xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 19c61598337befbdd275d23cb7cf450e012da314)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/GCMetadata.h"
30 #include "llvm/CodeGen/GCStrategy.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/StackMaps.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Statepoint.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MathExtras.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetFrameLowering.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetIntrinsicInfo.h"
65 #include "llvm/Target/TargetLowering.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include "llvm/Target/TargetSubtargetInfo.h"
68 #include <algorithm>
69 #include <utility>
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "isel"
73 
74 /// LimitFloatPrecision - Generate low-precision inline sequences for
75 /// some float libcalls (6, 8 or 12 bits).
76 static unsigned LimitFloatPrecision;
77 
78 static cl::opt<unsigned, true>
79 LimitFPPrecision("limit-float-precision",
80                  cl::desc("Generate low-precision inline sequences "
81                           "for some float libcalls"),
82                  cl::location(LimitFloatPrecision),
83                  cl::init(0));
84 
85 static cl::opt<bool>
86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
87                 cl::desc("Enable fast-math-flags for DAG nodes"));
88 
89 // Limit the width of DAG chains. This is important in general to prevent
90 // DAG-based analysis from blowing up. For example, alias analysis and
91 // load clustering may not complete in reasonable time. It is difficult to
92 // recognize and avoid this situation within each individual analysis, and
93 // future analyses are likely to have the same behavior. Limiting DAG width is
94 // the safe approach and will be especially important with global DAGs.
95 //
96 // MaxParallelChains default is arbitrarily high to avoid affecting
97 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
98 // sequence over this should have been converted to llvm.memcpy by the
99 // frontend. It easy to induce this behavior with .ll code such as:
100 // %buffer = alloca [4096 x i8]
101 // %data = load [4096 x i8]* %argPtr
102 // store [4096 x i8] %data, [4096 x i8]* %buffer
103 static const unsigned MaxParallelChains = 64;
104 
105 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
106                                       const SDValue *Parts, unsigned NumParts,
107                                       MVT PartVT, EVT ValueVT, const Value *V);
108 
109 /// getCopyFromParts - Create a value that contains the specified legal parts
110 /// combined into the value they represent.  If the parts combine to a type
111 /// larger then ValueVT then AssertOp can be used to specify whether the extra
112 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
113 /// (ISD::AssertSext).
114 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
115                                 const SDValue *Parts,
116                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
117                                 const Value *V,
118                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
119   if (ValueVT.isVector())
120     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
121                                   PartVT, ValueVT, V);
122 
123   assert(NumParts > 0 && "No parts to assemble!");
124   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
125   SDValue Val = Parts[0];
126 
127   if (NumParts > 1) {
128     // Assemble the value from multiple parts.
129     if (ValueVT.isInteger()) {
130       unsigned PartBits = PartVT.getSizeInBits();
131       unsigned ValueBits = ValueVT.getSizeInBits();
132 
133       // Assemble the power of 2 part.
134       unsigned RoundParts = NumParts & (NumParts - 1) ?
135         1 << Log2_32(NumParts) : NumParts;
136       unsigned RoundBits = PartBits * RoundParts;
137       EVT RoundVT = RoundBits == ValueBits ?
138         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
139       SDValue Lo, Hi;
140 
141       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
142 
143       if (RoundParts > 2) {
144         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
145                               PartVT, HalfVT, V);
146         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
147                               RoundParts / 2, PartVT, HalfVT, V);
148       } else {
149         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
150         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
151       }
152 
153       if (DAG.getDataLayout().isBigEndian())
154         std::swap(Lo, Hi);
155 
156       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
157 
158       if (RoundParts < NumParts) {
159         // Assemble the trailing non-power-of-2 part.
160         unsigned OddParts = NumParts - RoundParts;
161         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
162         Hi = getCopyFromParts(DAG, DL,
163                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
164 
165         // Combine the round and odd parts.
166         Lo = Val;
167         if (DAG.getDataLayout().isBigEndian())
168           std::swap(Lo, Hi);
169         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
170         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
171         Hi =
172             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
173                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
174                                         TLI.getPointerTy(DAG.getDataLayout())));
175         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
176         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
177       }
178     } else if (PartVT.isFloatingPoint()) {
179       // FP split into multiple FP parts (for ppcf128)
180       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
181              "Unexpected split");
182       SDValue Lo, Hi;
183       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
184       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
185       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
186         std::swap(Lo, Hi);
187       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
188     } else {
189       // FP split into integer parts (soft fp)
190       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
191              !PartVT.isVector() && "Unexpected split");
192       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
193       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
194     }
195   }
196 
197   // There is now one part, held in Val.  Correct it to match ValueVT.
198   // PartEVT is the type of the register class that holds the value.
199   // ValueVT is the type of the inline asm operation.
200   EVT PartEVT = Val.getValueType();
201 
202   if (PartEVT == ValueVT)
203     return Val;
204 
205   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
206       ValueVT.bitsLT(PartEVT)) {
207     // For an FP value in an integer part, we need to truncate to the right
208     // width first.
209     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
210     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
211   }
212 
213   // Handle types that have the same size.
214   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
215     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
216 
217   // Handle types with different sizes.
218   if (PartEVT.isInteger() && ValueVT.isInteger()) {
219     if (ValueVT.bitsLT(PartEVT)) {
220       // For a truncate, see if we have any information to
221       // indicate whether the truncated bits will always be
222       // zero or sign-extension.
223       if (AssertOp != ISD::DELETED_NODE)
224         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
225                           DAG.getValueType(ValueVT));
226       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
227     }
228     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
229   }
230 
231   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
232     // FP_ROUND's are always exact here.
233     if (ValueVT.bitsLT(Val.getValueType()))
234       return DAG.getNode(
235           ISD::FP_ROUND, DL, ValueVT, Val,
236           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
237 
238     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
239   }
240 
241   llvm_unreachable("Unknown mismatch!");
242 }
243 
244 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
245                                               const Twine &ErrMsg) {
246   const Instruction *I = dyn_cast_or_null<Instruction>(V);
247   if (!V)
248     return Ctx.emitError(ErrMsg);
249 
250   const char *AsmError = ", possible invalid constraint for vector type";
251   if (const CallInst *CI = dyn_cast<CallInst>(I))
252     if (isa<InlineAsm>(CI->getCalledValue()))
253       return Ctx.emitError(I, ErrMsg + AsmError);
254 
255   return Ctx.emitError(I, ErrMsg);
256 }
257 
258 /// getCopyFromPartsVector - Create a value that contains the specified legal
259 /// parts combined into the value they represent.  If the parts combine to a
260 /// type larger then ValueVT then AssertOp can be used to specify whether the
261 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
262 /// ValueVT (ISD::AssertSext).
263 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
264                                       const SDValue *Parts, unsigned NumParts,
265                                       MVT PartVT, EVT ValueVT, const Value *V) {
266   assert(ValueVT.isVector() && "Not a vector value");
267   assert(NumParts > 0 && "No parts to assemble!");
268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
269   SDValue Val = Parts[0];
270 
271   // Handle a multi-element vector.
272   if (NumParts > 1) {
273     EVT IntermediateVT;
274     MVT RegisterVT;
275     unsigned NumIntermediates;
276     unsigned NumRegs =
277     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
278                                NumIntermediates, RegisterVT);
279     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
280     NumParts = NumRegs; // Silence a compiler warning.
281     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
282     assert(RegisterVT.getSizeInBits() ==
283            Parts[0].getSimpleValueType().getSizeInBits() &&
284            "Part type sizes don't match!");
285 
286     // Assemble the parts into intermediate operands.
287     SmallVector<SDValue, 8> Ops(NumIntermediates);
288     if (NumIntermediates == NumParts) {
289       // If the register was not expanded, truncate or copy the value,
290       // as appropriate.
291       for (unsigned i = 0; i != NumParts; ++i)
292         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
293                                   PartVT, IntermediateVT, V);
294     } else if (NumParts > 0) {
295       // If the intermediate type was expanded, build the intermediate
296       // operands from the parts.
297       assert(NumParts % NumIntermediates == 0 &&
298              "Must expand into a divisible number of parts!");
299       unsigned Factor = NumParts / NumIntermediates;
300       for (unsigned i = 0; i != NumIntermediates; ++i)
301         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
302                                   PartVT, IntermediateVT, V);
303     }
304 
305     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
306     // intermediate operands.
307     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
308                                                 : ISD::BUILD_VECTOR,
309                       DL, ValueVT, Ops);
310   }
311 
312   // There is now one part, held in Val.  Correct it to match ValueVT.
313   EVT PartEVT = Val.getValueType();
314 
315   if (PartEVT == ValueVT)
316     return Val;
317 
318   if (PartEVT.isVector()) {
319     // If the element type of the source/dest vectors are the same, but the
320     // parts vector has more elements than the value vector, then we have a
321     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
322     // elements we want.
323     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
324       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
325              "Cannot narrow, it would be a lossy transformation");
326       return DAG.getNode(
327           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
328           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
329     }
330 
331     // Vector/Vector bitcast.
332     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
333       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
334 
335     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
336       "Cannot handle this kind of promotion");
337     // Promoted vector extract
338     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
339 
340   }
341 
342   // Trivial bitcast if the types are the same size and the destination
343   // vector type is legal.
344   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
345       TLI.isTypeLegal(ValueVT))
346     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348   // Handle cases such as i8 -> <1 x i1>
349   if (ValueVT.getVectorNumElements() != 1) {
350     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
351                                       "non-trivial scalar-to-vector conversion");
352     return DAG.getUNDEF(ValueVT);
353   }
354 
355   if (ValueVT.getVectorNumElements() == 1 &&
356       ValueVT.getVectorElementType() != PartEVT)
357     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
358 
359   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
360 }
361 
362 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
363                                  SDValue Val, SDValue *Parts, unsigned NumParts,
364                                  MVT PartVT, const Value *V);
365 
366 /// getCopyToParts - Create a series of nodes that contain the specified value
367 /// split into legal parts.  If the parts contain more bits than Val, then, for
368 /// integers, ExtendKind can be used to specify how to generate the extra bits.
369 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
370                            SDValue Val, SDValue *Parts, unsigned NumParts,
371                            MVT PartVT, const Value *V,
372                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
373   EVT ValueVT = Val.getValueType();
374 
375   // Handle the vector case separately.
376   if (ValueVT.isVector())
377     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
378 
379   unsigned PartBits = PartVT.getSizeInBits();
380   unsigned OrigNumParts = NumParts;
381   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
382          "Copying to an illegal type!");
383 
384   if (NumParts == 0)
385     return;
386 
387   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
388   EVT PartEVT = PartVT;
389   if (PartEVT == ValueVT) {
390     assert(NumParts == 1 && "No-op copy with multiple parts!");
391     Parts[0] = Val;
392     return;
393   }
394 
395   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
396     // If the parts cover more bits than the value has, promote the value.
397     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
398       assert(NumParts == 1 && "Do not know what to promote to!");
399       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
400     } else {
401       if (ValueVT.isFloatingPoint()) {
402         // FP values need to be bitcast, then extended if they are being put
403         // into a larger container.
404         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
405         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
406       }
407       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
408              ValueVT.isInteger() &&
409              "Unknown mismatch!");
410       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
411       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
412       if (PartVT == MVT::x86mmx)
413         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
414     }
415   } else if (PartBits == ValueVT.getSizeInBits()) {
416     // Different types of the same size.
417     assert(NumParts == 1 && PartEVT != ValueVT);
418     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
419   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
420     // If the parts cover less bits than value has, truncate the value.
421     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
422            ValueVT.isInteger() &&
423            "Unknown mismatch!");
424     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
425     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
426     if (PartVT == MVT::x86mmx)
427       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
428   }
429 
430   // The value may have changed - recompute ValueVT.
431   ValueVT = Val.getValueType();
432   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
433          "Failed to tile the value with PartVT!");
434 
435   if (NumParts == 1) {
436     if (PartEVT != ValueVT)
437       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
438                                         "scalar-to-vector conversion failed");
439 
440     Parts[0] = Val;
441     return;
442   }
443 
444   // Expand the value into multiple parts.
445   if (NumParts & (NumParts - 1)) {
446     // The number of parts is not a power of 2.  Split off and copy the tail.
447     assert(PartVT.isInteger() && ValueVT.isInteger() &&
448            "Do not know what to expand to!");
449     unsigned RoundParts = 1 << Log2_32(NumParts);
450     unsigned RoundBits = RoundParts * PartBits;
451     unsigned OddParts = NumParts - RoundParts;
452     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
453                                  DAG.getIntPtrConstant(RoundBits, DL));
454     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
455 
456     if (DAG.getDataLayout().isBigEndian())
457       // The odd parts were reversed by getCopyToParts - unreverse them.
458       std::reverse(Parts + RoundParts, Parts + NumParts);
459 
460     NumParts = RoundParts;
461     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
462     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
463   }
464 
465   // The number of parts is a power of 2.  Repeatedly bisect the value using
466   // EXTRACT_ELEMENT.
467   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
468                          EVT::getIntegerVT(*DAG.getContext(),
469                                            ValueVT.getSizeInBits()),
470                          Val);
471 
472   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
473     for (unsigned i = 0; i < NumParts; i += StepSize) {
474       unsigned ThisBits = StepSize * PartBits / 2;
475       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
476       SDValue &Part0 = Parts[i];
477       SDValue &Part1 = Parts[i+StepSize/2];
478 
479       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
480                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
481       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
482                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
483 
484       if (ThisBits == PartBits && ThisVT != PartVT) {
485         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
486         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
487       }
488     }
489   }
490 
491   if (DAG.getDataLayout().isBigEndian())
492     std::reverse(Parts, Parts + OrigNumParts);
493 }
494 
495 
496 /// getCopyToPartsVector - Create a series of nodes that contain the specified
497 /// value split into legal parts.
498 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
499                                  SDValue Val, SDValue *Parts, unsigned NumParts,
500                                  MVT PartVT, const Value *V) {
501   EVT ValueVT = Val.getValueType();
502   assert(ValueVT.isVector() && "Not a vector");
503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
504 
505   if (NumParts == 1) {
506     EVT PartEVT = PartVT;
507     if (PartEVT == ValueVT) {
508       // Nothing to do.
509     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
510       // Bitconvert vector->vector case.
511       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
512     } else if (PartVT.isVector() &&
513                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
514                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
515       EVT ElementVT = PartVT.getVectorElementType();
516       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
517       // undef elements.
518       SmallVector<SDValue, 16> Ops;
519       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
520         Ops.push_back(DAG.getNode(
521             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
522             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
523 
524       for (unsigned i = ValueVT.getVectorNumElements(),
525            e = PartVT.getVectorNumElements(); i != e; ++i)
526         Ops.push_back(DAG.getUNDEF(ElementVT));
527 
528       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
529 
530       // FIXME: Use CONCAT for 2x -> 4x.
531 
532       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
533       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
534     } else if (PartVT.isVector() &&
535                PartEVT.getVectorElementType().bitsGE(
536                  ValueVT.getVectorElementType()) &&
537                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
538 
539       // Promoted vector extract
540       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
541     } else{
542       // Vector -> scalar conversion.
543       assert(ValueVT.getVectorNumElements() == 1 &&
544              "Only trivial vector-to-scalar conversions should get here!");
545       Val = DAG.getNode(
546           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
547           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
548 
549       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
550     }
551 
552     Parts[0] = Val;
553     return;
554   }
555 
556   // Handle a multi-element vector.
557   EVT IntermediateVT;
558   MVT RegisterVT;
559   unsigned NumIntermediates;
560   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
561                                                 IntermediateVT,
562                                                 NumIntermediates, RegisterVT);
563   unsigned NumElements = ValueVT.getVectorNumElements();
564 
565   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
566   NumParts = NumRegs; // Silence a compiler warning.
567   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
568 
569   // Split the vector into intermediate operands.
570   SmallVector<SDValue, 8> Ops(NumIntermediates);
571   for (unsigned i = 0; i != NumIntermediates; ++i) {
572     if (IntermediateVT.isVector())
573       Ops[i] =
574           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
575                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
576                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
577     else
578       Ops[i] = DAG.getNode(
579           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
580           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
581   }
582 
583   // Split the intermediate operands into legal parts.
584   if (NumParts == NumIntermediates) {
585     // If the register was not expanded, promote or copy the value,
586     // as appropriate.
587     for (unsigned i = 0; i != NumParts; ++i)
588       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
589   } else if (NumParts > 0) {
590     // If the intermediate type was expanded, split each the value into
591     // legal parts.
592     assert(NumIntermediates != 0 && "division by zero");
593     assert(NumParts % NumIntermediates == 0 &&
594            "Must expand into a divisible number of parts!");
595     unsigned Factor = NumParts / NumIntermediates;
596     for (unsigned i = 0; i != NumIntermediates; ++i)
597       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
598   }
599 }
600 
601 RegsForValue::RegsForValue() {}
602 
603 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
604                            EVT valuevt)
605     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
606 
607 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
608                            const DataLayout &DL, unsigned Reg, Type *Ty) {
609   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
610 
611   for (EVT ValueVT : ValueVTs) {
612     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
613     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
614     for (unsigned i = 0; i != NumRegs; ++i)
615       Regs.push_back(Reg + i);
616     RegVTs.push_back(RegisterVT);
617     Reg += NumRegs;
618   }
619 }
620 
621 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
622 /// this value and returns the result as a ValueVT value.  This uses
623 /// Chain/Flag as the input and updates them for the output Chain/Flag.
624 /// If the Flag pointer is NULL, no flag is used.
625 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
626                                       FunctionLoweringInfo &FuncInfo,
627                                       SDLoc dl,
628                                       SDValue &Chain, SDValue *Flag,
629                                       const Value *V) const {
630   // A Value with type {} or [0 x %t] needs no registers.
631   if (ValueVTs.empty())
632     return SDValue();
633 
634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
635 
636   // Assemble the legal parts into the final values.
637   SmallVector<SDValue, 4> Values(ValueVTs.size());
638   SmallVector<SDValue, 8> Parts;
639   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
640     // Copy the legal parts from the registers.
641     EVT ValueVT = ValueVTs[Value];
642     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
643     MVT RegisterVT = RegVTs[Value];
644 
645     Parts.resize(NumRegs);
646     for (unsigned i = 0; i != NumRegs; ++i) {
647       SDValue P;
648       if (!Flag) {
649         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
650       } else {
651         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
652         *Flag = P.getValue(2);
653       }
654 
655       Chain = P.getValue(1);
656       Parts[i] = P;
657 
658       // If the source register was virtual and if we know something about it,
659       // add an assert node.
660       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
661           !RegisterVT.isInteger() || RegisterVT.isVector())
662         continue;
663 
664       const FunctionLoweringInfo::LiveOutInfo *LOI =
665         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
666       if (!LOI)
667         continue;
668 
669       unsigned RegSize = RegisterVT.getSizeInBits();
670       unsigned NumSignBits = LOI->NumSignBits;
671       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
672 
673       if (NumZeroBits == RegSize) {
674         // The current value is a zero.
675         // Explicitly express that as it would be easier for
676         // optimizations to kick in.
677         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
678         continue;
679       }
680 
681       // FIXME: We capture more information than the dag can represent.  For
682       // now, just use the tightest assertzext/assertsext possible.
683       bool isSExt = true;
684       EVT FromVT(MVT::Other);
685       if (NumSignBits == RegSize) {
686         isSExt = true;   // ASSERT SEXT 1
687         FromVT = MVT::i1;
688       } else if (NumZeroBits >= RegSize - 1) {
689         isSExt = false;  // ASSERT ZEXT 1
690         FromVT = MVT::i1;
691       } else if (NumSignBits > RegSize - 8) {
692         isSExt = true;   // ASSERT SEXT 8
693         FromVT = MVT::i8;
694       } else if (NumZeroBits >= RegSize - 8) {
695         isSExt = false;  // ASSERT ZEXT 8
696         FromVT = MVT::i8;
697       } else if (NumSignBits > RegSize - 16) {
698         isSExt = true;   // ASSERT SEXT 16
699         FromVT = MVT::i16;
700       } else if (NumZeroBits >= RegSize - 16) {
701         isSExt = false;  // ASSERT ZEXT 16
702         FromVT = MVT::i16;
703       } else if (NumSignBits > RegSize - 32) {
704         isSExt = true;   // ASSERT SEXT 32
705         FromVT = MVT::i32;
706       } else if (NumZeroBits >= RegSize - 32) {
707         isSExt = false;  // ASSERT ZEXT 32
708         FromVT = MVT::i32;
709       } else {
710         continue;
711       }
712       // Add an assertion node.
713       assert(FromVT != MVT::Other);
714       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
715                              RegisterVT, P, DAG.getValueType(FromVT));
716     }
717 
718     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
719                                      NumRegs, RegisterVT, ValueVT, V);
720     Part += NumRegs;
721     Parts.clear();
722   }
723 
724   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
725 }
726 
727 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
728 /// specified value into the registers specified by this object.  This uses
729 /// Chain/Flag as the input and updates them for the output Chain/Flag.
730 /// If the Flag pointer is NULL, no flag is used.
731 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
732                                  SDValue &Chain, SDValue *Flag, const Value *V,
733                                  ISD::NodeType PreferredExtendType) const {
734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735   ISD::NodeType ExtendKind = PreferredExtendType;
736 
737   // Get the list of the values's legal parts.
738   unsigned NumRegs = Regs.size();
739   SmallVector<SDValue, 8> Parts(NumRegs);
740   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
741     EVT ValueVT = ValueVTs[Value];
742     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
743     MVT RegisterVT = RegVTs[Value];
744 
745     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
746       ExtendKind = ISD::ZERO_EXTEND;
747 
748     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
749                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
750     Part += NumParts;
751   }
752 
753   // Copy the parts into the registers.
754   SmallVector<SDValue, 8> Chains(NumRegs);
755   for (unsigned i = 0; i != NumRegs; ++i) {
756     SDValue Part;
757     if (!Flag) {
758       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
759     } else {
760       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
761       *Flag = Part.getValue(1);
762     }
763 
764     Chains[i] = Part.getValue(0);
765   }
766 
767   if (NumRegs == 1 || Flag)
768     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
769     // flagged to it. That is the CopyToReg nodes and the user are considered
770     // a single scheduling unit. If we create a TokenFactor and return it as
771     // chain, then the TokenFactor is both a predecessor (operand) of the
772     // user as well as a successor (the TF operands are flagged to the user).
773     // c1, f1 = CopyToReg
774     // c2, f2 = CopyToReg
775     // c3     = TokenFactor c1, c2
776     // ...
777     //        = op c3, ..., f2
778     Chain = Chains[NumRegs-1];
779   else
780     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
781 }
782 
783 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
784 /// operand list.  This adds the code marker and includes the number of
785 /// values added into it.
786 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
787                                         unsigned MatchingIdx, SDLoc dl,
788                                         SelectionDAG &DAG,
789                                         std::vector<SDValue> &Ops) const {
790   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
791 
792   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
793   if (HasMatching)
794     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
795   else if (!Regs.empty() &&
796            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
797     // Put the register class of the virtual registers in the flag word.  That
798     // way, later passes can recompute register class constraints for inline
799     // assembly as well as normal instructions.
800     // Don't do this for tied operands that can use the regclass information
801     // from the def.
802     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
803     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
804     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
805   }
806 
807   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
808   Ops.push_back(Res);
809 
810   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
811   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
812     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
813     MVT RegisterVT = RegVTs[Value];
814     for (unsigned i = 0; i != NumRegs; ++i) {
815       assert(Reg < Regs.size() && "Mismatch in # registers expected");
816       unsigned TheReg = Regs[Reg++];
817       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
818 
819       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
820         // If we clobbered the stack pointer, MFI should know about it.
821         assert(DAG.getMachineFunction().getFrameInfo()->
822             hasOpaqueSPAdjustment());
823       }
824     }
825   }
826 }
827 
828 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
829                                const TargetLibraryInfo *li) {
830   AA = &aa;
831   GFI = gfi;
832   LibInfo = li;
833   DL = &DAG.getDataLayout();
834   Context = DAG.getContext();
835   LPadToCallSiteMap.clear();
836 }
837 
838 /// clear - Clear out the current SelectionDAG and the associated
839 /// state and prepare this SelectionDAGBuilder object to be used
840 /// for a new block. This doesn't clear out information about
841 /// additional blocks that are needed to complete switch lowering
842 /// or PHI node updating; that information is cleared out as it is
843 /// consumed.
844 void SelectionDAGBuilder::clear() {
845   NodeMap.clear();
846   UnusedArgNodeMap.clear();
847   PendingLoads.clear();
848   PendingExports.clear();
849   CurInst = nullptr;
850   HasTailCall = false;
851   SDNodeOrder = LowestSDNodeOrder;
852   StatepointLowering.clear();
853 }
854 
855 /// clearDanglingDebugInfo - Clear the dangling debug information
856 /// map. This function is separated from the clear so that debug
857 /// information that is dangling in a basic block can be properly
858 /// resolved in a different basic block. This allows the
859 /// SelectionDAG to resolve dangling debug information attached
860 /// to PHI nodes.
861 void SelectionDAGBuilder::clearDanglingDebugInfo() {
862   DanglingDebugInfoMap.clear();
863 }
864 
865 /// getRoot - Return the current virtual root of the Selection DAG,
866 /// flushing any PendingLoad items. This must be done before emitting
867 /// a store or any other node that may need to be ordered after any
868 /// prior load instructions.
869 ///
870 SDValue SelectionDAGBuilder::getRoot() {
871   if (PendingLoads.empty())
872     return DAG.getRoot();
873 
874   if (PendingLoads.size() == 1) {
875     SDValue Root = PendingLoads[0];
876     DAG.setRoot(Root);
877     PendingLoads.clear();
878     return Root;
879   }
880 
881   // Otherwise, we have to make a token factor node.
882   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
883                              PendingLoads);
884   PendingLoads.clear();
885   DAG.setRoot(Root);
886   return Root;
887 }
888 
889 /// getControlRoot - Similar to getRoot, but instead of flushing all the
890 /// PendingLoad items, flush all the PendingExports items. It is necessary
891 /// to do this before emitting a terminator instruction.
892 ///
893 SDValue SelectionDAGBuilder::getControlRoot() {
894   SDValue Root = DAG.getRoot();
895 
896   if (PendingExports.empty())
897     return Root;
898 
899   // Turn all of the CopyToReg chains into one factored node.
900   if (Root.getOpcode() != ISD::EntryToken) {
901     unsigned i = 0, e = PendingExports.size();
902     for (; i != e; ++i) {
903       assert(PendingExports[i].getNode()->getNumOperands() > 1);
904       if (PendingExports[i].getNode()->getOperand(0) == Root)
905         break;  // Don't add the root if we already indirectly depend on it.
906     }
907 
908     if (i == e)
909       PendingExports.push_back(Root);
910   }
911 
912   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
913                      PendingExports);
914   PendingExports.clear();
915   DAG.setRoot(Root);
916   return Root;
917 }
918 
919 void SelectionDAGBuilder::visit(const Instruction &I) {
920   // Set up outgoing PHI node register values before emitting the terminator.
921   if (isa<TerminatorInst>(&I))
922     HandlePHINodesInSuccessorBlocks(I.getParent());
923 
924   ++SDNodeOrder;
925 
926   CurInst = &I;
927 
928   visit(I.getOpcode(), I);
929 
930   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
931       !isStatepoint(&I)) // statepoints handle their exports internally
932     CopyToExportRegsIfNeeded(&I);
933 
934   CurInst = nullptr;
935 }
936 
937 void SelectionDAGBuilder::visitPHI(const PHINode &) {
938   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
939 }
940 
941 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
942   // Note: this doesn't use InstVisitor, because it has to work with
943   // ConstantExpr's in addition to instructions.
944   switch (Opcode) {
945   default: llvm_unreachable("Unknown instruction type encountered!");
946     // Build the switch statement using the Instruction.def file.
947 #define HANDLE_INST(NUM, OPCODE, CLASS) \
948     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
949 #include "llvm/IR/Instruction.def"
950   }
951 }
952 
953 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
954 // generate the debug data structures now that we've seen its definition.
955 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
956                                                    SDValue Val) {
957   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
958   if (DDI.getDI()) {
959     const DbgValueInst *DI = DDI.getDI();
960     DebugLoc dl = DDI.getdl();
961     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
962     DILocalVariable *Variable = DI->getVariable();
963     DIExpression *Expr = DI->getExpression();
964     assert(Variable->isValidLocationForIntrinsic(dl) &&
965            "Expected inlined-at fields to agree");
966     uint64_t Offset = DI->getOffset();
967     SDDbgValue *SDV;
968     if (Val.getNode()) {
969       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
970                                     Val)) {
971         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
972                               false, Offset, dl, DbgSDNodeOrder);
973         DAG.AddDbgValue(SDV, Val.getNode(), false);
974       }
975     } else
976       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
977     DanglingDebugInfoMap[V] = DanglingDebugInfo();
978   }
979 }
980 
981 /// getCopyFromRegs - If there was virtual register allocated for the value V
982 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
983 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
984   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
985   SDValue Result;
986 
987   if (It != FuncInfo.ValueMap.end()) {
988     unsigned InReg = It->second;
989     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
990                      DAG.getDataLayout(), InReg, Ty);
991     SDValue Chain = DAG.getEntryNode();
992     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
993     resolveDanglingDebugInfo(V, Result);
994   }
995 
996   return Result;
997 }
998 
999 /// getValue - Return an SDValue for the given Value.
1000 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1001   // If we already have an SDValue for this value, use it. It's important
1002   // to do this first, so that we don't create a CopyFromReg if we already
1003   // have a regular SDValue.
1004   SDValue &N = NodeMap[V];
1005   if (N.getNode()) return N;
1006 
1007   // If there's a virtual register allocated and initialized for this
1008   // value, use it.
1009   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1010     return copyFromReg;
1011 
1012   // Otherwise create a new SDValue and remember it.
1013   SDValue Val = getValueImpl(V);
1014   NodeMap[V] = Val;
1015   resolveDanglingDebugInfo(V, Val);
1016   return Val;
1017 }
1018 
1019 // Return true if SDValue exists for the given Value
1020 bool SelectionDAGBuilder::findValue(const Value *V) const {
1021   return (NodeMap.find(V) != NodeMap.end()) ||
1022     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1023 }
1024 
1025 /// getNonRegisterValue - Return an SDValue for the given Value, but
1026 /// don't look in FuncInfo.ValueMap for a virtual register.
1027 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1028   // If we already have an SDValue for this value, use it.
1029   SDValue &N = NodeMap[V];
1030   if (N.getNode()) {
1031     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1032       // Remove the debug location from the node as the node is about to be used
1033       // in a location which may differ from the original debug location.  This
1034       // is relevant to Constant and ConstantFP nodes because they can appear
1035       // as constant expressions inside PHI nodes.
1036       N->setDebugLoc(DebugLoc());
1037     }
1038     return N;
1039   }
1040 
1041   // Otherwise create a new SDValue and remember it.
1042   SDValue Val = getValueImpl(V);
1043   NodeMap[V] = Val;
1044   resolveDanglingDebugInfo(V, Val);
1045   return Val;
1046 }
1047 
1048 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1049 /// Create an SDValue for the given value.
1050 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1052 
1053   if (const Constant *C = dyn_cast<Constant>(V)) {
1054     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1055 
1056     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1057       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1058 
1059     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1060       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1061 
1062     if (isa<ConstantPointerNull>(C)) {
1063       unsigned AS = V->getType()->getPointerAddressSpace();
1064       return DAG.getConstant(0, getCurSDLoc(),
1065                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1066     }
1067 
1068     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1069       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1070 
1071     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1072       return DAG.getUNDEF(VT);
1073 
1074     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1075       visit(CE->getOpcode(), *CE);
1076       SDValue N1 = NodeMap[V];
1077       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1078       return N1;
1079     }
1080 
1081     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1082       SmallVector<SDValue, 4> Constants;
1083       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1084            OI != OE; ++OI) {
1085         SDNode *Val = getValue(*OI).getNode();
1086         // If the operand is an empty aggregate, there are no values.
1087         if (!Val) continue;
1088         // Add each leaf value from the operand to the Constants list
1089         // to form a flattened list of all the values.
1090         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1091           Constants.push_back(SDValue(Val, i));
1092       }
1093 
1094       return DAG.getMergeValues(Constants, getCurSDLoc());
1095     }
1096 
1097     if (const ConstantDataSequential *CDS =
1098           dyn_cast<ConstantDataSequential>(C)) {
1099       SmallVector<SDValue, 4> Ops;
1100       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1101         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1102         // Add each leaf value from the operand to the Constants list
1103         // to form a flattened list of all the values.
1104         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1105           Ops.push_back(SDValue(Val, i));
1106       }
1107 
1108       if (isa<ArrayType>(CDS->getType()))
1109         return DAG.getMergeValues(Ops, getCurSDLoc());
1110       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1111                                       VT, Ops);
1112     }
1113 
1114     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1115       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1116              "Unknown struct or array constant!");
1117 
1118       SmallVector<EVT, 4> ValueVTs;
1119       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1120       unsigned NumElts = ValueVTs.size();
1121       if (NumElts == 0)
1122         return SDValue(); // empty struct
1123       SmallVector<SDValue, 4> Constants(NumElts);
1124       for (unsigned i = 0; i != NumElts; ++i) {
1125         EVT EltVT = ValueVTs[i];
1126         if (isa<UndefValue>(C))
1127           Constants[i] = DAG.getUNDEF(EltVT);
1128         else if (EltVT.isFloatingPoint())
1129           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1130         else
1131           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1132       }
1133 
1134       return DAG.getMergeValues(Constants, getCurSDLoc());
1135     }
1136 
1137     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138       return DAG.getBlockAddress(BA, VT);
1139 
1140     VectorType *VecTy = cast<VectorType>(V->getType());
1141     unsigned NumElements = VecTy->getNumElements();
1142 
1143     // Now that we know the number and type of the elements, get that number of
1144     // elements into the Ops array based on what kind of constant it is.
1145     SmallVector<SDValue, 16> Ops;
1146     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147       for (unsigned i = 0; i != NumElements; ++i)
1148         Ops.push_back(getValue(CV->getOperand(i)));
1149     } else {
1150       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151       EVT EltVT =
1152           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1153 
1154       SDValue Op;
1155       if (EltVT.isFloatingPoint())
1156         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1157       else
1158         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1159       Ops.assign(NumElements, Op);
1160     }
1161 
1162     // Create a BUILD_VECTOR node.
1163     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1164   }
1165 
1166   // If this is a static alloca, generate it as the frameindex instead of
1167   // computation.
1168   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169     DenseMap<const AllocaInst*, int>::iterator SI =
1170       FuncInfo.StaticAllocaMap.find(AI);
1171     if (SI != FuncInfo.StaticAllocaMap.end())
1172       return DAG.getFrameIndex(SI->second,
1173                                TLI.getPointerTy(DAG.getDataLayout()));
1174   }
1175 
1176   // If this is an instruction which fast-isel has deferred, select it now.
1177   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1178     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1179     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1180                      Inst->getType());
1181     SDValue Chain = DAG.getEntryNode();
1182     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1183   }
1184 
1185   llvm_unreachable("Can't get register for value!");
1186 }
1187 
1188 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1189   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1190   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1191   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1192   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1193   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1194   if (IsMSVCCXX || IsCoreCLR)
1195     CatchPadMBB->setIsEHFuncletEntry();
1196 
1197   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1198 }
1199 
1200 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1201   // Update machine-CFG edge.
1202   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1203   FuncInfo.MBB->addSuccessor(TargetMBB);
1204 
1205   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1206   bool IsSEH = isAsynchronousEHPersonality(Pers);
1207   if (IsSEH) {
1208     // If this is not a fall-through branch or optimizations are switched off,
1209     // emit the branch.
1210     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1211         TM.getOptLevel() == CodeGenOpt::None)
1212       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1213                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1214     return;
1215   }
1216 
1217   // Figure out the funclet membership for the catchret's successor.
1218   // This will be used by the FuncletLayout pass to determine how to order the
1219   // BB's.
1220   // A 'catchret' returns to the outer scope's color.
1221   Value *ParentPad = I.getCatchSwitchParentPad();
1222   const BasicBlock *SuccessorColor;
1223   if (isa<ConstantTokenNone>(ParentPad))
1224     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1225   else
1226     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1227   assert(SuccessorColor && "No parent funclet for catchret!");
1228   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1229   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1230 
1231   // Create the terminator node.
1232   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1233                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1234                             DAG.getBasicBlock(SuccessorColorMBB));
1235   DAG.setRoot(Ret);
1236 }
1237 
1238 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1239   // Don't emit any special code for the cleanuppad instruction. It just marks
1240   // the start of a funclet.
1241   FuncInfo.MBB->setIsEHFuncletEntry();
1242   FuncInfo.MBB->setIsCleanupFuncletEntry();
1243 }
1244 
1245 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1246 /// many places it could ultimately go. In the IR, we have a single unwind
1247 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1248 /// This function skips over imaginary basic blocks that hold catchswitch
1249 /// instructions, and finds all the "real" machine
1250 /// basic block destinations. As those destinations may not be successors of
1251 /// EHPadBB, here we also calculate the edge probability to those destinations.
1252 /// The passed-in Prob is the edge probability to EHPadBB.
1253 static void findUnwindDestinations(
1254     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1255     BranchProbability Prob,
1256     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1257         &UnwindDests) {
1258   EHPersonality Personality =
1259     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1260   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1261   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1262 
1263   while (EHPadBB) {
1264     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1265     BasicBlock *NewEHPadBB = nullptr;
1266     if (isa<LandingPadInst>(Pad)) {
1267       // Stop on landingpads. They are not funclets.
1268       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1269       break;
1270     } else if (isa<CleanupPadInst>(Pad)) {
1271       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1272       // personalities.
1273       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1274       UnwindDests.back().first->setIsEHFuncletEntry();
1275       break;
1276     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1277       // Add the catchpad handlers to the possible destinations.
1278       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1279         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1280         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1281         if (IsMSVCCXX || IsCoreCLR)
1282           UnwindDests.back().first->setIsEHFuncletEntry();
1283       }
1284       NewEHPadBB = CatchSwitch->getUnwindDest();
1285     } else {
1286       continue;
1287     }
1288 
1289     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1290     if (BPI && NewEHPadBB)
1291       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1292     EHPadBB = NewEHPadBB;
1293   }
1294 }
1295 
1296 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1297   // Update successor info.
1298   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1299   auto UnwindDest = I.getUnwindDest();
1300   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1301   BranchProbability UnwindDestProb =
1302       (BPI && UnwindDest)
1303           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1304           : BranchProbability::getZero();
1305   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1306   for (auto &UnwindDest : UnwindDests) {
1307     UnwindDest.first->setIsEHPad();
1308     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1309   }
1310   FuncInfo.MBB->normalizeSuccProbs();
1311 
1312   // Create the terminator node.
1313   SDValue Ret =
1314       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1315   DAG.setRoot(Ret);
1316 }
1317 
1318 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1319   report_fatal_error("visitCatchSwitch not yet implemented!");
1320 }
1321 
1322 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1323   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1324   auto &DL = DAG.getDataLayout();
1325   SDValue Chain = getControlRoot();
1326   SmallVector<ISD::OutputArg, 8> Outs;
1327   SmallVector<SDValue, 8> OutVals;
1328 
1329   if (!FuncInfo.CanLowerReturn) {
1330     unsigned DemoteReg = FuncInfo.DemoteRegister;
1331     const Function *F = I.getParent()->getParent();
1332 
1333     // Emit a store of the return value through the virtual register.
1334     // Leave Outs empty so that LowerReturn won't try to load return
1335     // registers the usual way.
1336     SmallVector<EVT, 1> PtrValueVTs;
1337     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1338                     PtrValueVTs);
1339 
1340     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1341                                         DemoteReg, PtrValueVTs[0]);
1342     SDValue RetOp = getValue(I.getOperand(0));
1343 
1344     SmallVector<EVT, 4> ValueVTs;
1345     SmallVector<uint64_t, 4> Offsets;
1346     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1347     unsigned NumValues = ValueVTs.size();
1348 
1349     // An aggregate return value cannot wrap around the address space, so
1350     // offsets to its parts don't wrap either.
1351     SDNodeFlags Flags;
1352     Flags.setNoUnsignedWrap(true);
1353 
1354     SmallVector<SDValue, 4> Chains(NumValues);
1355     for (unsigned i = 0; i != NumValues; ++i) {
1356       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1357                                 RetPtr.getValueType(), RetPtr,
1358                                 DAG.getIntPtrConstant(Offsets[i],
1359                                                       getCurSDLoc()),
1360                                 &Flags);
1361       Chains[i] =
1362         DAG.getStore(Chain, getCurSDLoc(),
1363                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1364                      // FIXME: better loc info would be nice.
1365                      Add, MachinePointerInfo(), false, false, 0);
1366     }
1367 
1368     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1369                         MVT::Other, Chains);
1370   } else if (I.getNumOperands() != 0) {
1371     SmallVector<EVT, 4> ValueVTs;
1372     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1373     unsigned NumValues = ValueVTs.size();
1374     if (NumValues) {
1375       SDValue RetOp = getValue(I.getOperand(0));
1376 
1377       const Function *F = I.getParent()->getParent();
1378 
1379       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1380       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1381                                           Attribute::SExt))
1382         ExtendKind = ISD::SIGN_EXTEND;
1383       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1384                                                Attribute::ZExt))
1385         ExtendKind = ISD::ZERO_EXTEND;
1386 
1387       LLVMContext &Context = F->getContext();
1388       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1389                                                       Attribute::InReg);
1390 
1391       for (unsigned j = 0; j != NumValues; ++j) {
1392         EVT VT = ValueVTs[j];
1393 
1394         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1395           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1396 
1397         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1398         MVT PartVT = TLI.getRegisterType(Context, VT);
1399         SmallVector<SDValue, 4> Parts(NumParts);
1400         getCopyToParts(DAG, getCurSDLoc(),
1401                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1402                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1403 
1404         // 'inreg' on function refers to return value
1405         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1406         if (RetInReg)
1407           Flags.setInReg();
1408 
1409         // Propagate extension type if any
1410         if (ExtendKind == ISD::SIGN_EXTEND)
1411           Flags.setSExt();
1412         else if (ExtendKind == ISD::ZERO_EXTEND)
1413           Flags.setZExt();
1414 
1415         for (unsigned i = 0; i < NumParts; ++i) {
1416           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1417                                         VT, /*isfixed=*/true, 0, 0));
1418           OutVals.push_back(Parts[i]);
1419         }
1420       }
1421     }
1422   }
1423 
1424   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1425   CallingConv::ID CallConv =
1426     DAG.getMachineFunction().getFunction()->getCallingConv();
1427   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1428       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1429 
1430   // Verify that the target's LowerReturn behaved as expected.
1431   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1432          "LowerReturn didn't return a valid chain!");
1433 
1434   // Update the DAG with the new chain value resulting from return lowering.
1435   DAG.setRoot(Chain);
1436 }
1437 
1438 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1439 /// created for it, emit nodes to copy the value into the virtual
1440 /// registers.
1441 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1442   // Skip empty types
1443   if (V->getType()->isEmptyTy())
1444     return;
1445 
1446   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1447   if (VMI != FuncInfo.ValueMap.end()) {
1448     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1449     CopyValueToVirtualRegister(V, VMI->second);
1450   }
1451 }
1452 
1453 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1454 /// the current basic block, add it to ValueMap now so that we'll get a
1455 /// CopyTo/FromReg.
1456 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1457   // No need to export constants.
1458   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1459 
1460   // Already exported?
1461   if (FuncInfo.isExportedInst(V)) return;
1462 
1463   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1464   CopyValueToVirtualRegister(V, Reg);
1465 }
1466 
1467 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1468                                                      const BasicBlock *FromBB) {
1469   // The operands of the setcc have to be in this block.  We don't know
1470   // how to export them from some other block.
1471   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1472     // Can export from current BB.
1473     if (VI->getParent() == FromBB)
1474       return true;
1475 
1476     // Is already exported, noop.
1477     return FuncInfo.isExportedInst(V);
1478   }
1479 
1480   // If this is an argument, we can export it if the BB is the entry block or
1481   // if it is already exported.
1482   if (isa<Argument>(V)) {
1483     if (FromBB == &FromBB->getParent()->getEntryBlock())
1484       return true;
1485 
1486     // Otherwise, can only export this if it is already exported.
1487     return FuncInfo.isExportedInst(V);
1488   }
1489 
1490   // Otherwise, constants can always be exported.
1491   return true;
1492 }
1493 
1494 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1495 BranchProbability
1496 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1497                                         const MachineBasicBlock *Dst) const {
1498   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1499   const BasicBlock *SrcBB = Src->getBasicBlock();
1500   const BasicBlock *DstBB = Dst->getBasicBlock();
1501   if (!BPI) {
1502     // If BPI is not available, set the default probability as 1 / N, where N is
1503     // the number of successors.
1504     auto SuccSize = std::max<uint32_t>(
1505         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1506     return BranchProbability(1, SuccSize);
1507   }
1508   return BPI->getEdgeProbability(SrcBB, DstBB);
1509 }
1510 
1511 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1512                                                MachineBasicBlock *Dst,
1513                                                BranchProbability Prob) {
1514   if (!FuncInfo.BPI)
1515     Src->addSuccessorWithoutProb(Dst);
1516   else {
1517     if (Prob.isUnknown())
1518       Prob = getEdgeProbability(Src, Dst);
1519     Src->addSuccessor(Dst, Prob);
1520   }
1521 }
1522 
1523 static bool InBlock(const Value *V, const BasicBlock *BB) {
1524   if (const Instruction *I = dyn_cast<Instruction>(V))
1525     return I->getParent() == BB;
1526   return true;
1527 }
1528 
1529 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1530 /// This function emits a branch and is used at the leaves of an OR or an
1531 /// AND operator tree.
1532 ///
1533 void
1534 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1535                                                   MachineBasicBlock *TBB,
1536                                                   MachineBasicBlock *FBB,
1537                                                   MachineBasicBlock *CurBB,
1538                                                   MachineBasicBlock *SwitchBB,
1539                                                   BranchProbability TProb,
1540                                                   BranchProbability FProb) {
1541   const BasicBlock *BB = CurBB->getBasicBlock();
1542 
1543   // If the leaf of the tree is a comparison, merge the condition into
1544   // the caseblock.
1545   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1546     // The operands of the cmp have to be in this block.  We don't know
1547     // how to export them from some other block.  If this is the first block
1548     // of the sequence, no exporting is needed.
1549     if (CurBB == SwitchBB ||
1550         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1551          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1552       ISD::CondCode Condition;
1553       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1554         Condition = getICmpCondCode(IC->getPredicate());
1555       } else {
1556         const FCmpInst *FC = cast<FCmpInst>(Cond);
1557         Condition = getFCmpCondCode(FC->getPredicate());
1558         if (TM.Options.NoNaNsFPMath)
1559           Condition = getFCmpCodeWithoutNaN(Condition);
1560       }
1561 
1562       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1563                    TBB, FBB, CurBB, TProb, FProb);
1564       SwitchCases.push_back(CB);
1565       return;
1566     }
1567   }
1568 
1569   // Create a CaseBlock record representing this branch.
1570   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1571                nullptr, TBB, FBB, CurBB, TProb, FProb);
1572   SwitchCases.push_back(CB);
1573 }
1574 
1575 /// FindMergedConditions - If Cond is an expression like
1576 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1577                                                MachineBasicBlock *TBB,
1578                                                MachineBasicBlock *FBB,
1579                                                MachineBasicBlock *CurBB,
1580                                                MachineBasicBlock *SwitchBB,
1581                                                Instruction::BinaryOps Opc,
1582                                                BranchProbability TProb,
1583                                                BranchProbability FProb) {
1584   // If this node is not part of the or/and tree, emit it as a branch.
1585   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1586   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1587       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1588       BOp->getParent() != CurBB->getBasicBlock() ||
1589       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1590       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1591     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1592                                  TProb, FProb);
1593     return;
1594   }
1595 
1596   //  Create TmpBB after CurBB.
1597   MachineFunction::iterator BBI(CurBB);
1598   MachineFunction &MF = DAG.getMachineFunction();
1599   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1600   CurBB->getParent()->insert(++BBI, TmpBB);
1601 
1602   if (Opc == Instruction::Or) {
1603     // Codegen X | Y as:
1604     // BB1:
1605     //   jmp_if_X TBB
1606     //   jmp TmpBB
1607     // TmpBB:
1608     //   jmp_if_Y TBB
1609     //   jmp FBB
1610     //
1611 
1612     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1613     // The requirement is that
1614     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1615     //     = TrueProb for original BB.
1616     // Assuming the original probabilities are A and B, one choice is to set
1617     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1618     // A/(1+B) and 2B/(1+B). This choice assumes that
1619     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1620     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1621     // TmpBB, but the math is more complicated.
1622 
1623     auto NewTrueProb = TProb / 2;
1624     auto NewFalseProb = TProb / 2 + FProb;
1625     // Emit the LHS condition.
1626     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1627                          NewTrueProb, NewFalseProb);
1628 
1629     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1630     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1631     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1632     // Emit the RHS condition into TmpBB.
1633     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1634                          Probs[0], Probs[1]);
1635   } else {
1636     assert(Opc == Instruction::And && "Unknown merge op!");
1637     // Codegen X & Y as:
1638     // BB1:
1639     //   jmp_if_X TmpBB
1640     //   jmp FBB
1641     // TmpBB:
1642     //   jmp_if_Y TBB
1643     //   jmp FBB
1644     //
1645     //  This requires creation of TmpBB after CurBB.
1646 
1647     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1648     // The requirement is that
1649     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1650     //     = FalseProb for original BB.
1651     // Assuming the original probabilities are A and B, one choice is to set
1652     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1653     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1654     // TrueProb for BB1 * FalseProb for TmpBB.
1655 
1656     auto NewTrueProb = TProb + FProb / 2;
1657     auto NewFalseProb = FProb / 2;
1658     // Emit the LHS condition.
1659     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1660                          NewTrueProb, NewFalseProb);
1661 
1662     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1663     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1664     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1665     // Emit the RHS condition into TmpBB.
1666     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1667                          Probs[0], Probs[1]);
1668   }
1669 }
1670 
1671 /// If the set of cases should be emitted as a series of branches, return true.
1672 /// If we should emit this as a bunch of and/or'd together conditions, return
1673 /// false.
1674 bool
1675 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1676   if (Cases.size() != 2) return true;
1677 
1678   // If this is two comparisons of the same values or'd or and'd together, they
1679   // will get folded into a single comparison, so don't emit two blocks.
1680   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1681        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1682       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1683        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1684     return false;
1685   }
1686 
1687   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1688   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1689   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1690       Cases[0].CC == Cases[1].CC &&
1691       isa<Constant>(Cases[0].CmpRHS) &&
1692       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1693     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1694       return false;
1695     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1696       return false;
1697   }
1698 
1699   return true;
1700 }
1701 
1702 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1703   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1704 
1705   // Update machine-CFG edges.
1706   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1707 
1708   if (I.isUnconditional()) {
1709     // Update machine-CFG edges.
1710     BrMBB->addSuccessor(Succ0MBB);
1711 
1712     // If this is not a fall-through branch or optimizations are switched off,
1713     // emit the branch.
1714     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1715       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1716                               MVT::Other, getControlRoot(),
1717                               DAG.getBasicBlock(Succ0MBB)));
1718 
1719     return;
1720   }
1721 
1722   // If this condition is one of the special cases we handle, do special stuff
1723   // now.
1724   const Value *CondVal = I.getCondition();
1725   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1726 
1727   // If this is a series of conditions that are or'd or and'd together, emit
1728   // this as a sequence of branches instead of setcc's with and/or operations.
1729   // As long as jumps are not expensive, this should improve performance.
1730   // For example, instead of something like:
1731   //     cmp A, B
1732   //     C = seteq
1733   //     cmp D, E
1734   //     F = setle
1735   //     or C, F
1736   //     jnz foo
1737   // Emit:
1738   //     cmp A, B
1739   //     je foo
1740   //     cmp D, E
1741   //     jle foo
1742   //
1743   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1744     Instruction::BinaryOps Opcode = BOp->getOpcode();
1745     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1746         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1747         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1748       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1749                            Opcode,
1750                            getEdgeProbability(BrMBB, Succ0MBB),
1751                            getEdgeProbability(BrMBB, Succ1MBB));
1752       // If the compares in later blocks need to use values not currently
1753       // exported from this block, export them now.  This block should always
1754       // be the first entry.
1755       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1756 
1757       // Allow some cases to be rejected.
1758       if (ShouldEmitAsBranches(SwitchCases)) {
1759         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1760           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1761           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1762         }
1763 
1764         // Emit the branch for this block.
1765         visitSwitchCase(SwitchCases[0], BrMBB);
1766         SwitchCases.erase(SwitchCases.begin());
1767         return;
1768       }
1769 
1770       // Okay, we decided not to do this, remove any inserted MBB's and clear
1771       // SwitchCases.
1772       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1773         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1774 
1775       SwitchCases.clear();
1776     }
1777   }
1778 
1779   // Create a CaseBlock record representing this branch.
1780   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1781                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1782 
1783   // Use visitSwitchCase to actually insert the fast branch sequence for this
1784   // cond branch.
1785   visitSwitchCase(CB, BrMBB);
1786 }
1787 
1788 /// visitSwitchCase - Emits the necessary code to represent a single node in
1789 /// the binary search tree resulting from lowering a switch instruction.
1790 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1791                                           MachineBasicBlock *SwitchBB) {
1792   SDValue Cond;
1793   SDValue CondLHS = getValue(CB.CmpLHS);
1794   SDLoc dl = getCurSDLoc();
1795 
1796   // Build the setcc now.
1797   if (!CB.CmpMHS) {
1798     // Fold "(X == true)" to X and "(X == false)" to !X to
1799     // handle common cases produced by branch lowering.
1800     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1801         CB.CC == ISD::SETEQ)
1802       Cond = CondLHS;
1803     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1804              CB.CC == ISD::SETEQ) {
1805       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1806       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1807     } else
1808       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1809   } else {
1810     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1811 
1812     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1813     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1814 
1815     SDValue CmpOp = getValue(CB.CmpMHS);
1816     EVT VT = CmpOp.getValueType();
1817 
1818     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1819       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1820                           ISD::SETLE);
1821     } else {
1822       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1823                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1824       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1825                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1826     }
1827   }
1828 
1829   // Update successor info
1830   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1831   // TrueBB and FalseBB are always different unless the incoming IR is
1832   // degenerate. This only happens when running llc on weird IR.
1833   if (CB.TrueBB != CB.FalseBB)
1834     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1835   SwitchBB->normalizeSuccProbs();
1836 
1837   // If the lhs block is the next block, invert the condition so that we can
1838   // fall through to the lhs instead of the rhs block.
1839   if (CB.TrueBB == NextBlock(SwitchBB)) {
1840     std::swap(CB.TrueBB, CB.FalseBB);
1841     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1842     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1843   }
1844 
1845   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1846                                MVT::Other, getControlRoot(), Cond,
1847                                DAG.getBasicBlock(CB.TrueBB));
1848 
1849   // Insert the false branch. Do this even if it's a fall through branch,
1850   // this makes it easier to do DAG optimizations which require inverting
1851   // the branch condition.
1852   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1853                        DAG.getBasicBlock(CB.FalseBB));
1854 
1855   DAG.setRoot(BrCond);
1856 }
1857 
1858 /// visitJumpTable - Emit JumpTable node in the current MBB
1859 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1860   // Emit the code for the jump table
1861   assert(JT.Reg != -1U && "Should lower JT Header first!");
1862   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1863   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1864                                      JT.Reg, PTy);
1865   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1866   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1867                                     MVT::Other, Index.getValue(1),
1868                                     Table, Index);
1869   DAG.setRoot(BrJumpTable);
1870 }
1871 
1872 /// visitJumpTableHeader - This function emits necessary code to produce index
1873 /// in the JumpTable from switch case.
1874 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1875                                                JumpTableHeader &JTH,
1876                                                MachineBasicBlock *SwitchBB) {
1877   SDLoc dl = getCurSDLoc();
1878 
1879   // Subtract the lowest switch case value from the value being switched on and
1880   // conditional branch to default mbb if the result is greater than the
1881   // difference between smallest and largest cases.
1882   SDValue SwitchOp = getValue(JTH.SValue);
1883   EVT VT = SwitchOp.getValueType();
1884   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1885                             DAG.getConstant(JTH.First, dl, VT));
1886 
1887   // The SDNode we just created, which holds the value being switched on minus
1888   // the smallest case value, needs to be copied to a virtual register so it
1889   // can be used as an index into the jump table in a subsequent basic block.
1890   // This value may be smaller or larger than the target's pointer type, and
1891   // therefore require extension or truncating.
1892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1893   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1894 
1895   unsigned JumpTableReg =
1896       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1897   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1898                                     JumpTableReg, SwitchOp);
1899   JT.Reg = JumpTableReg;
1900 
1901   // Emit the range check for the jump table, and branch to the default block
1902   // for the switch statement if the value being switched on exceeds the largest
1903   // case in the switch.
1904   SDValue CMP = DAG.getSetCC(
1905       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1906                                  Sub.getValueType()),
1907       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1908 
1909   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1910                                MVT::Other, CopyTo, CMP,
1911                                DAG.getBasicBlock(JT.Default));
1912 
1913   // Avoid emitting unnecessary branches to the next block.
1914   if (JT.MBB != NextBlock(SwitchBB))
1915     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1916                          DAG.getBasicBlock(JT.MBB));
1917 
1918   DAG.setRoot(BrCond);
1919 }
1920 
1921 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1922 /// tail spliced into a stack protector check success bb.
1923 ///
1924 /// For a high level explanation of how this fits into the stack protector
1925 /// generation see the comment on the declaration of class
1926 /// StackProtectorDescriptor.
1927 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1928                                                   MachineBasicBlock *ParentBB) {
1929 
1930   // First create the loads to the guard/stack slot for the comparison.
1931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1932   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1933 
1934   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1935   int FI = MFI->getStackProtectorIndex();
1936 
1937   const Value *IRGuard = SPD.getGuard();
1938   SDValue GuardPtr = getValue(IRGuard);
1939   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1940 
1941   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1942 
1943   SDValue Guard;
1944   SDLoc dl = getCurSDLoc();
1945 
1946   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1947   // guard value from the virtual register holding the value. Otherwise, emit a
1948   // volatile load to retrieve the stack guard value.
1949   unsigned GuardReg = SPD.getGuardReg();
1950 
1951   if (GuardReg && TLI.useLoadStackGuardNode())
1952     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1953                                PtrTy);
1954   else
1955     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1956                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1957                         true, false, false, Align);
1958 
1959   SDValue StackSlot = DAG.getLoad(
1960       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1961       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1962       false, false, Align);
1963 
1964   // Perform the comparison via a subtract/getsetcc.
1965   EVT VT = Guard.getValueType();
1966   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1967 
1968   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1969                                                         *DAG.getContext(),
1970                                                         Sub.getValueType()),
1971                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1972 
1973   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1974   // branch to failure MBB.
1975   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1976                                MVT::Other, StackSlot.getOperand(0),
1977                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1978   // Otherwise branch to success MBB.
1979   SDValue Br = DAG.getNode(ISD::BR, dl,
1980                            MVT::Other, BrCond,
1981                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1982 
1983   DAG.setRoot(Br);
1984 }
1985 
1986 /// Codegen the failure basic block for a stack protector check.
1987 ///
1988 /// A failure stack protector machine basic block consists simply of a call to
1989 /// __stack_chk_fail().
1990 ///
1991 /// For a high level explanation of how this fits into the stack protector
1992 /// generation see the comment on the declaration of class
1993 /// StackProtectorDescriptor.
1994 void
1995 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1997   SDValue Chain =
1998       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1999                       None, false, getCurSDLoc(), false, false).second;
2000   DAG.setRoot(Chain);
2001 }
2002 
2003 /// visitBitTestHeader - This function emits necessary code to produce value
2004 /// suitable for "bit tests"
2005 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2006                                              MachineBasicBlock *SwitchBB) {
2007   SDLoc dl = getCurSDLoc();
2008 
2009   // Subtract the minimum value
2010   SDValue SwitchOp = getValue(B.SValue);
2011   EVT VT = SwitchOp.getValueType();
2012   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2013                             DAG.getConstant(B.First, dl, VT));
2014 
2015   // Check range
2016   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2017   SDValue RangeCmp = DAG.getSetCC(
2018       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2019                                  Sub.getValueType()),
2020       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2021 
2022   // Determine the type of the test operands.
2023   bool UsePtrType = false;
2024   if (!TLI.isTypeLegal(VT))
2025     UsePtrType = true;
2026   else {
2027     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2028       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2029         // Switch table case range are encoded into series of masks.
2030         // Just use pointer type, it's guaranteed to fit.
2031         UsePtrType = true;
2032         break;
2033       }
2034   }
2035   if (UsePtrType) {
2036     VT = TLI.getPointerTy(DAG.getDataLayout());
2037     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2038   }
2039 
2040   B.RegVT = VT.getSimpleVT();
2041   B.Reg = FuncInfo.CreateReg(B.RegVT);
2042   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2043 
2044   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2045 
2046   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2047   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2048   SwitchBB->normalizeSuccProbs();
2049 
2050   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2051                                 MVT::Other, CopyTo, RangeCmp,
2052                                 DAG.getBasicBlock(B.Default));
2053 
2054   // Avoid emitting unnecessary branches to the next block.
2055   if (MBB != NextBlock(SwitchBB))
2056     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2057                           DAG.getBasicBlock(MBB));
2058 
2059   DAG.setRoot(BrRange);
2060 }
2061 
2062 /// visitBitTestCase - this function produces one "bit test"
2063 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2064                                            MachineBasicBlock* NextMBB,
2065                                            BranchProbability BranchProbToNext,
2066                                            unsigned Reg,
2067                                            BitTestCase &B,
2068                                            MachineBasicBlock *SwitchBB) {
2069   SDLoc dl = getCurSDLoc();
2070   MVT VT = BB.RegVT;
2071   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2072   SDValue Cmp;
2073   unsigned PopCount = countPopulation(B.Mask);
2074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2075   if (PopCount == 1) {
2076     // Testing for a single bit; just compare the shift count with what it
2077     // would need to be to shift a 1 bit in that position.
2078     Cmp = DAG.getSetCC(
2079         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2080         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2081         ISD::SETEQ);
2082   } else if (PopCount == BB.Range) {
2083     // There is only one zero bit in the range, test for it directly.
2084     Cmp = DAG.getSetCC(
2085         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2086         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2087         ISD::SETNE);
2088   } else {
2089     // Make desired shift
2090     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2091                                     DAG.getConstant(1, dl, VT), ShiftOp);
2092 
2093     // Emit bit tests and jumps
2094     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2095                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2096     Cmp = DAG.getSetCC(
2097         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2098         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2099   }
2100 
2101   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2102   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2103   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2104   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2105   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2106   // one as they are relative probabilities (and thus work more like weights),
2107   // and hence we need to normalize them to let the sum of them become one.
2108   SwitchBB->normalizeSuccProbs();
2109 
2110   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2111                               MVT::Other, getControlRoot(),
2112                               Cmp, DAG.getBasicBlock(B.TargetBB));
2113 
2114   // Avoid emitting unnecessary branches to the next block.
2115   if (NextMBB != NextBlock(SwitchBB))
2116     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2117                         DAG.getBasicBlock(NextMBB));
2118 
2119   DAG.setRoot(BrAnd);
2120 }
2121 
2122 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2123   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2124 
2125   // Retrieve successors. Look through artificial IR level blocks like
2126   // catchswitch for successors.
2127   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2128   const BasicBlock *EHPadBB = I.getSuccessor(1);
2129 
2130   const Value *Callee(I.getCalledValue());
2131   const Function *Fn = dyn_cast<Function>(Callee);
2132   if (isa<InlineAsm>(Callee))
2133     visitInlineAsm(&I);
2134   else if (Fn && Fn->isIntrinsic()) {
2135     switch (Fn->getIntrinsicID()) {
2136     default:
2137       llvm_unreachable("Cannot invoke this intrinsic");
2138     case Intrinsic::donothing:
2139       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2140       break;
2141     case Intrinsic::experimental_patchpoint_void:
2142     case Intrinsic::experimental_patchpoint_i64:
2143       visitPatchpoint(&I, EHPadBB);
2144       break;
2145     case Intrinsic::experimental_gc_statepoint:
2146       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2147       break;
2148     }
2149   } else
2150     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2151 
2152   // If the value of the invoke is used outside of its defining block, make it
2153   // available as a virtual register.
2154   // We already took care of the exported value for the statepoint instruction
2155   // during call to the LowerStatepoint.
2156   if (!isStatepoint(I)) {
2157     CopyToExportRegsIfNeeded(&I);
2158   }
2159 
2160   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2161   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2162   BranchProbability EHPadBBProb =
2163       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2164           : BranchProbability::getZero();
2165   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2166 
2167   // Update successor info.
2168   addSuccessorWithProb(InvokeMBB, Return);
2169   for (auto &UnwindDest : UnwindDests) {
2170     UnwindDest.first->setIsEHPad();
2171     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2172   }
2173   InvokeMBB->normalizeSuccProbs();
2174 
2175   // Drop into normal successor.
2176   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2177                           MVT::Other, getControlRoot(),
2178                           DAG.getBasicBlock(Return)));
2179 }
2180 
2181 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2182   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2183 }
2184 
2185 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2186   assert(FuncInfo.MBB->isEHPad() &&
2187          "Call to landingpad not in landing pad!");
2188 
2189   MachineBasicBlock *MBB = FuncInfo.MBB;
2190   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2191   AddLandingPadInfo(LP, MMI, MBB);
2192 
2193   // If there aren't registers to copy the values into (e.g., during SjLj
2194   // exceptions), then don't bother to create these DAG nodes.
2195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2196   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2197   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2198       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2199     return;
2200 
2201   // If landingpad's return type is token type, we don't create DAG nodes
2202   // for its exception pointer and selector value. The extraction of exception
2203   // pointer or selector value from token type landingpads is not currently
2204   // supported.
2205   if (LP.getType()->isTokenTy())
2206     return;
2207 
2208   SmallVector<EVT, 2> ValueVTs;
2209   SDLoc dl = getCurSDLoc();
2210   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2211   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2212 
2213   // Get the two live-in registers as SDValues. The physregs have already been
2214   // copied into virtual registers.
2215   SDValue Ops[2];
2216   if (FuncInfo.ExceptionPointerVirtReg) {
2217     Ops[0] = DAG.getZExtOrTrunc(
2218         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2219                            FuncInfo.ExceptionPointerVirtReg,
2220                            TLI.getPointerTy(DAG.getDataLayout())),
2221         dl, ValueVTs[0]);
2222   } else {
2223     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2224   }
2225   Ops[1] = DAG.getZExtOrTrunc(
2226       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2227                          FuncInfo.ExceptionSelectorVirtReg,
2228                          TLI.getPointerTy(DAG.getDataLayout())),
2229       dl, ValueVTs[1]);
2230 
2231   // Merge into one.
2232   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2233                             DAG.getVTList(ValueVTs), Ops);
2234   setValue(&LP, Res);
2235 }
2236 
2237 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2238 #ifndef NDEBUG
2239   for (const CaseCluster &CC : Clusters)
2240     assert(CC.Low == CC.High && "Input clusters must be single-case");
2241 #endif
2242 
2243   std::sort(Clusters.begin(), Clusters.end(),
2244             [](const CaseCluster &a, const CaseCluster &b) {
2245     return a.Low->getValue().slt(b.Low->getValue());
2246   });
2247 
2248   // Merge adjacent clusters with the same destination.
2249   const unsigned N = Clusters.size();
2250   unsigned DstIndex = 0;
2251   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2252     CaseCluster &CC = Clusters[SrcIndex];
2253     const ConstantInt *CaseVal = CC.Low;
2254     MachineBasicBlock *Succ = CC.MBB;
2255 
2256     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2257         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2258       // If this case has the same successor and is a neighbour, merge it into
2259       // the previous cluster.
2260       Clusters[DstIndex - 1].High = CaseVal;
2261       Clusters[DstIndex - 1].Prob += CC.Prob;
2262     } else {
2263       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2264                    sizeof(Clusters[SrcIndex]));
2265     }
2266   }
2267   Clusters.resize(DstIndex);
2268 }
2269 
2270 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2271                                            MachineBasicBlock *Last) {
2272   // Update JTCases.
2273   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2274     if (JTCases[i].first.HeaderBB == First)
2275       JTCases[i].first.HeaderBB = Last;
2276 
2277   // Update BitTestCases.
2278   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2279     if (BitTestCases[i].Parent == First)
2280       BitTestCases[i].Parent = Last;
2281 }
2282 
2283 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2284   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2285 
2286   // Update machine-CFG edges with unique successors.
2287   SmallSet<BasicBlock*, 32> Done;
2288   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2289     BasicBlock *BB = I.getSuccessor(i);
2290     bool Inserted = Done.insert(BB).second;
2291     if (!Inserted)
2292         continue;
2293 
2294     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2295     addSuccessorWithProb(IndirectBrMBB, Succ);
2296   }
2297   IndirectBrMBB->normalizeSuccProbs();
2298 
2299   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2300                           MVT::Other, getControlRoot(),
2301                           getValue(I.getAddress())));
2302 }
2303 
2304 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2305   if (DAG.getTarget().Options.TrapUnreachable)
2306     DAG.setRoot(
2307         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2308 }
2309 
2310 void SelectionDAGBuilder::visitFSub(const User &I) {
2311   // -0.0 - X --> fneg
2312   Type *Ty = I.getType();
2313   if (isa<Constant>(I.getOperand(0)) &&
2314       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2315     SDValue Op2 = getValue(I.getOperand(1));
2316     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2317                              Op2.getValueType(), Op2));
2318     return;
2319   }
2320 
2321   visitBinary(I, ISD::FSUB);
2322 }
2323 
2324 /// Checks if the given instruction performs a vector reduction, in which case
2325 /// we have the freedom to alter the elements in the result as long as the
2326 /// reduction of them stays unchanged.
2327 static bool isVectorReductionOp(const User *I) {
2328   const Instruction *Inst = dyn_cast<Instruction>(I);
2329   if (!Inst || !Inst->getType()->isVectorTy())
2330     return false;
2331 
2332   auto OpCode = Inst->getOpcode();
2333   switch (OpCode) {
2334   case Instruction::Add:
2335   case Instruction::Mul:
2336   case Instruction::And:
2337   case Instruction::Or:
2338   case Instruction::Xor:
2339     break;
2340   case Instruction::FAdd:
2341   case Instruction::FMul:
2342     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2343       if (FPOp->getFastMathFlags().unsafeAlgebra())
2344         break;
2345     // Fall through.
2346   default:
2347     return false;
2348   }
2349 
2350   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2351   unsigned ElemNumToReduce = ElemNum;
2352 
2353   // Do DFS search on the def-use chain from the given instruction. We only
2354   // allow four kinds of operations during the search until we reach the
2355   // instruction that extracts the first element from the vector:
2356   //
2357   //   1. The reduction operation of the same opcode as the given instruction.
2358   //
2359   //   2. PHI node.
2360   //
2361   //   3. ShuffleVector instruction together with a reduction operation that
2362   //      does a partial reduction.
2363   //
2364   //   4. ExtractElement that extracts the first element from the vector, and we
2365   //      stop searching the def-use chain here.
2366   //
2367   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2368   // from 1-3 to the stack to continue the DFS. The given instruction is not
2369   // a reduction operation if we meet any other instructions other than those
2370   // listed above.
2371 
2372   SmallVector<const User *, 16> UsersToVisit{Inst};
2373   SmallPtrSet<const User *, 16> Visited;
2374   bool ReduxExtracted = false;
2375 
2376   while (!UsersToVisit.empty()) {
2377     auto User = UsersToVisit.back();
2378     UsersToVisit.pop_back();
2379     if (!Visited.insert(User).second)
2380       continue;
2381 
2382     for (const auto &U : User->users()) {
2383       auto Inst = dyn_cast<Instruction>(U);
2384       if (!Inst)
2385         return false;
2386 
2387       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2388         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2389           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2390             return false;
2391         UsersToVisit.push_back(U);
2392       } else if (const ShuffleVectorInst *ShufInst =
2393                      dyn_cast<ShuffleVectorInst>(U)) {
2394         // Detect the following pattern: A ShuffleVector instruction together
2395         // with a reduction that do partial reduction on the first and second
2396         // ElemNumToReduce / 2 elements, and store the result in
2397         // ElemNumToReduce / 2 elements in another vector.
2398 
2399         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2400         if (ResultElements < ElemNum)
2401           return false;
2402 
2403         if (ElemNumToReduce == 1)
2404           return false;
2405         if (!isa<UndefValue>(U->getOperand(1)))
2406           return false;
2407         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2408           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2409             return false;
2410         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2411           if (ShufInst->getMaskValue(i) != -1)
2412             return false;
2413 
2414         // There is only one user of this ShuffleVector instruction, which
2415         // must be a reduction operation.
2416         if (!U->hasOneUse())
2417           return false;
2418 
2419         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2420         if (!U2 || U2->getOpcode() != OpCode)
2421           return false;
2422 
2423         // Check operands of the reduction operation.
2424         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2425             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2426           UsersToVisit.push_back(U2);
2427           ElemNumToReduce /= 2;
2428         } else
2429           return false;
2430       } else if (isa<ExtractElementInst>(U)) {
2431         // At this moment we should have reduced all elements in the vector.
2432         if (ElemNumToReduce != 1)
2433           return false;
2434 
2435         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2436         if (!Val || Val->getZExtValue() != 0)
2437           return false;
2438 
2439         ReduxExtracted = true;
2440       } else
2441         return false;
2442     }
2443   }
2444   return ReduxExtracted;
2445 }
2446 
2447 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2448   SDValue Op1 = getValue(I.getOperand(0));
2449   SDValue Op2 = getValue(I.getOperand(1));
2450 
2451   bool nuw = false;
2452   bool nsw = false;
2453   bool exact = false;
2454   bool vec_redux = false;
2455   FastMathFlags FMF;
2456 
2457   if (const OverflowingBinaryOperator *OFBinOp =
2458           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2459     nuw = OFBinOp->hasNoUnsignedWrap();
2460     nsw = OFBinOp->hasNoSignedWrap();
2461   }
2462   if (const PossiblyExactOperator *ExactOp =
2463           dyn_cast<const PossiblyExactOperator>(&I))
2464     exact = ExactOp->isExact();
2465   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2466     FMF = FPOp->getFastMathFlags();
2467 
2468   if (isVectorReductionOp(&I)) {
2469     vec_redux = true;
2470     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2471   }
2472 
2473   SDNodeFlags Flags;
2474   Flags.setExact(exact);
2475   Flags.setNoSignedWrap(nsw);
2476   Flags.setNoUnsignedWrap(nuw);
2477   Flags.setVectorReduction(vec_redux);
2478   if (EnableFMFInDAG) {
2479     Flags.setAllowReciprocal(FMF.allowReciprocal());
2480     Flags.setNoInfs(FMF.noInfs());
2481     Flags.setNoNaNs(FMF.noNaNs());
2482     Flags.setNoSignedZeros(FMF.noSignedZeros());
2483     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2484   }
2485   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2486                                      Op1, Op2, &Flags);
2487   setValue(&I, BinNodeValue);
2488 }
2489 
2490 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2491   SDValue Op1 = getValue(I.getOperand(0));
2492   SDValue Op2 = getValue(I.getOperand(1));
2493 
2494   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2495       Op2.getValueType(), DAG.getDataLayout());
2496 
2497   // Coerce the shift amount to the right type if we can.
2498   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2499     unsigned ShiftSize = ShiftTy.getSizeInBits();
2500     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2501     SDLoc DL = getCurSDLoc();
2502 
2503     // If the operand is smaller than the shift count type, promote it.
2504     if (ShiftSize > Op2Size)
2505       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2506 
2507     // If the operand is larger than the shift count type but the shift
2508     // count type has enough bits to represent any shift value, truncate
2509     // it now. This is a common case and it exposes the truncate to
2510     // optimization early.
2511     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2512       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2513     // Otherwise we'll need to temporarily settle for some other convenient
2514     // type.  Type legalization will make adjustments once the shiftee is split.
2515     else
2516       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2517   }
2518 
2519   bool nuw = false;
2520   bool nsw = false;
2521   bool exact = false;
2522 
2523   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2524 
2525     if (const OverflowingBinaryOperator *OFBinOp =
2526             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2527       nuw = OFBinOp->hasNoUnsignedWrap();
2528       nsw = OFBinOp->hasNoSignedWrap();
2529     }
2530     if (const PossiblyExactOperator *ExactOp =
2531             dyn_cast<const PossiblyExactOperator>(&I))
2532       exact = ExactOp->isExact();
2533   }
2534   SDNodeFlags Flags;
2535   Flags.setExact(exact);
2536   Flags.setNoSignedWrap(nsw);
2537   Flags.setNoUnsignedWrap(nuw);
2538   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2539                             &Flags);
2540   setValue(&I, Res);
2541 }
2542 
2543 void SelectionDAGBuilder::visitSDiv(const User &I) {
2544   SDValue Op1 = getValue(I.getOperand(0));
2545   SDValue Op2 = getValue(I.getOperand(1));
2546 
2547   SDNodeFlags Flags;
2548   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2549                  cast<PossiblyExactOperator>(&I)->isExact());
2550   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2551                            Op2, &Flags));
2552 }
2553 
2554 void SelectionDAGBuilder::visitICmp(const User &I) {
2555   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2556   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2557     predicate = IC->getPredicate();
2558   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2559     predicate = ICmpInst::Predicate(IC->getPredicate());
2560   SDValue Op1 = getValue(I.getOperand(0));
2561   SDValue Op2 = getValue(I.getOperand(1));
2562   ISD::CondCode Opcode = getICmpCondCode(predicate);
2563 
2564   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2565                                                         I.getType());
2566   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2567 }
2568 
2569 void SelectionDAGBuilder::visitFCmp(const User &I) {
2570   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2571   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2572     predicate = FC->getPredicate();
2573   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2574     predicate = FCmpInst::Predicate(FC->getPredicate());
2575   SDValue Op1 = getValue(I.getOperand(0));
2576   SDValue Op2 = getValue(I.getOperand(1));
2577   ISD::CondCode Condition = getFCmpCondCode(predicate);
2578 
2579   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2580   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2581   // further optimization, but currently FMF is only applicable to binary nodes.
2582   if (TM.Options.NoNaNsFPMath)
2583     Condition = getFCmpCodeWithoutNaN(Condition);
2584   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2585                                                         I.getType());
2586   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2587 }
2588 
2589 void SelectionDAGBuilder::visitSelect(const User &I) {
2590   SmallVector<EVT, 4> ValueVTs;
2591   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2592                   ValueVTs);
2593   unsigned NumValues = ValueVTs.size();
2594   if (NumValues == 0) return;
2595 
2596   SmallVector<SDValue, 4> Values(NumValues);
2597   SDValue Cond     = getValue(I.getOperand(0));
2598   SDValue LHSVal   = getValue(I.getOperand(1));
2599   SDValue RHSVal   = getValue(I.getOperand(2));
2600   auto BaseOps = {Cond};
2601   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2602     ISD::VSELECT : ISD::SELECT;
2603 
2604   // Min/max matching is only viable if all output VTs are the same.
2605   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2606     EVT VT = ValueVTs[0];
2607     LLVMContext &Ctx = *DAG.getContext();
2608     auto &TLI = DAG.getTargetLoweringInfo();
2609 
2610     // We care about the legality of the operation after it has been type
2611     // legalized.
2612     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2613            VT != TLI.getTypeToTransformTo(Ctx, VT))
2614       VT = TLI.getTypeToTransformTo(Ctx, VT);
2615 
2616     // If the vselect is legal, assume we want to leave this as a vector setcc +
2617     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2618     // min/max is legal on the scalar type.
2619     bool UseScalarMinMax = VT.isVector() &&
2620       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2621 
2622     Value *LHS, *RHS;
2623     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2624     ISD::NodeType Opc = ISD::DELETED_NODE;
2625     switch (SPR.Flavor) {
2626     case SPF_UMAX:    Opc = ISD::UMAX; break;
2627     case SPF_UMIN:    Opc = ISD::UMIN; break;
2628     case SPF_SMAX:    Opc = ISD::SMAX; break;
2629     case SPF_SMIN:    Opc = ISD::SMIN; break;
2630     case SPF_FMINNUM:
2631       switch (SPR.NaNBehavior) {
2632       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2633       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2634       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2635       case SPNB_RETURNS_ANY: {
2636         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2637           Opc = ISD::FMINNUM;
2638         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2639           Opc = ISD::FMINNAN;
2640         else if (UseScalarMinMax)
2641           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2642             ISD::FMINNUM : ISD::FMINNAN;
2643         break;
2644       }
2645       }
2646       break;
2647     case SPF_FMAXNUM:
2648       switch (SPR.NaNBehavior) {
2649       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2650       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2651       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2652       case SPNB_RETURNS_ANY:
2653 
2654         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2655           Opc = ISD::FMAXNUM;
2656         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2657           Opc = ISD::FMAXNAN;
2658         else if (UseScalarMinMax)
2659           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2660             ISD::FMAXNUM : ISD::FMAXNAN;
2661         break;
2662       }
2663       break;
2664     default: break;
2665     }
2666 
2667     if (Opc != ISD::DELETED_NODE &&
2668         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2669          (UseScalarMinMax &&
2670           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2671         // If the underlying comparison instruction is used by any other
2672         // instruction, the consumed instructions won't be destroyed, so it is
2673         // not profitable to convert to a min/max.
2674         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2675       OpCode = Opc;
2676       LHSVal = getValue(LHS);
2677       RHSVal = getValue(RHS);
2678       BaseOps = {};
2679     }
2680   }
2681 
2682   for (unsigned i = 0; i != NumValues; ++i) {
2683     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2684     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2685     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2686     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2687                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2688                             Ops);
2689   }
2690 
2691   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2692                            DAG.getVTList(ValueVTs), Values));
2693 }
2694 
2695 void SelectionDAGBuilder::visitTrunc(const User &I) {
2696   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2697   SDValue N = getValue(I.getOperand(0));
2698   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2699                                                         I.getType());
2700   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2701 }
2702 
2703 void SelectionDAGBuilder::visitZExt(const User &I) {
2704   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2705   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2706   SDValue N = getValue(I.getOperand(0));
2707   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2708                                                         I.getType());
2709   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2710 }
2711 
2712 void SelectionDAGBuilder::visitSExt(const User &I) {
2713   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2714   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2715   SDValue N = getValue(I.getOperand(0));
2716   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2717                                                         I.getType());
2718   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2719 }
2720 
2721 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2722   // FPTrunc is never a no-op cast, no need to check
2723   SDValue N = getValue(I.getOperand(0));
2724   SDLoc dl = getCurSDLoc();
2725   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2726   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2727   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2728                            DAG.getTargetConstant(
2729                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2730 }
2731 
2732 void SelectionDAGBuilder::visitFPExt(const User &I) {
2733   // FPExt is never a no-op cast, no need to check
2734   SDValue N = getValue(I.getOperand(0));
2735   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2736                                                         I.getType());
2737   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2738 }
2739 
2740 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2741   // FPToUI is never a no-op cast, no need to check
2742   SDValue N = getValue(I.getOperand(0));
2743   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2744                                                         I.getType());
2745   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2746 }
2747 
2748 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2749   // FPToSI is never a no-op cast, no need to check
2750   SDValue N = getValue(I.getOperand(0));
2751   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2752                                                         I.getType());
2753   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2754 }
2755 
2756 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2757   // UIToFP is never a no-op cast, no need to check
2758   SDValue N = getValue(I.getOperand(0));
2759   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2760                                                         I.getType());
2761   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2762 }
2763 
2764 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2765   // SIToFP is never a no-op cast, no need to check
2766   SDValue N = getValue(I.getOperand(0));
2767   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2768                                                         I.getType());
2769   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2770 }
2771 
2772 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2773   // What to do depends on the size of the integer and the size of the pointer.
2774   // We can either truncate, zero extend, or no-op, accordingly.
2775   SDValue N = getValue(I.getOperand(0));
2776   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2777                                                         I.getType());
2778   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2779 }
2780 
2781 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2782   // What to do depends on the size of the integer and the size of the pointer.
2783   // We can either truncate, zero extend, or no-op, accordingly.
2784   SDValue N = getValue(I.getOperand(0));
2785   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2786                                                         I.getType());
2787   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2788 }
2789 
2790 void SelectionDAGBuilder::visitBitCast(const User &I) {
2791   SDValue N = getValue(I.getOperand(0));
2792   SDLoc dl = getCurSDLoc();
2793   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2794                                                         I.getType());
2795 
2796   // BitCast assures us that source and destination are the same size so this is
2797   // either a BITCAST or a no-op.
2798   if (DestVT != N.getValueType())
2799     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2800                              DestVT, N)); // convert types.
2801   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2802   // might fold any kind of constant expression to an integer constant and that
2803   // is not what we are looking for. Only regcognize a bitcast of a genuine
2804   // constant integer as an opaque constant.
2805   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2806     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2807                                  /*isOpaque*/true));
2808   else
2809     setValue(&I, N);            // noop cast.
2810 }
2811 
2812 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2814   const Value *SV = I.getOperand(0);
2815   SDValue N = getValue(SV);
2816   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2817 
2818   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2819   unsigned DestAS = I.getType()->getPointerAddressSpace();
2820 
2821   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2822     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2823 
2824   setValue(&I, N);
2825 }
2826 
2827 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2828   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2829   SDValue InVec = getValue(I.getOperand(0));
2830   SDValue InVal = getValue(I.getOperand(1));
2831   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2832                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2833   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2834                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2835                            InVec, InVal, InIdx));
2836 }
2837 
2838 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2840   SDValue InVec = getValue(I.getOperand(0));
2841   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2842                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2843   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2844                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2845                            InVec, InIdx));
2846 }
2847 
2848 // Utility for visitShuffleVector - Return true if every element in Mask,
2849 // beginning from position Pos and ending in Pos+Size, falls within the
2850 // specified sequential range [L, L+Pos). or is undef.
2851 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2852                                 unsigned Pos, unsigned Size, int Low) {
2853   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2854     if (Mask[i] >= 0 && Mask[i] != Low)
2855       return false;
2856   return true;
2857 }
2858 
2859 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2860   SDValue Src1 = getValue(I.getOperand(0));
2861   SDValue Src2 = getValue(I.getOperand(1));
2862 
2863   SmallVector<int, 8> Mask;
2864   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2865   unsigned MaskNumElts = Mask.size();
2866 
2867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2868   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2869   EVT SrcVT = Src1.getValueType();
2870   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2871 
2872   if (SrcNumElts == MaskNumElts) {
2873     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2874                                       &Mask[0]));
2875     return;
2876   }
2877 
2878   // Normalize the shuffle vector since mask and vector length don't match.
2879   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2880     // Mask is longer than the source vectors and is a multiple of the source
2881     // vectors.  We can use concatenate vector to make the mask and vectors
2882     // lengths match.
2883     if (SrcNumElts*2 == MaskNumElts) {
2884       // First check for Src1 in low and Src2 in high
2885       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2886           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2887         // The shuffle is concatenating two vectors together.
2888         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2889                                  VT, Src1, Src2));
2890         return;
2891       }
2892       // Then check for Src2 in low and Src1 in high
2893       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2894           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2895         // The shuffle is concatenating two vectors together.
2896         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2897                                  VT, Src2, Src1));
2898         return;
2899       }
2900     }
2901 
2902     // Pad both vectors with undefs to make them the same length as the mask.
2903     unsigned NumConcat = MaskNumElts / SrcNumElts;
2904     bool Src1U = Src1.isUndef();
2905     bool Src2U = Src2.isUndef();
2906     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2907 
2908     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2909     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2910     MOps1[0] = Src1;
2911     MOps2[0] = Src2;
2912 
2913     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2914                                                   getCurSDLoc(), VT, MOps1);
2915     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2916                                                   getCurSDLoc(), VT, MOps2);
2917 
2918     // Readjust mask for new input vector length.
2919     SmallVector<int, 8> MappedOps;
2920     for (unsigned i = 0; i != MaskNumElts; ++i) {
2921       int Idx = Mask[i];
2922       if (Idx >= (int)SrcNumElts)
2923         Idx -= SrcNumElts - MaskNumElts;
2924       MappedOps.push_back(Idx);
2925     }
2926 
2927     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2928                                       &MappedOps[0]));
2929     return;
2930   }
2931 
2932   if (SrcNumElts > MaskNumElts) {
2933     // Analyze the access pattern of the vector to see if we can extract
2934     // two subvectors and do the shuffle. The analysis is done by calculating
2935     // the range of elements the mask access on both vectors.
2936     int MinRange[2] = { static_cast<int>(SrcNumElts),
2937                         static_cast<int>(SrcNumElts)};
2938     int MaxRange[2] = {-1, -1};
2939 
2940     for (unsigned i = 0; i != MaskNumElts; ++i) {
2941       int Idx = Mask[i];
2942       unsigned Input = 0;
2943       if (Idx < 0)
2944         continue;
2945 
2946       if (Idx >= (int)SrcNumElts) {
2947         Input = 1;
2948         Idx -= SrcNumElts;
2949       }
2950       if (Idx > MaxRange[Input])
2951         MaxRange[Input] = Idx;
2952       if (Idx < MinRange[Input])
2953         MinRange[Input] = Idx;
2954     }
2955 
2956     // Check if the access is smaller than the vector size and can we find
2957     // a reasonable extract index.
2958     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2959                                    // Extract.
2960     int StartIdx[2];  // StartIdx to extract from
2961     for (unsigned Input = 0; Input < 2; ++Input) {
2962       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2963         RangeUse[Input] = 0; // Unused
2964         StartIdx[Input] = 0;
2965         continue;
2966       }
2967 
2968       // Find a good start index that is a multiple of the mask length. Then
2969       // see if the rest of the elements are in range.
2970       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2971       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2972           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2973         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2974     }
2975 
2976     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2977       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2978       return;
2979     }
2980     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2981       // Extract appropriate subvector and generate a vector shuffle
2982       for (unsigned Input = 0; Input < 2; ++Input) {
2983         SDValue &Src = Input == 0 ? Src1 : Src2;
2984         if (RangeUse[Input] == 0)
2985           Src = DAG.getUNDEF(VT);
2986         else {
2987           SDLoc dl = getCurSDLoc();
2988           Src = DAG.getNode(
2989               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2990               DAG.getConstant(StartIdx[Input], dl,
2991                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2992         }
2993       }
2994 
2995       // Calculate new mask.
2996       SmallVector<int, 8> MappedOps;
2997       for (unsigned i = 0; i != MaskNumElts; ++i) {
2998         int Idx = Mask[i];
2999         if (Idx >= 0) {
3000           if (Idx < (int)SrcNumElts)
3001             Idx -= StartIdx[0];
3002           else
3003             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3004         }
3005         MappedOps.push_back(Idx);
3006       }
3007 
3008       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3009                                         &MappedOps[0]));
3010       return;
3011     }
3012   }
3013 
3014   // We can't use either concat vectors or extract subvectors so fall back to
3015   // replacing the shuffle with extract and build vector.
3016   // to insert and build vector.
3017   EVT EltVT = VT.getVectorElementType();
3018   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3019   SDLoc dl = getCurSDLoc();
3020   SmallVector<SDValue,8> Ops;
3021   for (unsigned i = 0; i != MaskNumElts; ++i) {
3022     int Idx = Mask[i];
3023     SDValue Res;
3024 
3025     if (Idx < 0) {
3026       Res = DAG.getUNDEF(EltVT);
3027     } else {
3028       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3029       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3030 
3031       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3032                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3033     }
3034 
3035     Ops.push_back(Res);
3036   }
3037 
3038   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3039 }
3040 
3041 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3042   const Value *Op0 = I.getOperand(0);
3043   const Value *Op1 = I.getOperand(1);
3044   Type *AggTy = I.getType();
3045   Type *ValTy = Op1->getType();
3046   bool IntoUndef = isa<UndefValue>(Op0);
3047   bool FromUndef = isa<UndefValue>(Op1);
3048 
3049   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3050 
3051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052   SmallVector<EVT, 4> AggValueVTs;
3053   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3054   SmallVector<EVT, 4> ValValueVTs;
3055   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3056 
3057   unsigned NumAggValues = AggValueVTs.size();
3058   unsigned NumValValues = ValValueVTs.size();
3059   SmallVector<SDValue, 4> Values(NumAggValues);
3060 
3061   // Ignore an insertvalue that produces an empty object
3062   if (!NumAggValues) {
3063     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3064     return;
3065   }
3066 
3067   SDValue Agg = getValue(Op0);
3068   unsigned i = 0;
3069   // Copy the beginning value(s) from the original aggregate.
3070   for (; i != LinearIndex; ++i)
3071     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3072                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3073   // Copy values from the inserted value(s).
3074   if (NumValValues) {
3075     SDValue Val = getValue(Op1);
3076     for (; i != LinearIndex + NumValValues; ++i)
3077       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3078                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3079   }
3080   // Copy remaining value(s) from the original aggregate.
3081   for (; i != NumAggValues; ++i)
3082     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3083                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3084 
3085   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3086                            DAG.getVTList(AggValueVTs), Values));
3087 }
3088 
3089 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3090   const Value *Op0 = I.getOperand(0);
3091   Type *AggTy = Op0->getType();
3092   Type *ValTy = I.getType();
3093   bool OutOfUndef = isa<UndefValue>(Op0);
3094 
3095   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3096 
3097   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3098   SmallVector<EVT, 4> ValValueVTs;
3099   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3100 
3101   unsigned NumValValues = ValValueVTs.size();
3102 
3103   // Ignore a extractvalue that produces an empty object
3104   if (!NumValValues) {
3105     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3106     return;
3107   }
3108 
3109   SmallVector<SDValue, 4> Values(NumValValues);
3110 
3111   SDValue Agg = getValue(Op0);
3112   // Copy out the selected value(s).
3113   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3114     Values[i - LinearIndex] =
3115       OutOfUndef ?
3116         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3117         SDValue(Agg.getNode(), Agg.getResNo() + i);
3118 
3119   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3120                            DAG.getVTList(ValValueVTs), Values));
3121 }
3122 
3123 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3124   Value *Op0 = I.getOperand(0);
3125   // Note that the pointer operand may be a vector of pointers. Take the scalar
3126   // element which holds a pointer.
3127   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3128   SDValue N = getValue(Op0);
3129   SDLoc dl = getCurSDLoc();
3130 
3131   // Normalize Vector GEP - all scalar operands should be converted to the
3132   // splat vector.
3133   unsigned VectorWidth = I.getType()->isVectorTy() ?
3134     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3135 
3136   if (VectorWidth && !N.getValueType().isVector()) {
3137     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
3138     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3139     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3140   }
3141   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3142        GTI != E; ++GTI) {
3143     const Value *Idx = GTI.getOperand();
3144     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3145       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3146       if (Field) {
3147         // N = N + Offset
3148         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3149 
3150         // In an inbouds GEP with an offset that is nonnegative even when
3151         // interpreted as signed, assume there is no unsigned overflow.
3152         SDNodeFlags Flags;
3153         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3154           Flags.setNoUnsignedWrap(true);
3155 
3156         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3157                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3158       }
3159     } else {
3160       MVT PtrTy =
3161           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3162       unsigned PtrSize = PtrTy.getSizeInBits();
3163       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3164 
3165       // If this is a scalar constant or a splat vector of constants,
3166       // handle it quickly.
3167       const auto *CI = dyn_cast<ConstantInt>(Idx);
3168       if (!CI && isa<ConstantDataVector>(Idx) &&
3169           cast<ConstantDataVector>(Idx)->getSplatValue())
3170         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3171 
3172       if (CI) {
3173         if (CI->isZero())
3174           continue;
3175         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3176         SDValue OffsVal = VectorWidth ?
3177           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3178           DAG.getConstant(Offs, dl, PtrTy);
3179 
3180         // In an inbouds GEP with an offset that is nonnegative even when
3181         // interpreted as signed, assume there is no unsigned overflow.
3182         SDNodeFlags Flags;
3183         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3184           Flags.setNoUnsignedWrap(true);
3185 
3186         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3187         continue;
3188       }
3189 
3190       // N = N + Idx * ElementSize;
3191       SDValue IdxN = getValue(Idx);
3192 
3193       if (!IdxN.getValueType().isVector() && VectorWidth) {
3194         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3195         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3196         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3197       }
3198       // If the index is smaller or larger than intptr_t, truncate or extend
3199       // it.
3200       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3201 
3202       // If this is a multiply by a power of two, turn it into a shl
3203       // immediately.  This is a very common case.
3204       if (ElementSize != 1) {
3205         if (ElementSize.isPowerOf2()) {
3206           unsigned Amt = ElementSize.logBase2();
3207           IdxN = DAG.getNode(ISD::SHL, dl,
3208                              N.getValueType(), IdxN,
3209                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3210         } else {
3211           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3212           IdxN = DAG.getNode(ISD::MUL, dl,
3213                              N.getValueType(), IdxN, Scale);
3214         }
3215       }
3216 
3217       N = DAG.getNode(ISD::ADD, dl,
3218                       N.getValueType(), N, IdxN);
3219     }
3220   }
3221 
3222   setValue(&I, N);
3223 }
3224 
3225 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3226   // If this is a fixed sized alloca in the entry block of the function,
3227   // allocate it statically on the stack.
3228   if (FuncInfo.StaticAllocaMap.count(&I))
3229     return;   // getValue will auto-populate this.
3230 
3231   SDLoc dl = getCurSDLoc();
3232   Type *Ty = I.getAllocatedType();
3233   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3234   auto &DL = DAG.getDataLayout();
3235   uint64_t TySize = DL.getTypeAllocSize(Ty);
3236   unsigned Align =
3237       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3238 
3239   SDValue AllocSize = getValue(I.getArraySize());
3240 
3241   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3242   if (AllocSize.getValueType() != IntPtr)
3243     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3244 
3245   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3246                           AllocSize,
3247                           DAG.getConstant(TySize, dl, IntPtr));
3248 
3249   // Handle alignment.  If the requested alignment is less than or equal to
3250   // the stack alignment, ignore it.  If the size is greater than or equal to
3251   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3252   unsigned StackAlign =
3253       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3254   if (Align <= StackAlign)
3255     Align = 0;
3256 
3257   // Round the size of the allocation up to the stack alignment size
3258   // by add SA-1 to the size. This doesn't overflow because we're computing
3259   // an address inside an alloca.
3260   SDNodeFlags Flags;
3261   Flags.setNoUnsignedWrap(true);
3262   AllocSize = DAG.getNode(ISD::ADD, dl,
3263                           AllocSize.getValueType(), AllocSize,
3264                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3265 
3266   // Mask out the low bits for alignment purposes.
3267   AllocSize = DAG.getNode(ISD::AND, dl,
3268                           AllocSize.getValueType(), AllocSize,
3269                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3270                                                 dl));
3271 
3272   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3273   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3274   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3275   setValue(&I, DSA);
3276   DAG.setRoot(DSA.getValue(1));
3277 
3278   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3279 }
3280 
3281 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3282   if (I.isAtomic())
3283     return visitAtomicLoad(I);
3284 
3285   const Value *SV = I.getOperand(0);
3286   SDValue Ptr = getValue(SV);
3287 
3288   Type *Ty = I.getType();
3289 
3290   bool isVolatile = I.isVolatile();
3291   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3292 
3293   // The IR notion of invariant_load only guarantees that all *non-faulting*
3294   // invariant loads result in the same value.  The MI notion of invariant load
3295   // guarantees that the load can be legally moved to any location within its
3296   // containing function.  The MI notion of invariant_load is stronger than the
3297   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3298   // with a guarantee that the location being loaded from is dereferenceable
3299   // throughout the function's lifetime.
3300 
3301   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3302                      isDereferenceablePointer(SV, DAG.getDataLayout());
3303   unsigned Alignment = I.getAlignment();
3304 
3305   AAMDNodes AAInfo;
3306   I.getAAMetadata(AAInfo);
3307   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3308 
3309   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3310   SmallVector<EVT, 4> ValueVTs;
3311   SmallVector<uint64_t, 4> Offsets;
3312   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3313   unsigned NumValues = ValueVTs.size();
3314   if (NumValues == 0)
3315     return;
3316 
3317   SDValue Root;
3318   bool ConstantMemory = false;
3319   if (isVolatile || NumValues > MaxParallelChains)
3320     // Serialize volatile loads with other side effects.
3321     Root = getRoot();
3322   else if (AA->pointsToConstantMemory(MemoryLocation(
3323                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3324     // Do not serialize (non-volatile) loads of constant memory with anything.
3325     Root = DAG.getEntryNode();
3326     ConstantMemory = true;
3327   } else {
3328     // Do not serialize non-volatile loads against each other.
3329     Root = DAG.getRoot();
3330   }
3331 
3332   SDLoc dl = getCurSDLoc();
3333 
3334   if (isVolatile)
3335     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3336 
3337   // An aggregate load cannot wrap around the address space, so offsets to its
3338   // parts don't wrap either.
3339   SDNodeFlags Flags;
3340   Flags.setNoUnsignedWrap(true);
3341 
3342   SmallVector<SDValue, 4> Values(NumValues);
3343   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3344   EVT PtrVT = Ptr.getValueType();
3345   unsigned ChainI = 0;
3346   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3347     // Serializing loads here may result in excessive register pressure, and
3348     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3349     // could recover a bit by hoisting nodes upward in the chain by recognizing
3350     // they are side-effect free or do not alias. The optimizer should really
3351     // avoid this case by converting large object/array copies to llvm.memcpy
3352     // (MaxParallelChains should always remain as failsafe).
3353     if (ChainI == MaxParallelChains) {
3354       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3355       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3356                                   makeArrayRef(Chains.data(), ChainI));
3357       Root = Chain;
3358       ChainI = 0;
3359     }
3360     SDValue A = DAG.getNode(ISD::ADD, dl,
3361                             PtrVT, Ptr,
3362                             DAG.getConstant(Offsets[i], dl, PtrVT),
3363                             &Flags);
3364     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3365                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3366                             isNonTemporal, isInvariant, Alignment, AAInfo,
3367                             Ranges);
3368 
3369     Values[i] = L;
3370     Chains[ChainI] = L.getValue(1);
3371   }
3372 
3373   if (!ConstantMemory) {
3374     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3375                                 makeArrayRef(Chains.data(), ChainI));
3376     if (isVolatile)
3377       DAG.setRoot(Chain);
3378     else
3379       PendingLoads.push_back(Chain);
3380   }
3381 
3382   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3383                            DAG.getVTList(ValueVTs), Values));
3384 }
3385 
3386 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3387   if (I.isAtomic())
3388     return visitAtomicStore(I);
3389 
3390   const Value *SrcV = I.getOperand(0);
3391   const Value *PtrV = I.getOperand(1);
3392 
3393   SmallVector<EVT, 4> ValueVTs;
3394   SmallVector<uint64_t, 4> Offsets;
3395   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3396                   SrcV->getType(), ValueVTs, &Offsets);
3397   unsigned NumValues = ValueVTs.size();
3398   if (NumValues == 0)
3399     return;
3400 
3401   // Get the lowered operands. Note that we do this after
3402   // checking if NumResults is zero, because with zero results
3403   // the operands won't have values in the map.
3404   SDValue Src = getValue(SrcV);
3405   SDValue Ptr = getValue(PtrV);
3406 
3407   SDValue Root = getRoot();
3408   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3409   EVT PtrVT = Ptr.getValueType();
3410   bool isVolatile = I.isVolatile();
3411   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3412   unsigned Alignment = I.getAlignment();
3413   SDLoc dl = getCurSDLoc();
3414 
3415   AAMDNodes AAInfo;
3416   I.getAAMetadata(AAInfo);
3417 
3418   // An aggregate load cannot wrap around the address space, so offsets to its
3419   // parts don't wrap either.
3420   SDNodeFlags Flags;
3421   Flags.setNoUnsignedWrap(true);
3422 
3423   unsigned ChainI = 0;
3424   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3425     // See visitLoad comments.
3426     if (ChainI == MaxParallelChains) {
3427       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3428                                   makeArrayRef(Chains.data(), ChainI));
3429       Root = Chain;
3430       ChainI = 0;
3431     }
3432     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3433                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3434     SDValue St = DAG.getStore(Root, dl,
3435                               SDValue(Src.getNode(), Src.getResNo() + i),
3436                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3437                               isVolatile, isNonTemporal, Alignment, AAInfo);
3438     Chains[ChainI] = St;
3439   }
3440 
3441   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3442                                   makeArrayRef(Chains.data(), ChainI));
3443   DAG.setRoot(StoreNode);
3444 }
3445 
3446 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3447   SDLoc sdl = getCurSDLoc();
3448 
3449   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3450   Value  *PtrOperand = I.getArgOperand(1);
3451   SDValue Ptr = getValue(PtrOperand);
3452   SDValue Src0 = getValue(I.getArgOperand(0));
3453   SDValue Mask = getValue(I.getArgOperand(3));
3454   EVT VT = Src0.getValueType();
3455   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3456   if (!Alignment)
3457     Alignment = DAG.getEVTAlignment(VT);
3458 
3459   AAMDNodes AAInfo;
3460   I.getAAMetadata(AAInfo);
3461 
3462   MachineMemOperand *MMO =
3463     DAG.getMachineFunction().
3464     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3465                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3466                           Alignment, AAInfo);
3467   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3468                                          MMO, false);
3469   DAG.setRoot(StoreNode);
3470   setValue(&I, StoreNode);
3471 }
3472 
3473 // Get a uniform base for the Gather/Scatter intrinsic.
3474 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3475 // We try to represent it as a base pointer + vector of indices.
3476 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3477 // The first operand of the GEP may be a single pointer or a vector of pointers
3478 // Example:
3479 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3480 //  or
3481 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3482 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3483 //
3484 // When the first GEP operand is a single pointer - it is the uniform base we
3485 // are looking for. If first operand of the GEP is a splat vector - we
3486 // extract the spalt value and use it as a uniform base.
3487 // In all other cases the function returns 'false'.
3488 //
3489 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3490                            SelectionDAGBuilder* SDB) {
3491 
3492   SelectionDAG& DAG = SDB->DAG;
3493   LLVMContext &Context = *DAG.getContext();
3494 
3495   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3496   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3497   if (!GEP || GEP->getNumOperands() > 2)
3498     return false;
3499 
3500   const Value *GEPPtr = GEP->getPointerOperand();
3501   if (!GEPPtr->getType()->isVectorTy())
3502     Ptr = GEPPtr;
3503   else if (!(Ptr = getSplatValue(GEPPtr)))
3504     return false;
3505 
3506   Value *IndexVal = GEP->getOperand(1);
3507 
3508   // The operands of the GEP may be defined in another basic block.
3509   // In this case we'll not find nodes for the operands.
3510   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3511     return false;
3512 
3513   Base = SDB->getValue(Ptr);
3514   Index = SDB->getValue(IndexVal);
3515 
3516   // Suppress sign extension.
3517   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3518     if (SDB->findValue(Sext->getOperand(0))) {
3519       IndexVal = Sext->getOperand(0);
3520       Index = SDB->getValue(IndexVal);
3521     }
3522   }
3523   if (!Index.getValueType().isVector()) {
3524     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3525     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3526     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3527     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3528   }
3529   return true;
3530 }
3531 
3532 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3533   SDLoc sdl = getCurSDLoc();
3534 
3535   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3536   const Value *Ptr = I.getArgOperand(1);
3537   SDValue Src0 = getValue(I.getArgOperand(0));
3538   SDValue Mask = getValue(I.getArgOperand(3));
3539   EVT VT = Src0.getValueType();
3540   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3541   if (!Alignment)
3542     Alignment = DAG.getEVTAlignment(VT);
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544 
3545   AAMDNodes AAInfo;
3546   I.getAAMetadata(AAInfo);
3547 
3548   SDValue Base;
3549   SDValue Index;
3550   const Value *BasePtr = Ptr;
3551   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3552 
3553   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3554   MachineMemOperand *MMO = DAG.getMachineFunction().
3555     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3556                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3557                          Alignment, AAInfo);
3558   if (!UniformBase) {
3559     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3560     Index = getValue(Ptr);
3561   }
3562   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3563   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3564                                          Ops, MMO);
3565   DAG.setRoot(Scatter);
3566   setValue(&I, Scatter);
3567 }
3568 
3569 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3570   SDLoc sdl = getCurSDLoc();
3571 
3572   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3573   Value  *PtrOperand = I.getArgOperand(0);
3574   SDValue Ptr = getValue(PtrOperand);
3575   SDValue Src0 = getValue(I.getArgOperand(3));
3576   SDValue Mask = getValue(I.getArgOperand(2));
3577 
3578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3579   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3580   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3581   if (!Alignment)
3582     Alignment = DAG.getEVTAlignment(VT);
3583 
3584   AAMDNodes AAInfo;
3585   I.getAAMetadata(AAInfo);
3586   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3587 
3588   SDValue InChain = DAG.getRoot();
3589   if (AA->pointsToConstantMemory(MemoryLocation(
3590           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3591           AAInfo))) {
3592     // Do not serialize (non-volatile) loads of constant memory with anything.
3593     InChain = DAG.getEntryNode();
3594   }
3595 
3596   MachineMemOperand *MMO =
3597     DAG.getMachineFunction().
3598     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3599                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3600                           Alignment, AAInfo, Ranges);
3601 
3602   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3603                                    ISD::NON_EXTLOAD);
3604   SDValue OutChain = Load.getValue(1);
3605   DAG.setRoot(OutChain);
3606   setValue(&I, Load);
3607 }
3608 
3609 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3610   SDLoc sdl = getCurSDLoc();
3611 
3612   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3613   const Value *Ptr = I.getArgOperand(0);
3614   SDValue Src0 = getValue(I.getArgOperand(3));
3615   SDValue Mask = getValue(I.getArgOperand(2));
3616 
3617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3618   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3619   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3620   if (!Alignment)
3621     Alignment = DAG.getEVTAlignment(VT);
3622 
3623   AAMDNodes AAInfo;
3624   I.getAAMetadata(AAInfo);
3625   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3626 
3627   SDValue Root = DAG.getRoot();
3628   SDValue Base;
3629   SDValue Index;
3630   const Value *BasePtr = Ptr;
3631   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3632   bool ConstantMemory = false;
3633   if (UniformBase &&
3634       AA->pointsToConstantMemory(MemoryLocation(
3635           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3636           AAInfo))) {
3637     // Do not serialize (non-volatile) loads of constant memory with anything.
3638     Root = DAG.getEntryNode();
3639     ConstantMemory = true;
3640   }
3641 
3642   MachineMemOperand *MMO =
3643     DAG.getMachineFunction().
3644     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3645                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3646                          Alignment, AAInfo, Ranges);
3647 
3648   if (!UniformBase) {
3649     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3650     Index = getValue(Ptr);
3651   }
3652   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3653   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3654                                        Ops, MMO);
3655 
3656   SDValue OutChain = Gather.getValue(1);
3657   if (!ConstantMemory)
3658     PendingLoads.push_back(OutChain);
3659   setValue(&I, Gather);
3660 }
3661 
3662 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3663   SDLoc dl = getCurSDLoc();
3664   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3665   AtomicOrdering FailureOrder = I.getFailureOrdering();
3666   SynchronizationScope Scope = I.getSynchScope();
3667 
3668   SDValue InChain = getRoot();
3669 
3670   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3671   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3672   SDValue L = DAG.getAtomicCmpSwap(
3673       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3674       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3675       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3676       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3677 
3678   SDValue OutChain = L.getValue(2);
3679 
3680   setValue(&I, L);
3681   DAG.setRoot(OutChain);
3682 }
3683 
3684 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3685   SDLoc dl = getCurSDLoc();
3686   ISD::NodeType NT;
3687   switch (I.getOperation()) {
3688   default: llvm_unreachable("Unknown atomicrmw operation");
3689   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3690   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3691   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3692   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3693   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3694   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3695   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3696   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3697   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3698   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3699   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3700   }
3701   AtomicOrdering Order = I.getOrdering();
3702   SynchronizationScope Scope = I.getSynchScope();
3703 
3704   SDValue InChain = getRoot();
3705 
3706   SDValue L =
3707     DAG.getAtomic(NT, dl,
3708                   getValue(I.getValOperand()).getSimpleValueType(),
3709                   InChain,
3710                   getValue(I.getPointerOperand()),
3711                   getValue(I.getValOperand()),
3712                   I.getPointerOperand(),
3713                   /* Alignment=*/ 0, Order, Scope);
3714 
3715   SDValue OutChain = L.getValue(1);
3716 
3717   setValue(&I, L);
3718   DAG.setRoot(OutChain);
3719 }
3720 
3721 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3722   SDLoc dl = getCurSDLoc();
3723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3724   SDValue Ops[3];
3725   Ops[0] = getRoot();
3726   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3727                            TLI.getPointerTy(DAG.getDataLayout()));
3728   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3729                            TLI.getPointerTy(DAG.getDataLayout()));
3730   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3731 }
3732 
3733 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3734   SDLoc dl = getCurSDLoc();
3735   AtomicOrdering Order = I.getOrdering();
3736   SynchronizationScope Scope = I.getSynchScope();
3737 
3738   SDValue InChain = getRoot();
3739 
3740   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3741   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3742 
3743   if (I.getAlignment() < VT.getSizeInBits() / 8)
3744     report_fatal_error("Cannot generate unaligned atomic load");
3745 
3746   MachineMemOperand *MMO =
3747       DAG.getMachineFunction().
3748       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3749                            MachineMemOperand::MOVolatile |
3750                            MachineMemOperand::MOLoad,
3751                            VT.getStoreSize(),
3752                            I.getAlignment() ? I.getAlignment() :
3753                                               DAG.getEVTAlignment(VT));
3754 
3755   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3756   SDValue L =
3757       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3758                     getValue(I.getPointerOperand()), MMO,
3759                     Order, Scope);
3760 
3761   SDValue OutChain = L.getValue(1);
3762 
3763   setValue(&I, L);
3764   DAG.setRoot(OutChain);
3765 }
3766 
3767 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3768   SDLoc dl = getCurSDLoc();
3769 
3770   AtomicOrdering Order = I.getOrdering();
3771   SynchronizationScope Scope = I.getSynchScope();
3772 
3773   SDValue InChain = getRoot();
3774 
3775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3776   EVT VT =
3777       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3778 
3779   if (I.getAlignment() < VT.getSizeInBits() / 8)
3780     report_fatal_error("Cannot generate unaligned atomic store");
3781 
3782   SDValue OutChain =
3783     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3784                   InChain,
3785                   getValue(I.getPointerOperand()),
3786                   getValue(I.getValueOperand()),
3787                   I.getPointerOperand(), I.getAlignment(),
3788                   Order, Scope);
3789 
3790   DAG.setRoot(OutChain);
3791 }
3792 
3793 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3794 /// node.
3795 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3796                                                unsigned Intrinsic) {
3797   bool HasChain = !I.doesNotAccessMemory();
3798   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3799 
3800   // Build the operand list.
3801   SmallVector<SDValue, 8> Ops;
3802   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3803     if (OnlyLoad) {
3804       // We don't need to serialize loads against other loads.
3805       Ops.push_back(DAG.getRoot());
3806     } else {
3807       Ops.push_back(getRoot());
3808     }
3809   }
3810 
3811   // Info is set by getTgtMemInstrinsic
3812   TargetLowering::IntrinsicInfo Info;
3813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3814   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3815 
3816   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3817   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3818       Info.opc == ISD::INTRINSIC_W_CHAIN)
3819     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3820                                         TLI.getPointerTy(DAG.getDataLayout())));
3821 
3822   // Add all operands of the call to the operand list.
3823   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3824     SDValue Op = getValue(I.getArgOperand(i));
3825     Ops.push_back(Op);
3826   }
3827 
3828   SmallVector<EVT, 4> ValueVTs;
3829   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3830 
3831   if (HasChain)
3832     ValueVTs.push_back(MVT::Other);
3833 
3834   SDVTList VTs = DAG.getVTList(ValueVTs);
3835 
3836   // Create the node.
3837   SDValue Result;
3838   if (IsTgtIntrinsic) {
3839     // This is target intrinsic that touches memory
3840     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3841                                      VTs, Ops, Info.memVT,
3842                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3843                                      Info.align, Info.vol,
3844                                      Info.readMem, Info.writeMem, Info.size);
3845   } else if (!HasChain) {
3846     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3847   } else if (!I.getType()->isVoidTy()) {
3848     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3849   } else {
3850     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3851   }
3852 
3853   if (HasChain) {
3854     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3855     if (OnlyLoad)
3856       PendingLoads.push_back(Chain);
3857     else
3858       DAG.setRoot(Chain);
3859   }
3860 
3861   if (!I.getType()->isVoidTy()) {
3862     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3863       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3864       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3865     } else
3866       Result = lowerRangeToAssertZExt(DAG, I, Result);
3867 
3868     setValue(&I, Result);
3869   }
3870 }
3871 
3872 /// GetSignificand - Get the significand and build it into a floating-point
3873 /// number with exponent of 1:
3874 ///
3875 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3876 ///
3877 /// where Op is the hexadecimal representation of floating point value.
3878 static SDValue
3879 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3880   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3881                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3882   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3883                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3884   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3885 }
3886 
3887 /// GetExponent - Get the exponent:
3888 ///
3889 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3890 ///
3891 /// where Op is the hexadecimal representation of floating point value.
3892 static SDValue
3893 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3894             SDLoc dl) {
3895   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3896                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3897   SDValue t1 = DAG.getNode(
3898       ISD::SRL, dl, MVT::i32, t0,
3899       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3900   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3901                            DAG.getConstant(127, dl, MVT::i32));
3902   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3903 }
3904 
3905 /// getF32Constant - Get 32-bit floating point constant.
3906 static SDValue
3907 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3908   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3909                            MVT::f32);
3910 }
3911 
3912 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3913                                        SelectionDAG &DAG) {
3914   // TODO: What fast-math-flags should be set on the floating-point nodes?
3915 
3916   //   IntegerPartOfX = ((int32_t)(t0);
3917   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3918 
3919   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3920   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3921   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3922 
3923   //   IntegerPartOfX <<= 23;
3924   IntegerPartOfX = DAG.getNode(
3925       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3926       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3927                                   DAG.getDataLayout())));
3928 
3929   SDValue TwoToFractionalPartOfX;
3930   if (LimitFloatPrecision <= 6) {
3931     // For floating-point precision of 6:
3932     //
3933     //   TwoToFractionalPartOfX =
3934     //     0.997535578f +
3935     //       (0.735607626f + 0.252464424f * x) * x;
3936     //
3937     // error 0.0144103317, which is 6 bits
3938     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3939                              getF32Constant(DAG, 0x3e814304, dl));
3940     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3941                              getF32Constant(DAG, 0x3f3c50c8, dl));
3942     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3943     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3944                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3945   } else if (LimitFloatPrecision <= 12) {
3946     // For floating-point precision of 12:
3947     //
3948     //   TwoToFractionalPartOfX =
3949     //     0.999892986f +
3950     //       (0.696457318f +
3951     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3952     //
3953     // error 0.000107046256, which is 13 to 14 bits
3954     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3955                              getF32Constant(DAG, 0x3da235e3, dl));
3956     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3957                              getF32Constant(DAG, 0x3e65b8f3, dl));
3958     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3959     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3960                              getF32Constant(DAG, 0x3f324b07, dl));
3961     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3962     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3963                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3964   } else { // LimitFloatPrecision <= 18
3965     // For floating-point precision of 18:
3966     //
3967     //   TwoToFractionalPartOfX =
3968     //     0.999999982f +
3969     //       (0.693148872f +
3970     //         (0.240227044f +
3971     //           (0.554906021e-1f +
3972     //             (0.961591928e-2f +
3973     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3974     // error 2.47208000*10^(-7), which is better than 18 bits
3975     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3976                              getF32Constant(DAG, 0x3924b03e, dl));
3977     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3978                              getF32Constant(DAG, 0x3ab24b87, dl));
3979     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3980     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3981                              getF32Constant(DAG, 0x3c1d8c17, dl));
3982     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3983     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3984                              getF32Constant(DAG, 0x3d634a1d, dl));
3985     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3986     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3987                              getF32Constant(DAG, 0x3e75fe14, dl));
3988     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3989     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3990                               getF32Constant(DAG, 0x3f317234, dl));
3991     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3992     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3993                                          getF32Constant(DAG, 0x3f800000, dl));
3994   }
3995 
3996   // Add the exponent into the result in integer domain.
3997   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3998   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3999                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4000 }
4001 
4002 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4003 /// limited-precision mode.
4004 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4005                          const TargetLowering &TLI) {
4006   if (Op.getValueType() == MVT::f32 &&
4007       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4008 
4009     // Put the exponent in the right bit position for later addition to the
4010     // final result:
4011     //
4012     //   #define LOG2OFe 1.4426950f
4013     //   t0 = Op * LOG2OFe
4014 
4015     // TODO: What fast-math-flags should be set here?
4016     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4017                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4018     return getLimitedPrecisionExp2(t0, dl, DAG);
4019   }
4020 
4021   // No special expansion.
4022   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4023 }
4024 
4025 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4026 /// limited-precision mode.
4027 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4028                          const TargetLowering &TLI) {
4029 
4030   // TODO: What fast-math-flags should be set on the floating-point nodes?
4031 
4032   if (Op.getValueType() == MVT::f32 &&
4033       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4034     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4035 
4036     // Scale the exponent by log(2) [0.69314718f].
4037     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4038     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4039                                         getF32Constant(DAG, 0x3f317218, dl));
4040 
4041     // Get the significand and build it into a floating-point number with
4042     // exponent of 1.
4043     SDValue X = GetSignificand(DAG, Op1, dl);
4044 
4045     SDValue LogOfMantissa;
4046     if (LimitFloatPrecision <= 6) {
4047       // For floating-point precision of 6:
4048       //
4049       //   LogofMantissa =
4050       //     -1.1609546f +
4051       //       (1.4034025f - 0.23903021f * x) * x;
4052       //
4053       // error 0.0034276066, which is better than 8 bits
4054       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4055                                getF32Constant(DAG, 0xbe74c456, dl));
4056       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4057                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4058       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4059       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4060                                   getF32Constant(DAG, 0x3f949a29, dl));
4061     } else if (LimitFloatPrecision <= 12) {
4062       // For floating-point precision of 12:
4063       //
4064       //   LogOfMantissa =
4065       //     -1.7417939f +
4066       //       (2.8212026f +
4067       //         (-1.4699568f +
4068       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4069       //
4070       // error 0.000061011436, which is 14 bits
4071       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4072                                getF32Constant(DAG, 0xbd67b6d6, dl));
4073       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4074                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4075       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4076       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4077                                getF32Constant(DAG, 0x3fbc278b, dl));
4078       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4079       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4080                                getF32Constant(DAG, 0x40348e95, dl));
4081       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4082       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4083                                   getF32Constant(DAG, 0x3fdef31a, dl));
4084     } else { // LimitFloatPrecision <= 18
4085       // For floating-point precision of 18:
4086       //
4087       //   LogOfMantissa =
4088       //     -2.1072184f +
4089       //       (4.2372794f +
4090       //         (-3.7029485f +
4091       //           (2.2781945f +
4092       //             (-0.87823314f +
4093       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4094       //
4095       // error 0.0000023660568, which is better than 18 bits
4096       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4097                                getF32Constant(DAG, 0xbc91e5ac, dl));
4098       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4099                                getF32Constant(DAG, 0x3e4350aa, dl));
4100       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4101       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4102                                getF32Constant(DAG, 0x3f60d3e3, dl));
4103       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4104       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4105                                getF32Constant(DAG, 0x4011cdf0, dl));
4106       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4107       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4108                                getF32Constant(DAG, 0x406cfd1c, dl));
4109       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4110       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4111                                getF32Constant(DAG, 0x408797cb, dl));
4112       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4113       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4114                                   getF32Constant(DAG, 0x4006dcab, dl));
4115     }
4116 
4117     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4118   }
4119 
4120   // No special expansion.
4121   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4122 }
4123 
4124 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4125 /// limited-precision mode.
4126 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4127                           const TargetLowering &TLI) {
4128 
4129   // TODO: What fast-math-flags should be set on the floating-point nodes?
4130 
4131   if (Op.getValueType() == MVT::f32 &&
4132       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4133     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4134 
4135     // Get the exponent.
4136     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4137 
4138     // Get the significand and build it into a floating-point number with
4139     // exponent of 1.
4140     SDValue X = GetSignificand(DAG, Op1, dl);
4141 
4142     // Different possible minimax approximations of significand in
4143     // floating-point for various degrees of accuracy over [1,2].
4144     SDValue Log2ofMantissa;
4145     if (LimitFloatPrecision <= 6) {
4146       // For floating-point precision of 6:
4147       //
4148       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4149       //
4150       // error 0.0049451742, which is more than 7 bits
4151       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4152                                getF32Constant(DAG, 0xbeb08fe0, dl));
4153       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4154                                getF32Constant(DAG, 0x40019463, dl));
4155       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4156       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4157                                    getF32Constant(DAG, 0x3fd6633d, dl));
4158     } else if (LimitFloatPrecision <= 12) {
4159       // For floating-point precision of 12:
4160       //
4161       //   Log2ofMantissa =
4162       //     -2.51285454f +
4163       //       (4.07009056f +
4164       //         (-2.12067489f +
4165       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4166       //
4167       // error 0.0000876136000, which is better than 13 bits
4168       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4169                                getF32Constant(DAG, 0xbda7262e, dl));
4170       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4171                                getF32Constant(DAG, 0x3f25280b, dl));
4172       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4173       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4174                                getF32Constant(DAG, 0x4007b923, dl));
4175       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4176       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4177                                getF32Constant(DAG, 0x40823e2f, dl));
4178       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4179       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4180                                    getF32Constant(DAG, 0x4020d29c, dl));
4181     } else { // LimitFloatPrecision <= 18
4182       // For floating-point precision of 18:
4183       //
4184       //   Log2ofMantissa =
4185       //     -3.0400495f +
4186       //       (6.1129976f +
4187       //         (-5.3420409f +
4188       //           (3.2865683f +
4189       //             (-1.2669343f +
4190       //               (0.27515199f -
4191       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4192       //
4193       // error 0.0000018516, which is better than 18 bits
4194       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4195                                getF32Constant(DAG, 0xbcd2769e, dl));
4196       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4197                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4198       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4199       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4200                                getF32Constant(DAG, 0x3fa22ae7, dl));
4201       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4202       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4203                                getF32Constant(DAG, 0x40525723, dl));
4204       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4205       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4206                                getF32Constant(DAG, 0x40aaf200, dl));
4207       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4208       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4209                                getF32Constant(DAG, 0x40c39dad, dl));
4210       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4211       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4212                                    getF32Constant(DAG, 0x4042902c, dl));
4213     }
4214 
4215     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4216   }
4217 
4218   // No special expansion.
4219   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4220 }
4221 
4222 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4223 /// limited-precision mode.
4224 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4225                            const TargetLowering &TLI) {
4226 
4227   // TODO: What fast-math-flags should be set on the floating-point nodes?
4228 
4229   if (Op.getValueType() == MVT::f32 &&
4230       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4231     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4232 
4233     // Scale the exponent by log10(2) [0.30102999f].
4234     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4235     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4236                                         getF32Constant(DAG, 0x3e9a209a, dl));
4237 
4238     // Get the significand and build it into a floating-point number with
4239     // exponent of 1.
4240     SDValue X = GetSignificand(DAG, Op1, dl);
4241 
4242     SDValue Log10ofMantissa;
4243     if (LimitFloatPrecision <= 6) {
4244       // For floating-point precision of 6:
4245       //
4246       //   Log10ofMantissa =
4247       //     -0.50419619f +
4248       //       (0.60948995f - 0.10380950f * x) * x;
4249       //
4250       // error 0.0014886165, which is 6 bits
4251       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4252                                getF32Constant(DAG, 0xbdd49a13, dl));
4253       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4254                                getF32Constant(DAG, 0x3f1c0789, dl));
4255       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4256       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4257                                     getF32Constant(DAG, 0x3f011300, dl));
4258     } else if (LimitFloatPrecision <= 12) {
4259       // For floating-point precision of 12:
4260       //
4261       //   Log10ofMantissa =
4262       //     -0.64831180f +
4263       //       (0.91751397f +
4264       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4265       //
4266       // error 0.00019228036, which is better than 12 bits
4267       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4268                                getF32Constant(DAG, 0x3d431f31, dl));
4269       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4270                                getF32Constant(DAG, 0x3ea21fb2, dl));
4271       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4272       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4273                                getF32Constant(DAG, 0x3f6ae232, dl));
4274       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4275       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4276                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4277     } else { // LimitFloatPrecision <= 18
4278       // For floating-point precision of 18:
4279       //
4280       //   Log10ofMantissa =
4281       //     -0.84299375f +
4282       //       (1.5327582f +
4283       //         (-1.0688956f +
4284       //           (0.49102474f +
4285       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4286       //
4287       // error 0.0000037995730, which is better than 18 bits
4288       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4289                                getF32Constant(DAG, 0x3c5d51ce, dl));
4290       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4291                                getF32Constant(DAG, 0x3e00685a, dl));
4292       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4293       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4294                                getF32Constant(DAG, 0x3efb6798, dl));
4295       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4296       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4297                                getF32Constant(DAG, 0x3f88d192, dl));
4298       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4299       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4300                                getF32Constant(DAG, 0x3fc4316c, dl));
4301       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4302       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4303                                     getF32Constant(DAG, 0x3f57ce70, dl));
4304     }
4305 
4306     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4307   }
4308 
4309   // No special expansion.
4310   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4311 }
4312 
4313 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4314 /// limited-precision mode.
4315 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4316                           const TargetLowering &TLI) {
4317   if (Op.getValueType() == MVT::f32 &&
4318       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4319     return getLimitedPrecisionExp2(Op, dl, DAG);
4320 
4321   // No special expansion.
4322   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4323 }
4324 
4325 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4326 /// limited-precision mode with x == 10.0f.
4327 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4328                          SelectionDAG &DAG, const TargetLowering &TLI) {
4329   bool IsExp10 = false;
4330   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4331       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4332     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4333       APFloat Ten(10.0f);
4334       IsExp10 = LHSC->isExactlyValue(Ten);
4335     }
4336   }
4337 
4338   // TODO: What fast-math-flags should be set on the FMUL node?
4339   if (IsExp10) {
4340     // Put the exponent in the right bit position for later addition to the
4341     // final result:
4342     //
4343     //   #define LOG2OF10 3.3219281f
4344     //   t0 = Op * LOG2OF10;
4345     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4346                              getF32Constant(DAG, 0x40549a78, dl));
4347     return getLimitedPrecisionExp2(t0, dl, DAG);
4348   }
4349 
4350   // No special expansion.
4351   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4352 }
4353 
4354 
4355 /// ExpandPowI - Expand a llvm.powi intrinsic.
4356 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4357                           SelectionDAG &DAG) {
4358   // If RHS is a constant, we can expand this out to a multiplication tree,
4359   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4360   // optimizing for size, we only want to do this if the expansion would produce
4361   // a small number of multiplies, otherwise we do the full expansion.
4362   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4363     // Get the exponent as a positive value.
4364     unsigned Val = RHSC->getSExtValue();
4365     if ((int)Val < 0) Val = -Val;
4366 
4367     // powi(x, 0) -> 1.0
4368     if (Val == 0)
4369       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4370 
4371     const Function *F = DAG.getMachineFunction().getFunction();
4372     if (!F->optForSize() ||
4373         // If optimizing for size, don't insert too many multiplies.
4374         // This inserts up to 5 multiplies.
4375         countPopulation(Val) + Log2_32(Val) < 7) {
4376       // We use the simple binary decomposition method to generate the multiply
4377       // sequence.  There are more optimal ways to do this (for example,
4378       // powi(x,15) generates one more multiply than it should), but this has
4379       // the benefit of being both really simple and much better than a libcall.
4380       SDValue Res;  // Logically starts equal to 1.0
4381       SDValue CurSquare = LHS;
4382       // TODO: Intrinsics should have fast-math-flags that propagate to these
4383       // nodes.
4384       while (Val) {
4385         if (Val & 1) {
4386           if (Res.getNode())
4387             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4388           else
4389             Res = CurSquare;  // 1.0*CurSquare.
4390         }
4391 
4392         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4393                                 CurSquare, CurSquare);
4394         Val >>= 1;
4395       }
4396 
4397       // If the original was negative, invert the result, producing 1/(x*x*x).
4398       if (RHSC->getSExtValue() < 0)
4399         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4400                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4401       return Res;
4402     }
4403   }
4404 
4405   // Otherwise, expand to a libcall.
4406   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4407 }
4408 
4409 // getUnderlyingArgReg - Find underlying register used for a truncated or
4410 // bitcasted argument.
4411 static unsigned getUnderlyingArgReg(const SDValue &N) {
4412   switch (N.getOpcode()) {
4413   case ISD::CopyFromReg:
4414     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4415   case ISD::BITCAST:
4416   case ISD::AssertZext:
4417   case ISD::AssertSext:
4418   case ISD::TRUNCATE:
4419     return getUnderlyingArgReg(N.getOperand(0));
4420   default:
4421     return 0;
4422   }
4423 }
4424 
4425 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4426 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4427 /// At the end of instruction selection, they will be inserted to the entry BB.
4428 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4429     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4430     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4431   const Argument *Arg = dyn_cast<Argument>(V);
4432   if (!Arg)
4433     return false;
4434 
4435   MachineFunction &MF = DAG.getMachineFunction();
4436   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4437 
4438   // Ignore inlined function arguments here.
4439   //
4440   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4441   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4442     return false;
4443 
4444   Optional<MachineOperand> Op;
4445   // Some arguments' frame index is recorded during argument lowering.
4446   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4447     Op = MachineOperand::CreateFI(FI);
4448 
4449   if (!Op && N.getNode()) {
4450     unsigned Reg = getUnderlyingArgReg(N);
4451     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4452       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4453       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4454       if (PR)
4455         Reg = PR;
4456     }
4457     if (Reg)
4458       Op = MachineOperand::CreateReg(Reg, false);
4459   }
4460 
4461   if (!Op) {
4462     // Check if ValueMap has reg number.
4463     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4464     if (VMI != FuncInfo.ValueMap.end())
4465       Op = MachineOperand::CreateReg(VMI->second, false);
4466   }
4467 
4468   if (!Op && N.getNode())
4469     // Check if frame index is available.
4470     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4471       if (FrameIndexSDNode *FINode =
4472           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4473         Op = MachineOperand::CreateFI(FINode->getIndex());
4474 
4475   if (!Op)
4476     return false;
4477 
4478   assert(Variable->isValidLocationForIntrinsic(DL) &&
4479          "Expected inlined-at fields to agree");
4480   if (Op->isReg())
4481     FuncInfo.ArgDbgValues.push_back(
4482         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4483                 Op->getReg(), Offset, Variable, Expr));
4484   else
4485     FuncInfo.ArgDbgValues.push_back(
4486         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4487             .addOperand(*Op)
4488             .addImm(Offset)
4489             .addMetadata(Variable)
4490             .addMetadata(Expr));
4491 
4492   return true;
4493 }
4494 
4495 // VisualStudio defines setjmp as _setjmp
4496 #if defined(_MSC_VER) && defined(setjmp) && \
4497                          !defined(setjmp_undefined_for_msvc)
4498 #  pragma push_macro("setjmp")
4499 #  undef setjmp
4500 #  define setjmp_undefined_for_msvc
4501 #endif
4502 
4503 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4504 /// we want to emit this as a call to a named external function, return the name
4505 /// otherwise lower it and return null.
4506 const char *
4507 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4509   SDLoc sdl = getCurSDLoc();
4510   DebugLoc dl = getCurDebugLoc();
4511   SDValue Res;
4512 
4513   switch (Intrinsic) {
4514   default:
4515     // By default, turn this into a target intrinsic node.
4516     visitTargetIntrinsic(I, Intrinsic);
4517     return nullptr;
4518   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4519   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4520   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4521   case Intrinsic::returnaddress:
4522     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4523                              TLI.getPointerTy(DAG.getDataLayout()),
4524                              getValue(I.getArgOperand(0))));
4525     return nullptr;
4526   case Intrinsic::frameaddress:
4527     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4528                              TLI.getPointerTy(DAG.getDataLayout()),
4529                              getValue(I.getArgOperand(0))));
4530     return nullptr;
4531   case Intrinsic::read_register: {
4532     Value *Reg = I.getArgOperand(0);
4533     SDValue Chain = getRoot();
4534     SDValue RegName =
4535         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4536     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4537     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4538       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4539     setValue(&I, Res);
4540     DAG.setRoot(Res.getValue(1));
4541     return nullptr;
4542   }
4543   case Intrinsic::write_register: {
4544     Value *Reg = I.getArgOperand(0);
4545     Value *RegValue = I.getArgOperand(1);
4546     SDValue Chain = getRoot();
4547     SDValue RegName =
4548         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4549     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4550                             RegName, getValue(RegValue)));
4551     return nullptr;
4552   }
4553   case Intrinsic::setjmp:
4554     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4555   case Intrinsic::longjmp:
4556     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4557   case Intrinsic::memcpy: {
4558     SDValue Op1 = getValue(I.getArgOperand(0));
4559     SDValue Op2 = getValue(I.getArgOperand(1));
4560     SDValue Op3 = getValue(I.getArgOperand(2));
4561     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4562     if (!Align)
4563       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4564     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4565     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4566     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4567                                false, isTC,
4568                                MachinePointerInfo(I.getArgOperand(0)),
4569                                MachinePointerInfo(I.getArgOperand(1)));
4570     updateDAGForMaybeTailCall(MC);
4571     return nullptr;
4572   }
4573   case Intrinsic::memset: {
4574     SDValue Op1 = getValue(I.getArgOperand(0));
4575     SDValue Op2 = getValue(I.getArgOperand(1));
4576     SDValue Op3 = getValue(I.getArgOperand(2));
4577     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4578     if (!Align)
4579       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4580     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4581     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4582     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4583                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4584     updateDAGForMaybeTailCall(MS);
4585     return nullptr;
4586   }
4587   case Intrinsic::memmove: {
4588     SDValue Op1 = getValue(I.getArgOperand(0));
4589     SDValue Op2 = getValue(I.getArgOperand(1));
4590     SDValue Op3 = getValue(I.getArgOperand(2));
4591     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4592     if (!Align)
4593       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4594     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4595     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4596     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4597                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4598                                 MachinePointerInfo(I.getArgOperand(1)));
4599     updateDAGForMaybeTailCall(MM);
4600     return nullptr;
4601   }
4602   case Intrinsic::dbg_declare: {
4603     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4604     DILocalVariable *Variable = DI.getVariable();
4605     DIExpression *Expression = DI.getExpression();
4606     const Value *Address = DI.getAddress();
4607     assert(Variable && "Missing variable");
4608     if (!Address) {
4609       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4610       return nullptr;
4611     }
4612 
4613     // Check if address has undef value.
4614     if (isa<UndefValue>(Address) ||
4615         (Address->use_empty() && !isa<Argument>(Address))) {
4616       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4617       return nullptr;
4618     }
4619 
4620     SDValue &N = NodeMap[Address];
4621     if (!N.getNode() && isa<Argument>(Address))
4622       // Check unused arguments map.
4623       N = UnusedArgNodeMap[Address];
4624     SDDbgValue *SDV;
4625     if (N.getNode()) {
4626       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4627         Address = BCI->getOperand(0);
4628       // Parameters are handled specially.
4629       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4630       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4631       if (isParameter && FINode) {
4632         // Byval parameter. We have a frame index at this point.
4633         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4634                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4635       } else if (isa<Argument>(Address)) {
4636         // Address is an argument, so try to emit its dbg value using
4637         // virtual register info from the FuncInfo.ValueMap.
4638         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4639                                  N);
4640         return nullptr;
4641       } else {
4642         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4643                               true, 0, dl, SDNodeOrder);
4644       }
4645       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4646     } else {
4647       // If Address is an argument then try to emit its dbg value using
4648       // virtual register info from the FuncInfo.ValueMap.
4649       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4650                                     N)) {
4651         // If variable is pinned by a alloca in dominating bb then
4652         // use StaticAllocaMap.
4653         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4654           if (AI->getParent() != DI.getParent()) {
4655             DenseMap<const AllocaInst*, int>::iterator SI =
4656               FuncInfo.StaticAllocaMap.find(AI);
4657             if (SI != FuncInfo.StaticAllocaMap.end()) {
4658               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4659                                               0, dl, SDNodeOrder);
4660               DAG.AddDbgValue(SDV, nullptr, false);
4661               return nullptr;
4662             }
4663           }
4664         }
4665         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4666       }
4667     }
4668     return nullptr;
4669   }
4670   case Intrinsic::dbg_value: {
4671     const DbgValueInst &DI = cast<DbgValueInst>(I);
4672     assert(DI.getVariable() && "Missing variable");
4673 
4674     DILocalVariable *Variable = DI.getVariable();
4675     DIExpression *Expression = DI.getExpression();
4676     uint64_t Offset = DI.getOffset();
4677     const Value *V = DI.getValue();
4678     if (!V)
4679       return nullptr;
4680 
4681     SDDbgValue *SDV;
4682     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4683       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4684                                     SDNodeOrder);
4685       DAG.AddDbgValue(SDV, nullptr, false);
4686     } else {
4687       // Do not use getValue() in here; we don't want to generate code at
4688       // this point if it hasn't been done yet.
4689       SDValue N = NodeMap[V];
4690       if (!N.getNode() && isa<Argument>(V))
4691         // Check unused arguments map.
4692         N = UnusedArgNodeMap[V];
4693       if (N.getNode()) {
4694         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4695                                       false, N)) {
4696           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4697                                 false, Offset, dl, SDNodeOrder);
4698           DAG.AddDbgValue(SDV, N.getNode(), false);
4699         }
4700       } else if (!V->use_empty() ) {
4701         // Do not call getValue(V) yet, as we don't want to generate code.
4702         // Remember it for later.
4703         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4704         DanglingDebugInfoMap[V] = DDI;
4705       } else {
4706         // We may expand this to cover more cases.  One case where we have no
4707         // data available is an unreferenced parameter.
4708         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4709       }
4710     }
4711 
4712     // Build a debug info table entry.
4713     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4714       V = BCI->getOperand(0);
4715     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4716     // Don't handle byval struct arguments or VLAs, for example.
4717     if (!AI) {
4718       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4719       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4720       return nullptr;
4721     }
4722     DenseMap<const AllocaInst*, int>::iterator SI =
4723       FuncInfo.StaticAllocaMap.find(AI);
4724     if (SI == FuncInfo.StaticAllocaMap.end())
4725       return nullptr; // VLAs.
4726     return nullptr;
4727   }
4728 
4729   case Intrinsic::eh_typeid_for: {
4730     // Find the type id for the given typeinfo.
4731     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4732     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4733     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4734     setValue(&I, Res);
4735     return nullptr;
4736   }
4737 
4738   case Intrinsic::eh_return_i32:
4739   case Intrinsic::eh_return_i64:
4740     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4741     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4742                             MVT::Other,
4743                             getControlRoot(),
4744                             getValue(I.getArgOperand(0)),
4745                             getValue(I.getArgOperand(1))));
4746     return nullptr;
4747   case Intrinsic::eh_unwind_init:
4748     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4749     return nullptr;
4750   case Intrinsic::eh_dwarf_cfa: {
4751     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4752                                         TLI.getPointerTy(DAG.getDataLayout()));
4753     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4754                                  CfaArg.getValueType(),
4755                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4756                                              CfaArg.getValueType()),
4757                                  CfaArg);
4758     SDValue FA = DAG.getNode(
4759         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4760         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4761     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4762                              FA, Offset));
4763     return nullptr;
4764   }
4765   case Intrinsic::eh_sjlj_callsite: {
4766     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4767     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4768     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4769     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4770 
4771     MMI.setCurrentCallSite(CI->getZExtValue());
4772     return nullptr;
4773   }
4774   case Intrinsic::eh_sjlj_functioncontext: {
4775     // Get and store the index of the function context.
4776     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4777     AllocaInst *FnCtx =
4778       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4779     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4780     MFI->setFunctionContextIndex(FI);
4781     return nullptr;
4782   }
4783   case Intrinsic::eh_sjlj_setjmp: {
4784     SDValue Ops[2];
4785     Ops[0] = getRoot();
4786     Ops[1] = getValue(I.getArgOperand(0));
4787     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4788                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4789     setValue(&I, Op.getValue(0));
4790     DAG.setRoot(Op.getValue(1));
4791     return nullptr;
4792   }
4793   case Intrinsic::eh_sjlj_longjmp: {
4794     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4795                             getRoot(), getValue(I.getArgOperand(0))));
4796     return nullptr;
4797   }
4798   case Intrinsic::eh_sjlj_setup_dispatch: {
4799     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4800                             getRoot()));
4801     return nullptr;
4802   }
4803 
4804   case Intrinsic::masked_gather:
4805     visitMaskedGather(I);
4806     return nullptr;
4807   case Intrinsic::masked_load:
4808     visitMaskedLoad(I);
4809     return nullptr;
4810   case Intrinsic::masked_scatter:
4811     visitMaskedScatter(I);
4812     return nullptr;
4813   case Intrinsic::masked_store:
4814     visitMaskedStore(I);
4815     return nullptr;
4816   case Intrinsic::x86_mmx_pslli_w:
4817   case Intrinsic::x86_mmx_pslli_d:
4818   case Intrinsic::x86_mmx_pslli_q:
4819   case Intrinsic::x86_mmx_psrli_w:
4820   case Intrinsic::x86_mmx_psrli_d:
4821   case Intrinsic::x86_mmx_psrli_q:
4822   case Intrinsic::x86_mmx_psrai_w:
4823   case Intrinsic::x86_mmx_psrai_d: {
4824     SDValue ShAmt = getValue(I.getArgOperand(1));
4825     if (isa<ConstantSDNode>(ShAmt)) {
4826       visitTargetIntrinsic(I, Intrinsic);
4827       return nullptr;
4828     }
4829     unsigned NewIntrinsic = 0;
4830     EVT ShAmtVT = MVT::v2i32;
4831     switch (Intrinsic) {
4832     case Intrinsic::x86_mmx_pslli_w:
4833       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4834       break;
4835     case Intrinsic::x86_mmx_pslli_d:
4836       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4837       break;
4838     case Intrinsic::x86_mmx_pslli_q:
4839       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4840       break;
4841     case Intrinsic::x86_mmx_psrli_w:
4842       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4843       break;
4844     case Intrinsic::x86_mmx_psrli_d:
4845       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4846       break;
4847     case Intrinsic::x86_mmx_psrli_q:
4848       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4849       break;
4850     case Intrinsic::x86_mmx_psrai_w:
4851       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4852       break;
4853     case Intrinsic::x86_mmx_psrai_d:
4854       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4855       break;
4856     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4857     }
4858 
4859     // The vector shift intrinsics with scalars uses 32b shift amounts but
4860     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4861     // to be zero.
4862     // We must do this early because v2i32 is not a legal type.
4863     SDValue ShOps[2];
4864     ShOps[0] = ShAmt;
4865     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4866     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4867     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4868     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4869     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4870                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4871                        getValue(I.getArgOperand(0)), ShAmt);
4872     setValue(&I, Res);
4873     return nullptr;
4874   }
4875   case Intrinsic::convertff:
4876   case Intrinsic::convertfsi:
4877   case Intrinsic::convertfui:
4878   case Intrinsic::convertsif:
4879   case Intrinsic::convertuif:
4880   case Intrinsic::convertss:
4881   case Intrinsic::convertsu:
4882   case Intrinsic::convertus:
4883   case Intrinsic::convertuu: {
4884     ISD::CvtCode Code = ISD::CVT_INVALID;
4885     switch (Intrinsic) {
4886     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4887     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4888     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4889     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4890     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4891     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4892     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4893     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4894     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4895     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4896     }
4897     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4898     const Value *Op1 = I.getArgOperand(0);
4899     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4900                                DAG.getValueType(DestVT),
4901                                DAG.getValueType(getValue(Op1).getValueType()),
4902                                getValue(I.getArgOperand(1)),
4903                                getValue(I.getArgOperand(2)),
4904                                Code);
4905     setValue(&I, Res);
4906     return nullptr;
4907   }
4908   case Intrinsic::powi:
4909     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4910                             getValue(I.getArgOperand(1)), DAG));
4911     return nullptr;
4912   case Intrinsic::log:
4913     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4914     return nullptr;
4915   case Intrinsic::log2:
4916     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4917     return nullptr;
4918   case Intrinsic::log10:
4919     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4920     return nullptr;
4921   case Intrinsic::exp:
4922     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4923     return nullptr;
4924   case Intrinsic::exp2:
4925     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4926     return nullptr;
4927   case Intrinsic::pow:
4928     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4929                            getValue(I.getArgOperand(1)), DAG, TLI));
4930     return nullptr;
4931   case Intrinsic::sqrt:
4932   case Intrinsic::fabs:
4933   case Intrinsic::sin:
4934   case Intrinsic::cos:
4935   case Intrinsic::floor:
4936   case Intrinsic::ceil:
4937   case Intrinsic::trunc:
4938   case Intrinsic::rint:
4939   case Intrinsic::nearbyint:
4940   case Intrinsic::round: {
4941     unsigned Opcode;
4942     switch (Intrinsic) {
4943     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4944     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4945     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4946     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4947     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4948     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4949     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4950     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4951     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4952     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4953     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4954     }
4955 
4956     setValue(&I, DAG.getNode(Opcode, sdl,
4957                              getValue(I.getArgOperand(0)).getValueType(),
4958                              getValue(I.getArgOperand(0))));
4959     return nullptr;
4960   }
4961   case Intrinsic::minnum:
4962     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4963                              getValue(I.getArgOperand(0)).getValueType(),
4964                              getValue(I.getArgOperand(0)),
4965                              getValue(I.getArgOperand(1))));
4966     return nullptr;
4967   case Intrinsic::maxnum:
4968     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4969                              getValue(I.getArgOperand(0)).getValueType(),
4970                              getValue(I.getArgOperand(0)),
4971                              getValue(I.getArgOperand(1))));
4972     return nullptr;
4973   case Intrinsic::copysign:
4974     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4975                              getValue(I.getArgOperand(0)).getValueType(),
4976                              getValue(I.getArgOperand(0)),
4977                              getValue(I.getArgOperand(1))));
4978     return nullptr;
4979   case Intrinsic::fma:
4980     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4981                              getValue(I.getArgOperand(0)).getValueType(),
4982                              getValue(I.getArgOperand(0)),
4983                              getValue(I.getArgOperand(1)),
4984                              getValue(I.getArgOperand(2))));
4985     return nullptr;
4986   case Intrinsic::fmuladd: {
4987     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4988     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4989         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4990       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4991                                getValue(I.getArgOperand(0)).getValueType(),
4992                                getValue(I.getArgOperand(0)),
4993                                getValue(I.getArgOperand(1)),
4994                                getValue(I.getArgOperand(2))));
4995     } else {
4996       // TODO: Intrinsic calls should have fast-math-flags.
4997       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4998                                 getValue(I.getArgOperand(0)).getValueType(),
4999                                 getValue(I.getArgOperand(0)),
5000                                 getValue(I.getArgOperand(1)));
5001       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5002                                 getValue(I.getArgOperand(0)).getValueType(),
5003                                 Mul,
5004                                 getValue(I.getArgOperand(2)));
5005       setValue(&I, Add);
5006     }
5007     return nullptr;
5008   }
5009   case Intrinsic::convert_to_fp16:
5010     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5011                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5012                                          getValue(I.getArgOperand(0)),
5013                                          DAG.getTargetConstant(0, sdl,
5014                                                                MVT::i32))));
5015     return nullptr;
5016   case Intrinsic::convert_from_fp16:
5017     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5018                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5019                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5020                                          getValue(I.getArgOperand(0)))));
5021     return nullptr;
5022   case Intrinsic::pcmarker: {
5023     SDValue Tmp = getValue(I.getArgOperand(0));
5024     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5025     return nullptr;
5026   }
5027   case Intrinsic::readcyclecounter: {
5028     SDValue Op = getRoot();
5029     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5030                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5031     setValue(&I, Res);
5032     DAG.setRoot(Res.getValue(1));
5033     return nullptr;
5034   }
5035   case Intrinsic::bitreverse:
5036     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5037                              getValue(I.getArgOperand(0)).getValueType(),
5038                              getValue(I.getArgOperand(0))));
5039     return nullptr;
5040   case Intrinsic::bswap:
5041     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5042                              getValue(I.getArgOperand(0)).getValueType(),
5043                              getValue(I.getArgOperand(0))));
5044     return nullptr;
5045   case Intrinsic::cttz: {
5046     SDValue Arg = getValue(I.getArgOperand(0));
5047     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5048     EVT Ty = Arg.getValueType();
5049     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5050                              sdl, Ty, Arg));
5051     return nullptr;
5052   }
5053   case Intrinsic::ctlz: {
5054     SDValue Arg = getValue(I.getArgOperand(0));
5055     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5056     EVT Ty = Arg.getValueType();
5057     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5058                              sdl, Ty, Arg));
5059     return nullptr;
5060   }
5061   case Intrinsic::ctpop: {
5062     SDValue Arg = getValue(I.getArgOperand(0));
5063     EVT Ty = Arg.getValueType();
5064     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5065     return nullptr;
5066   }
5067   case Intrinsic::stacksave: {
5068     SDValue Op = getRoot();
5069     Res = DAG.getNode(
5070         ISD::STACKSAVE, sdl,
5071         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5072     setValue(&I, Res);
5073     DAG.setRoot(Res.getValue(1));
5074     return nullptr;
5075   }
5076   case Intrinsic::stackrestore: {
5077     Res = getValue(I.getArgOperand(0));
5078     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5079     return nullptr;
5080   }
5081   case Intrinsic::get_dynamic_area_offset: {
5082     SDValue Op = getRoot();
5083     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5084     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5085     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5086     // target.
5087     if (PtrTy != ResTy)
5088       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5089                          " intrinsic!");
5090     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5091                       Op);
5092     DAG.setRoot(Op);
5093     setValue(&I, Res);
5094     return nullptr;
5095   }
5096   case Intrinsic::stackprotector: {
5097     // Emit code into the DAG to store the stack guard onto the stack.
5098     MachineFunction &MF = DAG.getMachineFunction();
5099     MachineFrameInfo *MFI = MF.getFrameInfo();
5100     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5101     SDValue Src, Chain = getRoot();
5102     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5103     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5104 
5105     // See if Ptr is a bitcast. If it is, look through it and see if we can get
5106     // global variable __stack_chk_guard.
5107     if (!GV)
5108       if (const Operator *BC = dyn_cast<Operator>(Ptr))
5109         if (BC->getOpcode() == Instruction::BitCast)
5110           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5111 
5112     if (GV && TLI.useLoadStackGuardNode()) {
5113       // Emit a LOAD_STACK_GUARD node.
5114       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5115                                                sdl, PtrTy, Chain);
5116       MachinePointerInfo MPInfo(GV);
5117       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5118       unsigned Flags = MachineMemOperand::MOLoad |
5119                        MachineMemOperand::MOInvariant;
5120       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5121                                          PtrTy.getSizeInBits() / 8,
5122                                          DAG.getEVTAlignment(PtrTy));
5123       Node->setMemRefs(MemRefs, MemRefs + 1);
5124 
5125       // Copy the guard value to a virtual register so that it can be
5126       // retrieved in the epilogue.
5127       Src = SDValue(Node, 0);
5128       const TargetRegisterClass *RC =
5129           TLI.getRegClassFor(Src.getSimpleValueType());
5130       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5131 
5132       SPDescriptor.setGuardReg(Reg);
5133       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5134     } else {
5135       Src = getValue(I.getArgOperand(0));   // The guard's value.
5136     }
5137 
5138     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5139 
5140     int FI = FuncInfo.StaticAllocaMap[Slot];
5141     MFI->setStackProtectorIndex(FI);
5142 
5143     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5144 
5145     // Store the stack protector onto the stack.
5146     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5147                                                  DAG.getMachineFunction(), FI),
5148                        true, false, 0);
5149     setValue(&I, Res);
5150     DAG.setRoot(Res);
5151     return nullptr;
5152   }
5153   case Intrinsic::objectsize: {
5154     // If we don't know by now, we're never going to know.
5155     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5156 
5157     assert(CI && "Non-constant type in __builtin_object_size?");
5158 
5159     SDValue Arg = getValue(I.getCalledValue());
5160     EVT Ty = Arg.getValueType();
5161 
5162     if (CI->isZero())
5163       Res = DAG.getConstant(-1ULL, sdl, Ty);
5164     else
5165       Res = DAG.getConstant(0, sdl, Ty);
5166 
5167     setValue(&I, Res);
5168     return nullptr;
5169   }
5170   case Intrinsic::annotation:
5171   case Intrinsic::ptr_annotation:
5172     // Drop the intrinsic, but forward the value
5173     setValue(&I, getValue(I.getOperand(0)));
5174     return nullptr;
5175   case Intrinsic::assume:
5176   case Intrinsic::var_annotation:
5177     // Discard annotate attributes and assumptions
5178     return nullptr;
5179 
5180   case Intrinsic::init_trampoline: {
5181     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5182 
5183     SDValue Ops[6];
5184     Ops[0] = getRoot();
5185     Ops[1] = getValue(I.getArgOperand(0));
5186     Ops[2] = getValue(I.getArgOperand(1));
5187     Ops[3] = getValue(I.getArgOperand(2));
5188     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5189     Ops[5] = DAG.getSrcValue(F);
5190 
5191     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5192 
5193     DAG.setRoot(Res);
5194     return nullptr;
5195   }
5196   case Intrinsic::adjust_trampoline: {
5197     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5198                              TLI.getPointerTy(DAG.getDataLayout()),
5199                              getValue(I.getArgOperand(0))));
5200     return nullptr;
5201   }
5202   case Intrinsic::gcroot: {
5203     MachineFunction &MF = DAG.getMachineFunction();
5204     const Function *F = MF.getFunction();
5205     (void)F;
5206     assert(F->hasGC() &&
5207            "only valid in functions with gc specified, enforced by Verifier");
5208     assert(GFI && "implied by previous");
5209     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5210     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5211 
5212     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5213     GFI->addStackRoot(FI->getIndex(), TypeMap);
5214     return nullptr;
5215   }
5216   case Intrinsic::gcread:
5217   case Intrinsic::gcwrite:
5218     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5219   case Intrinsic::flt_rounds:
5220     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5221     return nullptr;
5222 
5223   case Intrinsic::expect: {
5224     // Just replace __builtin_expect(exp, c) with EXP.
5225     setValue(&I, getValue(I.getArgOperand(0)));
5226     return nullptr;
5227   }
5228 
5229   case Intrinsic::debugtrap:
5230   case Intrinsic::trap: {
5231     StringRef TrapFuncName =
5232         I.getAttributes()
5233             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5234             .getValueAsString();
5235     if (TrapFuncName.empty()) {
5236       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5237         ISD::TRAP : ISD::DEBUGTRAP;
5238       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5239       return nullptr;
5240     }
5241     TargetLowering::ArgListTy Args;
5242 
5243     TargetLowering::CallLoweringInfo CLI(DAG);
5244     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5245         CallingConv::C, I.getType(),
5246         DAG.getExternalSymbol(TrapFuncName.data(),
5247                               TLI.getPointerTy(DAG.getDataLayout())),
5248         std::move(Args), 0);
5249 
5250     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5251     DAG.setRoot(Result.second);
5252     return nullptr;
5253   }
5254 
5255   case Intrinsic::uadd_with_overflow:
5256   case Intrinsic::sadd_with_overflow:
5257   case Intrinsic::usub_with_overflow:
5258   case Intrinsic::ssub_with_overflow:
5259   case Intrinsic::umul_with_overflow:
5260   case Intrinsic::smul_with_overflow: {
5261     ISD::NodeType Op;
5262     switch (Intrinsic) {
5263     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5264     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5265     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5266     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5267     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5268     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5269     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5270     }
5271     SDValue Op1 = getValue(I.getArgOperand(0));
5272     SDValue Op2 = getValue(I.getArgOperand(1));
5273 
5274     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5275     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5276     return nullptr;
5277   }
5278   case Intrinsic::prefetch: {
5279     SDValue Ops[5];
5280     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5281     Ops[0] = getRoot();
5282     Ops[1] = getValue(I.getArgOperand(0));
5283     Ops[2] = getValue(I.getArgOperand(1));
5284     Ops[3] = getValue(I.getArgOperand(2));
5285     Ops[4] = getValue(I.getArgOperand(3));
5286     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5287                                         DAG.getVTList(MVT::Other), Ops,
5288                                         EVT::getIntegerVT(*Context, 8),
5289                                         MachinePointerInfo(I.getArgOperand(0)),
5290                                         0, /* align */
5291                                         false, /* volatile */
5292                                         rw==0, /* read */
5293                                         rw==1)); /* write */
5294     return nullptr;
5295   }
5296   case Intrinsic::lifetime_start:
5297   case Intrinsic::lifetime_end: {
5298     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5299     // Stack coloring is not enabled in O0, discard region information.
5300     if (TM.getOptLevel() == CodeGenOpt::None)
5301       return nullptr;
5302 
5303     SmallVector<Value *, 4> Allocas;
5304     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5305 
5306     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5307            E = Allocas.end(); Object != E; ++Object) {
5308       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5309 
5310       // Could not find an Alloca.
5311       if (!LifetimeObject)
5312         continue;
5313 
5314       // First check that the Alloca is static, otherwise it won't have a
5315       // valid frame index.
5316       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5317       if (SI == FuncInfo.StaticAllocaMap.end())
5318         return nullptr;
5319 
5320       int FI = SI->second;
5321 
5322       SDValue Ops[2];
5323       Ops[0] = getRoot();
5324       Ops[1] =
5325           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5326       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5327 
5328       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5329       DAG.setRoot(Res);
5330     }
5331     return nullptr;
5332   }
5333   case Intrinsic::invariant_start:
5334     // Discard region information.
5335     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5336     return nullptr;
5337   case Intrinsic::invariant_end:
5338     // Discard region information.
5339     return nullptr;
5340   case Intrinsic::stackprotectorcheck: {
5341     // Do not actually emit anything for this basic block. Instead we initialize
5342     // the stack protector descriptor and export the guard variable so we can
5343     // access it in FinishBasicBlock.
5344     const BasicBlock *BB = I.getParent();
5345     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5346     ExportFromCurrentBlock(SPDescriptor.getGuard());
5347 
5348     // Flush our exports since we are going to process a terminator.
5349     (void)getControlRoot();
5350     return nullptr;
5351   }
5352   case Intrinsic::clear_cache:
5353     return TLI.getClearCacheBuiltinName();
5354   case Intrinsic::donothing:
5355     // ignore
5356     return nullptr;
5357   case Intrinsic::experimental_stackmap: {
5358     visitStackmap(I);
5359     return nullptr;
5360   }
5361   case Intrinsic::experimental_patchpoint_void:
5362   case Intrinsic::experimental_patchpoint_i64: {
5363     visitPatchpoint(&I);
5364     return nullptr;
5365   }
5366   case Intrinsic::experimental_gc_statepoint: {
5367     visitStatepoint(I);
5368     return nullptr;
5369   }
5370   case Intrinsic::experimental_gc_result: {
5371     visitGCResult(I);
5372     return nullptr;
5373   }
5374   case Intrinsic::experimental_gc_relocate: {
5375     visitGCRelocate(cast<GCRelocateInst>(I));
5376     return nullptr;
5377   }
5378   case Intrinsic::instrprof_increment:
5379     llvm_unreachable("instrprof failed to lower an increment");
5380   case Intrinsic::instrprof_value_profile:
5381     llvm_unreachable("instrprof failed to lower a value profiling call");
5382   case Intrinsic::localescape: {
5383     MachineFunction &MF = DAG.getMachineFunction();
5384     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5385 
5386     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5387     // is the same on all targets.
5388     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5389       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5390       if (isa<ConstantPointerNull>(Arg))
5391         continue; // Skip null pointers. They represent a hole in index space.
5392       AllocaInst *Slot = cast<AllocaInst>(Arg);
5393       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5394              "can only escape static allocas");
5395       int FI = FuncInfo.StaticAllocaMap[Slot];
5396       MCSymbol *FrameAllocSym =
5397           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5398               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5399       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5400               TII->get(TargetOpcode::LOCAL_ESCAPE))
5401           .addSym(FrameAllocSym)
5402           .addFrameIndex(FI);
5403     }
5404 
5405     return nullptr;
5406   }
5407 
5408   case Intrinsic::localrecover: {
5409     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5410     MachineFunction &MF = DAG.getMachineFunction();
5411     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5412 
5413     // Get the symbol that defines the frame offset.
5414     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5415     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5416     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5417     MCSymbol *FrameAllocSym =
5418         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5419             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5420 
5421     // Create a MCSymbol for the label to avoid any target lowering
5422     // that would make this PC relative.
5423     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5424     SDValue OffsetVal =
5425         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5426 
5427     // Add the offset to the FP.
5428     Value *FP = I.getArgOperand(1);
5429     SDValue FPVal = getValue(FP);
5430     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5431     setValue(&I, Add);
5432 
5433     return nullptr;
5434   }
5435 
5436   case Intrinsic::eh_exceptionpointer:
5437   case Intrinsic::eh_exceptioncode: {
5438     // Get the exception pointer vreg, copy from it, and resize it to fit.
5439     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5440     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5441     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5442     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5443     SDValue N =
5444         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5445     if (Intrinsic == Intrinsic::eh_exceptioncode)
5446       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5447     setValue(&I, N);
5448     return nullptr;
5449   }
5450   }
5451 }
5452 
5453 std::pair<SDValue, SDValue>
5454 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5455                                     const BasicBlock *EHPadBB) {
5456   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5457   MCSymbol *BeginLabel = nullptr;
5458 
5459   if (EHPadBB) {
5460     // Insert a label before the invoke call to mark the try range.  This can be
5461     // used to detect deletion of the invoke via the MachineModuleInfo.
5462     BeginLabel = MMI.getContext().createTempSymbol();
5463 
5464     // For SjLj, keep track of which landing pads go with which invokes
5465     // so as to maintain the ordering of pads in the LSDA.
5466     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5467     if (CallSiteIndex) {
5468       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5469       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5470 
5471       // Now that the call site is handled, stop tracking it.
5472       MMI.setCurrentCallSite(0);
5473     }
5474 
5475     // Both PendingLoads and PendingExports must be flushed here;
5476     // this call might not return.
5477     (void)getRoot();
5478     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5479 
5480     CLI.setChain(getRoot());
5481   }
5482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5483   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5484 
5485   assert((CLI.IsTailCall || Result.second.getNode()) &&
5486          "Non-null chain expected with non-tail call!");
5487   assert((Result.second.getNode() || !Result.first.getNode()) &&
5488          "Null value expected with tail call!");
5489 
5490   if (!Result.second.getNode()) {
5491     // As a special case, a null chain means that a tail call has been emitted
5492     // and the DAG root is already updated.
5493     HasTailCall = true;
5494 
5495     // Since there's no actual continuation from this block, nothing can be
5496     // relying on us setting vregs for them.
5497     PendingExports.clear();
5498   } else {
5499     DAG.setRoot(Result.second);
5500   }
5501 
5502   if (EHPadBB) {
5503     // Insert a label at the end of the invoke call to mark the try range.  This
5504     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5505     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5506     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5507 
5508     // Inform MachineModuleInfo of range.
5509     if (MMI.hasEHFunclets()) {
5510       assert(CLI.CS);
5511       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5512       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5513                                 BeginLabel, EndLabel);
5514     } else {
5515       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5516     }
5517   }
5518 
5519   return Result;
5520 }
5521 
5522 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5523                                       bool isTailCall,
5524                                       const BasicBlock *EHPadBB) {
5525   FunctionType *FTy = CS.getFunctionType();
5526   Type *RetTy = CS.getType();
5527 
5528   TargetLowering::ArgListTy Args;
5529   TargetLowering::ArgListEntry Entry;
5530   Args.reserve(CS.arg_size());
5531 
5532   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5533        i != e; ++i) {
5534     const Value *V = *i;
5535 
5536     // Skip empty types
5537     if (V->getType()->isEmptyTy())
5538       continue;
5539 
5540     SDValue ArgNode = getValue(V);
5541     Entry.Node = ArgNode; Entry.Ty = V->getType();
5542 
5543     // Skip the first return-type Attribute to get to params.
5544     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5545     Args.push_back(Entry);
5546 
5547     // If we have an explicit sret argument that is an Instruction, (i.e., it
5548     // might point to function-local memory), we can't meaningfully tail-call.
5549     if (Entry.isSRet && isa<Instruction>(V))
5550       isTailCall = false;
5551   }
5552 
5553   // Check if target-independent constraints permit a tail call here.
5554   // Target-dependent constraints are checked within TLI->LowerCallTo.
5555   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5556     isTailCall = false;
5557 
5558   TargetLowering::CallLoweringInfo CLI(DAG);
5559   CLI.setDebugLoc(getCurSDLoc())
5560       .setChain(getRoot())
5561       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5562       .setTailCall(isTailCall)
5563       .setConvergent(CS.isConvergent());
5564   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5565 
5566   if (Result.first.getNode()) {
5567     const Instruction *Inst = CS.getInstruction();
5568     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5569     setValue(Inst, Result.first);
5570   }
5571 }
5572 
5573 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5574 /// value is equal or not-equal to zero.
5575 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5576   for (const User *U : V->users()) {
5577     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5578       if (IC->isEquality())
5579         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5580           if (C->isNullValue())
5581             continue;
5582     // Unknown instruction.
5583     return false;
5584   }
5585   return true;
5586 }
5587 
5588 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5589                              Type *LoadTy,
5590                              SelectionDAGBuilder &Builder) {
5591 
5592   // Check to see if this load can be trivially constant folded, e.g. if the
5593   // input is from a string literal.
5594   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5595     // Cast pointer to the type we really want to load.
5596     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5597                                          PointerType::getUnqual(LoadTy));
5598 
5599     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5600             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5601       return Builder.getValue(LoadCst);
5602   }
5603 
5604   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5605   // still constant memory, the input chain can be the entry node.
5606   SDValue Root;
5607   bool ConstantMemory = false;
5608 
5609   // Do not serialize (non-volatile) loads of constant memory with anything.
5610   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5611     Root = Builder.DAG.getEntryNode();
5612     ConstantMemory = true;
5613   } else {
5614     // Do not serialize non-volatile loads against each other.
5615     Root = Builder.DAG.getRoot();
5616   }
5617 
5618   SDValue Ptr = Builder.getValue(PtrVal);
5619   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5620                                         Ptr, MachinePointerInfo(PtrVal),
5621                                         false /*volatile*/,
5622                                         false /*nontemporal*/,
5623                                         false /*isinvariant*/, 1 /* align=1 */);
5624 
5625   if (!ConstantMemory)
5626     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5627   return LoadVal;
5628 }
5629 
5630 /// processIntegerCallValue - Record the value for an instruction that
5631 /// produces an integer result, converting the type where necessary.
5632 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5633                                                   SDValue Value,
5634                                                   bool IsSigned) {
5635   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5636                                                     I.getType(), true);
5637   if (IsSigned)
5638     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5639   else
5640     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5641   setValue(&I, Value);
5642 }
5643 
5644 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5645 /// If so, return true and lower it, otherwise return false and it will be
5646 /// lowered like a normal call.
5647 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5648   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5649   if (I.getNumArgOperands() != 3)
5650     return false;
5651 
5652   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5653   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5654       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5655       !I.getType()->isIntegerTy())
5656     return false;
5657 
5658   const Value *Size = I.getArgOperand(2);
5659   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5660   if (CSize && CSize->getZExtValue() == 0) {
5661     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5662                                                           I.getType(), true);
5663     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5664     return true;
5665   }
5666 
5667   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5668   std::pair<SDValue, SDValue> Res =
5669     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5670                                 getValue(LHS), getValue(RHS), getValue(Size),
5671                                 MachinePointerInfo(LHS),
5672                                 MachinePointerInfo(RHS));
5673   if (Res.first.getNode()) {
5674     processIntegerCallValue(I, Res.first, true);
5675     PendingLoads.push_back(Res.second);
5676     return true;
5677   }
5678 
5679   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5680   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5681   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5682     bool ActuallyDoIt = true;
5683     MVT LoadVT;
5684     Type *LoadTy;
5685     switch (CSize->getZExtValue()) {
5686     default:
5687       LoadVT = MVT::Other;
5688       LoadTy = nullptr;
5689       ActuallyDoIt = false;
5690       break;
5691     case 2:
5692       LoadVT = MVT::i16;
5693       LoadTy = Type::getInt16Ty(CSize->getContext());
5694       break;
5695     case 4:
5696       LoadVT = MVT::i32;
5697       LoadTy = Type::getInt32Ty(CSize->getContext());
5698       break;
5699     case 8:
5700       LoadVT = MVT::i64;
5701       LoadTy = Type::getInt64Ty(CSize->getContext());
5702       break;
5703         /*
5704     case 16:
5705       LoadVT = MVT::v4i32;
5706       LoadTy = Type::getInt32Ty(CSize->getContext());
5707       LoadTy = VectorType::get(LoadTy, 4);
5708       break;
5709          */
5710     }
5711 
5712     // This turns into unaligned loads.  We only do this if the target natively
5713     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5714     // we'll only produce a small number of byte loads.
5715 
5716     // Require that we can find a legal MVT, and only do this if the target
5717     // supports unaligned loads of that type.  Expanding into byte loads would
5718     // bloat the code.
5719     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5720     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5721       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5722       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5723       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5724       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5725       // TODO: Check alignment of src and dest ptrs.
5726       if (!TLI.isTypeLegal(LoadVT) ||
5727           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5728           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5729         ActuallyDoIt = false;
5730     }
5731 
5732     if (ActuallyDoIt) {
5733       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5734       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5735 
5736       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5737                                  ISD::SETNE);
5738       processIntegerCallValue(I, Res, false);
5739       return true;
5740     }
5741   }
5742 
5743 
5744   return false;
5745 }
5746 
5747 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5748 /// form.  If so, return true and lower it, otherwise return false and it
5749 /// will be lowered like a normal call.
5750 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5751   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5752   if (I.getNumArgOperands() != 3)
5753     return false;
5754 
5755   const Value *Src = I.getArgOperand(0);
5756   const Value *Char = I.getArgOperand(1);
5757   const Value *Length = I.getArgOperand(2);
5758   if (!Src->getType()->isPointerTy() ||
5759       !Char->getType()->isIntegerTy() ||
5760       !Length->getType()->isIntegerTy() ||
5761       !I.getType()->isPointerTy())
5762     return false;
5763 
5764   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5765   std::pair<SDValue, SDValue> Res =
5766     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5767                                 getValue(Src), getValue(Char), getValue(Length),
5768                                 MachinePointerInfo(Src));
5769   if (Res.first.getNode()) {
5770     setValue(&I, Res.first);
5771     PendingLoads.push_back(Res.second);
5772     return true;
5773   }
5774 
5775   return false;
5776 }
5777 
5778 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5779 /// optimized form.  If so, return true and lower it, otherwise return false
5780 /// and it will be lowered like a normal call.
5781 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5782   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5783   if (I.getNumArgOperands() != 2)
5784     return false;
5785 
5786   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5787   if (!Arg0->getType()->isPointerTy() ||
5788       !Arg1->getType()->isPointerTy() ||
5789       !I.getType()->isPointerTy())
5790     return false;
5791 
5792   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5793   std::pair<SDValue, SDValue> Res =
5794     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5795                                 getValue(Arg0), getValue(Arg1),
5796                                 MachinePointerInfo(Arg0),
5797                                 MachinePointerInfo(Arg1), isStpcpy);
5798   if (Res.first.getNode()) {
5799     setValue(&I, Res.first);
5800     DAG.setRoot(Res.second);
5801     return true;
5802   }
5803 
5804   return false;
5805 }
5806 
5807 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5808 /// If so, return true and lower it, otherwise return false and it will be
5809 /// lowered like a normal call.
5810 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5811   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5812   if (I.getNumArgOperands() != 2)
5813     return false;
5814 
5815   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5816   if (!Arg0->getType()->isPointerTy() ||
5817       !Arg1->getType()->isPointerTy() ||
5818       !I.getType()->isIntegerTy())
5819     return false;
5820 
5821   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5822   std::pair<SDValue, SDValue> Res =
5823     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5824                                 getValue(Arg0), getValue(Arg1),
5825                                 MachinePointerInfo(Arg0),
5826                                 MachinePointerInfo(Arg1));
5827   if (Res.first.getNode()) {
5828     processIntegerCallValue(I, Res.first, true);
5829     PendingLoads.push_back(Res.second);
5830     return true;
5831   }
5832 
5833   return false;
5834 }
5835 
5836 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5837 /// form.  If so, return true and lower it, otherwise return false and it
5838 /// will be lowered like a normal call.
5839 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5840   // Verify that the prototype makes sense.  size_t strlen(char *)
5841   if (I.getNumArgOperands() != 1)
5842     return false;
5843 
5844   const Value *Arg0 = I.getArgOperand(0);
5845   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5846     return false;
5847 
5848   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5849   std::pair<SDValue, SDValue> Res =
5850     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5851                                 getValue(Arg0), MachinePointerInfo(Arg0));
5852   if (Res.first.getNode()) {
5853     processIntegerCallValue(I, Res.first, false);
5854     PendingLoads.push_back(Res.second);
5855     return true;
5856   }
5857 
5858   return false;
5859 }
5860 
5861 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5862 /// form.  If so, return true and lower it, otherwise return false and it
5863 /// will be lowered like a normal call.
5864 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5865   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5866   if (I.getNumArgOperands() != 2)
5867     return false;
5868 
5869   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5870   if (!Arg0->getType()->isPointerTy() ||
5871       !Arg1->getType()->isIntegerTy() ||
5872       !I.getType()->isIntegerTy())
5873     return false;
5874 
5875   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5876   std::pair<SDValue, SDValue> Res =
5877     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5878                                  getValue(Arg0), getValue(Arg1),
5879                                  MachinePointerInfo(Arg0));
5880   if (Res.first.getNode()) {
5881     processIntegerCallValue(I, Res.first, false);
5882     PendingLoads.push_back(Res.second);
5883     return true;
5884   }
5885 
5886   return false;
5887 }
5888 
5889 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5890 /// operation (as expected), translate it to an SDNode with the specified opcode
5891 /// and return true.
5892 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5893                                               unsigned Opcode) {
5894   // Sanity check that it really is a unary floating-point call.
5895   if (I.getNumArgOperands() != 1 ||
5896       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5897       I.getType() != I.getArgOperand(0)->getType() ||
5898       !I.onlyReadsMemory())
5899     return false;
5900 
5901   SDValue Tmp = getValue(I.getArgOperand(0));
5902   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5903   return true;
5904 }
5905 
5906 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5907 /// operation (as expected), translate it to an SDNode with the specified opcode
5908 /// and return true.
5909 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5910                                                unsigned Opcode) {
5911   // Sanity check that it really is a binary floating-point call.
5912   if (I.getNumArgOperands() != 2 ||
5913       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5914       I.getType() != I.getArgOperand(0)->getType() ||
5915       I.getType() != I.getArgOperand(1)->getType() ||
5916       !I.onlyReadsMemory())
5917     return false;
5918 
5919   SDValue Tmp0 = getValue(I.getArgOperand(0));
5920   SDValue Tmp1 = getValue(I.getArgOperand(1));
5921   EVT VT = Tmp0.getValueType();
5922   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5923   return true;
5924 }
5925 
5926 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5927   // Handle inline assembly differently.
5928   if (isa<InlineAsm>(I.getCalledValue())) {
5929     visitInlineAsm(&I);
5930     return;
5931   }
5932 
5933   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5934   ComputeUsesVAFloatArgument(I, &MMI);
5935 
5936   const char *RenameFn = nullptr;
5937   if (Function *F = I.getCalledFunction()) {
5938     if (F->isDeclaration()) {
5939       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5940         if (unsigned IID = II->getIntrinsicID(F)) {
5941           RenameFn = visitIntrinsicCall(I, IID);
5942           if (!RenameFn)
5943             return;
5944         }
5945       }
5946       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5947         RenameFn = visitIntrinsicCall(I, IID);
5948         if (!RenameFn)
5949           return;
5950       }
5951     }
5952 
5953     // Check for well-known libc/libm calls.  If the function is internal, it
5954     // can't be a library call.
5955     LibFunc::Func Func;
5956     if (!F->hasLocalLinkage() && F->hasName() &&
5957         LibInfo->getLibFunc(F->getName(), Func) &&
5958         LibInfo->hasOptimizedCodeGen(Func)) {
5959       switch (Func) {
5960       default: break;
5961       case LibFunc::copysign:
5962       case LibFunc::copysignf:
5963       case LibFunc::copysignl:
5964         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5965             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5966             I.getType() == I.getArgOperand(0)->getType() &&
5967             I.getType() == I.getArgOperand(1)->getType() &&
5968             I.onlyReadsMemory()) {
5969           SDValue LHS = getValue(I.getArgOperand(0));
5970           SDValue RHS = getValue(I.getArgOperand(1));
5971           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5972                                    LHS.getValueType(), LHS, RHS));
5973           return;
5974         }
5975         break;
5976       case LibFunc::fabs:
5977       case LibFunc::fabsf:
5978       case LibFunc::fabsl:
5979         if (visitUnaryFloatCall(I, ISD::FABS))
5980           return;
5981         break;
5982       case LibFunc::fmin:
5983       case LibFunc::fminf:
5984       case LibFunc::fminl:
5985         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5986           return;
5987         break;
5988       case LibFunc::fmax:
5989       case LibFunc::fmaxf:
5990       case LibFunc::fmaxl:
5991         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5992           return;
5993         break;
5994       case LibFunc::sin:
5995       case LibFunc::sinf:
5996       case LibFunc::sinl:
5997         if (visitUnaryFloatCall(I, ISD::FSIN))
5998           return;
5999         break;
6000       case LibFunc::cos:
6001       case LibFunc::cosf:
6002       case LibFunc::cosl:
6003         if (visitUnaryFloatCall(I, ISD::FCOS))
6004           return;
6005         break;
6006       case LibFunc::sqrt:
6007       case LibFunc::sqrtf:
6008       case LibFunc::sqrtl:
6009       case LibFunc::sqrt_finite:
6010       case LibFunc::sqrtf_finite:
6011       case LibFunc::sqrtl_finite:
6012         if (visitUnaryFloatCall(I, ISD::FSQRT))
6013           return;
6014         break;
6015       case LibFunc::floor:
6016       case LibFunc::floorf:
6017       case LibFunc::floorl:
6018         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6019           return;
6020         break;
6021       case LibFunc::nearbyint:
6022       case LibFunc::nearbyintf:
6023       case LibFunc::nearbyintl:
6024         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6025           return;
6026         break;
6027       case LibFunc::ceil:
6028       case LibFunc::ceilf:
6029       case LibFunc::ceill:
6030         if (visitUnaryFloatCall(I, ISD::FCEIL))
6031           return;
6032         break;
6033       case LibFunc::rint:
6034       case LibFunc::rintf:
6035       case LibFunc::rintl:
6036         if (visitUnaryFloatCall(I, ISD::FRINT))
6037           return;
6038         break;
6039       case LibFunc::round:
6040       case LibFunc::roundf:
6041       case LibFunc::roundl:
6042         if (visitUnaryFloatCall(I, ISD::FROUND))
6043           return;
6044         break;
6045       case LibFunc::trunc:
6046       case LibFunc::truncf:
6047       case LibFunc::truncl:
6048         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6049           return;
6050         break;
6051       case LibFunc::log2:
6052       case LibFunc::log2f:
6053       case LibFunc::log2l:
6054         if (visitUnaryFloatCall(I, ISD::FLOG2))
6055           return;
6056         break;
6057       case LibFunc::exp2:
6058       case LibFunc::exp2f:
6059       case LibFunc::exp2l:
6060         if (visitUnaryFloatCall(I, ISD::FEXP2))
6061           return;
6062         break;
6063       case LibFunc::memcmp:
6064         if (visitMemCmpCall(I))
6065           return;
6066         break;
6067       case LibFunc::memchr:
6068         if (visitMemChrCall(I))
6069           return;
6070         break;
6071       case LibFunc::strcpy:
6072         if (visitStrCpyCall(I, false))
6073           return;
6074         break;
6075       case LibFunc::stpcpy:
6076         if (visitStrCpyCall(I, true))
6077           return;
6078         break;
6079       case LibFunc::strcmp:
6080         if (visitStrCmpCall(I))
6081           return;
6082         break;
6083       case LibFunc::strlen:
6084         if (visitStrLenCall(I))
6085           return;
6086         break;
6087       case LibFunc::strnlen:
6088         if (visitStrNLenCall(I))
6089           return;
6090         break;
6091       }
6092     }
6093   }
6094 
6095   SDValue Callee;
6096   if (!RenameFn)
6097     Callee = getValue(I.getCalledValue());
6098   else
6099     Callee = DAG.getExternalSymbol(
6100         RenameFn,
6101         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6102 
6103   // Check if we can potentially perform a tail call. More detailed checking is
6104   // be done within LowerCallTo, after more information about the call is known.
6105   LowerCallTo(&I, Callee, I.isTailCall());
6106 }
6107 
6108 namespace {
6109 
6110 /// AsmOperandInfo - This contains information for each constraint that we are
6111 /// lowering.
6112 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6113 public:
6114   /// CallOperand - If this is the result output operand or a clobber
6115   /// this is null, otherwise it is the incoming operand to the CallInst.
6116   /// This gets modified as the asm is processed.
6117   SDValue CallOperand;
6118 
6119   /// AssignedRegs - If this is a register or register class operand, this
6120   /// contains the set of register corresponding to the operand.
6121   RegsForValue AssignedRegs;
6122 
6123   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6124     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6125   }
6126 
6127   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6128   /// corresponds to.  If there is no Value* for this operand, it returns
6129   /// MVT::Other.
6130   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6131                            const DataLayout &DL) const {
6132     if (!CallOperandVal) return MVT::Other;
6133 
6134     if (isa<BasicBlock>(CallOperandVal))
6135       return TLI.getPointerTy(DL);
6136 
6137     llvm::Type *OpTy = CallOperandVal->getType();
6138 
6139     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6140     // If this is an indirect operand, the operand is a pointer to the
6141     // accessed type.
6142     if (isIndirect) {
6143       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6144       if (!PtrTy)
6145         report_fatal_error("Indirect operand for inline asm not a pointer!");
6146       OpTy = PtrTy->getElementType();
6147     }
6148 
6149     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6150     if (StructType *STy = dyn_cast<StructType>(OpTy))
6151       if (STy->getNumElements() == 1)
6152         OpTy = STy->getElementType(0);
6153 
6154     // If OpTy is not a single value, it may be a struct/union that we
6155     // can tile with integers.
6156     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6157       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6158       switch (BitSize) {
6159       default: break;
6160       case 1:
6161       case 8:
6162       case 16:
6163       case 32:
6164       case 64:
6165       case 128:
6166         OpTy = IntegerType::get(Context, BitSize);
6167         break;
6168       }
6169     }
6170 
6171     return TLI.getValueType(DL, OpTy, true);
6172   }
6173 };
6174 
6175 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6176 
6177 } // end anonymous namespace
6178 
6179 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6180 /// specified operand.  We prefer to assign virtual registers, to allow the
6181 /// register allocator to handle the assignment process.  However, if the asm
6182 /// uses features that we can't model on machineinstrs, we have SDISel do the
6183 /// allocation.  This produces generally horrible, but correct, code.
6184 ///
6185 ///   OpInfo describes the operand.
6186 ///
6187 static void GetRegistersForValue(SelectionDAG &DAG,
6188                                  const TargetLowering &TLI,
6189                                  SDLoc DL,
6190                                  SDISelAsmOperandInfo &OpInfo) {
6191   LLVMContext &Context = *DAG.getContext();
6192 
6193   MachineFunction &MF = DAG.getMachineFunction();
6194   SmallVector<unsigned, 4> Regs;
6195 
6196   // If this is a constraint for a single physreg, or a constraint for a
6197   // register class, find it.
6198   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6199       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6200                                        OpInfo.ConstraintCode,
6201                                        OpInfo.ConstraintVT);
6202 
6203   unsigned NumRegs = 1;
6204   if (OpInfo.ConstraintVT != MVT::Other) {
6205     // If this is a FP input in an integer register (or visa versa) insert a bit
6206     // cast of the input value.  More generally, handle any case where the input
6207     // value disagrees with the register class we plan to stick this in.
6208     if (OpInfo.Type == InlineAsm::isInput &&
6209         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6210       // Try to convert to the first EVT that the reg class contains.  If the
6211       // types are identical size, use a bitcast to convert (e.g. two differing
6212       // vector types).
6213       MVT RegVT = *PhysReg.second->vt_begin();
6214       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6215         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6216                                          RegVT, OpInfo.CallOperand);
6217         OpInfo.ConstraintVT = RegVT;
6218       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6219         // If the input is a FP value and we want it in FP registers, do a
6220         // bitcast to the corresponding integer type.  This turns an f64 value
6221         // into i64, which can be passed with two i32 values on a 32-bit
6222         // machine.
6223         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6224         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6225                                          RegVT, OpInfo.CallOperand);
6226         OpInfo.ConstraintVT = RegVT;
6227       }
6228     }
6229 
6230     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6231   }
6232 
6233   MVT RegVT;
6234   EVT ValueVT = OpInfo.ConstraintVT;
6235 
6236   // If this is a constraint for a specific physical register, like {r17},
6237   // assign it now.
6238   if (unsigned AssignedReg = PhysReg.first) {
6239     const TargetRegisterClass *RC = PhysReg.second;
6240     if (OpInfo.ConstraintVT == MVT::Other)
6241       ValueVT = *RC->vt_begin();
6242 
6243     // Get the actual register value type.  This is important, because the user
6244     // may have asked for (e.g.) the AX register in i32 type.  We need to
6245     // remember that AX is actually i16 to get the right extension.
6246     RegVT = *RC->vt_begin();
6247 
6248     // This is a explicit reference to a physical register.
6249     Regs.push_back(AssignedReg);
6250 
6251     // If this is an expanded reference, add the rest of the regs to Regs.
6252     if (NumRegs != 1) {
6253       TargetRegisterClass::iterator I = RC->begin();
6254       for (; *I != AssignedReg; ++I)
6255         assert(I != RC->end() && "Didn't find reg!");
6256 
6257       // Already added the first reg.
6258       --NumRegs; ++I;
6259       for (; NumRegs; --NumRegs, ++I) {
6260         assert(I != RC->end() && "Ran out of registers to allocate!");
6261         Regs.push_back(*I);
6262       }
6263     }
6264 
6265     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6266     return;
6267   }
6268 
6269   // Otherwise, if this was a reference to an LLVM register class, create vregs
6270   // for this reference.
6271   if (const TargetRegisterClass *RC = PhysReg.second) {
6272     RegVT = *RC->vt_begin();
6273     if (OpInfo.ConstraintVT == MVT::Other)
6274       ValueVT = RegVT;
6275 
6276     // Create the appropriate number of virtual registers.
6277     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6278     for (; NumRegs; --NumRegs)
6279       Regs.push_back(RegInfo.createVirtualRegister(RC));
6280 
6281     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6282     return;
6283   }
6284 
6285   // Otherwise, we couldn't allocate enough registers for this.
6286 }
6287 
6288 /// visitInlineAsm - Handle a call to an InlineAsm object.
6289 ///
6290 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6291   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6292 
6293   /// ConstraintOperands - Information about all of the constraints.
6294   SDISelAsmOperandInfoVector ConstraintOperands;
6295 
6296   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6297   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6298       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6299 
6300   bool hasMemory = false;
6301 
6302   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6303   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6304   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6305     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6306     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6307 
6308     MVT OpVT = MVT::Other;
6309 
6310     // Compute the value type for each operand.
6311     switch (OpInfo.Type) {
6312     case InlineAsm::isOutput:
6313       // Indirect outputs just consume an argument.
6314       if (OpInfo.isIndirect) {
6315         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6316         break;
6317       }
6318 
6319       // The return value of the call is this value.  As such, there is no
6320       // corresponding argument.
6321       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6322       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6323         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6324                                       STy->getElementType(ResNo));
6325       } else {
6326         assert(ResNo == 0 && "Asm only has one result!");
6327         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6328       }
6329       ++ResNo;
6330       break;
6331     case InlineAsm::isInput:
6332       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6333       break;
6334     case InlineAsm::isClobber:
6335       // Nothing to do.
6336       break;
6337     }
6338 
6339     // If this is an input or an indirect output, process the call argument.
6340     // BasicBlocks are labels, currently appearing only in asm's.
6341     if (OpInfo.CallOperandVal) {
6342       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6343         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6344       } else {
6345         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6346       }
6347 
6348       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6349                                          DAG.getDataLayout()).getSimpleVT();
6350     }
6351 
6352     OpInfo.ConstraintVT = OpVT;
6353 
6354     // Indirect operand accesses access memory.
6355     if (OpInfo.isIndirect)
6356       hasMemory = true;
6357     else {
6358       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6359         TargetLowering::ConstraintType
6360           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6361         if (CType == TargetLowering::C_Memory) {
6362           hasMemory = true;
6363           break;
6364         }
6365       }
6366     }
6367   }
6368 
6369   SDValue Chain, Flag;
6370 
6371   // We won't need to flush pending loads if this asm doesn't touch
6372   // memory and is nonvolatile.
6373   if (hasMemory || IA->hasSideEffects())
6374     Chain = getRoot();
6375   else
6376     Chain = DAG.getRoot();
6377 
6378   // Second pass over the constraints: compute which constraint option to use
6379   // and assign registers to constraints that want a specific physreg.
6380   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6381     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6382 
6383     // If this is an output operand with a matching input operand, look up the
6384     // matching input. If their types mismatch, e.g. one is an integer, the
6385     // other is floating point, or their sizes are different, flag it as an
6386     // error.
6387     if (OpInfo.hasMatchingInput()) {
6388       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6389 
6390       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6391         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6392         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6393             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6394                                              OpInfo.ConstraintVT);
6395         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6396             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6397                                              Input.ConstraintVT);
6398         if ((OpInfo.ConstraintVT.isInteger() !=
6399              Input.ConstraintVT.isInteger()) ||
6400             (MatchRC.second != InputRC.second)) {
6401           report_fatal_error("Unsupported asm: input constraint"
6402                              " with a matching output constraint of"
6403                              " incompatible type!");
6404         }
6405         Input.ConstraintVT = OpInfo.ConstraintVT;
6406       }
6407     }
6408 
6409     // Compute the constraint code and ConstraintType to use.
6410     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6411 
6412     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6413         OpInfo.Type == InlineAsm::isClobber)
6414       continue;
6415 
6416     // If this is a memory input, and if the operand is not indirect, do what we
6417     // need to to provide an address for the memory input.
6418     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6419         !OpInfo.isIndirect) {
6420       assert((OpInfo.isMultipleAlternative ||
6421               (OpInfo.Type == InlineAsm::isInput)) &&
6422              "Can only indirectify direct input operands!");
6423 
6424       // Memory operands really want the address of the value.  If we don't have
6425       // an indirect input, put it in the constpool if we can, otherwise spill
6426       // it to a stack slot.
6427       // TODO: This isn't quite right. We need to handle these according to
6428       // the addressing mode that the constraint wants. Also, this may take
6429       // an additional register for the computation and we don't want that
6430       // either.
6431 
6432       // If the operand is a float, integer, or vector constant, spill to a
6433       // constant pool entry to get its address.
6434       const Value *OpVal = OpInfo.CallOperandVal;
6435       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6436           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6437         OpInfo.CallOperand = DAG.getConstantPool(
6438             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6439       } else {
6440         // Otherwise, create a stack slot and emit a store to it before the
6441         // asm.
6442         Type *Ty = OpVal->getType();
6443         auto &DL = DAG.getDataLayout();
6444         uint64_t TySize = DL.getTypeAllocSize(Ty);
6445         unsigned Align = DL.getPrefTypeAlignment(Ty);
6446         MachineFunction &MF = DAG.getMachineFunction();
6447         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6448         SDValue StackSlot =
6449             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6450         Chain = DAG.getStore(
6451             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6452             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6453             false, false, 0);
6454         OpInfo.CallOperand = StackSlot;
6455       }
6456 
6457       // There is no longer a Value* corresponding to this operand.
6458       OpInfo.CallOperandVal = nullptr;
6459 
6460       // It is now an indirect operand.
6461       OpInfo.isIndirect = true;
6462     }
6463 
6464     // If this constraint is for a specific register, allocate it before
6465     // anything else.
6466     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6467       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6468   }
6469 
6470   // Second pass - Loop over all of the operands, assigning virtual or physregs
6471   // to register class operands.
6472   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6473     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6474 
6475     // C_Register operands have already been allocated, Other/Memory don't need
6476     // to be.
6477     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6478       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6479   }
6480 
6481   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6482   std::vector<SDValue> AsmNodeOperands;
6483   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6484   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6485       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6486 
6487   // If we have a !srcloc metadata node associated with it, we want to attach
6488   // this to the ultimately generated inline asm machineinstr.  To do this, we
6489   // pass in the third operand as this (potentially null) inline asm MDNode.
6490   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6491   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6492 
6493   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6494   // bits as operand 3.
6495   unsigned ExtraInfo = 0;
6496   if (IA->hasSideEffects())
6497     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6498   if (IA->isAlignStack())
6499     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6500   // Set the asm dialect.
6501   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6502 
6503   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6504   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6505     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6506 
6507     // Compute the constraint code and ConstraintType to use.
6508     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6509 
6510     // Ideally, we would only check against memory constraints.  However, the
6511     // meaning of an other constraint can be target-specific and we can't easily
6512     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6513     // for other constriants as well.
6514     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6515         OpInfo.ConstraintType == TargetLowering::C_Other) {
6516       if (OpInfo.Type == InlineAsm::isInput)
6517         ExtraInfo |= InlineAsm::Extra_MayLoad;
6518       else if (OpInfo.Type == InlineAsm::isOutput)
6519         ExtraInfo |= InlineAsm::Extra_MayStore;
6520       else if (OpInfo.Type == InlineAsm::isClobber)
6521         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6522     }
6523   }
6524 
6525   AsmNodeOperands.push_back(DAG.getTargetConstant(
6526       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6527 
6528   // Loop over all of the inputs, copying the operand values into the
6529   // appropriate registers and processing the output regs.
6530   RegsForValue RetValRegs;
6531 
6532   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6533   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6534 
6535   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6536     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6537 
6538     switch (OpInfo.Type) {
6539     case InlineAsm::isOutput: {
6540       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6541           OpInfo.ConstraintType != TargetLowering::C_Register) {
6542         // Memory output, or 'other' output (e.g. 'X' constraint).
6543         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6544 
6545         unsigned ConstraintID =
6546             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6547         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6548                "Failed to convert memory constraint code to constraint id.");
6549 
6550         // Add information to the INLINEASM node to know about this output.
6551         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6552         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6553         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6554                                                         MVT::i32));
6555         AsmNodeOperands.push_back(OpInfo.CallOperand);
6556         break;
6557       }
6558 
6559       // Otherwise, this is a register or register class output.
6560 
6561       // Copy the output from the appropriate register.  Find a register that
6562       // we can use.
6563       if (OpInfo.AssignedRegs.Regs.empty()) {
6564         LLVMContext &Ctx = *DAG.getContext();
6565         Ctx.emitError(CS.getInstruction(),
6566                       "couldn't allocate output register for constraint '" +
6567                           Twine(OpInfo.ConstraintCode) + "'");
6568         return;
6569       }
6570 
6571       // If this is an indirect operand, store through the pointer after the
6572       // asm.
6573       if (OpInfo.isIndirect) {
6574         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6575                                                       OpInfo.CallOperandVal));
6576       } else {
6577         // This is the result value of the call.
6578         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6579         // Concatenate this output onto the outputs list.
6580         RetValRegs.append(OpInfo.AssignedRegs);
6581       }
6582 
6583       // Add information to the INLINEASM node to know that this register is
6584       // set.
6585       OpInfo.AssignedRegs
6586           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6587                                     ? InlineAsm::Kind_RegDefEarlyClobber
6588                                     : InlineAsm::Kind_RegDef,
6589                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6590       break;
6591     }
6592     case InlineAsm::isInput: {
6593       SDValue InOperandVal = OpInfo.CallOperand;
6594 
6595       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6596         // If this is required to match an output register we have already set,
6597         // just use its register.
6598         unsigned OperandNo = OpInfo.getMatchedOperand();
6599 
6600         // Scan until we find the definition we already emitted of this operand.
6601         // When we find it, create a RegsForValue operand.
6602         unsigned CurOp = InlineAsm::Op_FirstOperand;
6603         for (; OperandNo; --OperandNo) {
6604           // Advance to the next operand.
6605           unsigned OpFlag =
6606             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6607           assert((InlineAsm::isRegDefKind(OpFlag) ||
6608                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6609                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6610           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6611         }
6612 
6613         unsigned OpFlag =
6614           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6615         if (InlineAsm::isRegDefKind(OpFlag) ||
6616             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6617           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6618           if (OpInfo.isIndirect) {
6619             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6620             LLVMContext &Ctx = *DAG.getContext();
6621             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6622                                                " don't know how to handle tied "
6623                                                "indirect register inputs");
6624             return;
6625           }
6626 
6627           RegsForValue MatchedRegs;
6628           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6629           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6630           MatchedRegs.RegVTs.push_back(RegVT);
6631           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6632           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6633                i != e; ++i) {
6634             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6635               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6636             else {
6637               LLVMContext &Ctx = *DAG.getContext();
6638               Ctx.emitError(CS.getInstruction(),
6639                             "inline asm error: This value"
6640                             " type register class is not natively supported!");
6641               return;
6642             }
6643           }
6644           SDLoc dl = getCurSDLoc();
6645           // Use the produced MatchedRegs object to
6646           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6647                                     Chain, &Flag, CS.getInstruction());
6648           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6649                                            true, OpInfo.getMatchedOperand(), dl,
6650                                            DAG, AsmNodeOperands);
6651           break;
6652         }
6653 
6654         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6655         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6656                "Unexpected number of operands");
6657         // Add information to the INLINEASM node to know about this input.
6658         // See InlineAsm.h isUseOperandTiedToDef.
6659         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6660         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6661                                                     OpInfo.getMatchedOperand());
6662         AsmNodeOperands.push_back(DAG.getTargetConstant(
6663             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6664         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6665         break;
6666       }
6667 
6668       // Treat indirect 'X' constraint as memory.
6669       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6670           OpInfo.isIndirect)
6671         OpInfo.ConstraintType = TargetLowering::C_Memory;
6672 
6673       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6674         std::vector<SDValue> Ops;
6675         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6676                                           Ops, DAG);
6677         if (Ops.empty()) {
6678           LLVMContext &Ctx = *DAG.getContext();
6679           Ctx.emitError(CS.getInstruction(),
6680                         "invalid operand for inline asm constraint '" +
6681                             Twine(OpInfo.ConstraintCode) + "'");
6682           return;
6683         }
6684 
6685         // Add information to the INLINEASM node to know about this input.
6686         unsigned ResOpType =
6687           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6688         AsmNodeOperands.push_back(DAG.getTargetConstant(
6689             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6690         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6691         break;
6692       }
6693 
6694       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6695         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6696         assert(InOperandVal.getValueType() ==
6697                    TLI.getPointerTy(DAG.getDataLayout()) &&
6698                "Memory operands expect pointer values");
6699 
6700         unsigned ConstraintID =
6701             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6702         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6703                "Failed to convert memory constraint code to constraint id.");
6704 
6705         // Add information to the INLINEASM node to know about this input.
6706         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6707         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6708         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6709                                                         getCurSDLoc(),
6710                                                         MVT::i32));
6711         AsmNodeOperands.push_back(InOperandVal);
6712         break;
6713       }
6714 
6715       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6716               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6717              "Unknown constraint type!");
6718 
6719       // TODO: Support this.
6720       if (OpInfo.isIndirect) {
6721         LLVMContext &Ctx = *DAG.getContext();
6722         Ctx.emitError(CS.getInstruction(),
6723                       "Don't know how to handle indirect register inputs yet "
6724                       "for constraint '" +
6725                           Twine(OpInfo.ConstraintCode) + "'");
6726         return;
6727       }
6728 
6729       // Copy the input into the appropriate registers.
6730       if (OpInfo.AssignedRegs.Regs.empty()) {
6731         LLVMContext &Ctx = *DAG.getContext();
6732         Ctx.emitError(CS.getInstruction(),
6733                       "couldn't allocate input reg for constraint '" +
6734                           Twine(OpInfo.ConstraintCode) + "'");
6735         return;
6736       }
6737 
6738       SDLoc dl = getCurSDLoc();
6739 
6740       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6741                                         Chain, &Flag, CS.getInstruction());
6742 
6743       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6744                                                dl, DAG, AsmNodeOperands);
6745       break;
6746     }
6747     case InlineAsm::isClobber: {
6748       // Add the clobbered value to the operand list, so that the register
6749       // allocator is aware that the physreg got clobbered.
6750       if (!OpInfo.AssignedRegs.Regs.empty())
6751         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6752                                                  false, 0, getCurSDLoc(), DAG,
6753                                                  AsmNodeOperands);
6754       break;
6755     }
6756     }
6757   }
6758 
6759   // Finish up input operands.  Set the input chain and add the flag last.
6760   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6761   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6762 
6763   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6764                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6765   Flag = Chain.getValue(1);
6766 
6767   // If this asm returns a register value, copy the result from that register
6768   // and set it as the value of the call.
6769   if (!RetValRegs.Regs.empty()) {
6770     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6771                                              Chain, &Flag, CS.getInstruction());
6772 
6773     // FIXME: Why don't we do this for inline asms with MRVs?
6774     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6775       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6776 
6777       // If any of the results of the inline asm is a vector, it may have the
6778       // wrong width/num elts.  This can happen for register classes that can
6779       // contain multiple different value types.  The preg or vreg allocated may
6780       // not have the same VT as was expected.  Convert it to the right type
6781       // with bit_convert.
6782       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6783         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6784                           ResultType, Val);
6785 
6786       } else if (ResultType != Val.getValueType() &&
6787                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6788         // If a result value was tied to an input value, the computed result may
6789         // have a wider width than the expected result.  Extract the relevant
6790         // portion.
6791         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6792       }
6793 
6794       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6795     }
6796 
6797     setValue(CS.getInstruction(), Val);
6798     // Don't need to use this as a chain in this case.
6799     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6800       return;
6801   }
6802 
6803   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6804 
6805   // Process indirect outputs, first output all of the flagged copies out of
6806   // physregs.
6807   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6808     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6809     const Value *Ptr = IndirectStoresToEmit[i].second;
6810     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6811                                              Chain, &Flag, IA);
6812     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6813   }
6814 
6815   // Emit the non-flagged stores from the physregs.
6816   SmallVector<SDValue, 8> OutChains;
6817   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6818     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6819                                StoresToEmit[i].first,
6820                                getValue(StoresToEmit[i].second),
6821                                MachinePointerInfo(StoresToEmit[i].second),
6822                                false, false, 0);
6823     OutChains.push_back(Val);
6824   }
6825 
6826   if (!OutChains.empty())
6827     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6828 
6829   DAG.setRoot(Chain);
6830 }
6831 
6832 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6833   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6834                           MVT::Other, getRoot(),
6835                           getValue(I.getArgOperand(0)),
6836                           DAG.getSrcValue(I.getArgOperand(0))));
6837 }
6838 
6839 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6841   const DataLayout &DL = DAG.getDataLayout();
6842   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6843                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6844                            DAG.getSrcValue(I.getOperand(0)),
6845                            DL.getABITypeAlignment(I.getType()));
6846   setValue(&I, V);
6847   DAG.setRoot(V.getValue(1));
6848 }
6849 
6850 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6851   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6852                           MVT::Other, getRoot(),
6853                           getValue(I.getArgOperand(0)),
6854                           DAG.getSrcValue(I.getArgOperand(0))));
6855 }
6856 
6857 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6858   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6859                           MVT::Other, getRoot(),
6860                           getValue(I.getArgOperand(0)),
6861                           getValue(I.getArgOperand(1)),
6862                           DAG.getSrcValue(I.getArgOperand(0)),
6863                           DAG.getSrcValue(I.getArgOperand(1))));
6864 }
6865 
6866 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
6867                                                     const Instruction &I,
6868                                                     SDValue Op) {
6869   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
6870   if (!Range)
6871     return Op;
6872 
6873   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
6874   if (!Lo->isNullValue())
6875     return Op;
6876 
6877   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
6878   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
6879 
6880   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
6881 
6882   SDLoc SL = getCurSDLoc();
6883 
6884   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
6885                              Op, DAG.getValueType(SmallVT));
6886   unsigned NumVals = Op.getNode()->getNumValues();
6887   if (NumVals == 1)
6888     return ZExt;
6889 
6890   SmallVector<SDValue, 4> Ops;
6891 
6892   Ops.push_back(ZExt);
6893   for (unsigned I = 1; I != NumVals; ++I)
6894     Ops.push_back(Op.getValue(I));
6895 
6896   return DAG.getMergeValues(Ops, SL);
6897 }
6898 
6899 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
6900 /// the call being lowered.
6901 ///
6902 /// This is a helper for lowering intrinsics that follow a target calling
6903 /// convention or require stack pointer adjustment. Only a subset of the
6904 /// intrinsic's operands need to participate in the calling convention.
6905 void SelectionDAGBuilder::populateCallLoweringInfo(
6906     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
6907     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
6908     bool IsPatchPoint) {
6909   TargetLowering::ArgListTy Args;
6910   Args.reserve(NumArgs);
6911 
6912   // Populate the argument list.
6913   // Attributes for args start at offset 1, after the return attribute.
6914   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6915        ArgI != ArgE; ++ArgI) {
6916     const Value *V = CS->getOperand(ArgI);
6917 
6918     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6919 
6920     TargetLowering::ArgListEntry Entry;
6921     Entry.Node = getValue(V);
6922     Entry.Ty = V->getType();
6923     Entry.setAttributes(&CS, AttrI);
6924     Args.push_back(Entry);
6925   }
6926 
6927   CLI.setDebugLoc(getCurSDLoc())
6928       .setChain(getRoot())
6929       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args),
6930                  NumArgs)
6931       .setDiscardResult(CS->use_empty())
6932       .setIsPatchPoint(IsPatchPoint);
6933 }
6934 
6935 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6936 /// or patchpoint target node's operand list.
6937 ///
6938 /// Constants are converted to TargetConstants purely as an optimization to
6939 /// avoid constant materialization and register allocation.
6940 ///
6941 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6942 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6943 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6944 /// address materialization and register allocation, but may also be required
6945 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6946 /// alloca in the entry block, then the runtime may assume that the alloca's
6947 /// StackMap location can be read immediately after compilation and that the
6948 /// location is valid at any point during execution (this is similar to the
6949 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6950 /// only available in a register, then the runtime would need to trap when
6951 /// execution reaches the StackMap in order to read the alloca's location.
6952 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6953                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6954                                 SelectionDAGBuilder &Builder) {
6955   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6956     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6957     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6958       Ops.push_back(
6959         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6960       Ops.push_back(
6961         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6962     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6963       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6964       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6965           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6966     } else
6967       Ops.push_back(OpVal);
6968   }
6969 }
6970 
6971 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6972 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6973   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6974   //                                  [live variables...])
6975 
6976   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6977 
6978   SDValue Chain, InFlag, Callee, NullPtr;
6979   SmallVector<SDValue, 32> Ops;
6980 
6981   SDLoc DL = getCurSDLoc();
6982   Callee = getValue(CI.getCalledValue());
6983   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6984 
6985   // The stackmap intrinsic only records the live variables (the arguemnts
6986   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6987   // intrinsic, this won't be lowered to a function call. This means we don't
6988   // have to worry about calling conventions and target specific lowering code.
6989   // Instead we perform the call lowering right here.
6990   //
6991   // chain, flag = CALLSEQ_START(chain, 0)
6992   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6993   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6994   //
6995   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6996   InFlag = Chain.getValue(1);
6997 
6998   // Add the <id> and <numBytes> constants.
6999   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7000   Ops.push_back(DAG.getTargetConstant(
7001                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7002   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7003   Ops.push_back(DAG.getTargetConstant(
7004                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7005                   MVT::i32));
7006 
7007   // Push live variables for the stack map.
7008   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7009 
7010   // We are not pushing any register mask info here on the operands list,
7011   // because the stackmap doesn't clobber anything.
7012 
7013   // Push the chain and the glue flag.
7014   Ops.push_back(Chain);
7015   Ops.push_back(InFlag);
7016 
7017   // Create the STACKMAP node.
7018   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7019   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7020   Chain = SDValue(SM, 0);
7021   InFlag = Chain.getValue(1);
7022 
7023   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7024 
7025   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7026 
7027   // Set the root to the target-lowered call chain.
7028   DAG.setRoot(Chain);
7029 
7030   // Inform the Frame Information that we have a stackmap in this function.
7031   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7032 }
7033 
7034 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7035 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7036                                           const BasicBlock *EHPadBB) {
7037   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7038   //                                                 i32 <numBytes>,
7039   //                                                 i8* <target>,
7040   //                                                 i32 <numArgs>,
7041   //                                                 [Args...],
7042   //                                                 [live variables...])
7043 
7044   CallingConv::ID CC = CS.getCallingConv();
7045   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7046   bool HasDef = !CS->getType()->isVoidTy();
7047   SDLoc dl = getCurSDLoc();
7048   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7049 
7050   // Handle immediate and symbolic callees.
7051   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7052     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7053                                    /*isTarget=*/true);
7054   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7055     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7056                                          SDLoc(SymbolicCallee),
7057                                          SymbolicCallee->getValueType(0));
7058 
7059   // Get the real number of arguments participating in the call <numArgs>
7060   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7061   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7062 
7063   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7064   // Intrinsics include all meta-operands up to but not including CC.
7065   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7066   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7067          "Not enough arguments provided to the patchpoint intrinsic");
7068 
7069   // For AnyRegCC the arguments are lowered later on manually.
7070   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7071   Type *ReturnTy =
7072     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7073 
7074   TargetLowering::CallLoweringInfo CLI(DAG);
7075   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7076                            true);
7077   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7078 
7079   SDNode *CallEnd = Result.second.getNode();
7080   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7081     CallEnd = CallEnd->getOperand(0).getNode();
7082 
7083   /// Get a call instruction from the call sequence chain.
7084   /// Tail calls are not allowed.
7085   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7086          "Expected a callseq node.");
7087   SDNode *Call = CallEnd->getOperand(0).getNode();
7088   bool HasGlue = Call->getGluedNode();
7089 
7090   // Replace the target specific call node with the patchable intrinsic.
7091   SmallVector<SDValue, 8> Ops;
7092 
7093   // Add the <id> and <numBytes> constants.
7094   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7095   Ops.push_back(DAG.getTargetConstant(
7096                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7097   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7098   Ops.push_back(DAG.getTargetConstant(
7099                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7100                   MVT::i32));
7101 
7102   // Add the callee.
7103   Ops.push_back(Callee);
7104 
7105   // Adjust <numArgs> to account for any arguments that have been passed on the
7106   // stack instead.
7107   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7108   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7109   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7110   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7111 
7112   // Add the calling convention
7113   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7114 
7115   // Add the arguments we omitted previously. The register allocator should
7116   // place these in any free register.
7117   if (IsAnyRegCC)
7118     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7119       Ops.push_back(getValue(CS.getArgument(i)));
7120 
7121   // Push the arguments from the call instruction up to the register mask.
7122   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7123   Ops.append(Call->op_begin() + 2, e);
7124 
7125   // Push live variables for the stack map.
7126   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7127 
7128   // Push the register mask info.
7129   if (HasGlue)
7130     Ops.push_back(*(Call->op_end()-2));
7131   else
7132     Ops.push_back(*(Call->op_end()-1));
7133 
7134   // Push the chain (this is originally the first operand of the call, but
7135   // becomes now the last or second to last operand).
7136   Ops.push_back(*(Call->op_begin()));
7137 
7138   // Push the glue flag (last operand).
7139   if (HasGlue)
7140     Ops.push_back(*(Call->op_end()-1));
7141 
7142   SDVTList NodeTys;
7143   if (IsAnyRegCC && HasDef) {
7144     // Create the return types based on the intrinsic definition
7145     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7146     SmallVector<EVT, 3> ValueVTs;
7147     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7148     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7149 
7150     // There is always a chain and a glue type at the end
7151     ValueVTs.push_back(MVT::Other);
7152     ValueVTs.push_back(MVT::Glue);
7153     NodeTys = DAG.getVTList(ValueVTs);
7154   } else
7155     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7156 
7157   // Replace the target specific call node with a PATCHPOINT node.
7158   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7159                                          dl, NodeTys, Ops);
7160 
7161   // Update the NodeMap.
7162   if (HasDef) {
7163     if (IsAnyRegCC)
7164       setValue(CS.getInstruction(), SDValue(MN, 0));
7165     else
7166       setValue(CS.getInstruction(), Result.first);
7167   }
7168 
7169   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7170   // call sequence. Furthermore the location of the chain and glue can change
7171   // when the AnyReg calling convention is used and the intrinsic returns a
7172   // value.
7173   if (IsAnyRegCC && HasDef) {
7174     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7175     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7176     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7177   } else
7178     DAG.ReplaceAllUsesWith(Call, MN);
7179   DAG.DeleteNode(Call);
7180 
7181   // Inform the Frame Information that we have a patchpoint in this function.
7182   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7183 }
7184 
7185 /// Returns an AttributeSet representing the attributes applied to the return
7186 /// value of the given call.
7187 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7188   SmallVector<Attribute::AttrKind, 2> Attrs;
7189   if (CLI.RetSExt)
7190     Attrs.push_back(Attribute::SExt);
7191   if (CLI.RetZExt)
7192     Attrs.push_back(Attribute::ZExt);
7193   if (CLI.IsInReg)
7194     Attrs.push_back(Attribute::InReg);
7195 
7196   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7197                            Attrs);
7198 }
7199 
7200 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7201 /// implementation, which just calls LowerCall.
7202 /// FIXME: When all targets are
7203 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7204 std::pair<SDValue, SDValue>
7205 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7206   // Handle the incoming return values from the call.
7207   CLI.Ins.clear();
7208   Type *OrigRetTy = CLI.RetTy;
7209   SmallVector<EVT, 4> RetTys;
7210   SmallVector<uint64_t, 4> Offsets;
7211   auto &DL = CLI.DAG.getDataLayout();
7212   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7213 
7214   SmallVector<ISD::OutputArg, 4> Outs;
7215   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7216 
7217   bool CanLowerReturn =
7218       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7219                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7220 
7221   SDValue DemoteStackSlot;
7222   int DemoteStackIdx = -100;
7223   if (!CanLowerReturn) {
7224     // FIXME: equivalent assert?
7225     // assert(!CS.hasInAllocaArgument() &&
7226     //        "sret demotion is incompatible with inalloca");
7227     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7228     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7229     MachineFunction &MF = CLI.DAG.getMachineFunction();
7230     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7231     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7232 
7233     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7234     ArgListEntry Entry;
7235     Entry.Node = DemoteStackSlot;
7236     Entry.Ty = StackSlotPtrType;
7237     Entry.isSExt = false;
7238     Entry.isZExt = false;
7239     Entry.isInReg = false;
7240     Entry.isSRet = true;
7241     Entry.isNest = false;
7242     Entry.isByVal = false;
7243     Entry.isReturned = false;
7244     Entry.Alignment = Align;
7245     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7246     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7247 
7248     // sret demotion isn't compatible with tail-calls, since the sret argument
7249     // points into the callers stack frame.
7250     CLI.IsTailCall = false;
7251   } else {
7252     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7253       EVT VT = RetTys[I];
7254       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7255       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7256       for (unsigned i = 0; i != NumRegs; ++i) {
7257         ISD::InputArg MyFlags;
7258         MyFlags.VT = RegisterVT;
7259         MyFlags.ArgVT = VT;
7260         MyFlags.Used = CLI.IsReturnValueUsed;
7261         if (CLI.RetSExt)
7262           MyFlags.Flags.setSExt();
7263         if (CLI.RetZExt)
7264           MyFlags.Flags.setZExt();
7265         if (CLI.IsInReg)
7266           MyFlags.Flags.setInReg();
7267         CLI.Ins.push_back(MyFlags);
7268       }
7269     }
7270   }
7271 
7272   // Handle all of the outgoing arguments.
7273   CLI.Outs.clear();
7274   CLI.OutVals.clear();
7275   ArgListTy &Args = CLI.getArgs();
7276   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7277     SmallVector<EVT, 4> ValueVTs;
7278     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7279     Type *FinalType = Args[i].Ty;
7280     if (Args[i].isByVal)
7281       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7282     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7283         FinalType, CLI.CallConv, CLI.IsVarArg);
7284     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7285          ++Value) {
7286       EVT VT = ValueVTs[Value];
7287       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7288       SDValue Op = SDValue(Args[i].Node.getNode(),
7289                            Args[i].Node.getResNo() + Value);
7290       ISD::ArgFlagsTy Flags;
7291       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7292 
7293       if (Args[i].isZExt)
7294         Flags.setZExt();
7295       if (Args[i].isSExt)
7296         Flags.setSExt();
7297       if (Args[i].isInReg)
7298         Flags.setInReg();
7299       if (Args[i].isSRet)
7300         Flags.setSRet();
7301       if (Args[i].isByVal)
7302         Flags.setByVal();
7303       if (Args[i].isInAlloca) {
7304         Flags.setInAlloca();
7305         // Set the byval flag for CCAssignFn callbacks that don't know about
7306         // inalloca.  This way we can know how many bytes we should've allocated
7307         // and how many bytes a callee cleanup function will pop.  If we port
7308         // inalloca to more targets, we'll have to add custom inalloca handling
7309         // in the various CC lowering callbacks.
7310         Flags.setByVal();
7311       }
7312       if (Args[i].isByVal || Args[i].isInAlloca) {
7313         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7314         Type *ElementTy = Ty->getElementType();
7315         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7316         // For ByVal, alignment should come from FE.  BE will guess if this
7317         // info is not there but there are cases it cannot get right.
7318         unsigned FrameAlign;
7319         if (Args[i].Alignment)
7320           FrameAlign = Args[i].Alignment;
7321         else
7322           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7323         Flags.setByValAlign(FrameAlign);
7324       }
7325       if (Args[i].isNest)
7326         Flags.setNest();
7327       if (NeedsRegBlock)
7328         Flags.setInConsecutiveRegs();
7329       Flags.setOrigAlign(OriginalAlignment);
7330 
7331       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7332       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7333       SmallVector<SDValue, 4> Parts(NumParts);
7334       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7335 
7336       if (Args[i].isSExt)
7337         ExtendKind = ISD::SIGN_EXTEND;
7338       else if (Args[i].isZExt)
7339         ExtendKind = ISD::ZERO_EXTEND;
7340 
7341       // Conservatively only handle 'returned' on non-vectors for now
7342       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7343         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7344                "unexpected use of 'returned'");
7345         // Before passing 'returned' to the target lowering code, ensure that
7346         // either the register MVT and the actual EVT are the same size or that
7347         // the return value and argument are extended in the same way; in these
7348         // cases it's safe to pass the argument register value unchanged as the
7349         // return register value (although it's at the target's option whether
7350         // to do so)
7351         // TODO: allow code generation to take advantage of partially preserved
7352         // registers rather than clobbering the entire register when the
7353         // parameter extension method is not compatible with the return
7354         // extension method
7355         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7356             (ExtendKind != ISD::ANY_EXTEND &&
7357              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7358         Flags.setReturned();
7359       }
7360 
7361       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7362                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7363 
7364       for (unsigned j = 0; j != NumParts; ++j) {
7365         // if it isn't first piece, alignment must be 1
7366         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7367                                i < CLI.NumFixedArgs,
7368                                i, j*Parts[j].getValueType().getStoreSize());
7369         if (NumParts > 1 && j == 0)
7370           MyFlags.Flags.setSplit();
7371         else if (j != 0) {
7372           MyFlags.Flags.setOrigAlign(1);
7373           if (j == NumParts - 1)
7374             MyFlags.Flags.setSplitEnd();
7375         }
7376 
7377         CLI.Outs.push_back(MyFlags);
7378         CLI.OutVals.push_back(Parts[j]);
7379       }
7380 
7381       if (NeedsRegBlock && Value == NumValues - 1)
7382         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7383     }
7384   }
7385 
7386   SmallVector<SDValue, 4> InVals;
7387   CLI.Chain = LowerCall(CLI, InVals);
7388 
7389   // Verify that the target's LowerCall behaved as expected.
7390   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7391          "LowerCall didn't return a valid chain!");
7392   assert((!CLI.IsTailCall || InVals.empty()) &&
7393          "LowerCall emitted a return value for a tail call!");
7394   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7395          "LowerCall didn't emit the correct number of values!");
7396 
7397   // For a tail call, the return value is merely live-out and there aren't
7398   // any nodes in the DAG representing it. Return a special value to
7399   // indicate that a tail call has been emitted and no more Instructions
7400   // should be processed in the current block.
7401   if (CLI.IsTailCall) {
7402     CLI.DAG.setRoot(CLI.Chain);
7403     return std::make_pair(SDValue(), SDValue());
7404   }
7405 
7406   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7407           assert(InVals[i].getNode() &&
7408                  "LowerCall emitted a null value!");
7409           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7410                  "LowerCall emitted a value with the wrong type!");
7411         });
7412 
7413   SmallVector<SDValue, 4> ReturnValues;
7414   if (!CanLowerReturn) {
7415     // The instruction result is the result of loading from the
7416     // hidden sret parameter.
7417     SmallVector<EVT, 1> PVTs;
7418     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7419 
7420     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7421     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7422     EVT PtrVT = PVTs[0];
7423 
7424     unsigned NumValues = RetTys.size();
7425     ReturnValues.resize(NumValues);
7426     SmallVector<SDValue, 4> Chains(NumValues);
7427 
7428     // An aggregate return value cannot wrap around the address space, so
7429     // offsets to its parts don't wrap either.
7430     SDNodeFlags Flags;
7431     Flags.setNoUnsignedWrap(true);
7432 
7433     for (unsigned i = 0; i < NumValues; ++i) {
7434       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7435                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7436                                                         PtrVT), &Flags);
7437       SDValue L = CLI.DAG.getLoad(
7438           RetTys[i], CLI.DL, CLI.Chain, Add,
7439           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7440                                             DemoteStackIdx, Offsets[i]),
7441           false, false, false, 1);
7442       ReturnValues[i] = L;
7443       Chains[i] = L.getValue(1);
7444     }
7445 
7446     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7447   } else {
7448     // Collect the legal value parts into potentially illegal values
7449     // that correspond to the original function's return values.
7450     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7451     if (CLI.RetSExt)
7452       AssertOp = ISD::AssertSext;
7453     else if (CLI.RetZExt)
7454       AssertOp = ISD::AssertZext;
7455     unsigned CurReg = 0;
7456     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7457       EVT VT = RetTys[I];
7458       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7459       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7460 
7461       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7462                                               NumRegs, RegisterVT, VT, nullptr,
7463                                               AssertOp));
7464       CurReg += NumRegs;
7465     }
7466 
7467     // For a function returning void, there is no return value. We can't create
7468     // such a node, so we just return a null return value in that case. In
7469     // that case, nothing will actually look at the value.
7470     if (ReturnValues.empty())
7471       return std::make_pair(SDValue(), CLI.Chain);
7472   }
7473 
7474   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7475                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7476   return std::make_pair(Res, CLI.Chain);
7477 }
7478 
7479 void TargetLowering::LowerOperationWrapper(SDNode *N,
7480                                            SmallVectorImpl<SDValue> &Results,
7481                                            SelectionDAG &DAG) const {
7482   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7483     Results.push_back(Res);
7484 }
7485 
7486 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7487   llvm_unreachable("LowerOperation not implemented for this target!");
7488 }
7489 
7490 void
7491 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7492   SDValue Op = getNonRegisterValue(V);
7493   assert((Op.getOpcode() != ISD::CopyFromReg ||
7494           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7495          "Copy from a reg to the same reg!");
7496   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7497 
7498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7499   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7500                    V->getType());
7501   SDValue Chain = DAG.getEntryNode();
7502 
7503   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7504                               FuncInfo.PreferredExtendType.end())
7505                                  ? ISD::ANY_EXTEND
7506                                  : FuncInfo.PreferredExtendType[V];
7507   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7508   PendingExports.push_back(Chain);
7509 }
7510 
7511 #include "llvm/CodeGen/SelectionDAGISel.h"
7512 
7513 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7514 /// entry block, return true.  This includes arguments used by switches, since
7515 /// the switch may expand into multiple basic blocks.
7516 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7517   // With FastISel active, we may be splitting blocks, so force creation
7518   // of virtual registers for all non-dead arguments.
7519   if (FastISel)
7520     return A->use_empty();
7521 
7522   const BasicBlock &Entry = A->getParent()->front();
7523   for (const User *U : A->users())
7524     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7525       return false;  // Use not in entry block.
7526 
7527   return true;
7528 }
7529 
7530 void SelectionDAGISel::LowerArguments(const Function &F) {
7531   SelectionDAG &DAG = SDB->DAG;
7532   SDLoc dl = SDB->getCurSDLoc();
7533   const DataLayout &DL = DAG.getDataLayout();
7534   SmallVector<ISD::InputArg, 16> Ins;
7535 
7536   if (!FuncInfo->CanLowerReturn) {
7537     // Put in an sret pointer parameter before all the other parameters.
7538     SmallVector<EVT, 1> ValueVTs;
7539     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7540                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7541 
7542     // NOTE: Assuming that a pointer will never break down to more than one VT
7543     // or one register.
7544     ISD::ArgFlagsTy Flags;
7545     Flags.setSRet();
7546     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7547     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7548                          ISD::InputArg::NoArgIndex, 0);
7549     Ins.push_back(RetArg);
7550   }
7551 
7552   // Set up the incoming argument description vector.
7553   unsigned Idx = 1;
7554   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7555        I != E; ++I, ++Idx) {
7556     SmallVector<EVT, 4> ValueVTs;
7557     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7558     bool isArgValueUsed = !I->use_empty();
7559     unsigned PartBase = 0;
7560     Type *FinalType = I->getType();
7561     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7562       FinalType = cast<PointerType>(FinalType)->getElementType();
7563     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7564         FinalType, F.getCallingConv(), F.isVarArg());
7565     for (unsigned Value = 0, NumValues = ValueVTs.size();
7566          Value != NumValues; ++Value) {
7567       EVT VT = ValueVTs[Value];
7568       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7569       ISD::ArgFlagsTy Flags;
7570       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7571 
7572       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7573         Flags.setZExt();
7574       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7575         Flags.setSExt();
7576       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7577         Flags.setInReg();
7578       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7579         Flags.setSRet();
7580       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7581         Flags.setByVal();
7582       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7583         Flags.setInAlloca();
7584         // Set the byval flag for CCAssignFn callbacks that don't know about
7585         // inalloca.  This way we can know how many bytes we should've allocated
7586         // and how many bytes a callee cleanup function will pop.  If we port
7587         // inalloca to more targets, we'll have to add custom inalloca handling
7588         // in the various CC lowering callbacks.
7589         Flags.setByVal();
7590       }
7591       if (F.getCallingConv() == CallingConv::X86_INTR) {
7592         // IA Interrupt passes frame (1st parameter) by value in the stack.
7593         if (Idx == 1)
7594           Flags.setByVal();
7595       }
7596       if (Flags.isByVal() || Flags.isInAlloca()) {
7597         PointerType *Ty = cast<PointerType>(I->getType());
7598         Type *ElementTy = Ty->getElementType();
7599         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7600         // For ByVal, alignment should be passed from FE.  BE will guess if
7601         // this info is not there but there are cases it cannot get right.
7602         unsigned FrameAlign;
7603         if (F.getParamAlignment(Idx))
7604           FrameAlign = F.getParamAlignment(Idx);
7605         else
7606           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7607         Flags.setByValAlign(FrameAlign);
7608       }
7609       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7610         Flags.setNest();
7611       if (NeedsRegBlock)
7612         Flags.setInConsecutiveRegs();
7613       Flags.setOrigAlign(OriginalAlignment);
7614 
7615       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7616       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7617       for (unsigned i = 0; i != NumRegs; ++i) {
7618         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7619                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7620         if (NumRegs > 1 && i == 0)
7621           MyFlags.Flags.setSplit();
7622         // if it isn't first piece, alignment must be 1
7623         else if (i > 0) {
7624           MyFlags.Flags.setOrigAlign(1);
7625           if (i == NumRegs - 1)
7626             MyFlags.Flags.setSplitEnd();
7627         }
7628         Ins.push_back(MyFlags);
7629       }
7630       if (NeedsRegBlock && Value == NumValues - 1)
7631         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7632       PartBase += VT.getStoreSize();
7633     }
7634   }
7635 
7636   // Call the target to set up the argument values.
7637   SmallVector<SDValue, 8> InVals;
7638   SDValue NewRoot = TLI->LowerFormalArguments(
7639       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7640 
7641   // Verify that the target's LowerFormalArguments behaved as expected.
7642   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7643          "LowerFormalArguments didn't return a valid chain!");
7644   assert(InVals.size() == Ins.size() &&
7645          "LowerFormalArguments didn't emit the correct number of values!");
7646   DEBUG({
7647       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7648         assert(InVals[i].getNode() &&
7649                "LowerFormalArguments emitted a null value!");
7650         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7651                "LowerFormalArguments emitted a value with the wrong type!");
7652       }
7653     });
7654 
7655   // Update the DAG with the new chain value resulting from argument lowering.
7656   DAG.setRoot(NewRoot);
7657 
7658   // Set up the argument values.
7659   unsigned i = 0;
7660   Idx = 1;
7661   if (!FuncInfo->CanLowerReturn) {
7662     // Create a virtual register for the sret pointer, and put in a copy
7663     // from the sret argument into it.
7664     SmallVector<EVT, 1> ValueVTs;
7665     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7666                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7667     MVT VT = ValueVTs[0].getSimpleVT();
7668     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7669     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7670     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7671                                         RegVT, VT, nullptr, AssertOp);
7672 
7673     MachineFunction& MF = SDB->DAG.getMachineFunction();
7674     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7675     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7676     FuncInfo->DemoteRegister = SRetReg;
7677     NewRoot =
7678         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7679     DAG.setRoot(NewRoot);
7680 
7681     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7682     // Idx indexes LLVM arguments.  Don't touch it.
7683     ++i;
7684   }
7685 
7686   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7687       ++I, ++Idx) {
7688     SmallVector<SDValue, 4> ArgValues;
7689     SmallVector<EVT, 4> ValueVTs;
7690     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7691     unsigned NumValues = ValueVTs.size();
7692 
7693     // If this argument is unused then remember its value. It is used to generate
7694     // debugging information.
7695     if (I->use_empty() && NumValues) {
7696       SDB->setUnusedArgValue(&*I, InVals[i]);
7697 
7698       // Also remember any frame index for use in FastISel.
7699       if (FrameIndexSDNode *FI =
7700           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7701         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7702     }
7703 
7704     for (unsigned Val = 0; Val != NumValues; ++Val) {
7705       EVT VT = ValueVTs[Val];
7706       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7707       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7708 
7709       if (!I->use_empty()) {
7710         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7711         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7712           AssertOp = ISD::AssertSext;
7713         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7714           AssertOp = ISD::AssertZext;
7715 
7716         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7717                                              NumParts, PartVT, VT,
7718                                              nullptr, AssertOp));
7719       }
7720 
7721       i += NumParts;
7722     }
7723 
7724     // We don't need to do anything else for unused arguments.
7725     if (ArgValues.empty())
7726       continue;
7727 
7728     // Note down frame index.
7729     if (FrameIndexSDNode *FI =
7730         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7731       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7732 
7733     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7734                                      SDB->getCurSDLoc());
7735 
7736     SDB->setValue(&*I, Res);
7737     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7738       if (LoadSDNode *LNode =
7739           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7740         if (FrameIndexSDNode *FI =
7741             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7742         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7743     }
7744 
7745     // If this argument is live outside of the entry block, insert a copy from
7746     // wherever we got it to the vreg that other BB's will reference it as.
7747     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7748       // If we can, though, try to skip creating an unnecessary vreg.
7749       // FIXME: This isn't very clean... it would be nice to make this more
7750       // general.  It's also subtly incompatible with the hacks FastISel
7751       // uses with vregs.
7752       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7753       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7754         FuncInfo->ValueMap[&*I] = Reg;
7755         continue;
7756       }
7757     }
7758     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7759       FuncInfo->InitializeRegForValue(&*I);
7760       SDB->CopyToExportRegsIfNeeded(&*I);
7761     }
7762   }
7763 
7764   assert(i == InVals.size() && "Argument register count mismatch!");
7765 
7766   // Finally, if the target has anything special to do, allow it to do so.
7767   EmitFunctionEntryCode();
7768 }
7769 
7770 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7771 /// ensure constants are generated when needed.  Remember the virtual registers
7772 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7773 /// directly add them, because expansion might result in multiple MBB's for one
7774 /// BB.  As such, the start of the BB might correspond to a different MBB than
7775 /// the end.
7776 ///
7777 void
7778 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7779   const TerminatorInst *TI = LLVMBB->getTerminator();
7780 
7781   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7782 
7783   // Check PHI nodes in successors that expect a value to be available from this
7784   // block.
7785   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7786     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7787     if (!isa<PHINode>(SuccBB->begin())) continue;
7788     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7789 
7790     // If this terminator has multiple identical successors (common for
7791     // switches), only handle each succ once.
7792     if (!SuccsHandled.insert(SuccMBB).second)
7793       continue;
7794 
7795     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7796 
7797     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7798     // nodes and Machine PHI nodes, but the incoming operands have not been
7799     // emitted yet.
7800     for (BasicBlock::const_iterator I = SuccBB->begin();
7801          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7802       // Ignore dead phi's.
7803       if (PN->use_empty()) continue;
7804 
7805       // Skip empty types
7806       if (PN->getType()->isEmptyTy())
7807         continue;
7808 
7809       unsigned Reg;
7810       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7811 
7812       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7813         unsigned &RegOut = ConstantsOut[C];
7814         if (RegOut == 0) {
7815           RegOut = FuncInfo.CreateRegs(C->getType());
7816           CopyValueToVirtualRegister(C, RegOut);
7817         }
7818         Reg = RegOut;
7819       } else {
7820         DenseMap<const Value *, unsigned>::iterator I =
7821           FuncInfo.ValueMap.find(PHIOp);
7822         if (I != FuncInfo.ValueMap.end())
7823           Reg = I->second;
7824         else {
7825           assert(isa<AllocaInst>(PHIOp) &&
7826                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7827                  "Didn't codegen value into a register!??");
7828           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7829           CopyValueToVirtualRegister(PHIOp, Reg);
7830         }
7831       }
7832 
7833       // Remember that this register needs to added to the machine PHI node as
7834       // the input for this MBB.
7835       SmallVector<EVT, 4> ValueVTs;
7836       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7837       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7838       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7839         EVT VT = ValueVTs[vti];
7840         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7841         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7842           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7843         Reg += NumRegisters;
7844       }
7845     }
7846   }
7847 
7848   ConstantsOut.clear();
7849 }
7850 
7851 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7852 /// is 0.
7853 MachineBasicBlock *
7854 SelectionDAGBuilder::StackProtectorDescriptor::
7855 AddSuccessorMBB(const BasicBlock *BB,
7856                 MachineBasicBlock *ParentMBB,
7857                 bool IsLikely,
7858                 MachineBasicBlock *SuccMBB) {
7859   // If SuccBB has not been created yet, create it.
7860   if (!SuccMBB) {
7861     MachineFunction *MF = ParentMBB->getParent();
7862     MachineFunction::iterator BBI(ParentMBB);
7863     SuccMBB = MF->CreateMachineBasicBlock(BB);
7864     MF->insert(++BBI, SuccMBB);
7865   }
7866   // Add it as a successor of ParentMBB.
7867   ParentMBB->addSuccessor(
7868       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7869   return SuccMBB;
7870 }
7871 
7872 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7873   MachineFunction::iterator I(MBB);
7874   if (++I == FuncInfo.MF->end())
7875     return nullptr;
7876   return &*I;
7877 }
7878 
7879 /// During lowering new call nodes can be created (such as memset, etc.).
7880 /// Those will become new roots of the current DAG, but complications arise
7881 /// when they are tail calls. In such cases, the call lowering will update
7882 /// the root, but the builder still needs to know that a tail call has been
7883 /// lowered in order to avoid generating an additional return.
7884 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7885   // If the node is null, we do have a tail call.
7886   if (MaybeTC.getNode() != nullptr)
7887     DAG.setRoot(MaybeTC);
7888   else
7889     HasTailCall = true;
7890 }
7891 
7892 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7893                                   unsigned *TotalCases, unsigned First,
7894                                   unsigned Last) {
7895   assert(Last >= First);
7896   assert(TotalCases[Last] >= TotalCases[First]);
7897 
7898   APInt LowCase = Clusters[First].Low->getValue();
7899   APInt HighCase = Clusters[Last].High->getValue();
7900   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7901 
7902   // FIXME: A range of consecutive cases has 100% density, but only requires one
7903   // comparison to lower. We should discriminate against such consecutive ranges
7904   // in jump tables.
7905 
7906   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7907   uint64_t Range = Diff + 1;
7908 
7909   uint64_t NumCases =
7910       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7911 
7912   assert(NumCases < UINT64_MAX / 100);
7913   assert(Range >= NumCases);
7914 
7915   return NumCases * 100 >= Range * MinJumpTableDensity;
7916 }
7917 
7918 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7919   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7920          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7921 }
7922 
7923 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7924                                          unsigned First, unsigned Last,
7925                                          const SwitchInst *SI,
7926                                          MachineBasicBlock *DefaultMBB,
7927                                          CaseCluster &JTCluster) {
7928   assert(First <= Last);
7929 
7930   auto Prob = BranchProbability::getZero();
7931   unsigned NumCmps = 0;
7932   std::vector<MachineBasicBlock*> Table;
7933   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7934 
7935   // Initialize probabilities in JTProbs.
7936   for (unsigned I = First; I <= Last; ++I)
7937     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7938 
7939   for (unsigned I = First; I <= Last; ++I) {
7940     assert(Clusters[I].Kind == CC_Range);
7941     Prob += Clusters[I].Prob;
7942     APInt Low = Clusters[I].Low->getValue();
7943     APInt High = Clusters[I].High->getValue();
7944     NumCmps += (Low == High) ? 1 : 2;
7945     if (I != First) {
7946       // Fill the gap between this and the previous cluster.
7947       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7948       assert(PreviousHigh.slt(Low));
7949       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7950       for (uint64_t J = 0; J < Gap; J++)
7951         Table.push_back(DefaultMBB);
7952     }
7953     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7954     for (uint64_t J = 0; J < ClusterSize; ++J)
7955       Table.push_back(Clusters[I].MBB);
7956     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7957   }
7958 
7959   unsigned NumDests = JTProbs.size();
7960   if (isSuitableForBitTests(NumDests, NumCmps,
7961                             Clusters[First].Low->getValue(),
7962                             Clusters[Last].High->getValue())) {
7963     // Clusters[First..Last] should be lowered as bit tests instead.
7964     return false;
7965   }
7966 
7967   // Create the MBB that will load from and jump through the table.
7968   // Note: We create it here, but it's not inserted into the function yet.
7969   MachineFunction *CurMF = FuncInfo.MF;
7970   MachineBasicBlock *JumpTableMBB =
7971       CurMF->CreateMachineBasicBlock(SI->getParent());
7972 
7973   // Add successors. Note: use table order for determinism.
7974   SmallPtrSet<MachineBasicBlock *, 8> Done;
7975   for (MachineBasicBlock *Succ : Table) {
7976     if (Done.count(Succ))
7977       continue;
7978     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7979     Done.insert(Succ);
7980   }
7981   JumpTableMBB->normalizeSuccProbs();
7982 
7983   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7984   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7985                      ->createJumpTableIndex(Table);
7986 
7987   // Set up the jump table info.
7988   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7989   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7990                       Clusters[Last].High->getValue(), SI->getCondition(),
7991                       nullptr, false);
7992   JTCases.emplace_back(std::move(JTH), std::move(JT));
7993 
7994   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7995                                      JTCases.size() - 1, Prob);
7996   return true;
7997 }
7998 
7999 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8000                                          const SwitchInst *SI,
8001                                          MachineBasicBlock *DefaultMBB) {
8002 #ifndef NDEBUG
8003   // Clusters must be non-empty, sorted, and only contain Range clusters.
8004   assert(!Clusters.empty());
8005   for (CaseCluster &C : Clusters)
8006     assert(C.Kind == CC_Range);
8007   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8008     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8009 #endif
8010 
8011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8012   if (!areJTsAllowed(TLI))
8013     return;
8014 
8015   const int64_t N = Clusters.size();
8016   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8017 
8018   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8019   SmallVector<unsigned, 8> TotalCases(N);
8020 
8021   for (unsigned i = 0; i < N; ++i) {
8022     APInt Hi = Clusters[i].High->getValue();
8023     APInt Lo = Clusters[i].Low->getValue();
8024     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8025     if (i != 0)
8026       TotalCases[i] += TotalCases[i - 1];
8027   }
8028 
8029   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
8030     // Cheap case: the whole range might be suitable for jump table.
8031     CaseCluster JTCluster;
8032     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8033       Clusters[0] = JTCluster;
8034       Clusters.resize(1);
8035       return;
8036     }
8037   }
8038 
8039   // The algorithm below is not suitable for -O0.
8040   if (TM.getOptLevel() == CodeGenOpt::None)
8041     return;
8042 
8043   // Split Clusters into minimum number of dense partitions. The algorithm uses
8044   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8045   // for the Case Statement'" (1994), but builds the MinPartitions array in
8046   // reverse order to make it easier to reconstruct the partitions in ascending
8047   // order. In the choice between two optimal partitionings, it picks the one
8048   // which yields more jump tables.
8049 
8050   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8051   SmallVector<unsigned, 8> MinPartitions(N);
8052   // LastElement[i] is the last element of the partition starting at i.
8053   SmallVector<unsigned, 8> LastElement(N);
8054   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8055   SmallVector<unsigned, 8> NumTables(N);
8056 
8057   // Base case: There is only one way to partition Clusters[N-1].
8058   MinPartitions[N - 1] = 1;
8059   LastElement[N - 1] = N - 1;
8060   assert(MinJumpTableSize > 1);
8061   NumTables[N - 1] = 0;
8062 
8063   // Note: loop indexes are signed to avoid underflow.
8064   for (int64_t i = N - 2; i >= 0; i--) {
8065     // Find optimal partitioning of Clusters[i..N-1].
8066     // Baseline: Put Clusters[i] into a partition on its own.
8067     MinPartitions[i] = MinPartitions[i + 1] + 1;
8068     LastElement[i] = i;
8069     NumTables[i] = NumTables[i + 1];
8070 
8071     // Search for a solution that results in fewer partitions.
8072     for (int64_t j = N - 1; j > i; j--) {
8073       // Try building a partition from Clusters[i..j].
8074       if (isDense(Clusters, &TotalCases[0], i, j)) {
8075         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8076         bool IsTable = j - i + 1 >= MinJumpTableSize;
8077         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8078 
8079         // If this j leads to fewer partitions, or same number of partitions
8080         // with more lookup tables, it is a better partitioning.
8081         if (NumPartitions < MinPartitions[i] ||
8082             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8083           MinPartitions[i] = NumPartitions;
8084           LastElement[i] = j;
8085           NumTables[i] = Tables;
8086         }
8087       }
8088     }
8089   }
8090 
8091   // Iterate over the partitions, replacing some with jump tables in-place.
8092   unsigned DstIndex = 0;
8093   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8094     Last = LastElement[First];
8095     assert(Last >= First);
8096     assert(DstIndex <= First);
8097     unsigned NumClusters = Last - First + 1;
8098 
8099     CaseCluster JTCluster;
8100     if (NumClusters >= MinJumpTableSize &&
8101         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8102       Clusters[DstIndex++] = JTCluster;
8103     } else {
8104       for (unsigned I = First; I <= Last; ++I)
8105         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8106     }
8107   }
8108   Clusters.resize(DstIndex);
8109 }
8110 
8111 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8112   // FIXME: Using the pointer type doesn't seem ideal.
8113   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8114   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8115   return Range <= BW;
8116 }
8117 
8118 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8119                                                 unsigned NumCmps,
8120                                                 const APInt &Low,
8121                                                 const APInt &High) {
8122   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8123   // range of cases both require only one branch to lower. Just looking at the
8124   // number of clusters and destinations should be enough to decide whether to
8125   // build bit tests.
8126 
8127   // To lower a range with bit tests, the range must fit the bitwidth of a
8128   // machine word.
8129   if (!rangeFitsInWord(Low, High))
8130     return false;
8131 
8132   // Decide whether it's profitable to lower this range with bit tests. Each
8133   // destination requires a bit test and branch, and there is an overall range
8134   // check branch. For a small number of clusters, separate comparisons might be
8135   // cheaper, and for many destinations, splitting the range might be better.
8136   return (NumDests == 1 && NumCmps >= 3) ||
8137          (NumDests == 2 && NumCmps >= 5) ||
8138          (NumDests == 3 && NumCmps >= 6);
8139 }
8140 
8141 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8142                                         unsigned First, unsigned Last,
8143                                         const SwitchInst *SI,
8144                                         CaseCluster &BTCluster) {
8145   assert(First <= Last);
8146   if (First == Last)
8147     return false;
8148 
8149   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8150   unsigned NumCmps = 0;
8151   for (int64_t I = First; I <= Last; ++I) {
8152     assert(Clusters[I].Kind == CC_Range);
8153     Dests.set(Clusters[I].MBB->getNumber());
8154     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8155   }
8156   unsigned NumDests = Dests.count();
8157 
8158   APInt Low = Clusters[First].Low->getValue();
8159   APInt High = Clusters[Last].High->getValue();
8160   assert(Low.slt(High));
8161 
8162   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8163     return false;
8164 
8165   APInt LowBound;
8166   APInt CmpRange;
8167 
8168   const int BitWidth = DAG.getTargetLoweringInfo()
8169                            .getPointerTy(DAG.getDataLayout())
8170                            .getSizeInBits();
8171   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8172 
8173   // Check if the clusters cover a contiguous range such that no value in the
8174   // range will jump to the default statement.
8175   bool ContiguousRange = true;
8176   for (int64_t I = First + 1; I <= Last; ++I) {
8177     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8178       ContiguousRange = false;
8179       break;
8180     }
8181   }
8182 
8183   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8184     // Optimize the case where all the case values fit in a word without having
8185     // to subtract minValue. In this case, we can optimize away the subtraction.
8186     LowBound = APInt::getNullValue(Low.getBitWidth());
8187     CmpRange = High;
8188     ContiguousRange = false;
8189   } else {
8190     LowBound = Low;
8191     CmpRange = High - Low;
8192   }
8193 
8194   CaseBitsVector CBV;
8195   auto TotalProb = BranchProbability::getZero();
8196   for (unsigned i = First; i <= Last; ++i) {
8197     // Find the CaseBits for this destination.
8198     unsigned j;
8199     for (j = 0; j < CBV.size(); ++j)
8200       if (CBV[j].BB == Clusters[i].MBB)
8201         break;
8202     if (j == CBV.size())
8203       CBV.push_back(
8204           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8205     CaseBits *CB = &CBV[j];
8206 
8207     // Update Mask, Bits and ExtraProb.
8208     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8209     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8210     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8211     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8212     CB->Bits += Hi - Lo + 1;
8213     CB->ExtraProb += Clusters[i].Prob;
8214     TotalProb += Clusters[i].Prob;
8215   }
8216 
8217   BitTestInfo BTI;
8218   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8219     // Sort by probability first, number of bits second.
8220     if (a.ExtraProb != b.ExtraProb)
8221       return a.ExtraProb > b.ExtraProb;
8222     return a.Bits > b.Bits;
8223   });
8224 
8225   for (auto &CB : CBV) {
8226     MachineBasicBlock *BitTestBB =
8227         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8228     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8229   }
8230   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8231                             SI->getCondition(), -1U, MVT::Other, false,
8232                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8233                             TotalProb);
8234 
8235   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8236                                     BitTestCases.size() - 1, TotalProb);
8237   return true;
8238 }
8239 
8240 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8241                                               const SwitchInst *SI) {
8242 // Partition Clusters into as few subsets as possible, where each subset has a
8243 // range that fits in a machine word and has <= 3 unique destinations.
8244 
8245 #ifndef NDEBUG
8246   // Clusters must be sorted and contain Range or JumpTable clusters.
8247   assert(!Clusters.empty());
8248   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8249   for (const CaseCluster &C : Clusters)
8250     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8251   for (unsigned i = 1; i < Clusters.size(); ++i)
8252     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8253 #endif
8254 
8255   // The algorithm below is not suitable for -O0.
8256   if (TM.getOptLevel() == CodeGenOpt::None)
8257     return;
8258 
8259   // If target does not have legal shift left, do not emit bit tests at all.
8260   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8261   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8262   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8263     return;
8264 
8265   int BitWidth = PTy.getSizeInBits();
8266   const int64_t N = Clusters.size();
8267 
8268   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8269   SmallVector<unsigned, 8> MinPartitions(N);
8270   // LastElement[i] is the last element of the partition starting at i.
8271   SmallVector<unsigned, 8> LastElement(N);
8272 
8273   // FIXME: This might not be the best algorithm for finding bit test clusters.
8274 
8275   // Base case: There is only one way to partition Clusters[N-1].
8276   MinPartitions[N - 1] = 1;
8277   LastElement[N - 1] = N - 1;
8278 
8279   // Note: loop indexes are signed to avoid underflow.
8280   for (int64_t i = N - 2; i >= 0; --i) {
8281     // Find optimal partitioning of Clusters[i..N-1].
8282     // Baseline: Put Clusters[i] into a partition on its own.
8283     MinPartitions[i] = MinPartitions[i + 1] + 1;
8284     LastElement[i] = i;
8285 
8286     // Search for a solution that results in fewer partitions.
8287     // Note: the search is limited by BitWidth, reducing time complexity.
8288     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8289       // Try building a partition from Clusters[i..j].
8290 
8291       // Check the range.
8292       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8293                            Clusters[j].High->getValue()))
8294         continue;
8295 
8296       // Check nbr of destinations and cluster types.
8297       // FIXME: This works, but doesn't seem very efficient.
8298       bool RangesOnly = true;
8299       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8300       for (int64_t k = i; k <= j; k++) {
8301         if (Clusters[k].Kind != CC_Range) {
8302           RangesOnly = false;
8303           break;
8304         }
8305         Dests.set(Clusters[k].MBB->getNumber());
8306       }
8307       if (!RangesOnly || Dests.count() > 3)
8308         break;
8309 
8310       // Check if it's a better partition.
8311       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8312       if (NumPartitions < MinPartitions[i]) {
8313         // Found a better partition.
8314         MinPartitions[i] = NumPartitions;
8315         LastElement[i] = j;
8316       }
8317     }
8318   }
8319 
8320   // Iterate over the partitions, replacing with bit-test clusters in-place.
8321   unsigned DstIndex = 0;
8322   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8323     Last = LastElement[First];
8324     assert(First <= Last);
8325     assert(DstIndex <= First);
8326 
8327     CaseCluster BitTestCluster;
8328     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8329       Clusters[DstIndex++] = BitTestCluster;
8330     } else {
8331       size_t NumClusters = Last - First + 1;
8332       std::memmove(&Clusters[DstIndex], &Clusters[First],
8333                    sizeof(Clusters[0]) * NumClusters);
8334       DstIndex += NumClusters;
8335     }
8336   }
8337   Clusters.resize(DstIndex);
8338 }
8339 
8340 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8341                                         MachineBasicBlock *SwitchMBB,
8342                                         MachineBasicBlock *DefaultMBB) {
8343   MachineFunction *CurMF = FuncInfo.MF;
8344   MachineBasicBlock *NextMBB = nullptr;
8345   MachineFunction::iterator BBI(W.MBB);
8346   if (++BBI != FuncInfo.MF->end())
8347     NextMBB = &*BBI;
8348 
8349   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8350 
8351   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8352 
8353   if (Size == 2 && W.MBB == SwitchMBB) {
8354     // If any two of the cases has the same destination, and if one value
8355     // is the same as the other, but has one bit unset that the other has set,
8356     // use bit manipulation to do two compares at once.  For example:
8357     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8358     // TODO: This could be extended to merge any 2 cases in switches with 3
8359     // cases.
8360     // TODO: Handle cases where W.CaseBB != SwitchBB.
8361     CaseCluster &Small = *W.FirstCluster;
8362     CaseCluster &Big = *W.LastCluster;
8363 
8364     if (Small.Low == Small.High && Big.Low == Big.High &&
8365         Small.MBB == Big.MBB) {
8366       const APInt &SmallValue = Small.Low->getValue();
8367       const APInt &BigValue = Big.Low->getValue();
8368 
8369       // Check that there is only one bit different.
8370       APInt CommonBit = BigValue ^ SmallValue;
8371       if (CommonBit.isPowerOf2()) {
8372         SDValue CondLHS = getValue(Cond);
8373         EVT VT = CondLHS.getValueType();
8374         SDLoc DL = getCurSDLoc();
8375 
8376         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8377                                  DAG.getConstant(CommonBit, DL, VT));
8378         SDValue Cond = DAG.getSetCC(
8379             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8380             ISD::SETEQ);
8381 
8382         // Update successor info.
8383         // Both Small and Big will jump to Small.BB, so we sum up the
8384         // probabilities.
8385         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8386         if (BPI)
8387           addSuccessorWithProb(
8388               SwitchMBB, DefaultMBB,
8389               // The default destination is the first successor in IR.
8390               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8391         else
8392           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8393 
8394         // Insert the true branch.
8395         SDValue BrCond =
8396             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8397                         DAG.getBasicBlock(Small.MBB));
8398         // Insert the false branch.
8399         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8400                              DAG.getBasicBlock(DefaultMBB));
8401 
8402         DAG.setRoot(BrCond);
8403         return;
8404       }
8405     }
8406   }
8407 
8408   if (TM.getOptLevel() != CodeGenOpt::None) {
8409     // Order cases by probability so the most likely case will be checked first.
8410     std::sort(W.FirstCluster, W.LastCluster + 1,
8411               [](const CaseCluster &a, const CaseCluster &b) {
8412       return a.Prob > b.Prob;
8413     });
8414 
8415     // Rearrange the case blocks so that the last one falls through if possible
8416     // without without changing the order of probabilities.
8417     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8418       --I;
8419       if (I->Prob > W.LastCluster->Prob)
8420         break;
8421       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8422         std::swap(*I, *W.LastCluster);
8423         break;
8424       }
8425     }
8426   }
8427 
8428   // Compute total probability.
8429   BranchProbability DefaultProb = W.DefaultProb;
8430   BranchProbability UnhandledProbs = DefaultProb;
8431   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8432     UnhandledProbs += I->Prob;
8433 
8434   MachineBasicBlock *CurMBB = W.MBB;
8435   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8436     MachineBasicBlock *Fallthrough;
8437     if (I == W.LastCluster) {
8438       // For the last cluster, fall through to the default destination.
8439       Fallthrough = DefaultMBB;
8440     } else {
8441       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8442       CurMF->insert(BBI, Fallthrough);
8443       // Put Cond in a virtual register to make it available from the new blocks.
8444       ExportFromCurrentBlock(Cond);
8445     }
8446     UnhandledProbs -= I->Prob;
8447 
8448     switch (I->Kind) {
8449       case CC_JumpTable: {
8450         // FIXME: Optimize away range check based on pivot comparisons.
8451         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8452         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8453 
8454         // The jump block hasn't been inserted yet; insert it here.
8455         MachineBasicBlock *JumpMBB = JT->MBB;
8456         CurMF->insert(BBI, JumpMBB);
8457 
8458         auto JumpProb = I->Prob;
8459         auto FallthroughProb = UnhandledProbs;
8460 
8461         // If the default statement is a target of the jump table, we evenly
8462         // distribute the default probability to successors of CurMBB. Also
8463         // update the probability on the edge from JumpMBB to Fallthrough.
8464         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8465                                               SE = JumpMBB->succ_end();
8466              SI != SE; ++SI) {
8467           if (*SI == DefaultMBB) {
8468             JumpProb += DefaultProb / 2;
8469             FallthroughProb -= DefaultProb / 2;
8470             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8471             JumpMBB->normalizeSuccProbs();
8472             break;
8473           }
8474         }
8475 
8476         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8477         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8478         CurMBB->normalizeSuccProbs();
8479 
8480         // The jump table header will be inserted in our current block, do the
8481         // range check, and fall through to our fallthrough block.
8482         JTH->HeaderBB = CurMBB;
8483         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8484 
8485         // If we're in the right place, emit the jump table header right now.
8486         if (CurMBB == SwitchMBB) {
8487           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8488           JTH->Emitted = true;
8489         }
8490         break;
8491       }
8492       case CC_BitTests: {
8493         // FIXME: Optimize away range check based on pivot comparisons.
8494         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8495 
8496         // The bit test blocks haven't been inserted yet; insert them here.
8497         for (BitTestCase &BTC : BTB->Cases)
8498           CurMF->insert(BBI, BTC.ThisBB);
8499 
8500         // Fill in fields of the BitTestBlock.
8501         BTB->Parent = CurMBB;
8502         BTB->Default = Fallthrough;
8503 
8504         BTB->DefaultProb = UnhandledProbs;
8505         // If the cases in bit test don't form a contiguous range, we evenly
8506         // distribute the probability on the edge to Fallthrough to two
8507         // successors of CurMBB.
8508         if (!BTB->ContiguousRange) {
8509           BTB->Prob += DefaultProb / 2;
8510           BTB->DefaultProb -= DefaultProb / 2;
8511         }
8512 
8513         // If we're in the right place, emit the bit test header right now.
8514         if (CurMBB == SwitchMBB) {
8515           visitBitTestHeader(*BTB, SwitchMBB);
8516           BTB->Emitted = true;
8517         }
8518         break;
8519       }
8520       case CC_Range: {
8521         const Value *RHS, *LHS, *MHS;
8522         ISD::CondCode CC;
8523         if (I->Low == I->High) {
8524           // Check Cond == I->Low.
8525           CC = ISD::SETEQ;
8526           LHS = Cond;
8527           RHS=I->Low;
8528           MHS = nullptr;
8529         } else {
8530           // Check I->Low <= Cond <= I->High.
8531           CC = ISD::SETLE;
8532           LHS = I->Low;
8533           MHS = Cond;
8534           RHS = I->High;
8535         }
8536 
8537         // The false probability is the sum of all unhandled cases.
8538         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8539                      UnhandledProbs);
8540 
8541         if (CurMBB == SwitchMBB)
8542           visitSwitchCase(CB, SwitchMBB);
8543         else
8544           SwitchCases.push_back(CB);
8545 
8546         break;
8547       }
8548     }
8549     CurMBB = Fallthrough;
8550   }
8551 }
8552 
8553 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8554                                               CaseClusterIt First,
8555                                               CaseClusterIt Last) {
8556   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8557     if (X.Prob != CC.Prob)
8558       return X.Prob > CC.Prob;
8559 
8560     // Ties are broken by comparing the case value.
8561     return X.Low->getValue().slt(CC.Low->getValue());
8562   });
8563 }
8564 
8565 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8566                                         const SwitchWorkListItem &W,
8567                                         Value *Cond,
8568                                         MachineBasicBlock *SwitchMBB) {
8569   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8570          "Clusters not sorted?");
8571 
8572   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8573 
8574   // Balance the tree based on branch probabilities to create a near-optimal (in
8575   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8576   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8577   CaseClusterIt LastLeft = W.FirstCluster;
8578   CaseClusterIt FirstRight = W.LastCluster;
8579   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8580   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8581 
8582   // Move LastLeft and FirstRight towards each other from opposite directions to
8583   // find a partitioning of the clusters which balances the probability on both
8584   // sides. If LeftProb and RightProb are equal, alternate which side is
8585   // taken to ensure 0-probability nodes are distributed evenly.
8586   unsigned I = 0;
8587   while (LastLeft + 1 < FirstRight) {
8588     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8589       LeftProb += (++LastLeft)->Prob;
8590     else
8591       RightProb += (--FirstRight)->Prob;
8592     I++;
8593   }
8594 
8595   for (;;) {
8596     // Our binary search tree differs from a typical BST in that ours can have up
8597     // to three values in each leaf. The pivot selection above doesn't take that
8598     // into account, which means the tree might require more nodes and be less
8599     // efficient. We compensate for this here.
8600 
8601     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8602     unsigned NumRight = W.LastCluster - FirstRight + 1;
8603 
8604     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8605       // If one side has less than 3 clusters, and the other has more than 3,
8606       // consider taking a cluster from the other side.
8607 
8608       if (NumLeft < NumRight) {
8609         // Consider moving the first cluster on the right to the left side.
8610         CaseCluster &CC = *FirstRight;
8611         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8612         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8613         if (LeftSideRank <= RightSideRank) {
8614           // Moving the cluster to the left does not demote it.
8615           ++LastLeft;
8616           ++FirstRight;
8617           continue;
8618         }
8619       } else {
8620         assert(NumRight < NumLeft);
8621         // Consider moving the last element on the left to the right side.
8622         CaseCluster &CC = *LastLeft;
8623         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8624         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8625         if (RightSideRank <= LeftSideRank) {
8626           // Moving the cluster to the right does not demot it.
8627           --LastLeft;
8628           --FirstRight;
8629           continue;
8630         }
8631       }
8632     }
8633     break;
8634   }
8635 
8636   assert(LastLeft + 1 == FirstRight);
8637   assert(LastLeft >= W.FirstCluster);
8638   assert(FirstRight <= W.LastCluster);
8639 
8640   // Use the first element on the right as pivot since we will make less-than
8641   // comparisons against it.
8642   CaseClusterIt PivotCluster = FirstRight;
8643   assert(PivotCluster > W.FirstCluster);
8644   assert(PivotCluster <= W.LastCluster);
8645 
8646   CaseClusterIt FirstLeft = W.FirstCluster;
8647   CaseClusterIt LastRight = W.LastCluster;
8648 
8649   const ConstantInt *Pivot = PivotCluster->Low;
8650 
8651   // New blocks will be inserted immediately after the current one.
8652   MachineFunction::iterator BBI(W.MBB);
8653   ++BBI;
8654 
8655   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8656   // we can branch to its destination directly if it's squeezed exactly in
8657   // between the known lower bound and Pivot - 1.
8658   MachineBasicBlock *LeftMBB;
8659   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8660       FirstLeft->Low == W.GE &&
8661       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8662     LeftMBB = FirstLeft->MBB;
8663   } else {
8664     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8665     FuncInfo.MF->insert(BBI, LeftMBB);
8666     WorkList.push_back(
8667         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8668     // Put Cond in a virtual register to make it available from the new blocks.
8669     ExportFromCurrentBlock(Cond);
8670   }
8671 
8672   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8673   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8674   // directly if RHS.High equals the current upper bound.
8675   MachineBasicBlock *RightMBB;
8676   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8677       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8678     RightMBB = FirstRight->MBB;
8679   } else {
8680     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8681     FuncInfo.MF->insert(BBI, RightMBB);
8682     WorkList.push_back(
8683         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8684     // Put Cond in a virtual register to make it available from the new blocks.
8685     ExportFromCurrentBlock(Cond);
8686   }
8687 
8688   // Create the CaseBlock record that will be used to lower the branch.
8689   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8690                LeftProb, RightProb);
8691 
8692   if (W.MBB == SwitchMBB)
8693     visitSwitchCase(CB, SwitchMBB);
8694   else
8695     SwitchCases.push_back(CB);
8696 }
8697 
8698 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8699   // Extract cases from the switch.
8700   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8701   CaseClusterVector Clusters;
8702   Clusters.reserve(SI.getNumCases());
8703   for (auto I : SI.cases()) {
8704     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8705     const ConstantInt *CaseVal = I.getCaseValue();
8706     BranchProbability Prob =
8707         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8708             : BranchProbability(1, SI.getNumCases() + 1);
8709     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8710   }
8711 
8712   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8713 
8714   // Cluster adjacent cases with the same destination. We do this at all
8715   // optimization levels because it's cheap to do and will make codegen faster
8716   // if there are many clusters.
8717   sortAndRangeify(Clusters);
8718 
8719   if (TM.getOptLevel() != CodeGenOpt::None) {
8720     // Replace an unreachable default with the most popular destination.
8721     // FIXME: Exploit unreachable default more aggressively.
8722     bool UnreachableDefault =
8723         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8724     if (UnreachableDefault && !Clusters.empty()) {
8725       DenseMap<const BasicBlock *, unsigned> Popularity;
8726       unsigned MaxPop = 0;
8727       const BasicBlock *MaxBB = nullptr;
8728       for (auto I : SI.cases()) {
8729         const BasicBlock *BB = I.getCaseSuccessor();
8730         if (++Popularity[BB] > MaxPop) {
8731           MaxPop = Popularity[BB];
8732           MaxBB = BB;
8733         }
8734       }
8735       // Set new default.
8736       assert(MaxPop > 0 && MaxBB);
8737       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8738 
8739       // Remove cases that were pointing to the destination that is now the
8740       // default.
8741       CaseClusterVector New;
8742       New.reserve(Clusters.size());
8743       for (CaseCluster &CC : Clusters) {
8744         if (CC.MBB != DefaultMBB)
8745           New.push_back(CC);
8746       }
8747       Clusters = std::move(New);
8748     }
8749   }
8750 
8751   // If there is only the default destination, jump there directly.
8752   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8753   if (Clusters.empty()) {
8754     SwitchMBB->addSuccessor(DefaultMBB);
8755     if (DefaultMBB != NextBlock(SwitchMBB)) {
8756       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8757                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8758     }
8759     return;
8760   }
8761 
8762   findJumpTables(Clusters, &SI, DefaultMBB);
8763   findBitTestClusters(Clusters, &SI);
8764 
8765   DEBUG({
8766     dbgs() << "Case clusters: ";
8767     for (const CaseCluster &C : Clusters) {
8768       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8769       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8770 
8771       C.Low->getValue().print(dbgs(), true);
8772       if (C.Low != C.High) {
8773         dbgs() << '-';
8774         C.High->getValue().print(dbgs(), true);
8775       }
8776       dbgs() << ' ';
8777     }
8778     dbgs() << '\n';
8779   });
8780 
8781   assert(!Clusters.empty());
8782   SwitchWorkList WorkList;
8783   CaseClusterIt First = Clusters.begin();
8784   CaseClusterIt Last = Clusters.end() - 1;
8785   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8786   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8787 
8788   while (!WorkList.empty()) {
8789     SwitchWorkListItem W = WorkList.back();
8790     WorkList.pop_back();
8791     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8792 
8793     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8794       // For optimized builds, lower large range as a balanced binary tree.
8795       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8796       continue;
8797     }
8798 
8799     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8800   }
8801 }
8802