1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits, DL)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, DL, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, 524 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasInlineAsmWithSPAdjust()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = DAG.getTarget().getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue Result; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 963 Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, Result); 967 } 968 969 return Result; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // Otherwise create a new SDValue and remember it. 1008 SDValue Val = getValueImpl(V); 1009 NodeMap[V] = Val; 1010 resolveDanglingDebugInfo(V, Val); 1011 return Val; 1012 } 1013 1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1015 /// Create an SDValue for the given value. 1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1018 1019 if (const Constant *C = dyn_cast<Constant>(V)) { 1020 EVT VT = TLI.getValueType(V->getType(), true); 1021 1022 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1023 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1024 1025 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1026 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1027 1028 if (isa<ConstantPointerNull>(C)) { 1029 unsigned AS = V->getType()->getPointerAddressSpace(); 1030 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1031 } 1032 1033 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1034 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1035 1036 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1037 return DAG.getUNDEF(VT); 1038 1039 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1040 visit(CE->getOpcode(), *CE); 1041 SDValue N1 = NodeMap[V]; 1042 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1043 return N1; 1044 } 1045 1046 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1047 SmallVector<SDValue, 4> Constants; 1048 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1049 OI != OE; ++OI) { 1050 SDNode *Val = getValue(*OI).getNode(); 1051 // If the operand is an empty aggregate, there are no values. 1052 if (!Val) continue; 1053 // Add each leaf value from the operand to the Constants list 1054 // to form a flattened list of all the values. 1055 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1056 Constants.push_back(SDValue(Val, i)); 1057 } 1058 1059 return DAG.getMergeValues(Constants, getCurSDLoc()); 1060 } 1061 1062 if (const ConstantDataSequential *CDS = 1063 dyn_cast<ConstantDataSequential>(C)) { 1064 SmallVector<SDValue, 4> Ops; 1065 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1066 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1067 // Add each leaf value from the operand to the Constants list 1068 // to form a flattened list of all the values. 1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1070 Ops.push_back(SDValue(Val, i)); 1071 } 1072 1073 if (isa<ArrayType>(CDS->getType())) 1074 return DAG.getMergeValues(Ops, getCurSDLoc()); 1075 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1076 VT, Ops); 1077 } 1078 1079 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1080 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1081 "Unknown struct or array constant!"); 1082 1083 SmallVector<EVT, 4> ValueVTs; 1084 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1085 unsigned NumElts = ValueVTs.size(); 1086 if (NumElts == 0) 1087 return SDValue(); // empty struct 1088 SmallVector<SDValue, 4> Constants(NumElts); 1089 for (unsigned i = 0; i != NumElts; ++i) { 1090 EVT EltVT = ValueVTs[i]; 1091 if (isa<UndefValue>(C)) 1092 Constants[i] = DAG.getUNDEF(EltVT); 1093 else if (EltVT.isFloatingPoint()) 1094 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1095 else 1096 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1097 } 1098 1099 return DAG.getMergeValues(Constants, getCurSDLoc()); 1100 } 1101 1102 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1103 return DAG.getBlockAddress(BA, VT); 1104 1105 VectorType *VecTy = cast<VectorType>(V->getType()); 1106 unsigned NumElements = VecTy->getNumElements(); 1107 1108 // Now that we know the number and type of the elements, get that number of 1109 // elements into the Ops array based on what kind of constant it is. 1110 SmallVector<SDValue, 16> Ops; 1111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1112 for (unsigned i = 0; i != NumElements; ++i) 1113 Ops.push_back(getValue(CV->getOperand(i))); 1114 } else { 1115 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1116 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1117 1118 SDValue Op; 1119 if (EltVT.isFloatingPoint()) 1120 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1121 else 1122 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1123 Ops.assign(NumElements, Op); 1124 } 1125 1126 // Create a BUILD_VECTOR node. 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1128 } 1129 1130 // If this is a static alloca, generate it as the frameindex instead of 1131 // computation. 1132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1133 DenseMap<const AllocaInst*, int>::iterator SI = 1134 FuncInfo.StaticAllocaMap.find(AI); 1135 if (SI != FuncInfo.StaticAllocaMap.end()) 1136 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1137 } 1138 1139 // If this is an instruction which fast-isel has deferred, select it now. 1140 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1141 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1142 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1143 SDValue Chain = DAG.getEntryNode(); 1144 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1145 } 1146 1147 llvm_unreachable("Can't get register for value!"); 1148 } 1149 1150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1152 SDValue Chain = getControlRoot(); 1153 SmallVector<ISD::OutputArg, 8> Outs; 1154 SmallVector<SDValue, 8> OutVals; 1155 1156 if (!FuncInfo.CanLowerReturn) { 1157 unsigned DemoteReg = FuncInfo.DemoteRegister; 1158 const Function *F = I.getParent()->getParent(); 1159 1160 // Emit a store of the return value through the virtual register. 1161 // Leave Outs empty so that LowerReturn won't try to load return 1162 // registers the usual way. 1163 SmallVector<EVT, 1> PtrValueVTs; 1164 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1165 PtrValueVTs); 1166 1167 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1168 SDValue RetOp = getValue(I.getOperand(0)); 1169 1170 SmallVector<EVT, 4> ValueVTs; 1171 SmallVector<uint64_t, 4> Offsets; 1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1173 unsigned NumValues = ValueVTs.size(); 1174 1175 SmallVector<SDValue, 4> Chains(NumValues); 1176 for (unsigned i = 0; i != NumValues; ++i) { 1177 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1178 RetPtr.getValueType(), RetPtr, 1179 DAG.getIntPtrConstant(Offsets[i], 1180 getCurSDLoc())); 1181 Chains[i] = 1182 DAG.getStore(Chain, getCurSDLoc(), 1183 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1184 // FIXME: better loc info would be nice. 1185 Add, MachinePointerInfo(), false, false, 0); 1186 } 1187 1188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1189 MVT::Other, Chains); 1190 } else if (I.getNumOperands() != 0) { 1191 SmallVector<EVT, 4> ValueVTs; 1192 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1193 unsigned NumValues = ValueVTs.size(); 1194 if (NumValues) { 1195 SDValue RetOp = getValue(I.getOperand(0)); 1196 1197 const Function *F = I.getParent()->getParent(); 1198 1199 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1200 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1201 Attribute::SExt)) 1202 ExtendKind = ISD::SIGN_EXTEND; 1203 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1204 Attribute::ZExt)) 1205 ExtendKind = ISD::ZERO_EXTEND; 1206 1207 LLVMContext &Context = F->getContext(); 1208 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1209 Attribute::InReg); 1210 1211 for (unsigned j = 0; j != NumValues; ++j) { 1212 EVT VT = ValueVTs[j]; 1213 1214 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1215 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1216 1217 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1218 MVT PartVT = TLI.getRegisterType(Context, VT); 1219 SmallVector<SDValue, 4> Parts(NumParts); 1220 getCopyToParts(DAG, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1222 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1223 1224 // 'inreg' on function refers to return value 1225 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1226 if (RetInReg) 1227 Flags.setInReg(); 1228 1229 // Propagate extension type if any 1230 if (ExtendKind == ISD::SIGN_EXTEND) 1231 Flags.setSExt(); 1232 else if (ExtendKind == ISD::ZERO_EXTEND) 1233 Flags.setZExt(); 1234 1235 for (unsigned i = 0; i < NumParts; ++i) { 1236 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1237 VT, /*isfixed=*/true, 0, 0)); 1238 OutVals.push_back(Parts[i]); 1239 } 1240 } 1241 } 1242 } 1243 1244 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1245 CallingConv::ID CallConv = 1246 DAG.getMachineFunction().getFunction()->getCallingConv(); 1247 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1248 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1249 1250 // Verify that the target's LowerReturn behaved as expected. 1251 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1252 "LowerReturn didn't return a valid chain!"); 1253 1254 // Update the DAG with the new chain value resulting from return lowering. 1255 DAG.setRoot(Chain); 1256 } 1257 1258 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1259 /// created for it, emit nodes to copy the value into the virtual 1260 /// registers. 1261 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1262 // Skip empty types 1263 if (V->getType()->isEmptyTy()) 1264 return; 1265 1266 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1267 if (VMI != FuncInfo.ValueMap.end()) { 1268 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1269 CopyValueToVirtualRegister(V, VMI->second); 1270 } 1271 } 1272 1273 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1274 /// the current basic block, add it to ValueMap now so that we'll get a 1275 /// CopyTo/FromReg. 1276 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1277 // No need to export constants. 1278 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1279 1280 // Already exported? 1281 if (FuncInfo.isExportedInst(V)) return; 1282 1283 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1284 CopyValueToVirtualRegister(V, Reg); 1285 } 1286 1287 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1288 const BasicBlock *FromBB) { 1289 // The operands of the setcc have to be in this block. We don't know 1290 // how to export them from some other block. 1291 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1292 // Can export from current BB. 1293 if (VI->getParent() == FromBB) 1294 return true; 1295 1296 // Is already exported, noop. 1297 return FuncInfo.isExportedInst(V); 1298 } 1299 1300 // If this is an argument, we can export it if the BB is the entry block or 1301 // if it is already exported. 1302 if (isa<Argument>(V)) { 1303 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1304 return true; 1305 1306 // Otherwise, can only export this if it is already exported. 1307 return FuncInfo.isExportedInst(V); 1308 } 1309 1310 // Otherwise, constants can always be exported. 1311 return true; 1312 } 1313 1314 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1315 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1316 const MachineBasicBlock *Dst) const { 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 if (!BPI) 1319 return 0; 1320 const BasicBlock *SrcBB = Src->getBasicBlock(); 1321 const BasicBlock *DstBB = Dst->getBasicBlock(); 1322 return BPI->getEdgeWeight(SrcBB, DstBB); 1323 } 1324 1325 void SelectionDAGBuilder:: 1326 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1327 uint32_t Weight /* = 0 */) { 1328 if (!Weight) 1329 Weight = getEdgeWeight(Src, Dst); 1330 Src->addSuccessor(Dst, Weight); 1331 } 1332 1333 1334 static bool InBlock(const Value *V, const BasicBlock *BB) { 1335 if (const Instruction *I = dyn_cast<Instruction>(V)) 1336 return I->getParent() == BB; 1337 return true; 1338 } 1339 1340 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1341 /// This function emits a branch and is used at the leaves of an OR or an 1342 /// AND operator tree. 1343 /// 1344 void 1345 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1346 MachineBasicBlock *TBB, 1347 MachineBasicBlock *FBB, 1348 MachineBasicBlock *CurBB, 1349 MachineBasicBlock *SwitchBB, 1350 uint32_t TWeight, 1351 uint32_t FWeight) { 1352 const BasicBlock *BB = CurBB->getBasicBlock(); 1353 1354 // If the leaf of the tree is a comparison, merge the condition into 1355 // the caseblock. 1356 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1357 // The operands of the cmp have to be in this block. We don't know 1358 // how to export them from some other block. If this is the first block 1359 // of the sequence, no exporting is needed. 1360 if (CurBB == SwitchBB || 1361 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1362 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1363 ISD::CondCode Condition; 1364 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1365 Condition = getICmpCondCode(IC->getPredicate()); 1366 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1367 Condition = getFCmpCondCode(FC->getPredicate()); 1368 if (TM.Options.NoNaNsFPMath) 1369 Condition = getFCmpCodeWithoutNaN(Condition); 1370 } else { 1371 (void)Condition; // silence warning. 1372 llvm_unreachable("Unknown compare instruction"); 1373 } 1374 1375 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1376 TBB, FBB, CurBB, TWeight, FWeight); 1377 SwitchCases.push_back(CB); 1378 return; 1379 } 1380 } 1381 1382 // Create a CaseBlock record representing this branch. 1383 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1384 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1385 SwitchCases.push_back(CB); 1386 } 1387 1388 /// Scale down both weights to fit into uint32_t. 1389 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1390 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1391 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1392 NewTrue = NewTrue / Scale; 1393 NewFalse = NewFalse / Scale; 1394 } 1395 1396 /// FindMergedConditions - If Cond is an expression like 1397 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1398 MachineBasicBlock *TBB, 1399 MachineBasicBlock *FBB, 1400 MachineBasicBlock *CurBB, 1401 MachineBasicBlock *SwitchBB, 1402 unsigned Opc, uint32_t TWeight, 1403 uint32_t FWeight) { 1404 // If this node is not part of the or/and tree, emit it as a branch. 1405 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1406 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1407 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1408 BOp->getParent() != CurBB->getBasicBlock() || 1409 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1410 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1411 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1412 TWeight, FWeight); 1413 return; 1414 } 1415 1416 // Create TmpBB after CurBB. 1417 MachineFunction::iterator BBI = CurBB; 1418 MachineFunction &MF = DAG.getMachineFunction(); 1419 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1420 CurBB->getParent()->insert(++BBI, TmpBB); 1421 1422 if (Opc == Instruction::Or) { 1423 // Codegen X | Y as: 1424 // BB1: 1425 // jmp_if_X TBB 1426 // jmp TmpBB 1427 // TmpBB: 1428 // jmp_if_Y TBB 1429 // jmp FBB 1430 // 1431 1432 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1433 // The requirement is that 1434 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1435 // = TrueProb for orignal BB. 1436 // Assuming the orignal weights are A and B, one choice is to set BB1's 1437 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1438 // assumes that 1439 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1440 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1441 // TmpBB, but the math is more complicated. 1442 1443 uint64_t NewTrueWeight = TWeight; 1444 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1445 ScaleWeights(NewTrueWeight, NewFalseWeight); 1446 // Emit the LHS condition. 1447 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1448 NewTrueWeight, NewFalseWeight); 1449 1450 NewTrueWeight = TWeight; 1451 NewFalseWeight = 2 * (uint64_t)FWeight; 1452 ScaleWeights(NewTrueWeight, NewFalseWeight); 1453 // Emit the RHS condition into TmpBB. 1454 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1455 NewTrueWeight, NewFalseWeight); 1456 } else { 1457 assert(Opc == Instruction::And && "Unknown merge op!"); 1458 // Codegen X & Y as: 1459 // BB1: 1460 // jmp_if_X TmpBB 1461 // jmp FBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 // This requires creation of TmpBB after CurBB. 1467 1468 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1469 // The requirement is that 1470 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1471 // = FalseProb for orignal BB. 1472 // Assuming the orignal weights are A and B, one choice is to set BB1's 1473 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1474 // assumes that 1475 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1476 1477 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1478 uint64_t NewFalseWeight = FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = 2 * (uint64_t)TWeight; 1485 NewFalseWeight = FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } 1491 } 1492 1493 /// If the set of cases should be emitted as a series of branches, return true. 1494 /// If we should emit this as a bunch of and/or'd together conditions, return 1495 /// false. 1496 bool 1497 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1498 if (Cases.size() != 2) return true; 1499 1500 // If this is two comparisons of the same values or'd or and'd together, they 1501 // will get folded into a single comparison, so don't emit two blocks. 1502 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1503 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1504 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1505 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1506 return false; 1507 } 1508 1509 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1510 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1511 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1512 Cases[0].CC == Cases[1].CC && 1513 isa<Constant>(Cases[0].CmpRHS) && 1514 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1515 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1516 return false; 1517 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1518 return false; 1519 } 1520 1521 return true; 1522 } 1523 1524 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1525 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1526 1527 // Update machine-CFG edges. 1528 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1529 1530 if (I.isUnconditional()) { 1531 // Update machine-CFG edges. 1532 BrMBB->addSuccessor(Succ0MBB); 1533 1534 // If this is not a fall-through branch or optimizations are switched off, 1535 // emit the branch. 1536 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1537 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1538 MVT::Other, getControlRoot(), 1539 DAG.getBasicBlock(Succ0MBB))); 1540 1541 return; 1542 } 1543 1544 // If this condition is one of the special cases we handle, do special stuff 1545 // now. 1546 const Value *CondVal = I.getCondition(); 1547 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1548 1549 // If this is a series of conditions that are or'd or and'd together, emit 1550 // this as a sequence of branches instead of setcc's with and/or operations. 1551 // As long as jumps are not expensive, this should improve performance. 1552 // For example, instead of something like: 1553 // cmp A, B 1554 // C = seteq 1555 // cmp D, E 1556 // F = setle 1557 // or C, F 1558 // jnz foo 1559 // Emit: 1560 // cmp A, B 1561 // je foo 1562 // cmp D, E 1563 // jle foo 1564 // 1565 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1566 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1567 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1568 BOp->getOpcode() == Instruction::Or)) { 1569 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1570 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1571 getEdgeWeight(BrMBB, Succ1MBB)); 1572 // If the compares in later blocks need to use values not currently 1573 // exported from this block, export them now. This block should always 1574 // be the first entry. 1575 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1576 1577 // Allow some cases to be rejected. 1578 if (ShouldEmitAsBranches(SwitchCases)) { 1579 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1580 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1581 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1582 } 1583 1584 // Emit the branch for this block. 1585 visitSwitchCase(SwitchCases[0], BrMBB); 1586 SwitchCases.erase(SwitchCases.begin()); 1587 return; 1588 } 1589 1590 // Okay, we decided not to do this, remove any inserted MBB's and clear 1591 // SwitchCases. 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1593 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1594 1595 SwitchCases.clear(); 1596 } 1597 } 1598 1599 // Create a CaseBlock record representing this branch. 1600 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1601 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1602 1603 // Use visitSwitchCase to actually insert the fast branch sequence for this 1604 // cond branch. 1605 visitSwitchCase(CB, BrMBB); 1606 } 1607 1608 /// visitSwitchCase - Emits the necessary code to represent a single node in 1609 /// the binary search tree resulting from lowering a switch instruction. 1610 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1611 MachineBasicBlock *SwitchBB) { 1612 SDValue Cond; 1613 SDValue CondLHS = getValue(CB.CmpLHS); 1614 SDLoc dl = getCurSDLoc(); 1615 1616 // Build the setcc now. 1617 if (!CB.CmpMHS) { 1618 // Fold "(X == true)" to X and "(X == false)" to !X to 1619 // handle common cases produced by branch lowering. 1620 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1621 CB.CC == ISD::SETEQ) 1622 Cond = CondLHS; 1623 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1624 CB.CC == ISD::SETEQ) { 1625 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1626 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1627 } else 1628 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1629 } else { 1630 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1631 1632 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1633 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1634 1635 SDValue CmpOp = getValue(CB.CmpMHS); 1636 EVT VT = CmpOp.getValueType(); 1637 1638 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1639 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1640 ISD::SETLE); 1641 } else { 1642 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1643 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1644 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1645 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1646 } 1647 } 1648 1649 // Update successor info 1650 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1651 // TrueBB and FalseBB are always different unless the incoming IR is 1652 // degenerate. This only happens when running llc on weird IR. 1653 if (CB.TrueBB != CB.FalseBB) 1654 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1655 1656 // If the lhs block is the next block, invert the condition so that we can 1657 // fall through to the lhs instead of the rhs block. 1658 if (CB.TrueBB == NextBlock(SwitchBB)) { 1659 std::swap(CB.TrueBB, CB.FalseBB); 1660 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1662 } 1663 1664 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1665 MVT::Other, getControlRoot(), Cond, 1666 DAG.getBasicBlock(CB.TrueBB)); 1667 1668 // Insert the false branch. Do this even if it's a fall through branch, 1669 // this makes it easier to do DAG optimizations which require inverting 1670 // the branch condition. 1671 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1672 DAG.getBasicBlock(CB.FalseBB)); 1673 1674 DAG.setRoot(BrCond); 1675 } 1676 1677 /// visitJumpTable - Emit JumpTable node in the current MBB 1678 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1679 // Emit the code for the jump table 1680 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1681 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1682 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1683 JT.Reg, PTy); 1684 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1685 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1686 MVT::Other, Index.getValue(1), 1687 Table, Index); 1688 DAG.setRoot(BrJumpTable); 1689 } 1690 1691 /// visitJumpTableHeader - This function emits necessary code to produce index 1692 /// in the JumpTable from switch case. 1693 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1694 JumpTableHeader &JTH, 1695 MachineBasicBlock *SwitchBB) { 1696 SDLoc dl = getCurSDLoc(); 1697 1698 // Subtract the lowest switch case value from the value being switched on and 1699 // conditional branch to default mbb if the result is greater than the 1700 // difference between smallest and largest cases. 1701 SDValue SwitchOp = getValue(JTH.SValue); 1702 EVT VT = SwitchOp.getValueType(); 1703 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1704 DAG.getConstant(JTH.First, dl, VT)); 1705 1706 // The SDNode we just created, which holds the value being switched on minus 1707 // the smallest case value, needs to be copied to a virtual register so it 1708 // can be used as an index into the jump table in a subsequent basic block. 1709 // This value may be smaller or larger than the target's pointer type, and 1710 // therefore require extension or truncating. 1711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1712 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1713 1714 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1715 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1716 JumpTableReg, SwitchOp); 1717 JT.Reg = JumpTableReg; 1718 1719 // Emit the range check for the jump table, and branch to the default block 1720 // for the switch statement if the value being switched on exceeds the largest 1721 // case in the switch. 1722 SDValue CMP = 1723 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1724 Sub.getValueType()), 1725 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1726 ISD::SETUGT); 1727 1728 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1729 MVT::Other, CopyTo, CMP, 1730 DAG.getBasicBlock(JT.Default)); 1731 1732 // Avoid emitting unnecessary branches to the next block. 1733 if (JT.MBB != NextBlock(SwitchBB)) 1734 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1735 DAG.getBasicBlock(JT.MBB)); 1736 1737 DAG.setRoot(BrCond); 1738 } 1739 1740 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1741 /// tail spliced into a stack protector check success bb. 1742 /// 1743 /// For a high level explanation of how this fits into the stack protector 1744 /// generation see the comment on the declaration of class 1745 /// StackProtectorDescriptor. 1746 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1747 MachineBasicBlock *ParentBB) { 1748 1749 // First create the loads to the guard/stack slot for the comparison. 1750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1751 EVT PtrTy = TLI.getPointerTy(); 1752 1753 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1754 int FI = MFI->getStackProtectorIndex(); 1755 1756 const Value *IRGuard = SPD.getGuard(); 1757 SDValue GuardPtr = getValue(IRGuard); 1758 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1759 1760 unsigned Align = 1761 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1762 1763 SDValue Guard; 1764 SDLoc dl = getCurSDLoc(); 1765 1766 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1767 // guard value from the virtual register holding the value. Otherwise, emit a 1768 // volatile load to retrieve the stack guard value. 1769 unsigned GuardReg = SPD.getGuardReg(); 1770 1771 if (GuardReg && TLI.useLoadStackGuardNode()) 1772 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1773 PtrTy); 1774 else 1775 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1776 GuardPtr, MachinePointerInfo(IRGuard, 0), 1777 true, false, false, Align); 1778 1779 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1780 StackSlotPtr, 1781 MachinePointerInfo::getFixedStack(FI), 1782 true, false, false, Align); 1783 1784 // Perform the comparison via a subtract/getsetcc. 1785 EVT VT = Guard.getValueType(); 1786 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1787 1788 SDValue Cmp = 1789 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1790 Sub.getValueType()), 1791 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1792 1793 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1794 // branch to failure MBB. 1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1796 MVT::Other, StackSlot.getOperand(0), 1797 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1798 // Otherwise branch to success MBB. 1799 SDValue Br = DAG.getNode(ISD::BR, dl, 1800 MVT::Other, BrCond, 1801 DAG.getBasicBlock(SPD.getSuccessMBB())); 1802 1803 DAG.setRoot(Br); 1804 } 1805 1806 /// Codegen the failure basic block for a stack protector check. 1807 /// 1808 /// A failure stack protector machine basic block consists simply of a call to 1809 /// __stack_chk_fail(). 1810 /// 1811 /// For a high level explanation of how this fits into the stack protector 1812 /// generation see the comment on the declaration of class 1813 /// StackProtectorDescriptor. 1814 void 1815 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1817 SDValue Chain = 1818 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1819 nullptr, 0, false, getCurSDLoc(), false, false).second; 1820 DAG.setRoot(Chain); 1821 } 1822 1823 /// visitBitTestHeader - This function emits necessary code to produce value 1824 /// suitable for "bit tests" 1825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1826 MachineBasicBlock *SwitchBB) { 1827 SDLoc dl = getCurSDLoc(); 1828 1829 // Subtract the minimum value 1830 SDValue SwitchOp = getValue(B.SValue); 1831 EVT VT = SwitchOp.getValueType(); 1832 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1833 DAG.getConstant(B.First, dl, VT)); 1834 1835 // Check range 1836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1837 SDValue RangeCmp = 1838 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1841 1842 // Determine the type of the test operands. 1843 bool UsePtrType = false; 1844 if (!TLI.isTypeLegal(VT)) 1845 UsePtrType = true; 1846 else { 1847 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1848 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1849 // Switch table case range are encoded into series of masks. 1850 // Just use pointer type, it's guaranteed to fit. 1851 UsePtrType = true; 1852 break; 1853 } 1854 } 1855 if (UsePtrType) { 1856 VT = TLI.getPointerTy(); 1857 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1858 } 1859 1860 B.RegVT = VT.getSimpleVT(); 1861 B.Reg = FuncInfo.CreateReg(B.RegVT); 1862 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1863 1864 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1865 1866 addSuccessorWithWeight(SwitchBB, B.Default); 1867 addSuccessorWithWeight(SwitchBB, MBB); 1868 1869 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1870 MVT::Other, CopyTo, RangeCmp, 1871 DAG.getBasicBlock(B.Default)); 1872 1873 // Avoid emitting unnecessary branches to the next block. 1874 if (MBB != NextBlock(SwitchBB)) 1875 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1876 DAG.getBasicBlock(MBB)); 1877 1878 DAG.setRoot(BrRange); 1879 } 1880 1881 /// visitBitTestCase - this function produces one "bit test" 1882 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1883 MachineBasicBlock* NextMBB, 1884 uint32_t BranchWeightToNext, 1885 unsigned Reg, 1886 BitTestCase &B, 1887 MachineBasicBlock *SwitchBB) { 1888 SDLoc dl = getCurSDLoc(); 1889 MVT VT = BB.RegVT; 1890 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1891 SDValue Cmp; 1892 unsigned PopCount = countPopulation(B.Mask); 1893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1894 if (PopCount == 1) { 1895 // Testing for a single bit; just compare the shift count with what it 1896 // would need to be to shift a 1 bit in that position. 1897 Cmp = DAG.getSetCC( 1898 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1899 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1900 } else if (PopCount == BB.Range) { 1901 // There is only one zero bit in the range, test for it directly. 1902 Cmp = DAG.getSetCC( 1903 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1904 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1905 } else { 1906 // Make desired shift 1907 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1908 DAG.getConstant(1, dl, VT), ShiftOp); 1909 1910 // Emit bit tests and jumps 1911 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1912 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1913 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1914 DAG.getConstant(0, dl, VT), ISD::SETNE); 1915 } 1916 1917 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1918 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1919 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1920 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1921 1922 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1923 MVT::Other, getControlRoot(), 1924 Cmp, DAG.getBasicBlock(B.TargetBB)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (NextMBB != NextBlock(SwitchBB)) 1928 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1929 DAG.getBasicBlock(NextMBB)); 1930 1931 DAG.setRoot(BrAnd); 1932 } 1933 1934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1935 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1936 1937 // Retrieve successors. 1938 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1939 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1940 1941 const Value *Callee(I.getCalledValue()); 1942 const Function *Fn = dyn_cast<Function>(Callee); 1943 if (isa<InlineAsm>(Callee)) 1944 visitInlineAsm(&I); 1945 else if (Fn && Fn->isIntrinsic()) { 1946 switch (Fn->getIntrinsicID()) { 1947 default: 1948 llvm_unreachable("Cannot invoke this intrinsic"); 1949 case Intrinsic::donothing: 1950 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1951 break; 1952 case Intrinsic::experimental_patchpoint_void: 1953 case Intrinsic::experimental_patchpoint_i64: 1954 visitPatchpoint(&I, LandingPad); 1955 break; 1956 case Intrinsic::experimental_gc_statepoint: 1957 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1958 break; 1959 } 1960 } else 1961 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1962 1963 // If the value of the invoke is used outside of its defining block, make it 1964 // available as a virtual register. 1965 // We already took care of the exported value for the statepoint instruction 1966 // during call to the LowerStatepoint. 1967 if (!isStatepoint(I)) { 1968 CopyToExportRegsIfNeeded(&I); 1969 } 1970 1971 // Update successor info 1972 addSuccessorWithWeight(InvokeMBB, Return); 1973 addSuccessorWithWeight(InvokeMBB, LandingPad); 1974 1975 // Drop into normal successor. 1976 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 DAG.getBasicBlock(Return))); 1979 } 1980 1981 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1982 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1983 } 1984 1985 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1986 assert(FuncInfo.MBB->isLandingPad() && 1987 "Call to landingpad not in landing pad!"); 1988 1989 MachineBasicBlock *MBB = FuncInfo.MBB; 1990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1991 AddLandingPadInfo(LP, MMI, MBB); 1992 1993 // If there aren't registers to copy the values into (e.g., during SjLj 1994 // exceptions), then don't bother to create these DAG nodes. 1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1996 if (TLI.getExceptionPointerRegister() == 0 && 1997 TLI.getExceptionSelectorRegister() == 0) 1998 return; 1999 2000 SmallVector<EVT, 2> ValueVTs; 2001 SDLoc dl = getCurSDLoc(); 2002 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2003 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2004 2005 // Get the two live-in registers as SDValues. The physregs have already been 2006 // copied into virtual registers. 2007 SDValue Ops[2]; 2008 if (FuncInfo.ExceptionPointerVirtReg) { 2009 Ops[0] = DAG.getZExtOrTrunc( 2010 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2011 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2012 dl, ValueVTs[0]); 2013 } else { 2014 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2015 } 2016 Ops[1] = DAG.getZExtOrTrunc( 2017 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2018 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2019 dl, ValueVTs[1]); 2020 2021 // Merge into one. 2022 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2023 DAG.getVTList(ValueVTs), Ops); 2024 setValue(&LP, Res); 2025 } 2026 2027 unsigned 2028 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2029 MachineBasicBlock *LPadBB) { 2030 SDValue Chain = getControlRoot(); 2031 SDLoc dl = getCurSDLoc(); 2032 2033 // Get the typeid that we will dispatch on later. 2034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2035 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2036 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2037 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2038 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2039 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2040 2041 // Branch to the main landing pad block. 2042 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2043 ClauseMBB->addSuccessor(LPadBB); 2044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2045 DAG.getBasicBlock(LPadBB))); 2046 return VReg; 2047 } 2048 2049 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2050 #ifndef NDEBUG 2051 for (const CaseCluster &CC : Clusters) 2052 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2053 #endif 2054 2055 std::sort(Clusters.begin(), Clusters.end(), 2056 [](const CaseCluster &a, const CaseCluster &b) { 2057 return a.Low->getValue().slt(b.Low->getValue()); 2058 }); 2059 2060 // Merge adjacent clusters with the same destination. 2061 const unsigned N = Clusters.size(); 2062 unsigned DstIndex = 0; 2063 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2064 CaseCluster &CC = Clusters[SrcIndex]; 2065 const ConstantInt *CaseVal = CC.Low; 2066 MachineBasicBlock *Succ = CC.MBB; 2067 2068 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2069 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2070 // If this case has the same successor and is a neighbour, merge it into 2071 // the previous cluster. 2072 Clusters[DstIndex - 1].High = CaseVal; 2073 Clusters[DstIndex - 1].Weight += CC.Weight; 2074 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2075 } else { 2076 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2077 sizeof(Clusters[SrcIndex])); 2078 } 2079 } 2080 Clusters.resize(DstIndex); 2081 } 2082 2083 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2084 MachineBasicBlock *Last) { 2085 // Update JTCases. 2086 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2087 if (JTCases[i].first.HeaderBB == First) 2088 JTCases[i].first.HeaderBB = Last; 2089 2090 // Update BitTestCases. 2091 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2092 if (BitTestCases[i].Parent == First) 2093 BitTestCases[i].Parent = Last; 2094 } 2095 2096 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2097 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2098 2099 // Update machine-CFG edges with unique successors. 2100 SmallSet<BasicBlock*, 32> Done; 2101 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2102 BasicBlock *BB = I.getSuccessor(i); 2103 bool Inserted = Done.insert(BB).second; 2104 if (!Inserted) 2105 continue; 2106 2107 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2108 addSuccessorWithWeight(IndirectBrMBB, Succ); 2109 } 2110 2111 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2112 MVT::Other, getControlRoot(), 2113 getValue(I.getAddress()))); 2114 } 2115 2116 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2117 if (DAG.getTarget().Options.TrapUnreachable) 2118 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2119 } 2120 2121 void SelectionDAGBuilder::visitFSub(const User &I) { 2122 // -0.0 - X --> fneg 2123 Type *Ty = I.getType(); 2124 if (isa<Constant>(I.getOperand(0)) && 2125 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2126 SDValue Op2 = getValue(I.getOperand(1)); 2127 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2128 Op2.getValueType(), Op2)); 2129 return; 2130 } 2131 2132 visitBinary(I, ISD::FSUB); 2133 } 2134 2135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2136 SDValue Op1 = getValue(I.getOperand(0)); 2137 SDValue Op2 = getValue(I.getOperand(1)); 2138 2139 bool nuw = false; 2140 bool nsw = false; 2141 bool exact = false; 2142 if (const OverflowingBinaryOperator *OFBinOp = 2143 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2144 nuw = OFBinOp->hasNoUnsignedWrap(); 2145 nsw = OFBinOp->hasNoSignedWrap(); 2146 } 2147 if (const PossiblyExactOperator *ExactOp = 2148 dyn_cast<const PossiblyExactOperator>(&I)) 2149 exact = ExactOp->isExact(); 2150 2151 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2152 Op1, Op2, nuw, nsw, exact); 2153 setValue(&I, BinNodeValue); 2154 } 2155 2156 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2157 SDValue Op1 = getValue(I.getOperand(0)); 2158 SDValue Op2 = getValue(I.getOperand(1)); 2159 2160 EVT ShiftTy = 2161 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2162 2163 // Coerce the shift amount to the right type if we can. 2164 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2165 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2166 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2167 SDLoc DL = getCurSDLoc(); 2168 2169 // If the operand is smaller than the shift count type, promote it. 2170 if (ShiftSize > Op2Size) 2171 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2172 2173 // If the operand is larger than the shift count type but the shift 2174 // count type has enough bits to represent any shift value, truncate 2175 // it now. This is a common case and it exposes the truncate to 2176 // optimization early. 2177 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2178 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2179 // Otherwise we'll need to temporarily settle for some other convenient 2180 // type. Type legalization will make adjustments once the shiftee is split. 2181 else 2182 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2183 } 2184 2185 bool nuw = false; 2186 bool nsw = false; 2187 bool exact = false; 2188 2189 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2190 2191 if (const OverflowingBinaryOperator *OFBinOp = 2192 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2193 nuw = OFBinOp->hasNoUnsignedWrap(); 2194 nsw = OFBinOp->hasNoSignedWrap(); 2195 } 2196 if (const PossiblyExactOperator *ExactOp = 2197 dyn_cast<const PossiblyExactOperator>(&I)) 2198 exact = ExactOp->isExact(); 2199 } 2200 2201 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2202 nuw, nsw, exact); 2203 setValue(&I, Res); 2204 } 2205 2206 void SelectionDAGBuilder::visitSDiv(const User &I) { 2207 SDValue Op1 = getValue(I.getOperand(0)); 2208 SDValue Op2 = getValue(I.getOperand(1)); 2209 2210 // Turn exact SDivs into multiplications. 2211 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2212 // exact bit. 2213 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2214 !isa<ConstantSDNode>(Op1) && 2215 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2216 setValue(&I, DAG.getTargetLoweringInfo() 2217 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2218 else 2219 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2220 Op1, Op2)); 2221 } 2222 2223 void SelectionDAGBuilder::visitICmp(const User &I) { 2224 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2225 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2226 predicate = IC->getPredicate(); 2227 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2228 predicate = ICmpInst::Predicate(IC->getPredicate()); 2229 SDValue Op1 = getValue(I.getOperand(0)); 2230 SDValue Op2 = getValue(I.getOperand(1)); 2231 ISD::CondCode Opcode = getICmpCondCode(predicate); 2232 2233 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2235 } 2236 2237 void SelectionDAGBuilder::visitFCmp(const User &I) { 2238 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2239 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2240 predicate = FC->getPredicate(); 2241 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2242 predicate = FCmpInst::Predicate(FC->getPredicate()); 2243 SDValue Op1 = getValue(I.getOperand(0)); 2244 SDValue Op2 = getValue(I.getOperand(1)); 2245 ISD::CondCode Condition = getFCmpCondCode(predicate); 2246 if (TM.Options.NoNaNsFPMath) 2247 Condition = getFCmpCodeWithoutNaN(Condition); 2248 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2249 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2250 } 2251 2252 void SelectionDAGBuilder::visitSelect(const User &I) { 2253 SmallVector<EVT, 4> ValueVTs; 2254 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2255 unsigned NumValues = ValueVTs.size(); 2256 if (NumValues == 0) return; 2257 2258 SmallVector<SDValue, 4> Values(NumValues); 2259 SDValue Cond = getValue(I.getOperand(0)); 2260 SDValue LHSVal = getValue(I.getOperand(1)); 2261 SDValue RHSVal = getValue(I.getOperand(2)); 2262 auto BaseOps = {Cond}; 2263 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2264 ISD::VSELECT : ISD::SELECT; 2265 2266 // Min/max matching is only viable if all output VTs are the same. 2267 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2268 Value *LHS, *RHS; 2269 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2270 ISD::NodeType Opc = ISD::DELETED_NODE; 2271 switch (SPF) { 2272 case SPF_UMAX: Opc = ISD::UMAX; break; 2273 case SPF_UMIN: Opc = ISD::UMIN; break; 2274 case SPF_SMAX: Opc = ISD::SMAX; break; 2275 case SPF_SMIN: Opc = ISD::SMIN; break; 2276 default: break; 2277 } 2278 2279 EVT VT = ValueVTs[0]; 2280 LLVMContext &Ctx = *DAG.getContext(); 2281 auto &TLI = DAG.getTargetLoweringInfo(); 2282 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2283 VT = TLI.getTypeToTransformTo(Ctx, VT); 2284 2285 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2286 // If the underlying comparison instruction is used by any other instruction, 2287 // the consumed instructions won't be destroyed, so it is not profitable 2288 // to convert to a min/max. 2289 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2290 OpCode = Opc; 2291 LHSVal = getValue(LHS); 2292 RHSVal = getValue(RHS); 2293 BaseOps = {}; 2294 } 2295 } 2296 2297 for (unsigned i = 0; i != NumValues; ++i) { 2298 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2299 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2300 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2301 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2302 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2303 Ops); 2304 } 2305 2306 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2307 DAG.getVTList(ValueVTs), Values)); 2308 } 2309 2310 void SelectionDAGBuilder::visitTrunc(const User &I) { 2311 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2312 SDValue N = getValue(I.getOperand(0)); 2313 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2314 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2315 } 2316 2317 void SelectionDAGBuilder::visitZExt(const User &I) { 2318 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2319 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2320 SDValue N = getValue(I.getOperand(0)); 2321 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2322 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2323 } 2324 2325 void SelectionDAGBuilder::visitSExt(const User &I) { 2326 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2327 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2328 SDValue N = getValue(I.getOperand(0)); 2329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2330 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2331 } 2332 2333 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2334 // FPTrunc is never a no-op cast, no need to check 2335 SDValue N = getValue(I.getOperand(0)); 2336 SDLoc dl = getCurSDLoc(); 2337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2338 EVT DestVT = TLI.getValueType(I.getType()); 2339 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2340 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2341 } 2342 2343 void SelectionDAGBuilder::visitFPExt(const User &I) { 2344 // FPExt is never a no-op cast, no need to check 2345 SDValue N = getValue(I.getOperand(0)); 2346 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2347 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2348 } 2349 2350 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2351 // FPToUI is never a no-op cast, no need to check 2352 SDValue N = getValue(I.getOperand(0)); 2353 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2354 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2355 } 2356 2357 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2358 // FPToSI is never a no-op cast, no need to check 2359 SDValue N = getValue(I.getOperand(0)); 2360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2361 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2362 } 2363 2364 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2365 // UIToFP is never a no-op cast, no need to check 2366 SDValue N = getValue(I.getOperand(0)); 2367 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2368 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2369 } 2370 2371 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2372 // SIToFP is never a no-op cast, no need to check 2373 SDValue N = getValue(I.getOperand(0)); 2374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2375 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2376 } 2377 2378 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2379 // What to do depends on the size of the integer and the size of the pointer. 2380 // We can either truncate, zero extend, or no-op, accordingly. 2381 SDValue N = getValue(I.getOperand(0)); 2382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2383 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2384 } 2385 2386 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2387 // What to do depends on the size of the integer and the size of the pointer. 2388 // We can either truncate, zero extend, or no-op, accordingly. 2389 SDValue N = getValue(I.getOperand(0)); 2390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2391 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2392 } 2393 2394 void SelectionDAGBuilder::visitBitCast(const User &I) { 2395 SDValue N = getValue(I.getOperand(0)); 2396 SDLoc dl = getCurSDLoc(); 2397 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2398 2399 // BitCast assures us that source and destination are the same size so this is 2400 // either a BITCAST or a no-op. 2401 if (DestVT != N.getValueType()) 2402 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2403 DestVT, N)); // convert types. 2404 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2405 // might fold any kind of constant expression to an integer constant and that 2406 // is not what we are looking for. Only regcognize a bitcast of a genuine 2407 // constant integer as an opaque constant. 2408 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2409 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2410 /*isOpaque*/true)); 2411 else 2412 setValue(&I, N); // noop cast. 2413 } 2414 2415 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2417 const Value *SV = I.getOperand(0); 2418 SDValue N = getValue(SV); 2419 EVT DestVT = TLI.getValueType(I.getType()); 2420 2421 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2422 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2423 2424 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2425 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2426 2427 setValue(&I, N); 2428 } 2429 2430 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2432 SDValue InVec = getValue(I.getOperand(0)); 2433 SDValue InVal = getValue(I.getOperand(1)); 2434 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2435 getCurSDLoc(), TLI.getVectorIdxTy()); 2436 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2437 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2438 } 2439 2440 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2442 SDValue InVec = getValue(I.getOperand(0)); 2443 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2444 getCurSDLoc(), TLI.getVectorIdxTy()); 2445 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2446 TLI.getValueType(I.getType()), InVec, InIdx)); 2447 } 2448 2449 // Utility for visitShuffleVector - Return true if every element in Mask, 2450 // beginning from position Pos and ending in Pos+Size, falls within the 2451 // specified sequential range [L, L+Pos). or is undef. 2452 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2453 unsigned Pos, unsigned Size, int Low) { 2454 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2455 if (Mask[i] >= 0 && Mask[i] != Low) 2456 return false; 2457 return true; 2458 } 2459 2460 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2461 SDValue Src1 = getValue(I.getOperand(0)); 2462 SDValue Src2 = getValue(I.getOperand(1)); 2463 2464 SmallVector<int, 8> Mask; 2465 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2466 unsigned MaskNumElts = Mask.size(); 2467 2468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2469 EVT VT = TLI.getValueType(I.getType()); 2470 EVT SrcVT = Src1.getValueType(); 2471 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2472 2473 if (SrcNumElts == MaskNumElts) { 2474 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2475 &Mask[0])); 2476 return; 2477 } 2478 2479 // Normalize the shuffle vector since mask and vector length don't match. 2480 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2481 // Mask is longer than the source vectors and is a multiple of the source 2482 // vectors. We can use concatenate vector to make the mask and vectors 2483 // lengths match. 2484 if (SrcNumElts*2 == MaskNumElts) { 2485 // First check for Src1 in low and Src2 in high 2486 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2487 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2488 // The shuffle is concatenating two vectors together. 2489 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2490 VT, Src1, Src2)); 2491 return; 2492 } 2493 // Then check for Src2 in low and Src1 in high 2494 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2495 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2496 // The shuffle is concatenating two vectors together. 2497 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2498 VT, Src2, Src1)); 2499 return; 2500 } 2501 } 2502 2503 // Pad both vectors with undefs to make them the same length as the mask. 2504 unsigned NumConcat = MaskNumElts / SrcNumElts; 2505 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2506 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2507 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2508 2509 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2510 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2511 MOps1[0] = Src1; 2512 MOps2[0] = Src2; 2513 2514 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2515 getCurSDLoc(), VT, MOps1); 2516 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2517 getCurSDLoc(), VT, MOps2); 2518 2519 // Readjust mask for new input vector length. 2520 SmallVector<int, 8> MappedOps; 2521 for (unsigned i = 0; i != MaskNumElts; ++i) { 2522 int Idx = Mask[i]; 2523 if (Idx >= (int)SrcNumElts) 2524 Idx -= SrcNumElts - MaskNumElts; 2525 MappedOps.push_back(Idx); 2526 } 2527 2528 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2529 &MappedOps[0])); 2530 return; 2531 } 2532 2533 if (SrcNumElts > MaskNumElts) { 2534 // Analyze the access pattern of the vector to see if we can extract 2535 // two subvectors and do the shuffle. The analysis is done by calculating 2536 // the range of elements the mask access on both vectors. 2537 int MinRange[2] = { static_cast<int>(SrcNumElts), 2538 static_cast<int>(SrcNumElts)}; 2539 int MaxRange[2] = {-1, -1}; 2540 2541 for (unsigned i = 0; i != MaskNumElts; ++i) { 2542 int Idx = Mask[i]; 2543 unsigned Input = 0; 2544 if (Idx < 0) 2545 continue; 2546 2547 if (Idx >= (int)SrcNumElts) { 2548 Input = 1; 2549 Idx -= SrcNumElts; 2550 } 2551 if (Idx > MaxRange[Input]) 2552 MaxRange[Input] = Idx; 2553 if (Idx < MinRange[Input]) 2554 MinRange[Input] = Idx; 2555 } 2556 2557 // Check if the access is smaller than the vector size and can we find 2558 // a reasonable extract index. 2559 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2560 // Extract. 2561 int StartIdx[2]; // StartIdx to extract from 2562 for (unsigned Input = 0; Input < 2; ++Input) { 2563 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2564 RangeUse[Input] = 0; // Unused 2565 StartIdx[Input] = 0; 2566 continue; 2567 } 2568 2569 // Find a good start index that is a multiple of the mask length. Then 2570 // see if the rest of the elements are in range. 2571 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2572 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2573 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2574 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2575 } 2576 2577 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2578 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2579 return; 2580 } 2581 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2582 // Extract appropriate subvector and generate a vector shuffle 2583 for (unsigned Input = 0; Input < 2; ++Input) { 2584 SDValue &Src = Input == 0 ? Src1 : Src2; 2585 if (RangeUse[Input] == 0) 2586 Src = DAG.getUNDEF(VT); 2587 else { 2588 SDLoc dl = getCurSDLoc(); 2589 Src = DAG.getNode( 2590 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2591 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2592 } 2593 } 2594 2595 // Calculate new mask. 2596 SmallVector<int, 8> MappedOps; 2597 for (unsigned i = 0; i != MaskNumElts; ++i) { 2598 int Idx = Mask[i]; 2599 if (Idx >= 0) { 2600 if (Idx < (int)SrcNumElts) 2601 Idx -= StartIdx[0]; 2602 else 2603 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2604 } 2605 MappedOps.push_back(Idx); 2606 } 2607 2608 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2609 &MappedOps[0])); 2610 return; 2611 } 2612 } 2613 2614 // We can't use either concat vectors or extract subvectors so fall back to 2615 // replacing the shuffle with extract and build vector. 2616 // to insert and build vector. 2617 EVT EltVT = VT.getVectorElementType(); 2618 EVT IdxVT = TLI.getVectorIdxTy(); 2619 SDLoc dl = getCurSDLoc(); 2620 SmallVector<SDValue,8> Ops; 2621 for (unsigned i = 0; i != MaskNumElts; ++i) { 2622 int Idx = Mask[i]; 2623 SDValue Res; 2624 2625 if (Idx < 0) { 2626 Res = DAG.getUNDEF(EltVT); 2627 } else { 2628 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2629 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2630 2631 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2632 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2633 } 2634 2635 Ops.push_back(Res); 2636 } 2637 2638 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2639 } 2640 2641 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2642 const Value *Op0 = I.getOperand(0); 2643 const Value *Op1 = I.getOperand(1); 2644 Type *AggTy = I.getType(); 2645 Type *ValTy = Op1->getType(); 2646 bool IntoUndef = isa<UndefValue>(Op0); 2647 bool FromUndef = isa<UndefValue>(Op1); 2648 2649 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2650 2651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2652 SmallVector<EVT, 4> AggValueVTs; 2653 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2654 SmallVector<EVT, 4> ValValueVTs; 2655 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2656 2657 unsigned NumAggValues = AggValueVTs.size(); 2658 unsigned NumValValues = ValValueVTs.size(); 2659 SmallVector<SDValue, 4> Values(NumAggValues); 2660 2661 // Ignore an insertvalue that produces an empty object 2662 if (!NumAggValues) { 2663 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2664 return; 2665 } 2666 2667 SDValue Agg = getValue(Op0); 2668 unsigned i = 0; 2669 // Copy the beginning value(s) from the original aggregate. 2670 for (; i != LinearIndex; ++i) 2671 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2672 SDValue(Agg.getNode(), Agg.getResNo() + i); 2673 // Copy values from the inserted value(s). 2674 if (NumValValues) { 2675 SDValue Val = getValue(Op1); 2676 for (; i != LinearIndex + NumValValues; ++i) 2677 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2678 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2679 } 2680 // Copy remaining value(s) from the original aggregate. 2681 for (; i != NumAggValues; ++i) 2682 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2683 SDValue(Agg.getNode(), Agg.getResNo() + i); 2684 2685 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2686 DAG.getVTList(AggValueVTs), Values)); 2687 } 2688 2689 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2690 const Value *Op0 = I.getOperand(0); 2691 Type *AggTy = Op0->getType(); 2692 Type *ValTy = I.getType(); 2693 bool OutOfUndef = isa<UndefValue>(Op0); 2694 2695 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2696 2697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2698 SmallVector<EVT, 4> ValValueVTs; 2699 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2700 2701 unsigned NumValValues = ValValueVTs.size(); 2702 2703 // Ignore a extractvalue that produces an empty object 2704 if (!NumValValues) { 2705 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2706 return; 2707 } 2708 2709 SmallVector<SDValue, 4> Values(NumValValues); 2710 2711 SDValue Agg = getValue(Op0); 2712 // Copy out the selected value(s). 2713 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2714 Values[i - LinearIndex] = 2715 OutOfUndef ? 2716 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2717 SDValue(Agg.getNode(), Agg.getResNo() + i); 2718 2719 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2720 DAG.getVTList(ValValueVTs), Values)); 2721 } 2722 2723 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2724 Value *Op0 = I.getOperand(0); 2725 // Note that the pointer operand may be a vector of pointers. Take the scalar 2726 // element which holds a pointer. 2727 Type *Ty = Op0->getType()->getScalarType(); 2728 unsigned AS = Ty->getPointerAddressSpace(); 2729 SDValue N = getValue(Op0); 2730 SDLoc dl = getCurSDLoc(); 2731 2732 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2733 OI != E; ++OI) { 2734 const Value *Idx = *OI; 2735 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2736 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2737 if (Field) { 2738 // N = N + Offset 2739 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2740 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2741 DAG.getConstant(Offset, dl, N.getValueType())); 2742 } 2743 2744 Ty = StTy->getElementType(Field); 2745 } else { 2746 Ty = cast<SequentialType>(Ty)->getElementType(); 2747 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2748 unsigned PtrSize = PtrTy.getSizeInBits(); 2749 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2750 2751 // If this is a constant subscript, handle it quickly. 2752 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2753 if (CI->isZero()) 2754 continue; 2755 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2756 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2757 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2758 continue; 2759 } 2760 2761 // N = N + Idx * ElementSize; 2762 SDValue IdxN = getValue(Idx); 2763 2764 // If the index is smaller or larger than intptr_t, truncate or extend 2765 // it. 2766 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2767 2768 // If this is a multiply by a power of two, turn it into a shl 2769 // immediately. This is a very common case. 2770 if (ElementSize != 1) { 2771 if (ElementSize.isPowerOf2()) { 2772 unsigned Amt = ElementSize.logBase2(); 2773 IdxN = DAG.getNode(ISD::SHL, dl, 2774 N.getValueType(), IdxN, 2775 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2776 } else { 2777 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2778 IdxN = DAG.getNode(ISD::MUL, dl, 2779 N.getValueType(), IdxN, Scale); 2780 } 2781 } 2782 2783 N = DAG.getNode(ISD::ADD, dl, 2784 N.getValueType(), N, IdxN); 2785 } 2786 } 2787 2788 setValue(&I, N); 2789 } 2790 2791 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2792 // If this is a fixed sized alloca in the entry block of the function, 2793 // allocate it statically on the stack. 2794 if (FuncInfo.StaticAllocaMap.count(&I)) 2795 return; // getValue will auto-populate this. 2796 2797 SDLoc dl = getCurSDLoc(); 2798 Type *Ty = I.getAllocatedType(); 2799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2800 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2801 unsigned Align = 2802 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2803 I.getAlignment()); 2804 2805 SDValue AllocSize = getValue(I.getArraySize()); 2806 2807 EVT IntPtr = TLI.getPointerTy(); 2808 if (AllocSize.getValueType() != IntPtr) 2809 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2810 2811 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2812 AllocSize, 2813 DAG.getConstant(TySize, dl, IntPtr)); 2814 2815 // Handle alignment. If the requested alignment is less than or equal to 2816 // the stack alignment, ignore it. If the size is greater than or equal to 2817 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2818 unsigned StackAlign = 2819 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2820 if (Align <= StackAlign) 2821 Align = 0; 2822 2823 // Round the size of the allocation up to the stack alignment size 2824 // by add SA-1 to the size. 2825 AllocSize = DAG.getNode(ISD::ADD, dl, 2826 AllocSize.getValueType(), AllocSize, 2827 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2828 2829 // Mask out the low bits for alignment purposes. 2830 AllocSize = DAG.getNode(ISD::AND, dl, 2831 AllocSize.getValueType(), AllocSize, 2832 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2833 dl)); 2834 2835 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2836 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2837 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2838 setValue(&I, DSA); 2839 DAG.setRoot(DSA.getValue(1)); 2840 2841 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2842 } 2843 2844 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2845 if (I.isAtomic()) 2846 return visitAtomicLoad(I); 2847 2848 const Value *SV = I.getOperand(0); 2849 SDValue Ptr = getValue(SV); 2850 2851 Type *Ty = I.getType(); 2852 2853 bool isVolatile = I.isVolatile(); 2854 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2855 2856 // The IR notion of invariant_load only guarantees that all *non-faulting* 2857 // invariant loads result in the same value. The MI notion of invariant load 2858 // guarantees that the load can be legally moved to any location within its 2859 // containing function. The MI notion of invariant_load is stronger than the 2860 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2861 // with a guarantee that the location being loaded from is dereferenceable 2862 // throughout the function's lifetime. 2863 2864 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2865 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2866 unsigned Alignment = I.getAlignment(); 2867 2868 AAMDNodes AAInfo; 2869 I.getAAMetadata(AAInfo); 2870 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2871 2872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2873 SmallVector<EVT, 4> ValueVTs; 2874 SmallVector<uint64_t, 4> Offsets; 2875 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2876 unsigned NumValues = ValueVTs.size(); 2877 if (NumValues == 0) 2878 return; 2879 2880 SDValue Root; 2881 bool ConstantMemory = false; 2882 if (isVolatile || NumValues > MaxParallelChains) 2883 // Serialize volatile loads with other side effects. 2884 Root = getRoot(); 2885 else if (AA->pointsToConstantMemory( 2886 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2887 // Do not serialize (non-volatile) loads of constant memory with anything. 2888 Root = DAG.getEntryNode(); 2889 ConstantMemory = true; 2890 } else { 2891 // Do not serialize non-volatile loads against each other. 2892 Root = DAG.getRoot(); 2893 } 2894 2895 SDLoc dl = getCurSDLoc(); 2896 2897 if (isVolatile) 2898 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2899 2900 SmallVector<SDValue, 4> Values(NumValues); 2901 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2902 NumValues)); 2903 EVT PtrVT = Ptr.getValueType(); 2904 unsigned ChainI = 0; 2905 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2906 // Serializing loads here may result in excessive register pressure, and 2907 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2908 // could recover a bit by hoisting nodes upward in the chain by recognizing 2909 // they are side-effect free or do not alias. The optimizer should really 2910 // avoid this case by converting large object/array copies to llvm.memcpy 2911 // (MaxParallelChains should always remain as failsafe). 2912 if (ChainI == MaxParallelChains) { 2913 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2914 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2915 makeArrayRef(Chains.data(), ChainI)); 2916 Root = Chain; 2917 ChainI = 0; 2918 } 2919 SDValue A = DAG.getNode(ISD::ADD, dl, 2920 PtrVT, Ptr, 2921 DAG.getConstant(Offsets[i], dl, PtrVT)); 2922 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2923 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2924 isNonTemporal, isInvariant, Alignment, AAInfo, 2925 Ranges); 2926 2927 Values[i] = L; 2928 Chains[ChainI] = L.getValue(1); 2929 } 2930 2931 if (!ConstantMemory) { 2932 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2933 makeArrayRef(Chains.data(), ChainI)); 2934 if (isVolatile) 2935 DAG.setRoot(Chain); 2936 else 2937 PendingLoads.push_back(Chain); 2938 } 2939 2940 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2941 DAG.getVTList(ValueVTs), Values)); 2942 } 2943 2944 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2945 if (I.isAtomic()) 2946 return visitAtomicStore(I); 2947 2948 const Value *SrcV = I.getOperand(0); 2949 const Value *PtrV = I.getOperand(1); 2950 2951 SmallVector<EVT, 4> ValueVTs; 2952 SmallVector<uint64_t, 4> Offsets; 2953 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2954 ValueVTs, &Offsets); 2955 unsigned NumValues = ValueVTs.size(); 2956 if (NumValues == 0) 2957 return; 2958 2959 // Get the lowered operands. Note that we do this after 2960 // checking if NumResults is zero, because with zero results 2961 // the operands won't have values in the map. 2962 SDValue Src = getValue(SrcV); 2963 SDValue Ptr = getValue(PtrV); 2964 2965 SDValue Root = getRoot(); 2966 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2967 NumValues)); 2968 EVT PtrVT = Ptr.getValueType(); 2969 bool isVolatile = I.isVolatile(); 2970 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2971 unsigned Alignment = I.getAlignment(); 2972 SDLoc dl = getCurSDLoc(); 2973 2974 AAMDNodes AAInfo; 2975 I.getAAMetadata(AAInfo); 2976 2977 unsigned ChainI = 0; 2978 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2979 // See visitLoad comments. 2980 if (ChainI == MaxParallelChains) { 2981 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2982 makeArrayRef(Chains.data(), ChainI)); 2983 Root = Chain; 2984 ChainI = 0; 2985 } 2986 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 2987 DAG.getConstant(Offsets[i], dl, PtrVT)); 2988 SDValue St = DAG.getStore(Root, dl, 2989 SDValue(Src.getNode(), Src.getResNo() + i), 2990 Add, MachinePointerInfo(PtrV, Offsets[i]), 2991 isVolatile, isNonTemporal, Alignment, AAInfo); 2992 Chains[ChainI] = St; 2993 } 2994 2995 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2996 makeArrayRef(Chains.data(), ChainI)); 2997 DAG.setRoot(StoreNode); 2998 } 2999 3000 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3001 SDLoc sdl = getCurSDLoc(); 3002 3003 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3004 Value *PtrOperand = I.getArgOperand(1); 3005 SDValue Ptr = getValue(PtrOperand); 3006 SDValue Src0 = getValue(I.getArgOperand(0)); 3007 SDValue Mask = getValue(I.getArgOperand(3)); 3008 EVT VT = Src0.getValueType(); 3009 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3010 if (!Alignment) 3011 Alignment = DAG.getEVTAlignment(VT); 3012 3013 AAMDNodes AAInfo; 3014 I.getAAMetadata(AAInfo); 3015 3016 MachineMemOperand *MMO = 3017 DAG.getMachineFunction(). 3018 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3019 MachineMemOperand::MOStore, VT.getStoreSize(), 3020 Alignment, AAInfo); 3021 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3022 MMO, false); 3023 DAG.setRoot(StoreNode); 3024 setValue(&I, StoreNode); 3025 } 3026 3027 // Gather/scatter receive a vector of pointers. 3028 // This vector of pointers may be represented as a base pointer + vector of 3029 // indices, it depends on GEP and instruction preceeding GEP 3030 // that calculates indices 3031 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3032 SelectionDAGBuilder* SDB) { 3033 3034 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3035 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3036 if (!Gep || Gep->getNumOperands() > 2) 3037 return false; 3038 ShuffleVectorInst *ShuffleInst = 3039 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3040 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3041 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3042 Instruction::InsertElement) 3043 return false; 3044 3045 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3046 3047 SelectionDAG& DAG = SDB->DAG; 3048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3049 // Check is the Ptr is inside current basic block 3050 // If not, look for the shuffle instruction 3051 if (SDB->findValue(Ptr)) 3052 Base = SDB->getValue(Ptr); 3053 else if (SDB->findValue(ShuffleInst)) { 3054 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3055 SDLoc sdl = ShuffleNode; 3056 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3057 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3058 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3059 SDB->setValue(Ptr, Base); 3060 } 3061 else 3062 return false; 3063 3064 Value *IndexVal = Gep->getOperand(1); 3065 if (SDB->findValue(IndexVal)) { 3066 Index = SDB->getValue(IndexVal); 3067 3068 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3069 IndexVal = Sext->getOperand(0); 3070 if (SDB->findValue(IndexVal)) 3071 Index = SDB->getValue(IndexVal); 3072 } 3073 return true; 3074 } 3075 return false; 3076 } 3077 3078 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3079 SDLoc sdl = getCurSDLoc(); 3080 3081 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3082 Value *Ptr = I.getArgOperand(1); 3083 SDValue Src0 = getValue(I.getArgOperand(0)); 3084 SDValue Mask = getValue(I.getArgOperand(3)); 3085 EVT VT = Src0.getValueType(); 3086 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3087 if (!Alignment) 3088 Alignment = DAG.getEVTAlignment(VT); 3089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3090 3091 AAMDNodes AAInfo; 3092 I.getAAMetadata(AAInfo); 3093 3094 SDValue Base; 3095 SDValue Index; 3096 Value *BasePtr = Ptr; 3097 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3098 3099 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3100 MachineMemOperand *MMO = DAG.getMachineFunction(). 3101 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3102 MachineMemOperand::MOStore, VT.getStoreSize(), 3103 Alignment, AAInfo); 3104 if (!UniformBase) { 3105 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3106 Index = getValue(Ptr); 3107 } 3108 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3109 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3110 Ops, MMO); 3111 DAG.setRoot(Scatter); 3112 setValue(&I, Scatter); 3113 } 3114 3115 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3116 SDLoc sdl = getCurSDLoc(); 3117 3118 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3119 Value *PtrOperand = I.getArgOperand(0); 3120 SDValue Ptr = getValue(PtrOperand); 3121 SDValue Src0 = getValue(I.getArgOperand(3)); 3122 SDValue Mask = getValue(I.getArgOperand(2)); 3123 3124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3125 EVT VT = TLI.getValueType(I.getType()); 3126 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3127 if (!Alignment) 3128 Alignment = DAG.getEVTAlignment(VT); 3129 3130 AAMDNodes AAInfo; 3131 I.getAAMetadata(AAInfo); 3132 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3133 3134 SDValue InChain = DAG.getRoot(); 3135 if (AA->pointsToConstantMemory( 3136 AliasAnalysis::Location(PtrOperand, 3137 AA->getTypeStoreSize(I.getType()), 3138 AAInfo))) { 3139 // Do not serialize (non-volatile) loads of constant memory with anything. 3140 InChain = DAG.getEntryNode(); 3141 } 3142 3143 MachineMemOperand *MMO = 3144 DAG.getMachineFunction(). 3145 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3146 MachineMemOperand::MOLoad, VT.getStoreSize(), 3147 Alignment, AAInfo, Ranges); 3148 3149 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3150 ISD::NON_EXTLOAD); 3151 SDValue OutChain = Load.getValue(1); 3152 DAG.setRoot(OutChain); 3153 setValue(&I, Load); 3154 } 3155 3156 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3157 SDLoc sdl = getCurSDLoc(); 3158 3159 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3160 Value *Ptr = I.getArgOperand(0); 3161 SDValue Src0 = getValue(I.getArgOperand(3)); 3162 SDValue Mask = getValue(I.getArgOperand(2)); 3163 3164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3165 EVT VT = TLI.getValueType(I.getType()); 3166 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3167 if (!Alignment) 3168 Alignment = DAG.getEVTAlignment(VT); 3169 3170 AAMDNodes AAInfo; 3171 I.getAAMetadata(AAInfo); 3172 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3173 3174 SDValue Root = DAG.getRoot(); 3175 SDValue Base; 3176 SDValue Index; 3177 Value *BasePtr = Ptr; 3178 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3179 bool ConstantMemory = false; 3180 if (UniformBase && AA->pointsToConstantMemory( 3181 AliasAnalysis::Location(BasePtr, 3182 AA->getTypeStoreSize(I.getType()), 3183 AAInfo))) { 3184 // Do not serialize (non-volatile) loads of constant memory with anything. 3185 Root = DAG.getEntryNode(); 3186 ConstantMemory = true; 3187 } 3188 3189 MachineMemOperand *MMO = 3190 DAG.getMachineFunction(). 3191 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3192 MachineMemOperand::MOLoad, VT.getStoreSize(), 3193 Alignment, AAInfo, Ranges); 3194 3195 if (!UniformBase) { 3196 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3197 Index = getValue(Ptr); 3198 } 3199 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3200 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3201 Ops, MMO); 3202 3203 SDValue OutChain = Gather.getValue(1); 3204 if (!ConstantMemory) 3205 PendingLoads.push_back(OutChain); 3206 setValue(&I, Gather); 3207 } 3208 3209 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3210 SDLoc dl = getCurSDLoc(); 3211 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3212 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3213 SynchronizationScope Scope = I.getSynchScope(); 3214 3215 SDValue InChain = getRoot(); 3216 3217 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3218 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3219 SDValue L = DAG.getAtomicCmpSwap( 3220 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3221 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3222 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3223 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3224 3225 SDValue OutChain = L.getValue(2); 3226 3227 setValue(&I, L); 3228 DAG.setRoot(OutChain); 3229 } 3230 3231 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3232 SDLoc dl = getCurSDLoc(); 3233 ISD::NodeType NT; 3234 switch (I.getOperation()) { 3235 default: llvm_unreachable("Unknown atomicrmw operation"); 3236 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3237 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3238 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3239 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3240 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3241 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3242 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3243 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3244 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3245 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3246 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3247 } 3248 AtomicOrdering Order = I.getOrdering(); 3249 SynchronizationScope Scope = I.getSynchScope(); 3250 3251 SDValue InChain = getRoot(); 3252 3253 SDValue L = 3254 DAG.getAtomic(NT, dl, 3255 getValue(I.getValOperand()).getSimpleValueType(), 3256 InChain, 3257 getValue(I.getPointerOperand()), 3258 getValue(I.getValOperand()), 3259 I.getPointerOperand(), 3260 /* Alignment=*/ 0, Order, Scope); 3261 3262 SDValue OutChain = L.getValue(1); 3263 3264 setValue(&I, L); 3265 DAG.setRoot(OutChain); 3266 } 3267 3268 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3269 SDLoc dl = getCurSDLoc(); 3270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3271 SDValue Ops[3]; 3272 Ops[0] = getRoot(); 3273 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3274 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3275 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3276 } 3277 3278 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3279 SDLoc dl = getCurSDLoc(); 3280 AtomicOrdering Order = I.getOrdering(); 3281 SynchronizationScope Scope = I.getSynchScope(); 3282 3283 SDValue InChain = getRoot(); 3284 3285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3286 EVT VT = TLI.getValueType(I.getType()); 3287 3288 if (I.getAlignment() < VT.getSizeInBits() / 8) 3289 report_fatal_error("Cannot generate unaligned atomic load"); 3290 3291 MachineMemOperand *MMO = 3292 DAG.getMachineFunction(). 3293 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3294 MachineMemOperand::MOVolatile | 3295 MachineMemOperand::MOLoad, 3296 VT.getStoreSize(), 3297 I.getAlignment() ? I.getAlignment() : 3298 DAG.getEVTAlignment(VT)); 3299 3300 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3301 SDValue L = 3302 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3303 getValue(I.getPointerOperand()), MMO, 3304 Order, Scope); 3305 3306 SDValue OutChain = L.getValue(1); 3307 3308 setValue(&I, L); 3309 DAG.setRoot(OutChain); 3310 } 3311 3312 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3313 SDLoc dl = getCurSDLoc(); 3314 3315 AtomicOrdering Order = I.getOrdering(); 3316 SynchronizationScope Scope = I.getSynchScope(); 3317 3318 SDValue InChain = getRoot(); 3319 3320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3321 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3322 3323 if (I.getAlignment() < VT.getSizeInBits() / 8) 3324 report_fatal_error("Cannot generate unaligned atomic store"); 3325 3326 SDValue OutChain = 3327 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3328 InChain, 3329 getValue(I.getPointerOperand()), 3330 getValue(I.getValueOperand()), 3331 I.getPointerOperand(), I.getAlignment(), 3332 Order, Scope); 3333 3334 DAG.setRoot(OutChain); 3335 } 3336 3337 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3338 /// node. 3339 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3340 unsigned Intrinsic) { 3341 bool HasChain = !I.doesNotAccessMemory(); 3342 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3343 3344 // Build the operand list. 3345 SmallVector<SDValue, 8> Ops; 3346 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3347 if (OnlyLoad) { 3348 // We don't need to serialize loads against other loads. 3349 Ops.push_back(DAG.getRoot()); 3350 } else { 3351 Ops.push_back(getRoot()); 3352 } 3353 } 3354 3355 // Info is set by getTgtMemInstrinsic 3356 TargetLowering::IntrinsicInfo Info; 3357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3358 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3359 3360 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3361 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3362 Info.opc == ISD::INTRINSIC_W_CHAIN) 3363 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3364 TLI.getPointerTy())); 3365 3366 // Add all operands of the call to the operand list. 3367 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3368 SDValue Op = getValue(I.getArgOperand(i)); 3369 Ops.push_back(Op); 3370 } 3371 3372 SmallVector<EVT, 4> ValueVTs; 3373 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3374 3375 if (HasChain) 3376 ValueVTs.push_back(MVT::Other); 3377 3378 SDVTList VTs = DAG.getVTList(ValueVTs); 3379 3380 // Create the node. 3381 SDValue Result; 3382 if (IsTgtIntrinsic) { 3383 // This is target intrinsic that touches memory 3384 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3385 VTs, Ops, Info.memVT, 3386 MachinePointerInfo(Info.ptrVal, Info.offset), 3387 Info.align, Info.vol, 3388 Info.readMem, Info.writeMem, Info.size); 3389 } else if (!HasChain) { 3390 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3391 } else if (!I.getType()->isVoidTy()) { 3392 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3393 } else { 3394 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3395 } 3396 3397 if (HasChain) { 3398 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3399 if (OnlyLoad) 3400 PendingLoads.push_back(Chain); 3401 else 3402 DAG.setRoot(Chain); 3403 } 3404 3405 if (!I.getType()->isVoidTy()) { 3406 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3407 EVT VT = TLI.getValueType(PTy); 3408 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3409 } 3410 3411 setValue(&I, Result); 3412 } 3413 } 3414 3415 /// GetSignificand - Get the significand and build it into a floating-point 3416 /// number with exponent of 1: 3417 /// 3418 /// Op = (Op & 0x007fffff) | 0x3f800000; 3419 /// 3420 /// where Op is the hexadecimal representation of floating point value. 3421 static SDValue 3422 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3423 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3424 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3425 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3426 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3427 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3428 } 3429 3430 /// GetExponent - Get the exponent: 3431 /// 3432 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3433 /// 3434 /// where Op is the hexadecimal representation of floating point value. 3435 static SDValue 3436 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3437 SDLoc dl) { 3438 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3439 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3440 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3441 DAG.getConstant(23, dl, TLI.getPointerTy())); 3442 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3443 DAG.getConstant(127, dl, MVT::i32)); 3444 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3445 } 3446 3447 /// getF32Constant - Get 32-bit floating point constant. 3448 static SDValue 3449 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3450 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3451 MVT::f32); 3452 } 3453 3454 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3455 SelectionDAG &DAG) { 3456 // IntegerPartOfX = ((int32_t)(t0); 3457 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3458 3459 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3460 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3461 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3462 3463 // IntegerPartOfX <<= 23; 3464 IntegerPartOfX = DAG.getNode( 3465 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3466 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3467 3468 SDValue TwoToFractionalPartOfX; 3469 if (LimitFloatPrecision <= 6) { 3470 // For floating-point precision of 6: 3471 // 3472 // TwoToFractionalPartOfX = 3473 // 0.997535578f + 3474 // (0.735607626f + 0.252464424f * x) * x; 3475 // 3476 // error 0.0144103317, which is 6 bits 3477 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3478 getF32Constant(DAG, 0x3e814304, dl)); 3479 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3480 getF32Constant(DAG, 0x3f3c50c8, dl)); 3481 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3482 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3483 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3484 } else if (LimitFloatPrecision <= 12) { 3485 // For floating-point precision of 12: 3486 // 3487 // TwoToFractionalPartOfX = 3488 // 0.999892986f + 3489 // (0.696457318f + 3490 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3491 // 3492 // error 0.000107046256, which is 13 to 14 bits 3493 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3494 getF32Constant(DAG, 0x3da235e3, dl)); 3495 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3496 getF32Constant(DAG, 0x3e65b8f3, dl)); 3497 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3498 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3499 getF32Constant(DAG, 0x3f324b07, dl)); 3500 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3501 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3502 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3503 } else { // LimitFloatPrecision <= 18 3504 // For floating-point precision of 18: 3505 // 3506 // TwoToFractionalPartOfX = 3507 // 0.999999982f + 3508 // (0.693148872f + 3509 // (0.240227044f + 3510 // (0.554906021e-1f + 3511 // (0.961591928e-2f + 3512 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3513 // error 2.47208000*10^(-7), which is better than 18 bits 3514 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3515 getF32Constant(DAG, 0x3924b03e, dl)); 3516 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3517 getF32Constant(DAG, 0x3ab24b87, dl)); 3518 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3519 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3520 getF32Constant(DAG, 0x3c1d8c17, dl)); 3521 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3522 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3523 getF32Constant(DAG, 0x3d634a1d, dl)); 3524 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3525 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3526 getF32Constant(DAG, 0x3e75fe14, dl)); 3527 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3528 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3529 getF32Constant(DAG, 0x3f317234, dl)); 3530 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3531 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3532 getF32Constant(DAG, 0x3f800000, dl)); 3533 } 3534 3535 // Add the exponent into the result in integer domain. 3536 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3537 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3538 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3539 } 3540 3541 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3542 /// limited-precision mode. 3543 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3544 const TargetLowering &TLI) { 3545 if (Op.getValueType() == MVT::f32 && 3546 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3547 3548 // Put the exponent in the right bit position for later addition to the 3549 // final result: 3550 // 3551 // #define LOG2OFe 1.4426950f 3552 // t0 = Op * LOG2OFe 3553 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3554 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3555 return getLimitedPrecisionExp2(t0, dl, DAG); 3556 } 3557 3558 // No special expansion. 3559 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3560 } 3561 3562 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3563 /// limited-precision mode. 3564 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3565 const TargetLowering &TLI) { 3566 if (Op.getValueType() == MVT::f32 && 3567 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3568 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3569 3570 // Scale the exponent by log(2) [0.69314718f]. 3571 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3572 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3573 getF32Constant(DAG, 0x3f317218, dl)); 3574 3575 // Get the significand and build it into a floating-point number with 3576 // exponent of 1. 3577 SDValue X = GetSignificand(DAG, Op1, dl); 3578 3579 SDValue LogOfMantissa; 3580 if (LimitFloatPrecision <= 6) { 3581 // For floating-point precision of 6: 3582 // 3583 // LogofMantissa = 3584 // -1.1609546f + 3585 // (1.4034025f - 0.23903021f * x) * x; 3586 // 3587 // error 0.0034276066, which is better than 8 bits 3588 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3589 getF32Constant(DAG, 0xbe74c456, dl)); 3590 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3591 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3592 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3593 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3594 getF32Constant(DAG, 0x3f949a29, dl)); 3595 } else if (LimitFloatPrecision <= 12) { 3596 // For floating-point precision of 12: 3597 // 3598 // LogOfMantissa = 3599 // -1.7417939f + 3600 // (2.8212026f + 3601 // (-1.4699568f + 3602 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3603 // 3604 // error 0.000061011436, which is 14 bits 3605 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3606 getF32Constant(DAG, 0xbd67b6d6, dl)); 3607 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3608 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3609 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3610 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3611 getF32Constant(DAG, 0x3fbc278b, dl)); 3612 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3613 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3614 getF32Constant(DAG, 0x40348e95, dl)); 3615 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3616 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3617 getF32Constant(DAG, 0x3fdef31a, dl)); 3618 } else { // LimitFloatPrecision <= 18 3619 // For floating-point precision of 18: 3620 // 3621 // LogOfMantissa = 3622 // -2.1072184f + 3623 // (4.2372794f + 3624 // (-3.7029485f + 3625 // (2.2781945f + 3626 // (-0.87823314f + 3627 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3628 // 3629 // error 0.0000023660568, which is better than 18 bits 3630 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3631 getF32Constant(DAG, 0xbc91e5ac, dl)); 3632 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3633 getF32Constant(DAG, 0x3e4350aa, dl)); 3634 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3635 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3636 getF32Constant(DAG, 0x3f60d3e3, dl)); 3637 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3638 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3639 getF32Constant(DAG, 0x4011cdf0, dl)); 3640 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3641 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3642 getF32Constant(DAG, 0x406cfd1c, dl)); 3643 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3644 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3645 getF32Constant(DAG, 0x408797cb, dl)); 3646 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3647 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3648 getF32Constant(DAG, 0x4006dcab, dl)); 3649 } 3650 3651 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3652 } 3653 3654 // No special expansion. 3655 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3656 } 3657 3658 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3659 /// limited-precision mode. 3660 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3661 const TargetLowering &TLI) { 3662 if (Op.getValueType() == MVT::f32 && 3663 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3664 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3665 3666 // Get the exponent. 3667 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3668 3669 // Get the significand and build it into a floating-point number with 3670 // exponent of 1. 3671 SDValue X = GetSignificand(DAG, Op1, dl); 3672 3673 // Different possible minimax approximations of significand in 3674 // floating-point for various degrees of accuracy over [1,2]. 3675 SDValue Log2ofMantissa; 3676 if (LimitFloatPrecision <= 6) { 3677 // For floating-point precision of 6: 3678 // 3679 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3680 // 3681 // error 0.0049451742, which is more than 7 bits 3682 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3683 getF32Constant(DAG, 0xbeb08fe0, dl)); 3684 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3685 getF32Constant(DAG, 0x40019463, dl)); 3686 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3687 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3688 getF32Constant(DAG, 0x3fd6633d, dl)); 3689 } else if (LimitFloatPrecision <= 12) { 3690 // For floating-point precision of 12: 3691 // 3692 // Log2ofMantissa = 3693 // -2.51285454f + 3694 // (4.07009056f + 3695 // (-2.12067489f + 3696 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3697 // 3698 // error 0.0000876136000, which is better than 13 bits 3699 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3700 getF32Constant(DAG, 0xbda7262e, dl)); 3701 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3702 getF32Constant(DAG, 0x3f25280b, dl)); 3703 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3704 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3705 getF32Constant(DAG, 0x4007b923, dl)); 3706 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3707 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3708 getF32Constant(DAG, 0x40823e2f, dl)); 3709 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3710 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3711 getF32Constant(DAG, 0x4020d29c, dl)); 3712 } else { // LimitFloatPrecision <= 18 3713 // For floating-point precision of 18: 3714 // 3715 // Log2ofMantissa = 3716 // -3.0400495f + 3717 // (6.1129976f + 3718 // (-5.3420409f + 3719 // (3.2865683f + 3720 // (-1.2669343f + 3721 // (0.27515199f - 3722 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3723 // 3724 // error 0.0000018516, which is better than 18 bits 3725 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3726 getF32Constant(DAG, 0xbcd2769e, dl)); 3727 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3728 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3729 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3730 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3731 getF32Constant(DAG, 0x3fa22ae7, dl)); 3732 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3733 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3734 getF32Constant(DAG, 0x40525723, dl)); 3735 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3736 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3737 getF32Constant(DAG, 0x40aaf200, dl)); 3738 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3739 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3740 getF32Constant(DAG, 0x40c39dad, dl)); 3741 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3742 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3743 getF32Constant(DAG, 0x4042902c, dl)); 3744 } 3745 3746 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3747 } 3748 3749 // No special expansion. 3750 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3751 } 3752 3753 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3754 /// limited-precision mode. 3755 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3756 const TargetLowering &TLI) { 3757 if (Op.getValueType() == MVT::f32 && 3758 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3759 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3760 3761 // Scale the exponent by log10(2) [0.30102999f]. 3762 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3763 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3764 getF32Constant(DAG, 0x3e9a209a, dl)); 3765 3766 // Get the significand and build it into a floating-point number with 3767 // exponent of 1. 3768 SDValue X = GetSignificand(DAG, Op1, dl); 3769 3770 SDValue Log10ofMantissa; 3771 if (LimitFloatPrecision <= 6) { 3772 // For floating-point precision of 6: 3773 // 3774 // Log10ofMantissa = 3775 // -0.50419619f + 3776 // (0.60948995f - 0.10380950f * x) * x; 3777 // 3778 // error 0.0014886165, which is 6 bits 3779 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3780 getF32Constant(DAG, 0xbdd49a13, dl)); 3781 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3782 getF32Constant(DAG, 0x3f1c0789, dl)); 3783 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3784 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3785 getF32Constant(DAG, 0x3f011300, dl)); 3786 } else if (LimitFloatPrecision <= 12) { 3787 // For floating-point precision of 12: 3788 // 3789 // Log10ofMantissa = 3790 // -0.64831180f + 3791 // (0.91751397f + 3792 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3793 // 3794 // error 0.00019228036, which is better than 12 bits 3795 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3796 getF32Constant(DAG, 0x3d431f31, dl)); 3797 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3798 getF32Constant(DAG, 0x3ea21fb2, dl)); 3799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3800 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3801 getF32Constant(DAG, 0x3f6ae232, dl)); 3802 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3803 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3804 getF32Constant(DAG, 0x3f25f7c3, dl)); 3805 } else { // LimitFloatPrecision <= 18 3806 // For floating-point precision of 18: 3807 // 3808 // Log10ofMantissa = 3809 // -0.84299375f + 3810 // (1.5327582f + 3811 // (-1.0688956f + 3812 // (0.49102474f + 3813 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3814 // 3815 // error 0.0000037995730, which is better than 18 bits 3816 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3817 getF32Constant(DAG, 0x3c5d51ce, dl)); 3818 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3819 getF32Constant(DAG, 0x3e00685a, dl)); 3820 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3821 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3822 getF32Constant(DAG, 0x3efb6798, dl)); 3823 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3824 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3825 getF32Constant(DAG, 0x3f88d192, dl)); 3826 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3827 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3828 getF32Constant(DAG, 0x3fc4316c, dl)); 3829 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3830 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3831 getF32Constant(DAG, 0x3f57ce70, dl)); 3832 } 3833 3834 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3835 } 3836 3837 // No special expansion. 3838 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3839 } 3840 3841 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3842 /// limited-precision mode. 3843 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3844 const TargetLowering &TLI) { 3845 if (Op.getValueType() == MVT::f32 && 3846 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3847 return getLimitedPrecisionExp2(Op, dl, DAG); 3848 3849 // No special expansion. 3850 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3851 } 3852 3853 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3854 /// limited-precision mode with x == 10.0f. 3855 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3856 SelectionDAG &DAG, const TargetLowering &TLI) { 3857 bool IsExp10 = false; 3858 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3859 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3860 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3861 APFloat Ten(10.0f); 3862 IsExp10 = LHSC->isExactlyValue(Ten); 3863 } 3864 } 3865 3866 if (IsExp10) { 3867 // Put the exponent in the right bit position for later addition to the 3868 // final result: 3869 // 3870 // #define LOG2OF10 3.3219281f 3871 // t0 = Op * LOG2OF10; 3872 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3873 getF32Constant(DAG, 0x40549a78, dl)); 3874 return getLimitedPrecisionExp2(t0, dl, DAG); 3875 } 3876 3877 // No special expansion. 3878 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3879 } 3880 3881 3882 /// ExpandPowI - Expand a llvm.powi intrinsic. 3883 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3884 SelectionDAG &DAG) { 3885 // If RHS is a constant, we can expand this out to a multiplication tree, 3886 // otherwise we end up lowering to a call to __powidf2 (for example). When 3887 // optimizing for size, we only want to do this if the expansion would produce 3888 // a small number of multiplies, otherwise we do the full expansion. 3889 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3890 // Get the exponent as a positive value. 3891 unsigned Val = RHSC->getSExtValue(); 3892 if ((int)Val < 0) Val = -Val; 3893 3894 // powi(x, 0) -> 1.0 3895 if (Val == 0) 3896 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3897 3898 const Function *F = DAG.getMachineFunction().getFunction(); 3899 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3900 // If optimizing for size, don't insert too many multiplies. This 3901 // inserts up to 5 multiplies. 3902 countPopulation(Val) + Log2_32(Val) < 7) { 3903 // We use the simple binary decomposition method to generate the multiply 3904 // sequence. There are more optimal ways to do this (for example, 3905 // powi(x,15) generates one more multiply than it should), but this has 3906 // the benefit of being both really simple and much better than a libcall. 3907 SDValue Res; // Logically starts equal to 1.0 3908 SDValue CurSquare = LHS; 3909 while (Val) { 3910 if (Val & 1) { 3911 if (Res.getNode()) 3912 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3913 else 3914 Res = CurSquare; // 1.0*CurSquare. 3915 } 3916 3917 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3918 CurSquare, CurSquare); 3919 Val >>= 1; 3920 } 3921 3922 // If the original was negative, invert the result, producing 1/(x*x*x). 3923 if (RHSC->getSExtValue() < 0) 3924 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3925 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3926 return Res; 3927 } 3928 } 3929 3930 // Otherwise, expand to a libcall. 3931 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3932 } 3933 3934 // getTruncatedArgReg - Find underlying register used for an truncated 3935 // argument. 3936 static unsigned getTruncatedArgReg(const SDValue &N) { 3937 if (N.getOpcode() != ISD::TRUNCATE) 3938 return 0; 3939 3940 const SDValue &Ext = N.getOperand(0); 3941 if (Ext.getOpcode() == ISD::AssertZext || 3942 Ext.getOpcode() == ISD::AssertSext) { 3943 const SDValue &CFR = Ext.getOperand(0); 3944 if (CFR.getOpcode() == ISD::CopyFromReg) 3945 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3946 if (CFR.getOpcode() == ISD::TRUNCATE) 3947 return getTruncatedArgReg(CFR); 3948 } 3949 return 0; 3950 } 3951 3952 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3953 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3954 /// At the end of instruction selection, they will be inserted to the entry BB. 3955 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3956 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3957 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3958 const Argument *Arg = dyn_cast<Argument>(V); 3959 if (!Arg) 3960 return false; 3961 3962 MachineFunction &MF = DAG.getMachineFunction(); 3963 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3964 3965 // Ignore inlined function arguments here. 3966 // 3967 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3968 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3969 return false; 3970 3971 Optional<MachineOperand> Op; 3972 // Some arguments' frame index is recorded during argument lowering. 3973 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3974 Op = MachineOperand::CreateFI(FI); 3975 3976 if (!Op && N.getNode()) { 3977 unsigned Reg; 3978 if (N.getOpcode() == ISD::CopyFromReg) 3979 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3980 else 3981 Reg = getTruncatedArgReg(N); 3982 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3983 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3984 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3985 if (PR) 3986 Reg = PR; 3987 } 3988 if (Reg) 3989 Op = MachineOperand::CreateReg(Reg, false); 3990 } 3991 3992 if (!Op) { 3993 // Check if ValueMap has reg number. 3994 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3995 if (VMI != FuncInfo.ValueMap.end()) 3996 Op = MachineOperand::CreateReg(VMI->second, false); 3997 } 3998 3999 if (!Op && N.getNode()) 4000 // Check if frame index is available. 4001 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4002 if (FrameIndexSDNode *FINode = 4003 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4004 Op = MachineOperand::CreateFI(FINode->getIndex()); 4005 4006 if (!Op) 4007 return false; 4008 4009 assert(Variable->isValidLocationForIntrinsic(DL) && 4010 "Expected inlined-at fields to agree"); 4011 if (Op->isReg()) 4012 FuncInfo.ArgDbgValues.push_back( 4013 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4014 Op->getReg(), Offset, Variable, Expr)); 4015 else 4016 FuncInfo.ArgDbgValues.push_back( 4017 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4018 .addOperand(*Op) 4019 .addImm(Offset) 4020 .addMetadata(Variable) 4021 .addMetadata(Expr)); 4022 4023 return true; 4024 } 4025 4026 // VisualStudio defines setjmp as _setjmp 4027 #if defined(_MSC_VER) && defined(setjmp) && \ 4028 !defined(setjmp_undefined_for_msvc) 4029 # pragma push_macro("setjmp") 4030 # undef setjmp 4031 # define setjmp_undefined_for_msvc 4032 #endif 4033 4034 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4035 /// we want to emit this as a call to a named external function, return the name 4036 /// otherwise lower it and return null. 4037 const char * 4038 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4040 SDLoc sdl = getCurSDLoc(); 4041 DebugLoc dl = getCurDebugLoc(); 4042 SDValue Res; 4043 4044 switch (Intrinsic) { 4045 default: 4046 // By default, turn this into a target intrinsic node. 4047 visitTargetIntrinsic(I, Intrinsic); 4048 return nullptr; 4049 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4050 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4051 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4052 case Intrinsic::returnaddress: 4053 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4054 getValue(I.getArgOperand(0)))); 4055 return nullptr; 4056 case Intrinsic::frameaddress: 4057 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4058 getValue(I.getArgOperand(0)))); 4059 return nullptr; 4060 case Intrinsic::read_register: { 4061 Value *Reg = I.getArgOperand(0); 4062 SDValue Chain = getRoot(); 4063 SDValue RegName = 4064 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4065 EVT VT = TLI.getValueType(I.getType()); 4066 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4067 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4068 setValue(&I, Res); 4069 DAG.setRoot(Res.getValue(1)); 4070 return nullptr; 4071 } 4072 case Intrinsic::write_register: { 4073 Value *Reg = I.getArgOperand(0); 4074 Value *RegValue = I.getArgOperand(1); 4075 SDValue Chain = getRoot(); 4076 SDValue RegName = 4077 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4078 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4079 RegName, getValue(RegValue))); 4080 return nullptr; 4081 } 4082 case Intrinsic::setjmp: 4083 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4084 case Intrinsic::longjmp: 4085 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4086 case Intrinsic::memcpy: { 4087 // FIXME: this definition of "user defined address space" is x86-specific 4088 // Assert for address < 256 since we support only user defined address 4089 // spaces. 4090 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4091 < 256 && 4092 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4093 < 256 && 4094 "Unknown address space"); 4095 SDValue Op1 = getValue(I.getArgOperand(0)); 4096 SDValue Op2 = getValue(I.getArgOperand(1)); 4097 SDValue Op3 = getValue(I.getArgOperand(2)); 4098 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4099 if (!Align) 4100 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4101 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4102 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4103 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4104 false, isTC, 4105 MachinePointerInfo(I.getArgOperand(0)), 4106 MachinePointerInfo(I.getArgOperand(1))); 4107 updateDAGForMaybeTailCall(MC); 4108 return nullptr; 4109 } 4110 case Intrinsic::memset: { 4111 // FIXME: this definition of "user defined address space" is x86-specific 4112 // Assert for address < 256 since we support only user defined address 4113 // spaces. 4114 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4115 < 256 && 4116 "Unknown address space"); 4117 SDValue Op1 = getValue(I.getArgOperand(0)); 4118 SDValue Op2 = getValue(I.getArgOperand(1)); 4119 SDValue Op3 = getValue(I.getArgOperand(2)); 4120 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4121 if (!Align) 4122 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4123 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4124 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4125 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4126 isTC, MachinePointerInfo(I.getArgOperand(0))); 4127 updateDAGForMaybeTailCall(MS); 4128 return nullptr; 4129 } 4130 case Intrinsic::memmove: { 4131 // FIXME: this definition of "user defined address space" is x86-specific 4132 // Assert for address < 256 since we support only user defined address 4133 // spaces. 4134 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4135 < 256 && 4136 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4137 < 256 && 4138 "Unknown address space"); 4139 SDValue Op1 = getValue(I.getArgOperand(0)); 4140 SDValue Op2 = getValue(I.getArgOperand(1)); 4141 SDValue Op3 = getValue(I.getArgOperand(2)); 4142 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4143 if (!Align) 4144 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4145 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4146 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4147 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4148 isTC, MachinePointerInfo(I.getArgOperand(0)), 4149 MachinePointerInfo(I.getArgOperand(1))); 4150 updateDAGForMaybeTailCall(MM); 4151 return nullptr; 4152 } 4153 case Intrinsic::dbg_declare: { 4154 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4155 DILocalVariable *Variable = DI.getVariable(); 4156 DIExpression *Expression = DI.getExpression(); 4157 const Value *Address = DI.getAddress(); 4158 assert(Variable && "Missing variable"); 4159 if (!Address) { 4160 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4161 return nullptr; 4162 } 4163 4164 // Check if address has undef value. 4165 if (isa<UndefValue>(Address) || 4166 (Address->use_empty() && !isa<Argument>(Address))) { 4167 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4168 return nullptr; 4169 } 4170 4171 SDValue &N = NodeMap[Address]; 4172 if (!N.getNode() && isa<Argument>(Address)) 4173 // Check unused arguments map. 4174 N = UnusedArgNodeMap[Address]; 4175 SDDbgValue *SDV; 4176 if (N.getNode()) { 4177 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4178 Address = BCI->getOperand(0); 4179 // Parameters are handled specially. 4180 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4181 isa<Argument>(Address); 4182 4183 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4184 4185 if (isParameter && !AI) { 4186 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4187 if (FINode) 4188 // Byval parameter. We have a frame index at this point. 4189 SDV = DAG.getFrameIndexDbgValue( 4190 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4191 else { 4192 // Address is an argument, so try to emit its dbg value using 4193 // virtual register info from the FuncInfo.ValueMap. 4194 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4195 N); 4196 return nullptr; 4197 } 4198 } else if (AI) 4199 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4200 true, 0, dl, SDNodeOrder); 4201 else { 4202 // Can't do anything with other non-AI cases yet. 4203 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4204 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4205 DEBUG(Address->dump()); 4206 return nullptr; 4207 } 4208 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4209 } else { 4210 // If Address is an argument then try to emit its dbg value using 4211 // virtual register info from the FuncInfo.ValueMap. 4212 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4213 N)) { 4214 // If variable is pinned by a alloca in dominating bb then 4215 // use StaticAllocaMap. 4216 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4217 if (AI->getParent() != DI.getParent()) { 4218 DenseMap<const AllocaInst*, int>::iterator SI = 4219 FuncInfo.StaticAllocaMap.find(AI); 4220 if (SI != FuncInfo.StaticAllocaMap.end()) { 4221 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4222 0, dl, SDNodeOrder); 4223 DAG.AddDbgValue(SDV, nullptr, false); 4224 return nullptr; 4225 } 4226 } 4227 } 4228 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4229 } 4230 } 4231 return nullptr; 4232 } 4233 case Intrinsic::dbg_value: { 4234 const DbgValueInst &DI = cast<DbgValueInst>(I); 4235 assert(DI.getVariable() && "Missing variable"); 4236 4237 DILocalVariable *Variable = DI.getVariable(); 4238 DIExpression *Expression = DI.getExpression(); 4239 uint64_t Offset = DI.getOffset(); 4240 const Value *V = DI.getValue(); 4241 if (!V) 4242 return nullptr; 4243 4244 SDDbgValue *SDV; 4245 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4246 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4247 SDNodeOrder); 4248 DAG.AddDbgValue(SDV, nullptr, false); 4249 } else { 4250 // Do not use getValue() in here; we don't want to generate code at 4251 // this point if it hasn't been done yet. 4252 SDValue N = NodeMap[V]; 4253 if (!N.getNode() && isa<Argument>(V)) 4254 // Check unused arguments map. 4255 N = UnusedArgNodeMap[V]; 4256 if (N.getNode()) { 4257 // A dbg.value for an alloca is always indirect. 4258 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4259 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4260 IsIndirect, N)) { 4261 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4262 IsIndirect, Offset, dl, SDNodeOrder); 4263 DAG.AddDbgValue(SDV, N.getNode(), false); 4264 } 4265 } else if (!V->use_empty() ) { 4266 // Do not call getValue(V) yet, as we don't want to generate code. 4267 // Remember it for later. 4268 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4269 DanglingDebugInfoMap[V] = DDI; 4270 } else { 4271 // We may expand this to cover more cases. One case where we have no 4272 // data available is an unreferenced parameter. 4273 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4274 } 4275 } 4276 4277 // Build a debug info table entry. 4278 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4279 V = BCI->getOperand(0); 4280 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4281 // Don't handle byval struct arguments or VLAs, for example. 4282 if (!AI) { 4283 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4284 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4285 return nullptr; 4286 } 4287 DenseMap<const AllocaInst*, int>::iterator SI = 4288 FuncInfo.StaticAllocaMap.find(AI); 4289 if (SI == FuncInfo.StaticAllocaMap.end()) 4290 return nullptr; // VLAs. 4291 return nullptr; 4292 } 4293 4294 case Intrinsic::eh_typeid_for: { 4295 // Find the type id for the given typeinfo. 4296 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4297 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4298 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4299 setValue(&I, Res); 4300 return nullptr; 4301 } 4302 4303 case Intrinsic::eh_return_i32: 4304 case Intrinsic::eh_return_i64: 4305 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4306 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4307 MVT::Other, 4308 getControlRoot(), 4309 getValue(I.getArgOperand(0)), 4310 getValue(I.getArgOperand(1)))); 4311 return nullptr; 4312 case Intrinsic::eh_unwind_init: 4313 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4314 return nullptr; 4315 case Intrinsic::eh_dwarf_cfa: { 4316 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4317 TLI.getPointerTy()); 4318 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4319 CfaArg.getValueType(), 4320 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4321 CfaArg.getValueType()), 4322 CfaArg); 4323 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4324 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4325 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4326 FA, Offset)); 4327 return nullptr; 4328 } 4329 case Intrinsic::eh_sjlj_callsite: { 4330 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4331 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4332 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4333 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4334 4335 MMI.setCurrentCallSite(CI->getZExtValue()); 4336 return nullptr; 4337 } 4338 case Intrinsic::eh_sjlj_functioncontext: { 4339 // Get and store the index of the function context. 4340 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4341 AllocaInst *FnCtx = 4342 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4343 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4344 MFI->setFunctionContextIndex(FI); 4345 return nullptr; 4346 } 4347 case Intrinsic::eh_sjlj_setjmp: { 4348 SDValue Ops[2]; 4349 Ops[0] = getRoot(); 4350 Ops[1] = getValue(I.getArgOperand(0)); 4351 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4352 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4353 setValue(&I, Op.getValue(0)); 4354 DAG.setRoot(Op.getValue(1)); 4355 return nullptr; 4356 } 4357 case Intrinsic::eh_sjlj_longjmp: { 4358 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4359 getRoot(), getValue(I.getArgOperand(0)))); 4360 return nullptr; 4361 } 4362 4363 case Intrinsic::masked_gather: 4364 visitMaskedGather(I); 4365 return nullptr; 4366 case Intrinsic::masked_load: 4367 visitMaskedLoad(I); 4368 return nullptr; 4369 case Intrinsic::masked_scatter: 4370 visitMaskedScatter(I); 4371 return nullptr; 4372 case Intrinsic::masked_store: 4373 visitMaskedStore(I); 4374 return nullptr; 4375 case Intrinsic::x86_mmx_pslli_w: 4376 case Intrinsic::x86_mmx_pslli_d: 4377 case Intrinsic::x86_mmx_pslli_q: 4378 case Intrinsic::x86_mmx_psrli_w: 4379 case Intrinsic::x86_mmx_psrli_d: 4380 case Intrinsic::x86_mmx_psrli_q: 4381 case Intrinsic::x86_mmx_psrai_w: 4382 case Intrinsic::x86_mmx_psrai_d: { 4383 SDValue ShAmt = getValue(I.getArgOperand(1)); 4384 if (isa<ConstantSDNode>(ShAmt)) { 4385 visitTargetIntrinsic(I, Intrinsic); 4386 return nullptr; 4387 } 4388 unsigned NewIntrinsic = 0; 4389 EVT ShAmtVT = MVT::v2i32; 4390 switch (Intrinsic) { 4391 case Intrinsic::x86_mmx_pslli_w: 4392 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4393 break; 4394 case Intrinsic::x86_mmx_pslli_d: 4395 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4396 break; 4397 case Intrinsic::x86_mmx_pslli_q: 4398 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4399 break; 4400 case Intrinsic::x86_mmx_psrli_w: 4401 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4402 break; 4403 case Intrinsic::x86_mmx_psrli_d: 4404 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4405 break; 4406 case Intrinsic::x86_mmx_psrli_q: 4407 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4408 break; 4409 case Intrinsic::x86_mmx_psrai_w: 4410 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4411 break; 4412 case Intrinsic::x86_mmx_psrai_d: 4413 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4414 break; 4415 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4416 } 4417 4418 // The vector shift intrinsics with scalars uses 32b shift amounts but 4419 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4420 // to be zero. 4421 // We must do this early because v2i32 is not a legal type. 4422 SDValue ShOps[2]; 4423 ShOps[0] = ShAmt; 4424 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4425 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4426 EVT DestVT = TLI.getValueType(I.getType()); 4427 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4428 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4429 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4430 getValue(I.getArgOperand(0)), ShAmt); 4431 setValue(&I, Res); 4432 return nullptr; 4433 } 4434 case Intrinsic::convertff: 4435 case Intrinsic::convertfsi: 4436 case Intrinsic::convertfui: 4437 case Intrinsic::convertsif: 4438 case Intrinsic::convertuif: 4439 case Intrinsic::convertss: 4440 case Intrinsic::convertsu: 4441 case Intrinsic::convertus: 4442 case Intrinsic::convertuu: { 4443 ISD::CvtCode Code = ISD::CVT_INVALID; 4444 switch (Intrinsic) { 4445 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4446 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4447 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4448 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4449 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4450 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4451 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4452 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4453 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4454 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4455 } 4456 EVT DestVT = TLI.getValueType(I.getType()); 4457 const Value *Op1 = I.getArgOperand(0); 4458 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4459 DAG.getValueType(DestVT), 4460 DAG.getValueType(getValue(Op1).getValueType()), 4461 getValue(I.getArgOperand(1)), 4462 getValue(I.getArgOperand(2)), 4463 Code); 4464 setValue(&I, Res); 4465 return nullptr; 4466 } 4467 case Intrinsic::powi: 4468 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4469 getValue(I.getArgOperand(1)), DAG)); 4470 return nullptr; 4471 case Intrinsic::log: 4472 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4473 return nullptr; 4474 case Intrinsic::log2: 4475 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4476 return nullptr; 4477 case Intrinsic::log10: 4478 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4479 return nullptr; 4480 case Intrinsic::exp: 4481 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4482 return nullptr; 4483 case Intrinsic::exp2: 4484 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4485 return nullptr; 4486 case Intrinsic::pow: 4487 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4488 getValue(I.getArgOperand(1)), DAG, TLI)); 4489 return nullptr; 4490 case Intrinsic::sqrt: 4491 case Intrinsic::fabs: 4492 case Intrinsic::sin: 4493 case Intrinsic::cos: 4494 case Intrinsic::floor: 4495 case Intrinsic::ceil: 4496 case Intrinsic::trunc: 4497 case Intrinsic::rint: 4498 case Intrinsic::nearbyint: 4499 case Intrinsic::round: { 4500 unsigned Opcode; 4501 switch (Intrinsic) { 4502 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4503 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4504 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4505 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4506 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4507 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4508 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4509 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4510 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4511 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4512 case Intrinsic::round: Opcode = ISD::FROUND; break; 4513 } 4514 4515 setValue(&I, DAG.getNode(Opcode, sdl, 4516 getValue(I.getArgOperand(0)).getValueType(), 4517 getValue(I.getArgOperand(0)))); 4518 return nullptr; 4519 } 4520 case Intrinsic::minnum: 4521 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4522 getValue(I.getArgOperand(0)).getValueType(), 4523 getValue(I.getArgOperand(0)), 4524 getValue(I.getArgOperand(1)))); 4525 return nullptr; 4526 case Intrinsic::maxnum: 4527 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4528 getValue(I.getArgOperand(0)).getValueType(), 4529 getValue(I.getArgOperand(0)), 4530 getValue(I.getArgOperand(1)))); 4531 return nullptr; 4532 case Intrinsic::copysign: 4533 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4534 getValue(I.getArgOperand(0)).getValueType(), 4535 getValue(I.getArgOperand(0)), 4536 getValue(I.getArgOperand(1)))); 4537 return nullptr; 4538 case Intrinsic::fma: 4539 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4540 getValue(I.getArgOperand(0)).getValueType(), 4541 getValue(I.getArgOperand(0)), 4542 getValue(I.getArgOperand(1)), 4543 getValue(I.getArgOperand(2)))); 4544 return nullptr; 4545 case Intrinsic::fmuladd: { 4546 EVT VT = TLI.getValueType(I.getType()); 4547 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4548 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4549 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4550 getValue(I.getArgOperand(0)).getValueType(), 4551 getValue(I.getArgOperand(0)), 4552 getValue(I.getArgOperand(1)), 4553 getValue(I.getArgOperand(2)))); 4554 } else { 4555 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4556 getValue(I.getArgOperand(0)).getValueType(), 4557 getValue(I.getArgOperand(0)), 4558 getValue(I.getArgOperand(1))); 4559 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4560 getValue(I.getArgOperand(0)).getValueType(), 4561 Mul, 4562 getValue(I.getArgOperand(2))); 4563 setValue(&I, Add); 4564 } 4565 return nullptr; 4566 } 4567 case Intrinsic::convert_to_fp16: 4568 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4569 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4570 getValue(I.getArgOperand(0)), 4571 DAG.getTargetConstant(0, sdl, 4572 MVT::i32)))); 4573 return nullptr; 4574 case Intrinsic::convert_from_fp16: 4575 setValue(&I, 4576 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4577 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4578 getValue(I.getArgOperand(0))))); 4579 return nullptr; 4580 case Intrinsic::pcmarker: { 4581 SDValue Tmp = getValue(I.getArgOperand(0)); 4582 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4583 return nullptr; 4584 } 4585 case Intrinsic::readcyclecounter: { 4586 SDValue Op = getRoot(); 4587 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4588 DAG.getVTList(MVT::i64, MVT::Other), Op); 4589 setValue(&I, Res); 4590 DAG.setRoot(Res.getValue(1)); 4591 return nullptr; 4592 } 4593 case Intrinsic::bswap: 4594 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4595 getValue(I.getArgOperand(0)).getValueType(), 4596 getValue(I.getArgOperand(0)))); 4597 return nullptr; 4598 case Intrinsic::cttz: { 4599 SDValue Arg = getValue(I.getArgOperand(0)); 4600 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4601 EVT Ty = Arg.getValueType(); 4602 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4603 sdl, Ty, Arg)); 4604 return nullptr; 4605 } 4606 case Intrinsic::ctlz: { 4607 SDValue Arg = getValue(I.getArgOperand(0)); 4608 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4609 EVT Ty = Arg.getValueType(); 4610 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4611 sdl, Ty, Arg)); 4612 return nullptr; 4613 } 4614 case Intrinsic::ctpop: { 4615 SDValue Arg = getValue(I.getArgOperand(0)); 4616 EVT Ty = Arg.getValueType(); 4617 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4618 return nullptr; 4619 } 4620 case Intrinsic::stacksave: { 4621 SDValue Op = getRoot(); 4622 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4623 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4624 setValue(&I, Res); 4625 DAG.setRoot(Res.getValue(1)); 4626 return nullptr; 4627 } 4628 case Intrinsic::stackrestore: { 4629 Res = getValue(I.getArgOperand(0)); 4630 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4631 return nullptr; 4632 } 4633 case Intrinsic::stackprotector: { 4634 // Emit code into the DAG to store the stack guard onto the stack. 4635 MachineFunction &MF = DAG.getMachineFunction(); 4636 MachineFrameInfo *MFI = MF.getFrameInfo(); 4637 EVT PtrTy = TLI.getPointerTy(); 4638 SDValue Src, Chain = getRoot(); 4639 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4640 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4641 4642 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4643 // global variable __stack_chk_guard. 4644 if (!GV) 4645 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4646 if (BC->getOpcode() == Instruction::BitCast) 4647 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4648 4649 if (GV && TLI.useLoadStackGuardNode()) { 4650 // Emit a LOAD_STACK_GUARD node. 4651 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4652 sdl, PtrTy, Chain); 4653 MachinePointerInfo MPInfo(GV); 4654 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4655 unsigned Flags = MachineMemOperand::MOLoad | 4656 MachineMemOperand::MOInvariant; 4657 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4658 PtrTy.getSizeInBits() / 8, 4659 DAG.getEVTAlignment(PtrTy)); 4660 Node->setMemRefs(MemRefs, MemRefs + 1); 4661 4662 // Copy the guard value to a virtual register so that it can be 4663 // retrieved in the epilogue. 4664 Src = SDValue(Node, 0); 4665 const TargetRegisterClass *RC = 4666 TLI.getRegClassFor(Src.getSimpleValueType()); 4667 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4668 4669 SPDescriptor.setGuardReg(Reg); 4670 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4671 } else { 4672 Src = getValue(I.getArgOperand(0)); // The guard's value. 4673 } 4674 4675 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4676 4677 int FI = FuncInfo.StaticAllocaMap[Slot]; 4678 MFI->setStackProtectorIndex(FI); 4679 4680 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4681 4682 // Store the stack protector onto the stack. 4683 Res = DAG.getStore(Chain, sdl, Src, FIN, 4684 MachinePointerInfo::getFixedStack(FI), 4685 true, false, 0); 4686 setValue(&I, Res); 4687 DAG.setRoot(Res); 4688 return nullptr; 4689 } 4690 case Intrinsic::objectsize: { 4691 // If we don't know by now, we're never going to know. 4692 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4693 4694 assert(CI && "Non-constant type in __builtin_object_size?"); 4695 4696 SDValue Arg = getValue(I.getCalledValue()); 4697 EVT Ty = Arg.getValueType(); 4698 4699 if (CI->isZero()) 4700 Res = DAG.getConstant(-1ULL, sdl, Ty); 4701 else 4702 Res = DAG.getConstant(0, sdl, Ty); 4703 4704 setValue(&I, Res); 4705 return nullptr; 4706 } 4707 case Intrinsic::annotation: 4708 case Intrinsic::ptr_annotation: 4709 // Drop the intrinsic, but forward the value 4710 setValue(&I, getValue(I.getOperand(0))); 4711 return nullptr; 4712 case Intrinsic::assume: 4713 case Intrinsic::var_annotation: 4714 // Discard annotate attributes and assumptions 4715 return nullptr; 4716 4717 case Intrinsic::init_trampoline: { 4718 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4719 4720 SDValue Ops[6]; 4721 Ops[0] = getRoot(); 4722 Ops[1] = getValue(I.getArgOperand(0)); 4723 Ops[2] = getValue(I.getArgOperand(1)); 4724 Ops[3] = getValue(I.getArgOperand(2)); 4725 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4726 Ops[5] = DAG.getSrcValue(F); 4727 4728 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4729 4730 DAG.setRoot(Res); 4731 return nullptr; 4732 } 4733 case Intrinsic::adjust_trampoline: { 4734 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4735 TLI.getPointerTy(), 4736 getValue(I.getArgOperand(0)))); 4737 return nullptr; 4738 } 4739 case Intrinsic::gcroot: 4740 if (GFI) { 4741 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4742 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4743 4744 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4745 GFI->addStackRoot(FI->getIndex(), TypeMap); 4746 } 4747 return nullptr; 4748 case Intrinsic::gcread: 4749 case Intrinsic::gcwrite: 4750 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4751 case Intrinsic::flt_rounds: 4752 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4753 return nullptr; 4754 4755 case Intrinsic::expect: { 4756 // Just replace __builtin_expect(exp, c) with EXP. 4757 setValue(&I, getValue(I.getArgOperand(0))); 4758 return nullptr; 4759 } 4760 4761 case Intrinsic::debugtrap: 4762 case Intrinsic::trap: { 4763 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4764 if (TrapFuncName.empty()) { 4765 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4766 ISD::TRAP : ISD::DEBUGTRAP; 4767 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4768 return nullptr; 4769 } 4770 TargetLowering::ArgListTy Args; 4771 4772 TargetLowering::CallLoweringInfo CLI(DAG); 4773 CLI.setDebugLoc(sdl).setChain(getRoot()) 4774 .setCallee(CallingConv::C, I.getType(), 4775 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4776 std::move(Args), 0); 4777 4778 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4779 DAG.setRoot(Result.second); 4780 return nullptr; 4781 } 4782 4783 case Intrinsic::uadd_with_overflow: 4784 case Intrinsic::sadd_with_overflow: 4785 case Intrinsic::usub_with_overflow: 4786 case Intrinsic::ssub_with_overflow: 4787 case Intrinsic::umul_with_overflow: 4788 case Intrinsic::smul_with_overflow: { 4789 ISD::NodeType Op; 4790 switch (Intrinsic) { 4791 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4792 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4793 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4794 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4795 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4796 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4797 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4798 } 4799 SDValue Op1 = getValue(I.getArgOperand(0)); 4800 SDValue Op2 = getValue(I.getArgOperand(1)); 4801 4802 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4803 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4804 return nullptr; 4805 } 4806 case Intrinsic::prefetch: { 4807 SDValue Ops[5]; 4808 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4809 Ops[0] = getRoot(); 4810 Ops[1] = getValue(I.getArgOperand(0)); 4811 Ops[2] = getValue(I.getArgOperand(1)); 4812 Ops[3] = getValue(I.getArgOperand(2)); 4813 Ops[4] = getValue(I.getArgOperand(3)); 4814 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4815 DAG.getVTList(MVT::Other), Ops, 4816 EVT::getIntegerVT(*Context, 8), 4817 MachinePointerInfo(I.getArgOperand(0)), 4818 0, /* align */ 4819 false, /* volatile */ 4820 rw==0, /* read */ 4821 rw==1)); /* write */ 4822 return nullptr; 4823 } 4824 case Intrinsic::lifetime_start: 4825 case Intrinsic::lifetime_end: { 4826 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4827 // Stack coloring is not enabled in O0, discard region information. 4828 if (TM.getOptLevel() == CodeGenOpt::None) 4829 return nullptr; 4830 4831 SmallVector<Value *, 4> Allocas; 4832 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4833 4834 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4835 E = Allocas.end(); Object != E; ++Object) { 4836 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4837 4838 // Could not find an Alloca. 4839 if (!LifetimeObject) 4840 continue; 4841 4842 // First check that the Alloca is static, otherwise it won't have a 4843 // valid frame index. 4844 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4845 if (SI == FuncInfo.StaticAllocaMap.end()) 4846 return nullptr; 4847 4848 int FI = SI->second; 4849 4850 SDValue Ops[2]; 4851 Ops[0] = getRoot(); 4852 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4853 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4854 4855 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4856 DAG.setRoot(Res); 4857 } 4858 return nullptr; 4859 } 4860 case Intrinsic::invariant_start: 4861 // Discard region information. 4862 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4863 return nullptr; 4864 case Intrinsic::invariant_end: 4865 // Discard region information. 4866 return nullptr; 4867 case Intrinsic::stackprotectorcheck: { 4868 // Do not actually emit anything for this basic block. Instead we initialize 4869 // the stack protector descriptor and export the guard variable so we can 4870 // access it in FinishBasicBlock. 4871 const BasicBlock *BB = I.getParent(); 4872 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4873 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4874 4875 // Flush our exports since we are going to process a terminator. 4876 (void)getControlRoot(); 4877 return nullptr; 4878 } 4879 case Intrinsic::clear_cache: 4880 return TLI.getClearCacheBuiltinName(); 4881 case Intrinsic::eh_actions: 4882 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4883 return nullptr; 4884 case Intrinsic::donothing: 4885 // ignore 4886 return nullptr; 4887 case Intrinsic::experimental_stackmap: { 4888 visitStackmap(I); 4889 return nullptr; 4890 } 4891 case Intrinsic::experimental_patchpoint_void: 4892 case Intrinsic::experimental_patchpoint_i64: { 4893 visitPatchpoint(&I); 4894 return nullptr; 4895 } 4896 case Intrinsic::experimental_gc_statepoint: { 4897 visitStatepoint(I); 4898 return nullptr; 4899 } 4900 case Intrinsic::experimental_gc_result_int: 4901 case Intrinsic::experimental_gc_result_float: 4902 case Intrinsic::experimental_gc_result_ptr: 4903 case Intrinsic::experimental_gc_result: { 4904 visitGCResult(I); 4905 return nullptr; 4906 } 4907 case Intrinsic::experimental_gc_relocate: { 4908 visitGCRelocate(I); 4909 return nullptr; 4910 } 4911 case Intrinsic::instrprof_increment: 4912 llvm_unreachable("instrprof failed to lower an increment"); 4913 4914 case Intrinsic::frameescape: { 4915 MachineFunction &MF = DAG.getMachineFunction(); 4916 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4917 4918 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4919 // is the same on all targets. 4920 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4921 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4922 if (isa<ConstantPointerNull>(Arg)) 4923 continue; // Skip null pointers. They represent a hole in index space. 4924 AllocaInst *Slot = cast<AllocaInst>(Arg); 4925 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4926 "can only escape static allocas"); 4927 int FI = FuncInfo.StaticAllocaMap[Slot]; 4928 MCSymbol *FrameAllocSym = 4929 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4930 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4931 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4932 TII->get(TargetOpcode::FRAME_ALLOC)) 4933 .addSym(FrameAllocSym) 4934 .addFrameIndex(FI); 4935 } 4936 4937 return nullptr; 4938 } 4939 4940 case Intrinsic::framerecover: { 4941 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4942 MachineFunction &MF = DAG.getMachineFunction(); 4943 MVT PtrVT = TLI.getPointerTy(0); 4944 4945 // Get the symbol that defines the frame offset. 4946 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4947 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4948 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4949 MCSymbol *FrameAllocSym = 4950 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4951 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4952 4953 // Create a TargetExternalSymbol for the label to avoid any target lowering 4954 // that would make this PC relative. 4955 StringRef Name = FrameAllocSym->getName(); 4956 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4957 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4958 SDValue OffsetVal = 4959 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4960 4961 // Add the offset to the FP. 4962 Value *FP = I.getArgOperand(1); 4963 SDValue FPVal = getValue(FP); 4964 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4965 setValue(&I, Add); 4966 4967 return nullptr; 4968 } 4969 case Intrinsic::eh_begincatch: 4970 case Intrinsic::eh_endcatch: 4971 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4972 case Intrinsic::eh_exceptioncode: { 4973 unsigned Reg = TLI.getExceptionPointerRegister(); 4974 assert(Reg && "cannot get exception code on this platform"); 4975 MVT PtrVT = TLI.getPointerTy(); 4976 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4977 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4978 SDValue N = 4979 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4980 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4981 setValue(&I, N); 4982 return nullptr; 4983 } 4984 } 4985 } 4986 4987 std::pair<SDValue, SDValue> 4988 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4989 MachineBasicBlock *LandingPad) { 4990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4991 MCSymbol *BeginLabel = nullptr; 4992 4993 if (LandingPad) { 4994 // Insert a label before the invoke call to mark the try range. This can be 4995 // used to detect deletion of the invoke via the MachineModuleInfo. 4996 BeginLabel = MMI.getContext().createTempSymbol(); 4997 4998 // For SjLj, keep track of which landing pads go with which invokes 4999 // so as to maintain the ordering of pads in the LSDA. 5000 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5001 if (CallSiteIndex) { 5002 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5003 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5004 5005 // Now that the call site is handled, stop tracking it. 5006 MMI.setCurrentCallSite(0); 5007 } 5008 5009 // Both PendingLoads and PendingExports must be flushed here; 5010 // this call might not return. 5011 (void)getRoot(); 5012 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5013 5014 CLI.setChain(getRoot()); 5015 } 5016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5017 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5018 5019 assert((CLI.IsTailCall || Result.second.getNode()) && 5020 "Non-null chain expected with non-tail call!"); 5021 assert((Result.second.getNode() || !Result.first.getNode()) && 5022 "Null value expected with tail call!"); 5023 5024 if (!Result.second.getNode()) { 5025 // As a special case, a null chain means that a tail call has been emitted 5026 // and the DAG root is already updated. 5027 HasTailCall = true; 5028 5029 // Since there's no actual continuation from this block, nothing can be 5030 // relying on us setting vregs for them. 5031 PendingExports.clear(); 5032 } else { 5033 DAG.setRoot(Result.second); 5034 } 5035 5036 if (LandingPad) { 5037 // Insert a label at the end of the invoke call to mark the try range. This 5038 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5039 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5040 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5041 5042 // Inform MachineModuleInfo of range. 5043 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5044 } 5045 5046 return Result; 5047 } 5048 5049 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5050 bool isTailCall, 5051 MachineBasicBlock *LandingPad) { 5052 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5053 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5054 Type *RetTy = FTy->getReturnType(); 5055 5056 TargetLowering::ArgListTy Args; 5057 TargetLowering::ArgListEntry Entry; 5058 Args.reserve(CS.arg_size()); 5059 5060 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5061 i != e; ++i) { 5062 const Value *V = *i; 5063 5064 // Skip empty types 5065 if (V->getType()->isEmptyTy()) 5066 continue; 5067 5068 SDValue ArgNode = getValue(V); 5069 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5070 5071 // Skip the first return-type Attribute to get to params. 5072 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5073 Args.push_back(Entry); 5074 5075 // If we have an explicit sret argument that is an Instruction, (i.e., it 5076 // might point to function-local memory), we can't meaningfully tail-call. 5077 if (Entry.isSRet && isa<Instruction>(V)) 5078 isTailCall = false; 5079 } 5080 5081 // Check if target-independent constraints permit a tail call here. 5082 // Target-dependent constraints are checked within TLI->LowerCallTo. 5083 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5084 isTailCall = false; 5085 5086 TargetLowering::CallLoweringInfo CLI(DAG); 5087 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5088 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5089 .setTailCall(isTailCall); 5090 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5091 5092 if (Result.first.getNode()) 5093 setValue(CS.getInstruction(), Result.first); 5094 } 5095 5096 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5097 /// value is equal or not-equal to zero. 5098 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5099 for (const User *U : V->users()) { 5100 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5101 if (IC->isEquality()) 5102 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5103 if (C->isNullValue()) 5104 continue; 5105 // Unknown instruction. 5106 return false; 5107 } 5108 return true; 5109 } 5110 5111 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5112 Type *LoadTy, 5113 SelectionDAGBuilder &Builder) { 5114 5115 // Check to see if this load can be trivially constant folded, e.g. if the 5116 // input is from a string literal. 5117 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5118 // Cast pointer to the type we really want to load. 5119 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5120 PointerType::getUnqual(LoadTy)); 5121 5122 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5123 const_cast<Constant *>(LoadInput), *Builder.DL)) 5124 return Builder.getValue(LoadCst); 5125 } 5126 5127 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5128 // still constant memory, the input chain can be the entry node. 5129 SDValue Root; 5130 bool ConstantMemory = false; 5131 5132 // Do not serialize (non-volatile) loads of constant memory with anything. 5133 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5134 Root = Builder.DAG.getEntryNode(); 5135 ConstantMemory = true; 5136 } else { 5137 // Do not serialize non-volatile loads against each other. 5138 Root = Builder.DAG.getRoot(); 5139 } 5140 5141 SDValue Ptr = Builder.getValue(PtrVal); 5142 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5143 Ptr, MachinePointerInfo(PtrVal), 5144 false /*volatile*/, 5145 false /*nontemporal*/, 5146 false /*isinvariant*/, 1 /* align=1 */); 5147 5148 if (!ConstantMemory) 5149 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5150 return LoadVal; 5151 } 5152 5153 /// processIntegerCallValue - Record the value for an instruction that 5154 /// produces an integer result, converting the type where necessary. 5155 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5156 SDValue Value, 5157 bool IsSigned) { 5158 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5159 if (IsSigned) 5160 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5161 else 5162 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5163 setValue(&I, Value); 5164 } 5165 5166 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5167 /// If so, return true and lower it, otherwise return false and it will be 5168 /// lowered like a normal call. 5169 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5170 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5171 if (I.getNumArgOperands() != 3) 5172 return false; 5173 5174 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5175 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5176 !I.getArgOperand(2)->getType()->isIntegerTy() || 5177 !I.getType()->isIntegerTy()) 5178 return false; 5179 5180 const Value *Size = I.getArgOperand(2); 5181 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5182 if (CSize && CSize->getZExtValue() == 0) { 5183 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5184 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5185 return true; 5186 } 5187 5188 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5189 std::pair<SDValue, SDValue> Res = 5190 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5191 getValue(LHS), getValue(RHS), getValue(Size), 5192 MachinePointerInfo(LHS), 5193 MachinePointerInfo(RHS)); 5194 if (Res.first.getNode()) { 5195 processIntegerCallValue(I, Res.first, true); 5196 PendingLoads.push_back(Res.second); 5197 return true; 5198 } 5199 5200 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5201 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5202 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5203 bool ActuallyDoIt = true; 5204 MVT LoadVT; 5205 Type *LoadTy; 5206 switch (CSize->getZExtValue()) { 5207 default: 5208 LoadVT = MVT::Other; 5209 LoadTy = nullptr; 5210 ActuallyDoIt = false; 5211 break; 5212 case 2: 5213 LoadVT = MVT::i16; 5214 LoadTy = Type::getInt16Ty(CSize->getContext()); 5215 break; 5216 case 4: 5217 LoadVT = MVT::i32; 5218 LoadTy = Type::getInt32Ty(CSize->getContext()); 5219 break; 5220 case 8: 5221 LoadVT = MVT::i64; 5222 LoadTy = Type::getInt64Ty(CSize->getContext()); 5223 break; 5224 /* 5225 case 16: 5226 LoadVT = MVT::v4i32; 5227 LoadTy = Type::getInt32Ty(CSize->getContext()); 5228 LoadTy = VectorType::get(LoadTy, 4); 5229 break; 5230 */ 5231 } 5232 5233 // This turns into unaligned loads. We only do this if the target natively 5234 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5235 // we'll only produce a small number of byte loads. 5236 5237 // Require that we can find a legal MVT, and only do this if the target 5238 // supports unaligned loads of that type. Expanding into byte loads would 5239 // bloat the code. 5240 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5241 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5242 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5243 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5244 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5245 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5246 // TODO: Check alignment of src and dest ptrs. 5247 if (!TLI.isTypeLegal(LoadVT) || 5248 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5249 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5250 ActuallyDoIt = false; 5251 } 5252 5253 if (ActuallyDoIt) { 5254 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5255 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5256 5257 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5258 ISD::SETNE); 5259 processIntegerCallValue(I, Res, false); 5260 return true; 5261 } 5262 } 5263 5264 5265 return false; 5266 } 5267 5268 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5269 /// form. If so, return true and lower it, otherwise return false and it 5270 /// will be lowered like a normal call. 5271 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5272 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5273 if (I.getNumArgOperands() != 3) 5274 return false; 5275 5276 const Value *Src = I.getArgOperand(0); 5277 const Value *Char = I.getArgOperand(1); 5278 const Value *Length = I.getArgOperand(2); 5279 if (!Src->getType()->isPointerTy() || 5280 !Char->getType()->isIntegerTy() || 5281 !Length->getType()->isIntegerTy() || 5282 !I.getType()->isPointerTy()) 5283 return false; 5284 5285 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5286 std::pair<SDValue, SDValue> Res = 5287 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5288 getValue(Src), getValue(Char), getValue(Length), 5289 MachinePointerInfo(Src)); 5290 if (Res.first.getNode()) { 5291 setValue(&I, Res.first); 5292 PendingLoads.push_back(Res.second); 5293 return true; 5294 } 5295 5296 return false; 5297 } 5298 5299 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5300 /// optimized form. If so, return true and lower it, otherwise return false 5301 /// and it will be lowered like a normal call. 5302 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5303 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5304 if (I.getNumArgOperands() != 2) 5305 return false; 5306 5307 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5308 if (!Arg0->getType()->isPointerTy() || 5309 !Arg1->getType()->isPointerTy() || 5310 !I.getType()->isPointerTy()) 5311 return false; 5312 5313 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5314 std::pair<SDValue, SDValue> Res = 5315 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5316 getValue(Arg0), getValue(Arg1), 5317 MachinePointerInfo(Arg0), 5318 MachinePointerInfo(Arg1), isStpcpy); 5319 if (Res.first.getNode()) { 5320 setValue(&I, Res.first); 5321 DAG.setRoot(Res.second); 5322 return true; 5323 } 5324 5325 return false; 5326 } 5327 5328 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5329 /// If so, return true and lower it, otherwise return false and it will be 5330 /// lowered like a normal call. 5331 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5332 // Verify that the prototype makes sense. int strcmp(void*,void*) 5333 if (I.getNumArgOperands() != 2) 5334 return false; 5335 5336 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5337 if (!Arg0->getType()->isPointerTy() || 5338 !Arg1->getType()->isPointerTy() || 5339 !I.getType()->isIntegerTy()) 5340 return false; 5341 5342 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5343 std::pair<SDValue, SDValue> Res = 5344 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5345 getValue(Arg0), getValue(Arg1), 5346 MachinePointerInfo(Arg0), 5347 MachinePointerInfo(Arg1)); 5348 if (Res.first.getNode()) { 5349 processIntegerCallValue(I, Res.first, true); 5350 PendingLoads.push_back(Res.second); 5351 return true; 5352 } 5353 5354 return false; 5355 } 5356 5357 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5358 /// form. If so, return true and lower it, otherwise return false and it 5359 /// will be lowered like a normal call. 5360 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5361 // Verify that the prototype makes sense. size_t strlen(char *) 5362 if (I.getNumArgOperands() != 1) 5363 return false; 5364 5365 const Value *Arg0 = I.getArgOperand(0); 5366 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5367 return false; 5368 5369 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5370 std::pair<SDValue, SDValue> Res = 5371 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5372 getValue(Arg0), MachinePointerInfo(Arg0)); 5373 if (Res.first.getNode()) { 5374 processIntegerCallValue(I, Res.first, false); 5375 PendingLoads.push_back(Res.second); 5376 return true; 5377 } 5378 5379 return false; 5380 } 5381 5382 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5383 /// form. If so, return true and lower it, otherwise return false and it 5384 /// will be lowered like a normal call. 5385 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5386 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5387 if (I.getNumArgOperands() != 2) 5388 return false; 5389 5390 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5391 if (!Arg0->getType()->isPointerTy() || 5392 !Arg1->getType()->isIntegerTy() || 5393 !I.getType()->isIntegerTy()) 5394 return false; 5395 5396 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5397 std::pair<SDValue, SDValue> Res = 5398 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5399 getValue(Arg0), getValue(Arg1), 5400 MachinePointerInfo(Arg0)); 5401 if (Res.first.getNode()) { 5402 processIntegerCallValue(I, Res.first, false); 5403 PendingLoads.push_back(Res.second); 5404 return true; 5405 } 5406 5407 return false; 5408 } 5409 5410 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5411 /// operation (as expected), translate it to an SDNode with the specified opcode 5412 /// and return true. 5413 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5414 unsigned Opcode) { 5415 // Sanity check that it really is a unary floating-point call. 5416 if (I.getNumArgOperands() != 1 || 5417 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5418 I.getType() != I.getArgOperand(0)->getType() || 5419 !I.onlyReadsMemory()) 5420 return false; 5421 5422 SDValue Tmp = getValue(I.getArgOperand(0)); 5423 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5424 return true; 5425 } 5426 5427 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5428 /// operation (as expected), translate it to an SDNode with the specified opcode 5429 /// and return true. 5430 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5431 unsigned Opcode) { 5432 // Sanity check that it really is a binary floating-point call. 5433 if (I.getNumArgOperands() != 2 || 5434 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5435 I.getType() != I.getArgOperand(0)->getType() || 5436 I.getType() != I.getArgOperand(1)->getType() || 5437 !I.onlyReadsMemory()) 5438 return false; 5439 5440 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5441 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5442 EVT VT = Tmp0.getValueType(); 5443 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5444 return true; 5445 } 5446 5447 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5448 // Handle inline assembly differently. 5449 if (isa<InlineAsm>(I.getCalledValue())) { 5450 visitInlineAsm(&I); 5451 return; 5452 } 5453 5454 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5455 ComputeUsesVAFloatArgument(I, &MMI); 5456 5457 const char *RenameFn = nullptr; 5458 if (Function *F = I.getCalledFunction()) { 5459 if (F->isDeclaration()) { 5460 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5461 if (unsigned IID = II->getIntrinsicID(F)) { 5462 RenameFn = visitIntrinsicCall(I, IID); 5463 if (!RenameFn) 5464 return; 5465 } 5466 } 5467 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5468 RenameFn = visitIntrinsicCall(I, IID); 5469 if (!RenameFn) 5470 return; 5471 } 5472 } 5473 5474 // Check for well-known libc/libm calls. If the function is internal, it 5475 // can't be a library call. 5476 LibFunc::Func Func; 5477 if (!F->hasLocalLinkage() && F->hasName() && 5478 LibInfo->getLibFunc(F->getName(), Func) && 5479 LibInfo->hasOptimizedCodeGen(Func)) { 5480 switch (Func) { 5481 default: break; 5482 case LibFunc::copysign: 5483 case LibFunc::copysignf: 5484 case LibFunc::copysignl: 5485 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5486 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5487 I.getType() == I.getArgOperand(0)->getType() && 5488 I.getType() == I.getArgOperand(1)->getType() && 5489 I.onlyReadsMemory()) { 5490 SDValue LHS = getValue(I.getArgOperand(0)); 5491 SDValue RHS = getValue(I.getArgOperand(1)); 5492 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5493 LHS.getValueType(), LHS, RHS)); 5494 return; 5495 } 5496 break; 5497 case LibFunc::fabs: 5498 case LibFunc::fabsf: 5499 case LibFunc::fabsl: 5500 if (visitUnaryFloatCall(I, ISD::FABS)) 5501 return; 5502 break; 5503 case LibFunc::fmin: 5504 case LibFunc::fminf: 5505 case LibFunc::fminl: 5506 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5507 return; 5508 break; 5509 case LibFunc::fmax: 5510 case LibFunc::fmaxf: 5511 case LibFunc::fmaxl: 5512 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5513 return; 5514 break; 5515 case LibFunc::sin: 5516 case LibFunc::sinf: 5517 case LibFunc::sinl: 5518 if (visitUnaryFloatCall(I, ISD::FSIN)) 5519 return; 5520 break; 5521 case LibFunc::cos: 5522 case LibFunc::cosf: 5523 case LibFunc::cosl: 5524 if (visitUnaryFloatCall(I, ISD::FCOS)) 5525 return; 5526 break; 5527 case LibFunc::sqrt: 5528 case LibFunc::sqrtf: 5529 case LibFunc::sqrtl: 5530 case LibFunc::sqrt_finite: 5531 case LibFunc::sqrtf_finite: 5532 case LibFunc::sqrtl_finite: 5533 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5534 return; 5535 break; 5536 case LibFunc::floor: 5537 case LibFunc::floorf: 5538 case LibFunc::floorl: 5539 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5540 return; 5541 break; 5542 case LibFunc::nearbyint: 5543 case LibFunc::nearbyintf: 5544 case LibFunc::nearbyintl: 5545 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5546 return; 5547 break; 5548 case LibFunc::ceil: 5549 case LibFunc::ceilf: 5550 case LibFunc::ceill: 5551 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5552 return; 5553 break; 5554 case LibFunc::rint: 5555 case LibFunc::rintf: 5556 case LibFunc::rintl: 5557 if (visitUnaryFloatCall(I, ISD::FRINT)) 5558 return; 5559 break; 5560 case LibFunc::round: 5561 case LibFunc::roundf: 5562 case LibFunc::roundl: 5563 if (visitUnaryFloatCall(I, ISD::FROUND)) 5564 return; 5565 break; 5566 case LibFunc::trunc: 5567 case LibFunc::truncf: 5568 case LibFunc::truncl: 5569 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5570 return; 5571 break; 5572 case LibFunc::log2: 5573 case LibFunc::log2f: 5574 case LibFunc::log2l: 5575 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5576 return; 5577 break; 5578 case LibFunc::exp2: 5579 case LibFunc::exp2f: 5580 case LibFunc::exp2l: 5581 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5582 return; 5583 break; 5584 case LibFunc::memcmp: 5585 if (visitMemCmpCall(I)) 5586 return; 5587 break; 5588 case LibFunc::memchr: 5589 if (visitMemChrCall(I)) 5590 return; 5591 break; 5592 case LibFunc::strcpy: 5593 if (visitStrCpyCall(I, false)) 5594 return; 5595 break; 5596 case LibFunc::stpcpy: 5597 if (visitStrCpyCall(I, true)) 5598 return; 5599 break; 5600 case LibFunc::strcmp: 5601 if (visitStrCmpCall(I)) 5602 return; 5603 break; 5604 case LibFunc::strlen: 5605 if (visitStrLenCall(I)) 5606 return; 5607 break; 5608 case LibFunc::strnlen: 5609 if (visitStrNLenCall(I)) 5610 return; 5611 break; 5612 } 5613 } 5614 } 5615 5616 SDValue Callee; 5617 if (!RenameFn) 5618 Callee = getValue(I.getCalledValue()); 5619 else 5620 Callee = DAG.getExternalSymbol(RenameFn, 5621 DAG.getTargetLoweringInfo().getPointerTy()); 5622 5623 // Check if we can potentially perform a tail call. More detailed checking is 5624 // be done within LowerCallTo, after more information about the call is known. 5625 LowerCallTo(&I, Callee, I.isTailCall()); 5626 } 5627 5628 namespace { 5629 5630 /// AsmOperandInfo - This contains information for each constraint that we are 5631 /// lowering. 5632 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5633 public: 5634 /// CallOperand - If this is the result output operand or a clobber 5635 /// this is null, otherwise it is the incoming operand to the CallInst. 5636 /// This gets modified as the asm is processed. 5637 SDValue CallOperand; 5638 5639 /// AssignedRegs - If this is a register or register class operand, this 5640 /// contains the set of register corresponding to the operand. 5641 RegsForValue AssignedRegs; 5642 5643 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5644 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5645 } 5646 5647 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5648 /// corresponds to. If there is no Value* for this operand, it returns 5649 /// MVT::Other. 5650 EVT getCallOperandValEVT(LLVMContext &Context, 5651 const TargetLowering &TLI, 5652 const DataLayout *DL) const { 5653 if (!CallOperandVal) return MVT::Other; 5654 5655 if (isa<BasicBlock>(CallOperandVal)) 5656 return TLI.getPointerTy(); 5657 5658 llvm::Type *OpTy = CallOperandVal->getType(); 5659 5660 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5661 // If this is an indirect operand, the operand is a pointer to the 5662 // accessed type. 5663 if (isIndirect) { 5664 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5665 if (!PtrTy) 5666 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5667 OpTy = PtrTy->getElementType(); 5668 } 5669 5670 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5671 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5672 if (STy->getNumElements() == 1) 5673 OpTy = STy->getElementType(0); 5674 5675 // If OpTy is not a single value, it may be a struct/union that we 5676 // can tile with integers. 5677 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5678 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5679 switch (BitSize) { 5680 default: break; 5681 case 1: 5682 case 8: 5683 case 16: 5684 case 32: 5685 case 64: 5686 case 128: 5687 OpTy = IntegerType::get(Context, BitSize); 5688 break; 5689 } 5690 } 5691 5692 return TLI.getValueType(OpTy, true); 5693 } 5694 }; 5695 5696 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5697 5698 } // end anonymous namespace 5699 5700 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5701 /// specified operand. We prefer to assign virtual registers, to allow the 5702 /// register allocator to handle the assignment process. However, if the asm 5703 /// uses features that we can't model on machineinstrs, we have SDISel do the 5704 /// allocation. This produces generally horrible, but correct, code. 5705 /// 5706 /// OpInfo describes the operand. 5707 /// 5708 static void GetRegistersForValue(SelectionDAG &DAG, 5709 const TargetLowering &TLI, 5710 SDLoc DL, 5711 SDISelAsmOperandInfo &OpInfo) { 5712 LLVMContext &Context = *DAG.getContext(); 5713 5714 MachineFunction &MF = DAG.getMachineFunction(); 5715 SmallVector<unsigned, 4> Regs; 5716 5717 // If this is a constraint for a single physreg, or a constraint for a 5718 // register class, find it. 5719 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5720 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5721 OpInfo.ConstraintCode, 5722 OpInfo.ConstraintVT); 5723 5724 unsigned NumRegs = 1; 5725 if (OpInfo.ConstraintVT != MVT::Other) { 5726 // If this is a FP input in an integer register (or visa versa) insert a bit 5727 // cast of the input value. More generally, handle any case where the input 5728 // value disagrees with the register class we plan to stick this in. 5729 if (OpInfo.Type == InlineAsm::isInput && 5730 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5731 // Try to convert to the first EVT that the reg class contains. If the 5732 // types are identical size, use a bitcast to convert (e.g. two differing 5733 // vector types). 5734 MVT RegVT = *PhysReg.second->vt_begin(); 5735 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5736 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5737 RegVT, OpInfo.CallOperand); 5738 OpInfo.ConstraintVT = RegVT; 5739 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5740 // If the input is a FP value and we want it in FP registers, do a 5741 // bitcast to the corresponding integer type. This turns an f64 value 5742 // into i64, which can be passed with two i32 values on a 32-bit 5743 // machine. 5744 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5745 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5746 RegVT, OpInfo.CallOperand); 5747 OpInfo.ConstraintVT = RegVT; 5748 } 5749 } 5750 5751 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5752 } 5753 5754 MVT RegVT; 5755 EVT ValueVT = OpInfo.ConstraintVT; 5756 5757 // If this is a constraint for a specific physical register, like {r17}, 5758 // assign it now. 5759 if (unsigned AssignedReg = PhysReg.first) { 5760 const TargetRegisterClass *RC = PhysReg.second; 5761 if (OpInfo.ConstraintVT == MVT::Other) 5762 ValueVT = *RC->vt_begin(); 5763 5764 // Get the actual register value type. This is important, because the user 5765 // may have asked for (e.g.) the AX register in i32 type. We need to 5766 // remember that AX is actually i16 to get the right extension. 5767 RegVT = *RC->vt_begin(); 5768 5769 // This is a explicit reference to a physical register. 5770 Regs.push_back(AssignedReg); 5771 5772 // If this is an expanded reference, add the rest of the regs to Regs. 5773 if (NumRegs != 1) { 5774 TargetRegisterClass::iterator I = RC->begin(); 5775 for (; *I != AssignedReg; ++I) 5776 assert(I != RC->end() && "Didn't find reg!"); 5777 5778 // Already added the first reg. 5779 --NumRegs; ++I; 5780 for (; NumRegs; --NumRegs, ++I) { 5781 assert(I != RC->end() && "Ran out of registers to allocate!"); 5782 Regs.push_back(*I); 5783 } 5784 } 5785 5786 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5787 return; 5788 } 5789 5790 // Otherwise, if this was a reference to an LLVM register class, create vregs 5791 // for this reference. 5792 if (const TargetRegisterClass *RC = PhysReg.second) { 5793 RegVT = *RC->vt_begin(); 5794 if (OpInfo.ConstraintVT == MVT::Other) 5795 ValueVT = RegVT; 5796 5797 // Create the appropriate number of virtual registers. 5798 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5799 for (; NumRegs; --NumRegs) 5800 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5801 5802 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5803 return; 5804 } 5805 5806 // Otherwise, we couldn't allocate enough registers for this. 5807 } 5808 5809 /// visitInlineAsm - Handle a call to an InlineAsm object. 5810 /// 5811 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5812 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5813 5814 /// ConstraintOperands - Information about all of the constraints. 5815 SDISelAsmOperandInfoVector ConstraintOperands; 5816 5817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5818 TargetLowering::AsmOperandInfoVector TargetConstraints = 5819 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5820 5821 bool hasMemory = false; 5822 5823 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5824 unsigned ResNo = 0; // ResNo - The result number of the next output. 5825 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5826 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5827 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5828 5829 MVT OpVT = MVT::Other; 5830 5831 // Compute the value type for each operand. 5832 switch (OpInfo.Type) { 5833 case InlineAsm::isOutput: 5834 // Indirect outputs just consume an argument. 5835 if (OpInfo.isIndirect) { 5836 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5837 break; 5838 } 5839 5840 // The return value of the call is this value. As such, there is no 5841 // corresponding argument. 5842 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5843 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5844 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5845 } else { 5846 assert(ResNo == 0 && "Asm only has one result!"); 5847 OpVT = TLI.getSimpleValueType(CS.getType()); 5848 } 5849 ++ResNo; 5850 break; 5851 case InlineAsm::isInput: 5852 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5853 break; 5854 case InlineAsm::isClobber: 5855 // Nothing to do. 5856 break; 5857 } 5858 5859 // If this is an input or an indirect output, process the call argument. 5860 // BasicBlocks are labels, currently appearing only in asm's. 5861 if (OpInfo.CallOperandVal) { 5862 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5863 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5864 } else { 5865 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5866 } 5867 5868 OpVT = 5869 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5870 } 5871 5872 OpInfo.ConstraintVT = OpVT; 5873 5874 // Indirect operand accesses access memory. 5875 if (OpInfo.isIndirect) 5876 hasMemory = true; 5877 else { 5878 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5879 TargetLowering::ConstraintType 5880 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5881 if (CType == TargetLowering::C_Memory) { 5882 hasMemory = true; 5883 break; 5884 } 5885 } 5886 } 5887 } 5888 5889 SDValue Chain, Flag; 5890 5891 // We won't need to flush pending loads if this asm doesn't touch 5892 // memory and is nonvolatile. 5893 if (hasMemory || IA->hasSideEffects()) 5894 Chain = getRoot(); 5895 else 5896 Chain = DAG.getRoot(); 5897 5898 // Second pass over the constraints: compute which constraint option to use 5899 // and assign registers to constraints that want a specific physreg. 5900 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5901 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5902 5903 // If this is an output operand with a matching input operand, look up the 5904 // matching input. If their types mismatch, e.g. one is an integer, the 5905 // other is floating point, or their sizes are different, flag it as an 5906 // error. 5907 if (OpInfo.hasMatchingInput()) { 5908 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5909 5910 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5911 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5912 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5913 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5914 OpInfo.ConstraintVT); 5915 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5916 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5917 Input.ConstraintVT); 5918 if ((OpInfo.ConstraintVT.isInteger() != 5919 Input.ConstraintVT.isInteger()) || 5920 (MatchRC.second != InputRC.second)) { 5921 report_fatal_error("Unsupported asm: input constraint" 5922 " with a matching output constraint of" 5923 " incompatible type!"); 5924 } 5925 Input.ConstraintVT = OpInfo.ConstraintVT; 5926 } 5927 } 5928 5929 // Compute the constraint code and ConstraintType to use. 5930 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5931 5932 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5933 OpInfo.Type == InlineAsm::isClobber) 5934 continue; 5935 5936 // If this is a memory input, and if the operand is not indirect, do what we 5937 // need to to provide an address for the memory input. 5938 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5939 !OpInfo.isIndirect) { 5940 assert((OpInfo.isMultipleAlternative || 5941 (OpInfo.Type == InlineAsm::isInput)) && 5942 "Can only indirectify direct input operands!"); 5943 5944 // Memory operands really want the address of the value. If we don't have 5945 // an indirect input, put it in the constpool if we can, otherwise spill 5946 // it to a stack slot. 5947 // TODO: This isn't quite right. We need to handle these according to 5948 // the addressing mode that the constraint wants. Also, this may take 5949 // an additional register for the computation and we don't want that 5950 // either. 5951 5952 // If the operand is a float, integer, or vector constant, spill to a 5953 // constant pool entry to get its address. 5954 const Value *OpVal = OpInfo.CallOperandVal; 5955 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5956 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5957 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5958 TLI.getPointerTy()); 5959 } else { 5960 // Otherwise, create a stack slot and emit a store to it before the 5961 // asm. 5962 Type *Ty = OpVal->getType(); 5963 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5964 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5965 MachineFunction &MF = DAG.getMachineFunction(); 5966 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5967 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5968 Chain = DAG.getStore(Chain, getCurSDLoc(), 5969 OpInfo.CallOperand, StackSlot, 5970 MachinePointerInfo::getFixedStack(SSFI), 5971 false, false, 0); 5972 OpInfo.CallOperand = StackSlot; 5973 } 5974 5975 // There is no longer a Value* corresponding to this operand. 5976 OpInfo.CallOperandVal = nullptr; 5977 5978 // It is now an indirect operand. 5979 OpInfo.isIndirect = true; 5980 } 5981 5982 // If this constraint is for a specific register, allocate it before 5983 // anything else. 5984 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5985 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5986 } 5987 5988 // Second pass - Loop over all of the operands, assigning virtual or physregs 5989 // to register class operands. 5990 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5991 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5992 5993 // C_Register operands have already been allocated, Other/Memory don't need 5994 // to be. 5995 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5996 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5997 } 5998 5999 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6000 std::vector<SDValue> AsmNodeOperands; 6001 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6002 AsmNodeOperands.push_back( 6003 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6004 TLI.getPointerTy())); 6005 6006 // If we have a !srcloc metadata node associated with it, we want to attach 6007 // this to the ultimately generated inline asm machineinstr. To do this, we 6008 // pass in the third operand as this (potentially null) inline asm MDNode. 6009 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6010 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6011 6012 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6013 // bits as operand 3. 6014 unsigned ExtraInfo = 0; 6015 if (IA->hasSideEffects()) 6016 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6017 if (IA->isAlignStack()) 6018 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6019 // Set the asm dialect. 6020 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6021 6022 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6023 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6024 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6025 6026 // Compute the constraint code and ConstraintType to use. 6027 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6028 6029 // Ideally, we would only check against memory constraints. However, the 6030 // meaning of an other constraint can be target-specific and we can't easily 6031 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6032 // for other constriants as well. 6033 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6034 OpInfo.ConstraintType == TargetLowering::C_Other) { 6035 if (OpInfo.Type == InlineAsm::isInput) 6036 ExtraInfo |= InlineAsm::Extra_MayLoad; 6037 else if (OpInfo.Type == InlineAsm::isOutput) 6038 ExtraInfo |= InlineAsm::Extra_MayStore; 6039 else if (OpInfo.Type == InlineAsm::isClobber) 6040 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6041 } 6042 } 6043 6044 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6045 TLI.getPointerTy())); 6046 6047 // Loop over all of the inputs, copying the operand values into the 6048 // appropriate registers and processing the output regs. 6049 RegsForValue RetValRegs; 6050 6051 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6052 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6053 6054 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6055 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6056 6057 switch (OpInfo.Type) { 6058 case InlineAsm::isOutput: { 6059 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6060 OpInfo.ConstraintType != TargetLowering::C_Register) { 6061 // Memory output, or 'other' output (e.g. 'X' constraint). 6062 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6063 6064 unsigned ConstraintID = 6065 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6066 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6067 "Failed to convert memory constraint code to constraint id."); 6068 6069 // Add information to the INLINEASM node to know about this output. 6070 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6071 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6072 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6073 MVT::i32)); 6074 AsmNodeOperands.push_back(OpInfo.CallOperand); 6075 break; 6076 } 6077 6078 // Otherwise, this is a register or register class output. 6079 6080 // Copy the output from the appropriate register. Find a register that 6081 // we can use. 6082 if (OpInfo.AssignedRegs.Regs.empty()) { 6083 LLVMContext &Ctx = *DAG.getContext(); 6084 Ctx.emitError(CS.getInstruction(), 6085 "couldn't allocate output register for constraint '" + 6086 Twine(OpInfo.ConstraintCode) + "'"); 6087 return; 6088 } 6089 6090 // If this is an indirect operand, store through the pointer after the 6091 // asm. 6092 if (OpInfo.isIndirect) { 6093 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6094 OpInfo.CallOperandVal)); 6095 } else { 6096 // This is the result value of the call. 6097 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6098 // Concatenate this output onto the outputs list. 6099 RetValRegs.append(OpInfo.AssignedRegs); 6100 } 6101 6102 // Add information to the INLINEASM node to know that this register is 6103 // set. 6104 OpInfo.AssignedRegs 6105 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6106 ? InlineAsm::Kind_RegDefEarlyClobber 6107 : InlineAsm::Kind_RegDef, 6108 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6109 break; 6110 } 6111 case InlineAsm::isInput: { 6112 SDValue InOperandVal = OpInfo.CallOperand; 6113 6114 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6115 // If this is required to match an output register we have already set, 6116 // just use its register. 6117 unsigned OperandNo = OpInfo.getMatchedOperand(); 6118 6119 // Scan until we find the definition we already emitted of this operand. 6120 // When we find it, create a RegsForValue operand. 6121 unsigned CurOp = InlineAsm::Op_FirstOperand; 6122 for (; OperandNo; --OperandNo) { 6123 // Advance to the next operand. 6124 unsigned OpFlag = 6125 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6126 assert((InlineAsm::isRegDefKind(OpFlag) || 6127 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6128 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6129 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6130 } 6131 6132 unsigned OpFlag = 6133 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6134 if (InlineAsm::isRegDefKind(OpFlag) || 6135 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6136 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6137 if (OpInfo.isIndirect) { 6138 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6139 LLVMContext &Ctx = *DAG.getContext(); 6140 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6141 " don't know how to handle tied " 6142 "indirect register inputs"); 6143 return; 6144 } 6145 6146 RegsForValue MatchedRegs; 6147 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6148 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6149 MatchedRegs.RegVTs.push_back(RegVT); 6150 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6151 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6152 i != e; ++i) { 6153 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6154 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6155 else { 6156 LLVMContext &Ctx = *DAG.getContext(); 6157 Ctx.emitError(CS.getInstruction(), 6158 "inline asm error: This value" 6159 " type register class is not natively supported!"); 6160 return; 6161 } 6162 } 6163 SDLoc dl = getCurSDLoc(); 6164 // Use the produced MatchedRegs object to 6165 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6166 Chain, &Flag, CS.getInstruction()); 6167 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6168 true, OpInfo.getMatchedOperand(), dl, 6169 DAG, AsmNodeOperands); 6170 break; 6171 } 6172 6173 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6174 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6175 "Unexpected number of operands"); 6176 // Add information to the INLINEASM node to know about this input. 6177 // See InlineAsm.h isUseOperandTiedToDef. 6178 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6179 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6180 OpInfo.getMatchedOperand()); 6181 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6182 TLI.getPointerTy())); 6183 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6184 break; 6185 } 6186 6187 // Treat indirect 'X' constraint as memory. 6188 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6189 OpInfo.isIndirect) 6190 OpInfo.ConstraintType = TargetLowering::C_Memory; 6191 6192 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6193 std::vector<SDValue> Ops; 6194 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6195 Ops, DAG); 6196 if (Ops.empty()) { 6197 LLVMContext &Ctx = *DAG.getContext(); 6198 Ctx.emitError(CS.getInstruction(), 6199 "invalid operand for inline asm constraint '" + 6200 Twine(OpInfo.ConstraintCode) + "'"); 6201 return; 6202 } 6203 6204 // Add information to the INLINEASM node to know about this input. 6205 unsigned ResOpType = 6206 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6207 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6208 getCurSDLoc(), 6209 TLI.getPointerTy())); 6210 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6211 break; 6212 } 6213 6214 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6215 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6216 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6217 "Memory operands expect pointer values"); 6218 6219 unsigned ConstraintID = 6220 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6221 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6222 "Failed to convert memory constraint code to constraint id."); 6223 6224 // Add information to the INLINEASM node to know about this input. 6225 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6226 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6227 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6228 getCurSDLoc(), 6229 MVT::i32)); 6230 AsmNodeOperands.push_back(InOperandVal); 6231 break; 6232 } 6233 6234 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6235 OpInfo.ConstraintType == TargetLowering::C_Register) && 6236 "Unknown constraint type!"); 6237 6238 // TODO: Support this. 6239 if (OpInfo.isIndirect) { 6240 LLVMContext &Ctx = *DAG.getContext(); 6241 Ctx.emitError(CS.getInstruction(), 6242 "Don't know how to handle indirect register inputs yet " 6243 "for constraint '" + 6244 Twine(OpInfo.ConstraintCode) + "'"); 6245 return; 6246 } 6247 6248 // Copy the input into the appropriate registers. 6249 if (OpInfo.AssignedRegs.Regs.empty()) { 6250 LLVMContext &Ctx = *DAG.getContext(); 6251 Ctx.emitError(CS.getInstruction(), 6252 "couldn't allocate input reg for constraint '" + 6253 Twine(OpInfo.ConstraintCode) + "'"); 6254 return; 6255 } 6256 6257 SDLoc dl = getCurSDLoc(); 6258 6259 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6260 Chain, &Flag, CS.getInstruction()); 6261 6262 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6263 dl, DAG, AsmNodeOperands); 6264 break; 6265 } 6266 case InlineAsm::isClobber: { 6267 // Add the clobbered value to the operand list, so that the register 6268 // allocator is aware that the physreg got clobbered. 6269 if (!OpInfo.AssignedRegs.Regs.empty()) 6270 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6271 false, 0, getCurSDLoc(), DAG, 6272 AsmNodeOperands); 6273 break; 6274 } 6275 } 6276 } 6277 6278 // Finish up input operands. Set the input chain and add the flag last. 6279 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6280 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6281 6282 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6283 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6284 Flag = Chain.getValue(1); 6285 6286 // If this asm returns a register value, copy the result from that register 6287 // and set it as the value of the call. 6288 if (!RetValRegs.Regs.empty()) { 6289 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6290 Chain, &Flag, CS.getInstruction()); 6291 6292 // FIXME: Why don't we do this for inline asms with MRVs? 6293 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6294 EVT ResultType = TLI.getValueType(CS.getType()); 6295 6296 // If any of the results of the inline asm is a vector, it may have the 6297 // wrong width/num elts. This can happen for register classes that can 6298 // contain multiple different value types. The preg or vreg allocated may 6299 // not have the same VT as was expected. Convert it to the right type 6300 // with bit_convert. 6301 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6302 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6303 ResultType, Val); 6304 6305 } else if (ResultType != Val.getValueType() && 6306 ResultType.isInteger() && Val.getValueType().isInteger()) { 6307 // If a result value was tied to an input value, the computed result may 6308 // have a wider width than the expected result. Extract the relevant 6309 // portion. 6310 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6311 } 6312 6313 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6314 } 6315 6316 setValue(CS.getInstruction(), Val); 6317 // Don't need to use this as a chain in this case. 6318 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6319 return; 6320 } 6321 6322 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6323 6324 // Process indirect outputs, first output all of the flagged copies out of 6325 // physregs. 6326 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6327 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6328 const Value *Ptr = IndirectStoresToEmit[i].second; 6329 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6330 Chain, &Flag, IA); 6331 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6332 } 6333 6334 // Emit the non-flagged stores from the physregs. 6335 SmallVector<SDValue, 8> OutChains; 6336 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6337 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6338 StoresToEmit[i].first, 6339 getValue(StoresToEmit[i].second), 6340 MachinePointerInfo(StoresToEmit[i].second), 6341 false, false, 0); 6342 OutChains.push_back(Val); 6343 } 6344 6345 if (!OutChains.empty()) 6346 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6347 6348 DAG.setRoot(Chain); 6349 } 6350 6351 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6352 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6353 MVT::Other, getRoot(), 6354 getValue(I.getArgOperand(0)), 6355 DAG.getSrcValue(I.getArgOperand(0)))); 6356 } 6357 6358 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6360 const DataLayout &DL = *TLI.getDataLayout(); 6361 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6362 getRoot(), getValue(I.getOperand(0)), 6363 DAG.getSrcValue(I.getOperand(0)), 6364 DL.getABITypeAlignment(I.getType())); 6365 setValue(&I, V); 6366 DAG.setRoot(V.getValue(1)); 6367 } 6368 6369 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6370 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6371 MVT::Other, getRoot(), 6372 getValue(I.getArgOperand(0)), 6373 DAG.getSrcValue(I.getArgOperand(0)))); 6374 } 6375 6376 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6377 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6378 MVT::Other, getRoot(), 6379 getValue(I.getArgOperand(0)), 6380 getValue(I.getArgOperand(1)), 6381 DAG.getSrcValue(I.getArgOperand(0)), 6382 DAG.getSrcValue(I.getArgOperand(1)))); 6383 } 6384 6385 /// \brief Lower an argument list according to the target calling convention. 6386 /// 6387 /// \return A tuple of <return-value, token-chain> 6388 /// 6389 /// This is a helper for lowering intrinsics that follow a target calling 6390 /// convention or require stack pointer adjustment. Only a subset of the 6391 /// intrinsic's operands need to participate in the calling convention. 6392 std::pair<SDValue, SDValue> 6393 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6394 unsigned NumArgs, SDValue Callee, 6395 Type *ReturnTy, 6396 MachineBasicBlock *LandingPad, 6397 bool IsPatchPoint) { 6398 TargetLowering::ArgListTy Args; 6399 Args.reserve(NumArgs); 6400 6401 // Populate the argument list. 6402 // Attributes for args start at offset 1, after the return attribute. 6403 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6404 ArgI != ArgE; ++ArgI) { 6405 const Value *V = CS->getOperand(ArgI); 6406 6407 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6408 6409 TargetLowering::ArgListEntry Entry; 6410 Entry.Node = getValue(V); 6411 Entry.Ty = V->getType(); 6412 Entry.setAttributes(&CS, AttrI); 6413 Args.push_back(Entry); 6414 } 6415 6416 TargetLowering::CallLoweringInfo CLI(DAG); 6417 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6418 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6419 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6420 6421 return lowerInvokable(CLI, LandingPad); 6422 } 6423 6424 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6425 /// or patchpoint target node's operand list. 6426 /// 6427 /// Constants are converted to TargetConstants purely as an optimization to 6428 /// avoid constant materialization and register allocation. 6429 /// 6430 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6431 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6432 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6433 /// address materialization and register allocation, but may also be required 6434 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6435 /// alloca in the entry block, then the runtime may assume that the alloca's 6436 /// StackMap location can be read immediately after compilation and that the 6437 /// location is valid at any point during execution (this is similar to the 6438 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6439 /// only available in a register, then the runtime would need to trap when 6440 /// execution reaches the StackMap in order to read the alloca's location. 6441 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6442 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6443 SelectionDAGBuilder &Builder) { 6444 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6445 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6446 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6447 Ops.push_back( 6448 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6449 Ops.push_back( 6450 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6451 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6452 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6453 Ops.push_back( 6454 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6455 } else 6456 Ops.push_back(OpVal); 6457 } 6458 } 6459 6460 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6461 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6462 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6463 // [live variables...]) 6464 6465 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6466 6467 SDValue Chain, InFlag, Callee, NullPtr; 6468 SmallVector<SDValue, 32> Ops; 6469 6470 SDLoc DL = getCurSDLoc(); 6471 Callee = getValue(CI.getCalledValue()); 6472 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6473 6474 // The stackmap intrinsic only records the live variables (the arguemnts 6475 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6476 // intrinsic, this won't be lowered to a function call. This means we don't 6477 // have to worry about calling conventions and target specific lowering code. 6478 // Instead we perform the call lowering right here. 6479 // 6480 // chain, flag = CALLSEQ_START(chain, 0) 6481 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6482 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6483 // 6484 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6485 InFlag = Chain.getValue(1); 6486 6487 // Add the <id> and <numBytes> constants. 6488 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6489 Ops.push_back(DAG.getTargetConstant( 6490 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6491 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6492 Ops.push_back(DAG.getTargetConstant( 6493 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6494 MVT::i32)); 6495 6496 // Push live variables for the stack map. 6497 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6498 6499 // We are not pushing any register mask info here on the operands list, 6500 // because the stackmap doesn't clobber anything. 6501 6502 // Push the chain and the glue flag. 6503 Ops.push_back(Chain); 6504 Ops.push_back(InFlag); 6505 6506 // Create the STACKMAP node. 6507 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6508 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6509 Chain = SDValue(SM, 0); 6510 InFlag = Chain.getValue(1); 6511 6512 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6513 6514 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6515 6516 // Set the root to the target-lowered call chain. 6517 DAG.setRoot(Chain); 6518 6519 // Inform the Frame Information that we have a stackmap in this function. 6520 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6521 } 6522 6523 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6524 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6525 MachineBasicBlock *LandingPad) { 6526 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6527 // i32 <numBytes>, 6528 // i8* <target>, 6529 // i32 <numArgs>, 6530 // [Args...], 6531 // [live variables...]) 6532 6533 CallingConv::ID CC = CS.getCallingConv(); 6534 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6535 bool HasDef = !CS->getType()->isVoidTy(); 6536 SDLoc dl = getCurSDLoc(); 6537 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6538 6539 // Handle immediate and symbolic callees. 6540 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6541 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6542 /*isTarget=*/true); 6543 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6544 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6545 SDLoc(SymbolicCallee), 6546 SymbolicCallee->getValueType(0)); 6547 6548 // Get the real number of arguments participating in the call <numArgs> 6549 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6550 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6551 6552 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6553 // Intrinsics include all meta-operands up to but not including CC. 6554 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6555 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6556 "Not enough arguments provided to the patchpoint intrinsic"); 6557 6558 // For AnyRegCC the arguments are lowered later on manually. 6559 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6560 Type *ReturnTy = 6561 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6562 std::pair<SDValue, SDValue> Result = 6563 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6564 LandingPad, true); 6565 6566 SDNode *CallEnd = Result.second.getNode(); 6567 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6568 CallEnd = CallEnd->getOperand(0).getNode(); 6569 6570 /// Get a call instruction from the call sequence chain. 6571 /// Tail calls are not allowed. 6572 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6573 "Expected a callseq node."); 6574 SDNode *Call = CallEnd->getOperand(0).getNode(); 6575 bool HasGlue = Call->getGluedNode(); 6576 6577 // Replace the target specific call node with the patchable intrinsic. 6578 SmallVector<SDValue, 8> Ops; 6579 6580 // Add the <id> and <numBytes> constants. 6581 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6582 Ops.push_back(DAG.getTargetConstant( 6583 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6584 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6585 Ops.push_back(DAG.getTargetConstant( 6586 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6587 MVT::i32)); 6588 6589 // Add the callee. 6590 Ops.push_back(Callee); 6591 6592 // Adjust <numArgs> to account for any arguments that have been passed on the 6593 // stack instead. 6594 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6595 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6596 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6597 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6598 6599 // Add the calling convention 6600 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6601 6602 // Add the arguments we omitted previously. The register allocator should 6603 // place these in any free register. 6604 if (IsAnyRegCC) 6605 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6606 Ops.push_back(getValue(CS.getArgument(i))); 6607 6608 // Push the arguments from the call instruction up to the register mask. 6609 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6610 Ops.append(Call->op_begin() + 2, e); 6611 6612 // Push live variables for the stack map. 6613 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6614 6615 // Push the register mask info. 6616 if (HasGlue) 6617 Ops.push_back(*(Call->op_end()-2)); 6618 else 6619 Ops.push_back(*(Call->op_end()-1)); 6620 6621 // Push the chain (this is originally the first operand of the call, but 6622 // becomes now the last or second to last operand). 6623 Ops.push_back(*(Call->op_begin())); 6624 6625 // Push the glue flag (last operand). 6626 if (HasGlue) 6627 Ops.push_back(*(Call->op_end()-1)); 6628 6629 SDVTList NodeTys; 6630 if (IsAnyRegCC && HasDef) { 6631 // Create the return types based on the intrinsic definition 6632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6633 SmallVector<EVT, 3> ValueVTs; 6634 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6635 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6636 6637 // There is always a chain and a glue type at the end 6638 ValueVTs.push_back(MVT::Other); 6639 ValueVTs.push_back(MVT::Glue); 6640 NodeTys = DAG.getVTList(ValueVTs); 6641 } else 6642 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6643 6644 // Replace the target specific call node with a PATCHPOINT node. 6645 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6646 dl, NodeTys, Ops); 6647 6648 // Update the NodeMap. 6649 if (HasDef) { 6650 if (IsAnyRegCC) 6651 setValue(CS.getInstruction(), SDValue(MN, 0)); 6652 else 6653 setValue(CS.getInstruction(), Result.first); 6654 } 6655 6656 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6657 // call sequence. Furthermore the location of the chain and glue can change 6658 // when the AnyReg calling convention is used and the intrinsic returns a 6659 // value. 6660 if (IsAnyRegCC && HasDef) { 6661 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6662 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6663 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6664 } else 6665 DAG.ReplaceAllUsesWith(Call, MN); 6666 DAG.DeleteNode(Call); 6667 6668 // Inform the Frame Information that we have a patchpoint in this function. 6669 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6670 } 6671 6672 /// Returns an AttributeSet representing the attributes applied to the return 6673 /// value of the given call. 6674 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6675 SmallVector<Attribute::AttrKind, 2> Attrs; 6676 if (CLI.RetSExt) 6677 Attrs.push_back(Attribute::SExt); 6678 if (CLI.RetZExt) 6679 Attrs.push_back(Attribute::ZExt); 6680 if (CLI.IsInReg) 6681 Attrs.push_back(Attribute::InReg); 6682 6683 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6684 Attrs); 6685 } 6686 6687 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6688 /// implementation, which just calls LowerCall. 6689 /// FIXME: When all targets are 6690 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6691 std::pair<SDValue, SDValue> 6692 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6693 // Handle the incoming return values from the call. 6694 CLI.Ins.clear(); 6695 Type *OrigRetTy = CLI.RetTy; 6696 SmallVector<EVT, 4> RetTys; 6697 SmallVector<uint64_t, 4> Offsets; 6698 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6699 6700 SmallVector<ISD::OutputArg, 4> Outs; 6701 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6702 6703 bool CanLowerReturn = 6704 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6705 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6706 6707 SDValue DemoteStackSlot; 6708 int DemoteStackIdx = -100; 6709 if (!CanLowerReturn) { 6710 // FIXME: equivalent assert? 6711 // assert(!CS.hasInAllocaArgument() && 6712 // "sret demotion is incompatible with inalloca"); 6713 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6714 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6715 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6716 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6717 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6718 6719 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6720 ArgListEntry Entry; 6721 Entry.Node = DemoteStackSlot; 6722 Entry.Ty = StackSlotPtrType; 6723 Entry.isSExt = false; 6724 Entry.isZExt = false; 6725 Entry.isInReg = false; 6726 Entry.isSRet = true; 6727 Entry.isNest = false; 6728 Entry.isByVal = false; 6729 Entry.isReturned = false; 6730 Entry.Alignment = Align; 6731 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6732 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6733 6734 // sret demotion isn't compatible with tail-calls, since the sret argument 6735 // points into the callers stack frame. 6736 CLI.IsTailCall = false; 6737 } else { 6738 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6739 EVT VT = RetTys[I]; 6740 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6741 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6742 for (unsigned i = 0; i != NumRegs; ++i) { 6743 ISD::InputArg MyFlags; 6744 MyFlags.VT = RegisterVT; 6745 MyFlags.ArgVT = VT; 6746 MyFlags.Used = CLI.IsReturnValueUsed; 6747 if (CLI.RetSExt) 6748 MyFlags.Flags.setSExt(); 6749 if (CLI.RetZExt) 6750 MyFlags.Flags.setZExt(); 6751 if (CLI.IsInReg) 6752 MyFlags.Flags.setInReg(); 6753 CLI.Ins.push_back(MyFlags); 6754 } 6755 } 6756 } 6757 6758 // Handle all of the outgoing arguments. 6759 CLI.Outs.clear(); 6760 CLI.OutVals.clear(); 6761 ArgListTy &Args = CLI.getArgs(); 6762 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6763 SmallVector<EVT, 4> ValueVTs; 6764 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6765 Type *FinalType = Args[i].Ty; 6766 if (Args[i].isByVal) 6767 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6768 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6769 FinalType, CLI.CallConv, CLI.IsVarArg); 6770 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6771 ++Value) { 6772 EVT VT = ValueVTs[Value]; 6773 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6774 SDValue Op = SDValue(Args[i].Node.getNode(), 6775 Args[i].Node.getResNo() + Value); 6776 ISD::ArgFlagsTy Flags; 6777 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6778 6779 if (Args[i].isZExt) 6780 Flags.setZExt(); 6781 if (Args[i].isSExt) 6782 Flags.setSExt(); 6783 if (Args[i].isInReg) 6784 Flags.setInReg(); 6785 if (Args[i].isSRet) 6786 Flags.setSRet(); 6787 if (Args[i].isByVal) 6788 Flags.setByVal(); 6789 if (Args[i].isInAlloca) { 6790 Flags.setInAlloca(); 6791 // Set the byval flag for CCAssignFn callbacks that don't know about 6792 // inalloca. This way we can know how many bytes we should've allocated 6793 // and how many bytes a callee cleanup function will pop. If we port 6794 // inalloca to more targets, we'll have to add custom inalloca handling 6795 // in the various CC lowering callbacks. 6796 Flags.setByVal(); 6797 } 6798 if (Args[i].isByVal || Args[i].isInAlloca) { 6799 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6800 Type *ElementTy = Ty->getElementType(); 6801 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6802 // For ByVal, alignment should come from FE. BE will guess if this 6803 // info is not there but there are cases it cannot get right. 6804 unsigned FrameAlign; 6805 if (Args[i].Alignment) 6806 FrameAlign = Args[i].Alignment; 6807 else 6808 FrameAlign = getByValTypeAlignment(ElementTy); 6809 Flags.setByValAlign(FrameAlign); 6810 } 6811 if (Args[i].isNest) 6812 Flags.setNest(); 6813 if (NeedsRegBlock) 6814 Flags.setInConsecutiveRegs(); 6815 Flags.setOrigAlign(OriginalAlignment); 6816 6817 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6818 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6819 SmallVector<SDValue, 4> Parts(NumParts); 6820 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6821 6822 if (Args[i].isSExt) 6823 ExtendKind = ISD::SIGN_EXTEND; 6824 else if (Args[i].isZExt) 6825 ExtendKind = ISD::ZERO_EXTEND; 6826 6827 // Conservatively only handle 'returned' on non-vectors for now 6828 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6829 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6830 "unexpected use of 'returned'"); 6831 // Before passing 'returned' to the target lowering code, ensure that 6832 // either the register MVT and the actual EVT are the same size or that 6833 // the return value and argument are extended in the same way; in these 6834 // cases it's safe to pass the argument register value unchanged as the 6835 // return register value (although it's at the target's option whether 6836 // to do so) 6837 // TODO: allow code generation to take advantage of partially preserved 6838 // registers rather than clobbering the entire register when the 6839 // parameter extension method is not compatible with the return 6840 // extension method 6841 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6842 (ExtendKind != ISD::ANY_EXTEND && 6843 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6844 Flags.setReturned(); 6845 } 6846 6847 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6848 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6849 6850 for (unsigned j = 0; j != NumParts; ++j) { 6851 // if it isn't first piece, alignment must be 1 6852 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6853 i < CLI.NumFixedArgs, 6854 i, j*Parts[j].getValueType().getStoreSize()); 6855 if (NumParts > 1 && j == 0) 6856 MyFlags.Flags.setSplit(); 6857 else if (j != 0) 6858 MyFlags.Flags.setOrigAlign(1); 6859 6860 CLI.Outs.push_back(MyFlags); 6861 CLI.OutVals.push_back(Parts[j]); 6862 } 6863 6864 if (NeedsRegBlock && Value == NumValues - 1) 6865 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6866 } 6867 } 6868 6869 SmallVector<SDValue, 4> InVals; 6870 CLI.Chain = LowerCall(CLI, InVals); 6871 6872 // Verify that the target's LowerCall behaved as expected. 6873 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6874 "LowerCall didn't return a valid chain!"); 6875 assert((!CLI.IsTailCall || InVals.empty()) && 6876 "LowerCall emitted a return value for a tail call!"); 6877 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6878 "LowerCall didn't emit the correct number of values!"); 6879 6880 // For a tail call, the return value is merely live-out and there aren't 6881 // any nodes in the DAG representing it. Return a special value to 6882 // indicate that a tail call has been emitted and no more Instructions 6883 // should be processed in the current block. 6884 if (CLI.IsTailCall) { 6885 CLI.DAG.setRoot(CLI.Chain); 6886 return std::make_pair(SDValue(), SDValue()); 6887 } 6888 6889 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6890 assert(InVals[i].getNode() && 6891 "LowerCall emitted a null value!"); 6892 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6893 "LowerCall emitted a value with the wrong type!"); 6894 }); 6895 6896 SmallVector<SDValue, 4> ReturnValues; 6897 if (!CanLowerReturn) { 6898 // The instruction result is the result of loading from the 6899 // hidden sret parameter. 6900 SmallVector<EVT, 1> PVTs; 6901 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6902 6903 ComputeValueVTs(*this, PtrRetTy, PVTs); 6904 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6905 EVT PtrVT = PVTs[0]; 6906 6907 unsigned NumValues = RetTys.size(); 6908 ReturnValues.resize(NumValues); 6909 SmallVector<SDValue, 4> Chains(NumValues); 6910 6911 for (unsigned i = 0; i < NumValues; ++i) { 6912 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6913 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6914 PtrVT)); 6915 SDValue L = CLI.DAG.getLoad( 6916 RetTys[i], CLI.DL, CLI.Chain, Add, 6917 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6918 false, false, 1); 6919 ReturnValues[i] = L; 6920 Chains[i] = L.getValue(1); 6921 } 6922 6923 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6924 } else { 6925 // Collect the legal value parts into potentially illegal values 6926 // that correspond to the original function's return values. 6927 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6928 if (CLI.RetSExt) 6929 AssertOp = ISD::AssertSext; 6930 else if (CLI.RetZExt) 6931 AssertOp = ISD::AssertZext; 6932 unsigned CurReg = 0; 6933 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6934 EVT VT = RetTys[I]; 6935 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6936 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6937 6938 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6939 NumRegs, RegisterVT, VT, nullptr, 6940 AssertOp)); 6941 CurReg += NumRegs; 6942 } 6943 6944 // For a function returning void, there is no return value. We can't create 6945 // such a node, so we just return a null return value in that case. In 6946 // that case, nothing will actually look at the value. 6947 if (ReturnValues.empty()) 6948 return std::make_pair(SDValue(), CLI.Chain); 6949 } 6950 6951 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6952 CLI.DAG.getVTList(RetTys), ReturnValues); 6953 return std::make_pair(Res, CLI.Chain); 6954 } 6955 6956 void TargetLowering::LowerOperationWrapper(SDNode *N, 6957 SmallVectorImpl<SDValue> &Results, 6958 SelectionDAG &DAG) const { 6959 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6960 if (Res.getNode()) 6961 Results.push_back(Res); 6962 } 6963 6964 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6965 llvm_unreachable("LowerOperation not implemented for this target!"); 6966 } 6967 6968 void 6969 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6970 SDValue Op = getNonRegisterValue(V); 6971 assert((Op.getOpcode() != ISD::CopyFromReg || 6972 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6973 "Copy from a reg to the same reg!"); 6974 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6975 6976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6977 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6978 SDValue Chain = DAG.getEntryNode(); 6979 6980 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6981 FuncInfo.PreferredExtendType.end()) 6982 ? ISD::ANY_EXTEND 6983 : FuncInfo.PreferredExtendType[V]; 6984 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6985 PendingExports.push_back(Chain); 6986 } 6987 6988 #include "llvm/CodeGen/SelectionDAGISel.h" 6989 6990 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6991 /// entry block, return true. This includes arguments used by switches, since 6992 /// the switch may expand into multiple basic blocks. 6993 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6994 // With FastISel active, we may be splitting blocks, so force creation 6995 // of virtual registers for all non-dead arguments. 6996 if (FastISel) 6997 return A->use_empty(); 6998 6999 const BasicBlock *Entry = A->getParent()->begin(); 7000 for (const User *U : A->users()) 7001 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7002 return false; // Use not in entry block. 7003 7004 return true; 7005 } 7006 7007 void SelectionDAGISel::LowerArguments(const Function &F) { 7008 SelectionDAG &DAG = SDB->DAG; 7009 SDLoc dl = SDB->getCurSDLoc(); 7010 const DataLayout *DL = TLI->getDataLayout(); 7011 SmallVector<ISD::InputArg, 16> Ins; 7012 7013 if (!FuncInfo->CanLowerReturn) { 7014 // Put in an sret pointer parameter before all the other parameters. 7015 SmallVector<EVT, 1> ValueVTs; 7016 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7017 7018 // NOTE: Assuming that a pointer will never break down to more than one VT 7019 // or one register. 7020 ISD::ArgFlagsTy Flags; 7021 Flags.setSRet(); 7022 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7023 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7024 ISD::InputArg::NoArgIndex, 0); 7025 Ins.push_back(RetArg); 7026 } 7027 7028 // Set up the incoming argument description vector. 7029 unsigned Idx = 1; 7030 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7031 I != E; ++I, ++Idx) { 7032 SmallVector<EVT, 4> ValueVTs; 7033 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7034 bool isArgValueUsed = !I->use_empty(); 7035 unsigned PartBase = 0; 7036 Type *FinalType = I->getType(); 7037 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7038 FinalType = cast<PointerType>(FinalType)->getElementType(); 7039 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7040 FinalType, F.getCallingConv(), F.isVarArg()); 7041 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7042 Value != NumValues; ++Value) { 7043 EVT VT = ValueVTs[Value]; 7044 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7045 ISD::ArgFlagsTy Flags; 7046 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7047 7048 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7049 Flags.setZExt(); 7050 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7051 Flags.setSExt(); 7052 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7053 Flags.setInReg(); 7054 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7055 Flags.setSRet(); 7056 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7057 Flags.setByVal(); 7058 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7059 Flags.setInAlloca(); 7060 // Set the byval flag for CCAssignFn callbacks that don't know about 7061 // inalloca. This way we can know how many bytes we should've allocated 7062 // and how many bytes a callee cleanup function will pop. If we port 7063 // inalloca to more targets, we'll have to add custom inalloca handling 7064 // in the various CC lowering callbacks. 7065 Flags.setByVal(); 7066 } 7067 if (Flags.isByVal() || Flags.isInAlloca()) { 7068 PointerType *Ty = cast<PointerType>(I->getType()); 7069 Type *ElementTy = Ty->getElementType(); 7070 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7071 // For ByVal, alignment should be passed from FE. BE will guess if 7072 // this info is not there but there are cases it cannot get right. 7073 unsigned FrameAlign; 7074 if (F.getParamAlignment(Idx)) 7075 FrameAlign = F.getParamAlignment(Idx); 7076 else 7077 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7078 Flags.setByValAlign(FrameAlign); 7079 } 7080 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7081 Flags.setNest(); 7082 if (NeedsRegBlock) 7083 Flags.setInConsecutiveRegs(); 7084 Flags.setOrigAlign(OriginalAlignment); 7085 7086 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7087 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7088 for (unsigned i = 0; i != NumRegs; ++i) { 7089 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7090 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7091 if (NumRegs > 1 && i == 0) 7092 MyFlags.Flags.setSplit(); 7093 // if it isn't first piece, alignment must be 1 7094 else if (i > 0) 7095 MyFlags.Flags.setOrigAlign(1); 7096 Ins.push_back(MyFlags); 7097 } 7098 if (NeedsRegBlock && Value == NumValues - 1) 7099 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7100 PartBase += VT.getStoreSize(); 7101 } 7102 } 7103 7104 // Call the target to set up the argument values. 7105 SmallVector<SDValue, 8> InVals; 7106 SDValue NewRoot = TLI->LowerFormalArguments( 7107 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7108 7109 // Verify that the target's LowerFormalArguments behaved as expected. 7110 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7111 "LowerFormalArguments didn't return a valid chain!"); 7112 assert(InVals.size() == Ins.size() && 7113 "LowerFormalArguments didn't emit the correct number of values!"); 7114 DEBUG({ 7115 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7116 assert(InVals[i].getNode() && 7117 "LowerFormalArguments emitted a null value!"); 7118 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7119 "LowerFormalArguments emitted a value with the wrong type!"); 7120 } 7121 }); 7122 7123 // Update the DAG with the new chain value resulting from argument lowering. 7124 DAG.setRoot(NewRoot); 7125 7126 // Set up the argument values. 7127 unsigned i = 0; 7128 Idx = 1; 7129 if (!FuncInfo->CanLowerReturn) { 7130 // Create a virtual register for the sret pointer, and put in a copy 7131 // from the sret argument into it. 7132 SmallVector<EVT, 1> ValueVTs; 7133 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7134 MVT VT = ValueVTs[0].getSimpleVT(); 7135 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7136 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7137 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7138 RegVT, VT, nullptr, AssertOp); 7139 7140 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7141 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7142 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7143 FuncInfo->DemoteRegister = SRetReg; 7144 NewRoot = 7145 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7146 DAG.setRoot(NewRoot); 7147 7148 // i indexes lowered arguments. Bump it past the hidden sret argument. 7149 // Idx indexes LLVM arguments. Don't touch it. 7150 ++i; 7151 } 7152 7153 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7154 ++I, ++Idx) { 7155 SmallVector<SDValue, 4> ArgValues; 7156 SmallVector<EVT, 4> ValueVTs; 7157 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7158 unsigned NumValues = ValueVTs.size(); 7159 7160 // If this argument is unused then remember its value. It is used to generate 7161 // debugging information. 7162 if (I->use_empty() && NumValues) { 7163 SDB->setUnusedArgValue(I, InVals[i]); 7164 7165 // Also remember any frame index for use in FastISel. 7166 if (FrameIndexSDNode *FI = 7167 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7168 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7169 } 7170 7171 for (unsigned Val = 0; Val != NumValues; ++Val) { 7172 EVT VT = ValueVTs[Val]; 7173 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7174 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7175 7176 if (!I->use_empty()) { 7177 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7178 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7179 AssertOp = ISD::AssertSext; 7180 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7181 AssertOp = ISD::AssertZext; 7182 7183 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7184 NumParts, PartVT, VT, 7185 nullptr, AssertOp)); 7186 } 7187 7188 i += NumParts; 7189 } 7190 7191 // We don't need to do anything else for unused arguments. 7192 if (ArgValues.empty()) 7193 continue; 7194 7195 // Note down frame index. 7196 if (FrameIndexSDNode *FI = 7197 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7198 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7199 7200 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7201 SDB->getCurSDLoc()); 7202 7203 SDB->setValue(I, Res); 7204 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7205 if (LoadSDNode *LNode = 7206 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7207 if (FrameIndexSDNode *FI = 7208 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7209 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7210 } 7211 7212 // If this argument is live outside of the entry block, insert a copy from 7213 // wherever we got it to the vreg that other BB's will reference it as. 7214 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7215 // If we can, though, try to skip creating an unnecessary vreg. 7216 // FIXME: This isn't very clean... it would be nice to make this more 7217 // general. It's also subtly incompatible with the hacks FastISel 7218 // uses with vregs. 7219 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7220 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7221 FuncInfo->ValueMap[I] = Reg; 7222 continue; 7223 } 7224 } 7225 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7226 FuncInfo->InitializeRegForValue(I); 7227 SDB->CopyToExportRegsIfNeeded(I); 7228 } 7229 } 7230 7231 assert(i == InVals.size() && "Argument register count mismatch!"); 7232 7233 // Finally, if the target has anything special to do, allow it to do so. 7234 EmitFunctionEntryCode(); 7235 } 7236 7237 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7238 /// ensure constants are generated when needed. Remember the virtual registers 7239 /// that need to be added to the Machine PHI nodes as input. We cannot just 7240 /// directly add them, because expansion might result in multiple MBB's for one 7241 /// BB. As such, the start of the BB might correspond to a different MBB than 7242 /// the end. 7243 /// 7244 void 7245 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7246 const TerminatorInst *TI = LLVMBB->getTerminator(); 7247 7248 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7249 7250 // Check PHI nodes in successors that expect a value to be available from this 7251 // block. 7252 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7253 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7254 if (!isa<PHINode>(SuccBB->begin())) continue; 7255 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7256 7257 // If this terminator has multiple identical successors (common for 7258 // switches), only handle each succ once. 7259 if (!SuccsHandled.insert(SuccMBB).second) 7260 continue; 7261 7262 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7263 7264 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7265 // nodes and Machine PHI nodes, but the incoming operands have not been 7266 // emitted yet. 7267 for (BasicBlock::const_iterator I = SuccBB->begin(); 7268 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7269 // Ignore dead phi's. 7270 if (PN->use_empty()) continue; 7271 7272 // Skip empty types 7273 if (PN->getType()->isEmptyTy()) 7274 continue; 7275 7276 unsigned Reg; 7277 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7278 7279 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7280 unsigned &RegOut = ConstantsOut[C]; 7281 if (RegOut == 0) { 7282 RegOut = FuncInfo.CreateRegs(C->getType()); 7283 CopyValueToVirtualRegister(C, RegOut); 7284 } 7285 Reg = RegOut; 7286 } else { 7287 DenseMap<const Value *, unsigned>::iterator I = 7288 FuncInfo.ValueMap.find(PHIOp); 7289 if (I != FuncInfo.ValueMap.end()) 7290 Reg = I->second; 7291 else { 7292 assert(isa<AllocaInst>(PHIOp) && 7293 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7294 "Didn't codegen value into a register!??"); 7295 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7296 CopyValueToVirtualRegister(PHIOp, Reg); 7297 } 7298 } 7299 7300 // Remember that this register needs to added to the machine PHI node as 7301 // the input for this MBB. 7302 SmallVector<EVT, 4> ValueVTs; 7303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7304 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7305 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7306 EVT VT = ValueVTs[vti]; 7307 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7308 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7309 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7310 Reg += NumRegisters; 7311 } 7312 } 7313 } 7314 7315 ConstantsOut.clear(); 7316 } 7317 7318 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7319 /// is 0. 7320 MachineBasicBlock * 7321 SelectionDAGBuilder::StackProtectorDescriptor:: 7322 AddSuccessorMBB(const BasicBlock *BB, 7323 MachineBasicBlock *ParentMBB, 7324 bool IsLikely, 7325 MachineBasicBlock *SuccMBB) { 7326 // If SuccBB has not been created yet, create it. 7327 if (!SuccMBB) { 7328 MachineFunction *MF = ParentMBB->getParent(); 7329 MachineFunction::iterator BBI = ParentMBB; 7330 SuccMBB = MF->CreateMachineBasicBlock(BB); 7331 MF->insert(++BBI, SuccMBB); 7332 } 7333 // Add it as a successor of ParentMBB. 7334 ParentMBB->addSuccessor( 7335 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7336 return SuccMBB; 7337 } 7338 7339 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7340 MachineFunction::iterator I = MBB; 7341 if (++I == FuncInfo.MF->end()) 7342 return nullptr; 7343 return I; 7344 } 7345 7346 /// During lowering new call nodes can be created (such as memset, etc.). 7347 /// Those will become new roots of the current DAG, but complications arise 7348 /// when they are tail calls. In such cases, the call lowering will update 7349 /// the root, but the builder still needs to know that a tail call has been 7350 /// lowered in order to avoid generating an additional return. 7351 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7352 // If the node is null, we do have a tail call. 7353 if (MaybeTC.getNode() != nullptr) 7354 DAG.setRoot(MaybeTC); 7355 else 7356 HasTailCall = true; 7357 } 7358 7359 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7360 unsigned *TotalCases, unsigned First, 7361 unsigned Last) { 7362 assert(Last >= First); 7363 assert(TotalCases[Last] >= TotalCases[First]); 7364 7365 APInt LowCase = Clusters[First].Low->getValue(); 7366 APInt HighCase = Clusters[Last].High->getValue(); 7367 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7368 7369 // FIXME: A range of consecutive cases has 100% density, but only requires one 7370 // comparison to lower. We should discriminate against such consecutive ranges 7371 // in jump tables. 7372 7373 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7374 uint64_t Range = Diff + 1; 7375 7376 uint64_t NumCases = 7377 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7378 7379 assert(NumCases < UINT64_MAX / 100); 7380 assert(Range >= NumCases); 7381 7382 return NumCases * 100 >= Range * MinJumpTableDensity; 7383 } 7384 7385 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7386 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7387 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7388 } 7389 7390 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7391 unsigned First, unsigned Last, 7392 const SwitchInst *SI, 7393 MachineBasicBlock *DefaultMBB, 7394 CaseCluster &JTCluster) { 7395 assert(First <= Last); 7396 7397 uint32_t Weight = 0; 7398 unsigned NumCmps = 0; 7399 std::vector<MachineBasicBlock*> Table; 7400 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7401 for (unsigned I = First; I <= Last; ++I) { 7402 assert(Clusters[I].Kind == CC_Range); 7403 Weight += Clusters[I].Weight; 7404 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7405 APInt Low = Clusters[I].Low->getValue(); 7406 APInt High = Clusters[I].High->getValue(); 7407 NumCmps += (Low == High) ? 1 : 2; 7408 if (I != First) { 7409 // Fill the gap between this and the previous cluster. 7410 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7411 assert(PreviousHigh.slt(Low)); 7412 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7413 for (uint64_t J = 0; J < Gap; J++) 7414 Table.push_back(DefaultMBB); 7415 } 7416 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7417 for (uint64_t J = 0; J < ClusterSize; ++J) 7418 Table.push_back(Clusters[I].MBB); 7419 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7420 } 7421 7422 unsigned NumDests = JTWeights.size(); 7423 if (isSuitableForBitTests(NumDests, NumCmps, 7424 Clusters[First].Low->getValue(), 7425 Clusters[Last].High->getValue())) { 7426 // Clusters[First..Last] should be lowered as bit tests instead. 7427 return false; 7428 } 7429 7430 // Create the MBB that will load from and jump through the table. 7431 // Note: We create it here, but it's not inserted into the function yet. 7432 MachineFunction *CurMF = FuncInfo.MF; 7433 MachineBasicBlock *JumpTableMBB = 7434 CurMF->CreateMachineBasicBlock(SI->getParent()); 7435 7436 // Add successors. Note: use table order for determinism. 7437 SmallPtrSet<MachineBasicBlock *, 8> Done; 7438 for (MachineBasicBlock *Succ : Table) { 7439 if (Done.count(Succ)) 7440 continue; 7441 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7442 Done.insert(Succ); 7443 } 7444 7445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7446 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7447 ->createJumpTableIndex(Table); 7448 7449 // Set up the jump table info. 7450 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7451 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7452 Clusters[Last].High->getValue(), SI->getCondition(), 7453 nullptr, false); 7454 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7455 7456 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7457 JTCases.size() - 1, Weight); 7458 return true; 7459 } 7460 7461 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7462 const SwitchInst *SI, 7463 MachineBasicBlock *DefaultMBB) { 7464 #ifndef NDEBUG 7465 // Clusters must be non-empty, sorted, and only contain Range clusters. 7466 assert(!Clusters.empty()); 7467 for (CaseCluster &C : Clusters) 7468 assert(C.Kind == CC_Range); 7469 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7470 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7471 #endif 7472 7473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7474 if (!areJTsAllowed(TLI)) 7475 return; 7476 7477 const int64_t N = Clusters.size(); 7478 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7479 7480 // Split Clusters into minimum number of dense partitions. The algorithm uses 7481 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7482 // for the Case Statement'" (1994), but builds the MinPartitions array in 7483 // reverse order to make it easier to reconstruct the partitions in ascending 7484 // order. In the choice between two optimal partitionings, it picks the one 7485 // which yields more jump tables. 7486 7487 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7488 SmallVector<unsigned, 8> MinPartitions(N); 7489 // LastElement[i] is the last element of the partition starting at i. 7490 SmallVector<unsigned, 8> LastElement(N); 7491 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7492 SmallVector<unsigned, 8> NumTables(N); 7493 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7494 SmallVector<unsigned, 8> TotalCases(N); 7495 7496 for (unsigned i = 0; i < N; ++i) { 7497 APInt Hi = Clusters[i].High->getValue(); 7498 APInt Lo = Clusters[i].Low->getValue(); 7499 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7500 if (i != 0) 7501 TotalCases[i] += TotalCases[i - 1]; 7502 } 7503 7504 // Base case: There is only one way to partition Clusters[N-1]. 7505 MinPartitions[N - 1] = 1; 7506 LastElement[N - 1] = N - 1; 7507 assert(MinJumpTableSize > 1); 7508 NumTables[N - 1] = 0; 7509 7510 // Note: loop indexes are signed to avoid underflow. 7511 for (int64_t i = N - 2; i >= 0; i--) { 7512 // Find optimal partitioning of Clusters[i..N-1]. 7513 // Baseline: Put Clusters[i] into a partition on its own. 7514 MinPartitions[i] = MinPartitions[i + 1] + 1; 7515 LastElement[i] = i; 7516 NumTables[i] = NumTables[i + 1]; 7517 7518 // Search for a solution that results in fewer partitions. 7519 for (int64_t j = N - 1; j > i; j--) { 7520 // Try building a partition from Clusters[i..j]. 7521 if (isDense(Clusters, &TotalCases[0], i, j)) { 7522 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7523 bool IsTable = j - i + 1 >= MinJumpTableSize; 7524 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7525 7526 // If this j leads to fewer partitions, or same number of partitions 7527 // with more lookup tables, it is a better partitioning. 7528 if (NumPartitions < MinPartitions[i] || 7529 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7530 MinPartitions[i] = NumPartitions; 7531 LastElement[i] = j; 7532 NumTables[i] = Tables; 7533 } 7534 } 7535 } 7536 } 7537 7538 // Iterate over the partitions, replacing some with jump tables in-place. 7539 unsigned DstIndex = 0; 7540 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7541 Last = LastElement[First]; 7542 assert(Last >= First); 7543 assert(DstIndex <= First); 7544 unsigned NumClusters = Last - First + 1; 7545 7546 CaseCluster JTCluster; 7547 if (NumClusters >= MinJumpTableSize && 7548 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7549 Clusters[DstIndex++] = JTCluster; 7550 } else { 7551 for (unsigned I = First; I <= Last; ++I) 7552 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7553 } 7554 } 7555 Clusters.resize(DstIndex); 7556 } 7557 7558 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7559 // FIXME: Using the pointer type doesn't seem ideal. 7560 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7561 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7562 return Range <= BW; 7563 } 7564 7565 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7566 unsigned NumCmps, 7567 const APInt &Low, 7568 const APInt &High) { 7569 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7570 // range of cases both require only one branch to lower. Just looking at the 7571 // number of clusters and destinations should be enough to decide whether to 7572 // build bit tests. 7573 7574 // To lower a range with bit tests, the range must fit the bitwidth of a 7575 // machine word. 7576 if (!rangeFitsInWord(Low, High)) 7577 return false; 7578 7579 // Decide whether it's profitable to lower this range with bit tests. Each 7580 // destination requires a bit test and branch, and there is an overall range 7581 // check branch. For a small number of clusters, separate comparisons might be 7582 // cheaper, and for many destinations, splitting the range might be better. 7583 return (NumDests == 1 && NumCmps >= 3) || 7584 (NumDests == 2 && NumCmps >= 5) || 7585 (NumDests == 3 && NumCmps >= 6); 7586 } 7587 7588 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7589 unsigned First, unsigned Last, 7590 const SwitchInst *SI, 7591 CaseCluster &BTCluster) { 7592 assert(First <= Last); 7593 if (First == Last) 7594 return false; 7595 7596 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7597 unsigned NumCmps = 0; 7598 for (int64_t I = First; I <= Last; ++I) { 7599 assert(Clusters[I].Kind == CC_Range); 7600 Dests.set(Clusters[I].MBB->getNumber()); 7601 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7602 } 7603 unsigned NumDests = Dests.count(); 7604 7605 APInt Low = Clusters[First].Low->getValue(); 7606 APInt High = Clusters[Last].High->getValue(); 7607 assert(Low.slt(High)); 7608 7609 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7610 return false; 7611 7612 APInt LowBound; 7613 APInt CmpRange; 7614 7615 const int BitWidth = 7616 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7617 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7618 7619 if (Low.isNonNegative() && High.slt(BitWidth)) { 7620 // Optimize the case where all the case values fit in a 7621 // word without having to subtract minValue. In this case, 7622 // we can optimize away the subtraction. 7623 LowBound = APInt::getNullValue(Low.getBitWidth()); 7624 CmpRange = High; 7625 } else { 7626 LowBound = Low; 7627 CmpRange = High - Low; 7628 } 7629 7630 CaseBitsVector CBV; 7631 uint32_t TotalWeight = 0; 7632 for (unsigned i = First; i <= Last; ++i) { 7633 // Find the CaseBits for this destination. 7634 unsigned j; 7635 for (j = 0; j < CBV.size(); ++j) 7636 if (CBV[j].BB == Clusters[i].MBB) 7637 break; 7638 if (j == CBV.size()) 7639 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7640 CaseBits *CB = &CBV[j]; 7641 7642 // Update Mask, Bits and ExtraWeight. 7643 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7644 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7645 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7646 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7647 CB->Bits += Hi - Lo + 1; 7648 CB->ExtraWeight += Clusters[i].Weight; 7649 TotalWeight += Clusters[i].Weight; 7650 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7651 } 7652 7653 BitTestInfo BTI; 7654 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7655 // Sort by weight first, number of bits second. 7656 if (a.ExtraWeight != b.ExtraWeight) 7657 return a.ExtraWeight > b.ExtraWeight; 7658 return a.Bits > b.Bits; 7659 }); 7660 7661 for (auto &CB : CBV) { 7662 MachineBasicBlock *BitTestBB = 7663 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7664 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7665 } 7666 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7667 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7668 nullptr, std::move(BTI)); 7669 7670 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7671 BitTestCases.size() - 1, TotalWeight); 7672 return true; 7673 } 7674 7675 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7676 const SwitchInst *SI) { 7677 // Partition Clusters into as few subsets as possible, where each subset has a 7678 // range that fits in a machine word and has <= 3 unique destinations. 7679 7680 #ifndef NDEBUG 7681 // Clusters must be sorted and contain Range or JumpTable clusters. 7682 assert(!Clusters.empty()); 7683 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7684 for (const CaseCluster &C : Clusters) 7685 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7686 for (unsigned i = 1; i < Clusters.size(); ++i) 7687 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7688 #endif 7689 7690 // If target does not have legal shift left, do not emit bit tests at all. 7691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7692 EVT PTy = TLI.getPointerTy(); 7693 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7694 return; 7695 7696 int BitWidth = PTy.getSizeInBits(); 7697 const int64_t N = Clusters.size(); 7698 7699 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7700 SmallVector<unsigned, 8> MinPartitions(N); 7701 // LastElement[i] is the last element of the partition starting at i. 7702 SmallVector<unsigned, 8> LastElement(N); 7703 7704 // FIXME: This might not be the best algorithm for finding bit test clusters. 7705 7706 // Base case: There is only one way to partition Clusters[N-1]. 7707 MinPartitions[N - 1] = 1; 7708 LastElement[N - 1] = N - 1; 7709 7710 // Note: loop indexes are signed to avoid underflow. 7711 for (int64_t i = N - 2; i >= 0; --i) { 7712 // Find optimal partitioning of Clusters[i..N-1]. 7713 // Baseline: Put Clusters[i] into a partition on its own. 7714 MinPartitions[i] = MinPartitions[i + 1] + 1; 7715 LastElement[i] = i; 7716 7717 // Search for a solution that results in fewer partitions. 7718 // Note: the search is limited by BitWidth, reducing time complexity. 7719 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7720 // Try building a partition from Clusters[i..j]. 7721 7722 // Check the range. 7723 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7724 Clusters[j].High->getValue())) 7725 continue; 7726 7727 // Check nbr of destinations and cluster types. 7728 // FIXME: This works, but doesn't seem very efficient. 7729 bool RangesOnly = true; 7730 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7731 for (int64_t k = i; k <= j; k++) { 7732 if (Clusters[k].Kind != CC_Range) { 7733 RangesOnly = false; 7734 break; 7735 } 7736 Dests.set(Clusters[k].MBB->getNumber()); 7737 } 7738 if (!RangesOnly || Dests.count() > 3) 7739 break; 7740 7741 // Check if it's a better partition. 7742 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7743 if (NumPartitions < MinPartitions[i]) { 7744 // Found a better partition. 7745 MinPartitions[i] = NumPartitions; 7746 LastElement[i] = j; 7747 } 7748 } 7749 } 7750 7751 // Iterate over the partitions, replacing with bit-test clusters in-place. 7752 unsigned DstIndex = 0; 7753 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7754 Last = LastElement[First]; 7755 assert(First <= Last); 7756 assert(DstIndex <= First); 7757 7758 CaseCluster BitTestCluster; 7759 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7760 Clusters[DstIndex++] = BitTestCluster; 7761 } else { 7762 size_t NumClusters = Last - First + 1; 7763 std::memmove(&Clusters[DstIndex], &Clusters[First], 7764 sizeof(Clusters[0]) * NumClusters); 7765 DstIndex += NumClusters; 7766 } 7767 } 7768 Clusters.resize(DstIndex); 7769 } 7770 7771 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7772 MachineBasicBlock *SwitchMBB, 7773 MachineBasicBlock *DefaultMBB) { 7774 MachineFunction *CurMF = FuncInfo.MF; 7775 MachineBasicBlock *NextMBB = nullptr; 7776 MachineFunction::iterator BBI = W.MBB; 7777 if (++BBI != FuncInfo.MF->end()) 7778 NextMBB = BBI; 7779 7780 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7781 7782 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7783 7784 if (Size == 2 && W.MBB == SwitchMBB) { 7785 // If any two of the cases has the same destination, and if one value 7786 // is the same as the other, but has one bit unset that the other has set, 7787 // use bit manipulation to do two compares at once. For example: 7788 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7789 // TODO: This could be extended to merge any 2 cases in switches with 3 7790 // cases. 7791 // TODO: Handle cases where W.CaseBB != SwitchBB. 7792 CaseCluster &Small = *W.FirstCluster; 7793 CaseCluster &Big = *W.LastCluster; 7794 7795 if (Small.Low == Small.High && Big.Low == Big.High && 7796 Small.MBB == Big.MBB) { 7797 const APInt &SmallValue = Small.Low->getValue(); 7798 const APInt &BigValue = Big.Low->getValue(); 7799 7800 // Check that there is only one bit different. 7801 if ((BigValue ^ SmallValue).isPowerOf2()) { 7802 // Isolate the common bit. 7803 APInt CommonBit = BigValue & ~SmallValue; 7804 assert((SmallValue | CommonBit) == BigValue && 7805 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7806 7807 SDValue CondLHS = getValue(Cond); 7808 EVT VT = CondLHS.getValueType(); 7809 SDLoc DL = getCurSDLoc(); 7810 7811 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7812 DAG.getConstant(CommonBit, DL, VT)); 7813 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7814 DAG.getConstant(BigValue, DL, VT), 7815 ISD::SETEQ); 7816 7817 // Update successor info. 7818 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7819 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7820 addSuccessorWithWeight( 7821 SwitchMBB, DefaultMBB, 7822 // The default destination is the first successor in IR. 7823 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7824 : 0); 7825 7826 // Insert the true branch. 7827 SDValue BrCond = 7828 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7829 DAG.getBasicBlock(Small.MBB)); 7830 // Insert the false branch. 7831 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7832 DAG.getBasicBlock(DefaultMBB)); 7833 7834 DAG.setRoot(BrCond); 7835 return; 7836 } 7837 } 7838 } 7839 7840 if (TM.getOptLevel() != CodeGenOpt::None) { 7841 // Order cases by weight so the most likely case will be checked first. 7842 std::sort(W.FirstCluster, W.LastCluster + 1, 7843 [](const CaseCluster &a, const CaseCluster &b) { 7844 return a.Weight > b.Weight; 7845 }); 7846 7847 // Rearrange the case blocks so that the last one falls through if possible 7848 // without without changing the order of weights. 7849 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7850 --I; 7851 if (I->Weight > W.LastCluster->Weight) 7852 break; 7853 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7854 std::swap(*I, *W.LastCluster); 7855 break; 7856 } 7857 } 7858 } 7859 7860 // Compute total weight. 7861 uint32_t UnhandledWeights = 0; 7862 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7863 UnhandledWeights += I->Weight; 7864 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7865 } 7866 7867 MachineBasicBlock *CurMBB = W.MBB; 7868 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7869 MachineBasicBlock *Fallthrough; 7870 if (I == W.LastCluster) { 7871 // For the last cluster, fall through to the default destination. 7872 Fallthrough = DefaultMBB; 7873 } else { 7874 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7875 CurMF->insert(BBI, Fallthrough); 7876 // Put Cond in a virtual register to make it available from the new blocks. 7877 ExportFromCurrentBlock(Cond); 7878 } 7879 7880 switch (I->Kind) { 7881 case CC_JumpTable: { 7882 // FIXME: Optimize away range check based on pivot comparisons. 7883 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7884 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7885 7886 // The jump block hasn't been inserted yet; insert it here. 7887 MachineBasicBlock *JumpMBB = JT->MBB; 7888 CurMF->insert(BBI, JumpMBB); 7889 addSuccessorWithWeight(CurMBB, Fallthrough); 7890 addSuccessorWithWeight(CurMBB, JumpMBB); 7891 7892 // The jump table header will be inserted in our current block, do the 7893 // range check, and fall through to our fallthrough block. 7894 JTH->HeaderBB = CurMBB; 7895 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7896 7897 // If we're in the right place, emit the jump table header right now. 7898 if (CurMBB == SwitchMBB) { 7899 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7900 JTH->Emitted = true; 7901 } 7902 break; 7903 } 7904 case CC_BitTests: { 7905 // FIXME: Optimize away range check based on pivot comparisons. 7906 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7907 7908 // The bit test blocks haven't been inserted yet; insert them here. 7909 for (BitTestCase &BTC : BTB->Cases) 7910 CurMF->insert(BBI, BTC.ThisBB); 7911 7912 // Fill in fields of the BitTestBlock. 7913 BTB->Parent = CurMBB; 7914 BTB->Default = Fallthrough; 7915 7916 // If we're in the right place, emit the bit test header header right now. 7917 if (CurMBB ==SwitchMBB) { 7918 visitBitTestHeader(*BTB, SwitchMBB); 7919 BTB->Emitted = true; 7920 } 7921 break; 7922 } 7923 case CC_Range: { 7924 const Value *RHS, *LHS, *MHS; 7925 ISD::CondCode CC; 7926 if (I->Low == I->High) { 7927 // Check Cond == I->Low. 7928 CC = ISD::SETEQ; 7929 LHS = Cond; 7930 RHS=I->Low; 7931 MHS = nullptr; 7932 } else { 7933 // Check I->Low <= Cond <= I->High. 7934 CC = ISD::SETLE; 7935 LHS = I->Low; 7936 MHS = Cond; 7937 RHS = I->High; 7938 } 7939 7940 // The false weight is the sum of all unhandled cases. 7941 UnhandledWeights -= I->Weight; 7942 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7943 UnhandledWeights); 7944 7945 if (CurMBB == SwitchMBB) 7946 visitSwitchCase(CB, SwitchMBB); 7947 else 7948 SwitchCases.push_back(CB); 7949 7950 break; 7951 } 7952 } 7953 CurMBB = Fallthrough; 7954 } 7955 } 7956 7957 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7958 const SwitchWorkListItem &W, 7959 Value *Cond, 7960 MachineBasicBlock *SwitchMBB) { 7961 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7962 "Clusters not sorted?"); 7963 7964 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 7965 7966 // Balance the tree based on branch weights to create a near-optimal (in terms 7967 // of search time given key frequency) binary search tree. See e.g. Kurt 7968 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 7969 CaseClusterIt LastLeft = W.FirstCluster; 7970 CaseClusterIt FirstRight = W.LastCluster; 7971 uint32_t LeftWeight = LastLeft->Weight; 7972 uint32_t RightWeight = FirstRight->Weight; 7973 7974 // Move LastLeft and FirstRight towards each other from opposite directions to 7975 // find a partitioning of the clusters which balances the weight on both 7976 // sides. If LeftWeight and RightWeight are equal, alternate which side is 7977 // taken to ensure 0-weight nodes are distributed evenly. 7978 unsigned I = 0; 7979 while (LastLeft + 1 < FirstRight) { 7980 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 7981 LeftWeight += (++LastLeft)->Weight; 7982 else 7983 RightWeight += (--FirstRight)->Weight; 7984 I++; 7985 } 7986 assert(LastLeft + 1 == FirstRight); 7987 assert(LastLeft >= W.FirstCluster); 7988 assert(FirstRight <= W.LastCluster); 7989 7990 // Use the first element on the right as pivot since we will make less-than 7991 // comparisons against it. 7992 CaseClusterIt PivotCluster = FirstRight; 7993 assert(PivotCluster > W.FirstCluster); 7994 assert(PivotCluster <= W.LastCluster); 7995 7996 CaseClusterIt FirstLeft = W.FirstCluster; 7997 CaseClusterIt LastRight = W.LastCluster; 7998 7999 const ConstantInt *Pivot = PivotCluster->Low; 8000 8001 // New blocks will be inserted immediately after the current one. 8002 MachineFunction::iterator BBI = W.MBB; 8003 ++BBI; 8004 8005 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8006 // we can branch to its destination directly if it's squeezed exactly in 8007 // between the known lower bound and Pivot - 1. 8008 MachineBasicBlock *LeftMBB; 8009 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8010 FirstLeft->Low == W.GE && 8011 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8012 LeftMBB = FirstLeft->MBB; 8013 } else { 8014 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8015 FuncInfo.MF->insert(BBI, LeftMBB); 8016 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8017 // Put Cond in a virtual register to make it available from the new blocks. 8018 ExportFromCurrentBlock(Cond); 8019 } 8020 8021 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8022 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8023 // directly if RHS.High equals the current upper bound. 8024 MachineBasicBlock *RightMBB; 8025 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8026 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8027 RightMBB = FirstRight->MBB; 8028 } else { 8029 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8030 FuncInfo.MF->insert(BBI, RightMBB); 8031 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8032 // Put Cond in a virtual register to make it available from the new blocks. 8033 ExportFromCurrentBlock(Cond); 8034 } 8035 8036 // Create the CaseBlock record that will be used to lower the branch. 8037 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8038 LeftWeight, RightWeight); 8039 8040 if (W.MBB == SwitchMBB) 8041 visitSwitchCase(CB, SwitchMBB); 8042 else 8043 SwitchCases.push_back(CB); 8044 } 8045 8046 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8047 // Extract cases from the switch. 8048 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8049 CaseClusterVector Clusters; 8050 Clusters.reserve(SI.getNumCases()); 8051 for (auto I : SI.cases()) { 8052 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8053 const ConstantInt *CaseVal = I.getCaseValue(); 8054 uint32_t Weight = 8055 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8056 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8057 } 8058 8059 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8060 8061 // Cluster adjacent cases with the same destination. We do this at all 8062 // optimization levels because it's cheap to do and will make codegen faster 8063 // if there are many clusters. 8064 sortAndRangeify(Clusters); 8065 8066 if (TM.getOptLevel() != CodeGenOpt::None) { 8067 // Replace an unreachable default with the most popular destination. 8068 // FIXME: Exploit unreachable default more aggressively. 8069 bool UnreachableDefault = 8070 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8071 if (UnreachableDefault && !Clusters.empty()) { 8072 DenseMap<const BasicBlock *, unsigned> Popularity; 8073 unsigned MaxPop = 0; 8074 const BasicBlock *MaxBB = nullptr; 8075 for (auto I : SI.cases()) { 8076 const BasicBlock *BB = I.getCaseSuccessor(); 8077 if (++Popularity[BB] > MaxPop) { 8078 MaxPop = Popularity[BB]; 8079 MaxBB = BB; 8080 } 8081 } 8082 // Set new default. 8083 assert(MaxPop > 0 && MaxBB); 8084 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8085 8086 // Remove cases that were pointing to the destination that is now the 8087 // default. 8088 CaseClusterVector New; 8089 New.reserve(Clusters.size()); 8090 for (CaseCluster &CC : Clusters) { 8091 if (CC.MBB != DefaultMBB) 8092 New.push_back(CC); 8093 } 8094 Clusters = std::move(New); 8095 } 8096 } 8097 8098 // If there is only the default destination, jump there directly. 8099 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8100 if (Clusters.empty()) { 8101 SwitchMBB->addSuccessor(DefaultMBB); 8102 if (DefaultMBB != NextBlock(SwitchMBB)) { 8103 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8104 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8105 } 8106 return; 8107 } 8108 8109 if (TM.getOptLevel() != CodeGenOpt::None) { 8110 findJumpTables(Clusters, &SI, DefaultMBB); 8111 findBitTestClusters(Clusters, &SI); 8112 } 8113 8114 8115 DEBUG({ 8116 dbgs() << "Case clusters: "; 8117 for (const CaseCluster &C : Clusters) { 8118 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8119 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8120 8121 C.Low->getValue().print(dbgs(), true); 8122 if (C.Low != C.High) { 8123 dbgs() << '-'; 8124 C.High->getValue().print(dbgs(), true); 8125 } 8126 dbgs() << ' '; 8127 } 8128 dbgs() << '\n'; 8129 }); 8130 8131 assert(!Clusters.empty()); 8132 SwitchWorkList WorkList; 8133 CaseClusterIt First = Clusters.begin(); 8134 CaseClusterIt Last = Clusters.end() - 1; 8135 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8136 8137 while (!WorkList.empty()) { 8138 SwitchWorkListItem W = WorkList.back(); 8139 WorkList.pop_back(); 8140 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8141 8142 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8143 // For optimized builds, lower large range as a balanced binary tree. 8144 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8145 continue; 8146 } 8147 8148 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8149 } 8150 } 8151