1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLibraryInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getTargetConstant(1, TLI.getPointerTy())); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 } 210 211 /// getCopyFromParts - Create a value that contains the specified legal parts 212 /// combined into the value they represent. If the parts combine to a type 213 /// larger then ValueVT then AssertOp can be used to specify whether the extra 214 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 215 /// (ISD::AssertSext). 216 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 217 const SDValue *Parts, unsigned NumParts, 218 EVT PartVT, EVT ValueVT) { 219 assert(ValueVT.isVector() && "Not a vector value"); 220 assert(NumParts > 0 && "No parts to assemble!"); 221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 222 SDValue Val = Parts[0]; 223 224 // Handle a multi-element vector. 225 if (NumParts > 1) { 226 EVT IntermediateVT, RegisterVT; 227 unsigned NumIntermediates; 228 unsigned NumRegs = 229 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 230 NumIntermediates, RegisterVT); 231 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 232 NumParts = NumRegs; // Silence a compiler warning. 233 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 234 assert(RegisterVT == Parts[0].getValueType() && 235 "Part type doesn't match part!"); 236 237 // Assemble the parts into intermediate operands. 238 SmallVector<SDValue, 8> Ops(NumIntermediates); 239 if (NumIntermediates == NumParts) { 240 // If the register was not expanded, truncate or copy the value, 241 // as appropriate. 242 for (unsigned i = 0; i != NumParts; ++i) 243 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 244 PartVT, IntermediateVT); 245 } else if (NumParts > 0) { 246 // If the intermediate type was expanded, build the intermediate 247 // operands from the parts. 248 assert(NumParts % NumIntermediates == 0 && 249 "Must expand into a divisible number of parts!"); 250 unsigned Factor = NumParts / NumIntermediates; 251 for (unsigned i = 0; i != NumIntermediates; ++i) 252 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 253 PartVT, IntermediateVT); 254 } 255 256 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 257 // intermediate operands. 258 Val = DAG.getNode(IntermediateVT.isVector() ? 259 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 260 ValueVT, &Ops[0], NumIntermediates); 261 } 262 263 // There is now one part, held in Val. Correct it to match ValueVT. 264 PartVT = Val.getValueType(); 265 266 if (PartVT == ValueVT) 267 return Val; 268 269 if (PartVT.isVector()) { 270 // If the element type of the source/dest vectors are the same, but the 271 // parts vector has more elements than the value vector, then we have a 272 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 273 // elements we want. 274 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 275 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 276 "Cannot narrow, it would be a lossy transformation"); 277 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 278 DAG.getIntPtrConstant(0)); 279 } 280 281 // Vector/Vector bitcast. 282 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 283 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 284 285 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 286 "Cannot handle this kind of promotion"); 287 // Promoted vector extract 288 bool Smaller = ValueVT.bitsLE(PartVT); 289 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 290 DL, ValueVT, Val); 291 292 } 293 294 // Trivial bitcast if the types are the same size and the destination 295 // vector type is legal. 296 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 297 TLI.isTypeLegal(ValueVT)) 298 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 299 300 // Handle cases such as i8 -> <1 x i1> 301 assert(ValueVT.getVectorNumElements() == 1 && 302 "Only trivial scalar-to-vector conversions should get here!"); 303 304 if (ValueVT.getVectorNumElements() == 1 && 305 ValueVT.getVectorElementType() != PartVT) { 306 bool Smaller = ValueVT.bitsLE(PartVT); 307 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 308 DL, ValueVT.getScalarType(), Val); 309 } 310 311 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 312 } 313 314 315 316 317 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 318 SDValue Val, SDValue *Parts, unsigned NumParts, 319 EVT PartVT); 320 321 /// getCopyToParts - Create a series of nodes that contain the specified value 322 /// split into legal parts. If the parts contain more bits than Val, then, for 323 /// integers, ExtendKind can be used to specify how to generate the extra bits. 324 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 325 SDValue Val, SDValue *Parts, unsigned NumParts, 326 EVT PartVT, 327 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 328 EVT ValueVT = Val.getValueType(); 329 330 // Handle the vector case separately. 331 if (ValueVT.isVector()) 332 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 unsigned PartBits = PartVT.getSizeInBits(); 336 unsigned OrigNumParts = NumParts; 337 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 338 339 if (NumParts == 0) 340 return; 341 342 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 343 if (PartVT == ValueVT) { 344 assert(NumParts == 1 && "No-op copy with multiple parts!"); 345 Parts[0] = Val; 346 return; 347 } 348 349 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 350 // If the parts cover more bits than the value has, promote the value. 351 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 352 assert(NumParts == 1 && "Do not know what to promote to!"); 353 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 354 } else { 355 assert(PartVT.isInteger() && ValueVT.isInteger() && 356 "Unknown mismatch!"); 357 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 358 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 359 } 360 } else if (PartBits == ValueVT.getSizeInBits()) { 361 // Different types of the same size. 362 assert(NumParts == 1 && PartVT != ValueVT); 363 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 364 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 365 // If the parts cover less bits than value has, truncate the value. 366 assert(PartVT.isInteger() && ValueVT.isInteger() && 367 "Unknown mismatch!"); 368 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 369 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 370 } 371 372 // The value may have changed - recompute ValueVT. 373 ValueVT = Val.getValueType(); 374 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 375 "Failed to tile the value with PartVT!"); 376 377 if (NumParts == 1) { 378 assert(PartVT == ValueVT && "Type conversion failed!"); 379 Parts[0] = Val; 380 return; 381 } 382 383 // Expand the value into multiple parts. 384 if (NumParts & (NumParts - 1)) { 385 // The number of parts is not a power of 2. Split off and copy the tail. 386 assert(PartVT.isInteger() && ValueVT.isInteger() && 387 "Do not know what to expand to!"); 388 unsigned RoundParts = 1 << Log2_32(NumParts); 389 unsigned RoundBits = RoundParts * PartBits; 390 unsigned OddParts = NumParts - RoundParts; 391 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 392 DAG.getIntPtrConstant(RoundBits)); 393 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 394 395 if (TLI.isBigEndian()) 396 // The odd parts were reversed by getCopyToParts - unreverse them. 397 std::reverse(Parts + RoundParts, Parts + NumParts); 398 399 NumParts = RoundParts; 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 } 403 404 // The number of parts is a power of 2. Repeatedly bisect the value using 405 // EXTRACT_ELEMENT. 406 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 407 EVT::getIntegerVT(*DAG.getContext(), 408 ValueVT.getSizeInBits()), 409 Val); 410 411 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 412 for (unsigned i = 0; i < NumParts; i += StepSize) { 413 unsigned ThisBits = StepSize * PartBits / 2; 414 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 415 SDValue &Part0 = Parts[i]; 416 SDValue &Part1 = Parts[i+StepSize/2]; 417 418 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 419 ThisVT, Part0, DAG.getIntPtrConstant(1)); 420 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 421 ThisVT, Part0, DAG.getIntPtrConstant(0)); 422 423 if (ThisBits == PartBits && ThisVT != PartVT) { 424 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 425 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 426 } 427 } 428 } 429 430 if (TLI.isBigEndian()) 431 std::reverse(Parts, Parts + OrigNumParts); 432 } 433 434 435 /// getCopyToPartsVector - Create a series of nodes that contain the specified 436 /// value split into legal parts. 437 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 438 SDValue Val, SDValue *Parts, unsigned NumParts, 439 EVT PartVT) { 440 EVT ValueVT = Val.getValueType(); 441 assert(ValueVT.isVector() && "Not a vector"); 442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 443 444 if (NumParts == 1) { 445 if (PartVT == ValueVT) { 446 // Nothing to do. 447 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 448 // Bitconvert vector->vector case. 449 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 450 } else if (PartVT.isVector() && 451 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 452 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 453 EVT ElementVT = PartVT.getVectorElementType(); 454 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 455 // undef elements. 456 SmallVector<SDValue, 16> Ops; 457 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 458 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 459 ElementVT, Val, DAG.getIntPtrConstant(i))); 460 461 for (unsigned i = ValueVT.getVectorNumElements(), 462 e = PartVT.getVectorNumElements(); i != e; ++i) 463 Ops.push_back(DAG.getUNDEF(ElementVT)); 464 465 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 466 467 // FIXME: Use CONCAT for 2x -> 4x. 468 469 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 470 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 471 } else if (PartVT.isVector() && 472 PartVT.getVectorElementType().bitsGE( 473 ValueVT.getVectorElementType()) && 474 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 475 476 // Promoted vector extract 477 bool Smaller = PartVT.bitsLE(ValueVT); 478 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 479 DL, PartVT, Val); 480 } else{ 481 // Vector -> scalar conversion. 482 assert(ValueVT.getVectorNumElements() == 1 && 483 "Only trivial vector-to-scalar conversions should get here!"); 484 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 485 PartVT, Val, DAG.getIntPtrConstant(0)); 486 487 bool Smaller = ValueVT.bitsLE(PartVT); 488 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 489 DL, PartVT, Val); 490 } 491 492 Parts[0] = Val; 493 return; 494 } 495 496 // Handle a multi-element vector. 497 EVT IntermediateVT, RegisterVT; 498 unsigned NumIntermediates; 499 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 500 IntermediateVT, 501 NumIntermediates, RegisterVT); 502 unsigned NumElements = ValueVT.getVectorNumElements(); 503 504 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 505 NumParts = NumRegs; // Silence a compiler warning. 506 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 507 508 // Split the vector into intermediate operands. 509 SmallVector<SDValue, 8> Ops(NumIntermediates); 510 for (unsigned i = 0; i != NumIntermediates; ++i) { 511 if (IntermediateVT.isVector()) 512 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 513 IntermediateVT, Val, 514 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 515 else 516 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 517 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 518 } 519 520 // Split the intermediate operands into legal parts. 521 if (NumParts == NumIntermediates) { 522 // If the register was not expanded, promote or copy the value, 523 // as appropriate. 524 for (unsigned i = 0; i != NumParts; ++i) 525 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 526 } else if (NumParts > 0) { 527 // If the intermediate type was expanded, split each the value into 528 // legal parts. 529 assert(NumParts % NumIntermediates == 0 && 530 "Must expand into a divisible number of parts!"); 531 unsigned Factor = NumParts / NumIntermediates; 532 for (unsigned i = 0; i != NumIntermediates; ++i) 533 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 534 } 535 } 536 537 538 539 540 namespace { 541 /// RegsForValue - This struct represents the registers (physical or virtual) 542 /// that a particular set of values is assigned, and the type information 543 /// about the value. The most common situation is to represent one value at a 544 /// time, but struct or array values are handled element-wise as multiple 545 /// values. The splitting of aggregates is performed recursively, so that we 546 /// never have aggregate-typed registers. The values at this point do not 547 /// necessarily have legal types, so each value may require one or more 548 /// registers of some legal type. 549 /// 550 struct RegsForValue { 551 /// ValueVTs - The value types of the values, which may not be legal, and 552 /// may need be promoted or synthesized from one or more registers. 553 /// 554 SmallVector<EVT, 4> ValueVTs; 555 556 /// RegVTs - The value types of the registers. This is the same size as 557 /// ValueVTs and it records, for each value, what the type of the assigned 558 /// register or registers are. (Individual values are never synthesized 559 /// from more than one type of register.) 560 /// 561 /// With virtual registers, the contents of RegVTs is redundant with TLI's 562 /// getRegisterType member function, however when with physical registers 563 /// it is necessary to have a separate record of the types. 564 /// 565 SmallVector<EVT, 4> RegVTs; 566 567 /// Regs - This list holds the registers assigned to the values. 568 /// Each legal or promoted value requires one register, and each 569 /// expanded value requires multiple registers. 570 /// 571 SmallVector<unsigned, 4> Regs; 572 573 RegsForValue() {} 574 575 RegsForValue(const SmallVector<unsigned, 4> ®s, 576 EVT regvt, EVT valuevt) 577 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 578 579 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 580 unsigned Reg, Type *Ty) { 581 ComputeValueVTs(tli, Ty, ValueVTs); 582 583 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 584 EVT ValueVT = ValueVTs[Value]; 585 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 586 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 587 for (unsigned i = 0; i != NumRegs; ++i) 588 Regs.push_back(Reg + i); 589 RegVTs.push_back(RegisterVT); 590 Reg += NumRegs; 591 } 592 } 593 594 /// areValueTypesLegal - Return true if types of all the values are legal. 595 bool areValueTypesLegal(const TargetLowering &TLI) { 596 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 597 EVT RegisterVT = RegVTs[Value]; 598 if (!TLI.isTypeLegal(RegisterVT)) 599 return false; 600 } 601 return true; 602 } 603 604 /// append - Add the specified values to this one. 605 void append(const RegsForValue &RHS) { 606 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 607 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 608 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 609 } 610 611 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 612 /// this value and returns the result as a ValueVTs value. This uses 613 /// Chain/Flag as the input and updates them for the output Chain/Flag. 614 /// If the Flag pointer is NULL, no flag is used. 615 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 616 DebugLoc dl, 617 SDValue &Chain, SDValue *Flag) const; 618 619 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 620 /// specified value into the registers specified by this object. This uses 621 /// Chain/Flag as the input and updates them for the output Chain/Flag. 622 /// If the Flag pointer is NULL, no flag is used. 623 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 624 SDValue &Chain, SDValue *Flag) const; 625 626 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 627 /// operand list. This adds the code marker, matching input operand index 628 /// (if applicable), and includes the number of values added into it. 629 void AddInlineAsmOperands(unsigned Kind, 630 bool HasMatching, unsigned MatchingIdx, 631 SelectionDAG &DAG, 632 std::vector<SDValue> &Ops) const; 633 }; 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVT value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 641 FunctionLoweringInfo &FuncInfo, 642 DebugLoc dl, 643 SDValue &Chain, SDValue *Flag) const { 644 // A Value with type {} or [0 x %t] needs no registers. 645 if (ValueVTs.empty()) 646 return SDValue(); 647 648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 649 650 // Assemble the legal parts into the final values. 651 SmallVector<SDValue, 4> Values(ValueVTs.size()); 652 SmallVector<SDValue, 8> Parts; 653 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 654 // Copy the legal parts from the registers. 655 EVT ValueVT = ValueVTs[Value]; 656 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 657 EVT RegisterVT = RegVTs[Value]; 658 659 Parts.resize(NumRegs); 660 for (unsigned i = 0; i != NumRegs; ++i) { 661 SDValue P; 662 if (Flag == 0) { 663 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 664 } else { 665 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 666 *Flag = P.getValue(2); 667 } 668 669 Chain = P.getValue(1); 670 Parts[i] = P; 671 672 // If the source register was virtual and if we know something about it, 673 // add an assert node. 674 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 675 !RegisterVT.isInteger() || RegisterVT.isVector()) 676 continue; 677 678 const FunctionLoweringInfo::LiveOutInfo *LOI = 679 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 680 if (!LOI) 681 continue; 682 683 unsigned RegSize = RegisterVT.getSizeInBits(); 684 unsigned NumSignBits = LOI->NumSignBits; 685 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 686 687 // FIXME: We capture more information than the dag can represent. For 688 // now, just use the tightest assertzext/assertsext possible. 689 bool isSExt = true; 690 EVT FromVT(MVT::Other); 691 if (NumSignBits == RegSize) 692 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 693 else if (NumZeroBits >= RegSize-1) 694 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 695 else if (NumSignBits > RegSize-8) 696 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 697 else if (NumZeroBits >= RegSize-8) 698 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 699 else if (NumSignBits > RegSize-16) 700 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 701 else if (NumZeroBits >= RegSize-16) 702 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 703 else if (NumSignBits > RegSize-32) 704 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 705 else if (NumZeroBits >= RegSize-32) 706 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 707 else 708 continue; 709 710 // Add an assertion node. 711 assert(FromVT != MVT::Other); 712 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 713 RegisterVT, P, DAG.getValueType(FromVT)); 714 } 715 716 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 717 NumRegs, RegisterVT, ValueVT); 718 Part += NumRegs; 719 Parts.clear(); 720 } 721 722 return DAG.getNode(ISD::MERGE_VALUES, dl, 723 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 724 &Values[0], ValueVTs.size()); 725 } 726 727 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 728 /// specified value into the registers specified by this object. This uses 729 /// Chain/Flag as the input and updates them for the output Chain/Flag. 730 /// If the Flag pointer is NULL, no flag is used. 731 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 732 SDValue &Chain, SDValue *Flag) const { 733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 734 735 // Get the list of the values's legal parts. 736 unsigned NumRegs = Regs.size(); 737 SmallVector<SDValue, 8> Parts(NumRegs); 738 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 739 EVT ValueVT = ValueVTs[Value]; 740 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 741 EVT RegisterVT = RegVTs[Value]; 742 743 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 744 &Parts[Part], NumParts, RegisterVT); 745 Part += NumParts; 746 } 747 748 // Copy the parts into the registers. 749 SmallVector<SDValue, 8> Chains(NumRegs); 750 for (unsigned i = 0; i != NumRegs; ++i) { 751 SDValue Part; 752 if (Flag == 0) { 753 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 754 } else { 755 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 756 *Flag = Part.getValue(1); 757 } 758 759 Chains[i] = Part.getValue(0); 760 } 761 762 if (NumRegs == 1 || Flag) 763 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 764 // flagged to it. That is the CopyToReg nodes and the user are considered 765 // a single scheduling unit. If we create a TokenFactor and return it as 766 // chain, then the TokenFactor is both a predecessor (operand) of the 767 // user as well as a successor (the TF operands are flagged to the user). 768 // c1, f1 = CopyToReg 769 // c2, f2 = CopyToReg 770 // c3 = TokenFactor c1, c2 771 // ... 772 // = op c3, ..., f2 773 Chain = Chains[NumRegs-1]; 774 else 775 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 776 } 777 778 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 779 /// operand list. This adds the code marker and includes the number of 780 /// values added into it. 781 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 782 unsigned MatchingIdx, 783 SelectionDAG &DAG, 784 std::vector<SDValue> &Ops) const { 785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 786 787 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 788 if (HasMatching) 789 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 790 else if (!Regs.empty() && 791 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 792 // Put the register class of the virtual registers in the flag word. That 793 // way, later passes can recompute register class constraints for inline 794 // assembly as well as normal instructions. 795 // Don't do this for tied operands that can use the regclass information 796 // from the def. 797 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 798 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 799 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 800 } 801 802 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 803 Ops.push_back(Res); 804 805 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 806 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 807 EVT RegisterVT = RegVTs[Value]; 808 for (unsigned i = 0; i != NumRegs; ++i) { 809 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 810 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 811 } 812 } 813 } 814 815 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 816 const TargetLibraryInfo *li) { 817 AA = &aa; 818 GFI = gfi; 819 LibInfo = li; 820 TD = DAG.getTarget().getTargetData(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurDebugLoc = DebugLoc(); 836 HasTailCall = false; 837 } 838 839 /// clearDanglingDebugInfo - Clear the dangling debug information 840 /// map. This function is seperated from the clear so that debug 841 /// information that is dangling in a basic block can be properly 842 /// resolved in a different basic block. This allows the 843 /// SelectionDAG to resolve dangling debug information attached 844 /// to PHI nodes. 845 void SelectionDAGBuilder::clearDanglingDebugInfo() { 846 DanglingDebugInfoMap.clear(); 847 } 848 849 /// getRoot - Return the current virtual root of the Selection DAG, 850 /// flushing any PendingLoad items. This must be done before emitting 851 /// a store or any other node that may need to be ordered after any 852 /// prior load instructions. 853 /// 854 SDValue SelectionDAGBuilder::getRoot() { 855 if (PendingLoads.empty()) 856 return DAG.getRoot(); 857 858 if (PendingLoads.size() == 1) { 859 SDValue Root = PendingLoads[0]; 860 DAG.setRoot(Root); 861 PendingLoads.clear(); 862 return Root; 863 } 864 865 // Otherwise, we have to make a token factor node. 866 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 867 &PendingLoads[0], PendingLoads.size()); 868 PendingLoads.clear(); 869 DAG.setRoot(Root); 870 return Root; 871 } 872 873 /// getControlRoot - Similar to getRoot, but instead of flushing all the 874 /// PendingLoad items, flush all the PendingExports items. It is necessary 875 /// to do this before emitting a terminator instruction. 876 /// 877 SDValue SelectionDAGBuilder::getControlRoot() { 878 SDValue Root = DAG.getRoot(); 879 880 if (PendingExports.empty()) 881 return Root; 882 883 // Turn all of the CopyToReg chains into one factored node. 884 if (Root.getOpcode() != ISD::EntryToken) { 885 unsigned i = 0, e = PendingExports.size(); 886 for (; i != e; ++i) { 887 assert(PendingExports[i].getNode()->getNumOperands() > 1); 888 if (PendingExports[i].getNode()->getOperand(0) == Root) 889 break; // Don't add the root if we already indirectly depend on it. 890 } 891 892 if (i == e) 893 PendingExports.push_back(Root); 894 } 895 896 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 897 &PendingExports[0], 898 PendingExports.size()); 899 PendingExports.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 905 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 906 DAG.AssignOrdering(Node, SDNodeOrder); 907 908 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 909 AssignOrderingToNode(Node->getOperand(I).getNode()); 910 } 911 912 void SelectionDAGBuilder::visit(const Instruction &I) { 913 // Set up outgoing PHI node register values before emitting the terminator. 914 if (isa<TerminatorInst>(&I)) 915 HandlePHINodesInSuccessorBlocks(I.getParent()); 916 917 CurDebugLoc = I.getDebugLoc(); 918 919 visit(I.getOpcode(), I); 920 921 if (!isa<TerminatorInst>(&I) && !HasTailCall) 922 CopyToExportRegsIfNeeded(&I); 923 924 CurDebugLoc = DebugLoc(); 925 } 926 927 void SelectionDAGBuilder::visitPHI(const PHINode &) { 928 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 929 } 930 931 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 932 // Note: this doesn't use InstVisitor, because it has to work with 933 // ConstantExpr's in addition to instructions. 934 switch (Opcode) { 935 default: llvm_unreachable("Unknown instruction type encountered!"); 936 // Build the switch statement using the Instruction.def file. 937 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 938 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 939 #include "llvm/Instruction.def" 940 } 941 942 // Assign the ordering to the freshly created DAG nodes. 943 if (NodeMap.count(&I)) { 944 ++SDNodeOrder; 945 AssignOrderingToNode(getValue(&I).getNode()); 946 } 947 } 948 949 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 950 // generate the debug data structures now that we've seen its definition. 951 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 952 SDValue Val) { 953 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 954 if (DDI.getDI()) { 955 const DbgValueInst *DI = DDI.getDI(); 956 DebugLoc dl = DDI.getdl(); 957 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 958 MDNode *Variable = DI->getVariable(); 959 uint64_t Offset = DI->getOffset(); 960 SDDbgValue *SDV; 961 if (Val.getNode()) { 962 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 963 SDV = DAG.getDbgValue(Variable, Val.getNode(), 964 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 965 DAG.AddDbgValue(SDV, Val.getNode(), false); 966 } 967 } else 968 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 969 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 970 } 971 } 972 973 /// getValue - Return an SDValue for the given Value. 974 SDValue SelectionDAGBuilder::getValue(const Value *V) { 975 // If we already have an SDValue for this value, use it. It's important 976 // to do this first, so that we don't create a CopyFromReg if we already 977 // have a regular SDValue. 978 SDValue &N = NodeMap[V]; 979 if (N.getNode()) return N; 980 981 // If there's a virtual register allocated and initialized for this 982 // value, use it. 983 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 984 if (It != FuncInfo.ValueMap.end()) { 985 unsigned InReg = It->second; 986 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 987 SDValue Chain = DAG.getEntryNode(); 988 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 989 resolveDanglingDebugInfo(V, N); 990 return N; 991 } 992 993 // Otherwise create a new SDValue and remember it. 994 SDValue Val = getValueImpl(V); 995 NodeMap[V] = Val; 996 resolveDanglingDebugInfo(V, Val); 997 return Val; 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // Otherwise create a new SDValue and remember it. 1008 SDValue Val = getValueImpl(V); 1009 NodeMap[V] = Val; 1010 resolveDanglingDebugInfo(V, Val); 1011 return Val; 1012 } 1013 1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1015 /// Create an SDValue for the given value. 1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1017 if (const Constant *C = dyn_cast<Constant>(V)) { 1018 EVT VT = TLI.getValueType(V->getType(), true); 1019 1020 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1021 return DAG.getConstant(*CI, VT); 1022 1023 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1024 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1025 1026 if (isa<ConstantPointerNull>(C)) 1027 return DAG.getConstant(0, TLI.getPointerTy()); 1028 1029 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1030 return DAG.getConstantFP(*CFP, VT); 1031 1032 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1033 return DAG.getUNDEF(VT); 1034 1035 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1036 visit(CE->getOpcode(), *CE); 1037 SDValue N1 = NodeMap[V]; 1038 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1039 return N1; 1040 } 1041 1042 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1043 SmallVector<SDValue, 4> Constants; 1044 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1045 OI != OE; ++OI) { 1046 SDNode *Val = getValue(*OI).getNode(); 1047 // If the operand is an empty aggregate, there are no values. 1048 if (!Val) continue; 1049 // Add each leaf value from the operand to the Constants list 1050 // to form a flattened list of all the values. 1051 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1052 Constants.push_back(SDValue(Val, i)); 1053 } 1054 1055 return DAG.getMergeValues(&Constants[0], Constants.size(), 1056 getCurDebugLoc()); 1057 } 1058 1059 if (const ConstantDataSequential *CDS = 1060 dyn_cast<ConstantDataSequential>(C)) { 1061 SmallVector<SDValue, 4> Ops; 1062 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1063 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1064 // Add each leaf value from the operand to the Constants list 1065 // to form a flattened list of all the values. 1066 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1067 Ops.push_back(SDValue(Val, i)); 1068 } 1069 1070 if (isa<ArrayType>(CDS->getType())) 1071 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1072 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1073 VT, &Ops[0], Ops.size()); 1074 } 1075 1076 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1077 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1078 "Unknown struct or array constant!"); 1079 1080 SmallVector<EVT, 4> ValueVTs; 1081 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1082 unsigned NumElts = ValueVTs.size(); 1083 if (NumElts == 0) 1084 return SDValue(); // empty struct 1085 SmallVector<SDValue, 4> Constants(NumElts); 1086 for (unsigned i = 0; i != NumElts; ++i) { 1087 EVT EltVT = ValueVTs[i]; 1088 if (isa<UndefValue>(C)) 1089 Constants[i] = DAG.getUNDEF(EltVT); 1090 else if (EltVT.isFloatingPoint()) 1091 Constants[i] = DAG.getConstantFP(0, EltVT); 1092 else 1093 Constants[i] = DAG.getConstant(0, EltVT); 1094 } 1095 1096 return DAG.getMergeValues(&Constants[0], NumElts, 1097 getCurDebugLoc()); 1098 } 1099 1100 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1101 return DAG.getBlockAddress(BA, VT); 1102 1103 VectorType *VecTy = cast<VectorType>(V->getType()); 1104 unsigned NumElements = VecTy->getNumElements(); 1105 1106 // Now that we know the number and type of the elements, get that number of 1107 // elements into the Ops array based on what kind of constant it is. 1108 SmallVector<SDValue, 16> Ops; 1109 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1110 for (unsigned i = 0; i != NumElements; ++i) 1111 Ops.push_back(getValue(CV->getOperand(i))); 1112 } else { 1113 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1114 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1115 1116 SDValue Op; 1117 if (EltVT.isFloatingPoint()) 1118 Op = DAG.getConstantFP(0, EltVT); 1119 else 1120 Op = DAG.getConstant(0, EltVT); 1121 Ops.assign(NumElements, Op); 1122 } 1123 1124 // Create a BUILD_VECTOR node. 1125 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1126 VT, &Ops[0], Ops.size()); 1127 } 1128 1129 // If this is a static alloca, generate it as the frameindex instead of 1130 // computation. 1131 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1132 DenseMap<const AllocaInst*, int>::iterator SI = 1133 FuncInfo.StaticAllocaMap.find(AI); 1134 if (SI != FuncInfo.StaticAllocaMap.end()) 1135 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1136 } 1137 1138 // If this is an instruction which fast-isel has deferred, select it now. 1139 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1140 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1141 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1142 SDValue Chain = DAG.getEntryNode(); 1143 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1144 } 1145 1146 llvm_unreachable("Can't get register for value!"); 1147 } 1148 1149 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1150 SDValue Chain = getControlRoot(); 1151 SmallVector<ISD::OutputArg, 8> Outs; 1152 SmallVector<SDValue, 8> OutVals; 1153 1154 if (!FuncInfo.CanLowerReturn) { 1155 unsigned DemoteReg = FuncInfo.DemoteRegister; 1156 const Function *F = I.getParent()->getParent(); 1157 1158 // Emit a store of the return value through the virtual register. 1159 // Leave Outs empty so that LowerReturn won't try to load return 1160 // registers the usual way. 1161 SmallVector<EVT, 1> PtrValueVTs; 1162 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1163 PtrValueVTs); 1164 1165 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1166 SDValue RetOp = getValue(I.getOperand(0)); 1167 1168 SmallVector<EVT, 4> ValueVTs; 1169 SmallVector<uint64_t, 4> Offsets; 1170 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1171 unsigned NumValues = ValueVTs.size(); 1172 1173 SmallVector<SDValue, 4> Chains(NumValues); 1174 for (unsigned i = 0; i != NumValues; ++i) { 1175 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1176 RetPtr.getValueType(), RetPtr, 1177 DAG.getIntPtrConstant(Offsets[i])); 1178 Chains[i] = 1179 DAG.getStore(Chain, getCurDebugLoc(), 1180 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1181 // FIXME: better loc info would be nice. 1182 Add, MachinePointerInfo(), false, false, 0); 1183 } 1184 1185 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1186 MVT::Other, &Chains[0], NumValues); 1187 } else if (I.getNumOperands() != 0) { 1188 SmallVector<EVT, 4> ValueVTs; 1189 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1190 unsigned NumValues = ValueVTs.size(); 1191 if (NumValues) { 1192 SDValue RetOp = getValue(I.getOperand(0)); 1193 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1194 EVT VT = ValueVTs[j]; 1195 1196 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1197 1198 const Function *F = I.getParent()->getParent(); 1199 if (F->paramHasAttr(0, Attribute::SExt)) 1200 ExtendKind = ISD::SIGN_EXTEND; 1201 else if (F->paramHasAttr(0, Attribute::ZExt)) 1202 ExtendKind = ISD::ZERO_EXTEND; 1203 1204 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1205 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1206 1207 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1208 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1209 SmallVector<SDValue, 4> Parts(NumParts); 1210 getCopyToParts(DAG, getCurDebugLoc(), 1211 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1212 &Parts[0], NumParts, PartVT, ExtendKind); 1213 1214 // 'inreg' on function refers to return value 1215 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1216 if (F->paramHasAttr(0, Attribute::InReg)) 1217 Flags.setInReg(); 1218 1219 // Propagate extension type if any 1220 if (ExtendKind == ISD::SIGN_EXTEND) 1221 Flags.setSExt(); 1222 else if (ExtendKind == ISD::ZERO_EXTEND) 1223 Flags.setZExt(); 1224 1225 for (unsigned i = 0; i < NumParts; ++i) { 1226 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1227 /*isfixed=*/true)); 1228 OutVals.push_back(Parts[i]); 1229 } 1230 } 1231 } 1232 } 1233 1234 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1235 CallingConv::ID CallConv = 1236 DAG.getMachineFunction().getFunction()->getCallingConv(); 1237 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1238 Outs, OutVals, getCurDebugLoc(), DAG); 1239 1240 // Verify that the target's LowerReturn behaved as expected. 1241 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1242 "LowerReturn didn't return a valid chain!"); 1243 1244 // Update the DAG with the new chain value resulting from return lowering. 1245 DAG.setRoot(Chain); 1246 } 1247 1248 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1249 /// created for it, emit nodes to copy the value into the virtual 1250 /// registers. 1251 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1252 // Skip empty types 1253 if (V->getType()->isEmptyTy()) 1254 return; 1255 1256 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1257 if (VMI != FuncInfo.ValueMap.end()) { 1258 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1259 CopyValueToVirtualRegister(V, VMI->second); 1260 } 1261 } 1262 1263 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1264 /// the current basic block, add it to ValueMap now so that we'll get a 1265 /// CopyTo/FromReg. 1266 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1267 // No need to export constants. 1268 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1269 1270 // Already exported? 1271 if (FuncInfo.isExportedInst(V)) return; 1272 1273 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1274 CopyValueToVirtualRegister(V, Reg); 1275 } 1276 1277 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1278 const BasicBlock *FromBB) { 1279 // The operands of the setcc have to be in this block. We don't know 1280 // how to export them from some other block. 1281 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1282 // Can export from current BB. 1283 if (VI->getParent() == FromBB) 1284 return true; 1285 1286 // Is already exported, noop. 1287 return FuncInfo.isExportedInst(V); 1288 } 1289 1290 // If this is an argument, we can export it if the BB is the entry block or 1291 // if it is already exported. 1292 if (isa<Argument>(V)) { 1293 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1294 return true; 1295 1296 // Otherwise, can only export this if it is already exported. 1297 return FuncInfo.isExportedInst(V); 1298 } 1299 1300 // Otherwise, constants can always be exported. 1301 return true; 1302 } 1303 1304 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1305 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1306 const MachineBasicBlock *Dst) const { 1307 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1308 if (!BPI) 1309 return 0; 1310 const BasicBlock *SrcBB = Src->getBasicBlock(); 1311 const BasicBlock *DstBB = Dst->getBasicBlock(); 1312 return BPI->getEdgeWeight(SrcBB, DstBB); 1313 } 1314 1315 void SelectionDAGBuilder:: 1316 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1317 uint32_t Weight /* = 0 */) { 1318 if (!Weight) 1319 Weight = getEdgeWeight(Src, Dst); 1320 Src->addSuccessor(Dst, Weight); 1321 } 1322 1323 1324 static bool InBlock(const Value *V, const BasicBlock *BB) { 1325 if (const Instruction *I = dyn_cast<Instruction>(V)) 1326 return I->getParent() == BB; 1327 return true; 1328 } 1329 1330 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1331 /// This function emits a branch and is used at the leaves of an OR or an 1332 /// AND operator tree. 1333 /// 1334 void 1335 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1336 MachineBasicBlock *TBB, 1337 MachineBasicBlock *FBB, 1338 MachineBasicBlock *CurBB, 1339 MachineBasicBlock *SwitchBB) { 1340 const BasicBlock *BB = CurBB->getBasicBlock(); 1341 1342 // If the leaf of the tree is a comparison, merge the condition into 1343 // the caseblock. 1344 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1345 // The operands of the cmp have to be in this block. We don't know 1346 // how to export them from some other block. If this is the first block 1347 // of the sequence, no exporting is needed. 1348 if (CurBB == SwitchBB || 1349 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1350 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1351 ISD::CondCode Condition; 1352 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1353 Condition = getICmpCondCode(IC->getPredicate()); 1354 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1355 Condition = getFCmpCondCode(FC->getPredicate()); 1356 if (TM.Options.NoNaNsFPMath) 1357 Condition = getFCmpCodeWithoutNaN(Condition); 1358 } else { 1359 Condition = ISD::SETEQ; // silence warning. 1360 llvm_unreachable("Unknown compare instruction"); 1361 } 1362 1363 CaseBlock CB(Condition, BOp->getOperand(0), 1364 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1365 SwitchCases.push_back(CB); 1366 return; 1367 } 1368 } 1369 1370 // Create a CaseBlock record representing this branch. 1371 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1372 NULL, TBB, FBB, CurBB); 1373 SwitchCases.push_back(CB); 1374 } 1375 1376 /// FindMergedConditions - If Cond is an expression like 1377 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1378 MachineBasicBlock *TBB, 1379 MachineBasicBlock *FBB, 1380 MachineBasicBlock *CurBB, 1381 MachineBasicBlock *SwitchBB, 1382 unsigned Opc) { 1383 // If this node is not part of the or/and tree, emit it as a branch. 1384 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1385 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1386 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1387 BOp->getParent() != CurBB->getBasicBlock() || 1388 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1389 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1390 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1391 return; 1392 } 1393 1394 // Create TmpBB after CurBB. 1395 MachineFunction::iterator BBI = CurBB; 1396 MachineFunction &MF = DAG.getMachineFunction(); 1397 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1398 CurBB->getParent()->insert(++BBI, TmpBB); 1399 1400 if (Opc == Instruction::Or) { 1401 // Codegen X | Y as: 1402 // jmp_if_X TBB 1403 // jmp TmpBB 1404 // TmpBB: 1405 // jmp_if_Y TBB 1406 // jmp FBB 1407 // 1408 1409 // Emit the LHS condition. 1410 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1411 1412 // Emit the RHS condition into TmpBB. 1413 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1414 } else { 1415 assert(Opc == Instruction::And && "Unknown merge op!"); 1416 // Codegen X & Y as: 1417 // jmp_if_X TmpBB 1418 // jmp FBB 1419 // TmpBB: 1420 // jmp_if_Y TBB 1421 // jmp FBB 1422 // 1423 // This requires creation of TmpBB after CurBB. 1424 1425 // Emit the LHS condition. 1426 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1427 1428 // Emit the RHS condition into TmpBB. 1429 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1430 } 1431 } 1432 1433 /// If the set of cases should be emitted as a series of branches, return true. 1434 /// If we should emit this as a bunch of and/or'd together conditions, return 1435 /// false. 1436 bool 1437 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1438 if (Cases.size() != 2) return true; 1439 1440 // If this is two comparisons of the same values or'd or and'd together, they 1441 // will get folded into a single comparison, so don't emit two blocks. 1442 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1443 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1444 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1445 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1446 return false; 1447 } 1448 1449 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1450 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1451 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1452 Cases[0].CC == Cases[1].CC && 1453 isa<Constant>(Cases[0].CmpRHS) && 1454 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1455 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1456 return false; 1457 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1458 return false; 1459 } 1460 1461 return true; 1462 } 1463 1464 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1465 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1466 1467 // Update machine-CFG edges. 1468 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1469 1470 // Figure out which block is immediately after the current one. 1471 MachineBasicBlock *NextBlock = 0; 1472 MachineFunction::iterator BBI = BrMBB; 1473 if (++BBI != FuncInfo.MF->end()) 1474 NextBlock = BBI; 1475 1476 if (I.isUnconditional()) { 1477 // Update machine-CFG edges. 1478 BrMBB->addSuccessor(Succ0MBB); 1479 1480 // If this is not a fall-through branch, emit the branch. 1481 if (Succ0MBB != NextBlock) 1482 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1483 MVT::Other, getControlRoot(), 1484 DAG.getBasicBlock(Succ0MBB))); 1485 1486 return; 1487 } 1488 1489 // If this condition is one of the special cases we handle, do special stuff 1490 // now. 1491 const Value *CondVal = I.getCondition(); 1492 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1493 1494 // If this is a series of conditions that are or'd or and'd together, emit 1495 // this as a sequence of branches instead of setcc's with and/or operations. 1496 // As long as jumps are not expensive, this should improve performance. 1497 // For example, instead of something like: 1498 // cmp A, B 1499 // C = seteq 1500 // cmp D, E 1501 // F = setle 1502 // or C, F 1503 // jnz foo 1504 // Emit: 1505 // cmp A, B 1506 // je foo 1507 // cmp D, E 1508 // jle foo 1509 // 1510 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1511 if (!TLI.isJumpExpensive() && 1512 BOp->hasOneUse() && 1513 (BOp->getOpcode() == Instruction::And || 1514 BOp->getOpcode() == Instruction::Or)) { 1515 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1516 BOp->getOpcode()); 1517 // If the compares in later blocks need to use values not currently 1518 // exported from this block, export them now. This block should always 1519 // be the first entry. 1520 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1521 1522 // Allow some cases to be rejected. 1523 if (ShouldEmitAsBranches(SwitchCases)) { 1524 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1525 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1526 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1527 } 1528 1529 // Emit the branch for this block. 1530 visitSwitchCase(SwitchCases[0], BrMBB); 1531 SwitchCases.erase(SwitchCases.begin()); 1532 return; 1533 } 1534 1535 // Okay, we decided not to do this, remove any inserted MBB's and clear 1536 // SwitchCases. 1537 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1538 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1539 1540 SwitchCases.clear(); 1541 } 1542 } 1543 1544 // Create a CaseBlock record representing this branch. 1545 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1546 NULL, Succ0MBB, Succ1MBB, BrMBB); 1547 1548 // Use visitSwitchCase to actually insert the fast branch sequence for this 1549 // cond branch. 1550 visitSwitchCase(CB, BrMBB); 1551 } 1552 1553 /// visitSwitchCase - Emits the necessary code to represent a single node in 1554 /// the binary search tree resulting from lowering a switch instruction. 1555 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1556 MachineBasicBlock *SwitchBB) { 1557 SDValue Cond; 1558 SDValue CondLHS = getValue(CB.CmpLHS); 1559 DebugLoc dl = getCurDebugLoc(); 1560 1561 // Build the setcc now. 1562 if (CB.CmpMHS == NULL) { 1563 // Fold "(X == true)" to X and "(X == false)" to !X to 1564 // handle common cases produced by branch lowering. 1565 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1566 CB.CC == ISD::SETEQ) 1567 Cond = CondLHS; 1568 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1569 CB.CC == ISD::SETEQ) { 1570 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1571 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1572 } else 1573 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1574 } else { 1575 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1576 1577 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1578 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1579 1580 SDValue CmpOp = getValue(CB.CmpMHS); 1581 EVT VT = CmpOp.getValueType(); 1582 1583 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1584 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1585 ISD::SETLE); 1586 } else { 1587 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1588 VT, CmpOp, DAG.getConstant(Low, VT)); 1589 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1590 DAG.getConstant(High-Low, VT), ISD::SETULE); 1591 } 1592 } 1593 1594 // Update successor info 1595 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1596 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1597 1598 // Set NextBlock to be the MBB immediately after the current one, if any. 1599 // This is used to avoid emitting unnecessary branches to the next block. 1600 MachineBasicBlock *NextBlock = 0; 1601 MachineFunction::iterator BBI = SwitchBB; 1602 if (++BBI != FuncInfo.MF->end()) 1603 NextBlock = BBI; 1604 1605 // If the lhs block is the next block, invert the condition so that we can 1606 // fall through to the lhs instead of the rhs block. 1607 if (CB.TrueBB == NextBlock) { 1608 std::swap(CB.TrueBB, CB.FalseBB); 1609 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1610 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1611 } 1612 1613 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1614 MVT::Other, getControlRoot(), Cond, 1615 DAG.getBasicBlock(CB.TrueBB)); 1616 1617 // Insert the false branch. Do this even if it's a fall through branch, 1618 // this makes it easier to do DAG optimizations which require inverting 1619 // the branch condition. 1620 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1621 DAG.getBasicBlock(CB.FalseBB)); 1622 1623 DAG.setRoot(BrCond); 1624 } 1625 1626 /// visitJumpTable - Emit JumpTable node in the current MBB 1627 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1628 // Emit the code for the jump table 1629 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1630 EVT PTy = TLI.getPointerTy(); 1631 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1632 JT.Reg, PTy); 1633 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1634 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1635 MVT::Other, Index.getValue(1), 1636 Table, Index); 1637 DAG.setRoot(BrJumpTable); 1638 } 1639 1640 /// visitJumpTableHeader - This function emits necessary code to produce index 1641 /// in the JumpTable from switch case. 1642 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1643 JumpTableHeader &JTH, 1644 MachineBasicBlock *SwitchBB) { 1645 // Subtract the lowest switch case value from the value being switched on and 1646 // conditional branch to default mbb if the result is greater than the 1647 // difference between smallest and largest cases. 1648 SDValue SwitchOp = getValue(JTH.SValue); 1649 EVT VT = SwitchOp.getValueType(); 1650 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1651 DAG.getConstant(JTH.First, VT)); 1652 1653 // The SDNode we just created, which holds the value being switched on minus 1654 // the smallest case value, needs to be copied to a virtual register so it 1655 // can be used as an index into the jump table in a subsequent basic block. 1656 // This value may be smaller or larger than the target's pointer type, and 1657 // therefore require extension or truncating. 1658 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1659 1660 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1661 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1662 JumpTableReg, SwitchOp); 1663 JT.Reg = JumpTableReg; 1664 1665 // Emit the range check for the jump table, and branch to the default block 1666 // for the switch statement if the value being switched on exceeds the largest 1667 // case in the switch. 1668 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1669 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1670 DAG.getConstant(JTH.Last-JTH.First,VT), 1671 ISD::SETUGT); 1672 1673 // Set NextBlock to be the MBB immediately after the current one, if any. 1674 // This is used to avoid emitting unnecessary branches to the next block. 1675 MachineBasicBlock *NextBlock = 0; 1676 MachineFunction::iterator BBI = SwitchBB; 1677 1678 if (++BBI != FuncInfo.MF->end()) 1679 NextBlock = BBI; 1680 1681 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1682 MVT::Other, CopyTo, CMP, 1683 DAG.getBasicBlock(JT.Default)); 1684 1685 if (JT.MBB != NextBlock) 1686 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1687 DAG.getBasicBlock(JT.MBB)); 1688 1689 DAG.setRoot(BrCond); 1690 } 1691 1692 /// visitBitTestHeader - This function emits necessary code to produce value 1693 /// suitable for "bit tests" 1694 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1695 MachineBasicBlock *SwitchBB) { 1696 // Subtract the minimum value 1697 SDValue SwitchOp = getValue(B.SValue); 1698 EVT VT = SwitchOp.getValueType(); 1699 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1700 DAG.getConstant(B.First, VT)); 1701 1702 // Check range 1703 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1704 TLI.getSetCCResultType(Sub.getValueType()), 1705 Sub, DAG.getConstant(B.Range, VT), 1706 ISD::SETUGT); 1707 1708 // Determine the type of the test operands. 1709 bool UsePtrType = false; 1710 if (!TLI.isTypeLegal(VT)) 1711 UsePtrType = true; 1712 else { 1713 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1714 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1715 // Switch table case range are encoded into series of masks. 1716 // Just use pointer type, it's guaranteed to fit. 1717 UsePtrType = true; 1718 break; 1719 } 1720 } 1721 if (UsePtrType) { 1722 VT = TLI.getPointerTy(); 1723 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1724 } 1725 1726 B.RegVT = VT; 1727 B.Reg = FuncInfo.CreateReg(VT); 1728 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1729 B.Reg, Sub); 1730 1731 // Set NextBlock to be the MBB immediately after the current one, if any. 1732 // This is used to avoid emitting unnecessary branches to the next block. 1733 MachineBasicBlock *NextBlock = 0; 1734 MachineFunction::iterator BBI = SwitchBB; 1735 if (++BBI != FuncInfo.MF->end()) 1736 NextBlock = BBI; 1737 1738 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1739 1740 addSuccessorWithWeight(SwitchBB, B.Default); 1741 addSuccessorWithWeight(SwitchBB, MBB); 1742 1743 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1744 MVT::Other, CopyTo, RangeCmp, 1745 DAG.getBasicBlock(B.Default)); 1746 1747 if (MBB != NextBlock) 1748 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1749 DAG.getBasicBlock(MBB)); 1750 1751 DAG.setRoot(BrRange); 1752 } 1753 1754 /// visitBitTestCase - this function produces one "bit test" 1755 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1756 MachineBasicBlock* NextMBB, 1757 unsigned Reg, 1758 BitTestCase &B, 1759 MachineBasicBlock *SwitchBB) { 1760 EVT VT = BB.RegVT; 1761 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1762 Reg, VT); 1763 SDValue Cmp; 1764 unsigned PopCount = CountPopulation_64(B.Mask); 1765 if (PopCount == 1) { 1766 // Testing for a single bit; just compare the shift count with what it 1767 // would need to be to shift a 1 bit in that position. 1768 Cmp = DAG.getSetCC(getCurDebugLoc(), 1769 TLI.getSetCCResultType(VT), 1770 ShiftOp, 1771 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1772 ISD::SETEQ); 1773 } else if (PopCount == BB.Range) { 1774 // There is only one zero bit in the range, test for it directly. 1775 Cmp = DAG.getSetCC(getCurDebugLoc(), 1776 TLI.getSetCCResultType(VT), 1777 ShiftOp, 1778 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1779 ISD::SETNE); 1780 } else { 1781 // Make desired shift 1782 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1783 DAG.getConstant(1, VT), ShiftOp); 1784 1785 // Emit bit tests and jumps 1786 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1787 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1788 Cmp = DAG.getSetCC(getCurDebugLoc(), 1789 TLI.getSetCCResultType(VT), 1790 AndOp, DAG.getConstant(0, VT), 1791 ISD::SETNE); 1792 } 1793 1794 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1795 addSuccessorWithWeight(SwitchBB, NextMBB); 1796 1797 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1798 MVT::Other, getControlRoot(), 1799 Cmp, DAG.getBasicBlock(B.TargetBB)); 1800 1801 // Set NextBlock to be the MBB immediately after the current one, if any. 1802 // This is used to avoid emitting unnecessary branches to the next block. 1803 MachineBasicBlock *NextBlock = 0; 1804 MachineFunction::iterator BBI = SwitchBB; 1805 if (++BBI != FuncInfo.MF->end()) 1806 NextBlock = BBI; 1807 1808 if (NextMBB != NextBlock) 1809 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1810 DAG.getBasicBlock(NextMBB)); 1811 1812 DAG.setRoot(BrAnd); 1813 } 1814 1815 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1816 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1817 1818 // Retrieve successors. 1819 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1820 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1821 1822 const Value *Callee(I.getCalledValue()); 1823 if (isa<InlineAsm>(Callee)) 1824 visitInlineAsm(&I); 1825 else 1826 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1827 1828 // If the value of the invoke is used outside of its defining block, make it 1829 // available as a virtual register. 1830 CopyToExportRegsIfNeeded(&I); 1831 1832 // Update successor info 1833 addSuccessorWithWeight(InvokeMBB, Return); 1834 addSuccessorWithWeight(InvokeMBB, LandingPad); 1835 1836 // Drop into normal successor. 1837 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1838 MVT::Other, getControlRoot(), 1839 DAG.getBasicBlock(Return))); 1840 } 1841 1842 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1843 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1844 } 1845 1846 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1847 assert(FuncInfo.MBB->isLandingPad() && 1848 "Call to landingpad not in landing pad!"); 1849 1850 MachineBasicBlock *MBB = FuncInfo.MBB; 1851 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1852 AddLandingPadInfo(LP, MMI, MBB); 1853 1854 // If there aren't registers to copy the values into (e.g., during SjLj 1855 // exceptions), then don't bother to create these DAG nodes. 1856 if (TLI.getExceptionPointerRegister() == 0 && 1857 TLI.getExceptionSelectorRegister() == 0) 1858 return; 1859 1860 SmallVector<EVT, 2> ValueVTs; 1861 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1862 1863 // Insert the EXCEPTIONADDR instruction. 1864 assert(FuncInfo.MBB->isLandingPad() && 1865 "Call to eh.exception not in landing pad!"); 1866 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1867 SDValue Ops[2]; 1868 Ops[0] = DAG.getRoot(); 1869 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1870 SDValue Chain = Op1.getValue(1); 1871 1872 // Insert the EHSELECTION instruction. 1873 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1874 Ops[0] = Op1; 1875 Ops[1] = Chain; 1876 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1877 Chain = Op2.getValue(1); 1878 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1879 1880 Ops[0] = Op1; 1881 Ops[1] = Op2; 1882 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1883 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1884 &Ops[0], 2); 1885 1886 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1887 setValue(&LP, RetPair.first); 1888 DAG.setRoot(RetPair.second); 1889 } 1890 1891 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1892 /// small case ranges). 1893 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1894 CaseRecVector& WorkList, 1895 const Value* SV, 1896 MachineBasicBlock *Default, 1897 MachineBasicBlock *SwitchBB) { 1898 Case& BackCase = *(CR.Range.second-1); 1899 1900 // Size is the number of Cases represented by this range. 1901 size_t Size = CR.Range.second - CR.Range.first; 1902 if (Size > 3) 1903 return false; 1904 1905 // Get the MachineFunction which holds the current MBB. This is used when 1906 // inserting any additional MBBs necessary to represent the switch. 1907 MachineFunction *CurMF = FuncInfo.MF; 1908 1909 // Figure out which block is immediately after the current one. 1910 MachineBasicBlock *NextBlock = 0; 1911 MachineFunction::iterator BBI = CR.CaseBB; 1912 1913 if (++BBI != FuncInfo.MF->end()) 1914 NextBlock = BBI; 1915 1916 // If any two of the cases has the same destination, and if one value 1917 // is the same as the other, but has one bit unset that the other has set, 1918 // use bit manipulation to do two compares at once. For example: 1919 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1920 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1921 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1922 if (Size == 2 && CR.CaseBB == SwitchBB) { 1923 Case &Small = *CR.Range.first; 1924 Case &Big = *(CR.Range.second-1); 1925 1926 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1927 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1928 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1929 1930 // Check that there is only one bit different. 1931 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1932 (SmallValue | BigValue) == BigValue) { 1933 // Isolate the common bit. 1934 APInt CommonBit = BigValue & ~SmallValue; 1935 assert((SmallValue | CommonBit) == BigValue && 1936 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1937 1938 SDValue CondLHS = getValue(SV); 1939 EVT VT = CondLHS.getValueType(); 1940 DebugLoc DL = getCurDebugLoc(); 1941 1942 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1943 DAG.getConstant(CommonBit, VT)); 1944 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1945 Or, DAG.getConstant(BigValue, VT), 1946 ISD::SETEQ); 1947 1948 // Update successor info. 1949 addSuccessorWithWeight(SwitchBB, Small.BB); 1950 addSuccessorWithWeight(SwitchBB, Default); 1951 1952 // Insert the true branch. 1953 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1954 getControlRoot(), Cond, 1955 DAG.getBasicBlock(Small.BB)); 1956 1957 // Insert the false branch. 1958 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1959 DAG.getBasicBlock(Default)); 1960 1961 DAG.setRoot(BrCond); 1962 return true; 1963 } 1964 } 1965 } 1966 1967 // Rearrange the case blocks so that the last one falls through if possible. 1968 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1969 // The last case block won't fall through into 'NextBlock' if we emit the 1970 // branches in this order. See if rearranging a case value would help. 1971 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1972 if (I->BB == NextBlock) { 1973 std::swap(*I, BackCase); 1974 break; 1975 } 1976 } 1977 } 1978 1979 // Create a CaseBlock record representing a conditional branch to 1980 // the Case's target mbb if the value being switched on SV is equal 1981 // to C. 1982 MachineBasicBlock *CurBlock = CR.CaseBB; 1983 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1984 MachineBasicBlock *FallThrough; 1985 if (I != E-1) { 1986 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1987 CurMF->insert(BBI, FallThrough); 1988 1989 // Put SV in a virtual register to make it available from the new blocks. 1990 ExportFromCurrentBlock(SV); 1991 } else { 1992 // If the last case doesn't match, go to the default block. 1993 FallThrough = Default; 1994 } 1995 1996 const Value *RHS, *LHS, *MHS; 1997 ISD::CondCode CC; 1998 if (I->High == I->Low) { 1999 // This is just small small case range :) containing exactly 1 case 2000 CC = ISD::SETEQ; 2001 LHS = SV; RHS = I->High; MHS = NULL; 2002 } else { 2003 CC = ISD::SETLE; 2004 LHS = I->Low; MHS = SV; RHS = I->High; 2005 } 2006 2007 uint32_t ExtraWeight = I->ExtraWeight; 2008 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2009 /* me */ CurBlock, 2010 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 2011 2012 // If emitting the first comparison, just call visitSwitchCase to emit the 2013 // code into the current block. Otherwise, push the CaseBlock onto the 2014 // vector to be later processed by SDISel, and insert the node's MBB 2015 // before the next MBB. 2016 if (CurBlock == SwitchBB) 2017 visitSwitchCase(CB, SwitchBB); 2018 else 2019 SwitchCases.push_back(CB); 2020 2021 CurBlock = FallThrough; 2022 } 2023 2024 return true; 2025 } 2026 2027 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2028 return !TLI.getTargetMachine().Options.DisableJumpTables && 2029 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2030 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2031 } 2032 2033 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2034 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2035 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2036 return (LastExt - FirstExt + 1ULL); 2037 } 2038 2039 /// handleJTSwitchCase - Emit jumptable for current switch case range 2040 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2041 CaseRecVector &WorkList, 2042 const Value *SV, 2043 MachineBasicBlock *Default, 2044 MachineBasicBlock *SwitchBB) { 2045 Case& FrontCase = *CR.Range.first; 2046 Case& BackCase = *(CR.Range.second-1); 2047 2048 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2049 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2050 2051 APInt TSize(First.getBitWidth(), 0); 2052 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2053 TSize += I->size(); 2054 2055 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2056 return false; 2057 2058 APInt Range = ComputeRange(First, Last); 2059 // The density is TSize / Range. Require at least 40%. 2060 // It should not be possible for IntTSize to saturate for sane code, but make 2061 // sure we handle Range saturation correctly. 2062 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2063 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2064 if (IntTSize * 10 < IntRange * 4) 2065 return false; 2066 2067 DEBUG(dbgs() << "Lowering jump table\n" 2068 << "First entry: " << First << ". Last entry: " << Last << '\n' 2069 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2070 2071 // Get the MachineFunction which holds the current MBB. This is used when 2072 // inserting any additional MBBs necessary to represent the switch. 2073 MachineFunction *CurMF = FuncInfo.MF; 2074 2075 // Figure out which block is immediately after the current one. 2076 MachineFunction::iterator BBI = CR.CaseBB; 2077 ++BBI; 2078 2079 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2080 2081 // Create a new basic block to hold the code for loading the address 2082 // of the jump table, and jumping to it. Update successor information; 2083 // we will either branch to the default case for the switch, or the jump 2084 // table. 2085 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2086 CurMF->insert(BBI, JumpTableBB); 2087 2088 addSuccessorWithWeight(CR.CaseBB, Default); 2089 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2090 2091 // Build a vector of destination BBs, corresponding to each target 2092 // of the jump table. If the value of the jump table slot corresponds to 2093 // a case statement, push the case's BB onto the vector, otherwise, push 2094 // the default BB. 2095 std::vector<MachineBasicBlock*> DestBBs; 2096 APInt TEI = First; 2097 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2098 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2099 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2100 2101 if (Low.sle(TEI) && TEI.sle(High)) { 2102 DestBBs.push_back(I->BB); 2103 if (TEI==High) 2104 ++I; 2105 } else { 2106 DestBBs.push_back(Default); 2107 } 2108 } 2109 2110 // Update successor info. Add one edge to each unique successor. 2111 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2112 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2113 E = DestBBs.end(); I != E; ++I) { 2114 if (!SuccsHandled[(*I)->getNumber()]) { 2115 SuccsHandled[(*I)->getNumber()] = true; 2116 addSuccessorWithWeight(JumpTableBB, *I); 2117 } 2118 } 2119 2120 // Create a jump table index for this jump table. 2121 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2122 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2123 ->createJumpTableIndex(DestBBs); 2124 2125 // Set the jump table information so that we can codegen it as a second 2126 // MachineBasicBlock 2127 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2128 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2129 if (CR.CaseBB == SwitchBB) 2130 visitJumpTableHeader(JT, JTH, SwitchBB); 2131 2132 JTCases.push_back(JumpTableBlock(JTH, JT)); 2133 return true; 2134 } 2135 2136 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2137 /// 2 subtrees. 2138 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2139 CaseRecVector& WorkList, 2140 const Value* SV, 2141 MachineBasicBlock *Default, 2142 MachineBasicBlock *SwitchBB) { 2143 // Get the MachineFunction which holds the current MBB. This is used when 2144 // inserting any additional MBBs necessary to represent the switch. 2145 MachineFunction *CurMF = FuncInfo.MF; 2146 2147 // Figure out which block is immediately after the current one. 2148 MachineFunction::iterator BBI = CR.CaseBB; 2149 ++BBI; 2150 2151 Case& FrontCase = *CR.Range.first; 2152 Case& BackCase = *(CR.Range.second-1); 2153 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2154 2155 // Size is the number of Cases represented by this range. 2156 unsigned Size = CR.Range.second - CR.Range.first; 2157 2158 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2159 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2160 double FMetric = 0; 2161 CaseItr Pivot = CR.Range.first + Size/2; 2162 2163 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2164 // (heuristically) allow us to emit JumpTable's later. 2165 APInt TSize(First.getBitWidth(), 0); 2166 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2167 I!=E; ++I) 2168 TSize += I->size(); 2169 2170 APInt LSize = FrontCase.size(); 2171 APInt RSize = TSize-LSize; 2172 DEBUG(dbgs() << "Selecting best pivot: \n" 2173 << "First: " << First << ", Last: " << Last <<'\n' 2174 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2175 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2176 J!=E; ++I, ++J) { 2177 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2178 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2179 APInt Range = ComputeRange(LEnd, RBegin); 2180 assert((Range - 2ULL).isNonNegative() && 2181 "Invalid case distance"); 2182 // Use volatile double here to avoid excess precision issues on some hosts, 2183 // e.g. that use 80-bit X87 registers. 2184 volatile double LDensity = 2185 (double)LSize.roundToDouble() / 2186 (LEnd - First + 1ULL).roundToDouble(); 2187 volatile double RDensity = 2188 (double)RSize.roundToDouble() / 2189 (Last - RBegin + 1ULL).roundToDouble(); 2190 double Metric = Range.logBase2()*(LDensity+RDensity); 2191 // Should always split in some non-trivial place 2192 DEBUG(dbgs() <<"=>Step\n" 2193 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2194 << "LDensity: " << LDensity 2195 << ", RDensity: " << RDensity << '\n' 2196 << "Metric: " << Metric << '\n'); 2197 if (FMetric < Metric) { 2198 Pivot = J; 2199 FMetric = Metric; 2200 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2201 } 2202 2203 LSize += J->size(); 2204 RSize -= J->size(); 2205 } 2206 if (areJTsAllowed(TLI)) { 2207 // If our case is dense we *really* should handle it earlier! 2208 assert((FMetric > 0) && "Should handle dense range earlier!"); 2209 } else { 2210 Pivot = CR.Range.first + Size/2; 2211 } 2212 2213 CaseRange LHSR(CR.Range.first, Pivot); 2214 CaseRange RHSR(Pivot, CR.Range.second); 2215 const Constant *C = Pivot->Low; 2216 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2217 2218 // We know that we branch to the LHS if the Value being switched on is 2219 // less than the Pivot value, C. We use this to optimize our binary 2220 // tree a bit, by recognizing that if SV is greater than or equal to the 2221 // LHS's Case Value, and that Case Value is exactly one less than the 2222 // Pivot's Value, then we can branch directly to the LHS's Target, 2223 // rather than creating a leaf node for it. 2224 if ((LHSR.second - LHSR.first) == 1 && 2225 LHSR.first->High == CR.GE && 2226 cast<ConstantInt>(C)->getValue() == 2227 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2228 TrueBB = LHSR.first->BB; 2229 } else { 2230 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2231 CurMF->insert(BBI, TrueBB); 2232 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2233 2234 // Put SV in a virtual register to make it available from the new blocks. 2235 ExportFromCurrentBlock(SV); 2236 } 2237 2238 // Similar to the optimization above, if the Value being switched on is 2239 // known to be less than the Constant CR.LT, and the current Case Value 2240 // is CR.LT - 1, then we can branch directly to the target block for 2241 // the current Case Value, rather than emitting a RHS leaf node for it. 2242 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2243 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2244 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2245 FalseBB = RHSR.first->BB; 2246 } else { 2247 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2248 CurMF->insert(BBI, FalseBB); 2249 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2250 2251 // Put SV in a virtual register to make it available from the new blocks. 2252 ExportFromCurrentBlock(SV); 2253 } 2254 2255 // Create a CaseBlock record representing a conditional branch to 2256 // the LHS node if the value being switched on SV is less than C. 2257 // Otherwise, branch to LHS. 2258 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2259 2260 if (CR.CaseBB == SwitchBB) 2261 visitSwitchCase(CB, SwitchBB); 2262 else 2263 SwitchCases.push_back(CB); 2264 2265 return true; 2266 } 2267 2268 /// handleBitTestsSwitchCase - if current case range has few destination and 2269 /// range span less, than machine word bitwidth, encode case range into series 2270 /// of masks and emit bit tests with these masks. 2271 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2272 CaseRecVector& WorkList, 2273 const Value* SV, 2274 MachineBasicBlock* Default, 2275 MachineBasicBlock *SwitchBB){ 2276 EVT PTy = TLI.getPointerTy(); 2277 unsigned IntPtrBits = PTy.getSizeInBits(); 2278 2279 Case& FrontCase = *CR.Range.first; 2280 Case& BackCase = *(CR.Range.second-1); 2281 2282 // Get the MachineFunction which holds the current MBB. This is used when 2283 // inserting any additional MBBs necessary to represent the switch. 2284 MachineFunction *CurMF = FuncInfo.MF; 2285 2286 // If target does not have legal shift left, do not emit bit tests at all. 2287 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2288 return false; 2289 2290 size_t numCmps = 0; 2291 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2292 I!=E; ++I) { 2293 // Single case counts one, case range - two. 2294 numCmps += (I->Low == I->High ? 1 : 2); 2295 } 2296 2297 // Count unique destinations 2298 SmallSet<MachineBasicBlock*, 4> Dests; 2299 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2300 Dests.insert(I->BB); 2301 if (Dests.size() > 3) 2302 // Don't bother the code below, if there are too much unique destinations 2303 return false; 2304 } 2305 DEBUG(dbgs() << "Total number of unique destinations: " 2306 << Dests.size() << '\n' 2307 << "Total number of comparisons: " << numCmps << '\n'); 2308 2309 // Compute span of values. 2310 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2311 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2312 APInt cmpRange = maxValue - minValue; 2313 2314 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2315 << "Low bound: " << minValue << '\n' 2316 << "High bound: " << maxValue << '\n'); 2317 2318 if (cmpRange.uge(IntPtrBits) || 2319 (!(Dests.size() == 1 && numCmps >= 3) && 2320 !(Dests.size() == 2 && numCmps >= 5) && 2321 !(Dests.size() >= 3 && numCmps >= 6))) 2322 return false; 2323 2324 DEBUG(dbgs() << "Emitting bit tests\n"); 2325 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2326 2327 // Optimize the case where all the case values fit in a 2328 // word without having to subtract minValue. In this case, 2329 // we can optimize away the subtraction. 2330 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2331 cmpRange = maxValue; 2332 } else { 2333 lowBound = minValue; 2334 } 2335 2336 CaseBitsVector CasesBits; 2337 unsigned i, count = 0; 2338 2339 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2340 MachineBasicBlock* Dest = I->BB; 2341 for (i = 0; i < count; ++i) 2342 if (Dest == CasesBits[i].BB) 2343 break; 2344 2345 if (i == count) { 2346 assert((count < 3) && "Too much destinations to test!"); 2347 CasesBits.push_back(CaseBits(0, Dest, 0)); 2348 count++; 2349 } 2350 2351 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2352 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2353 2354 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2355 uint64_t hi = (highValue - lowBound).getZExtValue(); 2356 2357 for (uint64_t j = lo; j <= hi; j++) { 2358 CasesBits[i].Mask |= 1ULL << j; 2359 CasesBits[i].Bits++; 2360 } 2361 2362 } 2363 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2364 2365 BitTestInfo BTC; 2366 2367 // Figure out which block is immediately after the current one. 2368 MachineFunction::iterator BBI = CR.CaseBB; 2369 ++BBI; 2370 2371 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2372 2373 DEBUG(dbgs() << "Cases:\n"); 2374 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2375 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2376 << ", Bits: " << CasesBits[i].Bits 2377 << ", BB: " << CasesBits[i].BB << '\n'); 2378 2379 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2380 CurMF->insert(BBI, CaseBB); 2381 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2382 CaseBB, 2383 CasesBits[i].BB)); 2384 2385 // Put SV in a virtual register to make it available from the new blocks. 2386 ExportFromCurrentBlock(SV); 2387 } 2388 2389 BitTestBlock BTB(lowBound, cmpRange, SV, 2390 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2391 CR.CaseBB, Default, BTC); 2392 2393 if (CR.CaseBB == SwitchBB) 2394 visitBitTestHeader(BTB, SwitchBB); 2395 2396 BitTestCases.push_back(BTB); 2397 2398 return true; 2399 } 2400 2401 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2402 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2403 const SwitchInst& SI) { 2404 size_t numCmps = 0; 2405 2406 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2407 // Start with "simple" cases 2408 for (size_t i = 0; i < SI.getNumCases(); ++i) { 2409 BasicBlock *SuccBB = SI.getCaseSuccessor(i); 2410 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2411 2412 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0; 2413 2414 Cases.push_back(Case(SI.getCaseValue(i), 2415 SI.getCaseValue(i), 2416 SMBB, ExtraWeight)); 2417 } 2418 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2419 2420 // Merge case into clusters 2421 if (Cases.size() >= 2) 2422 // Must recompute end() each iteration because it may be 2423 // invalidated by erase if we hold on to it 2424 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2425 J != Cases.end(); ) { 2426 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2427 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2428 MachineBasicBlock* nextBB = J->BB; 2429 MachineBasicBlock* currentBB = I->BB; 2430 2431 // If the two neighboring cases go to the same destination, merge them 2432 // into a single case. 2433 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2434 I->High = J->High; 2435 J = Cases.erase(J); 2436 2437 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) { 2438 uint32_t CurWeight = currentBB->getBasicBlock() ? 2439 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16; 2440 uint32_t NextWeight = nextBB->getBasicBlock() ? 2441 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16; 2442 2443 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(), 2444 CurWeight + NextWeight); 2445 } 2446 } else { 2447 I = J++; 2448 } 2449 } 2450 2451 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2452 if (I->Low != I->High) 2453 // A range counts double, since it requires two compares. 2454 ++numCmps; 2455 } 2456 2457 return numCmps; 2458 } 2459 2460 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2461 MachineBasicBlock *Last) { 2462 // Update JTCases. 2463 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2464 if (JTCases[i].first.HeaderBB == First) 2465 JTCases[i].first.HeaderBB = Last; 2466 2467 // Update BitTestCases. 2468 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2469 if (BitTestCases[i].Parent == First) 2470 BitTestCases[i].Parent = Last; 2471 } 2472 2473 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2474 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2475 2476 // Figure out which block is immediately after the current one. 2477 MachineBasicBlock *NextBlock = 0; 2478 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2479 2480 // If there is only the default destination, branch to it if it is not the 2481 // next basic block. Otherwise, just fall through. 2482 if (!SI.getNumCases()) { 2483 // Update machine-CFG edges. 2484 2485 // If this is not a fall-through branch, emit the branch. 2486 SwitchMBB->addSuccessor(Default); 2487 if (Default != NextBlock) 2488 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2489 MVT::Other, getControlRoot(), 2490 DAG.getBasicBlock(Default))); 2491 2492 return; 2493 } 2494 2495 // If there are any non-default case statements, create a vector of Cases 2496 // representing each one, and sort the vector so that we can efficiently 2497 // create a binary search tree from them. 2498 CaseVector Cases; 2499 size_t numCmps = Clusterify(Cases, SI); 2500 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2501 << ". Total compares: " << numCmps << '\n'); 2502 (void)numCmps; 2503 2504 // Get the Value to be switched on and default basic blocks, which will be 2505 // inserted into CaseBlock records, representing basic blocks in the binary 2506 // search tree. 2507 const Value *SV = SI.getCondition(); 2508 2509 // Push the initial CaseRec onto the worklist 2510 CaseRecVector WorkList; 2511 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2512 CaseRange(Cases.begin(),Cases.end()))); 2513 2514 while (!WorkList.empty()) { 2515 // Grab a record representing a case range to process off the worklist 2516 CaseRec CR = WorkList.back(); 2517 WorkList.pop_back(); 2518 2519 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2520 continue; 2521 2522 // If the range has few cases (two or less) emit a series of specific 2523 // tests. 2524 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2525 continue; 2526 2527 // If the switch has more than 5 blocks, and at least 40% dense, and the 2528 // target supports indirect branches, then emit a jump table rather than 2529 // lowering the switch to a binary tree of conditional branches. 2530 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2531 continue; 2532 2533 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2534 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2535 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2536 } 2537 } 2538 2539 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2540 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2541 2542 // Update machine-CFG edges with unique successors. 2543 SmallVector<BasicBlock*, 32> succs; 2544 succs.reserve(I.getNumSuccessors()); 2545 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2546 succs.push_back(I.getSuccessor(i)); 2547 array_pod_sort(succs.begin(), succs.end()); 2548 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2549 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2550 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2551 addSuccessorWithWeight(IndirectBrMBB, Succ); 2552 } 2553 2554 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2555 MVT::Other, getControlRoot(), 2556 getValue(I.getAddress()))); 2557 } 2558 2559 void SelectionDAGBuilder::visitFSub(const User &I) { 2560 // -0.0 - X --> fneg 2561 Type *Ty = I.getType(); 2562 if (isa<Constant>(I.getOperand(0)) && 2563 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2564 SDValue Op2 = getValue(I.getOperand(1)); 2565 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2566 Op2.getValueType(), Op2)); 2567 return; 2568 } 2569 2570 visitBinary(I, ISD::FSUB); 2571 } 2572 2573 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2574 SDValue Op1 = getValue(I.getOperand(0)); 2575 SDValue Op2 = getValue(I.getOperand(1)); 2576 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2577 Op1.getValueType(), Op1, Op2)); 2578 } 2579 2580 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2581 SDValue Op1 = getValue(I.getOperand(0)); 2582 SDValue Op2 = getValue(I.getOperand(1)); 2583 2584 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2585 2586 // Coerce the shift amount to the right type if we can. 2587 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2588 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2589 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2590 DebugLoc DL = getCurDebugLoc(); 2591 2592 // If the operand is smaller than the shift count type, promote it. 2593 if (ShiftSize > Op2Size) 2594 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2595 2596 // If the operand is larger than the shift count type but the shift 2597 // count type has enough bits to represent any shift value, truncate 2598 // it now. This is a common case and it exposes the truncate to 2599 // optimization early. 2600 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2601 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2602 // Otherwise we'll need to temporarily settle for some other convenient 2603 // type. Type legalization will make adjustments once the shiftee is split. 2604 else 2605 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2606 } 2607 2608 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2609 Op1.getValueType(), Op1, Op2)); 2610 } 2611 2612 void SelectionDAGBuilder::visitSDiv(const User &I) { 2613 SDValue Op1 = getValue(I.getOperand(0)); 2614 SDValue Op2 = getValue(I.getOperand(1)); 2615 2616 // Turn exact SDivs into multiplications. 2617 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2618 // exact bit. 2619 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2620 !isa<ConstantSDNode>(Op1) && 2621 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2622 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2623 else 2624 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2625 Op1, Op2)); 2626 } 2627 2628 void SelectionDAGBuilder::visitICmp(const User &I) { 2629 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2630 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2631 predicate = IC->getPredicate(); 2632 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2633 predicate = ICmpInst::Predicate(IC->getPredicate()); 2634 SDValue Op1 = getValue(I.getOperand(0)); 2635 SDValue Op2 = getValue(I.getOperand(1)); 2636 ISD::CondCode Opcode = getICmpCondCode(predicate); 2637 2638 EVT DestVT = TLI.getValueType(I.getType()); 2639 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2640 } 2641 2642 void SelectionDAGBuilder::visitFCmp(const User &I) { 2643 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2644 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2645 predicate = FC->getPredicate(); 2646 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2647 predicate = FCmpInst::Predicate(FC->getPredicate()); 2648 SDValue Op1 = getValue(I.getOperand(0)); 2649 SDValue Op2 = getValue(I.getOperand(1)); 2650 ISD::CondCode Condition = getFCmpCondCode(predicate); 2651 if (TM.Options.NoNaNsFPMath) 2652 Condition = getFCmpCodeWithoutNaN(Condition); 2653 EVT DestVT = TLI.getValueType(I.getType()); 2654 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2655 } 2656 2657 void SelectionDAGBuilder::visitSelect(const User &I) { 2658 SmallVector<EVT, 4> ValueVTs; 2659 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2660 unsigned NumValues = ValueVTs.size(); 2661 if (NumValues == 0) return; 2662 2663 SmallVector<SDValue, 4> Values(NumValues); 2664 SDValue Cond = getValue(I.getOperand(0)); 2665 SDValue TrueVal = getValue(I.getOperand(1)); 2666 SDValue FalseVal = getValue(I.getOperand(2)); 2667 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2668 ISD::VSELECT : ISD::SELECT; 2669 2670 for (unsigned i = 0; i != NumValues; ++i) 2671 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2672 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2673 Cond, 2674 SDValue(TrueVal.getNode(), 2675 TrueVal.getResNo() + i), 2676 SDValue(FalseVal.getNode(), 2677 FalseVal.getResNo() + i)); 2678 2679 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2680 DAG.getVTList(&ValueVTs[0], NumValues), 2681 &Values[0], NumValues)); 2682 } 2683 2684 void SelectionDAGBuilder::visitTrunc(const User &I) { 2685 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2686 SDValue N = getValue(I.getOperand(0)); 2687 EVT DestVT = TLI.getValueType(I.getType()); 2688 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2689 } 2690 2691 void SelectionDAGBuilder::visitZExt(const User &I) { 2692 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2693 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2694 SDValue N = getValue(I.getOperand(0)); 2695 EVT DestVT = TLI.getValueType(I.getType()); 2696 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2697 } 2698 2699 void SelectionDAGBuilder::visitSExt(const User &I) { 2700 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2701 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2702 SDValue N = getValue(I.getOperand(0)); 2703 EVT DestVT = TLI.getValueType(I.getType()); 2704 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2705 } 2706 2707 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2708 // FPTrunc is never a no-op cast, no need to check 2709 SDValue N = getValue(I.getOperand(0)); 2710 EVT DestVT = TLI.getValueType(I.getType()); 2711 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2712 DestVT, N, 2713 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2714 } 2715 2716 void SelectionDAGBuilder::visitFPExt(const User &I){ 2717 // FPExt is never a no-op cast, no need to check 2718 SDValue N = getValue(I.getOperand(0)); 2719 EVT DestVT = TLI.getValueType(I.getType()); 2720 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2721 } 2722 2723 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2724 // FPToUI is never a no-op cast, no need to check 2725 SDValue N = getValue(I.getOperand(0)); 2726 EVT DestVT = TLI.getValueType(I.getType()); 2727 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2728 } 2729 2730 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2731 // FPToSI is never a no-op cast, no need to check 2732 SDValue N = getValue(I.getOperand(0)); 2733 EVT DestVT = TLI.getValueType(I.getType()); 2734 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2735 } 2736 2737 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2738 // UIToFP is never a no-op cast, no need to check 2739 SDValue N = getValue(I.getOperand(0)); 2740 EVT DestVT = TLI.getValueType(I.getType()); 2741 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2742 } 2743 2744 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2745 // SIToFP is never a no-op cast, no need to check 2746 SDValue N = getValue(I.getOperand(0)); 2747 EVT DestVT = TLI.getValueType(I.getType()); 2748 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2749 } 2750 2751 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2752 // What to do depends on the size of the integer and the size of the pointer. 2753 // We can either truncate, zero extend, or no-op, accordingly. 2754 SDValue N = getValue(I.getOperand(0)); 2755 EVT DestVT = TLI.getValueType(I.getType()); 2756 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2757 } 2758 2759 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2760 // What to do depends on the size of the integer and the size of the pointer. 2761 // We can either truncate, zero extend, or no-op, accordingly. 2762 SDValue N = getValue(I.getOperand(0)); 2763 EVT DestVT = TLI.getValueType(I.getType()); 2764 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2765 } 2766 2767 void SelectionDAGBuilder::visitBitCast(const User &I) { 2768 SDValue N = getValue(I.getOperand(0)); 2769 EVT DestVT = TLI.getValueType(I.getType()); 2770 2771 // BitCast assures us that source and destination are the same size so this is 2772 // either a BITCAST or a no-op. 2773 if (DestVT != N.getValueType()) 2774 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2775 DestVT, N)); // convert types. 2776 else 2777 setValue(&I, N); // noop cast. 2778 } 2779 2780 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2781 SDValue InVec = getValue(I.getOperand(0)); 2782 SDValue InVal = getValue(I.getOperand(1)); 2783 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2784 TLI.getPointerTy(), 2785 getValue(I.getOperand(2))); 2786 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2787 TLI.getValueType(I.getType()), 2788 InVec, InVal, InIdx)); 2789 } 2790 2791 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2792 SDValue InVec = getValue(I.getOperand(0)); 2793 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2794 TLI.getPointerTy(), 2795 getValue(I.getOperand(1))); 2796 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2797 TLI.getValueType(I.getType()), InVec, InIdx)); 2798 } 2799 2800 // Utility for visitShuffleVector - Return true if every element in Mask, 2801 // begining // from position Pos and ending in Pos+Size, falls within the 2802 // specified sequential range [L, L+Pos). or is undef. 2803 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2804 int Pos, int Size, int Low) { 2805 for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2806 if (Mask[i] >= 0 && Mask[i] != Low) 2807 return false; 2808 return true; 2809 } 2810 2811 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2812 SDValue Src1 = getValue(I.getOperand(0)); 2813 SDValue Src2 = getValue(I.getOperand(1)); 2814 2815 SmallVector<int, 8> Mask; 2816 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2817 unsigned MaskNumElts = Mask.size(); 2818 2819 EVT VT = TLI.getValueType(I.getType()); 2820 EVT SrcVT = Src1.getValueType(); 2821 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2822 2823 if (SrcNumElts == MaskNumElts) { 2824 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2825 &Mask[0])); 2826 return; 2827 } 2828 2829 // Normalize the shuffle vector since mask and vector length don't match. 2830 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2831 // Mask is longer than the source vectors and is a multiple of the source 2832 // vectors. We can use concatenate vector to make the mask and vectors 2833 // lengths match. 2834 if (SrcNumElts*2 == MaskNumElts) { 2835 // First check for Src1 in low and Src2 in high 2836 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2837 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2838 // The shuffle is concatenating two vectors together. 2839 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2840 VT, Src1, Src2)); 2841 return; 2842 } 2843 // Then check for Src2 in low and Src1 in high 2844 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2845 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2846 // The shuffle is concatenating two vectors together. 2847 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2848 VT, Src2, Src1)); 2849 return; 2850 } 2851 } 2852 2853 // Pad both vectors with undefs to make them the same length as the mask. 2854 unsigned NumConcat = MaskNumElts / SrcNumElts; 2855 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2856 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2857 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2858 2859 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2860 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2861 MOps1[0] = Src1; 2862 MOps2[0] = Src2; 2863 2864 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2865 getCurDebugLoc(), VT, 2866 &MOps1[0], NumConcat); 2867 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2868 getCurDebugLoc(), VT, 2869 &MOps2[0], NumConcat); 2870 2871 // Readjust mask for new input vector length. 2872 SmallVector<int, 8> MappedOps; 2873 for (unsigned i = 0; i != MaskNumElts; ++i) { 2874 int Idx = Mask[i]; 2875 if (Idx < (int)SrcNumElts) 2876 MappedOps.push_back(Idx); 2877 else 2878 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2879 } 2880 2881 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2882 &MappedOps[0])); 2883 return; 2884 } 2885 2886 if (SrcNumElts > MaskNumElts) { 2887 // Analyze the access pattern of the vector to see if we can extract 2888 // two subvectors and do the shuffle. The analysis is done by calculating 2889 // the range of elements the mask access on both vectors. 2890 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2891 static_cast<int>(SrcNumElts+1)}; 2892 int MaxRange[2] = {-1, -1}; 2893 2894 for (unsigned i = 0; i != MaskNumElts; ++i) { 2895 int Idx = Mask[i]; 2896 int Input = 0; 2897 if (Idx < 0) 2898 continue; 2899 2900 if (Idx >= (int)SrcNumElts) { 2901 Input = 1; 2902 Idx -= SrcNumElts; 2903 } 2904 if (Idx > MaxRange[Input]) 2905 MaxRange[Input] = Idx; 2906 if (Idx < MinRange[Input]) 2907 MinRange[Input] = Idx; 2908 } 2909 2910 // Check if the access is smaller than the vector size and can we find 2911 // a reasonable extract index. 2912 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2913 // Extract. 2914 int StartIdx[2]; // StartIdx to extract from 2915 for (int Input=0; Input < 2; ++Input) { 2916 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2917 RangeUse[Input] = 0; // Unused 2918 StartIdx[Input] = 0; 2919 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2920 // Fits within range but we should see if we can find a good 2921 // start index that is a multiple of the mask length. 2922 if (MaxRange[Input] < (int)MaskNumElts) { 2923 RangeUse[Input] = 1; // Extract from beginning of the vector 2924 StartIdx[Input] = 0; 2925 } else { 2926 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2927 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2928 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2929 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2930 } 2931 } 2932 } 2933 2934 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2935 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2936 return; 2937 } 2938 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2939 // Extract appropriate subvector and generate a vector shuffle 2940 for (int Input=0; Input < 2; ++Input) { 2941 SDValue &Src = Input == 0 ? Src1 : Src2; 2942 if (RangeUse[Input] == 0) 2943 Src = DAG.getUNDEF(VT); 2944 else 2945 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2946 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2947 } 2948 2949 // Calculate new mask. 2950 SmallVector<int, 8> MappedOps; 2951 for (unsigned i = 0; i != MaskNumElts; ++i) { 2952 int Idx = Mask[i]; 2953 if (Idx < 0) 2954 MappedOps.push_back(Idx); 2955 else if (Idx < (int)SrcNumElts) 2956 MappedOps.push_back(Idx - StartIdx[0]); 2957 else 2958 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2959 } 2960 2961 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2962 &MappedOps[0])); 2963 return; 2964 } 2965 } 2966 2967 // We can't use either concat vectors or extract subvectors so fall back to 2968 // replacing the shuffle with extract and build vector. 2969 // to insert and build vector. 2970 EVT EltVT = VT.getVectorElementType(); 2971 EVT PtrVT = TLI.getPointerTy(); 2972 SmallVector<SDValue,8> Ops; 2973 for (unsigned i = 0; i != MaskNumElts; ++i) { 2974 if (Mask[i] < 0) { 2975 Ops.push_back(DAG.getUNDEF(EltVT)); 2976 } else { 2977 int Idx = Mask[i]; 2978 SDValue Res; 2979 2980 if (Idx < (int)SrcNumElts) 2981 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2982 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2983 else 2984 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2985 EltVT, Src2, 2986 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2987 2988 Ops.push_back(Res); 2989 } 2990 } 2991 2992 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2993 VT, &Ops[0], Ops.size())); 2994 } 2995 2996 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2997 const Value *Op0 = I.getOperand(0); 2998 const Value *Op1 = I.getOperand(1); 2999 Type *AggTy = I.getType(); 3000 Type *ValTy = Op1->getType(); 3001 bool IntoUndef = isa<UndefValue>(Op0); 3002 bool FromUndef = isa<UndefValue>(Op1); 3003 3004 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3005 3006 SmallVector<EVT, 4> AggValueVTs; 3007 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3008 SmallVector<EVT, 4> ValValueVTs; 3009 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3010 3011 unsigned NumAggValues = AggValueVTs.size(); 3012 unsigned NumValValues = ValValueVTs.size(); 3013 SmallVector<SDValue, 4> Values(NumAggValues); 3014 3015 SDValue Agg = getValue(Op0); 3016 unsigned i = 0; 3017 // Copy the beginning value(s) from the original aggregate. 3018 for (; i != LinearIndex; ++i) 3019 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3020 SDValue(Agg.getNode(), Agg.getResNo() + i); 3021 // Copy values from the inserted value(s). 3022 if (NumValValues) { 3023 SDValue Val = getValue(Op1); 3024 for (; i != LinearIndex + NumValValues; ++i) 3025 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3026 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3027 } 3028 // Copy remaining value(s) from the original aggregate. 3029 for (; i != NumAggValues; ++i) 3030 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3031 SDValue(Agg.getNode(), Agg.getResNo() + i); 3032 3033 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3034 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3035 &Values[0], NumAggValues)); 3036 } 3037 3038 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3039 const Value *Op0 = I.getOperand(0); 3040 Type *AggTy = Op0->getType(); 3041 Type *ValTy = I.getType(); 3042 bool OutOfUndef = isa<UndefValue>(Op0); 3043 3044 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3045 3046 SmallVector<EVT, 4> ValValueVTs; 3047 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3048 3049 unsigned NumValValues = ValValueVTs.size(); 3050 3051 // Ignore a extractvalue that produces an empty object 3052 if (!NumValValues) { 3053 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3054 return; 3055 } 3056 3057 SmallVector<SDValue, 4> Values(NumValValues); 3058 3059 SDValue Agg = getValue(Op0); 3060 // Copy out the selected value(s). 3061 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3062 Values[i - LinearIndex] = 3063 OutOfUndef ? 3064 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3065 SDValue(Agg.getNode(), Agg.getResNo() + i); 3066 3067 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3068 DAG.getVTList(&ValValueVTs[0], NumValValues), 3069 &Values[0], NumValValues)); 3070 } 3071 3072 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3073 SDValue N = getValue(I.getOperand(0)); 3074 Type *Ty = I.getOperand(0)->getType(); 3075 3076 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3077 OI != E; ++OI) { 3078 const Value *Idx = *OI; 3079 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3080 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3081 if (Field) { 3082 // N = N + Offset 3083 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3084 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3085 DAG.getIntPtrConstant(Offset)); 3086 } 3087 3088 Ty = StTy->getElementType(Field); 3089 } else { 3090 Ty = cast<SequentialType>(Ty)->getElementType(); 3091 3092 // If this is a constant subscript, handle it quickly. 3093 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3094 if (CI->isZero()) continue; 3095 uint64_t Offs = 3096 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3097 SDValue OffsVal; 3098 EVT PTy = TLI.getPointerTy(); 3099 unsigned PtrBits = PTy.getSizeInBits(); 3100 if (PtrBits < 64) 3101 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3102 TLI.getPointerTy(), 3103 DAG.getConstant(Offs, MVT::i64)); 3104 else 3105 OffsVal = DAG.getIntPtrConstant(Offs); 3106 3107 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3108 OffsVal); 3109 continue; 3110 } 3111 3112 // N = N + Idx * ElementSize; 3113 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3114 TD->getTypeAllocSize(Ty)); 3115 SDValue IdxN = getValue(Idx); 3116 3117 // If the index is smaller or larger than intptr_t, truncate or extend 3118 // it. 3119 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3120 3121 // If this is a multiply by a power of two, turn it into a shl 3122 // immediately. This is a very common case. 3123 if (ElementSize != 1) { 3124 if (ElementSize.isPowerOf2()) { 3125 unsigned Amt = ElementSize.logBase2(); 3126 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3127 N.getValueType(), IdxN, 3128 DAG.getConstant(Amt, IdxN.getValueType())); 3129 } else { 3130 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3131 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3132 N.getValueType(), IdxN, Scale); 3133 } 3134 } 3135 3136 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3137 N.getValueType(), N, IdxN); 3138 } 3139 } 3140 3141 setValue(&I, N); 3142 } 3143 3144 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3145 // If this is a fixed sized alloca in the entry block of the function, 3146 // allocate it statically on the stack. 3147 if (FuncInfo.StaticAllocaMap.count(&I)) 3148 return; // getValue will auto-populate this. 3149 3150 Type *Ty = I.getAllocatedType(); 3151 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3152 unsigned Align = 3153 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3154 I.getAlignment()); 3155 3156 SDValue AllocSize = getValue(I.getArraySize()); 3157 3158 EVT IntPtr = TLI.getPointerTy(); 3159 if (AllocSize.getValueType() != IntPtr) 3160 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3161 3162 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3163 AllocSize, 3164 DAG.getConstant(TySize, IntPtr)); 3165 3166 // Handle alignment. If the requested alignment is less than or equal to 3167 // the stack alignment, ignore it. If the size is greater than or equal to 3168 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3169 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3170 if (Align <= StackAlign) 3171 Align = 0; 3172 3173 // Round the size of the allocation up to the stack alignment size 3174 // by add SA-1 to the size. 3175 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3176 AllocSize.getValueType(), AllocSize, 3177 DAG.getIntPtrConstant(StackAlign-1)); 3178 3179 // Mask out the low bits for alignment purposes. 3180 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3181 AllocSize.getValueType(), AllocSize, 3182 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3183 3184 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3185 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3186 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3187 VTs, Ops, 3); 3188 setValue(&I, DSA); 3189 DAG.setRoot(DSA.getValue(1)); 3190 3191 // Inform the Frame Information that we have just allocated a variable-sized 3192 // object. 3193 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3194 } 3195 3196 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3197 if (I.isAtomic()) 3198 return visitAtomicLoad(I); 3199 3200 const Value *SV = I.getOperand(0); 3201 SDValue Ptr = getValue(SV); 3202 3203 Type *Ty = I.getType(); 3204 3205 bool isVolatile = I.isVolatile(); 3206 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3207 bool isInvariant = I.getMetadata("invariant.load") != 0; 3208 unsigned Alignment = I.getAlignment(); 3209 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3210 3211 SmallVector<EVT, 4> ValueVTs; 3212 SmallVector<uint64_t, 4> Offsets; 3213 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3214 unsigned NumValues = ValueVTs.size(); 3215 if (NumValues == 0) 3216 return; 3217 3218 SDValue Root; 3219 bool ConstantMemory = false; 3220 if (I.isVolatile() || NumValues > MaxParallelChains) 3221 // Serialize volatile loads with other side effects. 3222 Root = getRoot(); 3223 else if (AA->pointsToConstantMemory( 3224 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3225 // Do not serialize (non-volatile) loads of constant memory with anything. 3226 Root = DAG.getEntryNode(); 3227 ConstantMemory = true; 3228 } else { 3229 // Do not serialize non-volatile loads against each other. 3230 Root = DAG.getRoot(); 3231 } 3232 3233 SmallVector<SDValue, 4> Values(NumValues); 3234 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3235 NumValues)); 3236 EVT PtrVT = Ptr.getValueType(); 3237 unsigned ChainI = 0; 3238 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3239 // Serializing loads here may result in excessive register pressure, and 3240 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3241 // could recover a bit by hoisting nodes upward in the chain by recognizing 3242 // they are side-effect free or do not alias. The optimizer should really 3243 // avoid this case by converting large object/array copies to llvm.memcpy 3244 // (MaxParallelChains should always remain as failsafe). 3245 if (ChainI == MaxParallelChains) { 3246 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3247 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3248 MVT::Other, &Chains[0], ChainI); 3249 Root = Chain; 3250 ChainI = 0; 3251 } 3252 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3253 PtrVT, Ptr, 3254 DAG.getConstant(Offsets[i], PtrVT)); 3255 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3256 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3257 isNonTemporal, isInvariant, Alignment, TBAAInfo); 3258 3259 Values[i] = L; 3260 Chains[ChainI] = L.getValue(1); 3261 } 3262 3263 if (!ConstantMemory) { 3264 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3265 MVT::Other, &Chains[0], ChainI); 3266 if (isVolatile) 3267 DAG.setRoot(Chain); 3268 else 3269 PendingLoads.push_back(Chain); 3270 } 3271 3272 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3273 DAG.getVTList(&ValueVTs[0], NumValues), 3274 &Values[0], NumValues)); 3275 } 3276 3277 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3278 if (I.isAtomic()) 3279 return visitAtomicStore(I); 3280 3281 const Value *SrcV = I.getOperand(0); 3282 const Value *PtrV = I.getOperand(1); 3283 3284 SmallVector<EVT, 4> ValueVTs; 3285 SmallVector<uint64_t, 4> Offsets; 3286 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3287 unsigned NumValues = ValueVTs.size(); 3288 if (NumValues == 0) 3289 return; 3290 3291 // Get the lowered operands. Note that we do this after 3292 // checking if NumResults is zero, because with zero results 3293 // the operands won't have values in the map. 3294 SDValue Src = getValue(SrcV); 3295 SDValue Ptr = getValue(PtrV); 3296 3297 SDValue Root = getRoot(); 3298 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3299 NumValues)); 3300 EVT PtrVT = Ptr.getValueType(); 3301 bool isVolatile = I.isVolatile(); 3302 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3303 unsigned Alignment = I.getAlignment(); 3304 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3305 3306 unsigned ChainI = 0; 3307 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3308 // See visitLoad comments. 3309 if (ChainI == MaxParallelChains) { 3310 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3311 MVT::Other, &Chains[0], ChainI); 3312 Root = Chain; 3313 ChainI = 0; 3314 } 3315 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3316 DAG.getConstant(Offsets[i], PtrVT)); 3317 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3318 SDValue(Src.getNode(), Src.getResNo() + i), 3319 Add, MachinePointerInfo(PtrV, Offsets[i]), 3320 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3321 Chains[ChainI] = St; 3322 } 3323 3324 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3325 MVT::Other, &Chains[0], ChainI); 3326 ++SDNodeOrder; 3327 AssignOrderingToNode(StoreNode.getNode()); 3328 DAG.setRoot(StoreNode); 3329 } 3330 3331 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3332 SynchronizationScope Scope, 3333 bool Before, DebugLoc dl, 3334 SelectionDAG &DAG, 3335 const TargetLowering &TLI) { 3336 // Fence, if necessary 3337 if (Before) { 3338 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3339 Order = Release; 3340 else if (Order == Acquire || Order == Monotonic) 3341 return Chain; 3342 } else { 3343 if (Order == AcquireRelease) 3344 Order = Acquire; 3345 else if (Order == Release || Order == Monotonic) 3346 return Chain; 3347 } 3348 SDValue Ops[3]; 3349 Ops[0] = Chain; 3350 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3351 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3352 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3353 } 3354 3355 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3356 DebugLoc dl = getCurDebugLoc(); 3357 AtomicOrdering Order = I.getOrdering(); 3358 SynchronizationScope Scope = I.getSynchScope(); 3359 3360 SDValue InChain = getRoot(); 3361 3362 if (TLI.getInsertFencesForAtomic()) 3363 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3364 DAG, TLI); 3365 3366 SDValue L = 3367 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3368 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3369 InChain, 3370 getValue(I.getPointerOperand()), 3371 getValue(I.getCompareOperand()), 3372 getValue(I.getNewValOperand()), 3373 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3374 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3375 Scope); 3376 3377 SDValue OutChain = L.getValue(1); 3378 3379 if (TLI.getInsertFencesForAtomic()) 3380 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3381 DAG, TLI); 3382 3383 setValue(&I, L); 3384 DAG.setRoot(OutChain); 3385 } 3386 3387 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3388 DebugLoc dl = getCurDebugLoc(); 3389 ISD::NodeType NT; 3390 switch (I.getOperation()) { 3391 default: llvm_unreachable("Unknown atomicrmw operation"); 3392 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3393 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3394 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3395 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3396 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3397 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3398 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3399 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3400 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3401 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3402 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3403 } 3404 AtomicOrdering Order = I.getOrdering(); 3405 SynchronizationScope Scope = I.getSynchScope(); 3406 3407 SDValue InChain = getRoot(); 3408 3409 if (TLI.getInsertFencesForAtomic()) 3410 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3411 DAG, TLI); 3412 3413 SDValue L = 3414 DAG.getAtomic(NT, dl, 3415 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3416 InChain, 3417 getValue(I.getPointerOperand()), 3418 getValue(I.getValOperand()), 3419 I.getPointerOperand(), 0 /* Alignment */, 3420 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3421 Scope); 3422 3423 SDValue OutChain = L.getValue(1); 3424 3425 if (TLI.getInsertFencesForAtomic()) 3426 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3427 DAG, TLI); 3428 3429 setValue(&I, L); 3430 DAG.setRoot(OutChain); 3431 } 3432 3433 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3434 DebugLoc dl = getCurDebugLoc(); 3435 SDValue Ops[3]; 3436 Ops[0] = getRoot(); 3437 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3438 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3439 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3440 } 3441 3442 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3443 DebugLoc dl = getCurDebugLoc(); 3444 AtomicOrdering Order = I.getOrdering(); 3445 SynchronizationScope Scope = I.getSynchScope(); 3446 3447 SDValue InChain = getRoot(); 3448 3449 EVT VT = EVT::getEVT(I.getType()); 3450 3451 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3452 report_fatal_error("Cannot generate unaligned atomic load"); 3453 3454 SDValue L = 3455 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3456 getValue(I.getPointerOperand()), 3457 I.getPointerOperand(), I.getAlignment(), 3458 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3459 Scope); 3460 3461 SDValue OutChain = L.getValue(1); 3462 3463 if (TLI.getInsertFencesForAtomic()) 3464 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3465 DAG, TLI); 3466 3467 setValue(&I, L); 3468 DAG.setRoot(OutChain); 3469 } 3470 3471 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3472 DebugLoc dl = getCurDebugLoc(); 3473 3474 AtomicOrdering Order = I.getOrdering(); 3475 SynchronizationScope Scope = I.getSynchScope(); 3476 3477 SDValue InChain = getRoot(); 3478 3479 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3480 3481 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3482 report_fatal_error("Cannot generate unaligned atomic store"); 3483 3484 if (TLI.getInsertFencesForAtomic()) 3485 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3486 DAG, TLI); 3487 3488 SDValue OutChain = 3489 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3490 InChain, 3491 getValue(I.getPointerOperand()), 3492 getValue(I.getValueOperand()), 3493 I.getPointerOperand(), I.getAlignment(), 3494 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3495 Scope); 3496 3497 if (TLI.getInsertFencesForAtomic()) 3498 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3499 DAG, TLI); 3500 3501 DAG.setRoot(OutChain); 3502 } 3503 3504 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3505 /// node. 3506 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3507 unsigned Intrinsic) { 3508 bool HasChain = !I.doesNotAccessMemory(); 3509 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3510 3511 // Build the operand list. 3512 SmallVector<SDValue, 8> Ops; 3513 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3514 if (OnlyLoad) { 3515 // We don't need to serialize loads against other loads. 3516 Ops.push_back(DAG.getRoot()); 3517 } else { 3518 Ops.push_back(getRoot()); 3519 } 3520 } 3521 3522 // Info is set by getTgtMemInstrinsic 3523 TargetLowering::IntrinsicInfo Info; 3524 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3525 3526 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3527 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3528 Info.opc == ISD::INTRINSIC_W_CHAIN) 3529 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3530 3531 // Add all operands of the call to the operand list. 3532 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3533 SDValue Op = getValue(I.getArgOperand(i)); 3534 Ops.push_back(Op); 3535 } 3536 3537 SmallVector<EVT, 4> ValueVTs; 3538 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3539 3540 if (HasChain) 3541 ValueVTs.push_back(MVT::Other); 3542 3543 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3544 3545 // Create the node. 3546 SDValue Result; 3547 if (IsTgtIntrinsic) { 3548 // This is target intrinsic that touches memory 3549 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3550 VTs, &Ops[0], Ops.size(), 3551 Info.memVT, 3552 MachinePointerInfo(Info.ptrVal, Info.offset), 3553 Info.align, Info.vol, 3554 Info.readMem, Info.writeMem); 3555 } else if (!HasChain) { 3556 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3557 VTs, &Ops[0], Ops.size()); 3558 } else if (!I.getType()->isVoidTy()) { 3559 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3560 VTs, &Ops[0], Ops.size()); 3561 } else { 3562 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3563 VTs, &Ops[0], Ops.size()); 3564 } 3565 3566 if (HasChain) { 3567 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3568 if (OnlyLoad) 3569 PendingLoads.push_back(Chain); 3570 else 3571 DAG.setRoot(Chain); 3572 } 3573 3574 if (!I.getType()->isVoidTy()) { 3575 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3576 EVT VT = TLI.getValueType(PTy); 3577 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3578 } 3579 3580 setValue(&I, Result); 3581 } 3582 } 3583 3584 /// GetSignificand - Get the significand and build it into a floating-point 3585 /// number with exponent of 1: 3586 /// 3587 /// Op = (Op & 0x007fffff) | 0x3f800000; 3588 /// 3589 /// where Op is the hexidecimal representation of floating point value. 3590 static SDValue 3591 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3592 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3593 DAG.getConstant(0x007fffff, MVT::i32)); 3594 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3595 DAG.getConstant(0x3f800000, MVT::i32)); 3596 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3597 } 3598 3599 /// GetExponent - Get the exponent: 3600 /// 3601 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3602 /// 3603 /// where Op is the hexidecimal representation of floating point value. 3604 static SDValue 3605 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3606 DebugLoc dl) { 3607 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3608 DAG.getConstant(0x7f800000, MVT::i32)); 3609 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3610 DAG.getConstant(23, TLI.getPointerTy())); 3611 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3612 DAG.getConstant(127, MVT::i32)); 3613 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3614 } 3615 3616 /// getF32Constant - Get 32-bit floating point constant. 3617 static SDValue 3618 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3619 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3620 } 3621 3622 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3623 const char * 3624 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3625 SDValue Op1 = getValue(I.getArgOperand(0)); 3626 SDValue Op2 = getValue(I.getArgOperand(1)); 3627 3628 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3629 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3630 return 0; 3631 } 3632 3633 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3634 /// limited-precision mode. 3635 void 3636 SelectionDAGBuilder::visitExp(const CallInst &I) { 3637 SDValue result; 3638 DebugLoc dl = getCurDebugLoc(); 3639 3640 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3641 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3642 SDValue Op = getValue(I.getArgOperand(0)); 3643 3644 // Put the exponent in the right bit position for later addition to the 3645 // final result: 3646 // 3647 // #define LOG2OFe 1.4426950f 3648 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3649 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3650 getF32Constant(DAG, 0x3fb8aa3b)); 3651 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3652 3653 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3654 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3655 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3656 3657 // IntegerPartOfX <<= 23; 3658 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3659 DAG.getConstant(23, TLI.getPointerTy())); 3660 3661 if (LimitFloatPrecision <= 6) { 3662 // For floating-point precision of 6: 3663 // 3664 // TwoToFractionalPartOfX = 3665 // 0.997535578f + 3666 // (0.735607626f + 0.252464424f * x) * x; 3667 // 3668 // error 0.0144103317, which is 6 bits 3669 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3670 getF32Constant(DAG, 0x3e814304)); 3671 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3672 getF32Constant(DAG, 0x3f3c50c8)); 3673 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3674 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3675 getF32Constant(DAG, 0x3f7f5e7e)); 3676 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3677 3678 // Add the exponent into the result in integer domain. 3679 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3680 TwoToFracPartOfX, IntegerPartOfX); 3681 3682 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3683 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3684 // For floating-point precision of 12: 3685 // 3686 // TwoToFractionalPartOfX = 3687 // 0.999892986f + 3688 // (0.696457318f + 3689 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3690 // 3691 // 0.000107046256 error, which is 13 to 14 bits 3692 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3693 getF32Constant(DAG, 0x3da235e3)); 3694 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3695 getF32Constant(DAG, 0x3e65b8f3)); 3696 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3697 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3698 getF32Constant(DAG, 0x3f324b07)); 3699 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3700 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3701 getF32Constant(DAG, 0x3f7ff8fd)); 3702 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3703 3704 // Add the exponent into the result in integer domain. 3705 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3706 TwoToFracPartOfX, IntegerPartOfX); 3707 3708 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3709 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3710 // For floating-point precision of 18: 3711 // 3712 // TwoToFractionalPartOfX = 3713 // 0.999999982f + 3714 // (0.693148872f + 3715 // (0.240227044f + 3716 // (0.554906021e-1f + 3717 // (0.961591928e-2f + 3718 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3719 // 3720 // error 2.47208000*10^(-7), which is better than 18 bits 3721 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3722 getF32Constant(DAG, 0x3924b03e)); 3723 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3724 getF32Constant(DAG, 0x3ab24b87)); 3725 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3726 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3727 getF32Constant(DAG, 0x3c1d8c17)); 3728 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3729 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3730 getF32Constant(DAG, 0x3d634a1d)); 3731 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3732 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3733 getF32Constant(DAG, 0x3e75fe14)); 3734 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3735 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3736 getF32Constant(DAG, 0x3f317234)); 3737 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3738 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3739 getF32Constant(DAG, 0x3f800000)); 3740 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3741 MVT::i32, t13); 3742 3743 // Add the exponent into the result in integer domain. 3744 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3745 TwoToFracPartOfX, IntegerPartOfX); 3746 3747 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3748 } 3749 } else { 3750 // No special expansion. 3751 result = DAG.getNode(ISD::FEXP, dl, 3752 getValue(I.getArgOperand(0)).getValueType(), 3753 getValue(I.getArgOperand(0))); 3754 } 3755 3756 setValue(&I, result); 3757 } 3758 3759 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3760 /// limited-precision mode. 3761 void 3762 SelectionDAGBuilder::visitLog(const CallInst &I) { 3763 SDValue result; 3764 DebugLoc dl = getCurDebugLoc(); 3765 3766 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3767 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3768 SDValue Op = getValue(I.getArgOperand(0)); 3769 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3770 3771 // Scale the exponent by log(2) [0.69314718f]. 3772 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3773 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3774 getF32Constant(DAG, 0x3f317218)); 3775 3776 // Get the significand and build it into a floating-point number with 3777 // exponent of 1. 3778 SDValue X = GetSignificand(DAG, Op1, dl); 3779 3780 if (LimitFloatPrecision <= 6) { 3781 // For floating-point precision of 6: 3782 // 3783 // LogofMantissa = 3784 // -1.1609546f + 3785 // (1.4034025f - 0.23903021f * x) * x; 3786 // 3787 // error 0.0034276066, which is better than 8 bits 3788 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3789 getF32Constant(DAG, 0xbe74c456)); 3790 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3791 getF32Constant(DAG, 0x3fb3a2b1)); 3792 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3793 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3794 getF32Constant(DAG, 0x3f949a29)); 3795 3796 result = DAG.getNode(ISD::FADD, dl, 3797 MVT::f32, LogOfExponent, LogOfMantissa); 3798 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3799 // For floating-point precision of 12: 3800 // 3801 // LogOfMantissa = 3802 // -1.7417939f + 3803 // (2.8212026f + 3804 // (-1.4699568f + 3805 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3806 // 3807 // error 0.000061011436, which is 14 bits 3808 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3809 getF32Constant(DAG, 0xbd67b6d6)); 3810 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3811 getF32Constant(DAG, 0x3ee4f4b8)); 3812 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3813 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3814 getF32Constant(DAG, 0x3fbc278b)); 3815 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3816 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3817 getF32Constant(DAG, 0x40348e95)); 3818 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3819 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3820 getF32Constant(DAG, 0x3fdef31a)); 3821 3822 result = DAG.getNode(ISD::FADD, dl, 3823 MVT::f32, LogOfExponent, LogOfMantissa); 3824 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3825 // For floating-point precision of 18: 3826 // 3827 // LogOfMantissa = 3828 // -2.1072184f + 3829 // (4.2372794f + 3830 // (-3.7029485f + 3831 // (2.2781945f + 3832 // (-0.87823314f + 3833 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3834 // 3835 // error 0.0000023660568, which is better than 18 bits 3836 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3837 getF32Constant(DAG, 0xbc91e5ac)); 3838 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3839 getF32Constant(DAG, 0x3e4350aa)); 3840 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3841 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3842 getF32Constant(DAG, 0x3f60d3e3)); 3843 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3844 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3845 getF32Constant(DAG, 0x4011cdf0)); 3846 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3847 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3848 getF32Constant(DAG, 0x406cfd1c)); 3849 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3850 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3851 getF32Constant(DAG, 0x408797cb)); 3852 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3853 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3854 getF32Constant(DAG, 0x4006dcab)); 3855 3856 result = DAG.getNode(ISD::FADD, dl, 3857 MVT::f32, LogOfExponent, LogOfMantissa); 3858 } 3859 } else { 3860 // No special expansion. 3861 result = DAG.getNode(ISD::FLOG, dl, 3862 getValue(I.getArgOperand(0)).getValueType(), 3863 getValue(I.getArgOperand(0))); 3864 } 3865 3866 setValue(&I, result); 3867 } 3868 3869 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3870 /// limited-precision mode. 3871 void 3872 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3873 SDValue result; 3874 DebugLoc dl = getCurDebugLoc(); 3875 3876 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3877 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3878 SDValue Op = getValue(I.getArgOperand(0)); 3879 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3880 3881 // Get the exponent. 3882 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3883 3884 // Get the significand and build it into a floating-point number with 3885 // exponent of 1. 3886 SDValue X = GetSignificand(DAG, Op1, dl); 3887 3888 // Different possible minimax approximations of significand in 3889 // floating-point for various degrees of accuracy over [1,2]. 3890 if (LimitFloatPrecision <= 6) { 3891 // For floating-point precision of 6: 3892 // 3893 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3894 // 3895 // error 0.0049451742, which is more than 7 bits 3896 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3897 getF32Constant(DAG, 0xbeb08fe0)); 3898 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3899 getF32Constant(DAG, 0x40019463)); 3900 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3901 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3902 getF32Constant(DAG, 0x3fd6633d)); 3903 3904 result = DAG.getNode(ISD::FADD, dl, 3905 MVT::f32, LogOfExponent, Log2ofMantissa); 3906 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3907 // For floating-point precision of 12: 3908 // 3909 // Log2ofMantissa = 3910 // -2.51285454f + 3911 // (4.07009056f + 3912 // (-2.12067489f + 3913 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3914 // 3915 // error 0.0000876136000, which is better than 13 bits 3916 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3917 getF32Constant(DAG, 0xbda7262e)); 3918 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3919 getF32Constant(DAG, 0x3f25280b)); 3920 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3921 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3922 getF32Constant(DAG, 0x4007b923)); 3923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3924 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3925 getF32Constant(DAG, 0x40823e2f)); 3926 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3927 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3928 getF32Constant(DAG, 0x4020d29c)); 3929 3930 result = DAG.getNode(ISD::FADD, dl, 3931 MVT::f32, LogOfExponent, Log2ofMantissa); 3932 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3933 // For floating-point precision of 18: 3934 // 3935 // Log2ofMantissa = 3936 // -3.0400495f + 3937 // (6.1129976f + 3938 // (-5.3420409f + 3939 // (3.2865683f + 3940 // (-1.2669343f + 3941 // (0.27515199f - 3942 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3943 // 3944 // error 0.0000018516, which is better than 18 bits 3945 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3946 getF32Constant(DAG, 0xbcd2769e)); 3947 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3948 getF32Constant(DAG, 0x3e8ce0b9)); 3949 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3950 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3951 getF32Constant(DAG, 0x3fa22ae7)); 3952 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3953 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3954 getF32Constant(DAG, 0x40525723)); 3955 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3956 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3957 getF32Constant(DAG, 0x40aaf200)); 3958 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3959 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3960 getF32Constant(DAG, 0x40c39dad)); 3961 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3962 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3963 getF32Constant(DAG, 0x4042902c)); 3964 3965 result = DAG.getNode(ISD::FADD, dl, 3966 MVT::f32, LogOfExponent, Log2ofMantissa); 3967 } 3968 } else { 3969 // No special expansion. 3970 result = DAG.getNode(ISD::FLOG2, dl, 3971 getValue(I.getArgOperand(0)).getValueType(), 3972 getValue(I.getArgOperand(0))); 3973 } 3974 3975 setValue(&I, result); 3976 } 3977 3978 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3979 /// limited-precision mode. 3980 void 3981 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3982 SDValue result; 3983 DebugLoc dl = getCurDebugLoc(); 3984 3985 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3986 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3987 SDValue Op = getValue(I.getArgOperand(0)); 3988 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3989 3990 // Scale the exponent by log10(2) [0.30102999f]. 3991 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3992 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3993 getF32Constant(DAG, 0x3e9a209a)); 3994 3995 // Get the significand and build it into a floating-point number with 3996 // exponent of 1. 3997 SDValue X = GetSignificand(DAG, Op1, dl); 3998 3999 if (LimitFloatPrecision <= 6) { 4000 // For floating-point precision of 6: 4001 // 4002 // Log10ofMantissa = 4003 // -0.50419619f + 4004 // (0.60948995f - 0.10380950f * x) * x; 4005 // 4006 // error 0.0014886165, which is 6 bits 4007 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4008 getF32Constant(DAG, 0xbdd49a13)); 4009 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4010 getF32Constant(DAG, 0x3f1c0789)); 4011 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4012 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4013 getF32Constant(DAG, 0x3f011300)); 4014 4015 result = DAG.getNode(ISD::FADD, dl, 4016 MVT::f32, LogOfExponent, Log10ofMantissa); 4017 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4018 // For floating-point precision of 12: 4019 // 4020 // Log10ofMantissa = 4021 // -0.64831180f + 4022 // (0.91751397f + 4023 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4024 // 4025 // error 0.00019228036, which is better than 12 bits 4026 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4027 getF32Constant(DAG, 0x3d431f31)); 4028 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4029 getF32Constant(DAG, 0x3ea21fb2)); 4030 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4031 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4032 getF32Constant(DAG, 0x3f6ae232)); 4033 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4034 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4035 getF32Constant(DAG, 0x3f25f7c3)); 4036 4037 result = DAG.getNode(ISD::FADD, dl, 4038 MVT::f32, LogOfExponent, Log10ofMantissa); 4039 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4040 // For floating-point precision of 18: 4041 // 4042 // Log10ofMantissa = 4043 // -0.84299375f + 4044 // (1.5327582f + 4045 // (-1.0688956f + 4046 // (0.49102474f + 4047 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4048 // 4049 // error 0.0000037995730, which is better than 18 bits 4050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4051 getF32Constant(DAG, 0x3c5d51ce)); 4052 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4053 getF32Constant(DAG, 0x3e00685a)); 4054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4055 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4056 getF32Constant(DAG, 0x3efb6798)); 4057 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4058 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4059 getF32Constant(DAG, 0x3f88d192)); 4060 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4061 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4062 getF32Constant(DAG, 0x3fc4316c)); 4063 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4064 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4065 getF32Constant(DAG, 0x3f57ce70)); 4066 4067 result = DAG.getNode(ISD::FADD, dl, 4068 MVT::f32, LogOfExponent, Log10ofMantissa); 4069 } 4070 } else { 4071 // No special expansion. 4072 result = DAG.getNode(ISD::FLOG10, dl, 4073 getValue(I.getArgOperand(0)).getValueType(), 4074 getValue(I.getArgOperand(0))); 4075 } 4076 4077 setValue(&I, result); 4078 } 4079 4080 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4081 /// limited-precision mode. 4082 void 4083 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4084 SDValue result; 4085 DebugLoc dl = getCurDebugLoc(); 4086 4087 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4088 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4089 SDValue Op = getValue(I.getArgOperand(0)); 4090 4091 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4092 4093 // FractionalPartOfX = x - (float)IntegerPartOfX; 4094 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4095 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4096 4097 // IntegerPartOfX <<= 23; 4098 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4099 DAG.getConstant(23, TLI.getPointerTy())); 4100 4101 if (LimitFloatPrecision <= 6) { 4102 // For floating-point precision of 6: 4103 // 4104 // TwoToFractionalPartOfX = 4105 // 0.997535578f + 4106 // (0.735607626f + 0.252464424f * x) * x; 4107 // 4108 // error 0.0144103317, which is 6 bits 4109 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4110 getF32Constant(DAG, 0x3e814304)); 4111 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4112 getF32Constant(DAG, 0x3f3c50c8)); 4113 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4114 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4115 getF32Constant(DAG, 0x3f7f5e7e)); 4116 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4117 SDValue TwoToFractionalPartOfX = 4118 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4119 4120 result = DAG.getNode(ISD::BITCAST, dl, 4121 MVT::f32, TwoToFractionalPartOfX); 4122 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4123 // For floating-point precision of 12: 4124 // 4125 // TwoToFractionalPartOfX = 4126 // 0.999892986f + 4127 // (0.696457318f + 4128 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4129 // 4130 // error 0.000107046256, which is 13 to 14 bits 4131 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4132 getF32Constant(DAG, 0x3da235e3)); 4133 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4134 getF32Constant(DAG, 0x3e65b8f3)); 4135 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4136 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4137 getF32Constant(DAG, 0x3f324b07)); 4138 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4139 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4140 getF32Constant(DAG, 0x3f7ff8fd)); 4141 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4142 SDValue TwoToFractionalPartOfX = 4143 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4144 4145 result = DAG.getNode(ISD::BITCAST, dl, 4146 MVT::f32, TwoToFractionalPartOfX); 4147 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4148 // For floating-point precision of 18: 4149 // 4150 // TwoToFractionalPartOfX = 4151 // 0.999999982f + 4152 // (0.693148872f + 4153 // (0.240227044f + 4154 // (0.554906021e-1f + 4155 // (0.961591928e-2f + 4156 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4157 // error 2.47208000*10^(-7), which is better than 18 bits 4158 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4159 getF32Constant(DAG, 0x3924b03e)); 4160 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4161 getF32Constant(DAG, 0x3ab24b87)); 4162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4163 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4164 getF32Constant(DAG, 0x3c1d8c17)); 4165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4166 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4167 getF32Constant(DAG, 0x3d634a1d)); 4168 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4169 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4170 getF32Constant(DAG, 0x3e75fe14)); 4171 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4172 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4173 getF32Constant(DAG, 0x3f317234)); 4174 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4175 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4176 getF32Constant(DAG, 0x3f800000)); 4177 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4178 SDValue TwoToFractionalPartOfX = 4179 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4180 4181 result = DAG.getNode(ISD::BITCAST, dl, 4182 MVT::f32, TwoToFractionalPartOfX); 4183 } 4184 } else { 4185 // No special expansion. 4186 result = DAG.getNode(ISD::FEXP2, dl, 4187 getValue(I.getArgOperand(0)).getValueType(), 4188 getValue(I.getArgOperand(0))); 4189 } 4190 4191 setValue(&I, result); 4192 } 4193 4194 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4195 /// limited-precision mode with x == 10.0f. 4196 void 4197 SelectionDAGBuilder::visitPow(const CallInst &I) { 4198 SDValue result; 4199 const Value *Val = I.getArgOperand(0); 4200 DebugLoc dl = getCurDebugLoc(); 4201 bool IsExp10 = false; 4202 4203 if (getValue(Val).getValueType() == MVT::f32 && 4204 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4205 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4206 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4207 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4208 APFloat Ten(10.0f); 4209 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4210 } 4211 } 4212 } 4213 4214 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4215 SDValue Op = getValue(I.getArgOperand(1)); 4216 4217 // Put the exponent in the right bit position for later addition to the 4218 // final result: 4219 // 4220 // #define LOG2OF10 3.3219281f 4221 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4223 getF32Constant(DAG, 0x40549a78)); 4224 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4225 4226 // FractionalPartOfX = x - (float)IntegerPartOfX; 4227 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4228 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4229 4230 // IntegerPartOfX <<= 23; 4231 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4232 DAG.getConstant(23, TLI.getPointerTy())); 4233 4234 if (LimitFloatPrecision <= 6) { 4235 // For floating-point precision of 6: 4236 // 4237 // twoToFractionalPartOfX = 4238 // 0.997535578f + 4239 // (0.735607626f + 0.252464424f * x) * x; 4240 // 4241 // error 0.0144103317, which is 6 bits 4242 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4243 getF32Constant(DAG, 0x3e814304)); 4244 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4245 getF32Constant(DAG, 0x3f3c50c8)); 4246 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4247 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4248 getF32Constant(DAG, 0x3f7f5e7e)); 4249 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4250 SDValue TwoToFractionalPartOfX = 4251 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4252 4253 result = DAG.getNode(ISD::BITCAST, dl, 4254 MVT::f32, TwoToFractionalPartOfX); 4255 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4256 // For floating-point precision of 12: 4257 // 4258 // TwoToFractionalPartOfX = 4259 // 0.999892986f + 4260 // (0.696457318f + 4261 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4262 // 4263 // error 0.000107046256, which is 13 to 14 bits 4264 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4265 getF32Constant(DAG, 0x3da235e3)); 4266 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4267 getF32Constant(DAG, 0x3e65b8f3)); 4268 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4269 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4270 getF32Constant(DAG, 0x3f324b07)); 4271 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4272 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4273 getF32Constant(DAG, 0x3f7ff8fd)); 4274 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4275 SDValue TwoToFractionalPartOfX = 4276 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4277 4278 result = DAG.getNode(ISD::BITCAST, dl, 4279 MVT::f32, TwoToFractionalPartOfX); 4280 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4281 // For floating-point precision of 18: 4282 // 4283 // TwoToFractionalPartOfX = 4284 // 0.999999982f + 4285 // (0.693148872f + 4286 // (0.240227044f + 4287 // (0.554906021e-1f + 4288 // (0.961591928e-2f + 4289 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4290 // error 2.47208000*10^(-7), which is better than 18 bits 4291 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4292 getF32Constant(DAG, 0x3924b03e)); 4293 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4294 getF32Constant(DAG, 0x3ab24b87)); 4295 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4296 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4297 getF32Constant(DAG, 0x3c1d8c17)); 4298 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4299 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4300 getF32Constant(DAG, 0x3d634a1d)); 4301 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4302 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4303 getF32Constant(DAG, 0x3e75fe14)); 4304 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4305 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4306 getF32Constant(DAG, 0x3f317234)); 4307 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4308 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4309 getF32Constant(DAG, 0x3f800000)); 4310 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4311 SDValue TwoToFractionalPartOfX = 4312 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4313 4314 result = DAG.getNode(ISD::BITCAST, dl, 4315 MVT::f32, TwoToFractionalPartOfX); 4316 } 4317 } else { 4318 // No special expansion. 4319 result = DAG.getNode(ISD::FPOW, dl, 4320 getValue(I.getArgOperand(0)).getValueType(), 4321 getValue(I.getArgOperand(0)), 4322 getValue(I.getArgOperand(1))); 4323 } 4324 4325 setValue(&I, result); 4326 } 4327 4328 4329 /// ExpandPowI - Expand a llvm.powi intrinsic. 4330 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4331 SelectionDAG &DAG) { 4332 // If RHS is a constant, we can expand this out to a multiplication tree, 4333 // otherwise we end up lowering to a call to __powidf2 (for example). When 4334 // optimizing for size, we only want to do this if the expansion would produce 4335 // a small number of multiplies, otherwise we do the full expansion. 4336 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4337 // Get the exponent as a positive value. 4338 unsigned Val = RHSC->getSExtValue(); 4339 if ((int)Val < 0) Val = -Val; 4340 4341 // powi(x, 0) -> 1.0 4342 if (Val == 0) 4343 return DAG.getConstantFP(1.0, LHS.getValueType()); 4344 4345 const Function *F = DAG.getMachineFunction().getFunction(); 4346 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4347 // If optimizing for size, don't insert too many multiplies. This 4348 // inserts up to 5 multiplies. 4349 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4350 // We use the simple binary decomposition method to generate the multiply 4351 // sequence. There are more optimal ways to do this (for example, 4352 // powi(x,15) generates one more multiply than it should), but this has 4353 // the benefit of being both really simple and much better than a libcall. 4354 SDValue Res; // Logically starts equal to 1.0 4355 SDValue CurSquare = LHS; 4356 while (Val) { 4357 if (Val & 1) { 4358 if (Res.getNode()) 4359 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4360 else 4361 Res = CurSquare; // 1.0*CurSquare. 4362 } 4363 4364 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4365 CurSquare, CurSquare); 4366 Val >>= 1; 4367 } 4368 4369 // If the original was negative, invert the result, producing 1/(x*x*x). 4370 if (RHSC->getSExtValue() < 0) 4371 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4372 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4373 return Res; 4374 } 4375 } 4376 4377 // Otherwise, expand to a libcall. 4378 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4379 } 4380 4381 // getTruncatedArgReg - Find underlying register used for an truncated 4382 // argument. 4383 static unsigned getTruncatedArgReg(const SDValue &N) { 4384 if (N.getOpcode() != ISD::TRUNCATE) 4385 return 0; 4386 4387 const SDValue &Ext = N.getOperand(0); 4388 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4389 const SDValue &CFR = Ext.getOperand(0); 4390 if (CFR.getOpcode() == ISD::CopyFromReg) 4391 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4392 else 4393 if (CFR.getOpcode() == ISD::TRUNCATE) 4394 return getTruncatedArgReg(CFR); 4395 } 4396 return 0; 4397 } 4398 4399 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4400 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4401 /// At the end of instruction selection, they will be inserted to the entry BB. 4402 bool 4403 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4404 int64_t Offset, 4405 const SDValue &N) { 4406 const Argument *Arg = dyn_cast<Argument>(V); 4407 if (!Arg) 4408 return false; 4409 4410 MachineFunction &MF = DAG.getMachineFunction(); 4411 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4412 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4413 4414 // Ignore inlined function arguments here. 4415 DIVariable DV(Variable); 4416 if (DV.isInlinedFnArgument(MF.getFunction())) 4417 return false; 4418 4419 unsigned Reg = 0; 4420 // Some arguments' frame index is recorded during argument lowering. 4421 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4422 if (Offset) 4423 Reg = TRI->getFrameRegister(MF); 4424 4425 if (!Reg && N.getNode()) { 4426 if (N.getOpcode() == ISD::CopyFromReg) 4427 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4428 else 4429 Reg = getTruncatedArgReg(N); 4430 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4431 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4432 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4433 if (PR) 4434 Reg = PR; 4435 } 4436 } 4437 4438 if (!Reg) { 4439 // Check if ValueMap has reg number. 4440 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4441 if (VMI != FuncInfo.ValueMap.end()) 4442 Reg = VMI->second; 4443 } 4444 4445 if (!Reg && N.getNode()) { 4446 // Check if frame index is available. 4447 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4448 if (FrameIndexSDNode *FINode = 4449 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4450 Reg = TRI->getFrameRegister(MF); 4451 Offset = FINode->getIndex(); 4452 } 4453 } 4454 4455 if (!Reg) 4456 return false; 4457 4458 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4459 TII->get(TargetOpcode::DBG_VALUE)) 4460 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4461 FuncInfo.ArgDbgValues.push_back(&*MIB); 4462 return true; 4463 } 4464 4465 // VisualStudio defines setjmp as _setjmp 4466 #if defined(_MSC_VER) && defined(setjmp) && \ 4467 !defined(setjmp_undefined_for_msvc) 4468 # pragma push_macro("setjmp") 4469 # undef setjmp 4470 # define setjmp_undefined_for_msvc 4471 #endif 4472 4473 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4474 /// we want to emit this as a call to a named external function, return the name 4475 /// otherwise lower it and return null. 4476 const char * 4477 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4478 DebugLoc dl = getCurDebugLoc(); 4479 SDValue Res; 4480 4481 switch (Intrinsic) { 4482 default: 4483 // By default, turn this into a target intrinsic node. 4484 visitTargetIntrinsic(I, Intrinsic); 4485 return 0; 4486 case Intrinsic::vastart: visitVAStart(I); return 0; 4487 case Intrinsic::vaend: visitVAEnd(I); return 0; 4488 case Intrinsic::vacopy: visitVACopy(I); return 0; 4489 case Intrinsic::returnaddress: 4490 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4491 getValue(I.getArgOperand(0)))); 4492 return 0; 4493 case Intrinsic::frameaddress: 4494 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4495 getValue(I.getArgOperand(0)))); 4496 return 0; 4497 case Intrinsic::setjmp: 4498 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4499 case Intrinsic::longjmp: 4500 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4501 case Intrinsic::memcpy: { 4502 // Assert for address < 256 since we support only user defined address 4503 // spaces. 4504 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4505 < 256 && 4506 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4507 < 256 && 4508 "Unknown address space"); 4509 SDValue Op1 = getValue(I.getArgOperand(0)); 4510 SDValue Op2 = getValue(I.getArgOperand(1)); 4511 SDValue Op3 = getValue(I.getArgOperand(2)); 4512 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4513 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4514 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4515 MachinePointerInfo(I.getArgOperand(0)), 4516 MachinePointerInfo(I.getArgOperand(1)))); 4517 return 0; 4518 } 4519 case Intrinsic::memset: { 4520 // Assert for address < 256 since we support only user defined address 4521 // spaces. 4522 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4523 < 256 && 4524 "Unknown address space"); 4525 SDValue Op1 = getValue(I.getArgOperand(0)); 4526 SDValue Op2 = getValue(I.getArgOperand(1)); 4527 SDValue Op3 = getValue(I.getArgOperand(2)); 4528 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4529 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4530 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4531 MachinePointerInfo(I.getArgOperand(0)))); 4532 return 0; 4533 } 4534 case Intrinsic::memmove: { 4535 // Assert for address < 256 since we support only user defined address 4536 // spaces. 4537 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4538 < 256 && 4539 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4540 < 256 && 4541 "Unknown address space"); 4542 SDValue Op1 = getValue(I.getArgOperand(0)); 4543 SDValue Op2 = getValue(I.getArgOperand(1)); 4544 SDValue Op3 = getValue(I.getArgOperand(2)); 4545 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4546 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4547 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4548 MachinePointerInfo(I.getArgOperand(0)), 4549 MachinePointerInfo(I.getArgOperand(1)))); 4550 return 0; 4551 } 4552 case Intrinsic::dbg_declare: { 4553 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4554 MDNode *Variable = DI.getVariable(); 4555 const Value *Address = DI.getAddress(); 4556 if (!Address || !DIVariable(Variable).Verify()) 4557 return 0; 4558 4559 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4560 // but do not always have a corresponding SDNode built. The SDNodeOrder 4561 // absolute, but not relative, values are different depending on whether 4562 // debug info exists. 4563 ++SDNodeOrder; 4564 4565 // Check if address has undef value. 4566 if (isa<UndefValue>(Address) || 4567 (Address->use_empty() && !isa<Argument>(Address))) { 4568 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4569 return 0; 4570 } 4571 4572 SDValue &N = NodeMap[Address]; 4573 if (!N.getNode() && isa<Argument>(Address)) 4574 // Check unused arguments map. 4575 N = UnusedArgNodeMap[Address]; 4576 SDDbgValue *SDV; 4577 if (N.getNode()) { 4578 // Parameters are handled specially. 4579 bool isParameter = 4580 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4581 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4582 Address = BCI->getOperand(0); 4583 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4584 4585 if (isParameter && !AI) { 4586 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4587 if (FINode) 4588 // Byval parameter. We have a frame index at this point. 4589 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4590 0, dl, SDNodeOrder); 4591 else { 4592 // Address is an argument, so try to emit its dbg value using 4593 // virtual register info from the FuncInfo.ValueMap. 4594 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4595 return 0; 4596 } 4597 } else if (AI) 4598 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4599 0, dl, SDNodeOrder); 4600 else { 4601 // Can't do anything with other non-AI cases yet. 4602 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4603 return 0; 4604 } 4605 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4606 } else { 4607 // If Address is an argument then try to emit its dbg value using 4608 // virtual register info from the FuncInfo.ValueMap. 4609 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4610 // If variable is pinned by a alloca in dominating bb then 4611 // use StaticAllocaMap. 4612 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4613 if (AI->getParent() != DI.getParent()) { 4614 DenseMap<const AllocaInst*, int>::iterator SI = 4615 FuncInfo.StaticAllocaMap.find(AI); 4616 if (SI != FuncInfo.StaticAllocaMap.end()) { 4617 SDV = DAG.getDbgValue(Variable, SI->second, 4618 0, dl, SDNodeOrder); 4619 DAG.AddDbgValue(SDV, 0, false); 4620 return 0; 4621 } 4622 } 4623 } 4624 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4625 } 4626 } 4627 return 0; 4628 } 4629 case Intrinsic::dbg_value: { 4630 const DbgValueInst &DI = cast<DbgValueInst>(I); 4631 if (!DIVariable(DI.getVariable()).Verify()) 4632 return 0; 4633 4634 MDNode *Variable = DI.getVariable(); 4635 uint64_t Offset = DI.getOffset(); 4636 const Value *V = DI.getValue(); 4637 if (!V) 4638 return 0; 4639 4640 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4641 // but do not always have a corresponding SDNode built. The SDNodeOrder 4642 // absolute, but not relative, values are different depending on whether 4643 // debug info exists. 4644 ++SDNodeOrder; 4645 SDDbgValue *SDV; 4646 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4647 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4648 DAG.AddDbgValue(SDV, 0, false); 4649 } else { 4650 // Do not use getValue() in here; we don't want to generate code at 4651 // this point if it hasn't been done yet. 4652 SDValue N = NodeMap[V]; 4653 if (!N.getNode() && isa<Argument>(V)) 4654 // Check unused arguments map. 4655 N = UnusedArgNodeMap[V]; 4656 if (N.getNode()) { 4657 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4658 SDV = DAG.getDbgValue(Variable, N.getNode(), 4659 N.getResNo(), Offset, dl, SDNodeOrder); 4660 DAG.AddDbgValue(SDV, N.getNode(), false); 4661 } 4662 } else if (!V->use_empty() ) { 4663 // Do not call getValue(V) yet, as we don't want to generate code. 4664 // Remember it for later. 4665 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4666 DanglingDebugInfoMap[V] = DDI; 4667 } else { 4668 // We may expand this to cover more cases. One case where we have no 4669 // data available is an unreferenced parameter. 4670 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4671 } 4672 } 4673 4674 // Build a debug info table entry. 4675 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4676 V = BCI->getOperand(0); 4677 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4678 // Don't handle byval struct arguments or VLAs, for example. 4679 if (!AI) 4680 return 0; 4681 DenseMap<const AllocaInst*, int>::iterator SI = 4682 FuncInfo.StaticAllocaMap.find(AI); 4683 if (SI == FuncInfo.StaticAllocaMap.end()) 4684 return 0; // VLAs. 4685 int FI = SI->second; 4686 4687 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4688 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4689 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4690 return 0; 4691 } 4692 4693 case Intrinsic::eh_typeid_for: { 4694 // Find the type id for the given typeinfo. 4695 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4696 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4697 Res = DAG.getConstant(TypeID, MVT::i32); 4698 setValue(&I, Res); 4699 return 0; 4700 } 4701 4702 case Intrinsic::eh_return_i32: 4703 case Intrinsic::eh_return_i64: 4704 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4705 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4706 MVT::Other, 4707 getControlRoot(), 4708 getValue(I.getArgOperand(0)), 4709 getValue(I.getArgOperand(1)))); 4710 return 0; 4711 case Intrinsic::eh_unwind_init: 4712 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4713 return 0; 4714 case Intrinsic::eh_dwarf_cfa: { 4715 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4716 TLI.getPointerTy()); 4717 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4718 TLI.getPointerTy(), 4719 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4720 TLI.getPointerTy()), 4721 CfaArg); 4722 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4723 TLI.getPointerTy(), 4724 DAG.getConstant(0, TLI.getPointerTy())); 4725 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4726 FA, Offset)); 4727 return 0; 4728 } 4729 case Intrinsic::eh_sjlj_callsite: { 4730 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4731 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4732 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4733 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4734 4735 MMI.setCurrentCallSite(CI->getZExtValue()); 4736 return 0; 4737 } 4738 case Intrinsic::eh_sjlj_functioncontext: { 4739 // Get and store the index of the function context. 4740 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4741 AllocaInst *FnCtx = 4742 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4743 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4744 MFI->setFunctionContextIndex(FI); 4745 return 0; 4746 } 4747 case Intrinsic::eh_sjlj_setjmp: { 4748 SDValue Ops[2]; 4749 Ops[0] = getRoot(); 4750 Ops[1] = getValue(I.getArgOperand(0)); 4751 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4752 DAG.getVTList(MVT::i32, MVT::Other), 4753 Ops, 2); 4754 setValue(&I, Op.getValue(0)); 4755 DAG.setRoot(Op.getValue(1)); 4756 return 0; 4757 } 4758 case Intrinsic::eh_sjlj_longjmp: { 4759 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4760 getRoot(), getValue(I.getArgOperand(0)))); 4761 return 0; 4762 } 4763 4764 case Intrinsic::x86_mmx_pslli_w: 4765 case Intrinsic::x86_mmx_pslli_d: 4766 case Intrinsic::x86_mmx_pslli_q: 4767 case Intrinsic::x86_mmx_psrli_w: 4768 case Intrinsic::x86_mmx_psrli_d: 4769 case Intrinsic::x86_mmx_psrli_q: 4770 case Intrinsic::x86_mmx_psrai_w: 4771 case Intrinsic::x86_mmx_psrai_d: { 4772 SDValue ShAmt = getValue(I.getArgOperand(1)); 4773 if (isa<ConstantSDNode>(ShAmt)) { 4774 visitTargetIntrinsic(I, Intrinsic); 4775 return 0; 4776 } 4777 unsigned NewIntrinsic = 0; 4778 EVT ShAmtVT = MVT::v2i32; 4779 switch (Intrinsic) { 4780 case Intrinsic::x86_mmx_pslli_w: 4781 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4782 break; 4783 case Intrinsic::x86_mmx_pslli_d: 4784 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4785 break; 4786 case Intrinsic::x86_mmx_pslli_q: 4787 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4788 break; 4789 case Intrinsic::x86_mmx_psrli_w: 4790 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4791 break; 4792 case Intrinsic::x86_mmx_psrli_d: 4793 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4794 break; 4795 case Intrinsic::x86_mmx_psrli_q: 4796 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4797 break; 4798 case Intrinsic::x86_mmx_psrai_w: 4799 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4800 break; 4801 case Intrinsic::x86_mmx_psrai_d: 4802 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4803 break; 4804 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4805 } 4806 4807 // The vector shift intrinsics with scalars uses 32b shift amounts but 4808 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4809 // to be zero. 4810 // We must do this early because v2i32 is not a legal type. 4811 DebugLoc dl = getCurDebugLoc(); 4812 SDValue ShOps[2]; 4813 ShOps[0] = ShAmt; 4814 ShOps[1] = DAG.getConstant(0, MVT::i32); 4815 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4816 EVT DestVT = TLI.getValueType(I.getType()); 4817 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4818 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4819 DAG.getConstant(NewIntrinsic, MVT::i32), 4820 getValue(I.getArgOperand(0)), ShAmt); 4821 setValue(&I, Res); 4822 return 0; 4823 } 4824 case Intrinsic::convertff: 4825 case Intrinsic::convertfsi: 4826 case Intrinsic::convertfui: 4827 case Intrinsic::convertsif: 4828 case Intrinsic::convertuif: 4829 case Intrinsic::convertss: 4830 case Intrinsic::convertsu: 4831 case Intrinsic::convertus: 4832 case Intrinsic::convertuu: { 4833 ISD::CvtCode Code = ISD::CVT_INVALID; 4834 switch (Intrinsic) { 4835 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4836 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4837 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4838 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4839 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4840 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4841 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4842 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4843 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4844 } 4845 EVT DestVT = TLI.getValueType(I.getType()); 4846 const Value *Op1 = I.getArgOperand(0); 4847 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4848 DAG.getValueType(DestVT), 4849 DAG.getValueType(getValue(Op1).getValueType()), 4850 getValue(I.getArgOperand(1)), 4851 getValue(I.getArgOperand(2)), 4852 Code); 4853 setValue(&I, Res); 4854 return 0; 4855 } 4856 case Intrinsic::sqrt: 4857 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4858 getValue(I.getArgOperand(0)).getValueType(), 4859 getValue(I.getArgOperand(0)))); 4860 return 0; 4861 case Intrinsic::powi: 4862 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4863 getValue(I.getArgOperand(1)), DAG)); 4864 return 0; 4865 case Intrinsic::sin: 4866 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4867 getValue(I.getArgOperand(0)).getValueType(), 4868 getValue(I.getArgOperand(0)))); 4869 return 0; 4870 case Intrinsic::cos: 4871 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4872 getValue(I.getArgOperand(0)).getValueType(), 4873 getValue(I.getArgOperand(0)))); 4874 return 0; 4875 case Intrinsic::log: 4876 visitLog(I); 4877 return 0; 4878 case Intrinsic::log2: 4879 visitLog2(I); 4880 return 0; 4881 case Intrinsic::log10: 4882 visitLog10(I); 4883 return 0; 4884 case Intrinsic::exp: 4885 visitExp(I); 4886 return 0; 4887 case Intrinsic::exp2: 4888 visitExp2(I); 4889 return 0; 4890 case Intrinsic::pow: 4891 visitPow(I); 4892 return 0; 4893 case Intrinsic::fma: 4894 setValue(&I, DAG.getNode(ISD::FMA, dl, 4895 getValue(I.getArgOperand(0)).getValueType(), 4896 getValue(I.getArgOperand(0)), 4897 getValue(I.getArgOperand(1)), 4898 getValue(I.getArgOperand(2)))); 4899 return 0; 4900 case Intrinsic::convert_to_fp16: 4901 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4902 MVT::i16, getValue(I.getArgOperand(0)))); 4903 return 0; 4904 case Intrinsic::convert_from_fp16: 4905 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4906 MVT::f32, getValue(I.getArgOperand(0)))); 4907 return 0; 4908 case Intrinsic::pcmarker: { 4909 SDValue Tmp = getValue(I.getArgOperand(0)); 4910 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4911 return 0; 4912 } 4913 case Intrinsic::readcyclecounter: { 4914 SDValue Op = getRoot(); 4915 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4916 DAG.getVTList(MVT::i64, MVT::Other), 4917 &Op, 1); 4918 setValue(&I, Res); 4919 DAG.setRoot(Res.getValue(1)); 4920 return 0; 4921 } 4922 case Intrinsic::bswap: 4923 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4924 getValue(I.getArgOperand(0)).getValueType(), 4925 getValue(I.getArgOperand(0)))); 4926 return 0; 4927 case Intrinsic::cttz: { 4928 SDValue Arg = getValue(I.getArgOperand(0)); 4929 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4930 EVT Ty = Arg.getValueType(); 4931 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4932 dl, Ty, Arg)); 4933 return 0; 4934 } 4935 case Intrinsic::ctlz: { 4936 SDValue Arg = getValue(I.getArgOperand(0)); 4937 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4938 EVT Ty = Arg.getValueType(); 4939 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4940 dl, Ty, Arg)); 4941 return 0; 4942 } 4943 case Intrinsic::ctpop: { 4944 SDValue Arg = getValue(I.getArgOperand(0)); 4945 EVT Ty = Arg.getValueType(); 4946 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4947 return 0; 4948 } 4949 case Intrinsic::stacksave: { 4950 SDValue Op = getRoot(); 4951 Res = DAG.getNode(ISD::STACKSAVE, dl, 4952 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4953 setValue(&I, Res); 4954 DAG.setRoot(Res.getValue(1)); 4955 return 0; 4956 } 4957 case Intrinsic::stackrestore: { 4958 Res = getValue(I.getArgOperand(0)); 4959 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4960 return 0; 4961 } 4962 case Intrinsic::stackprotector: { 4963 // Emit code into the DAG to store the stack guard onto the stack. 4964 MachineFunction &MF = DAG.getMachineFunction(); 4965 MachineFrameInfo *MFI = MF.getFrameInfo(); 4966 EVT PtrTy = TLI.getPointerTy(); 4967 4968 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4969 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4970 4971 int FI = FuncInfo.StaticAllocaMap[Slot]; 4972 MFI->setStackProtectorIndex(FI); 4973 4974 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4975 4976 // Store the stack protector onto the stack. 4977 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4978 MachinePointerInfo::getFixedStack(FI), 4979 true, false, 0); 4980 setValue(&I, Res); 4981 DAG.setRoot(Res); 4982 return 0; 4983 } 4984 case Intrinsic::objectsize: { 4985 // If we don't know by now, we're never going to know. 4986 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4987 4988 assert(CI && "Non-constant type in __builtin_object_size?"); 4989 4990 SDValue Arg = getValue(I.getCalledValue()); 4991 EVT Ty = Arg.getValueType(); 4992 4993 if (CI->isZero()) 4994 Res = DAG.getConstant(-1ULL, Ty); 4995 else 4996 Res = DAG.getConstant(0, Ty); 4997 4998 setValue(&I, Res); 4999 return 0; 5000 } 5001 case Intrinsic::var_annotation: 5002 // Discard annotate attributes 5003 return 0; 5004 5005 case Intrinsic::init_trampoline: { 5006 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5007 5008 SDValue Ops[6]; 5009 Ops[0] = getRoot(); 5010 Ops[1] = getValue(I.getArgOperand(0)); 5011 Ops[2] = getValue(I.getArgOperand(1)); 5012 Ops[3] = getValue(I.getArgOperand(2)); 5013 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5014 Ops[5] = DAG.getSrcValue(F); 5015 5016 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5017 5018 DAG.setRoot(Res); 5019 return 0; 5020 } 5021 case Intrinsic::adjust_trampoline: { 5022 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5023 TLI.getPointerTy(), 5024 getValue(I.getArgOperand(0)))); 5025 return 0; 5026 } 5027 case Intrinsic::gcroot: 5028 if (GFI) { 5029 const Value *Alloca = I.getArgOperand(0); 5030 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5031 5032 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5033 GFI->addStackRoot(FI->getIndex(), TypeMap); 5034 } 5035 return 0; 5036 case Intrinsic::gcread: 5037 case Intrinsic::gcwrite: 5038 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5039 case Intrinsic::flt_rounds: 5040 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5041 return 0; 5042 5043 case Intrinsic::expect: { 5044 // Just replace __builtin_expect(exp, c) with EXP. 5045 setValue(&I, getValue(I.getArgOperand(0))); 5046 return 0; 5047 } 5048 5049 case Intrinsic::trap: { 5050 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5051 if (TrapFuncName.empty()) { 5052 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5053 return 0; 5054 } 5055 TargetLowering::ArgListTy Args; 5056 std::pair<SDValue, SDValue> Result = 5057 TLI.LowerCallTo(getRoot(), I.getType(), 5058 false, false, false, false, 0, CallingConv::C, 5059 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 5060 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5061 Args, DAG, getCurDebugLoc()); 5062 DAG.setRoot(Result.second); 5063 return 0; 5064 } 5065 case Intrinsic::uadd_with_overflow: 5066 return implVisitAluOverflow(I, ISD::UADDO); 5067 case Intrinsic::sadd_with_overflow: 5068 return implVisitAluOverflow(I, ISD::SADDO); 5069 case Intrinsic::usub_with_overflow: 5070 return implVisitAluOverflow(I, ISD::USUBO); 5071 case Intrinsic::ssub_with_overflow: 5072 return implVisitAluOverflow(I, ISD::SSUBO); 5073 case Intrinsic::umul_with_overflow: 5074 return implVisitAluOverflow(I, ISD::UMULO); 5075 case Intrinsic::smul_with_overflow: 5076 return implVisitAluOverflow(I, ISD::SMULO); 5077 5078 case Intrinsic::prefetch: { 5079 SDValue Ops[5]; 5080 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5081 Ops[0] = getRoot(); 5082 Ops[1] = getValue(I.getArgOperand(0)); 5083 Ops[2] = getValue(I.getArgOperand(1)); 5084 Ops[3] = getValue(I.getArgOperand(2)); 5085 Ops[4] = getValue(I.getArgOperand(3)); 5086 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5087 DAG.getVTList(MVT::Other), 5088 &Ops[0], 5, 5089 EVT::getIntegerVT(*Context, 8), 5090 MachinePointerInfo(I.getArgOperand(0)), 5091 0, /* align */ 5092 false, /* volatile */ 5093 rw==0, /* read */ 5094 rw==1)); /* write */ 5095 return 0; 5096 } 5097 5098 case Intrinsic::invariant_start: 5099 case Intrinsic::lifetime_start: 5100 // Discard region information. 5101 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5102 return 0; 5103 case Intrinsic::invariant_end: 5104 case Intrinsic::lifetime_end: 5105 // Discard region information. 5106 return 0; 5107 } 5108 } 5109 5110 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5111 bool isTailCall, 5112 MachineBasicBlock *LandingPad) { 5113 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5114 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5115 Type *RetTy = FTy->getReturnType(); 5116 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5117 MCSymbol *BeginLabel = 0; 5118 5119 TargetLowering::ArgListTy Args; 5120 TargetLowering::ArgListEntry Entry; 5121 Args.reserve(CS.arg_size()); 5122 5123 // Check whether the function can return without sret-demotion. 5124 SmallVector<ISD::OutputArg, 4> Outs; 5125 SmallVector<uint64_t, 4> Offsets; 5126 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5127 Outs, TLI, &Offsets); 5128 5129 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5130 DAG.getMachineFunction(), 5131 FTy->isVarArg(), Outs, 5132 FTy->getContext()); 5133 5134 SDValue DemoteStackSlot; 5135 int DemoteStackIdx = -100; 5136 5137 if (!CanLowerReturn) { 5138 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5139 FTy->getReturnType()); 5140 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5141 FTy->getReturnType()); 5142 MachineFunction &MF = DAG.getMachineFunction(); 5143 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5144 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5145 5146 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5147 Entry.Node = DemoteStackSlot; 5148 Entry.Ty = StackSlotPtrType; 5149 Entry.isSExt = false; 5150 Entry.isZExt = false; 5151 Entry.isInReg = false; 5152 Entry.isSRet = true; 5153 Entry.isNest = false; 5154 Entry.isByVal = false; 5155 Entry.Alignment = Align; 5156 Args.push_back(Entry); 5157 RetTy = Type::getVoidTy(FTy->getContext()); 5158 } 5159 5160 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5161 i != e; ++i) { 5162 const Value *V = *i; 5163 5164 // Skip empty types 5165 if (V->getType()->isEmptyTy()) 5166 continue; 5167 5168 SDValue ArgNode = getValue(V); 5169 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5170 5171 unsigned attrInd = i - CS.arg_begin() + 1; 5172 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5173 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5174 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5175 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5176 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5177 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5178 Entry.Alignment = CS.getParamAlignment(attrInd); 5179 Args.push_back(Entry); 5180 } 5181 5182 if (LandingPad) { 5183 // Insert a label before the invoke call to mark the try range. This can be 5184 // used to detect deletion of the invoke via the MachineModuleInfo. 5185 BeginLabel = MMI.getContext().CreateTempSymbol(); 5186 5187 // For SjLj, keep track of which landing pads go with which invokes 5188 // so as to maintain the ordering of pads in the LSDA. 5189 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5190 if (CallSiteIndex) { 5191 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5192 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5193 5194 // Now that the call site is handled, stop tracking it. 5195 MMI.setCurrentCallSite(0); 5196 } 5197 5198 // Both PendingLoads and PendingExports must be flushed here; 5199 // this call might not return. 5200 (void)getRoot(); 5201 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5202 } 5203 5204 // Check if target-independent constraints permit a tail call here. 5205 // Target-dependent constraints are checked within TLI.LowerCallTo. 5206 if (isTailCall && 5207 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5208 isTailCall = false; 5209 5210 // If there's a possibility that fast-isel has already selected some amount 5211 // of the current basic block, don't emit a tail call. 5212 if (isTailCall && TM.Options.EnableFastISel) 5213 isTailCall = false; 5214 5215 std::pair<SDValue,SDValue> Result = 5216 TLI.LowerCallTo(getRoot(), RetTy, 5217 CS.paramHasAttr(0, Attribute::SExt), 5218 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5219 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5220 CS.getCallingConv(), 5221 isTailCall, 5222 !CS.getInstruction()->use_empty(), 5223 Callee, Args, DAG, getCurDebugLoc()); 5224 assert((isTailCall || Result.second.getNode()) && 5225 "Non-null chain expected with non-tail call!"); 5226 assert((Result.second.getNode() || !Result.first.getNode()) && 5227 "Null value expected with tail call!"); 5228 if (Result.first.getNode()) { 5229 setValue(CS.getInstruction(), Result.first); 5230 } else if (!CanLowerReturn && Result.second.getNode()) { 5231 // The instruction result is the result of loading from the 5232 // hidden sret parameter. 5233 SmallVector<EVT, 1> PVTs; 5234 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5235 5236 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5237 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5238 EVT PtrVT = PVTs[0]; 5239 unsigned NumValues = Outs.size(); 5240 SmallVector<SDValue, 4> Values(NumValues); 5241 SmallVector<SDValue, 4> Chains(NumValues); 5242 5243 for (unsigned i = 0; i < NumValues; ++i) { 5244 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5245 DemoteStackSlot, 5246 DAG.getConstant(Offsets[i], PtrVT)); 5247 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5248 Add, 5249 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5250 false, false, false, 1); 5251 Values[i] = L; 5252 Chains[i] = L.getValue(1); 5253 } 5254 5255 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5256 MVT::Other, &Chains[0], NumValues); 5257 PendingLoads.push_back(Chain); 5258 5259 // Collect the legal value parts into potentially illegal values 5260 // that correspond to the original function's return values. 5261 SmallVector<EVT, 4> RetTys; 5262 RetTy = FTy->getReturnType(); 5263 ComputeValueVTs(TLI, RetTy, RetTys); 5264 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5265 SmallVector<SDValue, 4> ReturnValues; 5266 unsigned CurReg = 0; 5267 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5268 EVT VT = RetTys[I]; 5269 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5270 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5271 5272 SDValue ReturnValue = 5273 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5274 RegisterVT, VT, AssertOp); 5275 ReturnValues.push_back(ReturnValue); 5276 CurReg += NumRegs; 5277 } 5278 5279 setValue(CS.getInstruction(), 5280 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5281 DAG.getVTList(&RetTys[0], RetTys.size()), 5282 &ReturnValues[0], ReturnValues.size())); 5283 } 5284 5285 // Assign order to nodes here. If the call does not produce a result, it won't 5286 // be mapped to a SDNode and visit() will not assign it an order number. 5287 if (!Result.second.getNode()) { 5288 // As a special case, a null chain means that a tail call has been emitted and 5289 // the DAG root is already updated. 5290 HasTailCall = true; 5291 ++SDNodeOrder; 5292 AssignOrderingToNode(DAG.getRoot().getNode()); 5293 } else { 5294 DAG.setRoot(Result.second); 5295 ++SDNodeOrder; 5296 AssignOrderingToNode(Result.second.getNode()); 5297 } 5298 5299 if (LandingPad) { 5300 // Insert a label at the end of the invoke call to mark the try range. This 5301 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5302 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5303 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5304 5305 // Inform MachineModuleInfo of range. 5306 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5307 } 5308 } 5309 5310 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5311 /// value is equal or not-equal to zero. 5312 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5313 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5314 UI != E; ++UI) { 5315 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5316 if (IC->isEquality()) 5317 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5318 if (C->isNullValue()) 5319 continue; 5320 // Unknown instruction. 5321 return false; 5322 } 5323 return true; 5324 } 5325 5326 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5327 Type *LoadTy, 5328 SelectionDAGBuilder &Builder) { 5329 5330 // Check to see if this load can be trivially constant folded, e.g. if the 5331 // input is from a string literal. 5332 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5333 // Cast pointer to the type we really want to load. 5334 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5335 PointerType::getUnqual(LoadTy)); 5336 5337 if (const Constant *LoadCst = 5338 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5339 Builder.TD)) 5340 return Builder.getValue(LoadCst); 5341 } 5342 5343 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5344 // still constant memory, the input chain can be the entry node. 5345 SDValue Root; 5346 bool ConstantMemory = false; 5347 5348 // Do not serialize (non-volatile) loads of constant memory with anything. 5349 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5350 Root = Builder.DAG.getEntryNode(); 5351 ConstantMemory = true; 5352 } else { 5353 // Do not serialize non-volatile loads against each other. 5354 Root = Builder.DAG.getRoot(); 5355 } 5356 5357 SDValue Ptr = Builder.getValue(PtrVal); 5358 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5359 Ptr, MachinePointerInfo(PtrVal), 5360 false /*volatile*/, 5361 false /*nontemporal*/, 5362 false /*isinvariant*/, 1 /* align=1 */); 5363 5364 if (!ConstantMemory) 5365 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5366 return LoadVal; 5367 } 5368 5369 5370 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5371 /// If so, return true and lower it, otherwise return false and it will be 5372 /// lowered like a normal call. 5373 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5374 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5375 if (I.getNumArgOperands() != 3) 5376 return false; 5377 5378 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5379 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5380 !I.getArgOperand(2)->getType()->isIntegerTy() || 5381 !I.getType()->isIntegerTy()) 5382 return false; 5383 5384 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5385 5386 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5387 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5388 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5389 bool ActuallyDoIt = true; 5390 MVT LoadVT; 5391 Type *LoadTy; 5392 switch (Size->getZExtValue()) { 5393 default: 5394 LoadVT = MVT::Other; 5395 LoadTy = 0; 5396 ActuallyDoIt = false; 5397 break; 5398 case 2: 5399 LoadVT = MVT::i16; 5400 LoadTy = Type::getInt16Ty(Size->getContext()); 5401 break; 5402 case 4: 5403 LoadVT = MVT::i32; 5404 LoadTy = Type::getInt32Ty(Size->getContext()); 5405 break; 5406 case 8: 5407 LoadVT = MVT::i64; 5408 LoadTy = Type::getInt64Ty(Size->getContext()); 5409 break; 5410 /* 5411 case 16: 5412 LoadVT = MVT::v4i32; 5413 LoadTy = Type::getInt32Ty(Size->getContext()); 5414 LoadTy = VectorType::get(LoadTy, 4); 5415 break; 5416 */ 5417 } 5418 5419 // This turns into unaligned loads. We only do this if the target natively 5420 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5421 // we'll only produce a small number of byte loads. 5422 5423 // Require that we can find a legal MVT, and only do this if the target 5424 // supports unaligned loads of that type. Expanding into byte loads would 5425 // bloat the code. 5426 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5427 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5428 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5429 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5430 ActuallyDoIt = false; 5431 } 5432 5433 if (ActuallyDoIt) { 5434 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5435 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5436 5437 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5438 ISD::SETNE); 5439 EVT CallVT = TLI.getValueType(I.getType(), true); 5440 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5441 return true; 5442 } 5443 } 5444 5445 5446 return false; 5447 } 5448 5449 5450 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5451 // Handle inline assembly differently. 5452 if (isa<InlineAsm>(I.getCalledValue())) { 5453 visitInlineAsm(&I); 5454 return; 5455 } 5456 5457 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5458 ComputeUsesVAFloatArgument(I, &MMI); 5459 5460 const char *RenameFn = 0; 5461 if (Function *F = I.getCalledFunction()) { 5462 if (F->isDeclaration()) { 5463 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5464 if (unsigned IID = II->getIntrinsicID(F)) { 5465 RenameFn = visitIntrinsicCall(I, IID); 5466 if (!RenameFn) 5467 return; 5468 } 5469 } 5470 if (unsigned IID = F->getIntrinsicID()) { 5471 RenameFn = visitIntrinsicCall(I, IID); 5472 if (!RenameFn) 5473 return; 5474 } 5475 } 5476 5477 // Check for well-known libc/libm calls. If the function is internal, it 5478 // can't be a library call. 5479 if (!F->hasLocalLinkage() && F->hasName()) { 5480 StringRef Name = F->getName(); 5481 if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") || 5482 (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") || 5483 (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) { 5484 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5485 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5486 I.getType() == I.getArgOperand(0)->getType() && 5487 I.getType() == I.getArgOperand(1)->getType()) { 5488 SDValue LHS = getValue(I.getArgOperand(0)); 5489 SDValue RHS = getValue(I.getArgOperand(1)); 5490 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5491 LHS.getValueType(), LHS, RHS)); 5492 return; 5493 } 5494 } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") || 5495 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") || 5496 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) { 5497 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5498 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5499 I.getType() == I.getArgOperand(0)->getType()) { 5500 SDValue Tmp = getValue(I.getArgOperand(0)); 5501 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5502 Tmp.getValueType(), Tmp)); 5503 return; 5504 } 5505 } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") || 5506 (LibInfo->has(LibFunc::sinf) && Name == "sinf") || 5507 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) { 5508 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5509 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5510 I.getType() == I.getArgOperand(0)->getType() && 5511 I.onlyReadsMemory()) { 5512 SDValue Tmp = getValue(I.getArgOperand(0)); 5513 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5514 Tmp.getValueType(), Tmp)); 5515 return; 5516 } 5517 } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") || 5518 (LibInfo->has(LibFunc::cosf) && Name == "cosf") || 5519 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) { 5520 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5521 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5522 I.getType() == I.getArgOperand(0)->getType() && 5523 I.onlyReadsMemory()) { 5524 SDValue Tmp = getValue(I.getArgOperand(0)); 5525 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5526 Tmp.getValueType(), Tmp)); 5527 return; 5528 } 5529 } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") || 5530 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") || 5531 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) { 5532 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5533 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5534 I.getType() == I.getArgOperand(0)->getType() && 5535 I.onlyReadsMemory()) { 5536 SDValue Tmp = getValue(I.getArgOperand(0)); 5537 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5538 Tmp.getValueType(), Tmp)); 5539 return; 5540 } 5541 } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") || 5542 (LibInfo->has(LibFunc::floorf) && Name == "floorf") || 5543 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) { 5544 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5545 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5546 I.getType() == I.getArgOperand(0)->getType()) { 5547 SDValue Tmp = getValue(I.getArgOperand(0)); 5548 setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(), 5549 Tmp.getValueType(), Tmp)); 5550 return; 5551 } 5552 } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") || 5553 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") || 5554 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) { 5555 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5556 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5557 I.getType() == I.getArgOperand(0)->getType()) { 5558 SDValue Tmp = getValue(I.getArgOperand(0)); 5559 setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(), 5560 Tmp.getValueType(), Tmp)); 5561 return; 5562 } 5563 } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") || 5564 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") || 5565 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) { 5566 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5567 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5568 I.getType() == I.getArgOperand(0)->getType()) { 5569 SDValue Tmp = getValue(I.getArgOperand(0)); 5570 setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(), 5571 Tmp.getValueType(), Tmp)); 5572 return; 5573 } 5574 } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") || 5575 (LibInfo->has(LibFunc::rintf) && Name == "rintf") || 5576 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) { 5577 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5578 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5579 I.getType() == I.getArgOperand(0)->getType()) { 5580 SDValue Tmp = getValue(I.getArgOperand(0)); 5581 setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(), 5582 Tmp.getValueType(), Tmp)); 5583 return; 5584 } 5585 } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") || 5586 (LibInfo->has(LibFunc::truncf) && Name == "truncf") || 5587 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) { 5588 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5589 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5590 I.getType() == I.getArgOperand(0)->getType()) { 5591 SDValue Tmp = getValue(I.getArgOperand(0)); 5592 setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(), 5593 Tmp.getValueType(), Tmp)); 5594 return; 5595 } 5596 } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") || 5597 (LibInfo->has(LibFunc::log2f) && Name == "log2f") || 5598 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) { 5599 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5600 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5601 I.getType() == I.getArgOperand(0)->getType()) { 5602 SDValue Tmp = getValue(I.getArgOperand(0)); 5603 setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(), 5604 Tmp.getValueType(), Tmp)); 5605 return; 5606 } 5607 } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") || 5608 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") || 5609 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) { 5610 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5611 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5612 I.getType() == I.getArgOperand(0)->getType()) { 5613 SDValue Tmp = getValue(I.getArgOperand(0)); 5614 setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(), 5615 Tmp.getValueType(), Tmp)); 5616 return; 5617 } 5618 } else if (Name == "memcmp") { 5619 if (visitMemCmpCall(I)) 5620 return; 5621 } 5622 } 5623 } 5624 5625 SDValue Callee; 5626 if (!RenameFn) 5627 Callee = getValue(I.getCalledValue()); 5628 else 5629 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5630 5631 // Check if we can potentially perform a tail call. More detailed checking is 5632 // be done within LowerCallTo, after more information about the call is known. 5633 LowerCallTo(&I, Callee, I.isTailCall()); 5634 } 5635 5636 namespace { 5637 5638 /// AsmOperandInfo - This contains information for each constraint that we are 5639 /// lowering. 5640 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5641 public: 5642 /// CallOperand - If this is the result output operand or a clobber 5643 /// this is null, otherwise it is the incoming operand to the CallInst. 5644 /// This gets modified as the asm is processed. 5645 SDValue CallOperand; 5646 5647 /// AssignedRegs - If this is a register or register class operand, this 5648 /// contains the set of register corresponding to the operand. 5649 RegsForValue AssignedRegs; 5650 5651 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5652 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5653 } 5654 5655 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5656 /// busy in OutputRegs/InputRegs. 5657 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5658 std::set<unsigned> &OutputRegs, 5659 std::set<unsigned> &InputRegs, 5660 const TargetRegisterInfo &TRI) const { 5661 if (isOutReg) { 5662 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5663 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5664 } 5665 if (isInReg) { 5666 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5667 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5668 } 5669 } 5670 5671 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5672 /// corresponds to. If there is no Value* for this operand, it returns 5673 /// MVT::Other. 5674 EVT getCallOperandValEVT(LLVMContext &Context, 5675 const TargetLowering &TLI, 5676 const TargetData *TD) const { 5677 if (CallOperandVal == 0) return MVT::Other; 5678 5679 if (isa<BasicBlock>(CallOperandVal)) 5680 return TLI.getPointerTy(); 5681 5682 llvm::Type *OpTy = CallOperandVal->getType(); 5683 5684 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5685 // If this is an indirect operand, the operand is a pointer to the 5686 // accessed type. 5687 if (isIndirect) { 5688 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5689 if (!PtrTy) 5690 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5691 OpTy = PtrTy->getElementType(); 5692 } 5693 5694 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5695 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5696 if (STy->getNumElements() == 1) 5697 OpTy = STy->getElementType(0); 5698 5699 // If OpTy is not a single value, it may be a struct/union that we 5700 // can tile with integers. 5701 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5702 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5703 switch (BitSize) { 5704 default: break; 5705 case 1: 5706 case 8: 5707 case 16: 5708 case 32: 5709 case 64: 5710 case 128: 5711 OpTy = IntegerType::get(Context, BitSize); 5712 break; 5713 } 5714 } 5715 5716 return TLI.getValueType(OpTy, true); 5717 } 5718 5719 private: 5720 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5721 /// specified set. 5722 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5723 const TargetRegisterInfo &TRI) { 5724 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5725 Regs.insert(Reg); 5726 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5727 for (; *Aliases; ++Aliases) 5728 Regs.insert(*Aliases); 5729 } 5730 }; 5731 5732 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5733 5734 } // end anonymous namespace 5735 5736 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5737 /// specified operand. We prefer to assign virtual registers, to allow the 5738 /// register allocator to handle the assignment process. However, if the asm 5739 /// uses features that we can't model on machineinstrs, we have SDISel do the 5740 /// allocation. This produces generally horrible, but correct, code. 5741 /// 5742 /// OpInfo describes the operand. 5743 /// Input and OutputRegs are the set of already allocated physical registers. 5744 /// 5745 static void GetRegistersForValue(SelectionDAG &DAG, 5746 const TargetLowering &TLI, 5747 DebugLoc DL, 5748 SDISelAsmOperandInfo &OpInfo, 5749 std::set<unsigned> &OutputRegs, 5750 std::set<unsigned> &InputRegs) { 5751 LLVMContext &Context = *DAG.getContext(); 5752 5753 // Compute whether this value requires an input register, an output register, 5754 // or both. 5755 bool isOutReg = false; 5756 bool isInReg = false; 5757 switch (OpInfo.Type) { 5758 case InlineAsm::isOutput: 5759 isOutReg = true; 5760 5761 // If there is an input constraint that matches this, we need to reserve 5762 // the input register so no other inputs allocate to it. 5763 isInReg = OpInfo.hasMatchingInput(); 5764 break; 5765 case InlineAsm::isInput: 5766 isInReg = true; 5767 isOutReg = false; 5768 break; 5769 case InlineAsm::isClobber: 5770 isOutReg = true; 5771 isInReg = true; 5772 break; 5773 } 5774 5775 5776 MachineFunction &MF = DAG.getMachineFunction(); 5777 SmallVector<unsigned, 4> Regs; 5778 5779 // If this is a constraint for a single physreg, or a constraint for a 5780 // register class, find it. 5781 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5782 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5783 OpInfo.ConstraintVT); 5784 5785 unsigned NumRegs = 1; 5786 if (OpInfo.ConstraintVT != MVT::Other) { 5787 // If this is a FP input in an integer register (or visa versa) insert a bit 5788 // cast of the input value. More generally, handle any case where the input 5789 // value disagrees with the register class we plan to stick this in. 5790 if (OpInfo.Type == InlineAsm::isInput && 5791 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5792 // Try to convert to the first EVT that the reg class contains. If the 5793 // types are identical size, use a bitcast to convert (e.g. two differing 5794 // vector types). 5795 EVT RegVT = *PhysReg.second->vt_begin(); 5796 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5797 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5798 RegVT, OpInfo.CallOperand); 5799 OpInfo.ConstraintVT = RegVT; 5800 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5801 // If the input is a FP value and we want it in FP registers, do a 5802 // bitcast to the corresponding integer type. This turns an f64 value 5803 // into i64, which can be passed with two i32 values on a 32-bit 5804 // machine. 5805 RegVT = EVT::getIntegerVT(Context, 5806 OpInfo.ConstraintVT.getSizeInBits()); 5807 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5808 RegVT, OpInfo.CallOperand); 5809 OpInfo.ConstraintVT = RegVT; 5810 } 5811 } 5812 5813 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5814 } 5815 5816 EVT RegVT; 5817 EVT ValueVT = OpInfo.ConstraintVT; 5818 5819 // If this is a constraint for a specific physical register, like {r17}, 5820 // assign it now. 5821 if (unsigned AssignedReg = PhysReg.first) { 5822 const TargetRegisterClass *RC = PhysReg.second; 5823 if (OpInfo.ConstraintVT == MVT::Other) 5824 ValueVT = *RC->vt_begin(); 5825 5826 // Get the actual register value type. This is important, because the user 5827 // may have asked for (e.g.) the AX register in i32 type. We need to 5828 // remember that AX is actually i16 to get the right extension. 5829 RegVT = *RC->vt_begin(); 5830 5831 // This is a explicit reference to a physical register. 5832 Regs.push_back(AssignedReg); 5833 5834 // If this is an expanded reference, add the rest of the regs to Regs. 5835 if (NumRegs != 1) { 5836 TargetRegisterClass::iterator I = RC->begin(); 5837 for (; *I != AssignedReg; ++I) 5838 assert(I != RC->end() && "Didn't find reg!"); 5839 5840 // Already added the first reg. 5841 --NumRegs; ++I; 5842 for (; NumRegs; --NumRegs, ++I) { 5843 assert(I != RC->end() && "Ran out of registers to allocate!"); 5844 Regs.push_back(*I); 5845 } 5846 } 5847 5848 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5849 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5850 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5851 return; 5852 } 5853 5854 // Otherwise, if this was a reference to an LLVM register class, create vregs 5855 // for this reference. 5856 if (const TargetRegisterClass *RC = PhysReg.second) { 5857 RegVT = *RC->vt_begin(); 5858 if (OpInfo.ConstraintVT == MVT::Other) 5859 ValueVT = RegVT; 5860 5861 // Create the appropriate number of virtual registers. 5862 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5863 for (; NumRegs; --NumRegs) 5864 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5865 5866 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5867 return; 5868 } 5869 5870 // Otherwise, we couldn't allocate enough registers for this. 5871 } 5872 5873 /// visitInlineAsm - Handle a call to an InlineAsm object. 5874 /// 5875 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5876 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5877 5878 /// ConstraintOperands - Information about all of the constraints. 5879 SDISelAsmOperandInfoVector ConstraintOperands; 5880 5881 std::set<unsigned> OutputRegs, InputRegs; 5882 5883 TargetLowering::AsmOperandInfoVector 5884 TargetConstraints = TLI.ParseConstraints(CS); 5885 5886 bool hasMemory = false; 5887 5888 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5889 unsigned ResNo = 0; // ResNo - The result number of the next output. 5890 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5891 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5892 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5893 5894 EVT OpVT = MVT::Other; 5895 5896 // Compute the value type for each operand. 5897 switch (OpInfo.Type) { 5898 case InlineAsm::isOutput: 5899 // Indirect outputs just consume an argument. 5900 if (OpInfo.isIndirect) { 5901 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5902 break; 5903 } 5904 5905 // The return value of the call is this value. As such, there is no 5906 // corresponding argument. 5907 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5908 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5909 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5910 } else { 5911 assert(ResNo == 0 && "Asm only has one result!"); 5912 OpVT = TLI.getValueType(CS.getType()); 5913 } 5914 ++ResNo; 5915 break; 5916 case InlineAsm::isInput: 5917 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5918 break; 5919 case InlineAsm::isClobber: 5920 // Nothing to do. 5921 break; 5922 } 5923 5924 // If this is an input or an indirect output, process the call argument. 5925 // BasicBlocks are labels, currently appearing only in asm's. 5926 if (OpInfo.CallOperandVal) { 5927 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5928 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5929 } else { 5930 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5931 } 5932 5933 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5934 } 5935 5936 OpInfo.ConstraintVT = OpVT; 5937 5938 // Indirect operand accesses access memory. 5939 if (OpInfo.isIndirect) 5940 hasMemory = true; 5941 else { 5942 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5943 TargetLowering::ConstraintType 5944 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5945 if (CType == TargetLowering::C_Memory) { 5946 hasMemory = true; 5947 break; 5948 } 5949 } 5950 } 5951 } 5952 5953 SDValue Chain, Flag; 5954 5955 // We won't need to flush pending loads if this asm doesn't touch 5956 // memory and is nonvolatile. 5957 if (hasMemory || IA->hasSideEffects()) 5958 Chain = getRoot(); 5959 else 5960 Chain = DAG.getRoot(); 5961 5962 // Second pass over the constraints: compute which constraint option to use 5963 // and assign registers to constraints that want a specific physreg. 5964 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5965 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5966 5967 // If this is an output operand with a matching input operand, look up the 5968 // matching input. If their types mismatch, e.g. one is an integer, the 5969 // other is floating point, or their sizes are different, flag it as an 5970 // error. 5971 if (OpInfo.hasMatchingInput()) { 5972 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5973 5974 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5975 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5976 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5977 OpInfo.ConstraintVT); 5978 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5979 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5980 Input.ConstraintVT); 5981 if ((OpInfo.ConstraintVT.isInteger() != 5982 Input.ConstraintVT.isInteger()) || 5983 (MatchRC.second != InputRC.second)) { 5984 report_fatal_error("Unsupported asm: input constraint" 5985 " with a matching output constraint of" 5986 " incompatible type!"); 5987 } 5988 Input.ConstraintVT = OpInfo.ConstraintVT; 5989 } 5990 } 5991 5992 // Compute the constraint code and ConstraintType to use. 5993 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5994 5995 // If this is a memory input, and if the operand is not indirect, do what we 5996 // need to to provide an address for the memory input. 5997 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5998 !OpInfo.isIndirect) { 5999 assert((OpInfo.isMultipleAlternative || 6000 (OpInfo.Type == InlineAsm::isInput)) && 6001 "Can only indirectify direct input operands!"); 6002 6003 // Memory operands really want the address of the value. If we don't have 6004 // an indirect input, put it in the constpool if we can, otherwise spill 6005 // it to a stack slot. 6006 // TODO: This isn't quite right. We need to handle these according to 6007 // the addressing mode that the constraint wants. Also, this may take 6008 // an additional register for the computation and we don't want that 6009 // either. 6010 6011 // If the operand is a float, integer, or vector constant, spill to a 6012 // constant pool entry to get its address. 6013 const Value *OpVal = OpInfo.CallOperandVal; 6014 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6015 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6016 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6017 TLI.getPointerTy()); 6018 } else { 6019 // Otherwise, create a stack slot and emit a store to it before the 6020 // asm. 6021 Type *Ty = OpVal->getType(); 6022 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 6023 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 6024 MachineFunction &MF = DAG.getMachineFunction(); 6025 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6026 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6027 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6028 OpInfo.CallOperand, StackSlot, 6029 MachinePointerInfo::getFixedStack(SSFI), 6030 false, false, 0); 6031 OpInfo.CallOperand = StackSlot; 6032 } 6033 6034 // There is no longer a Value* corresponding to this operand. 6035 OpInfo.CallOperandVal = 0; 6036 6037 // It is now an indirect operand. 6038 OpInfo.isIndirect = true; 6039 } 6040 6041 // If this constraint is for a specific register, allocate it before 6042 // anything else. 6043 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6044 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6045 InputRegs); 6046 } 6047 6048 // Second pass - Loop over all of the operands, assigning virtual or physregs 6049 // to register class operands. 6050 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6051 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6052 6053 // C_Register operands have already been allocated, Other/Memory don't need 6054 // to be. 6055 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6056 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6057 InputRegs); 6058 } 6059 6060 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6061 std::vector<SDValue> AsmNodeOperands; 6062 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6063 AsmNodeOperands.push_back( 6064 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6065 TLI.getPointerTy())); 6066 6067 // If we have a !srcloc metadata node associated with it, we want to attach 6068 // this to the ultimately generated inline asm machineinstr. To do this, we 6069 // pass in the third operand as this (potentially null) inline asm MDNode. 6070 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6071 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6072 6073 // Remember the HasSideEffect and AlignStack bits as operand 3. 6074 unsigned ExtraInfo = 0; 6075 if (IA->hasSideEffects()) 6076 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6077 if (IA->isAlignStack()) 6078 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6079 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6080 TLI.getPointerTy())); 6081 6082 // Loop over all of the inputs, copying the operand values into the 6083 // appropriate registers and processing the output regs. 6084 RegsForValue RetValRegs; 6085 6086 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6087 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6088 6089 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6090 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6091 6092 switch (OpInfo.Type) { 6093 case InlineAsm::isOutput: { 6094 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6095 OpInfo.ConstraintType != TargetLowering::C_Register) { 6096 // Memory output, or 'other' output (e.g. 'X' constraint). 6097 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6098 6099 // Add information to the INLINEASM node to know about this output. 6100 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6101 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6102 TLI.getPointerTy())); 6103 AsmNodeOperands.push_back(OpInfo.CallOperand); 6104 break; 6105 } 6106 6107 // Otherwise, this is a register or register class output. 6108 6109 // Copy the output from the appropriate register. Find a register that 6110 // we can use. 6111 if (OpInfo.AssignedRegs.Regs.empty()) { 6112 LLVMContext &Ctx = *DAG.getContext(); 6113 Ctx.emitError(CS.getInstruction(), 6114 "couldn't allocate output register for constraint '" + 6115 Twine(OpInfo.ConstraintCode) + "'"); 6116 break; 6117 } 6118 6119 // If this is an indirect operand, store through the pointer after the 6120 // asm. 6121 if (OpInfo.isIndirect) { 6122 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6123 OpInfo.CallOperandVal)); 6124 } else { 6125 // This is the result value of the call. 6126 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6127 // Concatenate this output onto the outputs list. 6128 RetValRegs.append(OpInfo.AssignedRegs); 6129 } 6130 6131 // Add information to the INLINEASM node to know that this register is 6132 // set. 6133 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6134 InlineAsm::Kind_RegDefEarlyClobber : 6135 InlineAsm::Kind_RegDef, 6136 false, 6137 0, 6138 DAG, 6139 AsmNodeOperands); 6140 break; 6141 } 6142 case InlineAsm::isInput: { 6143 SDValue InOperandVal = OpInfo.CallOperand; 6144 6145 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6146 // If this is required to match an output register we have already set, 6147 // just use its register. 6148 unsigned OperandNo = OpInfo.getMatchedOperand(); 6149 6150 // Scan until we find the definition we already emitted of this operand. 6151 // When we find it, create a RegsForValue operand. 6152 unsigned CurOp = InlineAsm::Op_FirstOperand; 6153 for (; OperandNo; --OperandNo) { 6154 // Advance to the next operand. 6155 unsigned OpFlag = 6156 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6157 assert((InlineAsm::isRegDefKind(OpFlag) || 6158 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6159 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6160 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6161 } 6162 6163 unsigned OpFlag = 6164 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6165 if (InlineAsm::isRegDefKind(OpFlag) || 6166 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6167 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6168 if (OpInfo.isIndirect) { 6169 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6170 LLVMContext &Ctx = *DAG.getContext(); 6171 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6172 " don't know how to handle tied " 6173 "indirect register inputs"); 6174 } 6175 6176 RegsForValue MatchedRegs; 6177 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6178 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6179 MatchedRegs.RegVTs.push_back(RegVT); 6180 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6181 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6182 i != e; ++i) 6183 MatchedRegs.Regs.push_back 6184 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6185 6186 // Use the produced MatchedRegs object to 6187 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6188 Chain, &Flag); 6189 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6190 true, OpInfo.getMatchedOperand(), 6191 DAG, AsmNodeOperands); 6192 break; 6193 } 6194 6195 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6196 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6197 "Unexpected number of operands"); 6198 // Add information to the INLINEASM node to know about this input. 6199 // See InlineAsm.h isUseOperandTiedToDef. 6200 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6201 OpInfo.getMatchedOperand()); 6202 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6203 TLI.getPointerTy())); 6204 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6205 break; 6206 } 6207 6208 // Treat indirect 'X' constraint as memory. 6209 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6210 OpInfo.isIndirect) 6211 OpInfo.ConstraintType = TargetLowering::C_Memory; 6212 6213 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6214 std::vector<SDValue> Ops; 6215 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6216 Ops, DAG); 6217 if (Ops.empty()) { 6218 LLVMContext &Ctx = *DAG.getContext(); 6219 Ctx.emitError(CS.getInstruction(), 6220 "invalid operand for inline asm constraint '" + 6221 Twine(OpInfo.ConstraintCode) + "'"); 6222 break; 6223 } 6224 6225 // Add information to the INLINEASM node to know about this input. 6226 unsigned ResOpType = 6227 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6228 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6229 TLI.getPointerTy())); 6230 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6231 break; 6232 } 6233 6234 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6235 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6236 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6237 "Memory operands expect pointer values"); 6238 6239 // Add information to the INLINEASM node to know about this input. 6240 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6241 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6242 TLI.getPointerTy())); 6243 AsmNodeOperands.push_back(InOperandVal); 6244 break; 6245 } 6246 6247 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6248 OpInfo.ConstraintType == TargetLowering::C_Register) && 6249 "Unknown constraint type!"); 6250 assert(!OpInfo.isIndirect && 6251 "Don't know how to handle indirect register inputs yet!"); 6252 6253 // Copy the input into the appropriate registers. 6254 if (OpInfo.AssignedRegs.Regs.empty()) { 6255 LLVMContext &Ctx = *DAG.getContext(); 6256 Ctx.emitError(CS.getInstruction(), 6257 "couldn't allocate input reg for constraint '" + 6258 Twine(OpInfo.ConstraintCode) + "'"); 6259 break; 6260 } 6261 6262 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6263 Chain, &Flag); 6264 6265 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6266 DAG, AsmNodeOperands); 6267 break; 6268 } 6269 case InlineAsm::isClobber: { 6270 // Add the clobbered value to the operand list, so that the register 6271 // allocator is aware that the physreg got clobbered. 6272 if (!OpInfo.AssignedRegs.Regs.empty()) 6273 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6274 false, 0, DAG, 6275 AsmNodeOperands); 6276 break; 6277 } 6278 } 6279 } 6280 6281 // Finish up input operands. Set the input chain and add the flag last. 6282 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6283 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6284 6285 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6286 DAG.getVTList(MVT::Other, MVT::Glue), 6287 &AsmNodeOperands[0], AsmNodeOperands.size()); 6288 Flag = Chain.getValue(1); 6289 6290 // If this asm returns a register value, copy the result from that register 6291 // and set it as the value of the call. 6292 if (!RetValRegs.Regs.empty()) { 6293 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6294 Chain, &Flag); 6295 6296 // FIXME: Why don't we do this for inline asms with MRVs? 6297 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6298 EVT ResultType = TLI.getValueType(CS.getType()); 6299 6300 // If any of the results of the inline asm is a vector, it may have the 6301 // wrong width/num elts. This can happen for register classes that can 6302 // contain multiple different value types. The preg or vreg allocated may 6303 // not have the same VT as was expected. Convert it to the right type 6304 // with bit_convert. 6305 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6306 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6307 ResultType, Val); 6308 6309 } else if (ResultType != Val.getValueType() && 6310 ResultType.isInteger() && Val.getValueType().isInteger()) { 6311 // If a result value was tied to an input value, the computed result may 6312 // have a wider width than the expected result. Extract the relevant 6313 // portion. 6314 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6315 } 6316 6317 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6318 } 6319 6320 setValue(CS.getInstruction(), Val); 6321 // Don't need to use this as a chain in this case. 6322 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6323 return; 6324 } 6325 6326 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6327 6328 // Process indirect outputs, first output all of the flagged copies out of 6329 // physregs. 6330 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6331 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6332 const Value *Ptr = IndirectStoresToEmit[i].second; 6333 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6334 Chain, &Flag); 6335 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6336 } 6337 6338 // Emit the non-flagged stores from the physregs. 6339 SmallVector<SDValue, 8> OutChains; 6340 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6341 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6342 StoresToEmit[i].first, 6343 getValue(StoresToEmit[i].second), 6344 MachinePointerInfo(StoresToEmit[i].second), 6345 false, false, 0); 6346 OutChains.push_back(Val); 6347 } 6348 6349 if (!OutChains.empty()) 6350 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6351 &OutChains[0], OutChains.size()); 6352 6353 DAG.setRoot(Chain); 6354 } 6355 6356 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6357 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6358 MVT::Other, getRoot(), 6359 getValue(I.getArgOperand(0)), 6360 DAG.getSrcValue(I.getArgOperand(0)))); 6361 } 6362 6363 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6364 const TargetData &TD = *TLI.getTargetData(); 6365 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6366 getRoot(), getValue(I.getOperand(0)), 6367 DAG.getSrcValue(I.getOperand(0)), 6368 TD.getABITypeAlignment(I.getType())); 6369 setValue(&I, V); 6370 DAG.setRoot(V.getValue(1)); 6371 } 6372 6373 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6374 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6375 MVT::Other, getRoot(), 6376 getValue(I.getArgOperand(0)), 6377 DAG.getSrcValue(I.getArgOperand(0)))); 6378 } 6379 6380 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6381 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6382 MVT::Other, getRoot(), 6383 getValue(I.getArgOperand(0)), 6384 getValue(I.getArgOperand(1)), 6385 DAG.getSrcValue(I.getArgOperand(0)), 6386 DAG.getSrcValue(I.getArgOperand(1)))); 6387 } 6388 6389 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6390 /// implementation, which just calls LowerCall. 6391 /// FIXME: When all targets are 6392 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6393 std::pair<SDValue, SDValue> 6394 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6395 bool RetSExt, bool RetZExt, bool isVarArg, 6396 bool isInreg, unsigned NumFixedArgs, 6397 CallingConv::ID CallConv, bool isTailCall, 6398 bool isReturnValueUsed, 6399 SDValue Callee, 6400 ArgListTy &Args, SelectionDAG &DAG, 6401 DebugLoc dl) const { 6402 // Handle all of the outgoing arguments. 6403 SmallVector<ISD::OutputArg, 32> Outs; 6404 SmallVector<SDValue, 32> OutVals; 6405 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6406 SmallVector<EVT, 4> ValueVTs; 6407 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6408 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6409 Value != NumValues; ++Value) { 6410 EVT VT = ValueVTs[Value]; 6411 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6412 SDValue Op = SDValue(Args[i].Node.getNode(), 6413 Args[i].Node.getResNo() + Value); 6414 ISD::ArgFlagsTy Flags; 6415 unsigned OriginalAlignment = 6416 getTargetData()->getABITypeAlignment(ArgTy); 6417 6418 if (Args[i].isZExt) 6419 Flags.setZExt(); 6420 if (Args[i].isSExt) 6421 Flags.setSExt(); 6422 if (Args[i].isInReg) 6423 Flags.setInReg(); 6424 if (Args[i].isSRet) 6425 Flags.setSRet(); 6426 if (Args[i].isByVal) { 6427 Flags.setByVal(); 6428 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6429 Type *ElementTy = Ty->getElementType(); 6430 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6431 // For ByVal, alignment should come from FE. BE will guess if this 6432 // info is not there but there are cases it cannot get right. 6433 unsigned FrameAlign; 6434 if (Args[i].Alignment) 6435 FrameAlign = Args[i].Alignment; 6436 else 6437 FrameAlign = getByValTypeAlignment(ElementTy); 6438 Flags.setByValAlign(FrameAlign); 6439 } 6440 if (Args[i].isNest) 6441 Flags.setNest(); 6442 Flags.setOrigAlign(OriginalAlignment); 6443 6444 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6445 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6446 SmallVector<SDValue, 4> Parts(NumParts); 6447 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6448 6449 if (Args[i].isSExt) 6450 ExtendKind = ISD::SIGN_EXTEND; 6451 else if (Args[i].isZExt) 6452 ExtendKind = ISD::ZERO_EXTEND; 6453 6454 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6455 PartVT, ExtendKind); 6456 6457 for (unsigned j = 0; j != NumParts; ++j) { 6458 // if it isn't first piece, alignment must be 1 6459 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6460 i < NumFixedArgs); 6461 if (NumParts > 1 && j == 0) 6462 MyFlags.Flags.setSplit(); 6463 else if (j != 0) 6464 MyFlags.Flags.setOrigAlign(1); 6465 6466 Outs.push_back(MyFlags); 6467 OutVals.push_back(Parts[j]); 6468 } 6469 } 6470 } 6471 6472 // Handle the incoming return values from the call. 6473 SmallVector<ISD::InputArg, 32> Ins; 6474 SmallVector<EVT, 4> RetTys; 6475 ComputeValueVTs(*this, RetTy, RetTys); 6476 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6477 EVT VT = RetTys[I]; 6478 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6479 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6480 for (unsigned i = 0; i != NumRegs; ++i) { 6481 ISD::InputArg MyFlags; 6482 MyFlags.VT = RegisterVT.getSimpleVT(); 6483 MyFlags.Used = isReturnValueUsed; 6484 if (RetSExt) 6485 MyFlags.Flags.setSExt(); 6486 if (RetZExt) 6487 MyFlags.Flags.setZExt(); 6488 if (isInreg) 6489 MyFlags.Flags.setInReg(); 6490 Ins.push_back(MyFlags); 6491 } 6492 } 6493 6494 SmallVector<SDValue, 4> InVals; 6495 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6496 Outs, OutVals, Ins, dl, DAG, InVals); 6497 6498 // Verify that the target's LowerCall behaved as expected. 6499 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6500 "LowerCall didn't return a valid chain!"); 6501 assert((!isTailCall || InVals.empty()) && 6502 "LowerCall emitted a return value for a tail call!"); 6503 assert((isTailCall || InVals.size() == Ins.size()) && 6504 "LowerCall didn't emit the correct number of values!"); 6505 6506 // For a tail call, the return value is merely live-out and there aren't 6507 // any nodes in the DAG representing it. Return a special value to 6508 // indicate that a tail call has been emitted and no more Instructions 6509 // should be processed in the current block. 6510 if (isTailCall) { 6511 DAG.setRoot(Chain); 6512 return std::make_pair(SDValue(), SDValue()); 6513 } 6514 6515 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6516 assert(InVals[i].getNode() && 6517 "LowerCall emitted a null value!"); 6518 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6519 "LowerCall emitted a value with the wrong type!"); 6520 }); 6521 6522 // Collect the legal value parts into potentially illegal values 6523 // that correspond to the original function's return values. 6524 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6525 if (RetSExt) 6526 AssertOp = ISD::AssertSext; 6527 else if (RetZExt) 6528 AssertOp = ISD::AssertZext; 6529 SmallVector<SDValue, 4> ReturnValues; 6530 unsigned CurReg = 0; 6531 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6532 EVT VT = RetTys[I]; 6533 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6534 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6535 6536 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6537 NumRegs, RegisterVT, VT, 6538 AssertOp)); 6539 CurReg += NumRegs; 6540 } 6541 6542 // For a function returning void, there is no return value. We can't create 6543 // such a node, so we just return a null return value in that case. In 6544 // that case, nothing will actually look at the value. 6545 if (ReturnValues.empty()) 6546 return std::make_pair(SDValue(), Chain); 6547 6548 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6549 DAG.getVTList(&RetTys[0], RetTys.size()), 6550 &ReturnValues[0], ReturnValues.size()); 6551 return std::make_pair(Res, Chain); 6552 } 6553 6554 void TargetLowering::LowerOperationWrapper(SDNode *N, 6555 SmallVectorImpl<SDValue> &Results, 6556 SelectionDAG &DAG) const { 6557 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6558 if (Res.getNode()) 6559 Results.push_back(Res); 6560 } 6561 6562 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6563 llvm_unreachable("LowerOperation not implemented for this target!"); 6564 } 6565 6566 void 6567 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6568 SDValue Op = getNonRegisterValue(V); 6569 assert((Op.getOpcode() != ISD::CopyFromReg || 6570 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6571 "Copy from a reg to the same reg!"); 6572 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6573 6574 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6575 SDValue Chain = DAG.getEntryNode(); 6576 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6577 PendingExports.push_back(Chain); 6578 } 6579 6580 #include "llvm/CodeGen/SelectionDAGISel.h" 6581 6582 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6583 /// entry block, return true. This includes arguments used by switches, since 6584 /// the switch may expand into multiple basic blocks. 6585 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6586 // With FastISel active, we may be splitting blocks, so force creation 6587 // of virtual registers for all non-dead arguments. 6588 if (FastISel) 6589 return A->use_empty(); 6590 6591 const BasicBlock *Entry = A->getParent()->begin(); 6592 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6593 UI != E; ++UI) { 6594 const User *U = *UI; 6595 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6596 return false; // Use not in entry block. 6597 } 6598 return true; 6599 } 6600 6601 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6602 // If this is the entry block, emit arguments. 6603 const Function &F = *LLVMBB->getParent(); 6604 SelectionDAG &DAG = SDB->DAG; 6605 DebugLoc dl = SDB->getCurDebugLoc(); 6606 const TargetData *TD = TLI.getTargetData(); 6607 SmallVector<ISD::InputArg, 16> Ins; 6608 6609 // Check whether the function can return without sret-demotion. 6610 SmallVector<ISD::OutputArg, 4> Outs; 6611 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6612 Outs, TLI); 6613 6614 if (!FuncInfo->CanLowerReturn) { 6615 // Put in an sret pointer parameter before all the other parameters. 6616 SmallVector<EVT, 1> ValueVTs; 6617 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6618 6619 // NOTE: Assuming that a pointer will never break down to more than one VT 6620 // or one register. 6621 ISD::ArgFlagsTy Flags; 6622 Flags.setSRet(); 6623 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6624 ISD::InputArg RetArg(Flags, RegisterVT, true); 6625 Ins.push_back(RetArg); 6626 } 6627 6628 // Set up the incoming argument description vector. 6629 unsigned Idx = 1; 6630 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6631 I != E; ++I, ++Idx) { 6632 SmallVector<EVT, 4> ValueVTs; 6633 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6634 bool isArgValueUsed = !I->use_empty(); 6635 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6636 Value != NumValues; ++Value) { 6637 EVT VT = ValueVTs[Value]; 6638 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6639 ISD::ArgFlagsTy Flags; 6640 unsigned OriginalAlignment = 6641 TD->getABITypeAlignment(ArgTy); 6642 6643 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6644 Flags.setZExt(); 6645 if (F.paramHasAttr(Idx, Attribute::SExt)) 6646 Flags.setSExt(); 6647 if (F.paramHasAttr(Idx, Attribute::InReg)) 6648 Flags.setInReg(); 6649 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6650 Flags.setSRet(); 6651 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6652 Flags.setByVal(); 6653 PointerType *Ty = cast<PointerType>(I->getType()); 6654 Type *ElementTy = Ty->getElementType(); 6655 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6656 // For ByVal, alignment should be passed from FE. BE will guess if 6657 // this info is not there but there are cases it cannot get right. 6658 unsigned FrameAlign; 6659 if (F.getParamAlignment(Idx)) 6660 FrameAlign = F.getParamAlignment(Idx); 6661 else 6662 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6663 Flags.setByValAlign(FrameAlign); 6664 } 6665 if (F.paramHasAttr(Idx, Attribute::Nest)) 6666 Flags.setNest(); 6667 Flags.setOrigAlign(OriginalAlignment); 6668 6669 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6670 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6671 for (unsigned i = 0; i != NumRegs; ++i) { 6672 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6673 if (NumRegs > 1 && i == 0) 6674 MyFlags.Flags.setSplit(); 6675 // if it isn't first piece, alignment must be 1 6676 else if (i > 0) 6677 MyFlags.Flags.setOrigAlign(1); 6678 Ins.push_back(MyFlags); 6679 } 6680 } 6681 } 6682 6683 // Call the target to set up the argument values. 6684 SmallVector<SDValue, 8> InVals; 6685 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6686 F.isVarArg(), Ins, 6687 dl, DAG, InVals); 6688 6689 // Verify that the target's LowerFormalArguments behaved as expected. 6690 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6691 "LowerFormalArguments didn't return a valid chain!"); 6692 assert(InVals.size() == Ins.size() && 6693 "LowerFormalArguments didn't emit the correct number of values!"); 6694 DEBUG({ 6695 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6696 assert(InVals[i].getNode() && 6697 "LowerFormalArguments emitted a null value!"); 6698 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6699 "LowerFormalArguments emitted a value with the wrong type!"); 6700 } 6701 }); 6702 6703 // Update the DAG with the new chain value resulting from argument lowering. 6704 DAG.setRoot(NewRoot); 6705 6706 // Set up the argument values. 6707 unsigned i = 0; 6708 Idx = 1; 6709 if (!FuncInfo->CanLowerReturn) { 6710 // Create a virtual register for the sret pointer, and put in a copy 6711 // from the sret argument into it. 6712 SmallVector<EVT, 1> ValueVTs; 6713 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6714 EVT VT = ValueVTs[0]; 6715 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6716 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6717 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6718 RegVT, VT, AssertOp); 6719 6720 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6721 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6722 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6723 FuncInfo->DemoteRegister = SRetReg; 6724 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6725 SRetReg, ArgValue); 6726 DAG.setRoot(NewRoot); 6727 6728 // i indexes lowered arguments. Bump it past the hidden sret argument. 6729 // Idx indexes LLVM arguments. Don't touch it. 6730 ++i; 6731 } 6732 6733 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6734 ++I, ++Idx) { 6735 SmallVector<SDValue, 4> ArgValues; 6736 SmallVector<EVT, 4> ValueVTs; 6737 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6738 unsigned NumValues = ValueVTs.size(); 6739 6740 // If this argument is unused then remember its value. It is used to generate 6741 // debugging information. 6742 if (I->use_empty() && NumValues) 6743 SDB->setUnusedArgValue(I, InVals[i]); 6744 6745 for (unsigned Val = 0; Val != NumValues; ++Val) { 6746 EVT VT = ValueVTs[Val]; 6747 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6748 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6749 6750 if (!I->use_empty()) { 6751 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6752 if (F.paramHasAttr(Idx, Attribute::SExt)) 6753 AssertOp = ISD::AssertSext; 6754 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6755 AssertOp = ISD::AssertZext; 6756 6757 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6758 NumParts, PartVT, VT, 6759 AssertOp)); 6760 } 6761 6762 i += NumParts; 6763 } 6764 6765 // We don't need to do anything else for unused arguments. 6766 if (ArgValues.empty()) 6767 continue; 6768 6769 // Note down frame index. 6770 if (FrameIndexSDNode *FI = 6771 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6772 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6773 6774 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6775 SDB->getCurDebugLoc()); 6776 6777 SDB->setValue(I, Res); 6778 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6779 if (LoadSDNode *LNode = 6780 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6781 if (FrameIndexSDNode *FI = 6782 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6783 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6784 } 6785 6786 // If this argument is live outside of the entry block, insert a copy from 6787 // wherever we got it to the vreg that other BB's will reference it as. 6788 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6789 // If we can, though, try to skip creating an unnecessary vreg. 6790 // FIXME: This isn't very clean... it would be nice to make this more 6791 // general. It's also subtly incompatible with the hacks FastISel 6792 // uses with vregs. 6793 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6794 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6795 FuncInfo->ValueMap[I] = Reg; 6796 continue; 6797 } 6798 } 6799 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6800 FuncInfo->InitializeRegForValue(I); 6801 SDB->CopyToExportRegsIfNeeded(I); 6802 } 6803 } 6804 6805 assert(i == InVals.size() && "Argument register count mismatch!"); 6806 6807 // Finally, if the target has anything special to do, allow it to do so. 6808 // FIXME: this should insert code into the DAG! 6809 EmitFunctionEntryCode(); 6810 } 6811 6812 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6813 /// ensure constants are generated when needed. Remember the virtual registers 6814 /// that need to be added to the Machine PHI nodes as input. We cannot just 6815 /// directly add them, because expansion might result in multiple MBB's for one 6816 /// BB. As such, the start of the BB might correspond to a different MBB than 6817 /// the end. 6818 /// 6819 void 6820 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6821 const TerminatorInst *TI = LLVMBB->getTerminator(); 6822 6823 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6824 6825 // Check successor nodes' PHI nodes that expect a constant to be available 6826 // from this block. 6827 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6828 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6829 if (!isa<PHINode>(SuccBB->begin())) continue; 6830 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6831 6832 // If this terminator has multiple identical successors (common for 6833 // switches), only handle each succ once. 6834 if (!SuccsHandled.insert(SuccMBB)) continue; 6835 6836 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6837 6838 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6839 // nodes and Machine PHI nodes, but the incoming operands have not been 6840 // emitted yet. 6841 for (BasicBlock::const_iterator I = SuccBB->begin(); 6842 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6843 // Ignore dead phi's. 6844 if (PN->use_empty()) continue; 6845 6846 // Skip empty types 6847 if (PN->getType()->isEmptyTy()) 6848 continue; 6849 6850 unsigned Reg; 6851 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6852 6853 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6854 unsigned &RegOut = ConstantsOut[C]; 6855 if (RegOut == 0) { 6856 RegOut = FuncInfo.CreateRegs(C->getType()); 6857 CopyValueToVirtualRegister(C, RegOut); 6858 } 6859 Reg = RegOut; 6860 } else { 6861 DenseMap<const Value *, unsigned>::iterator I = 6862 FuncInfo.ValueMap.find(PHIOp); 6863 if (I != FuncInfo.ValueMap.end()) 6864 Reg = I->second; 6865 else { 6866 assert(isa<AllocaInst>(PHIOp) && 6867 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6868 "Didn't codegen value into a register!??"); 6869 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6870 CopyValueToVirtualRegister(PHIOp, Reg); 6871 } 6872 } 6873 6874 // Remember that this register needs to added to the machine PHI node as 6875 // the input for this MBB. 6876 SmallVector<EVT, 4> ValueVTs; 6877 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6878 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6879 EVT VT = ValueVTs[vti]; 6880 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6881 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6882 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6883 Reg += NumRegisters; 6884 } 6885 } 6886 } 6887 ConstantsOut.clear(); 6888 } 6889