsicInfo Info; 3682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3683 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3684 3685 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3686 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3687 Info.opc == ISD::INTRINSIC_W_CHAIN) 3688 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3689 TLI.getPointerTy(DAG.getDataLayout()))); 3690 3691 // Add all operands of the call to the operand list. 3692 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3693 SDValue Op = getValue(I.getArgOperand(i)); 3694 Ops.push_back(Op); 3695 } 3696 3697 SmallVector<EVT, 4> ValueVTs; 3698 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3699 3700 if (HasChain) 3701 ValueVTs.push_back(MVT::Other); 3702 3703 SDVTList VTs = DAG.getVTList(ValueVTs); 3704 3705 // Create the node. 3706 SDValue Result; 3707 if (IsTgtIntrinsic) { 3708 // This is target intrinsic that touches memory 3709 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3710 VTs, Ops, Info.memVT, 3711 MachinePointerInfo(Info.ptrVal, Info.offset), 3712 Info.align, Info.vol, 3713 Info.readMem, Info.writeMem, Info.size); 3714 } else if (!HasChain) { 3715 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3716 } else if (!I.getType()->isVoidTy()) { 3717 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3718 } else { 3719 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3720 } 3721 3722 if (HasChain) { 3723 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3724 if (OnlyLoad) 3725 PendingLoads.push_back(Chain); 3726 else 3727 DAG.setRoot(Chain); 3728 } 3729 3730 if (!I.getType()->isVoidTy()) { 3731 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3732 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3733 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3734 } 3735 3736 setValue(&I, Result); 3737 } 3738 } 3739 3740 /// GetSignificand - Get the significand and build it into a floating-point 3741 /// number with exponent of 1: 3742 /// 3743 /// Op = (Op & 0x007fffff) | 0x3f800000; 3744 /// 3745 /// where Op is the hexadecimal representation of floating point value. 3746 static SDValue 3747 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3748 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3749 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3750 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3751 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3752 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3753 } 3754 3755 /// GetExponent - Get the exponent: 3756 /// 3757 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3758 /// 3759 /// where Op is the hexadecimal representation of floating point value. 3760 static SDValue 3761 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3762 SDLoc dl) { 3763 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3764 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3765 SDValue t1 = DAG.getNode( 3766 ISD::SRL, dl, MVT::i32, t0, 3767 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3768 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3769 DAG.getConstant(127, dl, MVT::i32)); 3770 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3771 } 3772 3773 /// getF32Constant - Get 32-bit floating point constant. 3774 static SDValue 3775 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3776 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3777 MVT::f32); 3778 } 3779 3780 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3781 SelectionDAG &DAG) { 3782 // TODO: What fast-math-flags should be set on the floating-point nodes? 3783 3784 // IntegerPartOfX = ((int32_t)(t0); 3785 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3786 3787 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3788 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3789 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3790 3791 // IntegerPartOfX <<= 23; 3792 IntegerPartOfX = DAG.getNode( 3793 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3794 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3795 DAG.getDataLayout()))); 3796 3797 SDValue TwoToFractionalPartOfX; 3798 if (LimitFloatPrecision <= 6) { 3799 // For floating-point precision of 6: 3800 // 3801 // TwoToFractionalPartOfX = 3802 // 0.997535578f + 3803 // (0.735607626f + 0.252464424f * x) * x; 3804 // 3805 // error 0.0144103317, which is 6 bits 3806 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3807 getF32Constant(DAG, 0x3e814304, dl)); 3808 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3809 getF32Constant(DAG, 0x3f3c50c8, dl)); 3810 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3811 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3812 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3813 } else if (LimitFloatPrecision <= 12) { 3814 // For floating-point precision of 12: 3815 // 3816 // TwoToFractionalPartOfX = 3817 // 0.999892986f + 3818 // (0.696457318f + 3819 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3820 // 3821 // error 0.000107046256, which is 13 to 14 bits 3822 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3823 getF32Constant(DAG, 0x3da235e3, dl)); 3824 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3825 getF32Constant(DAG, 0x3e65b8f3, dl)); 3826 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3827 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3828 getF32Constant(DAG, 0x3f324b07, dl)); 3829 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3830 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3831 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3832 } else { // LimitFloatPrecision <= 18 3833 // For floating-point precision of 18: 3834 // 3835 // TwoToFractionalPartOfX = 3836 // 0.999999982f + 3837 // (0.693148872f + 3838 // (0.240227044f + 3839 // (0.554906021e-1f + 3840 // (0.961591928e-2f + 3841 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3842 // error 2.47208000*10^(-7), which is better than 18 bits 3843 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3844 getF32Constant(DAG, 0x3924b03e, dl)); 3845 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3846 getF32Constant(DAG, 0x3ab24b87, dl)); 3847 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3848 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3849 getF32Constant(DAG, 0x3c1d8c17, dl)); 3850 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3851 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3852 getF32Constant(DAG, 0x3d634a1d, dl)); 3853 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3854 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3855 getF32Constant(DAG, 0x3e75fe14, dl)); 3856 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3857 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3858 getF32Constant(DAG, 0x3f317234, dl)); 3859 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3860 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3861 getF32Constant(DAG, 0x3f800000, dl)); 3862 } 3863 3864 // Add the exponent into the result in integer domain. 3865 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3866 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3867 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3868 } 3869 3870 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3871 /// limited-precision mode. 3872 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3873 const TargetLowering &TLI) { 3874 if (Op.getValueType() == MVT::f32 && 3875 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3876 3877 // Put the exponent in the right bit position for later addition to the 3878 // final result: 3879 // 3880 // #define LOG2OFe 1.4426950f 3881 // t0 = Op * LOG2OFe 3882 3883 // TODO: What fast-math-flags should be set here? 3884 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3885 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3886 return getLimitedPrecisionExp2(t0, dl, DAG); 3887 } 3888 3889 // No special expansion. 3890 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3891 } 3892 3893 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3894 /// limited-precision mode. 3895 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3896 const TargetLowering &TLI) { 3897 3898 // TODO: What fast-math-flags should be set on the floating-point nodes? 3899 3900 if (Op.getValueType() == MVT::f32 && 3901 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3902 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3903 3904 // Scale the exponent by log(2) [0.69314718f]. 3905 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3906 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3907 getF32Constant(DAG, 0x3f317218, dl)); 3908 3909 // Get the significand and build it into a floating-point number with 3910 // exponent of 1. 3911 SDValue X = GetSignificand(DAG, Op1, dl); 3912 3913 SDValue LogOfMantissa; 3914 if (LimitFloatPrecision <= 6) { 3915 // For floating-point precision of 6: 3916 // 3917 // LogofMantissa = 3918 // -1.1609546f + 3919 // (1.4034025f - 0.23903021f * x) * x; 3920 // 3921 // error 0.0034276066, which is better than 8 bits 3922 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3923 getF32Constant(DAG, 0xbe74c456, dl)); 3924 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3925 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3926 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3927 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3928 getF32Constant(DAG, 0x3f949a29, dl)); 3929 } else if (LimitFloatPrecision <= 12) { 3930 // For floating-point precision of 12: 3931 // 3932 // LogOfMantissa = 3933 // -1.7417939f + 3934 // (2.8212026f + 3935 // (-1.4699568f + 3936 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3937 // 3938 // error 0.000061011436, which is 14 bits 3939 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3940 getF32Constant(DAG, 0xbd67b6d6, dl)); 3941 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3942 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3943 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3944 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3945 getF32Constant(DAG, 0x3fbc278b, dl)); 3946 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3947 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3948 getF32Constant(DAG, 0x40348e95, dl)); 3949 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3950 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3951 getF32Constant(DAG, 0x3fdef31a, dl)); 3952 } else { // LimitFloatPrecision <= 18 3953 // For floating-point precision of 18: 3954 // 3955 // LogOfMantissa = 3956 // -2.1072184f + 3957 // (4.2372794f + 3958 // (-3.7029485f + 3959 // (2.2781945f + 3960 // (-0.87823314f + 3961 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3962 // 3963 // error 0.0000023660568, which is better than 18 bits 3964 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3965 getF32Constant(DAG, 0xbc91e5ac, dl)); 3966 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3967 getF32Constant(DAG, 0x3e4350aa, dl)); 3968 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3969 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3970 getF32Constant(DAG, 0x3f60d3e3, dl)); 3971 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3972 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3973 getF32Constant(DAG, 0x4011cdf0, dl)); 3974 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3975 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3976 getF32Constant(DAG, 0x406cfd1c, dl)); 3977 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3978 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3979 getF32Constant(DAG, 0x408797cb, dl)); 3980 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3981 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3982 getF32Constant(DAG, 0x4006dcab, dl)); 3983 } 3984 3985 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3986 } 3987 3988 // No special expansion. 3989 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3990 } 3991 3992 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3993 /// limited-precision mode. 3994 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3995 const TargetLowering &TLI) { 3996 3997 // TODO: What fast-math-flags should be set on the floating-point nodes? 3998 3999 if (Op.getValueType() == MVT::f32 && 4000 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4001 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4002 4003 // Get the exponent. 4004 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4005 4006 // Get the significand and build it into a floating-point number with 4007 // exponent of 1. 4008 SDValue X = GetSignificand(DAG, Op1, dl); 4009 4010 // Different possible minimax approximations of significand in 4011 // floating-point for various degrees of accuracy over [1,2]. 4012 SDValue Log2ofMantissa; 4013 if (LimitFloatPrecision <= 6) { 4014 // For floating-point precision of 6: 4015 // 4016 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4017 // 4018 // error 0.0049451742, which is more than 7 bits 4019 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4020 getF32Constant(DAG, 0xbeb08fe0, dl)); 4021 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4022 getF32Constant(DAG, 0x40019463, dl)); 4023 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4024 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4025 getF32Constant(DAG, 0x3fd6633d, dl)); 4026 } else if (LimitFloatPrecision <= 12) { 4027 // For floating-point precision of 12: 4028 // 4029 // Log2ofMantissa = 4030 // -2.51285454f + 4031 // (4.07009056f + 4032 // (-2.12067489f + 4033 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4034 // 4035 // error 0.0000876136000, which is better than 13 bits 4036 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4037 getF32Constant(DAG, 0xbda7262e, dl)); 4038 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4039 getF32Constant(DAG, 0x3f25280b, dl)); 4040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4041 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4042 getF32Constant(DAG, 0x4007b923, dl)); 4043 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4044 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4045 getF32Constant(DAG, 0x40823e2f, dl)); 4046 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4047 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4048 getF32Constant(DAG, 0x4020d29c, dl)); 4049 } else { // LimitFloatPrecision <= 18 4050 // For floating-point precision of 18: 4051 // 4052 // Log2ofMantissa = 4053 // -3.0400495f + 4054 // (6.1129976f + 4055 // (-5.3420409f + 4056 // (3.2865683f + 4057 // (-1.2669343f + 4058 // (0.27515199f - 4059 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4060 // 4061 // error 0.0000018516, which is better than 18 bits 4062 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4063 getF32Constant(DAG, 0xbcd2769e, dl)); 4064 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4065 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4066 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4067 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4068 getF32Constant(DAG, 0x3fa22ae7, dl)); 4069 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4070 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4071 getF32Constant(DAG, 0x40525723, dl)); 4072 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4073 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4074 getF32Constant(DAG, 0x40aaf200, dl)); 4075 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4076 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4077 getF32Constant(DAG, 0x40c39dad, dl)); 4078 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4079 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4080 getF32Constant(DAG, 0x4042902c, dl)); 4081 } 4082 4083 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4084 } 4085 4086 // No special expansion. 4087 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4088 } 4089 4090 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4091 /// limited-precision mode. 4092 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4093 const TargetLowering &TLI) { 4094 4095 // TODO: What fast-math-flags should be set on the floating-point nodes? 4096 4097 if (Op.getValueType() == MVT::f32 && 4098 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4099 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4100 4101 // Scale the exponent by log10(2) [0.30102999f]. 4102 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4103 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4104 getF32Constant(DAG, 0x3e9a209a, dl)); 4105 4106 // Get the significand and build it into a floating-point number with 4107 // exponent of 1. 4108 SDValue X = GetSignificand(DAG, Op1, dl); 4109 4110 SDValue Log10ofMantissa; 4111 if (LimitFloatPrecision <= 6) { 4112 // For floating-point precision of 6: 4113 // 4114 // Log10ofMantissa = 4115 // -0.50419619f + 4116 // (0.60948995f - 0.10380950f * x) * x; 4117 // 4118 // error 0.0014886165, which is 6 bits 4119 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4120 getF32Constant(DAG, 0xbdd49a13, dl)); 4121 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4122 getF32Constant(DAG, 0x3f1c0789, dl)); 4123 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4124 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4125 getF32Constant(DAG, 0x3f011300, dl)); 4126 } else if (LimitFloatPrecision <= 12) { 4127 // For floating-point precision of 12: 4128 // 4129 // Log10ofMantissa = 4130 // -0.64831180f + 4131 // (0.91751397f + 4132 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4133 // 4134 // error 0.00019228036, which is better than 12 bits 4135 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4136 getF32Constant(DAG, 0x3d431f31, dl)); 4137 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4138 getF32Constant(DAG, 0x3ea21fb2, dl)); 4139 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4140 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4141 getF32Constant(DAG, 0x3f6ae232, dl)); 4142 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4143 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4144 getF32Constant(DAG, 0x3f25f7c3, dl)); 4145 } else { // LimitFloatPrecision <= 18 4146 // For floating-point precision of 18: 4147 // 4148 // Log10ofMantissa = 4149 // -0.84299375f + 4150 // (1.5327582f + 4151 // (-1.0688956f + 4152 // (0.49102474f + 4153 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4154 // 4155 // error 0.0000037995730, which is better than 18 bits 4156 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4157 getF32Constant(DAG, 0x3c5d51ce, dl)); 4158 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4159 getF32Constant(DAG, 0x3e00685a, dl)); 4160 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4161 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4162 getF32Constant(DAG, 0x3efb6798, dl)); 4163 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4164 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4165 getF32Constant(DAG, 0x3f88d192, dl)); 4166 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4167 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4168 getF32Constant(DAG, 0x3fc4316c, dl)); 4169 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4170 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4171 getF32Constant(DAG, 0x3f57ce70, dl)); 4172 } 4173 4174 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4175 } 4176 4177 // No special expansion. 4178 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4179 } 4180 4181 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4182 /// limited-precision mode. 4183 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4184 const TargetLowering &TLI) { 4185 if (Op.getValueType() == MVT::f32 && 4186 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4187 return getLimitedPrecisionExp2(Op, dl, DAG); 4188 4189 // No special expansion. 4190 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4191 } 4192 4193 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4194 /// limited-precision mode with x == 10.0f. 4195 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4196 SelectionDAG &DAG, const TargetLowering &TLI) { 4197 bool IsExp10 = false; 4198 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4199 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4200 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4201 APFloat Ten(10.0f); 4202 IsExp10 = LHSC->isExactlyValue(Ten); 4203 } 4204 } 4205 4206 // TODO: What fast-math-flags should be set on the FMUL node? 4207 if (IsExp10) { 4208 // Put the exponent in the right bit position for later addition to the 4209 // final result: 4210 // 4211 // #define LOG2OF10 3.3219281f 4212 // t0 = Op * LOG2OF10; 4213 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4214 getF32Constant(DAG, 0x40549a78, dl)); 4215 return getLimitedPrecisionExp2(t0, dl, DAG); 4216 } 4217 4218 // No special expansion. 4219 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4220 } 4221 4222 4223 /// ExpandPowI - Expand a llvm.powi intrinsic. 4224 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4225 SelectionDAG &DAG) { 4226 // If RHS is a constant, we can expand this out to a multiplication tree, 4227 // otherwise we end up lowering to a call to __powidf2 (for example). When 4228 // optimizing for size, we only want to do this if the expansion would produce 4229 // a small number of multiplies, otherwise we do the full expansion. 4230 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4231 // Get the exponent as a positive value. 4232 unsigned Val = RHSC->getSExtValue(); 4233 if ((int)Val < 0) Val = -Val; 4234 4235 // powi(x, 0) -> 1.0 4236 if (Val == 0) 4237 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4238 4239 const Function *F = DAG.getMachineFunction().getFunction(); 4240 if (!F->optForSize() || 4241 // If optimizing for size, don't insert too many multiplies. 4242 // This inserts up to 5 multiplies. 4243 countPopulation(Val) + Log2_32(Val) < 7) { 4244 // We use the simple binary decomposition method to generate the multiply 4245 // sequence. There are more optimal ways to do this (for example, 4246 // powi(x,15) generates one more multiply than it should), but this has 4247 // the benefit of being both really simple and much better than a libcall. 4248 SDValue Res; // Logically starts equal to 1.0 4249 SDValue CurSquare = LHS; 4250 // TODO: Intrinsics should have fast-math-flags that propagate to these 4251 // nodes. 4252 while (Val) { 4253 if (Val & 1) { 4254 if (Res.getNode()) 4255 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4256 else 4257 Res = CurSquare; // 1.0*CurSquare. 4258 } 4259 4260 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4261 CurSquare, CurSquare); 4262 Val >>= 1; 4263 } 4264 4265 // If the original was negative, invert the result, producing 1/(x*x*x). 4266 if (RHSC->getSExtValue() < 0) 4267 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4268 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4269 return Res; 4270 } 4271 } 4272 4273 // Otherwise, expand to a libcall. 4274 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4275 } 4276 4277 // getUnderlyingArgReg - Find underlying register used for a truncated or 4278 // bitcasted argument. 4279 static unsigned getUnderlyingArgReg(const SDValue &N) { 4280 switch (N.getOpcode()) { 4281 case ISD::CopyFromReg: 4282 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4283 case ISD::BITCAST: 4284 case ISD::AssertZext: 4285 case ISD::AssertSext: 4286 case ISD::TRUNCATE: 4287 return getUnderlyingArgReg(N.getOperand(0)); 4288 default: 4289 return 0; 4290 } 4291 } 4292 4293 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4294 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4295 /// At the end of instruction selection, they will be inserted to the entry BB. 4296 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4297 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4298 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4299 const Argument *Arg = dyn_cast<Argument>(V); 4300 if (!Arg) 4301 return false; 4302 4303 MachineFunction &MF = DAG.getMachineFunction(); 4304 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4305 4306 // Ignore inlined function arguments here. 4307 // 4308 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4309 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4310 return false; 4311 4312 Optional<MachineOperand> Op; 4313 // Some arguments' frame index is recorded during argument lowering. 4314 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4315 Op = MachineOperand::CreateFI(FI); 4316 4317 if (!Op && N.getNode()) { 4318 unsigned Reg = getUnderlyingArgReg(N); 4319 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4320 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4321 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4322 if (PR) 4323 Reg = PR; 4324 } 4325 if (Reg) 4326 Op = MachineOperand::CreateReg(Reg, false); 4327 } 4328 4329 if (!Op) { 4330 // Check if ValueMap has reg number. 4331 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4332 if (VMI != FuncInfo.ValueMap.end()) 4333 Op = MachineOperand::CreateReg(VMI->second, false); 4334 } 4335 4336 if (!Op && N.getNode()) 4337 // Check if frame index is available. 4338 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4339 if (FrameIndexSDNode *FINode = 4340 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4341 Op = MachineOperand::CreateFI(FINode->getIndex()); 4342 4343 if (!Op) 4344 return false; 4345 4346 assert(Variable->isValidLocationForIntrinsic(DL) && 4347 "Expected inlined-at fields to agree"); 4348 if (Op->isReg()) 4349 FuncInfo.ArgDbgValues.push_back( 4350 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4351 Op->getReg(), Offset, Variable, Expr)); 4352 else 4353 FuncInfo.ArgDbgValues.push_back( 4354 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4355 .addOperand(*Op) 4356 .addImm(Offset) 4357 .addMetadata(Variable) 4358 .addMetadata(Expr)); 4359 4360 return true; 4361 } 4362 4363 // VisualStudio defines setjmp as _setjmp 4364 #if defined(_MSC_VER) && defined(setjmp) && \ 4365 !defined(setjmp_undefined_for_msvc) 4366 # pragma push_macro("setjmp") 4367 # undef setjmp 4368 # define setjmp_undefined_for_msvc 4369 #endif 4370 4371 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4372 /// we want to emit this as a call to a named external function, return the name 4373 /// otherwise lower it and return null. 4374 const char * 4375 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4377 SDLoc sdl = getCurSDLoc(); 4378 DebugLoc dl = getCurDebugLoc(); 4379 SDValue Res; 4380 4381 switch (Intrinsic) { 4382 default: 4383 // By default, turn this into a target intrinsic node. 4384 visitTargetIntrinsic(I, Intrinsic); 4385 return nullptr; 4386 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4387 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4388 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4389 case Intrinsic::returnaddress: 4390 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4391 TLI.getPointerTy(DAG.getDataLayout()), 4392 getValue(I.getArgOperand(0)))); 4393 return nullptr; 4394 case Intrinsic::frameaddress: 4395 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4396 TLI.getPointerTy(DAG.getDataLayout()), 4397 getValue(I.getArgOperand(0)))); 4398 return nullptr; 4399 case Intrinsic::read_register: { 4400 Value *Reg = I.getArgOperand(0); 4401 SDValue Chain = getRoot(); 4402 SDValue RegName = 4403 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4404 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4405 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4406 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4407 setValue(&I, Res); 4408 DAG.setRoot(Res.getValue(1)); 4409 return nullptr; 4410 } 4411 case Intrinsic::write_register: { 4412 Value *Reg = I.getArgOperand(0); 4413 Value *RegValue = I.getArgOperand(1); 4414 SDValue Chain = getRoot(); 4415 SDValue RegName = 4416 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4417 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4418 RegName, getValue(RegValue))); 4419 return nullptr; 4420 } 4421 case Intrinsic::setjmp: 4422 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4423 case Intrinsic::longjmp: 4424 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4425 case Intrinsic::memcpy: { 4426 SDValue Op1 = getValue(I.getArgOperand(0)); 4427 SDValue Op2 = getValue(I.getArgOperand(1)); 4428 SDValue Op3 = getValue(I.getArgOperand(2)); 4429 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4430 if (!Align) 4431 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4432 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4433 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4434 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4435 false, isTC, 4436 MachinePointerInfo(I.getArgOperand(0)), 4437 MachinePointerInfo(I.getArgOperand(1))); 4438 updateDAGForMaybeTailCall(MC); 4439 return nullptr; 4440 } 4441 case Intrinsic::memset: { 4442 SDValue Op1 = getValue(I.getArgOperand(0)); 4443 SDValue Op2 = getValue(I.getArgOperand(1)); 4444 SDValue Op3 = getValue(I.getArgOperand(2)); 4445 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4446 if (!Align) 4447 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4448 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4449 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4450 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4451 isTC, MachinePointerInfo(I.getArgOperand(0))); 4452 updateDAGForMaybeTailCall(MS); 4453 return nullptr; 4454 } 4455 case Intrinsic::memmove: { 4456 SDValue Op1 = getValue(I.getArgOperand(0)); 4457 SDValue Op2 = getValue(I.getArgOperand(1)); 4458 SDValue Op3 = getValue(I.getArgOperand(2)); 4459 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4460 if (!Align) 4461 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4462 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4463 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4464 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4465 isTC, MachinePointerInfo(I.getArgOperand(0)), 4466 MachinePointerInfo(I.getArgOperand(1))); 4467 updateDAGForMaybeTailCall(MM); 4468 return nullptr; 4469 } 4470 case Intrinsic::dbg_declare: { 4471 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4472 DILocalVariable *Variable = DI.getVariable(); 4473 DIExpression *Expression = DI.getExpression(); 4474 const Value *Address = DI.getAddress(); 4475 assert(Variable && "Missing variable"); 4476 if (!Address) { 4477 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4478 return nullptr; 4479 } 4480 4481 // Check if address has undef value. 4482 if (isa<UndefValue>(Address) || 4483 (Address->use_empty() && !isa<Argument>(Address))) { 4484 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4485 return nullptr; 4486 } 4487 4488 SDValue &N = NodeMap[Address]; 4489 if (!N.getNode() && isa<Argument>(Address)) 4490 // Check unused arguments map. 4491 N = UnusedArgNodeMap[Address]; 4492 SDDbgValue *SDV; 4493 if (N.getNode()) { 4494 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4495 Address = BCI->getOperand(0); 4496 // Parameters are handled specially. 4497 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4498 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4499 if (isParameter && FINode) { 4500 // Byval parameter. We have a frame index at this point. 4501 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4502 FINode->getIndex(), 0, dl, SDNodeOrder); 4503 } else if (isa<Argument>(Address)) { 4504 // Address is an argument, so try to emit its dbg value using 4505 // virtual register info from the FuncInfo.ValueMap. 4506 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4507 N); 4508 return nullptr; 4509 } else { 4510 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4511 true, 0, dl, SDNodeOrder); 4512 } 4513 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4514 } else { 4515 // If Address is an argument then try to emit its dbg value using 4516 // virtual register info from the FuncInfo.ValueMap. 4517 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4518 N)) { 4519 // If variable is pinned by a alloca in dominating bb then 4520 // use StaticAllocaMap. 4521 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4522 if (AI->getParent() != DI.getParent()) { 4523 DenseMap<const AllocaInst*, int>::iterator SI = 4524 FuncInfo.StaticAllocaMap.find(AI); 4525 if (SI != FuncInfo.StaticAllocaMap.end()) { 4526 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4527 0, dl, SDNodeOrder); 4528 DAG.AddDbgValue(SDV, nullptr, false); 4529 return nullptr; 4530 } 4531 } 4532 } 4533 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4534 } 4535 } 4536 return nullptr; 4537 } 4538 case Intrinsic::dbg_value: { 4539 const DbgValueInst &DI = cast<DbgValueInst>(I); 4540 assert(DI.getVariable() && "Missing variable"); 4541 4542 DILocalVariable *Variable = DI.getVariable(); 4543 DIExpression *Expression = DI.getExpression(); 4544 uint64_t Offset = DI.getOffset(); 4545 const Value *V = DI.getValue(); 4546 if (!V) 4547 return nullptr; 4548 4549 SDDbgValue *SDV; 4550 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4551 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4552 SDNodeOrder); 4553 DAG.AddDbgValue(SDV, nullptr, false); 4554 } else { 4555 // Do not use getValue() in here; we don't want to generate code at 4556 // this point if it hasn't been done yet. 4557 SDValue N = NodeMap[V]; 4558 if (!N.getNode() && isa<Argument>(V)) 4559 // Check unused arguments map. 4560 N = UnusedArgNodeMap[V]; 4561 if (N.getNode()) { 4562 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4563 false, N)) { 4564 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4565 false, Offset, dl, SDNodeOrder); 4566 DAG.AddDbgValue(SDV, N.getNode(), false); 4567 } 4568 } else if (!V->use_empty() ) { 4569 // Do not call getValue(V) yet, as we don't want to generate code. 4570 // Remember it for later. 4571 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4572 DanglingDebugInfoMap[V] = DDI; 4573 } else { 4574 // We may expand this to cover more cases. One case where we have no 4575 // data available is an unreferenced parameter. 4576 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4577 } 4578 } 4579 4580 // Build a debug info table entry. 4581 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4582 V = BCI->getOperand(0); 4583 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4584 // Don't handle byval struct arguments or VLAs, for example. 4585 if (!AI) { 4586 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4587 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4588 return nullptr; 4589 } 4590 DenseMap<const AllocaInst*, int>::iterator SI = 4591 FuncInfo.StaticAllocaMap.find(AI); 4592 if (SI == FuncInfo.StaticAllocaMap.end()) 4593 return nullptr; // VLAs. 4594 return nullptr; 4595 } 4596 4597 case Intrinsic::eh_typeid_for: { 4598 // Find the type id for the given typeinfo. 4599 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4600 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4601 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4602 setValue(&I, Res); 4603 return nullptr; 4604 } 4605 4606 case Intrinsic::eh_return_i32: 4607 case Intrinsic::eh_return_i64: 4608 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4609 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4610 MVT::Other, 4611 getControlRoot(), 4612 getValue(I.getArgOperand(0)), 4613 getValue(I.getArgOperand(1)))); 4614 return nullptr; 4615 case Intrinsic::eh_unwind_init: 4616 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4617 return nullptr; 4618 case Intrinsic::eh_dwarf_cfa: { 4619 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4620 TLI.getPointerTy(DAG.getDataLayout())); 4621 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4622 CfaArg.getValueType(), 4623 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4624 CfaArg.getValueType()), 4625 CfaArg); 4626 SDValue FA = DAG.getNode( 4627 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4628 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4629 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4630 FA, Offset)); 4631 return nullptr; 4632 } 4633 case Intrinsic::eh_sjlj_callsite: { 4634 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4635 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4636 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4637 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4638 4639 MMI.setCurrentCallSite(CI->getZExtValue()); 4640 return nullptr; 4641 } 4642 case Intrinsic::eh_sjlj_functioncontext: { 4643 // Get and store the index of the function context. 4644 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4645 AllocaInst *FnCtx = 4646 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4647 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4648 MFI->setFunctionContextIndex(FI); 4649 return nullptr; 4650 } 4651 case Intrinsic::eh_sjlj_setjmp: { 4652 SDValue Ops[2]; 4653 Ops[0] = getRoot(); 4654 Ops[1] = getValue(I.getArgOperand(0)); 4655 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4656 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4657 setValue(&I, Op.getValue(0)); 4658 DAG.setRoot(Op.getValue(1)); 4659 return nullptr; 4660 } 4661 case Intrinsic::eh_sjlj_longjmp: { 4662 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4663 getRoot(), getValue(I.getArgOperand(0)))); 4664 return nullptr; 4665 } 4666 case Intrinsic::eh_sjlj_setup_dispatch: { 4667 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4668 getRoot())); 4669 return nullptr; 4670 } 4671 4672 case Intrinsic::masked_gather: 4673 visitMaskedGather(I); 4674 return nullptr; 4675 case Intrinsic::masked_load: 4676 visitMaskedLoad(I); 4677 return nullptr; 4678 case Intrinsic::masked_scatter: 4679 visitMaskedScatter(I); 4680 return nullptr; 4681 case Intrinsic::masked_store: 4682 visitMaskedStore(I); 4683 return nullptr; 4684 case Intrinsic::x86_mmx_pslli_w: 4685 case Intrinsic::x86_mmx_pslli_d: 4686 case Intrinsic::x86_mmx_pslli_q: 4687 case Intrinsic::x86_mmx_psrli_w: 4688 case Intrinsic::x86_mmx_psrli_d: 4689 case Intrinsic::x86_mmx_psrli_q: 4690 case Intrinsic::x86_mmx_psrai_w: 4691 case Intrinsic::x86_mmx_psrai_d: { 4692 SDValue ShAmt = getValue(I.getArgOperand(1)); 4693 if (isa<ConstantSDNode>(ShAmt)) { 4694 visitTargetIntrinsic(I, Intrinsic); 4695 return nullptr; 4696 } 4697 unsigned NewIntrinsic = 0; 4698 EVT ShAmtVT = MVT::v2i32; 4699 switch (Intrinsic) { 4700 case Intrinsic::x86_mmx_pslli_w: 4701 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4702 break; 4703 case Intrinsic::x86_mmx_pslli_d: 4704 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4705 break; 4706 case Intrinsic::x86_mmx_pslli_q: 4707 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4708 break; 4709 case Intrinsic::x86_mmx_psrli_w: 4710 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4711 break; 4712 case Intrinsic::x86_mmx_psrli_d: 4713 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4714 break; 4715 case Intrinsic::x86_mmx_psrli_q: 4716 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4717 break; 4718 case Intrinsic::x86_mmx_psrai_w: 4719 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4720 break; 4721 case Intrinsic::x86_mmx_psrai_d: 4722 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4723 break; 4724 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4725 } 4726 4727 // The vector shift intrinsics with scalars uses 32b shift amounts but 4728 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4729 // to be zero. 4730 // We must do this early because v2i32 is not a legal type. 4731 SDValue ShOps[2]; 4732 ShOps[0] = ShAmt; 4733 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4734 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4735 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4736 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4737 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4738 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4739 getValue(I.getArgOperand(0)), ShAmt); 4740 setValue(&I, Res); 4741 return nullptr; 4742 } 4743 case Intrinsic::convertff: 4744 case Intrinsic::convertfsi: 4745 case Intrinsic::convertfui: 4746 case Intrinsic::convertsif: 4747 case Intrinsic::convertuif: 4748 case Intrinsic::convertss: 4749 case Intrinsic::convertsu: 4750 case Intrinsic::convertus: 4751 case Intrinsic::convertuu: { 4752 ISD::CvtCode Code = ISD::CVT_INVALID; 4753 switch (Intrinsic) { 4754 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4755 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4756 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4757 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4758 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4759 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4760 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4761 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4762 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4763 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4764 } 4765 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4766 const Value *Op1 = I.getArgOperand(0); 4767 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4768 DAG.getValueType(DestVT), 4769 DAG.getValueType(getValue(Op1).getValueType()), 4770 getValue(I.getArgOperand(1)), 4771 getValue(I.getArgOperand(2)), 4772 Code); 4773 setValue(&I, Res); 4774 return nullptr; 4775 } 4776 case Intrinsic::powi: 4777 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4778 getValue(I.getArgOperand(1)), DAG)); 4779 return nullptr; 4780 case Intrinsic::log: 4781 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4782 return nullptr; 4783 case Intrinsic::log2: 4784 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4785 return nullptr; 4786 case Intrinsic::log10: 4787 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4788 return nullptr; 4789 case Intrinsic::exp: 4790 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4791 return nullptr; 4792 case Intrinsic::exp2: 4793 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4794 return nullptr; 4795 case Intrinsic::pow: 4796 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4797 getValue(I.getArgOperand(1)), DAG, TLI)); 4798 return nullptr; 4799 case Intrinsic::sqrt: 4800 case Intrinsic::fabs: 4801 case Intrinsic::sin: 4802 case Intrinsic::cos: 4803 case Intrinsic::floor: 4804 case Intrinsic::ceil: 4805 case Intrinsic::trunc: 4806 case Intrinsic::rint: 4807 case Intrinsic::nearbyint: 4808 case Intrinsic::round: { 4809 unsigned Opcode; 4810 switch (Intrinsic) { 4811 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4812 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4813 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4814 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4815 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4816 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4817 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4818 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4819 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4820 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4821 case Intrinsic::round: Opcode = ISD::FROUND; break; 4822 } 4823 4824 setValue(&I, DAG.getNode(Opcode, sdl, 4825 getValue(I.getArgOperand(0)).getValueType(), 4826 getValue(I.getArgOperand(0)))); 4827 return nullptr; 4828 } 4829 case Intrinsic::minnum: 4830 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4831 getValue(I.getArgOperand(0)).getValueType(), 4832 getValue(I.getArgOperand(0)), 4833 getValue(I.getArgOperand(1)))); 4834 return nullptr; 4835 case Intrinsic::maxnum: 4836 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4837 getValue(I.getArgOperand(0)).getValueType(), 4838 getValue(I.getArgOperand(0)), 4839 getValue(I.getArgOperand(1)))); 4840 return nullptr; 4841 case Intrinsic::copysign: 4842 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4843 getValue(I.getArgOperand(0)).getValueType(), 4844 getValue(I.getArgOperand(0)), 4845 getValue(I.getArgOperand(1)))); 4846 return nullptr; 4847 case Intrinsic::fma: 4848 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4849 getValue(I.getArgOperand(0)).getValueType(), 4850 getValue(I.getArgOperand(0)), 4851 getValue(I.getArgOperand(1)), 4852 getValue(I.getArgOperand(2)))); 4853 return nullptr; 4854 case Intrinsic::fmuladd: { 4855 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4856 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4857 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4858 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4859 getValue(I.getArgOperand(0)).getValueType(), 4860 getValue(I.getArgOperand(0)), 4861 getValue(I.getArgOperand(1)), 4862 getValue(I.getArgOperand(2)))); 4863 } else { 4864 // TODO: Intrinsic calls should have fast-math-flags. 4865 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4866 getValue(I.getArgOperand(0)).getValueType(), 4867 getValue(I.getArgOperand(0)), 4868 getValue(I.getArgOperand(1))); 4869 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4870 getValue(I.getArgOperand(0)).getValueType(), 4871 Mul, 4872 getValue(I.getArgOperand(2))); 4873 setValue(&I, Add); 4874 } 4875 return nullptr; 4876 } 4877 case Intrinsic::convert_to_fp16: 4878 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4879 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4880 getValue(I.getArgOperand(0)), 4881 DAG.getTargetConstant(0, sdl, 4882 MVT::i32)))); 4883 return nullptr; 4884 case Intrinsic::convert_from_fp16: 4885 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4886 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4887 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4888 getValue(I.getArgOperand(0))))); 4889 return nullptr; 4890 case Intrinsic::pcmarker: { 4891 SDValue Tmp = getValue(I.getArgOperand(0)); 4892 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4893 return nullptr; 4894 } 4895 case Intrinsic::readcyclecounter: { 4896 SDValue Op = getRoot(); 4897 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4898 DAG.getVTList(MVT::i64, MVT::Other), Op); 4899 setValue(&I, Res); 4900 DAG.setRoot(Res.getValue(1)); 4901 return nullptr; 4902 } 4903 case Intrinsic::bitreverse: 4904 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4905 getValue(I.getArgOperand(0)).getValueType(), 4906 getValue(I.getArgOperand(0)))); 4907 return nullptr; 4908 case Intrinsic::bswap: 4909 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4910 getValue(I.getArgOperand(0)).getValueType(), 4911 getValue(I.getArgOperand(0)))); 4912 return nullptr; 4913 case Intrinsic::cttz: { 4914 SDValue Arg = getValue(I.getArgOperand(0)); 4915 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4916 EVT Ty = Arg.getValueType(); 4917 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4918 sdl, Ty, Arg)); 4919 return nullptr; 4920 } 4921 case Intrinsic::ctlz: { 4922 SDValue Arg = getValue(I.getArgOperand(0)); 4923 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4924 EVT Ty = Arg.getValueType(); 4925 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4926 sdl, Ty, Arg)); 4927 return nullptr; 4928 } 4929 case Intrinsic::ctpop: { 4930 SDValue Arg = getValue(I.getArgOperand(0)); 4931 EVT Ty = Arg.getValueType(); 4932 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4933 return nullptr; 4934 } 4935 case Intrinsic::stacksave: { 4936 SDValue Op = getRoot(); 4937 Res = DAG.getNode( 4938 ISD::STACKSAVE, sdl, 4939 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4940 setValue(&I, Res); 4941 DAG.setRoot(Res.getValue(1)); 4942 return nullptr; 4943 } 4944 case Intrinsic::stackrestore: { 4945 Res = getValue(I.getArgOperand(0)); 4946 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4947 return nullptr; 4948 } 4949 case Intrinsic::get_dynamic_area_offset: { 4950 SDValue Op = getRoot(); 4951 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4952 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4953 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4954 // target. 4955 if (PtrTy != ResTy) 4956 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4957 " intrinsic!"); 4958 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4959 Op); 4960 DAG.setRoot(Op); 4961 setValue(&I, Res); 4962 return nullptr; 4963 } 4964 case Intrinsic::stackprotector: { 4965 // Emit code into the DAG to store the stack guard onto the stack. 4966 MachineFunction &MF = DAG.getMachineFunction(); 4967 MachineFrameInfo *MFI = MF.getFrameInfo(); 4968 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4969 SDValue Src, Chain = getRoot(); 4970 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4971 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4972 4973 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4974 // global variable __stack_chk_guard. 4975 if (!GV) 4976 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4977 if (BC->getOpcode() == Instruction::BitCast) 4978 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4979 4980 if (GV && TLI.useLoadStackGuardNode()) { 4981 // Emit a LOAD_STACK_GUARD node. 4982 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4983 sdl, PtrTy, Chain); 4984 MachinePointerInfo MPInfo(GV); 4985 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4986 unsigned Flags = MachineMemOperand::MOLoad | 4987 MachineMemOperand::MOInvariant; 4988 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4989 PtrTy.getSizeInBits() / 8, 4990 DAG.getEVTAlignment(PtrTy)); 4991 Node->setMemRefs(MemRefs, MemRefs + 1); 4992 4993 // Copy the guard value to a virtual register so that it can be 4994 // retrieved in the epilogue. 4995 Src = SDValue(Node, 0); 4996 const TargetRegisterClass *RC = 4997 TLI.getRegClassFor(Src.getSimpleValueType()); 4998 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4999 5000 SPDescriptor.setGuardReg(Reg); 5001 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5002 } else { 5003 Src = getValue(I.getArgOperand(0)); // The guard's value. 5004 } 5005 5006 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5007 5008 int FI = FuncInfo.StaticAllocaMap[Slot]; 5009 MFI->setStackProtectorIndex(FI); 5010 5011 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5012 5013 // Store the stack protector onto the stack. 5014 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5015 DAG.getMachineFunction(), FI), 5016 true, false, 0); 5017 setValue(&I, Res); 5018 DAG.setRoot(Res); 5019 return nullptr; 5020 } 5021 case Intrinsic::objectsize: { 5022 // If we don't know by now, we're never going to know. 5023 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5024 5025 assert(CI && "Non-constant type in __builtin_object_size?"); 5026 5027 SDValue Arg = getValue(I.getCalledValue()); 5028 EVT Ty = Arg.getValueType(); 5029 5030 if (CI->isZero()) 5031 Res = DAG.getConstant(-1ULL, sdl, Ty); 5032 else 5033 Res = DAG.getConstant(0, sdl, Ty); 5034 5035 setValue(&I, Res); 5036 return nullptr; 5037 } 5038 case Intrinsic::annotation: 5039 case Intrinsic::ptr_annotation: 5040 // Drop the intrinsic, but forward the value 5041 setValue(&I, getValue(I.getOperand(0))); 5042 return nullptr; 5043 case Intrinsic::assume: 5044 case Intrinsic::var_annotation: 5045 // Discard annotate attributes and assumptions 5046 return nullptr; 5047 5048 case Intrinsic::init_trampoline: { 5049 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5050 5051 SDValue Ops[6]; 5052 Ops[0] = getRoot(); 5053 Ops[1] = getValue(I.getArgOperand(0)); 5054 Ops[2] = getValue(I.getArgOperand(1)); 5055 Ops[3] = getValue(I.getArgOperand(2)); 5056 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5057 Ops[5] = DAG.getSrcValue(F); 5058 5059 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5060 5061 DAG.setRoot(Res); 5062 return nullptr; 5063 } 5064 case Intrinsic::adjust_trampoline: { 5065 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5066 TLI.getPointerTy(DAG.getDataLayout()), 5067 getValue(I.getArgOperand(0)))); 5068 return nullptr; 5069 } 5070 case Intrinsic::gcroot: { 5071 MachineFunction &MF = DAG.getMachineFunction(); 5072 const Function *F = MF.getFunction(); 5073 (void)F; 5074 assert(F->hasGC() && 5075 "only valid in functions with gc specified, enforced by Verifier"); 5076 assert(GFI && "implied by previous"); 5077 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5078 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5079 5080 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5081 GFI->addStackRoot(FI->getIndex(), TypeMap); 5082 return nullptr; 5083 } 5084 case Intrinsic::gcread: 5085 case Intrinsic::gcwrite: 5086 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5087 case Intrinsic::flt_rounds: 5088 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5089 return nullptr; 5090 5091 case Intrinsic::expect: { 5092 // Just replace __builtin_expect(exp, c) with EXP. 5093 setValue(&I, getValue(I.getArgOperand(0))); 5094 return nullptr; 5095 } 5096 5097 case Intrinsic::debugtrap: 5098 case Intrinsic::trap: { 5099 StringRef TrapFuncName = 5100 I.getAttributes() 5101 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5102 .getValueAsString(); 5103 if (TrapFuncName.empty()) { 5104 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5105 ISD::TRAP : ISD::DEBUGTRAP; 5106 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5107 return nullptr; 5108 } 5109 TargetLowering::ArgListTy Args; 5110 5111 TargetLowering::CallLoweringInfo CLI(DAG); 5112 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5113 CallingConv::C, I.getType(), 5114 DAG.getExternalSymbol(TrapFuncName.data(), 5115 TLI.getPointerTy(DAG.getDataLayout())), 5116 std::move(Args), 0); 5117 5118 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5119 DAG.setRoot(Result.second); 5120 return nullptr; 5121 } 5122 5123 case Intrinsic::uadd_with_overflow: 5124 case Intrinsic::sadd_with_overflow: 5125 case Intrinsic::usub_with_overflow: 5126 case Intrinsic::ssub_with_overflow: 5127 case Intrinsic::umul_with_overflow: 5128 case Intrinsic::smul_with_overflow: { 5129 ISD::NodeType Op; 5130 switch (Intrinsic) { 5131 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5132 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5133 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5134 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5135 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5136 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5137 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5138 } 5139 SDValue Op1 = getValue(I.getArgOperand(0)); 5140 SDValue Op2 = getValue(I.getArgOperand(1)); 5141 5142 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5143 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5144 return nullptr; 5145 } 5146 case Intrinsic::prefetch: { 5147 SDValue Ops[5]; 5148 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5149 Ops[0] = getRoot(); 5150 Ops[1] = getValue(I.getArgOperand(0)); 5151 Ops[2] = getValue(I.getArgOperand(1)); 5152 Ops[3] = getValue(I.getArgOperand(2)); 5153 Ops[4] = getValue(I.getArgOperand(3)); 5154 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5155 DAG.getVTList(MVT::Other), Ops, 5156 EVT::getIntegerVT(*Context, 8), 5157 MachinePointerInfo(I.getArgOperand(0)), 5158 0, /* align */ 5159 false, /* volatile */ 5160 rw==0, /* read */ 5161 rw==1)); /* write */ 5162 return nullptr; 5163 } 5164 case Intrinsic::lifetime_start: 5165 case Intrinsic::lifetime_end: { 5166 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5167 // Stack coloring is not enabled in O0, discard region information. 5168 if (TM.getOptLevel() == CodeGenOpt::None) 5169 return nullptr; 5170 5171 SmallVector<Value *, 4> Allocas; 5172 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5173 5174 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5175 E = Allocas.end(); Object != E; ++Object) { 5176 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5177 5178 // Could not find an Alloca. 5179 if (!LifetimeObject) 5180 continue; 5181 5182 // First check that the Alloca is static, otherwise it won't have a 5183 // valid frame index. 5184 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5185 if (SI == FuncInfo.StaticAllocaMap.end()) 5186 return nullptr; 5187 5188 int FI = SI->second; 5189 5190 SDValue Ops[2]; 5191 Ops[0] = getRoot(); 5192 Ops[1] = 5193 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5194 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5195 5196 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5197 DAG.setRoot(Res); 5198 } 5199 return nullptr; 5200 } 5201 case Intrinsic::invariant_start: 5202 // Discard region information. 5203 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5204 return nullptr; 5205 case Intrinsic::invariant_end: 5206 // Discard region information. 5207 return nullptr; 5208 case Intrinsic::stackprotectorcheck: { 5209 // Do not actually emit anything for this basic block. Instead we initialize 5210 // the stack protector descriptor and export the guard variable so we can 5211 // access it in FinishBasicBlock. 5212 const BasicBlock *BB = I.getParent(); 5213 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5214 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5215 5216 // Flush our exports since we are going to process a terminator. 5217 (void)getControlRoot(); 5218 return nullptr; 5219 } 5220 case Intrinsic::clear_cache: 5221 return TLI.getClearCacheBuiltinName(); 5222 case Intrinsic::donothing: 5223 // ignore 5224 return nullptr; 5225 case Intrinsic::experimental_stackmap: { 5226 visitStackmap(I); 5227 return nullptr; 5228 } 5229 case Intrinsic::experimental_patchpoint_void: 5230 case Intrinsic::experimental_patchpoint_i64: { 5231 visitPatchpoint(&I); 5232 return nullptr; 5233 } 5234 case Intrinsic::experimental_gc_statepoint: { 5235 visitStatepoint(I); 5236 return nullptr; 5237 } 5238 case Intrinsic::experimental_gc_result: { 5239 visitGCResult(I); 5240 return nullptr; 5241 } 5242 case Intrinsic::experimental_gc_relocate: { 5243 visitGCRelocate(cast<GCRelocateInst>(I)); 5244 return nullptr; 5245 } 5246 case Intrinsic::instrprof_increment: 5247 llvm_unreachable("instrprof failed to lower an increment"); 5248 case Intrinsic::instrprof_value_profile: 5249 llvm_unreachable("instrprof failed to lower a value profiling call"); 5250 case Intrinsic::localescape: { 5251 MachineFunction &MF = DAG.getMachineFunction(); 5252 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5253 5254 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5255 // is the same on all targets. 5256 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5257 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5258 if (isa<ConstantPointerNull>(Arg)) 5259 continue; // Skip null pointers. They represent a hole in index space. 5260 AllocaInst *Slot = cast<AllocaInst>(Arg); 5261 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5262 "can only escape static allocas"); 5263 int FI = FuncInfo.StaticAllocaMap[Slot]; 5264 MCSymbol *FrameAllocSym = 5265 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5266 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5267 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5268 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5269 .addSym(FrameAllocSym) 5270 .addFrameIndex(FI); 5271 } 5272 5273 return nullptr; 5274 } 5275 5276 case Intrinsic::localrecover: { 5277 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5278 MachineFunction &MF = DAG.getMachineFunction(); 5279 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5280 5281 // Get the symbol that defines the frame offset. 5282 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5283 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5284 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5285 MCSymbol *FrameAllocSym = 5286 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5287 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5288 5289 // Create a MCSymbol for the label to avoid any target lowering 5290 // that would make this PC relative. 5291 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5292 SDValue OffsetVal = 5293 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5294 5295 // Add the offset to the FP. 5296 Value *FP = I.getArgOperand(1); 5297 SDValue FPVal = getValue(FP); 5298 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5299 setValue(&I, Add); 5300 5301 return nullptr; 5302 } 5303 5304 case Intrinsic::eh_exceptionpointer: 5305 case Intrinsic::eh_exceptioncode: { 5306 // Get the exception pointer vreg, copy from it, and resize it to fit. 5307 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5308 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5309 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5310 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5311 SDValue N = 5312 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5313 if (Intrinsic == Intrinsic::eh_exceptioncode) 5314 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5315 setValue(&I, N); 5316 return nullptr; 5317 } 5318 } 5319 } 5320 5321 std::pair<SDValue, SDValue> 5322 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5323 const BasicBlock *EHPadBB) { 5324 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5325 MCSymbol *BeginLabel = nullptr; 5326 5327 if (EHPadBB) { 5328 // Insert a label before the invoke call to mark the try range. This can be 5329 // used to detect deletion of the invoke via the MachineModuleInfo. 5330 BeginLabel = MMI.getContext().createTempSymbol(); 5331 5332 // For SjLj, keep track of which landing pads go with which invokes 5333 // so as to maintain the ordering of pads in the LSDA. 5334 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5335 if (CallSiteIndex) { 5336 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5337 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5338 5339 // Now that the call site is handled, stop tracking it. 5340 MMI.setCurrentCallSite(0); 5341 } 5342 5343 // Both PendingLoads and PendingExports must be flushed here; 5344 // this call might not return. 5345 (void)getRoot(); 5346 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5347 5348 CLI.setChain(getRoot()); 5349 } 5350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5351 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5352 5353 assert((CLI.IsTailCall || Result.second.getNode()) && 5354 "Non-null chain expected with non-tail call!"); 5355 assert((Result.second.getNode() || !Result.first.getNode()) && 5356 "Null value expected with tail call!"); 5357 5358 if (!Result.second.getNode()) { 5359 // As a special case, a null chain means that a tail call has been emitted 5360 // and the DAG root is already updated. 5361 HasTailCall = true; 5362 5363 // Since there's no actual continuation from this block, nothing can be 5364 // relying on us setting vregs for them. 5365 PendingExports.clear(); 5366 } else { 5367 DAG.setRoot(Result.second); 5368 } 5369 5370 if (EHPadBB) { 5371 // Insert a label at the end of the invoke call to mark the try range. This 5372 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5373 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5374 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5375 5376 // Inform MachineModuleInfo of range. 5377 if (MMI.hasEHFunclets()) { 5378 assert(CLI.CS); 5379 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5380 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5381 BeginLabel, EndLabel); 5382 } else { 5383 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5384 } 5385 } 5386 5387 return Result; 5388 } 5389 5390 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5391 bool isTailCall, 5392 const BasicBlock *EHPadBB) { 5393 FunctionType *FTy = CS.getFunctionType(); 5394 Type *RetTy = CS.getType(); 5395 5396 TargetLowering::ArgListTy Args; 5397 TargetLowering::ArgListEntry Entry; 5398 Args.reserve(CS.arg_size()); 5399 5400 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5401 i != e; ++i) { 5402 const Value *V = *i; 5403 5404 // Skip empty types 5405 if (V->getType()->isEmptyTy()) 5406 continue; 5407 5408 SDValue ArgNode = getValue(V); 5409 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5410 5411 // Skip the first return-type Attribute to get to params. 5412 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5413 Args.push_back(Entry); 5414 5415 // If we have an explicit sret argument that is an Instruction, (i.e., it 5416 // might point to function-local memory), we can't meaningfully tail-call. 5417 if (Entry.isSRet && isa<Instruction>(V)) 5418 isTailCall = false; 5419 } 5420 5421 // Check if target-independent constraints permit a tail call here. 5422 // Target-dependent constraints are checked within TLI->LowerCallTo. 5423 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5424 isTailCall = false; 5425 5426 TargetLowering::CallLoweringInfo CLI(DAG); 5427 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5428 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5429 .setTailCall(isTailCall); 5430 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5431 5432 if (Result.first.getNode()) 5433 setValue(CS.getInstruction(), Result.first); 5434 } 5435 5436 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5437 /// value is equal or not-equal to zero. 5438 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5439 for (const User *U : V->users()) { 5440 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5441 if (IC->isEquality()) 5442 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5443 if (C->isNullValue()) 5444 continue; 5445 // Unknown instruction. 5446 return false; 5447 } 5448 return true; 5449 } 5450 5451 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5452 Type *LoadTy, 5453 SelectionDAGBuilder &Builder) { 5454 5455 // Check to see if this load can be trivially constant folded, e.g. if the 5456 // input is from a string literal. 5457 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5458 // Cast pointer to the type we really want to load. 5459 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5460 PointerType::getUnqual(LoadTy)); 5461 5462 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5463 const_cast<Constant *>(LoadInput), *Builder.DL)) 5464 return Builder.getValue(LoadCst); 5465 } 5466 5467 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5468 // still constant memory, the input chain can be the entry node. 5469 SDValue Root; 5470 bool ConstantMemory = false; 5471 5472 // Do not serialize (non-volatile) loads of constant memory with anything. 5473 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5474 Root = Builder.DAG.getEntryNode(); 5475 ConstantMemory = true; 5476 } else { 5477 // Do not serialize non-volatile loads against each other. 5478 Root = Builder.DAG.getRoot(); 5479 } 5480 5481 SDValue Ptr = Builder.getValue(PtrVal); 5482 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5483 Ptr, MachinePointerInfo(PtrVal), 5484 false /*volatile*/, 5485 false /*nontemporal*/, 5486 false /*isinvariant*/, 1 /* align=1 */); 5487 5488 if (!ConstantMemory) 5489 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5490 return LoadVal; 5491 } 5492 5493 /// processIntegerCallValue - Record the value for an instruction that 5494 /// produces an integer result, converting the type where necessary. 5495 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5496 SDValue Value, 5497 bool IsSigned) { 5498 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5499 I.getType(), true); 5500 if (IsSigned) 5501 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5502 else 5503 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5504 setValue(&I, Value); 5505 } 5506 5507 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5508 /// If so, return true and lower it, otherwise return false and it will be 5509 /// lowered like a normal call. 5510 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5511 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5512 if (I.getNumArgOperands() != 3) 5513 return false; 5514 5515 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5516 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5517 !I.getArgOperand(2)->getType()->isIntegerTy() || 5518 !I.getType()->isIntegerTy()) 5519 return false; 5520 5521 const Value *Size = I.getArgOperand(2); 5522 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5523 if (CSize && CSize->getZExtValue() == 0) { 5524 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5525 I.getType(), true); 5526 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5527 return true; 5528 } 5529 5530 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5531 std::pair<SDValue, SDValue> Res = 5532 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5533 getValue(LHS), getValue(RHS), getValue(Size), 5534 MachinePointerInfo(LHS), 5535 MachinePointerInfo(RHS)); 5536 if (Res.first.getNode()) { 5537 processIntegerCallValue(I, Res.first, true); 5538 PendingLoads.push_back(Res.second); 5539 return true; 5540 } 5541 5542 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5543 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5544 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5545 bool ActuallyDoIt = true; 5546 MVT LoadVT; 5547 Type *LoadTy; 5548 switch (CSize->getZExtValue()) { 5549 default: 5550 LoadVT = MVT::Other; 5551 LoadTy = nullptr; 5552 ActuallyDoIt = false; 5553 break; 5554 case 2: 5555 LoadVT = MVT::i16; 5556 LoadTy = Type::getInt16Ty(CSize->getContext()); 5557 break; 5558 case 4: 5559 LoadVT = MVT::i32; 5560 LoadTy = Type::getInt32Ty(CSize->getContext()); 5561 break; 5562 case 8: 5563 LoadVT = MVT::i64; 5564 LoadTy = Type::getInt64Ty(CSize->getContext()); 5565 break; 5566 /* 5567 case 16: 5568 LoadVT = MVT::v4i32; 5569 LoadTy = Type::getInt32Ty(CSize->getContext()); 5570 LoadTy = VectorType::get(LoadTy, 4); 5571 break; 5572 */ 5573 } 5574 5575 // This turns into unaligned loads. We only do this if the target natively 5576 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5577 // we'll only produce a small number of byte loads. 5578 5579 // Require that we can find a legal MVT, and only do this if the target 5580 // supports unaligned loads of that type. Expanding into byte loads would 5581 // bloat the code. 5582 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5583 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5584 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5585 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5586 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5587 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5588 // TODO: Check alignment of src and dest ptrs. 5589 if (!TLI.isTypeLegal(LoadVT) || 5590 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5591 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5592 ActuallyDoIt = false; 5593 } 5594 5595 if (ActuallyDoIt) { 5596 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5597 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5598 5599 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5600 ISD::SETNE); 5601 processIntegerCallValue(I, Res, false); 5602 return true; 5603 } 5604 } 5605 5606 5607 return false; 5608 } 5609 5610 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5611 /// form. If so, return true and lower it, otherwise return false and it 5612 /// will be lowered like a normal call. 5613 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5614 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5615 if (I.getNumArgOperands() != 3) 5616 return false; 5617 5618 const Value *Src = I.getArgOperand(0); 5619 const Value *Char = I.getArgOperand(1); 5620 const Value *Length = I.getArgOperand(2); 5621 if (!Src->getType()->isPointerTy() || 5622 !Char->getType()->isIntegerTy() || 5623 !Length->getType()->isIntegerTy() || 5624 !I.getType()->isPointerTy()) 5625 return false; 5626 5627 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5628 std::pair<SDValue, SDValue> Res = 5629 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5630 getValue(Src), getValue(Char), getValue(Length), 5631 MachinePointerInfo(Src)); 5632 if (Res.first.getNode()) { 5633 setValue(&I, Res.first); 5634 PendingLoads.push_back(Res.second); 5635 return true; 5636 } 5637 5638 return false; 5639 } 5640 5641 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5642 /// optimized form. If so, return true and lower it, otherwise return false 5643 /// and it will be lowered like a normal call. 5644 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5645 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5646 if (I.getNumArgOperands() != 2) 5647 return false; 5648 5649 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5650 if (!Arg0->getType()->isPointerTy() || 5651 !Arg1->getType()->isPointerTy() || 5652 !I.getType()->isPointerTy()) 5653 return false; 5654 5655 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5656 std::pair<SDValue, SDValue> Res = 5657 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5658 getValue(Arg0), getValue(Arg1), 5659 MachinePointerInfo(Arg0), 5660 MachinePointerInfo(Arg1), isStpcpy); 5661 if (Res.first.getNode()) { 5662 setValue(&I, Res.first); 5663 DAG.setRoot(Res.second); 5664 return true; 5665 } 5666 5667 return false; 5668 } 5669 5670 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5671 /// If so, return true and lower it, otherwise return false and it will be 5672 /// lowered like a normal call. 5673 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5674 // Verify that the prototype makes sense. int strcmp(void*,void*) 5675 if (I.getNumArgOperands() != 2) 5676 return false; 5677 5678 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5679 if (!Arg0->getType()->isPointerTy() || 5680 !Arg1->getType()->isPointerTy() || 5681 !I.getType()->isIntegerTy()) 5682 return false; 5683 5684 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5685 std::pair<SDValue, SDValue> Res = 5686 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5687 getValue(Arg0), getValue(Arg1), 5688 MachinePointerInfo(Arg0), 5689 MachinePointerInfo(Arg1)); 5690 if (Res.first.getNode()) { 5691 processIntegerCallValue(I, Res.first, true); 5692 PendingLoads.push_back(Res.second); 5693 return true; 5694 } 5695 5696 return false; 5697 } 5698 5699 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5700 /// form. If so, return true and lower it, otherwise return false and it 5701 /// will be lowered like a normal call. 5702 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5703 // Verify that the prototype makes sense. size_t strlen(char *) 5704 if (I.getNumArgOperands() != 1) 5705 return false; 5706 5707 const Value *Arg0 = I.getArgOperand(0); 5708 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5709 return false; 5710 5711 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5712 std::pair<SDValue, SDValue> Res = 5713 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5714 getValue(Arg0), MachinePointerInfo(Arg0)); 5715 if (Res.first.getNode()) { 5716 processIntegerCallValue(I, Res.first, false); 5717 PendingLoads.push_back(Res.second); 5718 return true; 5719 } 5720 5721 return false; 5722 } 5723 5724 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5725 /// form. If so, return true and lower it, otherwise return false and it 5726 /// will be lowered like a normal call. 5727 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5728 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5729 if (I.getNumArgOperands() != 2) 5730 return false; 5731 5732 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5733 if (!Arg0->getType()->isPointerTy() || 5734 !Arg1->getType()->isIntegerTy() || 5735 !I.getType()->isIntegerTy()) 5736 return false; 5737 5738 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5739 std::pair<SDValue, SDValue> Res = 5740 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5741 getValue(Arg0), getValue(Arg1), 5742 MachinePointerInfo(Arg0)); 5743 if (Res.first.getNode()) { 5744 processIntegerCallValue(I, Res.first, false); 5745 PendingLoads.push_back(Res.second); 5746 return true; 5747 } 5748 5749 return false; 5750 } 5751 5752 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5753 /// operation (as expected), translate it to an SDNode with the specified opcode 5754 /// and return true. 5755 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5756 unsigned Opcode) { 5757 // Sanity check that it really is a unary floating-point call. 5758 if (I.getNumArgOperands() != 1 || 5759 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5760 I.getType() != I.getArgOperand(0)->getType() || 5761 !I.onlyReadsMemory()) 5762 return false; 5763 5764 SDValue Tmp = getValue(I.getArgOperand(0)); 5765 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5766 return true; 5767 } 5768 5769 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5770 /// operation (as expected), translate it to an SDNode with the specified opcode 5771 /// and return true. 5772 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5773 unsigned Opcode) { 5774 // Sanity check that it really is a binary floating-point call. 5775 if (I.getNumArgOperands() != 2 || 5776 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5777 I.getType() != I.getArgOperand(0)->getType() || 5778 I.getType() != I.getArgOperand(1)->getType() || 5779 !I.onlyReadsMemory()) 5780 return false; 5781 5782 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5783 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5784 EVT VT = Tmp0.getValueType(); 5785 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5786 return true; 5787 } 5788 5789 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5790 // Handle inline assembly differently. 5791 if (isa<InlineAsm>(I.getCalledValue())) { 5792 visitInlineAsm(&I); 5793 return; 5794 } 5795 5796 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5797 ComputeUsesVAFloatArgument(I, &MMI); 5798 5799 const char *RenameFn = nullptr; 5800 if (Function *F = I.getCalledFunction()) { 5801 if (F->isDeclaration()) { 5802 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5803 if (unsigned IID = II->getIntrinsicID(F)) { 5804 RenameFn = visitIntrinsicCall(I, IID); 5805 if (!RenameFn) 5806 return; 5807 } 5808 } 5809 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5810 RenameFn = visitIntrinsicCall(I, IID); 5811 if (!RenameFn) 5812 return; 5813 } 5814 } 5815 5816 // Check for well-known libc/libm calls. If the function is internal, it 5817 // can't be a library call. 5818 LibFunc::Func Func; 5819 if (!F->hasLocalLinkage() && F->hasName() && 5820 LibInfo->getLibFunc(F->getName(), Func) && 5821 LibInfo->hasOptimizedCodeGen(Func)) { 5822 switch (Func) { 5823 default: break; 5824 case LibFunc::copysign: 5825 case LibFunc::copysignf: 5826 case LibFunc::copysignl: 5827 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5828 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5829 I.getType() == I.getArgOperand(0)->getType() && 5830 I.getType() == I.getArgOperand(1)->getType() && 5831 I.onlyReadsMemory()) { 5832 SDValue LHS = getValue(I.getArgOperand(0)); 5833 SDValue RHS = getValue(I.getArgOperand(1)); 5834 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5835 LHS.getValueType(), LHS, RHS)); 5836 return; 5837 } 5838 break; 5839 case LibFunc::fabs: 5840 case LibFunc::fabsf: 5841 case LibFunc::fabsl: 5842 if (visitUnaryFloatCall(I, ISD::FABS)) 5843 return; 5844 break; 5845 case LibFunc::fmin: 5846 case LibFunc::fminf: 5847 case LibFunc::fminl: 5848 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5849 return; 5850 break; 5851 case LibFunc::fmax: 5852 case LibFunc::fmaxf: 5853 case LibFunc::fmaxl: 5854 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5855 return; 5856 break; 5857 case LibFunc::sin: 5858 case LibFunc::sinf: 5859 case LibFunc::sinl: 5860 if (visitUnaryFloatCall(I, ISD::FSIN)) 5861 return; 5862 break; 5863 case LibFunc::cos: 5864 case LibFunc::cosf: 5865 case LibFunc::cosl: 5866 if (visitUnaryFloatCall(I, ISD::FCOS)) 5867 return; 5868 break; 5869 case LibFunc::sqrt: 5870 case LibFunc::sqrtf: 5871 case LibFunc::sqrtl: 5872 case LibFunc::sqrt_finite: 5873 case LibFunc::sqrtf_finite: 5874 case LibFunc::sqrtl_finite: 5875 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5876 return; 5877 break; 5878 case LibFunc::floor: 5879 case LibFunc::floorf: 5880 case LibFunc::floorl: 5881 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5882 return; 5883 break; 5884 case LibFunc::nearbyint: 5885 case LibFunc::nearbyintf: 5886 case LibFunc::nearbyintl: 5887 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5888 return; 5889 break; 5890 case LibFunc::ceil: 5891 case LibFunc::ceilf: 5892 case LibFunc::ceill: 5893 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5894 return; 5895 break; 5896 case LibFunc::rint: 5897 case LibFunc::rintf: 5898 case LibFunc::rintl: 5899 if (visitUnaryFloatCall(I, ISD::FRINT)) 5900 return; 5901 break; 5902 case LibFunc::round: 5903 case LibFunc::roundf: 5904 case LibFunc::roundl: 5905 if (visitUnaryFloatCall(I, ISD::FROUND)) 5906 return; 5907 break; 5908 case LibFunc::trunc: 5909 case LibFunc::truncf: 5910 case LibFunc::truncl: 5911 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5912 return; 5913 break; 5914 case LibFunc::log2: 5915 case LibFunc::log2f: 5916 case LibFunc::log2l: 5917 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5918 return; 5919 break; 5920 case LibFunc::exp2: 5921 case LibFunc::exp2f: 5922 case LibFunc::exp2l: 5923 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5924 return; 5925 break; 5926 case LibFunc::memcmp: 5927 if (visitMemCmpCall(I)) 5928 return; 5929 break; 5930 case LibFunc::memchr: 5931 if (visitMemChrCall(I)) 5932 return; 5933 break; 5934 case LibFunc::strcpy: 5935 if (visitStrCpyCall(I, false)) 5936 return; 5937 break; 5938 case LibFunc::stpcpy: 5939 if (visitStrCpyCall(I, true)) 5940 return; 5941 break; 5942 case LibFunc::strcmp: 5943 if (visitStrCmpCall(I)) 5944 return; 5945 break; 5946 case LibFunc::strlen: 5947 if (visitStrLenCall(I)) 5948 return; 5949 break; 5950 case LibFunc::strnlen: 5951 if (visitStrNLenCall(I)) 5952 return; 5953 break; 5954 } 5955 } 5956 } 5957 5958 SDValue Callee; 5959 if (!RenameFn) 5960 Callee = getValue(I.getCalledValue()); 5961 else 5962 Callee = DAG.getExternalSymbol( 5963 RenameFn, 5964 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5965 5966 // Check if we can potentially perform a tail call. More detailed checking is 5967 // be done within LowerCallTo, after more information about the call is known. 5968 LowerCallTo(&I, Callee, I.isTailCall()); 5969 } 5970 5971 namespace { 5972 5973 /// AsmOperandInfo - This contains information for each constraint that we are 5974 /// lowering. 5975 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5976 public: 5977 /// CallOperand - If this is the result output operand or a clobber 5978 /// this is null, otherwise it is the incoming operand to the CallInst. 5979 /// This gets modified as the asm is processed. 5980 SDValue CallOperand; 5981 5982 /// AssignedRegs - If this is a register or register class operand, this 5983 /// contains the set of register corresponding to the operand. 5984 RegsForValue AssignedRegs; 5985 5986 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5987 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5988 } 5989 5990 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5991 /// corresponds to. If there is no Value* for this operand, it returns 5992 /// MVT::Other. 5993 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5994 const DataLayout &DL) const { 5995 if (!CallOperandVal) return MVT::Other; 5996 5997 if (isa<BasicBlock>(CallOperandVal)) 5998 return TLI.getPointerTy(DL); 5999 6000 llvm::Type *OpTy = CallOperandVal->getType(); 6001 6002 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6003 // If this is an indirect operand, the operand is a pointer to the 6004 // accessed type. 6005 if (isIndirect) { 6006 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6007 if (!PtrTy) 6008 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6009 OpTy = PtrTy->getElementType(); 6010 } 6011 6012 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6013 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6014 if (STy->getNumElements() == 1) 6015 OpTy = STy->getElementType(0); 6016 6017 // If OpTy is not a single value, it may be a struct/union that we 6018 // can tile with integers. 6019 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6020 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6021 switch (BitSize) { 6022 default: break; 6023 case 1: 6024 case 8: 6025 case 16: 6026 case 32: 6027 case 64: 6028 case 128: 6029 OpTy = IntegerType::get(Context, BitSize); 6030 break; 6031 } 6032 } 6033 6034 return TLI.getValueType(DL, OpTy, true); 6035 } 6036 }; 6037 6038 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6039 6040 } // end anonymous namespace 6041 6042 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6043 /// specified operand. We prefer to assign virtual registers, to allow the 6044 /// register allocator to handle the assignment process. However, if the asm 6045 /// uses features that we can't model on machineinstrs, we have SDISel do the 6046 /// allocation. This produces generally horrible, but correct, code. 6047 /// 6048 /// OpInfo describes the operand. 6049 /// 6050 static void GetRegistersForValue(SelectionDAG &DAG, 6051 const TargetLowering &TLI, 6052 SDLoc DL, 6053 SDISelAsmOperandInfo &OpInfo) { 6054 LLVMContext &Context = *DAG.getContext(); 6055 6056 MachineFunction &MF = DAG.getMachineFunction(); 6057 SmallVector<unsigned, 4> Regs; 6058 6059 // If this is a constraint for a single physreg, or a constraint for a 6060 // register class, find it. 6061 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6062 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6063 OpInfo.ConstraintCode, 6064 OpInfo.ConstraintVT); 6065 6066 unsigned NumRegs = 1; 6067 if (OpInfo.ConstraintVT != MVT::Other) { 6068 // If this is a FP input in an integer register (or visa versa) insert a bit 6069 // cast of the input value. More generally, handle any case where the input 6070 // value disagrees with the register class we plan to stick this in. 6071 if (OpInfo.Type == InlineAsm::isInput && 6072 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6073 // Try to convert to the first EVT that the reg class contains. If the 6074 // types are identical size, use a bitcast to convert (e.g. two differing 6075 // vector types). 6076 MVT RegVT = *PhysReg.second->vt_begin(); 6077 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6078 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6079 RegVT, OpInfo.CallOperand); 6080 OpInfo.ConstraintVT = RegVT; 6081 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6082 // If the input is a FP value and we want it in FP registers, do a 6083 // bitcast to the corresponding integer type. This turns an f64 value 6084 // into i64, which can be passed with two i32 values on a 32-bit 6085 // machine. 6086 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6087 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6088 RegVT, OpInfo.CallOperand); 6089 OpInfo.ConstraintVT = RegVT; 6090 } 6091 } 6092 6093 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6094 } 6095 6096 MVT RegVT; 6097 EVT ValueVT = OpInfo.ConstraintVT; 6098 6099 // If this is a constraint for a specific physical register, like {r17}, 6100 // assign it now. 6101 if (unsigned AssignedReg = PhysReg.first) { 6102 const TargetRegisterClass *RC = PhysReg.second; 6103 if (OpInfo.ConstraintVT == MVT::Other) 6104 ValueVT = *RC->vt_begin(); 6105 6106 // Get the actual register value type. This is important, because the user 6107 // may have asked for (e.g.) the AX register in i32 type. We need to 6108 // remember that AX is actually i16 to get the right extension. 6109 RegVT = *RC->vt_begin(); 6110 6111 // This is a explicit reference to a physical register. 6112 Regs.push_back(AssignedReg); 6113 6114 // If this is an expanded reference, add the rest of the regs to Regs. 6115 if (NumRegs != 1) { 6116 TargetRegisterClass::iterator I = RC->begin(); 6117 for (; *I != AssignedReg; ++I) 6118 assert(I != RC->end() && "Didn't find reg!"); 6119 6120 // Already added the first reg. 6121 --NumRegs; ++I; 6122 for (; NumRegs; --NumRegs, ++I) { 6123 assert(I != RC->end() && "Ran out of registers to allocate!"); 6124 Regs.push_back(*I); 6125 } 6126 } 6127 6128 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6129 return; 6130 } 6131 6132 // Otherwise, if this was a reference to an LLVM register class, create vregs 6133 // for this reference. 6134 if (const TargetRegisterClass *RC = PhysReg.second) { 6135 RegVT = *RC->vt_begin(); 6136 if (OpInfo.ConstraintVT == MVT::Other) 6137 ValueVT = RegVT; 6138 6139 // Create the appropriate number of virtual registers. 6140 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6141 for (; NumRegs; --NumRegs) 6142 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6143 6144 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6145 return; 6146 } 6147 6148 // Otherwise, we couldn't allocate enough registers for this. 6149 } 6150 6151 /// visitInlineAsm - Handle a call to an InlineAsm object. 6152 /// 6153 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6154 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6155 6156 /// ConstraintOperands - Information about all of the constraints. 6157 SDISelAsmOperandInfoVector ConstraintOperands; 6158 6159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6160 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6161 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6162 6163 bool hasMemory = false; 6164 6165 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6166 unsigned ResNo = 0; // ResNo - The result number of the next output. 6167 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6168 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6169 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6170 6171 MVT OpVT = MVT::Other; 6172 6173 // Compute the value type for each operand. 6174 switch (OpInfo.Type) { 6175 case InlineAsm::isOutput: 6176 // Indirect outputs just consume an argument. 6177 if (OpInfo.isIndirect) { 6178 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6179 break; 6180 } 6181 6182 // The return value of the call is this value. As such, there is no 6183 // corresponding argument. 6184 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6185 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6186 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6187 STy->getElementType(ResNo)); 6188 } else { 6189 assert(ResNo == 0 && "Asm only has one result!"); 6190 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6191 } 6192 ++ResNo; 6193 break; 6194 case InlineAsm::isInput: 6195 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6196 break; 6197 case InlineAsm::isClobber: 6198 // Nothing to do. 6199 break; 6200 } 6201 6202 // If this is an input or an indirect output, process the call argument. 6203 // BasicBlocks are labels, currently appearing only in asm's. 6204 if (OpInfo.CallOperandVal) { 6205 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6206 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6207 } else { 6208 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6209 } 6210 6211 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6212 DAG.getDataLayout()).getSimpleVT(); 6213 } 6214 6215 OpInfo.ConstraintVT = OpVT; 6216 6217 // Indirect operand accesses access memory. 6218 if (OpInfo.isIndirect) 6219 hasMemory = true; 6220 else { 6221 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6222 TargetLowering::ConstraintType 6223 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6224 if (CType == TargetLowering::C_Memory) { 6225 hasMemory = true; 6226 break; 6227 } 6228 } 6229 } 6230 } 6231 6232 SDValue Chain, Flag; 6233 6234 // We won't need to flush pending loads if this asm doesn't touch 6235 // memory and is nonvolatile. 6236 if (hasMemory || IA->hasSideEffects()) 6237 Chain = getRoot(); 6238 else 6239 Chain = DAG.getRoot(); 6240 6241 // Second pass over the constraints: compute which constraint option to use 6242 // and assign registers to constraints that want a specific physreg. 6243 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6244 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6245 6246 // If this is an output operand with a matching input operand, look up the 6247 // matching input. If their types mismatch, e.g. one is an integer, the 6248 // other is floating point, or their sizes are different, flag it as an 6249 // error. 6250 if (OpInfo.hasMatchingInput()) { 6251 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6252 6253 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6254 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6255 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6256 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6257 OpInfo.ConstraintVT); 6258 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6259 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6260 Input.ConstraintVT); 6261 if ((OpInfo.ConstraintVT.isInteger() != 6262 Input.ConstraintVT.isInteger()) || 6263 (MatchRC.second != InputRC.second)) { 6264 report_fatal_error("Unsupported asm: input constraint" 6265 " with a matching output constraint of" 6266 " incompatible type!"); 6267 } 6268 Input.ConstraintVT = OpInfo.ConstraintVT; 6269 } 6270 } 6271 6272 // Compute the constraint code and ConstraintType to use. 6273 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6274 6275 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6276 OpInfo.Type == InlineAsm::isClobber) 6277 continue; 6278 6279 // If this is a memory input, and if the operand is not indirect, do what we 6280 // need to to provide an address for the memory input. 6281 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6282 !OpInfo.isIndirect) { 6283 assert((OpInfo.isMultipleAlternative || 6284 (OpInfo.Type == InlineAsm::isInput)) && 6285 "Can only indirectify direct input operands!"); 6286 6287 // Memory operands really want the address of the value. If we don't have 6288 // an indirect input, put it in the constpool if we can, otherwise spill 6289 // it to a stack slot. 6290 // TODO: This isn't quite right. We need to handle these according to 6291 // the addressing mode that the constraint wants. Also, this may take 6292 // an additional register for the computation and we don't want that 6293 // either. 6294 6295 // If the operand is a float, integer, or vector constant, spill to a 6296 // constant pool entry to get its address. 6297 const Value *OpVal = OpInfo.CallOperandVal; 6298 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6299 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6300 OpInfo.CallOperand = DAG.getConstantPool( 6301 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6302 } else { 6303 // Otherwise, create a stack slot and emit a store to it before the 6304 // asm. 6305 Type *Ty = OpVal->getType(); 6306 auto &DL = DAG.getDataLayout(); 6307 uint64_t TySize = DL.getTypeAllocSize(Ty); 6308 unsigned Align = DL.getPrefTypeAlignment(Ty); 6309 MachineFunction &MF = DAG.getMachineFunction(); 6310 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6311 SDValue StackSlot = 6312 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6313 Chain = DAG.getStore( 6314 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6315 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6316 false, false, 0); 6317 OpInfo.CallOperand = StackSlot; 6318 } 6319 6320 // There is no longer a Value* corresponding to this operand. 6321 OpInfo.CallOperandVal = nullptr; 6322 6323 // It is now an indirect operand. 6324 OpInfo.isIndirect = true; 6325 } 6326 6327 // If this constraint is for a specific register, allocate it before 6328 // anything else. 6329 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6330 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6331 } 6332 6333 // Second pass - Loop over all of the operands, assigning virtual or physregs 6334 // to register class operands. 6335 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6336 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6337 6338 // C_Register operands have already been allocated, Other/Memory don't need 6339 // to be. 6340 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6341 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6342 } 6343 6344 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6345 std::vector<SDValue> AsmNodeOperands; 6346 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6347 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6348 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6349 6350 // If we have a !srcloc metadata node associated with it, we want to attach 6351 // this to the ultimately generated inline asm machineinstr. To do this, we 6352 // pass in the third operand as this (potentially null) inline asm MDNode. 6353 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6354 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6355 6356 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6357 // bits as operand 3. 6358 unsigned ExtraInfo = 0; 6359 if (IA->hasSideEffects()) 6360 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6361 if (IA->isAlignStack()) 6362 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6363 // Set the asm dialect. 6364 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6365 6366 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6367 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6368 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6369 6370 // Compute the constraint code and ConstraintType to use. 6371 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6372 6373 // Ideally, we would only check against memory constraints. However, the 6374 // meaning of an other constraint can be target-specific and we can't easily 6375 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6376 // for other constriants as well. 6377 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6378 OpInfo.ConstraintType == TargetLowering::C_Other) { 6379 if (OpInfo.Type == InlineAsm::isInput) 6380 ExtraInfo |= InlineAsm::Extra_MayLoad; 6381 else if (OpInfo.Type == InlineAsm::isOutput) 6382 ExtraInfo |= InlineAsm::Extra_MayStore; 6383 else if (OpInfo.Type == InlineAsm::isClobber) 6384 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6385 } 6386 } 6387 6388 AsmNodeOperands.push_back(DAG.getTargetConstant( 6389 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6390 6391 // Loop over all of the inputs, copying the operand values into the 6392 // appropriate registers and processing the output regs. 6393 RegsForValue RetValRegs; 6394 6395 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6396 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6397 6398 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6399 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6400 6401 switch (OpInfo.Type) { 6402 case InlineAsm::isOutput: { 6403 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6404 OpInfo.ConstraintType != TargetLowering::C_Register) { 6405 // Memory output, or 'other' output (e.g. 'X' constraint). 6406 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6407 6408 unsigned ConstraintID = 6409 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6410 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6411 "Failed to convert memory constraint code to constraint id."); 6412 6413 // Add information to the INLINEASM node to know about this output. 6414 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6415 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6416 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6417 MVT::i32)); 6418 AsmNodeOperands.push_back(OpInfo.CallOperand); 6419 break; 6420 } 6421 6422 // Otherwise, this is a register or register class output. 6423 6424 // Copy the output from the appropriate register. Find a register that 6425 // we can use. 6426 if (OpInfo.AssignedRegs.Regs.empty()) { 6427 LLVMContext &Ctx = *DAG.getContext(); 6428 Ctx.emitError(CS.getInstruction(), 6429 "couldn't allocate output register for constraint '" + 6430 Twine(OpInfo.ConstraintCode) + "'"); 6431 return; 6432 } 6433 6434 // If this is an indirect operand, store through the pointer after the 6435 // asm. 6436 if (OpInfo.isIndirect) { 6437 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6438 OpInfo.CallOperandVal)); 6439 } else { 6440 // This is the result value of the call. 6441 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6442 // Concatenate this output onto the outputs list. 6443 RetValRegs.append(OpInfo.AssignedRegs); 6444 } 6445 6446 // Add information to the INLINEASM node to know that this register is 6447 // set. 6448 OpInfo.AssignedRegs 6449 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6450 ? InlineAsm::Kind_RegDefEarlyClobber 6451 : InlineAsm::Kind_RegDef, 6452 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6453 break; 6454 } 6455 case InlineAsm::isInput: { 6456 SDValue InOperandVal = OpInfo.CallOperand; 6457 6458 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6459 // If this is required to match an output register we have already set, 6460 // just use its register. 6461 unsigned OperandNo = OpInfo.getMatchedOperand(); 6462 6463 // Scan until we find the definition we already emitted of this operand. 6464 // When we find it, create a RegsForValue operand. 6465 unsigned CurOp = InlineAsm::Op_FirstOperand; 6466 for (; OperandNo; --OperandNo) { 6467 // Advance to the next operand. 6468 unsigned OpFlag = 6469 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6470 assert((InlineAsm::isRegDefKind(OpFlag) || 6471 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6472 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6473 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6474 } 6475 6476 unsigned OpFlag = 6477 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6478 if (InlineAsm::isRegDefKind(OpFlag) || 6479 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6480 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6481 if (OpInfo.isIndirect) { 6482 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6483 LLVMContext &Ctx = *DAG.getContext(); 6484 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6485 " don't know how to handle tied " 6486 "indirect register inputs"); 6487 return; 6488 } 6489 6490 RegsForValue MatchedRegs; 6491 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6492 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6493 MatchedRegs.RegVTs.push_back(RegVT); 6494 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6495 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6496 i != e; ++i) { 6497 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6498 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6499 else { 6500 LLVMContext &Ctx = *DAG.getContext(); 6501 Ctx.emitError(CS.getInstruction(), 6502 "inline asm error: This value" 6503 " type register class is not natively supported!"); 6504 return; 6505 } 6506 } 6507 SDLoc dl = getCurSDLoc(); 6508 // Use the produced MatchedRegs object to 6509 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6510 Chain, &Flag, CS.getInstruction()); 6511 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6512 true, OpInfo.getMatchedOperand(), dl, 6513 DAG, AsmNodeOperands); 6514 break; 6515 } 6516 6517 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6518 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6519 "Unexpected number of operands"); 6520 // Add information to the INLINEASM node to know about this input. 6521 // See InlineAsm.h isUseOperandTiedToDef. 6522 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6523 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6524 OpInfo.getMatchedOperand()); 6525 AsmNodeOperands.push_back(DAG.getTargetConstant( 6526 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6527 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6528 break; 6529 } 6530 6531 // Treat indirect 'X' constraint as memory. 6532 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6533 OpInfo.isIndirect) 6534 OpInfo.ConstraintType = TargetLowering::C_Memory; 6535 6536 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6537 std::vector<SDValue> Ops; 6538 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6539 Ops, DAG); 6540 if (Ops.empty()) { 6541 LLVMContext &Ctx = *DAG.getContext(); 6542 Ctx.emitError(CS.getInstruction(), 6543 "invalid operand for inline asm constraint '" + 6544 Twine(OpInfo.ConstraintCode) + "'"); 6545 return; 6546 } 6547 6548 // Add information to the INLINEASM node to know about this input. 6549 unsigned ResOpType = 6550 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6551 AsmNodeOperands.push_back(DAG.getTargetConstant( 6552 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6553 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6554 break; 6555 } 6556 6557 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6558 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6559 assert(InOperandVal.getValueType() == 6560 TLI.getPointerTy(DAG.getDataLayout()) && 6561 "Memory operands expect pointer values"); 6562 6563 unsigned ConstraintID = 6564 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6565 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6566 "Failed to convert memory constraint code to constraint id."); 6567 6568 // Add information to the INLINEASM node to know about this input. 6569 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6570 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6571 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6572 getCurSDLoc(), 6573 MVT::i32)); 6574 AsmNodeOperands.push_back(InOperandVal); 6575 break; 6576 } 6577 6578 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6579 OpInfo.ConstraintType == TargetLowering::C_Register) && 6580 "Unknown constraint type!"); 6581 6582 // TODO: Support this. 6583 if (OpInfo.isIndirect) { 6584 LLVMContext &Ctx = *DAG.getContext(); 6585 Ctx.emitError(CS.getInstruction(), 6586 "Don't know how to handle indirect register inputs yet " 6587 "for constraint '" + 6588 Twine(OpInfo.ConstraintCode) + "'"); 6589 return; 6590 } 6591 6592 // Copy the input into the appropriate registers. 6593 if (OpInfo.AssignedRegs.Regs.empty()) { 6594 LLVMContext &Ctx = *DAG.getContext(); 6595 Ctx.emitError(CS.getInstruction(), 6596 "couldn't allocate input reg for constraint '" + 6597 Twine(OpInfo.ConstraintCode) + "'"); 6598 return; 6599 } 6600 6601 SDLoc dl = getCurSDLoc(); 6602 6603 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6604 Chain, &Flag, CS.getInstruction()); 6605 6606 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6607 dl, DAG, AsmNodeOperands); 6608 break; 6609 } 6610 case InlineAsm::isClobber: { 6611 // Add the clobbered value to the operand list, so that the register 6612 // allocator is aware that the physreg got clobbered. 6613 if (!OpInfo.AssignedRegs.Regs.empty()) 6614 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6615 false, 0, getCurSDLoc(), DAG, 6616 AsmNodeOperands); 6617 break; 6618 } 6619 } 6620 } 6621 6622 // Finish up input operands. Set the input chain and add the flag last. 6623 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6624 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6625 6626 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6627 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6628 Flag = Chain.getValue(1); 6629 6630 // If this asm returns a register value, copy the result from that register 6631 // and set it as the value of the call. 6632 if (!RetValRegs.Regs.empty()) { 6633 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6634 Chain, &Flag, CS.getInstruction()); 6635 6636 // FIXME: Why don't we do this for inline asms with MRVs? 6637 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6638 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6639 6640 // If any of the results of the inline asm is a vector, it may have the 6641 // wrong width/num elts. This can happen for register classes that can 6642 // contain multiple different value types. The preg or vreg allocated may 6643 // not have the same VT as was expected. Convert it to the right type 6644 // with bit_convert. 6645 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6646 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6647 ResultType, Val); 6648 6649 } else if (ResultType != Val.getValueType() && 6650 ResultType.isInteger() && Val.getValueType().isInteger()) { 6651 // If a result value was tied to an input value, the computed result may 6652 // have a wider width than the expected result. Extract the relevant 6653 // portion. 6654 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6655 } 6656 6657 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6658 } 6659 6660 setValue(CS.getInstruction(), Val); 6661 // Don't need to use this as a chain in this case. 6662 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6663 return; 6664 } 6665 6666 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6667 6668 // Process indirect outputs, first output all of the flagged copies out of 6669 // physregs. 6670 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6671 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6672 const Value *Ptr = IndirectStoresToEmit[i].second; 6673 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6674 Chain, &Flag, IA); 6675 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6676 } 6677 6678 // Emit the non-flagged stores from the physregs. 6679 SmallVector<SDValue, 8> OutChains; 6680 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6681 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6682 StoresToEmit[i].first, 6683 getValue(StoresToEmit[i].second), 6684 MachinePointerInfo(StoresToEmit[i].second), 6685 false, false, 0); 6686 OutChains.push_back(Val); 6687 } 6688 6689 if (!OutChains.empty()) 6690 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6691 6692 DAG.setRoot(Chain); 6693 } 6694 6695 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6696 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6697 MVT::Other, getRoot(), 6698 getValue(I.getArgOperand(0)), 6699 DAG.getSrcValue(I.getArgOperand(0)))); 6700 } 6701 6702 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6704 const DataLayout &DL = DAG.getDataLayout(); 6705 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6706 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6707 DAG.getSrcValue(I.getOperand(0)), 6708 DL.getABITypeAlignment(I.getType())); 6709 setValue(&I, V); 6710 DAG.setRoot(V.getValue(1)); 6711 } 6712 6713 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6714 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6715 MVT::Other, getRoot(), 6716 getValue(I.getArgOperand(0)), 6717 DAG.getSrcValue(I.getArgOperand(0)))); 6718 } 6719 6720 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6721 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6722 MVT::Other, getRoot(), 6723 getValue(I.getArgOperand(0)), 6724 getValue(I.getArgOperand(1)), 6725 DAG.getSrcValue(I.getArgOperand(0)), 6726 DAG.getSrcValue(I.getArgOperand(1)))); 6727 } 6728 6729 /// \brief Lower an argument list according to the target calling convention. 6730 /// 6731 /// \return A tuple of <return-value, token-chain> 6732 /// 6733 /// This is a helper for lowering intrinsics that follow a target calling 6734 /// convention or require stack pointer adjustment. Only a subset of the 6735 /// intrinsic's operands need to participate in the calling convention. 6736 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6737 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6738 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6739 TargetLowering::ArgListTy Args; 6740 Args.reserve(NumArgs); 6741 6742 // Populate the argument list. 6743 // Attributes for args start at offset 1, after the return attribute. 6744 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6745 ArgI != ArgE; ++ArgI) { 6746 const Value *V = CS->getOperand(ArgI); 6747 6748 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6749 6750 TargetLowering::ArgListEntry Entry; 6751 Entry.Node = getValue(V); 6752 Entry.Ty = V->getType(); 6753 Entry.setAttributes(&CS, AttrI); 6754 Args.push_back(Entry); 6755 } 6756 6757 TargetLowering::CallLoweringInfo CLI(DAG); 6758 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6759 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6760 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6761 6762 return lowerInvokable(CLI, EHPadBB); 6763 } 6764 6765 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6766 /// or patchpoint target node's operand list. 6767 /// 6768 /// Constants are converted to TargetConstants purely as an optimization to 6769 /// avoid constant materialization and register allocation. 6770 /// 6771 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6772 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6773 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6774 /// address materialization and register allocation, but may also be required 6775 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6776 /// alloca in the entry block, then the runtime may assume that the alloca's 6777 /// StackMap location can be read immediately after compilation and that the 6778 /// location is valid at any point during execution (this is similar to the 6779 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6780 /// only available in a register, then the runtime would need to trap when 6781 /// execution reaches the StackMap in order to read the alloca's location. 6782 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6783 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6784 SelectionDAGBuilder &Builder) { 6785 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6786 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6787 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6788 Ops.push_back( 6789 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6790 Ops.push_back( 6791 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6792 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6793 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6794 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6795 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6796 } else 6797 Ops.push_back(OpVal); 6798 } 6799 } 6800 6801 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6802 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6803 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6804 // [live variables...]) 6805 6806 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6807 6808 SDValue Chain, InFlag, Callee, NullPtr; 6809 SmallVector<SDValue, 32> Ops; 6810 6811 SDLoc DL = getCurSDLoc(); 6812 Callee = getValue(CI.getCalledValue()); 6813 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6814 6815 // The stackmap intrinsic only records the live variables (the arguemnts 6816 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6817 // intrinsic, this won't be lowered to a function call. This means we don't 6818 // have to worry about calling conventions and target specific lowering code. 6819 // Instead we perform the call lowering right here. 6820 // 6821 // chain, flag = CALLSEQ_START(chain, 0) 6822 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6823 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6824 // 6825 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6826 InFlag = Chain.getValue(1); 6827 6828 // Add the <id> and <numBytes> constants. 6829 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6830 Ops.push_back(DAG.getTargetConstant( 6831 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6832 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6833 Ops.push_back(DAG.getTargetConstant( 6834 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6835 MVT::i32)); 6836 6837 // Push live variables for the stack map. 6838 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6839 6840 // We are not pushing any register mask info here on the operands list, 6841 // because the stackmap doesn't clobber anything. 6842 6843 // Push the chain and the glue flag. 6844 Ops.push_back(Chain); 6845 Ops.push_back(InFlag); 6846 6847 // Create the STACKMAP node. 6848 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6849 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6850 Chain = SDValue(SM, 0); 6851 InFlag = Chain.getValue(1); 6852 6853 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6854 6855 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6856 6857 // Set the root to the target-lowered call chain. 6858 DAG.setRoot(Chain); 6859 6860 // Inform the Frame Information that we have a stackmap in this function. 6861 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6862 } 6863 6864 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6865 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6866 const BasicBlock *EHPadBB) { 6867 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6868 // i32 <numBytes>, 6869 // i8* <target>, 6870 // i32 <numArgs>, 6871 // [Args...], 6872 // [live variables...]) 6873 6874 CallingConv::ID CC = CS.getCallingConv(); 6875 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6876 bool HasDef = !CS->getType()->isVoidTy(); 6877 SDLoc dl = getCurSDLoc(); 6878 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6879 6880 // Handle immediate and symbolic callees. 6881 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6882 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6883 /*isTarget=*/true); 6884 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6885 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6886 SDLoc(SymbolicCallee), 6887 SymbolicCallee->getValueType(0)); 6888 6889 // Get the real number of arguments participating in the call <numArgs> 6890 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6891 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6892 6893 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6894 // Intrinsics include all meta-operands up to but not including CC. 6895 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6896 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6897 "Not enough arguments provided to the patchpoint intrinsic"); 6898 6899 // For AnyRegCC the arguments are lowered later on manually. 6900 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6901 Type *ReturnTy = 6902 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6903 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6904 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6905 6906 SDNode *CallEnd = Result.second.getNode(); 6907 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6908 CallEnd = CallEnd->getOperand(0).getNode(); 6909 6910 /// Get a call instruction from the call sequence chain. 6911 /// Tail calls are not allowed. 6912 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6913 "Expected a callseq node."); 6914 SDNode *Call = CallEnd->getOperand(0).getNode(); 6915 bool HasGlue = Call->getGluedNode(); 6916 6917 // Replace the target specific call node with the patchable intrinsic. 6918 SmallVector<SDValue, 8> Ops; 6919 6920 // Add the <id> and <numBytes> constants. 6921 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6922 Ops.push_back(DAG.getTargetConstant( 6923 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6924 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6925 Ops.push_back(DAG.getTargetConstant( 6926 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6927 MVT::i32)); 6928 6929 // Add the callee. 6930 Ops.push_back(Callee); 6931 6932 // Adjust <numArgs> to account for any arguments that have been passed on the 6933 // stack instead. 6934 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6935 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6936 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6937 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6938 6939 // Add the calling convention 6940 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6941 6942 // Add the arguments we omitted previously. The register allocator should 6943 // place these in any free register. 6944 if (IsAnyRegCC) 6945 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6946 Ops.push_back(getValue(CS.getArgument(i))); 6947 6948 // Push the arguments from the call instruction up to the register mask. 6949 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6950 Ops.append(Call->op_begin() + 2, e); 6951 6952 // Push live variables for the stack map. 6953 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6954 6955 // Push the register mask info. 6956 if (HasGlue) 6957 Ops.push_back(*(Call->op_end()-2)); 6958 else 6959 Ops.push_back(*(Call->op_end()-1)); 6960 6961 // Push the chain (this is originally the first operand of the call, but 6962 // becomes now the last or second to last operand). 6963 Ops.push_back(*(Call->op_begin())); 6964 6965 // Push the glue flag (last operand). 6966 if (HasGlue) 6967 Ops.push_back(*(Call->op_end()-1)); 6968 6969 SDVTList NodeTys; 6970 if (IsAnyRegCC && HasDef) { 6971 // Create the return types based on the intrinsic definition 6972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6973 SmallVector<EVT, 3> ValueVTs; 6974 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6975 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6976 6977 // There is always a chain and a glue type at the end 6978 ValueVTs.push_back(MVT::Other); 6979 ValueVTs.push_back(MVT::Glue); 6980 NodeTys = DAG.getVTList(ValueVTs); 6981 } else 6982 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6983 6984 // Replace the target specific call node with a PATCHPOINT node. 6985 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6986 dl, NodeTys, Ops); 6987 6988 // Update the NodeMap. 6989 if (HasDef) { 6990 if (IsAnyRegCC) 6991 setValue(CS.getInstruction(), SDValue(MN, 0)); 6992 else 6993 setValue(CS.getInstruction(), Result.first); 6994 } 6995 6996 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6997 // call sequence. Furthermore the location of the chain and glue can change 6998 // when the AnyReg calling convention is used and the intrinsic returns a 6999 // value. 7000 if (IsAnyRegCC && HasDef) { 7001 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7002 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7003 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7004 } else 7005 DAG.ReplaceAllUsesWith(Call, MN); 7006 DAG.DeleteNode(Call); 7007 7008 // Inform the Frame Information that we have a patchpoint in this function. 7009 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7010 } 7011 7012 /// Returns an AttributeSet representing the attributes applied to the return 7013 /// value of the given call. 7014 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7015 SmallVector<Attribute::AttrKind, 2> Attrs; 7016 if (CLI.RetSExt) 7017 Attrs.push_back(Attribute::SExt); 7018 if (CLI.RetZExt) 7019 Attrs.push_back(Attribute::ZExt); 7020 if (CLI.IsInReg) 7021 Attrs.push_back(Attribute::InReg); 7022 7023 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7024 Attrs); 7025 } 7026 7027 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7028 /// implementation, which just calls LowerCall. 7029 /// FIXME: When all targets are 7030 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7031 std::pair<SDValue, SDValue> 7032 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7033 // Handle the incoming return values from the call. 7034 CLI.Ins.clear(); 7035 Type *OrigRetTy = CLI.RetTy; 7036 SmallVector<EVT, 4> RetTys; 7037 SmallVector<uint64_t, 4> Offsets; 7038 auto &DL = CLI.DAG.getDataLayout(); 7039 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7040 7041 SmallVector<ISD::OutputArg, 4> Outs; 7042 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7043 7044 bool CanLowerReturn = 7045 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7046 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7047 7048 SDValue DemoteStackSlot; 7049 int DemoteStackIdx = -100; 7050 if (!CanLowerReturn) { 7051 // FIXME: equivalent assert? 7052 // assert(!CS.hasInAllocaArgument() && 7053 // "sret demotion is incompatible with inalloca"); 7054 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7055 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7056 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7057 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7058 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7059 7060 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7061 ArgListEntry Entry; 7062 Entry.Node = DemoteStackSlot; 7063 Entry.Ty = StackSlotPtrType; 7064 Entry.isSExt = false; 7065 Entry.isZExt = false; 7066 Entry.isInReg = false; 7067 Entry.isSRet = true; 7068 Entry.isNest = false; 7069 Entry.isByVal = false; 7070 Entry.isReturned = false; 7071 Entry.Alignment = Align; 7072 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7073 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7074 7075 // sret demotion isn't compatible with tail-calls, since the sret argument 7076 // points into the callers stack frame. 7077 CLI.IsTailCall = false; 7078 } else { 7079 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7080 EVT VT = RetTys[I]; 7081 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7082 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7083 for (unsigned i = 0; i != NumRegs; ++i) { 7084 ISD::InputArg MyFlags; 7085 MyFlags.VT = RegisterVT; 7086 MyFlags.ArgVT = VT; 7087 MyFlags.Used = CLI.IsReturnValueUsed; 7088 if (CLI.RetSExt) 7089 MyFlags.Flags.setSExt(); 7090 if (CLI.RetZExt) 7091 MyFlags.Flags.setZExt(); 7092 if (CLI.IsInReg) 7093 MyFlags.Flags.setInReg(); 7094 CLI.Ins.push_back(MyFlags); 7095 } 7096 } 7097 } 7098 7099 // Handle all of the outgoing arguments. 7100 CLI.Outs.clear(); 7101 CLI.OutVals.clear(); 7102 ArgListTy &Args = CLI.getArgs(); 7103 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7104 SmallVector<EVT, 4> ValueVTs; 7105 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7106 Type *FinalType = Args[i].Ty; 7107 if (Args[i].isByVal) 7108 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7109 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7110 FinalType, CLI.CallConv, CLI.IsVarArg); 7111 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7112 ++Value) { 7113 EVT VT = ValueVTs[Value]; 7114 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7115 SDValue Op = SDValue(Args[i].Node.getNode(), 7116 Args[i].Node.getResNo() + Value); 7117 ISD::ArgFlagsTy Flags; 7118 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7119 7120 if (Args[i].isZExt) 7121 Flags.setZExt(); 7122 if (Args[i].isSExt) 7123 Flags.setSExt(); 7124 if (Args[i].isInReg) 7125 Flags.setInReg(); 7126 if (Args[i].isSRet) 7127 Flags.setSRet(); 7128 if (Args[i].isByVal) 7129 Flags.setByVal(); 7130 if (Args[i].isInAlloca) { 7131 Flags.setInAlloca(); 7132 // Set the byval flag for CCAssignFn callbacks that don't know about 7133 // inalloca. This way we can know how many bytes we should've allocated 7134 // and how many bytes a callee cleanup function will pop. If we port 7135 // inalloca to more targets, we'll have to add custom inalloca handling 7136 // in the various CC lowering callbacks. 7137 Flags.setByVal(); 7138 } 7139 if (Args[i].isByVal || Args[i].isInAlloca) { 7140 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7141 Type *ElementTy = Ty->getElementType(); 7142 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7143 // For ByVal, alignment should come from FE. BE will guess if this 7144 // info is not there but there are cases it cannot get right. 7145 unsigned FrameAlign; 7146 if (Args[i].Alignment) 7147 FrameAlign = Args[i].Alignment; 7148 else 7149 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7150 Flags.setByValAlign(FrameAlign); 7151 } 7152 if (Args[i].isNest) 7153 Flags.setNest(); 7154 if (NeedsRegBlock) 7155 Flags.setInConsecutiveRegs(); 7156 Flags.setOrigAlign(OriginalAlignment); 7157 7158 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7159 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7160 SmallVector<SDValue, 4> Parts(NumParts); 7161 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7162 7163 if (Args[i].isSExt) 7164 ExtendKind = ISD::SIGN_EXTEND; 7165 else if (Args[i].isZExt) 7166 ExtendKind = ISD::ZERO_EXTEND; 7167 7168 // Conservatively only handle 'returned' on non-vectors for now 7169 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7170 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7171 "unexpected use of 'returned'"); 7172 // Before passing 'returned' to the target lowering code, ensure that 7173 // either the register MVT and the actual EVT are the same size or that 7174 // the return value and argument are extended in the same way; in these 7175 // cases it's safe to pass the argument register value unchanged as the 7176 // return register value (although it's at the target's option whether 7177 // to do so) 7178 // TODO: allow code generation to take advantage of partially preserved 7179 // registers rather than clobbering the entire register when the 7180 // parameter extension method is not compatible with the return 7181 // extension method 7182 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7183 (ExtendKind != ISD::ANY_EXTEND && 7184 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7185 Flags.setReturned(); 7186 } 7187 7188 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7189 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7190 7191 for (unsigned j = 0; j != NumParts; ++j) { 7192 // if it isn't first piece, alignment must be 1 7193 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7194 i < CLI.NumFixedArgs, 7195 i, j*Parts[j].getValueType().getStoreSize()); 7196 if (NumParts > 1 && j == 0) 7197 MyFlags.Flags.setSplit(); 7198 else if (j != 0) { 7199 MyFlags.Flags.setOrigAlign(1); 7200 if (j == NumParts - 1) 7201 MyFlags.Flags.setSplitEnd(); 7202 } 7203 7204 CLI.Outs.push_back(MyFlags); 7205 CLI.OutVals.push_back(Parts[j]); 7206 } 7207 7208 if (NeedsRegBlock && Value == NumValues - 1) 7209 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7210 } 7211 } 7212 7213 SmallVector<SDValue, 4> InVals; 7214 CLI.Chain = LowerCall(CLI, InVals); 7215 7216 // Verify that the target's LowerCall behaved as expected. 7217 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7218 "LowerCall didn't return a valid chain!"); 7219 assert((!CLI.IsTailCall || InVals.empty()) && 7220 "LowerCall emitted a return value for a tail call!"); 7221 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7222 "LowerCall didn't emit the correct number of values!"); 7223 7224 // For a tail call, the return value is merely live-out and there aren't 7225 // any nodes in the DAG representing it. Return a special value to 7226 // indicate that a tail call has been emitted and no more Instructions 7227 // should be processed in the current block. 7228 if (CLI.IsTailCall) { 7229 CLI.DAG.setRoot(CLI.Chain); 7230 return std::make_pair(SDValue(), SDValue()); 7231 } 7232 7233 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7234 assert(InVals[i].getNode() && 7235 "LowerCall emitted a null value!"); 7236 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7237 "LowerCall emitted a value with the wrong type!"); 7238 }); 7239 7240 SmallVector<SDValue, 4> ReturnValues; 7241 if (!CanLowerReturn) { 7242 // The instruction result is the result of loading from the 7243 // hidden sret parameter. 7244 SmallVector<EVT, 1> PVTs; 7245 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7246 7247 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7248 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7249 EVT PtrVT = PVTs[0]; 7250 7251 unsigned NumValues = RetTys.size(); 7252 ReturnValues.resize(NumValues); 7253 SmallVector<SDValue, 4> Chains(NumValues); 7254 7255 // An aggregate return value cannot wrap around the address space, so 7256 // offsets to its parts don't wrap either. 7257 SDNodeFlags Flags; 7258 Flags.setNoUnsignedWrap(true); 7259 7260 for (unsigned i = 0; i < NumValues; ++i) { 7261 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7262 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7263 PtrVT), &Flags); 7264 SDValue L = CLI.DAG.getLoad( 7265 RetTys[i], CLI.DL, CLI.Chain, Add, 7266 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7267 DemoteStackIdx, Offsets[i]), 7268 false, false, false, 1); 7269 ReturnValues[i] = L; 7270 Chains[i] = L.getValue(1); 7271 } 7272 7273 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7274 } else { 7275 // Collect the legal value parts into potentially illegal values 7276 // that correspond to the original function's return values. 7277 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7278 if (CLI.RetSExt) 7279 AssertOp = ISD::AssertSext; 7280 else if (CLI.RetZExt) 7281 AssertOp = ISD::AssertZext; 7282 unsigned CurReg = 0; 7283 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7284 EVT VT = RetTys[I]; 7285 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7286 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7287 7288 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7289 NumRegs, RegisterVT, VT, nullptr, 7290 AssertOp)); 7291 CurReg += NumRegs; 7292 } 7293 7294 // For a function returning void, there is no return value. We can't create 7295 // such a node, so we just return a null return value in that case. In 7296 // that case, nothing will actually look at the value. 7297 if (ReturnValues.empty()) 7298 return std::make_pair(SDValue(), CLI.Chain); 7299 } 7300 7301 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7302 CLI.DAG.getVTList(RetTys), ReturnValues); 7303 return std::make_pair(Res, CLI.Chain); 7304 } 7305 7306 void TargetLowering::LowerOperationWrapper(SDNode *N, 7307 SmallVectorImpl<SDValue> &Results, 7308 SelectionDAG &DAG) const { 7309 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7310 if (Res.getNode()) 7311 Results.push_back(Res); 7312 } 7313 7314 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7315 llvm_unreachable("LowerOperation not implemented for this target!"); 7316 } 7317 7318 void 7319 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7320 SDValue Op = getNonRegisterValue(V); 7321 assert((Op.getOpcode() != ISD::CopyFromReg || 7322 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7323 "Copy from a reg to the same reg!"); 7324 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7325 7326 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7327 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7328 V->getType()); 7329 SDValue Chain = DAG.getEntryNode(); 7330 7331 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7332 FuncInfo.PreferredExtendType.end()) 7333 ? ISD::ANY_EXTEND 7334 : FuncInfo.PreferredExtendType[V]; 7335 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7336 PendingExports.push_back(Chain); 7337 } 7338 7339 #include "llvm/CodeGen/SelectionDAGISel.h" 7340 7341 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7342 /// entry block, return true. This includes arguments used by switches, since 7343 /// the switch may expand into multiple basic blocks. 7344 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7345 // With FastISel active, we may be splitting blocks, so force creation 7346 // of virtual registers for all non-dead arguments. 7347 if (FastISel) 7348 return A->use_empty(); 7349 7350 const BasicBlock &Entry = A->getParent()->front(); 7351 for (const User *U : A->users()) 7352 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7353 return false; // Use not in entry block. 7354 7355 return true; 7356 } 7357 7358 void SelectionDAGISel::LowerArguments(const Function &F) { 7359 SelectionDAG &DAG = SDB->DAG; 7360 SDLoc dl = SDB->getCurSDLoc(); 7361 const DataLayout &DL = DAG.getDataLayout(); 7362 SmallVector<ISD::InputArg, 16> Ins; 7363 7364 if (!FuncInfo->CanLowerReturn) { 7365 // Put in an sret pointer parameter before all the other parameters. 7366 SmallVector<EVT, 1> ValueVTs; 7367 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7368 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7369 7370 // NOTE: Assuming that a pointer will never break down to more than one VT 7371 // or one register. 7372 ISD::ArgFlagsTy Flags; 7373 Flags.setSRet(); 7374 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7375 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7376 ISD::InputArg::NoArgIndex, 0); 7377 Ins.push_back(RetArg); 7378 } 7379 7380 // Set up the incoming argument description vector. 7381 unsigned Idx = 1; 7382 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7383 I != E; ++I, ++Idx) { 7384 SmallVector<EVT, 4> ValueVTs; 7385 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7386 bool isArgValueUsed = !I->use_empty(); 7387 unsigned PartBase = 0; 7388 Type *FinalType = I->getType(); 7389 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7390 FinalType = cast<PointerType>(FinalType)->getElementType(); 7391 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7392 FinalType, F.getCallingConv(), F.isVarArg()); 7393 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7394 Value != NumValues; ++Value) { 7395 EVT VT = ValueVTs[Value]; 7396 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7397 ISD::ArgFlagsTy Flags; 7398 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7399 7400 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7401 Flags.setZExt(); 7402 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7403 Flags.setSExt(); 7404 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7405 Flags.setInReg(); 7406 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7407 Flags.setSRet(); 7408 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7409 Flags.setByVal(); 7410 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7411 Flags.setInAlloca(); 7412 // Set the byval flag for CCAssignFn callbacks that don't know about 7413 // inalloca. This way we can know how many bytes we should've allocated 7414 // and how many bytes a callee cleanup function will pop. If we port 7415 // inalloca to more targets, we'll have to add custom inalloca handling 7416 // in the various CC lowering callbacks. 7417 Flags.setByVal(); 7418 } 7419 if (F.getCallingConv() == CallingConv::X86_INTR) { 7420 // IA Interrupt passes frame (1st parameter) by value in the stack. 7421 if (Idx == 1) 7422 Flags.setByVal(); 7423 } 7424 if (Flags.isByVal() || Flags.isInAlloca()) { 7425 PointerType *Ty = cast<PointerType>(I->getType()); 7426 Type *ElementTy = Ty->getElementType(); 7427 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7428 // For ByVal, alignment should be passed from FE. BE will guess if 7429 // this info is not there but there are cases it cannot get right. 7430 unsigned FrameAlign; 7431 if (F.getParamAlignment(Idx)) 7432 FrameAlign = F.getParamAlignment(Idx); 7433 else 7434 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7435 Flags.setByValAlign(FrameAlign); 7436 } 7437 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7438 Flags.setNest(); 7439 if (NeedsRegBlock) 7440 Flags.setInConsecutiveRegs(); 7441 Flags.setOrigAlign(OriginalAlignment); 7442 7443 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7444 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7445 for (unsigned i = 0; i != NumRegs; ++i) { 7446 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7447 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7448 if (NumRegs > 1 && i == 0) 7449 MyFlags.Flags.setSplit(); 7450 // if it isn't first piece, alignment must be 1 7451 else if (i > 0) { 7452 MyFlags.Flags.setOrigAlign(1); 7453 if (i == NumRegs - 1) 7454 MyFlags.Flags.setSplitEnd(); 7455 } 7456 Ins.push_back(MyFlags); 7457 } 7458 if (NeedsRegBlock && Value == NumValues - 1) 7459 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7460 PartBase += VT.getStoreSize(); 7461 } 7462 } 7463 7464 // Call the target to set up the argument values. 7465 SmallVector<SDValue, 8> InVals; 7466 SDValue NewRoot = TLI->LowerFormalArguments( 7467 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7468 7469 // Verify that the target's LowerFormalArguments behaved as expected. 7470 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7471 "LowerFormalArguments didn't return a valid chain!"); 7472 assert(InVals.size() == Ins.size() && 7473 "LowerFormalArguments didn't emit the correct number of values!"); 7474 DEBUG({ 7475 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7476 assert(InVals[i].getNode() && 7477 "LowerFormalArguments emitted a null value!"); 7478 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7479 "LowerFormalArguments emitted a value with the wrong type!"); 7480 } 7481 }); 7482 7483 // Update the DAG with the new chain value resulting from argument lowering. 7484 DAG.setRoot(NewRoot); 7485 7486 // Set up the argument values. 7487 unsigned i = 0; 7488 Idx = 1; 7489 if (!FuncInfo->CanLowerReturn) { 7490 // Create a virtual register for the sret pointer, and put in a copy 7491 // from the sret argument into it. 7492 SmallVector<EVT, 1> ValueVTs; 7493 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7494 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7495 MVT VT = ValueVTs[0].getSimpleVT(); 7496 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7497 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7498 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7499 RegVT, VT, nullptr, AssertOp); 7500 7501 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7502 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7503 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7504 FuncInfo->DemoteRegister = SRetReg; 7505 NewRoot = 7506 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7507 DAG.setRoot(NewRoot); 7508 7509 // i indexes lowered arguments. Bump it past the hidden sret argument. 7510 // Idx indexes LLVM arguments. Don't touch it. 7511 ++i; 7512 } 7513 7514 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7515 ++I, ++Idx) { 7516 SmallVector<SDValue, 4> ArgValues; 7517 SmallVector<EVT, 4> ValueVTs; 7518 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7519 unsigned NumValues = ValueVTs.size(); 7520 7521 // If this argument is unused then remember its value. It is used to generate 7522 // debugging information. 7523 if (I->use_empty() && NumValues) { 7524 SDB->setUnusedArgValue(&*I, InVals[i]); 7525 7526 // Also remember any frame index for use in FastISel. 7527 if (FrameIndexSDNode *FI = 7528 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7529 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7530 } 7531 7532 for (unsigned Val = 0; Val != NumValues; ++Val) { 7533 EVT VT = ValueVTs[Val]; 7534 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7535 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7536 7537 if (!I->use_empty()) { 7538 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7539 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7540 AssertOp = ISD::AssertSext; 7541 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7542 AssertOp = ISD::AssertZext; 7543 7544 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7545 NumParts, PartVT, VT, 7546 nullptr, AssertOp)); 7547 } 7548 7549 i += NumParts; 7550 } 7551 7552 // We don't need to do anything else for unused arguments. 7553 if (ArgValues.empty()) 7554 continue; 7555 7556 // Note down frame index. 7557 if (FrameIndexSDNode *FI = 7558 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7559 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7560 7561 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7562 SDB->getCurSDLoc()); 7563 7564 SDB->setValue(&*I, Res); 7565 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7566 if (LoadSDNode *LNode = 7567 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7568 if (FrameIndexSDNode *FI = 7569 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7570 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7571 } 7572 7573 // If this argument is live outside of the entry block, insert a copy from 7574 // wherever we got it to the vreg that other BB's will reference it as. 7575 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7576 // If we can, though, try to skip creating an unnecessary vreg. 7577 // FIXME: This isn't very clean... it would be nice to make this more 7578 // general. It's also subtly incompatible with the hacks FastISel 7579 // uses with vregs. 7580 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7581 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7582 FuncInfo->ValueMap[&*I] = Reg; 7583 continue; 7584 } 7585 } 7586 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7587 FuncInfo->InitializeRegForValue(&*I); 7588 SDB->CopyToExportRegsIfNeeded(&*I); 7589 } 7590 } 7591 7592 assert(i == InVals.size() && "Argument register count mismatch!"); 7593 7594 // Finally, if the target has anything special to do, allow it to do so. 7595 EmitFunctionEntryCode(); 7596 } 7597 7598 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7599 /// ensure constants are generated when needed. Remember the virtual registers 7600 /// that need to be added to the Machine PHI nodes as input. We cannot just 7601 /// directly add them, because expansion might result in multiple MBB's for one 7602 /// BB. As such, the start of the BB might correspond to a different MBB than 7603 /// the end. 7604 /// 7605 void 7606 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7607 const TerminatorInst *TI = LLVMBB->getTerminator(); 7608 7609 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7610 7611 // Check PHI nodes in successors that expect a value to be available from this 7612 // block. 7613 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7614 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7615 if (!isa<PHINode>(SuccBB->begin())) continue; 7616 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7617 7618 // If this terminator has multiple identical successors (common for 7619 // switches), only handle each succ once. 7620 if (!SuccsHandled.insert(SuccMBB).second) 7621 continue; 7622 7623 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7624 7625 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7626 // nodes and Machine PHI nodes, but the incoming operands have not been 7627 // emitted yet. 7628 for (BasicBlock::const_iterator I = SuccBB->begin(); 7629 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7630 // Ignore dead phi's. 7631 if (PN->use_empty()) continue; 7632 7633 // Skip empty types 7634 if (PN->getType()->isEmptyTy()) 7635 continue; 7636 7637 unsigned Reg; 7638 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7639 7640 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7641 unsigned &RegOut = ConstantsOut[C]; 7642 if (RegOut == 0) { 7643 RegOut = FuncInfo.CreateRegs(C->getType()); 7644 CopyValueToVirtualRegister(C, RegOut); 7645 } 7646 Reg = RegOut; 7647 } else { 7648 DenseMap<const Value *, unsigned>::iterator I = 7649 FuncInfo.ValueMap.find(PHIOp); 7650 if (I != FuncInfo.ValueMap.end()) 7651 Reg = I->second; 7652 else { 7653 assert(isa<AllocaInst>(PHIOp) && 7654 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7655 "Didn't codegen value into a register!??"); 7656 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7657 CopyValueToVirtualRegister(PHIOp, Reg); 7658 } 7659 } 7660 7661 // Remember that this register needs to added to the machine PHI node as 7662 // the input for this MBB. 7663 SmallVector<EVT, 4> ValueVTs; 7664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7665 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7666 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7667 EVT VT = ValueVTs[vti]; 7668 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7669 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7670 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7671 Reg += NumRegisters; 7672 } 7673 } 7674 } 7675 7676 ConstantsOut.clear(); 7677 } 7678 7679 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7680 /// is 0. 7681 MachineBasicBlock * 7682 SelectionDAGBuilder::StackProtectorDescriptor:: 7683 AddSuccessorMBB(const BasicBlock *BB, 7684 MachineBasicBlock *ParentMBB, 7685 bool IsLikely, 7686 MachineBasicBlock *SuccMBB) { 7687 // If SuccBB has not been created yet, create it. 7688 if (!SuccMBB) { 7689 MachineFunction *MF = ParentMBB->getParent(); 7690 MachineFunction::iterator BBI(ParentMBB); 7691 SuccMBB = MF->CreateMachineBasicBlock(BB); 7692 MF->insert(++BBI, SuccMBB); 7693 } 7694 // Add it as a successor of ParentMBB. 7695 ParentMBB->addSuccessor( 7696 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7697 return SuccMBB; 7698 } 7699 7700 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7701 MachineFunction::iterator I(MBB); 7702 if (++I == FuncInfo.MF->end()) 7703 return nullptr; 7704 return &*I; 7705 } 7706 7707 /// During lowering new call nodes can be created (such as memset, etc.). 7708 /// Those will become new roots of the current DAG, but complications arise 7709 /// when they are tail calls. In such cases, the call lowering will update 7710 /// the root, but the builder still needs to know that a tail call has been 7711 /// lowered in order to avoid generating an additional return. 7712 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7713 // If the node is null, we do have a tail call. 7714 if (MaybeTC.getNode() != nullptr) 7715 DAG.setRoot(MaybeTC); 7716 else 7717 HasTailCall = true; 7718 } 7719 7720 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7721 unsigned *TotalCases, unsigned First, 7722 unsigned Last) { 7723 assert(Last >= First); 7724 assert(TotalCases[Last] >= TotalCases[First]); 7725 7726 APInt LowCase = Clusters[First].Low->getValue(); 7727 APInt HighCase = Clusters[Last].High->getValue(); 7728 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7729 7730 // FIXME: A range of consecutive cases has 100% density, but only requires one 7731 // comparison to lower. We should discriminate against such consecutive ranges 7732 // in jump tables. 7733 7734 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7735 uint64_t Range = Diff + 1; 7736 7737 uint64_t NumCases = 7738 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7739 7740 assert(NumCases < UINT64_MAX / 100); 7741 assert(Range >= NumCases); 7742 7743 return NumCases * 100 >= Range * MinJumpTableDensity; 7744 } 7745 7746 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7747 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7748 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7749 } 7750 7751 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7752 unsigned First, unsigned Last, 7753 const SwitchInst *SI, 7754 MachineBasicBlock *DefaultMBB, 7755 CaseCluster &JTCluster) { 7756 assert(First <= Last); 7757 7758 auto Prob = BranchProbability::getZero(); 7759 unsigned NumCmps = 0; 7760 std::vector<MachineBasicBlock*> Table; 7761 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7762 7763 // Initialize probabilities in JTProbs. 7764 for (unsigned I = First; I <= Last; ++I) 7765 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7766 7767 for (unsigned I = First; I <= Last; ++I) { 7768 assert(Clusters[I].Kind == CC_Range); 7769 Prob += Clusters[I].Prob; 7770 APInt Low = Clusters[I].Low->getValue(); 7771 APInt High = Clusters[I].High->getValue(); 7772 NumCmps += (Low == High) ? 1 : 2; 7773 if (I != First) { 7774 // Fill the gap between this and the previous cluster. 7775 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7776 assert(PreviousHigh.slt(Low)); 7777 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7778 for (uint64_t J = 0; J < Gap; J++) 7779 Table.push_back(DefaultMBB); 7780 } 7781 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7782 for (uint64_t J = 0; J < ClusterSize; ++J) 7783 Table.push_back(Clusters[I].MBB); 7784 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7785 } 7786 7787 unsigned NumDests = JTProbs.size(); 7788 if (isSuitableForBitTests(NumDests, NumCmps, 7789 Clusters[First].Low->getValue(), 7790 Clusters[Last].High->getValue())) { 7791 // Clusters[First..Last] should be lowered as bit tests instead. 7792 return false; 7793 } 7794 7795 // Create the MBB that will load from and jump through the table. 7796 // Note: We create it here, but it's not inserted into the function yet. 7797 MachineFunction *CurMF = FuncInfo.MF; 7798 MachineBasicBlock *JumpTableMBB = 7799 CurMF->CreateMachineBasicBlock(SI->getParent()); 7800 7801 // Add successors. Note: use table order for determinism. 7802 SmallPtrSet<MachineBasicBlock *, 8> Done; 7803 for (MachineBasicBlock *Succ : Table) { 7804 if (Done.count(Succ)) 7805 continue; 7806 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7807 Done.insert(Succ); 7808 } 7809 JumpTableMBB->normalizeSuccProbs(); 7810 7811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7812 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7813 ->createJumpTableIndex(Table); 7814 7815 // Set up the jump table info. 7816 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7817 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7818 Clusters[Last].High->getValue(), SI->getCondition(), 7819 nullptr, false); 7820 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7821 7822 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7823 JTCases.size() - 1, Prob); 7824 return true; 7825 } 7826 7827 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7828 const SwitchInst *SI, 7829 MachineBasicBlock *DefaultMBB) { 7830 #ifndef NDEBUG 7831 // Clusters must be non-empty, sorted, and only contain Range clusters. 7832 assert(!Clusters.empty()); 7833 for (CaseCluster &C : Clusters) 7834 assert(C.Kind == CC_Range); 7835 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7836 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7837 #endif 7838 7839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7840 if (!areJTsAllowed(TLI)) 7841 return; 7842 7843 const int64_t N = Clusters.size(); 7844 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7845 7846 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7847 SmallVector<unsigned, 8> TotalCases(N); 7848 7849 for (unsigned i = 0; i < N; ++i) { 7850 APInt Hi = Clusters[i].High->getValue(); 7851 APInt Lo = Clusters[i].Low->getValue(); 7852 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7853 if (i != 0) 7854 TotalCases[i] += TotalCases[i - 1]; 7855 } 7856 7857 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7858 // Cheap case: the whole range might be suitable for jump table. 7859 CaseCluster JTCluster; 7860 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7861 Clusters[0] = JTCluster; 7862 Clusters.resize(1); 7863 return; 7864 } 7865 } 7866 7867 // The algorithm below is not suitable for -O0. 7868 if (TM.getOptLevel() == CodeGenOpt::None) 7869 return; 7870 7871 // Split Clusters into minimum number of dense partitions. The algorithm uses 7872 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7873 // for the Case Statement'" (1994), but builds the MinPartitions array in 7874 // reverse order to make it easier to reconstruct the partitions in ascending 7875 // order. In the choice between two optimal partitionings, it picks the one 7876 // which yields more jump tables. 7877 7878 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7879 SmallVector<unsigned, 8> MinPartitions(N); 7880 // LastElement[i] is the last element of the partition starting at i. 7881 SmallVector<unsigned, 8> LastElement(N); 7882 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7883 SmallVector<unsigned, 8> NumTables(N); 7884 7885 // Base case: There is only one way to partition Clusters[N-1]. 7886 MinPartitions[N - 1] = 1; 7887 LastElement[N - 1] = N - 1; 7888 assert(MinJumpTableSize > 1); 7889 NumTables[N - 1] = 0; 7890 7891 // Note: loop indexes are signed to avoid underflow. 7892 for (int64_t i = N - 2; i >= 0; i--) { 7893 // Find optimal partitioning of Clusters[i..N-1]. 7894 // Baseline: Put Clusters[i] into a partition on its own. 7895 MinPartitions[i] = MinPartitions[i + 1] + 1; 7896 LastElement[i] = i; 7897 NumTables[i] = NumTables[i + 1]; 7898 7899 // Search for a solution that results in fewer partitions. 7900 for (int64_t j = N - 1; j > i; j--) { 7901 // Try building a partition from Clusters[i..j]. 7902 if (isDense(Clusters, &TotalCases[0], i, j)) { 7903 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7904 bool IsTable = j - i + 1 >= MinJumpTableSize; 7905 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7906 7907 // If this j leads to fewer partitions, or same number of partitions 7908 // with more lookup tables, it is a better partitioning. 7909 if (NumPartitions < MinPartitions[i] || 7910 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7911 MinPartitions[i] = NumPartitions; 7912 LastElement[i] = j; 7913 NumTables[i] = Tables; 7914 } 7915 } 7916 } 7917 } 7918 7919 // Iterate over the partitions, replacing some with jump tables in-place. 7920 unsigned DstIndex = 0; 7921 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7922 Last = LastElement[First]; 7923 assert(Last >= First); 7924 assert(DstIndex <= First); 7925 unsigned NumClusters = Last - First + 1; 7926 7927 CaseCluster JTCluster; 7928 if (NumClusters >= MinJumpTableSize && 7929 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7930 Clusters[DstIndex++] = JTCluster; 7931 } else { 7932 for (unsigned I = First; I <= Last; ++I) 7933 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7934 } 7935 } 7936 Clusters.resize(DstIndex); 7937 } 7938 7939 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7940 // FIXME: Using the pointer type doesn't seem ideal. 7941 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7942 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7943 return Range <= BW; 7944 } 7945 7946 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7947 unsigned NumCmps, 7948 const APInt &Low, 7949 const APInt &High) { 7950 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7951 // range of cases both require only one branch to lower. Just looking at the 7952 // number of clusters and destinations should be enough to decide whether to 7953 // build bit tests. 7954 7955 // To lower a range with bit tests, the range must fit the bitwidth of a 7956 // machine word. 7957 if (!rangeFitsInWord(Low, High)) 7958 return false; 7959 7960 // Decide whether it's profitable to lower this range with bit tests. Each 7961 // destination requires a bit test and branch, and there is an overall range 7962 // check branch. For a small number of clusters, separate comparisons might be 7963 // cheaper, and for many destinations, splitting the range might be better. 7964 return (NumDests == 1 && NumCmps >= 3) || 7965 (NumDests == 2 && NumCmps >= 5) || 7966 (NumDests == 3 && NumCmps >= 6); 7967 } 7968 7969 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7970 unsigned First, unsigned Last, 7971 const SwitchInst *SI, 7972 CaseCluster &BTCluster) { 7973 assert(First <= Last); 7974 if (First == Last) 7975 return false; 7976 7977 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7978 unsigned NumCmps = 0; 7979 for (int64_t I = First; I <= Last; ++I) { 7980 assert(Clusters[I].Kind == CC_Range); 7981 Dests.set(Clusters[I].MBB->getNumber()); 7982 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7983 } 7984 unsigned NumDests = Dests.count(); 7985 7986 APInt Low = Clusters[First].Low->getValue(); 7987 APInt High = Clusters[Last].High->getValue(); 7988 assert(Low.slt(High)); 7989 7990 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7991 return false; 7992 7993 APInt LowBound; 7994 APInt CmpRange; 7995 7996 const int BitWidth = DAG.getTargetLoweringInfo() 7997 .getPointerTy(DAG.getDataLayout()) 7998 .getSizeInBits(); 7999 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8000 8001 // Check if the clusters cover a contiguous range such that no value in the 8002 // range will jump to the default statement. 8003 bool ContiguousRange = true; 8004 for (int64_t I = First + 1; I <= Last; ++I) { 8005 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8006 ContiguousRange = false; 8007 break; 8008 } 8009 } 8010 8011 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8012 // Optimize the case where all the case values fit in a word without having 8013 // to subtract minValue. In this case, we can optimize away the subtraction. 8014 LowBound = APInt::getNullValue(Low.getBitWidth()); 8015 CmpRange = High; 8016 ContiguousRange = false; 8017 } else { 8018 LowBound = Low; 8019 CmpRange = High - Low; 8020 } 8021 8022 CaseBitsVector CBV; 8023 auto TotalProb = BranchProbability::getZero(); 8024 for (unsigned i = First; i <= Last; ++i) { 8025 // Find the CaseBits for this destination. 8026 unsigned j; 8027 for (j = 0; j < CBV.size(); ++j) 8028 if (CBV[j].BB == Clusters[i].MBB) 8029 break; 8030 if (j == CBV.size()) 8031 CBV.push_back( 8032 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8033 CaseBits *CB = &CBV[j]; 8034 8035 // Update Mask, Bits and ExtraProb. 8036 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8037 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8038 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8039 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8040 CB->Bits += Hi - Lo + 1; 8041 CB->ExtraProb += Clusters[i].Prob; 8042 TotalProb += Clusters[i].Prob; 8043 } 8044 8045 BitTestInfo BTI; 8046 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8047 // Sort by probability first, number of bits second. 8048 if (a.ExtraProb != b.ExtraProb) 8049 return a.ExtraProb > b.ExtraProb; 8050 return a.Bits > b.Bits; 8051 }); 8052 8053 for (auto &CB : CBV) { 8054 MachineBasicBlock *BitTestBB = 8055 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8056 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8057 } 8058 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8059 SI->getCondition(), -1U, MVT::Other, false, 8060 ContiguousRange, nullptr, nullptr, std::move(BTI), 8061 TotalProb); 8062 8063 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8064 BitTestCases.size() - 1, TotalProb); 8065 return true; 8066 } 8067 8068 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8069 const SwitchInst *SI) { 8070 // Partition Clusters into as few subsets as possible, where each subset has a 8071 // range that fits in a machine word and has <= 3 unique destinations. 8072 8073 #ifndef NDEBUG 8074 // Clusters must be sorted and contain Range or JumpTable clusters. 8075 assert(!Clusters.empty()); 8076 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8077 for (const CaseCluster &C : Clusters) 8078 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8079 for (unsigned i = 1; i < Clusters.size(); ++i) 8080 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8081 #endif 8082 8083 // The algorithm below is not suitable for -O0. 8084 if (TM.getOptLevel() == CodeGenOpt::None) 8085 return; 8086 8087 // If target does not have legal shift left, do not emit bit tests at all. 8088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8089 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8090 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8091 return; 8092 8093 int BitWidth = PTy.getSizeInBits(); 8094 const int64_t N = Clusters.size(); 8095 8096 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8097 SmallVector<unsigned, 8> MinPartitions(N); 8098 // LastElement[i] is the last element of the partition starting at i. 8099 SmallVector<unsigned, 8> LastElement(N); 8100 8101 // FIXME: This might not be the best algorithm for finding bit test clusters. 8102 8103 // Base case: There is only one way to partition Clusters[N-1]. 8104 MinPartitions[N - 1] = 1; 8105 LastElement[N - 1] = N - 1; 8106 8107 // Note: loop indexes are signed to avoid underflow. 8108 for (int64_t i = N - 2; i >= 0; --i) { 8109 // Find optimal partitioning of Clusters[i..N-1]. 8110 // Baseline: Put Clusters[i] into a partition on its own. 8111 MinPartitions[i] = MinPartitions[i + 1] + 1; 8112 LastElement[i] = i; 8113 8114 // Search for a solution that results in fewer partitions. 8115 // Note: the search is limited by BitWidth, reducing time complexity. 8116 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8117 // Try building a partition from Clusters[i..j]. 8118 8119 // Check the range. 8120 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8121 Clusters[j].High->getValue())) 8122 continue; 8123 8124 // Check nbr of destinations and cluster types. 8125 // FIXME: This works, but doesn't seem very efficient. 8126 bool RangesOnly = true; 8127 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8128 for (int64_t k = i; k <= j; k++) { 8129 if (Clusters[k].Kind != CC_Range) { 8130 RangesOnly = false; 8131 break; 8132 } 8133 Dests.set(Clusters[k].MBB->getNumber()); 8134 } 8135 if (!RangesOnly || Dests.count() > 3) 8136 break; 8137 8138 // Check if it's a better partition. 8139 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8140 if (NumPartitions < MinPartitions[i]) { 8141 // Found a better partition. 8142 MinPartitions[i] = NumPartitions; 8143 LastElement[i] = j; 8144 } 8145 } 8146 } 8147 8148 // Iterate over the partitions, replacing with bit-test clusters in-place. 8149 unsigned DstIndex = 0; 8150 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8151 Last = LastElement[First]; 8152 assert(First <= Last); 8153 assert(DstIndex <= First); 8154 8155 CaseCluster BitTestCluster; 8156 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8157 Clusters[DstIndex++] = BitTestCluster; 8158 } else { 8159 size_t NumClusters = Last - First + 1; 8160 std::memmove(&Clusters[DstIndex], &Clusters[First], 8161 sizeof(Clusters[0]) * NumClusters); 8162 DstIndex += NumClusters; 8163 } 8164 } 8165 Clusters.resize(DstIndex); 8166 } 8167 8168 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8169 MachineBasicBlock *SwitchMBB, 8170 MachineBasicBlock *DefaultMBB) { 8171 MachineFunction *CurMF = FuncInfo.MF; 8172 MachineBasicBlock *NextMBB = nullptr; 8173 MachineFunction::iterator BBI(W.MBB); 8174 if (++BBI != FuncInfo.MF->end()) 8175 NextMBB = &*BBI; 8176 8177 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8178 8179 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8180 8181 if (Size == 2 && W.MBB == SwitchMBB) { 8182 // If any two of the cases has the same destination, and if one value 8183 // is the same as the other, but has one bit unset that the other has set, 8184 // use bit manipulation to do two compares at once. For example: 8185 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8186 // TODO: This could be extended to merge any 2 cases in switches with 3 8187 // cases. 8188 // TODO: Handle cases where W.CaseBB != SwitchBB. 8189 CaseCluster &Small = *W.FirstCluster; 8190 CaseCluster &Big = *W.LastCluster; 8191 8192 if (Small.Low == Small.High && Big.Low == Big.High && 8193 Small.MBB == Big.MBB) { 8194 const APInt &SmallValue = Small.Low->getValue(); 8195 const APInt &BigValue = Big.Low->getValue(); 8196 8197 // Check that there is only one bit different. 8198 APInt CommonBit = BigValue ^ SmallValue; 8199 if (CommonBit.isPowerOf2()) { 8200 SDValue CondLHS = getValue(Cond); 8201 EVT VT = CondLHS.getValueType(); 8202 SDLoc DL = getCurSDLoc(); 8203 8204 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8205 DAG.getConstant(CommonBit, DL, VT)); 8206 SDValue Cond = DAG.getSetCC( 8207 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8208 ISD::SETEQ); 8209 8210 // Update successor info. 8211 // Both Small and Big will jump to Small.BB, so we sum up the 8212 // probabilities. 8213 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8214 if (BPI) 8215 addSuccessorWithProb( 8216 SwitchMBB, DefaultMBB, 8217 // The default destination is the first successor in IR. 8218 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8219 else 8220 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8221 8222 // Insert the true branch. 8223 SDValue BrCond = 8224 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8225 DAG.getBasicBlock(Small.MBB)); 8226 // Insert the false branch. 8227 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8228 DAG.getBasicBlock(DefaultMBB)); 8229 8230 DAG.setRoot(BrCond); 8231 return; 8232 } 8233 } 8234 } 8235 8236 if (TM.getOptLevel() != CodeGenOpt::None) { 8237 // Order cases by probability so the most likely case will be checked first. 8238 std::sort(W.FirstCluster, W.LastCluster + 1, 8239 [](const CaseCluster &a, const CaseCluster &b) { 8240 return a.Prob > b.Prob; 8241 }); 8242 8243 // Rearrange the case blocks so that the last one falls through if possible 8244 // without without changing the order of probabilities. 8245 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8246 --I; 8247 if (I->Prob > W.LastCluster->Prob) 8248 break; 8249 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8250 std::swap(*I, *W.LastCluster); 8251 break; 8252 } 8253 } 8254 } 8255 8256 // Compute total probability. 8257 BranchProbability DefaultProb = W.DefaultProb; 8258 BranchProbability UnhandledProbs = DefaultProb; 8259 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8260 UnhandledProbs += I->Prob; 8261 8262 MachineBasicBlock *CurMBB = W.MBB; 8263 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8264 MachineBasicBlock *Fallthrough; 8265 if (I == W.LastCluster) { 8266 // For the last cluster, fall through to the default destination. 8267 Fallthrough = DefaultMBB; 8268 } else { 8269 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8270 CurMF->insert(BBI, Fallthrough); 8271 // Put Cond in a virtual register to make it available from the new blocks. 8272 ExportFromCurrentBlock(Cond); 8273 } 8274 UnhandledProbs -= I->Prob; 8275 8276 switch (I->Kind) { 8277 case CC_JumpTable: { 8278 // FIXME: Optimize away range check based on pivot comparisons. 8279 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8280 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8281 8282 // The jump block hasn't been inserted yet; insert it here. 8283 MachineBasicBlock *JumpMBB = JT->MBB; 8284 CurMF->insert(BBI, JumpMBB); 8285 8286 auto JumpProb = I->Prob; 8287 auto FallthroughProb = UnhandledProbs; 8288 8289 // If the default statement is a target of the jump table, we evenly 8290 // distribute the default probability to successors of CurMBB. Also 8291 // update the probability on the edge from JumpMBB to Fallthrough. 8292 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8293 SE = JumpMBB->succ_end(); 8294 SI != SE; ++SI) { 8295 if (*SI == DefaultMBB) { 8296 JumpProb += DefaultProb / 2; 8297 FallthroughProb -= DefaultProb / 2; 8298 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8299 JumpMBB->normalizeSuccProbs(); 8300 break; 8301 } 8302 } 8303 8304 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8305 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8306 CurMBB->normalizeSuccProbs(); 8307 8308 // The jump table header will be inserted in our current block, do the 8309 // range check, and fall through to our fallthrough block. 8310 JTH->HeaderBB = CurMBB; 8311 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8312 8313 // If we're in the right place, emit the jump table header right now. 8314 if (CurMBB == SwitchMBB) { 8315 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8316 JTH->Emitted = true; 8317 } 8318 break; 8319 } 8320 case CC_BitTests: { 8321 // FIXME: Optimize away range check based on pivot comparisons. 8322 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8323 8324 // The bit test blocks haven't been inserted yet; insert them here. 8325 for (BitTestCase &BTC : BTB->Cases) 8326 CurMF->insert(BBI, BTC.ThisBB); 8327 8328 // Fill in fields of the BitTestBlock. 8329 BTB->Parent = CurMBB; 8330 BTB->Default = Fallthrough; 8331 8332 BTB->DefaultProb = UnhandledProbs; 8333 // If the cases in bit test don't form a contiguous range, we evenly 8334 // distribute the probability on the edge to Fallthrough to two 8335 // successors of CurMBB. 8336 if (!BTB->ContiguousRange) { 8337 BTB->Prob += DefaultProb / 2; 8338 BTB->DefaultProb -= DefaultProb / 2; 8339 } 8340 8341 // If we're in the right place, emit the bit test header right now. 8342 if (CurMBB == SwitchMBB) { 8343 visitBitTestHeader(*BTB, SwitchMBB); 8344 BTB->Emitted = true; 8345 } 8346 break; 8347 } 8348 case CC_Range: { 8349 const Value *RHS, *LHS, *MHS; 8350 ISD::CondCode CC; 8351 if (I->Low == I->High) { 8352 // Check Cond == I->Low. 8353 CC = ISD::SETEQ; 8354 LHS = Cond; 8355 RHS=I->Low; 8356 MHS = nullptr; 8357 } else { 8358 // Check I->Low <= Cond <= I->High. 8359 CC = ISD::SETLE; 8360 LHS = I->Low; 8361 MHS = Cond; 8362 RHS = I->High; 8363 } 8364 8365 // The false probability is the sum of all unhandled cases. 8366 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8367 UnhandledProbs); 8368 8369 if (CurMBB == SwitchMBB) 8370 visitSwitchCase(CB, SwitchMBB); 8371 else 8372 SwitchCases.push_back(CB); 8373 8374 break; 8375 } 8376 } 8377 CurMBB = Fallthrough; 8378 } 8379 } 8380 8381 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8382 CaseClusterIt First, 8383 CaseClusterIt Last) { 8384 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8385 if (X.Prob != CC.Prob) 8386 return X.Prob > CC.Prob; 8387 8388 // Ties are broken by comparing the case value. 8389 return X.Low->getValue().slt(CC.Low->getValue()); 8390 }); 8391 } 8392 8393 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8394 const SwitchWorkListItem &W, 8395 Value *Cond, 8396 MachineBasicBlock *SwitchMBB) { 8397 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8398 "Clusters not sorted?"); 8399 8400 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8401 8402 // Balance the tree based on branch probabilities to create a near-optimal (in 8403 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8404 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8405 CaseClusterIt LastLeft = W.FirstCluster; 8406 CaseClusterIt FirstRight = W.LastCluster; 8407 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8408 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8409 8410 // Move LastLeft and FirstRight towards each other from opposite directions to 8411 // find a partitioning of the clusters which balances the probability on both 8412 // sides. If LeftProb and RightProb are equal, alternate which side is 8413 // taken to ensure 0-probability nodes are distributed evenly. 8414 unsigned I = 0; 8415 while (LastLeft + 1 < FirstRight) { 8416 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8417 LeftProb += (++LastLeft)->Prob; 8418 else 8419 RightProb += (--FirstRight)->Prob; 8420 I++; 8421 } 8422 8423 for (;;) { 8424 // Our binary search tree differs from a typical BST in that ours can have up 8425 // to three values in each leaf. The pivot selection above doesn't take that 8426 // into account, which means the tree might require more nodes and be less 8427 // efficient. We compensate for this here. 8428 8429 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8430 unsigned NumRight = W.LastCluster - FirstRight + 1; 8431 8432 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8433 // If one side has less than 3 clusters, and the other has more than 3, 8434 // consider taking a cluster from the other side. 8435 8436 if (NumLeft < NumRight) { 8437 // Consider moving the first cluster on the right to the left side. 8438 CaseCluster &CC = *FirstRight; 8439 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8440 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8441 if (LeftSideRank <= RightSideRank) { 8442 // Moving the cluster to the left does not demote it. 8443 ++LastLeft; 8444 ++FirstRight; 8445 continue; 8446 } 8447 } else { 8448 assert(NumRight < NumLeft); 8449 // Consider moving the last element on the left to the right side. 8450 CaseCluster &CC = *LastLeft; 8451 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8452 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8453 if (RightSideRank <= LeftSideRank) { 8454 // Moving the cluster to the right does not demot it. 8455 --LastLeft; 8456 --FirstRight; 8457 continue; 8458 } 8459 } 8460 } 8461 break; 8462 } 8463 8464 assert(LastLeft + 1 == FirstRight); 8465 assert(LastLeft >= W.FirstCluster); 8466 assert(FirstRight <= W.LastCluster); 8467 8468 // Use the first element on the right as pivot since we will make less-than 8469 // comparisons against it. 8470 CaseClusterIt PivotCluster = FirstRight; 8471 assert(PivotCluster > W.FirstCluster); 8472 assert(PivotCluster <= W.LastCluster); 8473 8474 CaseClusterIt FirstLeft = W.FirstCluster; 8475 CaseClusterIt LastRight = W.LastCluster; 8476 8477 const ConstantInt *Pivot = PivotCluster->Low; 8478 8479 // New blocks will be inserted immediately after the current one. 8480 MachineFunction::iterator BBI(W.MBB); 8481 ++BBI; 8482 8483 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8484 // we can branch to its destination directly if it's squeezed exactly in 8485 // between the known lower bound and Pivot - 1. 8486 MachineBasicBlock *LeftMBB; 8487 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8488 FirstLeft->Low == W.GE && 8489 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8490 LeftMBB = FirstLeft->MBB; 8491 } else { 8492 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8493 FuncInfo.MF->insert(BBI, LeftMBB); 8494 WorkList.push_back( 8495 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8496 // Put Cond in a virtual register to make it available from the new blocks. 8497 ExportFromCurrentBlock(Cond); 8498 } 8499 8500 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8501 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8502 // directly if RHS.High equals the current upper bound. 8503 MachineBasicBlock *RightMBB; 8504 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8505 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8506 RightMBB = FirstRight->MBB; 8507 } else { 8508 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8509 FuncInfo.MF->insert(BBI, RightMBB); 8510 WorkList.push_back( 8511 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8512 // Put Cond in a virtual register to make it available from the new blocks. 8513 ExportFromCurrentBlock(Cond); 8514 } 8515 8516 // Create the CaseBlock record that will be used to lower the branch. 8517 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8518 LeftProb, RightProb); 8519 8520 if (W.MBB == SwitchMBB) 8521 visitSwitchCase(CB, SwitchMBB); 8522 else 8523 SwitchCases.push_back(CB); 8524 } 8525 8526 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8527 // Extract cases from the switch. 8528 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8529 CaseClusterVector Clusters; 8530 Clusters.reserve(SI.getNumCases()); 8531 for (auto I : SI.cases()) { 8532 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8533 const ConstantInt *CaseVal = I.getCaseValue(); 8534 BranchProbability Prob = 8535 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8536 : BranchProbability(1, SI.getNumCases() + 1); 8537 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8538 } 8539 8540 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8541 8542 // Cluster adjacent cases with the same destination. We do this at all 8543 // optimization levels because it's cheap to do and will make codegen faster 8544 // if there are many clusters. 8545 sortAndRangeify(Clusters); 8546 8547 if (TM.getOptLevel() != CodeGenOpt::None) { 8548 // Replace an unreachable default with the most popular destination. 8549 // FIXME: Exploit unreachable default more aggressively. 8550 bool UnreachableDefault = 8551 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8552 if (UnreachableDefault && !Clusters.empty()) { 8553 DenseMap<const BasicBlock *, unsigned> Popularity; 8554 unsigned MaxPop = 0; 8555 const BasicBlock *MaxBB = nullptr; 8556 for (auto I : SI.cases()) { 8557 const BasicBlock *BB = I.getCaseSuccessor(); 8558 if (++Popularity[BB] > MaxPop) { 8559 MaxPop = Popularity[BB]; 8560 MaxBB = BB; 8561 } 8562 } 8563 // Set new default. 8564 assert(MaxPop > 0 && MaxBB); 8565 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8566 8567 // Remove cases that were pointing to the destination that is now the 8568 // default. 8569 CaseClusterVector New; 8570 New.reserve(Clusters.size()); 8571 for (CaseCluster &CC : Clusters) { 8572 if (CC.MBB != DefaultMBB) 8573 New.push_back(CC); 8574 } 8575 Clusters = std::move(New); 8576 } 8577 } 8578 8579 // If there is only the default destination, jump there directly. 8580 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8581 if (Clusters.empty()) { 8582 SwitchMBB->addSuccessor(DefaultMBB); 8583 if (DefaultMBB != NextBlock(SwitchMBB)) { 8584 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8585 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8586 } 8587 return; 8588 } 8589 8590 findJumpTables(Clusters, &SI, DefaultMBB); 8591 findBitTestClusters(Clusters, &SI); 8592 8593 DEBUG({ 8594 dbgs() << "Case clusters: "; 8595 for (const CaseCluster &C : Clusters) { 8596 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8597 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8598 8599 C.Low->getValue().print(dbgs(), true); 8600 if (C.Low != C.High) { 8601 dbgs() << '-'; 8602 C.High->getValue().print(dbgs(), true); 8603 } 8604 dbgs() << ' '; 8605 } 8606 dbgs() << '\n'; 8607 }); 8608 8609 assert(!Clusters.empty()); 8610 SwitchWorkList WorkList; 8611 CaseClusterIt First = Clusters.begin(); 8612 CaseClusterIt Last = Clusters.end() - 1; 8613 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8614 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8615 8616 while (!WorkList.empty()) { 8617 SwitchWorkListItem W = WorkList.back(); 8618 WorkList.pop_back(); 8619 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8620 8621 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8622 // For optimized builds, lower large range as a balanced binary tree. 8623 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8624 continue; 8625 } 8626 8627 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8628 } 8629 } 8630