1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getIntPtrConstant(RoundBits, DL)); 577 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 578 CallConv); 579 580 if (DAG.getDataLayout().isBigEndian()) 581 // The odd parts were reversed by getCopyToParts - unreverse them. 582 std::reverse(Parts + RoundParts, Parts + NumParts); 583 584 NumParts = RoundParts; 585 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 586 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 587 } 588 589 // The number of parts is a power of 2. Repeatedly bisect the value using 590 // EXTRACT_ELEMENT. 591 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 592 EVT::getIntegerVT(*DAG.getContext(), 593 ValueVT.getSizeInBits()), 594 Val); 595 596 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 597 for (unsigned i = 0; i < NumParts; i += StepSize) { 598 unsigned ThisBits = StepSize * PartBits / 2; 599 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 600 SDValue &Part0 = Parts[i]; 601 SDValue &Part1 = Parts[i+StepSize/2]; 602 603 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 604 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 605 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 606 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 607 608 if (ThisBits == PartBits && ThisVT != PartVT) { 609 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 610 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 611 } 612 } 613 } 614 615 if (DAG.getDataLayout().isBigEndian()) 616 std::reverse(Parts, Parts + OrigNumParts); 617 } 618 619 static SDValue widenVectorToPartType(SelectionDAG &DAG, 620 SDValue Val, const SDLoc &DL, EVT PartVT) { 621 if (!PartVT.isVector()) 622 return SDValue(); 623 624 EVT ValueVT = Val.getValueType(); 625 unsigned PartNumElts = PartVT.getVectorNumElements(); 626 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 627 if (PartNumElts > ValueNumElts && 628 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 DAG.ExtractVectorElements(Val, Ops); 634 SDValue EltUndef = DAG.getUNDEF(ElementVT); 635 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 636 Ops.push_back(EltUndef); 637 638 // FIXME: Use CONCAT for 2x -> 4x. 639 return DAG.getBuildVector(PartVT, DL, Ops); 640 } 641 642 return SDValue(); 643 } 644 645 /// getCopyToPartsVector - Create a series of nodes that contain the specified 646 /// value split into legal parts. 647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 648 SDValue Val, SDValue *Parts, unsigned NumParts, 649 MVT PartVT, const Value *V, 650 Optional<CallingConv::ID> CallConv) { 651 EVT ValueVT = Val.getValueType(); 652 assert(ValueVT.isVector() && "Not a vector"); 653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 654 const bool IsABIRegCopy = CallConv.hasValue(); 655 656 if (NumParts == 1) { 657 EVT PartEVT = PartVT; 658 if (PartEVT == ValueVT) { 659 // Nothing to do. 660 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 661 // Bitconvert vector->vector case. 662 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 663 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 664 Val = Widened; 665 } else if (PartVT.isVector() && 666 PartEVT.getVectorElementType().bitsGE( 667 ValueVT.getVectorElementType()) && 668 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 669 670 // Promoted vector extract 671 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 672 } else { 673 if (ValueVT.getVectorNumElements() == 1) { 674 Val = DAG.getNode( 675 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 676 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 677 } else { 678 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 679 "lossy conversion of vector to scalar type"); 680 EVT IntermediateType = 681 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 682 Val = DAG.getBitcast(IntermediateType, Val); 683 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 684 } 685 } 686 687 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 688 Parts[0] = Val; 689 return; 690 } 691 692 // Handle a multi-element vector. 693 EVT IntermediateVT; 694 MVT RegisterVT; 695 unsigned NumIntermediates; 696 unsigned NumRegs; 697 if (IsABIRegCopy) { 698 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 699 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 700 NumIntermediates, RegisterVT); 701 } else { 702 NumRegs = 703 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 704 NumIntermediates, RegisterVT); 705 } 706 707 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 708 NumParts = NumRegs; // Silence a compiler warning. 709 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 710 711 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 712 IntermediateVT.getVectorNumElements() : 1; 713 714 // Convert the vector to the appropiate type if necessary. 715 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 716 717 EVT BuiltVectorTy = EVT::getVectorVT( 718 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 719 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 720 if (ValueVT != BuiltVectorTy) { 721 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 722 Val = Widened; 723 724 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 725 } 726 727 // Split the vector into intermediate operands. 728 SmallVector<SDValue, 8> Ops(NumIntermediates); 729 for (unsigned i = 0; i != NumIntermediates; ++i) { 730 if (IntermediateVT.isVector()) { 731 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 732 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 733 } else { 734 Ops[i] = DAG.getNode( 735 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getConstant(i, DL, IdxVT)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && 941 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 942 // Put the register class of the virtual registers in the flag word. That 943 // way, later passes can recompute register class constraints for inline 944 // assembly as well as normal instructions. 945 // Don't do this for tied operands that can use the regclass information 946 // from the def. 947 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 948 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 949 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 950 } 951 952 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 953 Ops.push_back(Res); 954 955 if (Code == InlineAsm::Kind_Clobber) { 956 // Clobbers should always have a 1:1 mapping with registers, and may 957 // reference registers that have illegal (e.g. vector) types. Hence, we 958 // shouldn't try to apply any sort of splitting logic to them. 959 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 960 "No 1:1 mapping from clobbers to regs?"); 961 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 962 (void)SP; 963 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 964 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 965 assert( 966 (Regs[I] != SP || 967 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 968 "If we clobbered the stack pointer, MFI should know about it."); 969 } 970 return; 971 } 972 973 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 975 MVT RegisterVT = RegVTs[Value]; 976 for (unsigned i = 0; i != NumRegs; ++i) { 977 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 978 unsigned TheReg = Regs[Reg++]; 979 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 980 } 981 } 982 } 983 984 SmallVector<std::pair<unsigned, unsigned>, 4> 985 RegsForValue::getRegsAndSizes() const { 986 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 987 unsigned I = 0; 988 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 989 unsigned RegCount = std::get<0>(CountAndVT); 990 MVT RegisterVT = std::get<1>(CountAndVT); 991 unsigned RegisterSize = RegisterVT.getSizeInBits(); 992 for (unsigned E = I + RegCount; I != E; ++I) 993 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 994 } 995 return OutVec; 996 } 997 998 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 999 const TargetLibraryInfo *li) { 1000 AA = aa; 1001 GFI = gfi; 1002 LibInfo = li; 1003 DL = &DAG.getDataLayout(); 1004 Context = DAG.getContext(); 1005 LPadToCallSiteMap.clear(); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 CurInst = nullptr; 1014 HasTailCall = false; 1015 SDNodeOrder = LowestSDNodeOrder; 1016 StatepointLowering.clear(); 1017 } 1018 1019 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1020 DanglingDebugInfoMap.clear(); 1021 } 1022 1023 SDValue SelectionDAGBuilder::getRoot() { 1024 if (PendingLoads.empty()) 1025 return DAG.getRoot(); 1026 1027 if (PendingLoads.size() == 1) { 1028 SDValue Root = PendingLoads[0]; 1029 DAG.setRoot(Root); 1030 PendingLoads.clear(); 1031 return Root; 1032 } 1033 1034 // Otherwise, we have to make a token factor node. 1035 // If we have >= 2^16 loads then split across multiple token factors as 1036 // there's a 64k limit on the number of SDNode operands. 1037 SDValue Root; 1038 size_t Limit = (1 << 16) - 1; 1039 while (PendingLoads.size() > Limit) { 1040 unsigned SliceIdx = PendingLoads.size() - Limit; 1041 auto ExtractedTFs = ArrayRef<SDValue>(PendingLoads).slice(SliceIdx, Limit); 1042 SDValue NewTF = 1043 DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, ExtractedTFs); 1044 PendingLoads.erase(PendingLoads.begin() + SliceIdx, PendingLoads.end()); 1045 PendingLoads.emplace_back(NewTF); 1046 } 1047 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, PendingLoads); 1048 PendingLoads.clear(); 1049 DAG.setRoot(Root); 1050 return Root; 1051 } 1052 1053 SDValue SelectionDAGBuilder::getControlRoot() { 1054 SDValue Root = DAG.getRoot(); 1055 1056 if (PendingExports.empty()) 1057 return Root; 1058 1059 // Turn all of the CopyToReg chains into one factored node. 1060 if (Root.getOpcode() != ISD::EntryToken) { 1061 unsigned i = 0, e = PendingExports.size(); 1062 for (; i != e; ++i) { 1063 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1064 if (PendingExports[i].getNode()->getOperand(0) == Root) 1065 break; // Don't add the root if we already indirectly depend on it. 1066 } 1067 1068 if (i == e) 1069 PendingExports.push_back(Root); 1070 } 1071 1072 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1073 PendingExports); 1074 PendingExports.clear(); 1075 DAG.setRoot(Root); 1076 return Root; 1077 } 1078 1079 void SelectionDAGBuilder::visit(const Instruction &I) { 1080 // Set up outgoing PHI node register values before emitting the terminator. 1081 if (I.isTerminator()) { 1082 HandlePHINodesInSuccessorBlocks(I.getParent()); 1083 } 1084 1085 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1086 if (!isa<DbgInfoIntrinsic>(I)) 1087 ++SDNodeOrder; 1088 1089 CurInst = &I; 1090 1091 visit(I.getOpcode(), I); 1092 1093 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1094 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1095 // maps to this instruction. 1096 // TODO: We could handle all flags (nsw, etc) here. 1097 // TODO: If an IR instruction maps to >1 node, only the final node will have 1098 // flags set. 1099 if (SDNode *Node = getNodeForIRValue(&I)) { 1100 SDNodeFlags IncomingFlags; 1101 IncomingFlags.copyFMF(*FPMO); 1102 if (!Node->getFlags().isDefined()) 1103 Node->setFlags(IncomingFlags); 1104 else 1105 Node->intersectFlagsWith(IncomingFlags); 1106 } 1107 } 1108 1109 if (!I.isTerminator() && !HasTailCall && 1110 !isStatepoint(&I)) // statepoints handle their exports internally 1111 CopyToExportRegsIfNeeded(&I); 1112 1113 CurInst = nullptr; 1114 } 1115 1116 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1117 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1118 } 1119 1120 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1121 // Note: this doesn't use InstVisitor, because it has to work with 1122 // ConstantExpr's in addition to instructions. 1123 switch (Opcode) { 1124 default: llvm_unreachable("Unknown instruction type encountered!"); 1125 // Build the switch statement using the Instruction.def file. 1126 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1127 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1128 #include "llvm/IR/Instruction.def" 1129 } 1130 } 1131 1132 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1133 const DIExpression *Expr) { 1134 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1135 const DbgValueInst *DI = DDI.getDI(); 1136 DIVariable *DanglingVariable = DI->getVariable(); 1137 DIExpression *DanglingExpr = DI->getExpression(); 1138 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1139 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1140 return true; 1141 } 1142 return false; 1143 }; 1144 1145 for (auto &DDIMI : DanglingDebugInfoMap) { 1146 DanglingDebugInfoVector &DDIV = DDIMI.second; 1147 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1148 } 1149 } 1150 1151 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1152 // generate the debug data structures now that we've seen its definition. 1153 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1154 SDValue Val) { 1155 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1156 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1157 return; 1158 1159 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1160 for (auto &DDI : DDIV) { 1161 const DbgValueInst *DI = DDI.getDI(); 1162 assert(DI && "Ill-formed DanglingDebugInfo"); 1163 DebugLoc dl = DDI.getdl(); 1164 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1165 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1166 DILocalVariable *Variable = DI->getVariable(); 1167 DIExpression *Expr = DI->getExpression(); 1168 assert(Variable->isValidLocationForIntrinsic(dl) && 1169 "Expected inlined-at fields to agree"); 1170 SDDbgValue *SDV; 1171 if (Val.getNode()) { 1172 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1173 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1174 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1175 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1176 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1177 // inserted after the definition of Val when emitting the instructions 1178 // after ISel. An alternative could be to teach 1179 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1180 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1181 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1182 << ValSDNodeOrder << "\n"); 1183 SDV = getDbgValue(Val, Variable, Expr, dl, 1184 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1185 DAG.AddDbgValue(SDV, Val.getNode(), false); 1186 } else 1187 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1188 << "in EmitFuncArgumentDbgValue\n"); 1189 } else 1190 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1191 } 1192 DDIV.clear(); 1193 } 1194 1195 /// getCopyFromRegs - If there was virtual register allocated for the value V 1196 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1197 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1198 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1199 SDValue Result; 1200 1201 if (It != FuncInfo.ValueMap.end()) { 1202 unsigned InReg = It->second; 1203 1204 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1205 DAG.getDataLayout(), InReg, Ty, 1206 None); // This is not an ABI copy. 1207 SDValue Chain = DAG.getEntryNode(); 1208 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1209 V); 1210 resolveDanglingDebugInfo(V, Result); 1211 } 1212 1213 return Result; 1214 } 1215 1216 /// getValue - Return an SDValue for the given Value. 1217 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1218 // If we already have an SDValue for this value, use it. It's important 1219 // to do this first, so that we don't create a CopyFromReg if we already 1220 // have a regular SDValue. 1221 SDValue &N = NodeMap[V]; 1222 if (N.getNode()) return N; 1223 1224 // If there's a virtual register allocated and initialized for this 1225 // value, use it. 1226 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1227 return copyFromReg; 1228 1229 // Otherwise create a new SDValue and remember it. 1230 SDValue Val = getValueImpl(V); 1231 NodeMap[V] = Val; 1232 resolveDanglingDebugInfo(V, Val); 1233 return Val; 1234 } 1235 1236 // Return true if SDValue exists for the given Value 1237 bool SelectionDAGBuilder::findValue(const Value *V) const { 1238 return (NodeMap.find(V) != NodeMap.end()) || 1239 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1240 } 1241 1242 /// getNonRegisterValue - Return an SDValue for the given Value, but 1243 /// don't look in FuncInfo.ValueMap for a virtual register. 1244 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1245 // If we already have an SDValue for this value, use it. 1246 SDValue &N = NodeMap[V]; 1247 if (N.getNode()) { 1248 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1249 // Remove the debug location from the node as the node is about to be used 1250 // in a location which may differ from the original debug location. This 1251 // is relevant to Constant and ConstantFP nodes because they can appear 1252 // as constant expressions inside PHI nodes. 1253 N->setDebugLoc(DebugLoc()); 1254 } 1255 return N; 1256 } 1257 1258 // Otherwise create a new SDValue and remember it. 1259 SDValue Val = getValueImpl(V); 1260 NodeMap[V] = Val; 1261 resolveDanglingDebugInfo(V, Val); 1262 return Val; 1263 } 1264 1265 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1266 /// Create an SDValue for the given value. 1267 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1269 1270 if (const Constant *C = dyn_cast<Constant>(V)) { 1271 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1272 1273 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1274 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1275 1276 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1277 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1278 1279 if (isa<ConstantPointerNull>(C)) { 1280 unsigned AS = V->getType()->getPointerAddressSpace(); 1281 return DAG.getConstant(0, getCurSDLoc(), 1282 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1283 } 1284 1285 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1286 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1287 1288 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1289 return DAG.getUNDEF(VT); 1290 1291 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1292 visit(CE->getOpcode(), *CE); 1293 SDValue N1 = NodeMap[V]; 1294 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1295 return N1; 1296 } 1297 1298 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1299 SmallVector<SDValue, 4> Constants; 1300 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1301 OI != OE; ++OI) { 1302 SDNode *Val = getValue(*OI).getNode(); 1303 // If the operand is an empty aggregate, there are no values. 1304 if (!Val) continue; 1305 // Add each leaf value from the operand to the Constants list 1306 // to form a flattened list of all the values. 1307 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1308 Constants.push_back(SDValue(Val, i)); 1309 } 1310 1311 return DAG.getMergeValues(Constants, getCurSDLoc()); 1312 } 1313 1314 if (const ConstantDataSequential *CDS = 1315 dyn_cast<ConstantDataSequential>(C)) { 1316 SmallVector<SDValue, 4> Ops; 1317 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1318 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1319 // Add each leaf value from the operand to the Constants list 1320 // to form a flattened list of all the values. 1321 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1322 Ops.push_back(SDValue(Val, i)); 1323 } 1324 1325 if (isa<ArrayType>(CDS->getType())) 1326 return DAG.getMergeValues(Ops, getCurSDLoc()); 1327 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1328 } 1329 1330 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1331 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1332 "Unknown struct or array constant!"); 1333 1334 SmallVector<EVT, 4> ValueVTs; 1335 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1336 unsigned NumElts = ValueVTs.size(); 1337 if (NumElts == 0) 1338 return SDValue(); // empty struct 1339 SmallVector<SDValue, 4> Constants(NumElts); 1340 for (unsigned i = 0; i != NumElts; ++i) { 1341 EVT EltVT = ValueVTs[i]; 1342 if (isa<UndefValue>(C)) 1343 Constants[i] = DAG.getUNDEF(EltVT); 1344 else if (EltVT.isFloatingPoint()) 1345 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1346 else 1347 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1348 } 1349 1350 return DAG.getMergeValues(Constants, getCurSDLoc()); 1351 } 1352 1353 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1354 return DAG.getBlockAddress(BA, VT); 1355 1356 VectorType *VecTy = cast<VectorType>(V->getType()); 1357 unsigned NumElements = VecTy->getNumElements(); 1358 1359 // Now that we know the number and type of the elements, get that number of 1360 // elements into the Ops array based on what kind of constant it is. 1361 SmallVector<SDValue, 16> Ops; 1362 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1363 for (unsigned i = 0; i != NumElements; ++i) 1364 Ops.push_back(getValue(CV->getOperand(i))); 1365 } else { 1366 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1367 EVT EltVT = 1368 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1369 1370 SDValue Op; 1371 if (EltVT.isFloatingPoint()) 1372 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1373 else 1374 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1375 Ops.assign(NumElements, Op); 1376 } 1377 1378 // Create a BUILD_VECTOR node. 1379 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1380 } 1381 1382 // If this is a static alloca, generate it as the frameindex instead of 1383 // computation. 1384 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1385 DenseMap<const AllocaInst*, int>::iterator SI = 1386 FuncInfo.StaticAllocaMap.find(AI); 1387 if (SI != FuncInfo.StaticAllocaMap.end()) 1388 return DAG.getFrameIndex(SI->second, 1389 TLI.getFrameIndexTy(DAG.getDataLayout())); 1390 } 1391 1392 // If this is an instruction which fast-isel has deferred, select it now. 1393 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1394 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1395 1396 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1397 Inst->getType(), getABIRegCopyCC(V)); 1398 SDValue Chain = DAG.getEntryNode(); 1399 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1400 } 1401 1402 llvm_unreachable("Can't get register for value!"); 1403 } 1404 1405 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1406 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1407 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1408 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1409 bool IsSEH = isAsynchronousEHPersonality(Pers); 1410 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1411 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1412 if (!IsSEH) 1413 CatchPadMBB->setIsEHScopeEntry(); 1414 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1415 if (IsMSVCCXX || IsCoreCLR) 1416 CatchPadMBB->setIsEHFuncletEntry(); 1417 // Wasm does not need catchpads anymore 1418 if (!IsWasmCXX) 1419 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1420 getControlRoot())); 1421 } 1422 1423 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1424 // Update machine-CFG edge. 1425 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1426 FuncInfo.MBB->addSuccessor(TargetMBB); 1427 1428 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1429 bool IsSEH = isAsynchronousEHPersonality(Pers); 1430 if (IsSEH) { 1431 // If this is not a fall-through branch or optimizations are switched off, 1432 // emit the branch. 1433 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1434 TM.getOptLevel() == CodeGenOpt::None) 1435 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1436 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1437 return; 1438 } 1439 1440 // Figure out the funclet membership for the catchret's successor. 1441 // This will be used by the FuncletLayout pass to determine how to order the 1442 // BB's. 1443 // A 'catchret' returns to the outer scope's color. 1444 Value *ParentPad = I.getCatchSwitchParentPad(); 1445 const BasicBlock *SuccessorColor; 1446 if (isa<ConstantTokenNone>(ParentPad)) 1447 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1448 else 1449 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1450 assert(SuccessorColor && "No parent funclet for catchret!"); 1451 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1452 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1453 1454 // Create the terminator node. 1455 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1456 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1457 DAG.getBasicBlock(SuccessorColorMBB)); 1458 DAG.setRoot(Ret); 1459 } 1460 1461 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1462 // Don't emit any special code for the cleanuppad instruction. It just marks 1463 // the start of an EH scope/funclet. 1464 FuncInfo.MBB->setIsEHScopeEntry(); 1465 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1466 if (Pers != EHPersonality::Wasm_CXX) { 1467 FuncInfo.MBB->setIsEHFuncletEntry(); 1468 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1469 } 1470 } 1471 1472 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1473 /// many places it could ultimately go. In the IR, we have a single unwind 1474 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1475 /// This function skips over imaginary basic blocks that hold catchswitch 1476 /// instructions, and finds all the "real" machine 1477 /// basic block destinations. As those destinations may not be successors of 1478 /// EHPadBB, here we also calculate the edge probability to those destinations. 1479 /// The passed-in Prob is the edge probability to EHPadBB. 1480 static void findUnwindDestinations( 1481 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1482 BranchProbability Prob, 1483 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1484 &UnwindDests) { 1485 EHPersonality Personality = 1486 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1487 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1488 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1489 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1490 bool IsSEH = isAsynchronousEHPersonality(Personality); 1491 1492 while (EHPadBB) { 1493 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1494 BasicBlock *NewEHPadBB = nullptr; 1495 if (isa<LandingPadInst>(Pad)) { 1496 // Stop on landingpads. They are not funclets. 1497 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1498 break; 1499 } else if (isa<CleanupPadInst>(Pad)) { 1500 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1501 // personalities. 1502 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1503 UnwindDests.back().first->setIsEHScopeEntry(); 1504 if (!IsWasmCXX) 1505 UnwindDests.back().first->setIsEHFuncletEntry(); 1506 break; 1507 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1508 // Add the catchpad handlers to the possible destinations. 1509 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1510 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1511 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1512 if (IsMSVCCXX || IsCoreCLR) 1513 UnwindDests.back().first->setIsEHFuncletEntry(); 1514 if (!IsSEH) 1515 UnwindDests.back().first->setIsEHScopeEntry(); 1516 } 1517 NewEHPadBB = CatchSwitch->getUnwindDest(); 1518 } else { 1519 continue; 1520 } 1521 1522 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1523 if (BPI && NewEHPadBB) 1524 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1525 EHPadBB = NewEHPadBB; 1526 } 1527 } 1528 1529 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1530 // Update successor info. 1531 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1532 auto UnwindDest = I.getUnwindDest(); 1533 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1534 BranchProbability UnwindDestProb = 1535 (BPI && UnwindDest) 1536 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1537 : BranchProbability::getZero(); 1538 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1539 for (auto &UnwindDest : UnwindDests) { 1540 UnwindDest.first->setIsEHPad(); 1541 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1542 } 1543 FuncInfo.MBB->normalizeSuccProbs(); 1544 1545 // Create the terminator node. 1546 SDValue Ret = 1547 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1548 DAG.setRoot(Ret); 1549 } 1550 1551 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1552 report_fatal_error("visitCatchSwitch not yet implemented!"); 1553 } 1554 1555 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1557 auto &DL = DAG.getDataLayout(); 1558 SDValue Chain = getControlRoot(); 1559 SmallVector<ISD::OutputArg, 8> Outs; 1560 SmallVector<SDValue, 8> OutVals; 1561 1562 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1563 // lower 1564 // 1565 // %val = call <ty> @llvm.experimental.deoptimize() 1566 // ret <ty> %val 1567 // 1568 // differently. 1569 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1570 LowerDeoptimizingReturn(); 1571 return; 1572 } 1573 1574 if (!FuncInfo.CanLowerReturn) { 1575 unsigned DemoteReg = FuncInfo.DemoteRegister; 1576 const Function *F = I.getParent()->getParent(); 1577 1578 // Emit a store of the return value through the virtual register. 1579 // Leave Outs empty so that LowerReturn won't try to load return 1580 // registers the usual way. 1581 SmallVector<EVT, 1> PtrValueVTs; 1582 ComputeValueVTs(TLI, DL, 1583 F->getReturnType()->getPointerTo( 1584 DAG.getDataLayout().getAllocaAddrSpace()), 1585 PtrValueVTs); 1586 1587 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1588 DemoteReg, PtrValueVTs[0]); 1589 SDValue RetOp = getValue(I.getOperand(0)); 1590 1591 SmallVector<EVT, 4> ValueVTs; 1592 SmallVector<uint64_t, 4> Offsets; 1593 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1594 unsigned NumValues = ValueVTs.size(); 1595 1596 SmallVector<SDValue, 4> Chains(NumValues); 1597 for (unsigned i = 0; i != NumValues; ++i) { 1598 // An aggregate return value cannot wrap around the address space, so 1599 // offsets to its parts don't wrap either. 1600 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1601 Chains[i] = DAG.getStore( 1602 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1603 // FIXME: better loc info would be nice. 1604 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1605 } 1606 1607 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1608 MVT::Other, Chains); 1609 } else if (I.getNumOperands() != 0) { 1610 SmallVector<EVT, 4> ValueVTs; 1611 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1612 unsigned NumValues = ValueVTs.size(); 1613 if (NumValues) { 1614 SDValue RetOp = getValue(I.getOperand(0)); 1615 1616 const Function *F = I.getParent()->getParent(); 1617 1618 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1619 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1620 Attribute::SExt)) 1621 ExtendKind = ISD::SIGN_EXTEND; 1622 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1623 Attribute::ZExt)) 1624 ExtendKind = ISD::ZERO_EXTEND; 1625 1626 LLVMContext &Context = F->getContext(); 1627 bool RetInReg = F->getAttributes().hasAttribute( 1628 AttributeList::ReturnIndex, Attribute::InReg); 1629 1630 for (unsigned j = 0; j != NumValues; ++j) { 1631 EVT VT = ValueVTs[j]; 1632 1633 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1634 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1635 1636 CallingConv::ID CC = F->getCallingConv(); 1637 1638 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1639 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1640 SmallVector<SDValue, 4> Parts(NumParts); 1641 getCopyToParts(DAG, getCurSDLoc(), 1642 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1643 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1644 1645 // 'inreg' on function refers to return value 1646 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1647 if (RetInReg) 1648 Flags.setInReg(); 1649 1650 // Propagate extension type if any 1651 if (ExtendKind == ISD::SIGN_EXTEND) 1652 Flags.setSExt(); 1653 else if (ExtendKind == ISD::ZERO_EXTEND) 1654 Flags.setZExt(); 1655 1656 for (unsigned i = 0; i < NumParts; ++i) { 1657 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1658 VT, /*isfixed=*/true, 0, 0)); 1659 OutVals.push_back(Parts[i]); 1660 } 1661 } 1662 } 1663 } 1664 1665 // Push in swifterror virtual register as the last element of Outs. This makes 1666 // sure swifterror virtual register will be returned in the swifterror 1667 // physical register. 1668 const Function *F = I.getParent()->getParent(); 1669 if (TLI.supportSwiftError() && 1670 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1671 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1672 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1673 Flags.setSwiftError(); 1674 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1675 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1676 true /*isfixed*/, 1 /*origidx*/, 1677 0 /*partOffs*/)); 1678 // Create SDNode for the swifterror virtual register. 1679 OutVals.push_back( 1680 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1681 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1682 EVT(TLI.getPointerTy(DL)))); 1683 } 1684 1685 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1686 CallingConv::ID CallConv = 1687 DAG.getMachineFunction().getFunction().getCallingConv(); 1688 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1689 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1690 1691 // Verify that the target's LowerReturn behaved as expected. 1692 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1693 "LowerReturn didn't return a valid chain!"); 1694 1695 // Update the DAG with the new chain value resulting from return lowering. 1696 DAG.setRoot(Chain); 1697 } 1698 1699 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1700 /// created for it, emit nodes to copy the value into the virtual 1701 /// registers. 1702 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1703 // Skip empty types 1704 if (V->getType()->isEmptyTy()) 1705 return; 1706 1707 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1708 if (VMI != FuncInfo.ValueMap.end()) { 1709 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1710 CopyValueToVirtualRegister(V, VMI->second); 1711 } 1712 } 1713 1714 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1715 /// the current basic block, add it to ValueMap now so that we'll get a 1716 /// CopyTo/FromReg. 1717 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1718 // No need to export constants. 1719 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1720 1721 // Already exported? 1722 if (FuncInfo.isExportedInst(V)) return; 1723 1724 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1725 CopyValueToVirtualRegister(V, Reg); 1726 } 1727 1728 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1729 const BasicBlock *FromBB) { 1730 // The operands of the setcc have to be in this block. We don't know 1731 // how to export them from some other block. 1732 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1733 // Can export from current BB. 1734 if (VI->getParent() == FromBB) 1735 return true; 1736 1737 // Is already exported, noop. 1738 return FuncInfo.isExportedInst(V); 1739 } 1740 1741 // If this is an argument, we can export it if the BB is the entry block or 1742 // if it is already exported. 1743 if (isa<Argument>(V)) { 1744 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1745 return true; 1746 1747 // Otherwise, can only export this if it is already exported. 1748 return FuncInfo.isExportedInst(V); 1749 } 1750 1751 // Otherwise, constants can always be exported. 1752 return true; 1753 } 1754 1755 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1756 BranchProbability 1757 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1758 const MachineBasicBlock *Dst) const { 1759 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1760 const BasicBlock *SrcBB = Src->getBasicBlock(); 1761 const BasicBlock *DstBB = Dst->getBasicBlock(); 1762 if (!BPI) { 1763 // If BPI is not available, set the default probability as 1 / N, where N is 1764 // the number of successors. 1765 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1766 return BranchProbability(1, SuccSize); 1767 } 1768 return BPI->getEdgeProbability(SrcBB, DstBB); 1769 } 1770 1771 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1772 MachineBasicBlock *Dst, 1773 BranchProbability Prob) { 1774 if (!FuncInfo.BPI) 1775 Src->addSuccessorWithoutProb(Dst); 1776 else { 1777 if (Prob.isUnknown()) 1778 Prob = getEdgeProbability(Src, Dst); 1779 Src->addSuccessor(Dst, Prob); 1780 } 1781 } 1782 1783 static bool InBlock(const Value *V, const BasicBlock *BB) { 1784 if (const Instruction *I = dyn_cast<Instruction>(V)) 1785 return I->getParent() == BB; 1786 return true; 1787 } 1788 1789 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1790 /// This function emits a branch and is used at the leaves of an OR or an 1791 /// AND operator tree. 1792 void 1793 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1794 MachineBasicBlock *TBB, 1795 MachineBasicBlock *FBB, 1796 MachineBasicBlock *CurBB, 1797 MachineBasicBlock *SwitchBB, 1798 BranchProbability TProb, 1799 BranchProbability FProb, 1800 bool InvertCond) { 1801 const BasicBlock *BB = CurBB->getBasicBlock(); 1802 1803 // If the leaf of the tree is a comparison, merge the condition into 1804 // the caseblock. 1805 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1806 // The operands of the cmp have to be in this block. We don't know 1807 // how to export them from some other block. If this is the first block 1808 // of the sequence, no exporting is needed. 1809 if (CurBB == SwitchBB || 1810 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1811 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1812 ISD::CondCode Condition; 1813 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1814 ICmpInst::Predicate Pred = 1815 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1816 Condition = getICmpCondCode(Pred); 1817 } else { 1818 const FCmpInst *FC = cast<FCmpInst>(Cond); 1819 FCmpInst::Predicate Pred = 1820 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1821 Condition = getFCmpCondCode(Pred); 1822 if (TM.Options.NoNaNsFPMath) 1823 Condition = getFCmpCodeWithoutNaN(Condition); 1824 } 1825 1826 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1827 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1828 SwitchCases.push_back(CB); 1829 return; 1830 } 1831 } 1832 1833 // Create a CaseBlock record representing this branch. 1834 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1835 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1836 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1837 SwitchCases.push_back(CB); 1838 } 1839 1840 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1841 MachineBasicBlock *TBB, 1842 MachineBasicBlock *FBB, 1843 MachineBasicBlock *CurBB, 1844 MachineBasicBlock *SwitchBB, 1845 Instruction::BinaryOps Opc, 1846 BranchProbability TProb, 1847 BranchProbability FProb, 1848 bool InvertCond) { 1849 // Skip over not part of the tree and remember to invert op and operands at 1850 // next level. 1851 Value *NotCond; 1852 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 1853 InBlock(NotCond, CurBB->getBasicBlock())) { 1854 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1855 !InvertCond); 1856 return; 1857 } 1858 1859 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1860 // Compute the effective opcode for Cond, taking into account whether it needs 1861 // to be inverted, e.g. 1862 // and (not (or A, B)), C 1863 // gets lowered as 1864 // and (and (not A, not B), C) 1865 unsigned BOpc = 0; 1866 if (BOp) { 1867 BOpc = BOp->getOpcode(); 1868 if (InvertCond) { 1869 if (BOpc == Instruction::And) 1870 BOpc = Instruction::Or; 1871 else if (BOpc == Instruction::Or) 1872 BOpc = Instruction::And; 1873 } 1874 } 1875 1876 // If this node is not part of the or/and tree, emit it as a branch. 1877 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1878 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1879 BOp->getParent() != CurBB->getBasicBlock() || 1880 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1881 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1882 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1883 TProb, FProb, InvertCond); 1884 return; 1885 } 1886 1887 // Create TmpBB after CurBB. 1888 MachineFunction::iterator BBI(CurBB); 1889 MachineFunction &MF = DAG.getMachineFunction(); 1890 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1891 CurBB->getParent()->insert(++BBI, TmpBB); 1892 1893 if (Opc == Instruction::Or) { 1894 // Codegen X | Y as: 1895 // BB1: 1896 // jmp_if_X TBB 1897 // jmp TmpBB 1898 // TmpBB: 1899 // jmp_if_Y TBB 1900 // jmp FBB 1901 // 1902 1903 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1904 // The requirement is that 1905 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1906 // = TrueProb for original BB. 1907 // Assuming the original probabilities are A and B, one choice is to set 1908 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1909 // A/(1+B) and 2B/(1+B). This choice assumes that 1910 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1911 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1912 // TmpBB, but the math is more complicated. 1913 1914 auto NewTrueProb = TProb / 2; 1915 auto NewFalseProb = TProb / 2 + FProb; 1916 // Emit the LHS condition. 1917 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1918 NewTrueProb, NewFalseProb, InvertCond); 1919 1920 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1921 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1922 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1923 // Emit the RHS condition into TmpBB. 1924 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1925 Probs[0], Probs[1], InvertCond); 1926 } else { 1927 assert(Opc == Instruction::And && "Unknown merge op!"); 1928 // Codegen X & Y as: 1929 // BB1: 1930 // jmp_if_X TmpBB 1931 // jmp FBB 1932 // TmpBB: 1933 // jmp_if_Y TBB 1934 // jmp FBB 1935 // 1936 // This requires creation of TmpBB after CurBB. 1937 1938 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1939 // The requirement is that 1940 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1941 // = FalseProb for original BB. 1942 // Assuming the original probabilities are A and B, one choice is to set 1943 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1944 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1945 // TrueProb for BB1 * FalseProb for TmpBB. 1946 1947 auto NewTrueProb = TProb + FProb / 2; 1948 auto NewFalseProb = FProb / 2; 1949 // Emit the LHS condition. 1950 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1951 NewTrueProb, NewFalseProb, InvertCond); 1952 1953 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1954 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1955 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1956 // Emit the RHS condition into TmpBB. 1957 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1958 Probs[0], Probs[1], InvertCond); 1959 } 1960 } 1961 1962 /// If the set of cases should be emitted as a series of branches, return true. 1963 /// If we should emit this as a bunch of and/or'd together conditions, return 1964 /// false. 1965 bool 1966 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1967 if (Cases.size() != 2) return true; 1968 1969 // If this is two comparisons of the same values or'd or and'd together, they 1970 // will get folded into a single comparison, so don't emit two blocks. 1971 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1972 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1973 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1974 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1975 return false; 1976 } 1977 1978 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1979 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1980 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1981 Cases[0].CC == Cases[1].CC && 1982 isa<Constant>(Cases[0].CmpRHS) && 1983 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1984 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1985 return false; 1986 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1987 return false; 1988 } 1989 1990 return true; 1991 } 1992 1993 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1994 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1995 1996 // Update machine-CFG edges. 1997 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1998 1999 if (I.isUnconditional()) { 2000 // Update machine-CFG edges. 2001 BrMBB->addSuccessor(Succ0MBB); 2002 2003 // If this is not a fall-through branch or optimizations are switched off, 2004 // emit the branch. 2005 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2006 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2007 MVT::Other, getControlRoot(), 2008 DAG.getBasicBlock(Succ0MBB))); 2009 2010 return; 2011 } 2012 2013 // If this condition is one of the special cases we handle, do special stuff 2014 // now. 2015 const Value *CondVal = I.getCondition(); 2016 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2017 2018 // If this is a series of conditions that are or'd or and'd together, emit 2019 // this as a sequence of branches instead of setcc's with and/or operations. 2020 // As long as jumps are not expensive, this should improve performance. 2021 // For example, instead of something like: 2022 // cmp A, B 2023 // C = seteq 2024 // cmp D, E 2025 // F = setle 2026 // or C, F 2027 // jnz foo 2028 // Emit: 2029 // cmp A, B 2030 // je foo 2031 // cmp D, E 2032 // jle foo 2033 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2034 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2035 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2036 !I.getMetadata(LLVMContext::MD_unpredictable) && 2037 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2038 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2039 Opcode, 2040 getEdgeProbability(BrMBB, Succ0MBB), 2041 getEdgeProbability(BrMBB, Succ1MBB), 2042 /*InvertCond=*/false); 2043 // If the compares in later blocks need to use values not currently 2044 // exported from this block, export them now. This block should always 2045 // be the first entry. 2046 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2047 2048 // Allow some cases to be rejected. 2049 if (ShouldEmitAsBranches(SwitchCases)) { 2050 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2051 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2052 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2053 } 2054 2055 // Emit the branch for this block. 2056 visitSwitchCase(SwitchCases[0], BrMBB); 2057 SwitchCases.erase(SwitchCases.begin()); 2058 return; 2059 } 2060 2061 // Okay, we decided not to do this, remove any inserted MBB's and clear 2062 // SwitchCases. 2063 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2064 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2065 2066 SwitchCases.clear(); 2067 } 2068 } 2069 2070 // Create a CaseBlock record representing this branch. 2071 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2072 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2073 2074 // Use visitSwitchCase to actually insert the fast branch sequence for this 2075 // cond branch. 2076 visitSwitchCase(CB, BrMBB); 2077 } 2078 2079 /// visitSwitchCase - Emits the necessary code to represent a single node in 2080 /// the binary search tree resulting from lowering a switch instruction. 2081 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2082 MachineBasicBlock *SwitchBB) { 2083 SDValue Cond; 2084 SDValue CondLHS = getValue(CB.CmpLHS); 2085 SDLoc dl = CB.DL; 2086 2087 // Build the setcc now. 2088 if (!CB.CmpMHS) { 2089 // Fold "(X == true)" to X and "(X == false)" to !X to 2090 // handle common cases produced by branch lowering. 2091 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2092 CB.CC == ISD::SETEQ) 2093 Cond = CondLHS; 2094 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2095 CB.CC == ISD::SETEQ) { 2096 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2097 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2098 } else 2099 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2100 } else { 2101 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2102 2103 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2104 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2105 2106 SDValue CmpOp = getValue(CB.CmpMHS); 2107 EVT VT = CmpOp.getValueType(); 2108 2109 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2110 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2111 ISD::SETLE); 2112 } else { 2113 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2114 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2115 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2116 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2117 } 2118 } 2119 2120 // Update successor info 2121 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2122 // TrueBB and FalseBB are always different unless the incoming IR is 2123 // degenerate. This only happens when running llc on weird IR. 2124 if (CB.TrueBB != CB.FalseBB) 2125 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2126 SwitchBB->normalizeSuccProbs(); 2127 2128 // If the lhs block is the next block, invert the condition so that we can 2129 // fall through to the lhs instead of the rhs block. 2130 if (CB.TrueBB == NextBlock(SwitchBB)) { 2131 std::swap(CB.TrueBB, CB.FalseBB); 2132 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2133 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2134 } 2135 2136 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2137 MVT::Other, getControlRoot(), Cond, 2138 DAG.getBasicBlock(CB.TrueBB)); 2139 2140 // Insert the false branch. Do this even if it's a fall through branch, 2141 // this makes it easier to do DAG optimizations which require inverting 2142 // the branch condition. 2143 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2144 DAG.getBasicBlock(CB.FalseBB)); 2145 2146 DAG.setRoot(BrCond); 2147 } 2148 2149 /// visitJumpTable - Emit JumpTable node in the current MBB 2150 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2151 // Emit the code for the jump table 2152 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2153 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2154 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2155 JT.Reg, PTy); 2156 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2157 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2158 MVT::Other, Index.getValue(1), 2159 Table, Index); 2160 DAG.setRoot(BrJumpTable); 2161 } 2162 2163 /// visitJumpTableHeader - This function emits necessary code to produce index 2164 /// in the JumpTable from switch case. 2165 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2166 JumpTableHeader &JTH, 2167 MachineBasicBlock *SwitchBB) { 2168 SDLoc dl = getCurSDLoc(); 2169 2170 // Subtract the lowest switch case value from the value being switched on and 2171 // conditional branch to default mbb if the result is greater than the 2172 // difference between smallest and largest cases. 2173 SDValue SwitchOp = getValue(JTH.SValue); 2174 EVT VT = SwitchOp.getValueType(); 2175 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2176 DAG.getConstant(JTH.First, dl, VT)); 2177 2178 // The SDNode we just created, which holds the value being switched on minus 2179 // the smallest case value, needs to be copied to a virtual register so it 2180 // can be used as an index into the jump table in a subsequent basic block. 2181 // This value may be smaller or larger than the target's pointer type, and 2182 // therefore require extension or truncating. 2183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2184 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2185 2186 unsigned JumpTableReg = 2187 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2188 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2189 JumpTableReg, SwitchOp); 2190 JT.Reg = JumpTableReg; 2191 2192 // Emit the range check for the jump table, and branch to the default block 2193 // for the switch statement if the value being switched on exceeds the largest 2194 // case in the switch. 2195 SDValue CMP = DAG.getSetCC( 2196 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2197 Sub.getValueType()), 2198 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2199 2200 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2201 MVT::Other, CopyTo, CMP, 2202 DAG.getBasicBlock(JT.Default)); 2203 2204 // Avoid emitting unnecessary branches to the next block. 2205 if (JT.MBB != NextBlock(SwitchBB)) 2206 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2207 DAG.getBasicBlock(JT.MBB)); 2208 2209 DAG.setRoot(BrCond); 2210 } 2211 2212 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2213 /// variable if there exists one. 2214 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2215 SDValue &Chain) { 2216 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2217 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2218 MachineFunction &MF = DAG.getMachineFunction(); 2219 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2220 MachineSDNode *Node = 2221 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2222 if (Global) { 2223 MachinePointerInfo MPInfo(Global); 2224 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2225 MachineMemOperand::MODereferenceable; 2226 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2227 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2228 DAG.setNodeMemRefs(Node, {MemRef}); 2229 } 2230 return SDValue(Node, 0); 2231 } 2232 2233 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2234 /// tail spliced into a stack protector check success bb. 2235 /// 2236 /// For a high level explanation of how this fits into the stack protector 2237 /// generation see the comment on the declaration of class 2238 /// StackProtectorDescriptor. 2239 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2240 MachineBasicBlock *ParentBB) { 2241 2242 // First create the loads to the guard/stack slot for the comparison. 2243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2244 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2245 2246 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2247 int FI = MFI.getStackProtectorIndex(); 2248 2249 SDValue Guard; 2250 SDLoc dl = getCurSDLoc(); 2251 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2252 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2253 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2254 2255 // Generate code to load the content of the guard slot. 2256 SDValue GuardVal = DAG.getLoad( 2257 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2258 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2259 MachineMemOperand::MOVolatile); 2260 2261 if (TLI.useStackGuardXorFP()) 2262 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2263 2264 // Retrieve guard check function, nullptr if instrumentation is inlined. 2265 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2266 // The target provides a guard check function to validate the guard value. 2267 // Generate a call to that function with the content of the guard slot as 2268 // argument. 2269 auto *Fn = cast<Function>(GuardCheck); 2270 FunctionType *FnTy = Fn->getFunctionType(); 2271 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2272 2273 TargetLowering::ArgListTy Args; 2274 TargetLowering::ArgListEntry Entry; 2275 Entry.Node = GuardVal; 2276 Entry.Ty = FnTy->getParamType(0); 2277 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2278 Entry.IsInReg = true; 2279 Args.push_back(Entry); 2280 2281 TargetLowering::CallLoweringInfo CLI(DAG); 2282 CLI.setDebugLoc(getCurSDLoc()) 2283 .setChain(DAG.getEntryNode()) 2284 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2285 getValue(GuardCheck), std::move(Args)); 2286 2287 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2288 DAG.setRoot(Result.second); 2289 return; 2290 } 2291 2292 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2293 // Otherwise, emit a volatile load to retrieve the stack guard value. 2294 SDValue Chain = DAG.getEntryNode(); 2295 if (TLI.useLoadStackGuardNode()) { 2296 Guard = getLoadStackGuard(DAG, dl, Chain); 2297 } else { 2298 const Value *IRGuard = TLI.getSDagStackGuard(M); 2299 SDValue GuardPtr = getValue(IRGuard); 2300 2301 Guard = 2302 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2303 Align, MachineMemOperand::MOVolatile); 2304 } 2305 2306 // Perform the comparison via a subtract/getsetcc. 2307 EVT VT = Guard.getValueType(); 2308 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2309 2310 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2311 *DAG.getContext(), 2312 Sub.getValueType()), 2313 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2314 2315 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2316 // branch to failure MBB. 2317 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2318 MVT::Other, GuardVal.getOperand(0), 2319 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2320 // Otherwise branch to success MBB. 2321 SDValue Br = DAG.getNode(ISD::BR, dl, 2322 MVT::Other, BrCond, 2323 DAG.getBasicBlock(SPD.getSuccessMBB())); 2324 2325 DAG.setRoot(Br); 2326 } 2327 2328 /// Codegen the failure basic block for a stack protector check. 2329 /// 2330 /// A failure stack protector machine basic block consists simply of a call to 2331 /// __stack_chk_fail(). 2332 /// 2333 /// For a high level explanation of how this fits into the stack protector 2334 /// generation see the comment on the declaration of class 2335 /// StackProtectorDescriptor. 2336 void 2337 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2339 SDValue Chain = 2340 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2341 None, false, getCurSDLoc(), false, false).second; 2342 DAG.setRoot(Chain); 2343 } 2344 2345 /// visitBitTestHeader - This function emits necessary code to produce value 2346 /// suitable for "bit tests" 2347 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2348 MachineBasicBlock *SwitchBB) { 2349 SDLoc dl = getCurSDLoc(); 2350 2351 // Subtract the minimum value 2352 SDValue SwitchOp = getValue(B.SValue); 2353 EVT VT = SwitchOp.getValueType(); 2354 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2355 DAG.getConstant(B.First, dl, VT)); 2356 2357 // Check range 2358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2359 SDValue RangeCmp = DAG.getSetCC( 2360 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2361 Sub.getValueType()), 2362 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2363 2364 // Determine the type of the test operands. 2365 bool UsePtrType = false; 2366 if (!TLI.isTypeLegal(VT)) 2367 UsePtrType = true; 2368 else { 2369 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2370 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2371 // Switch table case range are encoded into series of masks. 2372 // Just use pointer type, it's guaranteed to fit. 2373 UsePtrType = true; 2374 break; 2375 } 2376 } 2377 if (UsePtrType) { 2378 VT = TLI.getPointerTy(DAG.getDataLayout()); 2379 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2380 } 2381 2382 B.RegVT = VT.getSimpleVT(); 2383 B.Reg = FuncInfo.CreateReg(B.RegVT); 2384 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2385 2386 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2387 2388 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2389 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2390 SwitchBB->normalizeSuccProbs(); 2391 2392 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2393 MVT::Other, CopyTo, RangeCmp, 2394 DAG.getBasicBlock(B.Default)); 2395 2396 // Avoid emitting unnecessary branches to the next block. 2397 if (MBB != NextBlock(SwitchBB)) 2398 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2399 DAG.getBasicBlock(MBB)); 2400 2401 DAG.setRoot(BrRange); 2402 } 2403 2404 /// visitBitTestCase - this function produces one "bit test" 2405 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2406 MachineBasicBlock* NextMBB, 2407 BranchProbability BranchProbToNext, 2408 unsigned Reg, 2409 BitTestCase &B, 2410 MachineBasicBlock *SwitchBB) { 2411 SDLoc dl = getCurSDLoc(); 2412 MVT VT = BB.RegVT; 2413 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2414 SDValue Cmp; 2415 unsigned PopCount = countPopulation(B.Mask); 2416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2417 if (PopCount == 1) { 2418 // Testing for a single bit; just compare the shift count with what it 2419 // would need to be to shift a 1 bit in that position. 2420 Cmp = DAG.getSetCC( 2421 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2422 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2423 ISD::SETEQ); 2424 } else if (PopCount == BB.Range) { 2425 // There is only one zero bit in the range, test for it directly. 2426 Cmp = DAG.getSetCC( 2427 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2428 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2429 ISD::SETNE); 2430 } else { 2431 // Make desired shift 2432 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2433 DAG.getConstant(1, dl, VT), ShiftOp); 2434 2435 // Emit bit tests and jumps 2436 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2437 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2438 Cmp = DAG.getSetCC( 2439 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2440 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2441 } 2442 2443 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2444 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2445 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2446 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2447 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2448 // one as they are relative probabilities (and thus work more like weights), 2449 // and hence we need to normalize them to let the sum of them become one. 2450 SwitchBB->normalizeSuccProbs(); 2451 2452 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2453 MVT::Other, getControlRoot(), 2454 Cmp, DAG.getBasicBlock(B.TargetBB)); 2455 2456 // Avoid emitting unnecessary branches to the next block. 2457 if (NextMBB != NextBlock(SwitchBB)) 2458 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2459 DAG.getBasicBlock(NextMBB)); 2460 2461 DAG.setRoot(BrAnd); 2462 } 2463 2464 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2465 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2466 2467 // Retrieve successors. Look through artificial IR level blocks like 2468 // catchswitch for successors. 2469 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2470 const BasicBlock *EHPadBB = I.getSuccessor(1); 2471 2472 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2473 // have to do anything here to lower funclet bundles. 2474 assert(!I.hasOperandBundlesOtherThan( 2475 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2476 "Cannot lower invokes with arbitrary operand bundles yet!"); 2477 2478 const Value *Callee(I.getCalledValue()); 2479 const Function *Fn = dyn_cast<Function>(Callee); 2480 if (isa<InlineAsm>(Callee)) 2481 visitInlineAsm(&I); 2482 else if (Fn && Fn->isIntrinsic()) { 2483 switch (Fn->getIntrinsicID()) { 2484 default: 2485 llvm_unreachable("Cannot invoke this intrinsic"); 2486 case Intrinsic::donothing: 2487 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2488 break; 2489 case Intrinsic::experimental_patchpoint_void: 2490 case Intrinsic::experimental_patchpoint_i64: 2491 visitPatchpoint(&I, EHPadBB); 2492 break; 2493 case Intrinsic::experimental_gc_statepoint: 2494 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2495 break; 2496 } 2497 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2498 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2499 // Eventually we will support lowering the @llvm.experimental.deoptimize 2500 // intrinsic, and right now there are no plans to support other intrinsics 2501 // with deopt state. 2502 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2503 } else { 2504 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2505 } 2506 2507 // If the value of the invoke is used outside of its defining block, make it 2508 // available as a virtual register. 2509 // We already took care of the exported value for the statepoint instruction 2510 // during call to the LowerStatepoint. 2511 if (!isStatepoint(I)) { 2512 CopyToExportRegsIfNeeded(&I); 2513 } 2514 2515 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2516 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2517 BranchProbability EHPadBBProb = 2518 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2519 : BranchProbability::getZero(); 2520 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2521 2522 // Update successor info. 2523 addSuccessorWithProb(InvokeMBB, Return); 2524 for (auto &UnwindDest : UnwindDests) { 2525 UnwindDest.first->setIsEHPad(); 2526 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2527 } 2528 InvokeMBB->normalizeSuccProbs(); 2529 2530 // Drop into normal successor. 2531 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2532 MVT::Other, getControlRoot(), 2533 DAG.getBasicBlock(Return))); 2534 } 2535 2536 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2537 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2538 } 2539 2540 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2541 assert(FuncInfo.MBB->isEHPad() && 2542 "Call to landingpad not in landing pad!"); 2543 2544 // If there aren't registers to copy the values into (e.g., during SjLj 2545 // exceptions), then don't bother to create these DAG nodes. 2546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2547 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2548 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2549 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2550 return; 2551 2552 // If landingpad's return type is token type, we don't create DAG nodes 2553 // for its exception pointer and selector value. The extraction of exception 2554 // pointer or selector value from token type landingpads is not currently 2555 // supported. 2556 if (LP.getType()->isTokenTy()) 2557 return; 2558 2559 SmallVector<EVT, 2> ValueVTs; 2560 SDLoc dl = getCurSDLoc(); 2561 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2562 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2563 2564 // Get the two live-in registers as SDValues. The physregs have already been 2565 // copied into virtual registers. 2566 SDValue Ops[2]; 2567 if (FuncInfo.ExceptionPointerVirtReg) { 2568 Ops[0] = DAG.getZExtOrTrunc( 2569 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2570 FuncInfo.ExceptionPointerVirtReg, 2571 TLI.getPointerTy(DAG.getDataLayout())), 2572 dl, ValueVTs[0]); 2573 } else { 2574 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2575 } 2576 Ops[1] = DAG.getZExtOrTrunc( 2577 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2578 FuncInfo.ExceptionSelectorVirtReg, 2579 TLI.getPointerTy(DAG.getDataLayout())), 2580 dl, ValueVTs[1]); 2581 2582 // Merge into one. 2583 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2584 DAG.getVTList(ValueVTs), Ops); 2585 setValue(&LP, Res); 2586 } 2587 2588 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2589 #ifndef NDEBUG 2590 for (const CaseCluster &CC : Clusters) 2591 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2592 #endif 2593 2594 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2595 return a.Low->getValue().slt(b.Low->getValue()); 2596 }); 2597 2598 // Merge adjacent clusters with the same destination. 2599 const unsigned N = Clusters.size(); 2600 unsigned DstIndex = 0; 2601 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2602 CaseCluster &CC = Clusters[SrcIndex]; 2603 const ConstantInt *CaseVal = CC.Low; 2604 MachineBasicBlock *Succ = CC.MBB; 2605 2606 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2607 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2608 // If this case has the same successor and is a neighbour, merge it into 2609 // the previous cluster. 2610 Clusters[DstIndex - 1].High = CaseVal; 2611 Clusters[DstIndex - 1].Prob += CC.Prob; 2612 } else { 2613 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2614 sizeof(Clusters[SrcIndex])); 2615 } 2616 } 2617 Clusters.resize(DstIndex); 2618 } 2619 2620 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2621 MachineBasicBlock *Last) { 2622 // Update JTCases. 2623 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2624 if (JTCases[i].first.HeaderBB == First) 2625 JTCases[i].first.HeaderBB = Last; 2626 2627 // Update BitTestCases. 2628 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2629 if (BitTestCases[i].Parent == First) 2630 BitTestCases[i].Parent = Last; 2631 } 2632 2633 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2634 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2635 2636 // Update machine-CFG edges with unique successors. 2637 SmallSet<BasicBlock*, 32> Done; 2638 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2639 BasicBlock *BB = I.getSuccessor(i); 2640 bool Inserted = Done.insert(BB).second; 2641 if (!Inserted) 2642 continue; 2643 2644 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2645 addSuccessorWithProb(IndirectBrMBB, Succ); 2646 } 2647 IndirectBrMBB->normalizeSuccProbs(); 2648 2649 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2650 MVT::Other, getControlRoot(), 2651 getValue(I.getAddress()))); 2652 } 2653 2654 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2655 if (!DAG.getTarget().Options.TrapUnreachable) 2656 return; 2657 2658 // We may be able to ignore unreachable behind a noreturn call. 2659 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2660 const BasicBlock &BB = *I.getParent(); 2661 if (&I != &BB.front()) { 2662 BasicBlock::const_iterator PredI = 2663 std::prev(BasicBlock::const_iterator(&I)); 2664 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2665 if (Call->doesNotReturn()) 2666 return; 2667 } 2668 } 2669 } 2670 2671 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2672 } 2673 2674 void SelectionDAGBuilder::visitFSub(const User &I) { 2675 // -0.0 - X --> fneg 2676 Type *Ty = I.getType(); 2677 if (isa<Constant>(I.getOperand(0)) && 2678 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2679 SDValue Op2 = getValue(I.getOperand(1)); 2680 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2681 Op2.getValueType(), Op2)); 2682 return; 2683 } 2684 2685 visitBinary(I, ISD::FSUB); 2686 } 2687 2688 /// Checks if the given instruction performs a vector reduction, in which case 2689 /// we have the freedom to alter the elements in the result as long as the 2690 /// reduction of them stays unchanged. 2691 static bool isVectorReductionOp(const User *I) { 2692 const Instruction *Inst = dyn_cast<Instruction>(I); 2693 if (!Inst || !Inst->getType()->isVectorTy()) 2694 return false; 2695 2696 auto OpCode = Inst->getOpcode(); 2697 switch (OpCode) { 2698 case Instruction::Add: 2699 case Instruction::Mul: 2700 case Instruction::And: 2701 case Instruction::Or: 2702 case Instruction::Xor: 2703 break; 2704 case Instruction::FAdd: 2705 case Instruction::FMul: 2706 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2707 if (FPOp->getFastMathFlags().isFast()) 2708 break; 2709 LLVM_FALLTHROUGH; 2710 default: 2711 return false; 2712 } 2713 2714 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2715 // Ensure the reduction size is a power of 2. 2716 if (!isPowerOf2_32(ElemNum)) 2717 return false; 2718 2719 unsigned ElemNumToReduce = ElemNum; 2720 2721 // Do DFS search on the def-use chain from the given instruction. We only 2722 // allow four kinds of operations during the search until we reach the 2723 // instruction that extracts the first element from the vector: 2724 // 2725 // 1. The reduction operation of the same opcode as the given instruction. 2726 // 2727 // 2. PHI node. 2728 // 2729 // 3. ShuffleVector instruction together with a reduction operation that 2730 // does a partial reduction. 2731 // 2732 // 4. ExtractElement that extracts the first element from the vector, and we 2733 // stop searching the def-use chain here. 2734 // 2735 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2736 // from 1-3 to the stack to continue the DFS. The given instruction is not 2737 // a reduction operation if we meet any other instructions other than those 2738 // listed above. 2739 2740 SmallVector<const User *, 16> UsersToVisit{Inst}; 2741 SmallPtrSet<const User *, 16> Visited; 2742 bool ReduxExtracted = false; 2743 2744 while (!UsersToVisit.empty()) { 2745 auto User = UsersToVisit.back(); 2746 UsersToVisit.pop_back(); 2747 if (!Visited.insert(User).second) 2748 continue; 2749 2750 for (const auto &U : User->users()) { 2751 auto Inst = dyn_cast<Instruction>(U); 2752 if (!Inst) 2753 return false; 2754 2755 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2756 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2757 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2758 return false; 2759 UsersToVisit.push_back(U); 2760 } else if (const ShuffleVectorInst *ShufInst = 2761 dyn_cast<ShuffleVectorInst>(U)) { 2762 // Detect the following pattern: A ShuffleVector instruction together 2763 // with a reduction that do partial reduction on the first and second 2764 // ElemNumToReduce / 2 elements, and store the result in 2765 // ElemNumToReduce / 2 elements in another vector. 2766 2767 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2768 if (ResultElements < ElemNum) 2769 return false; 2770 2771 if (ElemNumToReduce == 1) 2772 return false; 2773 if (!isa<UndefValue>(U->getOperand(1))) 2774 return false; 2775 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2776 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2777 return false; 2778 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2779 if (ShufInst->getMaskValue(i) != -1) 2780 return false; 2781 2782 // There is only one user of this ShuffleVector instruction, which 2783 // must be a reduction operation. 2784 if (!U->hasOneUse()) 2785 return false; 2786 2787 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2788 if (!U2 || U2->getOpcode() != OpCode) 2789 return false; 2790 2791 // Check operands of the reduction operation. 2792 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2793 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2794 UsersToVisit.push_back(U2); 2795 ElemNumToReduce /= 2; 2796 } else 2797 return false; 2798 } else if (isa<ExtractElementInst>(U)) { 2799 // At this moment we should have reduced all elements in the vector. 2800 if (ElemNumToReduce != 1) 2801 return false; 2802 2803 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2804 if (!Val || !Val->isZero()) 2805 return false; 2806 2807 ReduxExtracted = true; 2808 } else 2809 return false; 2810 } 2811 } 2812 return ReduxExtracted; 2813 } 2814 2815 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 2816 SDNodeFlags Flags; 2817 2818 SDValue Op = getValue(I.getOperand(0)); 2819 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 2820 Op, Flags); 2821 setValue(&I, UnNodeValue); 2822 } 2823 2824 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2825 SDNodeFlags Flags; 2826 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2827 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2828 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2829 } 2830 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2831 Flags.setExact(ExactOp->isExact()); 2832 } 2833 if (isVectorReductionOp(&I)) { 2834 Flags.setVectorReduction(true); 2835 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2836 } 2837 2838 SDValue Op1 = getValue(I.getOperand(0)); 2839 SDValue Op2 = getValue(I.getOperand(1)); 2840 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2841 Op1, Op2, Flags); 2842 setValue(&I, BinNodeValue); 2843 } 2844 2845 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2846 SDValue Op1 = getValue(I.getOperand(0)); 2847 SDValue Op2 = getValue(I.getOperand(1)); 2848 2849 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2850 Op1.getValueType(), DAG.getDataLayout()); 2851 2852 // Coerce the shift amount to the right type if we can. 2853 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2854 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2855 unsigned Op2Size = Op2.getValueSizeInBits(); 2856 SDLoc DL = getCurSDLoc(); 2857 2858 // If the operand is smaller than the shift count type, promote it. 2859 if (ShiftSize > Op2Size) 2860 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2861 2862 // If the operand is larger than the shift count type but the shift 2863 // count type has enough bits to represent any shift value, truncate 2864 // it now. This is a common case and it exposes the truncate to 2865 // optimization early. 2866 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2867 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2868 // Otherwise we'll need to temporarily settle for some other convenient 2869 // type. Type legalization will make adjustments once the shiftee is split. 2870 else 2871 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2872 } 2873 2874 bool nuw = false; 2875 bool nsw = false; 2876 bool exact = false; 2877 2878 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2879 2880 if (const OverflowingBinaryOperator *OFBinOp = 2881 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2882 nuw = OFBinOp->hasNoUnsignedWrap(); 2883 nsw = OFBinOp->hasNoSignedWrap(); 2884 } 2885 if (const PossiblyExactOperator *ExactOp = 2886 dyn_cast<const PossiblyExactOperator>(&I)) 2887 exact = ExactOp->isExact(); 2888 } 2889 SDNodeFlags Flags; 2890 Flags.setExact(exact); 2891 Flags.setNoSignedWrap(nsw); 2892 Flags.setNoUnsignedWrap(nuw); 2893 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2894 Flags); 2895 setValue(&I, Res); 2896 } 2897 2898 void SelectionDAGBuilder::visitSDiv(const User &I) { 2899 SDValue Op1 = getValue(I.getOperand(0)); 2900 SDValue Op2 = getValue(I.getOperand(1)); 2901 2902 SDNodeFlags Flags; 2903 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2904 cast<PossiblyExactOperator>(&I)->isExact()); 2905 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2906 Op2, Flags)); 2907 } 2908 2909 void SelectionDAGBuilder::visitICmp(const User &I) { 2910 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2911 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2912 predicate = IC->getPredicate(); 2913 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2914 predicate = ICmpInst::Predicate(IC->getPredicate()); 2915 SDValue Op1 = getValue(I.getOperand(0)); 2916 SDValue Op2 = getValue(I.getOperand(1)); 2917 ISD::CondCode Opcode = getICmpCondCode(predicate); 2918 2919 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2920 I.getType()); 2921 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2922 } 2923 2924 void SelectionDAGBuilder::visitFCmp(const User &I) { 2925 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2926 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2927 predicate = FC->getPredicate(); 2928 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2929 predicate = FCmpInst::Predicate(FC->getPredicate()); 2930 SDValue Op1 = getValue(I.getOperand(0)); 2931 SDValue Op2 = getValue(I.getOperand(1)); 2932 2933 ISD::CondCode Condition = getFCmpCondCode(predicate); 2934 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2935 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2936 Condition = getFCmpCodeWithoutNaN(Condition); 2937 2938 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2939 I.getType()); 2940 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2941 } 2942 2943 // Check if the condition of the select has one use or two users that are both 2944 // selects with the same condition. 2945 static bool hasOnlySelectUsers(const Value *Cond) { 2946 return llvm::all_of(Cond->users(), [](const Value *V) { 2947 return isa<SelectInst>(V); 2948 }); 2949 } 2950 2951 void SelectionDAGBuilder::visitSelect(const User &I) { 2952 SmallVector<EVT, 4> ValueVTs; 2953 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2954 ValueVTs); 2955 unsigned NumValues = ValueVTs.size(); 2956 if (NumValues == 0) return; 2957 2958 SmallVector<SDValue, 4> Values(NumValues); 2959 SDValue Cond = getValue(I.getOperand(0)); 2960 SDValue LHSVal = getValue(I.getOperand(1)); 2961 SDValue RHSVal = getValue(I.getOperand(2)); 2962 auto BaseOps = {Cond}; 2963 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2964 ISD::VSELECT : ISD::SELECT; 2965 2966 // Min/max matching is only viable if all output VTs are the same. 2967 if (is_splat(ValueVTs)) { 2968 EVT VT = ValueVTs[0]; 2969 LLVMContext &Ctx = *DAG.getContext(); 2970 auto &TLI = DAG.getTargetLoweringInfo(); 2971 2972 // We care about the legality of the operation after it has been type 2973 // legalized. 2974 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2975 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2976 VT = TLI.getTypeToTransformTo(Ctx, VT); 2977 2978 // If the vselect is legal, assume we want to leave this as a vector setcc + 2979 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2980 // min/max is legal on the scalar type. 2981 bool UseScalarMinMax = VT.isVector() && 2982 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2983 2984 Value *LHS, *RHS; 2985 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2986 ISD::NodeType Opc = ISD::DELETED_NODE; 2987 switch (SPR.Flavor) { 2988 case SPF_UMAX: Opc = ISD::UMAX; break; 2989 case SPF_UMIN: Opc = ISD::UMIN; break; 2990 case SPF_SMAX: Opc = ISD::SMAX; break; 2991 case SPF_SMIN: Opc = ISD::SMIN; break; 2992 case SPF_FMINNUM: 2993 switch (SPR.NaNBehavior) { 2994 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2995 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 2996 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2997 case SPNB_RETURNS_ANY: { 2998 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2999 Opc = ISD::FMINNUM; 3000 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3001 Opc = ISD::FMINIMUM; 3002 else if (UseScalarMinMax) 3003 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3004 ISD::FMINNUM : ISD::FMINIMUM; 3005 break; 3006 } 3007 } 3008 break; 3009 case SPF_FMAXNUM: 3010 switch (SPR.NaNBehavior) { 3011 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3012 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3013 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3014 case SPNB_RETURNS_ANY: 3015 3016 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3017 Opc = ISD::FMAXNUM; 3018 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3019 Opc = ISD::FMAXIMUM; 3020 else if (UseScalarMinMax) 3021 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3022 ISD::FMAXNUM : ISD::FMAXIMUM; 3023 break; 3024 } 3025 break; 3026 default: break; 3027 } 3028 3029 if (Opc != ISD::DELETED_NODE && 3030 (TLI.isOperationLegalOrCustom(Opc, VT) || 3031 (UseScalarMinMax && 3032 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3033 // If the underlying comparison instruction is used by any other 3034 // instruction, the consumed instructions won't be destroyed, so it is 3035 // not profitable to convert to a min/max. 3036 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3037 OpCode = Opc; 3038 LHSVal = getValue(LHS); 3039 RHSVal = getValue(RHS); 3040 BaseOps = {}; 3041 } 3042 } 3043 3044 for (unsigned i = 0; i != NumValues; ++i) { 3045 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3046 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3047 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3048 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3049 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3050 Ops); 3051 } 3052 3053 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3054 DAG.getVTList(ValueVTs), Values)); 3055 } 3056 3057 void SelectionDAGBuilder::visitTrunc(const User &I) { 3058 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3059 SDValue N = getValue(I.getOperand(0)); 3060 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3061 I.getType()); 3062 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3063 } 3064 3065 void SelectionDAGBuilder::visitZExt(const User &I) { 3066 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3067 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3068 SDValue N = getValue(I.getOperand(0)); 3069 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3070 I.getType()); 3071 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3072 } 3073 3074 void SelectionDAGBuilder::visitSExt(const User &I) { 3075 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3076 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3077 SDValue N = getValue(I.getOperand(0)); 3078 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3079 I.getType()); 3080 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3081 } 3082 3083 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3084 // FPTrunc is never a no-op cast, no need to check 3085 SDValue N = getValue(I.getOperand(0)); 3086 SDLoc dl = getCurSDLoc(); 3087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3088 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3089 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3090 DAG.getTargetConstant( 3091 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3092 } 3093 3094 void SelectionDAGBuilder::visitFPExt(const User &I) { 3095 // FPExt is never a no-op cast, no need to check 3096 SDValue N = getValue(I.getOperand(0)); 3097 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3098 I.getType()); 3099 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3100 } 3101 3102 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3103 // FPToUI is never a no-op cast, no need to check 3104 SDValue N = getValue(I.getOperand(0)); 3105 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3106 I.getType()); 3107 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3108 } 3109 3110 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3111 // FPToSI is never a no-op cast, no need to check 3112 SDValue N = getValue(I.getOperand(0)); 3113 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3114 I.getType()); 3115 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3116 } 3117 3118 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3119 // UIToFP is never a no-op cast, no need to check 3120 SDValue N = getValue(I.getOperand(0)); 3121 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3122 I.getType()); 3123 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3124 } 3125 3126 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3127 // SIToFP is never a no-op cast, no need to check 3128 SDValue N = getValue(I.getOperand(0)); 3129 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3130 I.getType()); 3131 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3132 } 3133 3134 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3135 // What to do depends on the size of the integer and the size of the pointer. 3136 // We can either truncate, zero extend, or no-op, accordingly. 3137 SDValue N = getValue(I.getOperand(0)); 3138 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3139 I.getType()); 3140 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3141 } 3142 3143 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3144 // What to do depends on the size of the integer and the size of the pointer. 3145 // We can either truncate, zero extend, or no-op, accordingly. 3146 SDValue N = getValue(I.getOperand(0)); 3147 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3148 I.getType()); 3149 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3150 } 3151 3152 void SelectionDAGBuilder::visitBitCast(const User &I) { 3153 SDValue N = getValue(I.getOperand(0)); 3154 SDLoc dl = getCurSDLoc(); 3155 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3156 I.getType()); 3157 3158 // BitCast assures us that source and destination are the same size so this is 3159 // either a BITCAST or a no-op. 3160 if (DestVT != N.getValueType()) 3161 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3162 DestVT, N)); // convert types. 3163 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3164 // might fold any kind of constant expression to an integer constant and that 3165 // is not what we are looking for. Only recognize a bitcast of a genuine 3166 // constant integer as an opaque constant. 3167 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3168 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3169 /*isOpaque*/true)); 3170 else 3171 setValue(&I, N); // noop cast. 3172 } 3173 3174 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3176 const Value *SV = I.getOperand(0); 3177 SDValue N = getValue(SV); 3178 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3179 3180 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3181 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3182 3183 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3184 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3185 3186 setValue(&I, N); 3187 } 3188 3189 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3191 SDValue InVec = getValue(I.getOperand(0)); 3192 SDValue InVal = getValue(I.getOperand(1)); 3193 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3194 TLI.getVectorIdxTy(DAG.getDataLayout())); 3195 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3196 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3197 InVec, InVal, InIdx)); 3198 } 3199 3200 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3202 SDValue InVec = getValue(I.getOperand(0)); 3203 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3204 TLI.getVectorIdxTy(DAG.getDataLayout())); 3205 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3206 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3207 InVec, InIdx)); 3208 } 3209 3210 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3211 SDValue Src1 = getValue(I.getOperand(0)); 3212 SDValue Src2 = getValue(I.getOperand(1)); 3213 SDLoc DL = getCurSDLoc(); 3214 3215 SmallVector<int, 8> Mask; 3216 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3217 unsigned MaskNumElts = Mask.size(); 3218 3219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3220 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3221 EVT SrcVT = Src1.getValueType(); 3222 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3223 3224 if (SrcNumElts == MaskNumElts) { 3225 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3226 return; 3227 } 3228 3229 // Normalize the shuffle vector since mask and vector length don't match. 3230 if (SrcNumElts < MaskNumElts) { 3231 // Mask is longer than the source vectors. We can use concatenate vector to 3232 // make the mask and vectors lengths match. 3233 3234 if (MaskNumElts % SrcNumElts == 0) { 3235 // Mask length is a multiple of the source vector length. 3236 // Check if the shuffle is some kind of concatenation of the input 3237 // vectors. 3238 unsigned NumConcat = MaskNumElts / SrcNumElts; 3239 bool IsConcat = true; 3240 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3241 for (unsigned i = 0; i != MaskNumElts; ++i) { 3242 int Idx = Mask[i]; 3243 if (Idx < 0) 3244 continue; 3245 // Ensure the indices in each SrcVT sized piece are sequential and that 3246 // the same source is used for the whole piece. 3247 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3248 (ConcatSrcs[i / SrcNumElts] >= 0 && 3249 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3250 IsConcat = false; 3251 break; 3252 } 3253 // Remember which source this index came from. 3254 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3255 } 3256 3257 // The shuffle is concatenating multiple vectors together. Just emit 3258 // a CONCAT_VECTORS operation. 3259 if (IsConcat) { 3260 SmallVector<SDValue, 8> ConcatOps; 3261 for (auto Src : ConcatSrcs) { 3262 if (Src < 0) 3263 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3264 else if (Src == 0) 3265 ConcatOps.push_back(Src1); 3266 else 3267 ConcatOps.push_back(Src2); 3268 } 3269 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3270 return; 3271 } 3272 } 3273 3274 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3275 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3276 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3277 PaddedMaskNumElts); 3278 3279 // Pad both vectors with undefs to make them the same length as the mask. 3280 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3281 3282 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3283 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3284 MOps1[0] = Src1; 3285 MOps2[0] = Src2; 3286 3287 Src1 = Src1.isUndef() 3288 ? DAG.getUNDEF(PaddedVT) 3289 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3290 Src2 = Src2.isUndef() 3291 ? DAG.getUNDEF(PaddedVT) 3292 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3293 3294 // Readjust mask for new input vector length. 3295 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3296 for (unsigned i = 0; i != MaskNumElts; ++i) { 3297 int Idx = Mask[i]; 3298 if (Idx >= (int)SrcNumElts) 3299 Idx -= SrcNumElts - PaddedMaskNumElts; 3300 MappedOps[i] = Idx; 3301 } 3302 3303 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3304 3305 // If the concatenated vector was padded, extract a subvector with the 3306 // correct number of elements. 3307 if (MaskNumElts != PaddedMaskNumElts) 3308 Result = DAG.getNode( 3309 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3310 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3311 3312 setValue(&I, Result); 3313 return; 3314 } 3315 3316 if (SrcNumElts > MaskNumElts) { 3317 // Analyze the access pattern of the vector to see if we can extract 3318 // two subvectors and do the shuffle. 3319 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3320 bool CanExtract = true; 3321 for (int Idx : Mask) { 3322 unsigned Input = 0; 3323 if (Idx < 0) 3324 continue; 3325 3326 if (Idx >= (int)SrcNumElts) { 3327 Input = 1; 3328 Idx -= SrcNumElts; 3329 } 3330 3331 // If all the indices come from the same MaskNumElts sized portion of 3332 // the sources we can use extract. Also make sure the extract wouldn't 3333 // extract past the end of the source. 3334 int NewStartIdx = alignDown(Idx, MaskNumElts); 3335 if (NewStartIdx + MaskNumElts > SrcNumElts || 3336 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3337 CanExtract = false; 3338 // Make sure we always update StartIdx as we use it to track if all 3339 // elements are undef. 3340 StartIdx[Input] = NewStartIdx; 3341 } 3342 3343 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3344 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3345 return; 3346 } 3347 if (CanExtract) { 3348 // Extract appropriate subvector and generate a vector shuffle 3349 for (unsigned Input = 0; Input < 2; ++Input) { 3350 SDValue &Src = Input == 0 ? Src1 : Src2; 3351 if (StartIdx[Input] < 0) 3352 Src = DAG.getUNDEF(VT); 3353 else { 3354 Src = DAG.getNode( 3355 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3356 DAG.getConstant(StartIdx[Input], DL, 3357 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3358 } 3359 } 3360 3361 // Calculate new mask. 3362 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3363 for (int &Idx : MappedOps) { 3364 if (Idx >= (int)SrcNumElts) 3365 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3366 else if (Idx >= 0) 3367 Idx -= StartIdx[0]; 3368 } 3369 3370 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3371 return; 3372 } 3373 } 3374 3375 // We can't use either concat vectors or extract subvectors so fall back to 3376 // replacing the shuffle with extract and build vector. 3377 // to insert and build vector. 3378 EVT EltVT = VT.getVectorElementType(); 3379 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3380 SmallVector<SDValue,8> Ops; 3381 for (int Idx : Mask) { 3382 SDValue Res; 3383 3384 if (Idx < 0) { 3385 Res = DAG.getUNDEF(EltVT); 3386 } else { 3387 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3388 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3389 3390 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3391 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3392 } 3393 3394 Ops.push_back(Res); 3395 } 3396 3397 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3398 } 3399 3400 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3401 ArrayRef<unsigned> Indices; 3402 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3403 Indices = IV->getIndices(); 3404 else 3405 Indices = cast<ConstantExpr>(&I)->getIndices(); 3406 3407 const Value *Op0 = I.getOperand(0); 3408 const Value *Op1 = I.getOperand(1); 3409 Type *AggTy = I.getType(); 3410 Type *ValTy = Op1->getType(); 3411 bool IntoUndef = isa<UndefValue>(Op0); 3412 bool FromUndef = isa<UndefValue>(Op1); 3413 3414 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3415 3416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3417 SmallVector<EVT, 4> AggValueVTs; 3418 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3419 SmallVector<EVT, 4> ValValueVTs; 3420 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3421 3422 unsigned NumAggValues = AggValueVTs.size(); 3423 unsigned NumValValues = ValValueVTs.size(); 3424 SmallVector<SDValue, 4> Values(NumAggValues); 3425 3426 // Ignore an insertvalue that produces an empty object 3427 if (!NumAggValues) { 3428 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3429 return; 3430 } 3431 3432 SDValue Agg = getValue(Op0); 3433 unsigned i = 0; 3434 // Copy the beginning value(s) from the original aggregate. 3435 for (; i != LinearIndex; ++i) 3436 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3437 SDValue(Agg.getNode(), Agg.getResNo() + i); 3438 // Copy values from the inserted value(s). 3439 if (NumValValues) { 3440 SDValue Val = getValue(Op1); 3441 for (; i != LinearIndex + NumValValues; ++i) 3442 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3443 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3444 } 3445 // Copy remaining value(s) from the original aggregate. 3446 for (; i != NumAggValues; ++i) 3447 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3448 SDValue(Agg.getNode(), Agg.getResNo() + i); 3449 3450 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3451 DAG.getVTList(AggValueVTs), Values)); 3452 } 3453 3454 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3455 ArrayRef<unsigned> Indices; 3456 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3457 Indices = EV->getIndices(); 3458 else 3459 Indices = cast<ConstantExpr>(&I)->getIndices(); 3460 3461 const Value *Op0 = I.getOperand(0); 3462 Type *AggTy = Op0->getType(); 3463 Type *ValTy = I.getType(); 3464 bool OutOfUndef = isa<UndefValue>(Op0); 3465 3466 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3467 3468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3469 SmallVector<EVT, 4> ValValueVTs; 3470 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3471 3472 unsigned NumValValues = ValValueVTs.size(); 3473 3474 // Ignore a extractvalue that produces an empty object 3475 if (!NumValValues) { 3476 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3477 return; 3478 } 3479 3480 SmallVector<SDValue, 4> Values(NumValValues); 3481 3482 SDValue Agg = getValue(Op0); 3483 // Copy out the selected value(s). 3484 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3485 Values[i - LinearIndex] = 3486 OutOfUndef ? 3487 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3488 SDValue(Agg.getNode(), Agg.getResNo() + i); 3489 3490 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3491 DAG.getVTList(ValValueVTs), Values)); 3492 } 3493 3494 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3495 Value *Op0 = I.getOperand(0); 3496 // Note that the pointer operand may be a vector of pointers. Take the scalar 3497 // element which holds a pointer. 3498 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3499 SDValue N = getValue(Op0); 3500 SDLoc dl = getCurSDLoc(); 3501 3502 // Normalize Vector GEP - all scalar operands should be converted to the 3503 // splat vector. 3504 unsigned VectorWidth = I.getType()->isVectorTy() ? 3505 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3506 3507 if (VectorWidth && !N.getValueType().isVector()) { 3508 LLVMContext &Context = *DAG.getContext(); 3509 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3510 N = DAG.getSplatBuildVector(VT, dl, N); 3511 } 3512 3513 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3514 GTI != E; ++GTI) { 3515 const Value *Idx = GTI.getOperand(); 3516 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3517 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3518 if (Field) { 3519 // N = N + Offset 3520 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3521 3522 // In an inbounds GEP with an offset that is nonnegative even when 3523 // interpreted as signed, assume there is no unsigned overflow. 3524 SDNodeFlags Flags; 3525 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3526 Flags.setNoUnsignedWrap(true); 3527 3528 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3529 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3530 } 3531 } else { 3532 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3533 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3534 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3535 3536 // If this is a scalar constant or a splat vector of constants, 3537 // handle it quickly. 3538 const auto *CI = dyn_cast<ConstantInt>(Idx); 3539 if (!CI && isa<ConstantDataVector>(Idx) && 3540 cast<ConstantDataVector>(Idx)->getSplatValue()) 3541 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3542 3543 if (CI) { 3544 if (CI->isZero()) 3545 continue; 3546 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3547 LLVMContext &Context = *DAG.getContext(); 3548 SDValue OffsVal = VectorWidth ? 3549 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3550 DAG.getConstant(Offs, dl, IdxTy); 3551 3552 // In an inbouds GEP with an offset that is nonnegative even when 3553 // interpreted as signed, assume there is no unsigned overflow. 3554 SDNodeFlags Flags; 3555 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3556 Flags.setNoUnsignedWrap(true); 3557 3558 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3559 continue; 3560 } 3561 3562 // N = N + Idx * ElementSize; 3563 SDValue IdxN = getValue(Idx); 3564 3565 if (!IdxN.getValueType().isVector() && VectorWidth) { 3566 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3567 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3568 } 3569 3570 // If the index is smaller or larger than intptr_t, truncate or extend 3571 // it. 3572 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3573 3574 // If this is a multiply by a power of two, turn it into a shl 3575 // immediately. This is a very common case. 3576 if (ElementSize != 1) { 3577 if (ElementSize.isPowerOf2()) { 3578 unsigned Amt = ElementSize.logBase2(); 3579 IdxN = DAG.getNode(ISD::SHL, dl, 3580 N.getValueType(), IdxN, 3581 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3582 } else { 3583 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3584 IdxN = DAG.getNode(ISD::MUL, dl, 3585 N.getValueType(), IdxN, Scale); 3586 } 3587 } 3588 3589 N = DAG.getNode(ISD::ADD, dl, 3590 N.getValueType(), N, IdxN); 3591 } 3592 } 3593 3594 setValue(&I, N); 3595 } 3596 3597 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3598 // If this is a fixed sized alloca in the entry block of the function, 3599 // allocate it statically on the stack. 3600 if (FuncInfo.StaticAllocaMap.count(&I)) 3601 return; // getValue will auto-populate this. 3602 3603 SDLoc dl = getCurSDLoc(); 3604 Type *Ty = I.getAllocatedType(); 3605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3606 auto &DL = DAG.getDataLayout(); 3607 uint64_t TySize = DL.getTypeAllocSize(Ty); 3608 unsigned Align = 3609 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3610 3611 SDValue AllocSize = getValue(I.getArraySize()); 3612 3613 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3614 if (AllocSize.getValueType() != IntPtr) 3615 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3616 3617 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3618 AllocSize, 3619 DAG.getConstant(TySize, dl, IntPtr)); 3620 3621 // Handle alignment. If the requested alignment is less than or equal to 3622 // the stack alignment, ignore it. If the size is greater than or equal to 3623 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3624 unsigned StackAlign = 3625 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3626 if (Align <= StackAlign) 3627 Align = 0; 3628 3629 // Round the size of the allocation up to the stack alignment size 3630 // by add SA-1 to the size. This doesn't overflow because we're computing 3631 // an address inside an alloca. 3632 SDNodeFlags Flags; 3633 Flags.setNoUnsignedWrap(true); 3634 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3635 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3636 3637 // Mask out the low bits for alignment purposes. 3638 AllocSize = 3639 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3640 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3641 3642 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3643 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3644 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3645 setValue(&I, DSA); 3646 DAG.setRoot(DSA.getValue(1)); 3647 3648 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3649 } 3650 3651 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3652 if (I.isAtomic()) 3653 return visitAtomicLoad(I); 3654 3655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3656 const Value *SV = I.getOperand(0); 3657 if (TLI.supportSwiftError()) { 3658 // Swifterror values can come from either a function parameter with 3659 // swifterror attribute or an alloca with swifterror attribute. 3660 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3661 if (Arg->hasSwiftErrorAttr()) 3662 return visitLoadFromSwiftError(I); 3663 } 3664 3665 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3666 if (Alloca->isSwiftError()) 3667 return visitLoadFromSwiftError(I); 3668 } 3669 } 3670 3671 SDValue Ptr = getValue(SV); 3672 3673 Type *Ty = I.getType(); 3674 3675 bool isVolatile = I.isVolatile(); 3676 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3677 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3678 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3679 unsigned Alignment = I.getAlignment(); 3680 3681 AAMDNodes AAInfo; 3682 I.getAAMetadata(AAInfo); 3683 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3684 3685 SmallVector<EVT, 4> ValueVTs; 3686 SmallVector<uint64_t, 4> Offsets; 3687 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3688 unsigned NumValues = ValueVTs.size(); 3689 if (NumValues == 0) 3690 return; 3691 3692 SDValue Root; 3693 bool ConstantMemory = false; 3694 if (isVolatile || NumValues > MaxParallelChains) 3695 // Serialize volatile loads with other side effects. 3696 Root = getRoot(); 3697 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3698 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3699 // Do not serialize (non-volatile) loads of constant memory with anything. 3700 Root = DAG.getEntryNode(); 3701 ConstantMemory = true; 3702 } else { 3703 // Do not serialize non-volatile loads against each other. 3704 Root = DAG.getRoot(); 3705 } 3706 3707 SDLoc dl = getCurSDLoc(); 3708 3709 if (isVolatile) 3710 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3711 3712 // An aggregate load cannot wrap around the address space, so offsets to its 3713 // parts don't wrap either. 3714 SDNodeFlags Flags; 3715 Flags.setNoUnsignedWrap(true); 3716 3717 SmallVector<SDValue, 4> Values(NumValues); 3718 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3719 EVT PtrVT = Ptr.getValueType(); 3720 unsigned ChainI = 0; 3721 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3722 // Serializing loads here may result in excessive register pressure, and 3723 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3724 // could recover a bit by hoisting nodes upward in the chain by recognizing 3725 // they are side-effect free or do not alias. The optimizer should really 3726 // avoid this case by converting large object/array copies to llvm.memcpy 3727 // (MaxParallelChains should always remain as failsafe). 3728 if (ChainI == MaxParallelChains) { 3729 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3730 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3731 makeArrayRef(Chains.data(), ChainI)); 3732 Root = Chain; 3733 ChainI = 0; 3734 } 3735 SDValue A = DAG.getNode(ISD::ADD, dl, 3736 PtrVT, Ptr, 3737 DAG.getConstant(Offsets[i], dl, PtrVT), 3738 Flags); 3739 auto MMOFlags = MachineMemOperand::MONone; 3740 if (isVolatile) 3741 MMOFlags |= MachineMemOperand::MOVolatile; 3742 if (isNonTemporal) 3743 MMOFlags |= MachineMemOperand::MONonTemporal; 3744 if (isInvariant) 3745 MMOFlags |= MachineMemOperand::MOInvariant; 3746 if (isDereferenceable) 3747 MMOFlags |= MachineMemOperand::MODereferenceable; 3748 MMOFlags |= TLI.getMMOFlags(I); 3749 3750 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3751 MachinePointerInfo(SV, Offsets[i]), Alignment, 3752 MMOFlags, AAInfo, Ranges); 3753 3754 Values[i] = L; 3755 Chains[ChainI] = L.getValue(1); 3756 } 3757 3758 if (!ConstantMemory) { 3759 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3760 makeArrayRef(Chains.data(), ChainI)); 3761 if (isVolatile) 3762 DAG.setRoot(Chain); 3763 else 3764 PendingLoads.push_back(Chain); 3765 } 3766 3767 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3768 DAG.getVTList(ValueVTs), Values)); 3769 } 3770 3771 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3772 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3773 "call visitStoreToSwiftError when backend supports swifterror"); 3774 3775 SmallVector<EVT, 4> ValueVTs; 3776 SmallVector<uint64_t, 4> Offsets; 3777 const Value *SrcV = I.getOperand(0); 3778 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3779 SrcV->getType(), ValueVTs, &Offsets); 3780 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3781 "expect a single EVT for swifterror"); 3782 3783 SDValue Src = getValue(SrcV); 3784 // Create a virtual register, then update the virtual register. 3785 unsigned VReg; bool CreatedVReg; 3786 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3787 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3788 // Chain can be getRoot or getControlRoot. 3789 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3790 SDValue(Src.getNode(), Src.getResNo())); 3791 DAG.setRoot(CopyNode); 3792 if (CreatedVReg) 3793 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3794 } 3795 3796 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3797 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3798 "call visitLoadFromSwiftError when backend supports swifterror"); 3799 3800 assert(!I.isVolatile() && 3801 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3802 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3803 "Support volatile, non temporal, invariant for load_from_swift_error"); 3804 3805 const Value *SV = I.getOperand(0); 3806 Type *Ty = I.getType(); 3807 AAMDNodes AAInfo; 3808 I.getAAMetadata(AAInfo); 3809 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3810 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3811 "load_from_swift_error should not be constant memory"); 3812 3813 SmallVector<EVT, 4> ValueVTs; 3814 SmallVector<uint64_t, 4> Offsets; 3815 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3816 ValueVTs, &Offsets); 3817 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3818 "expect a single EVT for swifterror"); 3819 3820 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3821 SDValue L = DAG.getCopyFromReg( 3822 getRoot(), getCurSDLoc(), 3823 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3824 ValueVTs[0]); 3825 3826 setValue(&I, L); 3827 } 3828 3829 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3830 if (I.isAtomic()) 3831 return visitAtomicStore(I); 3832 3833 const Value *SrcV = I.getOperand(0); 3834 const Value *PtrV = I.getOperand(1); 3835 3836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3837 if (TLI.supportSwiftError()) { 3838 // Swifterror values can come from either a function parameter with 3839 // swifterror attribute or an alloca with swifterror attribute. 3840 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3841 if (Arg->hasSwiftErrorAttr()) 3842 return visitStoreToSwiftError(I); 3843 } 3844 3845 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3846 if (Alloca->isSwiftError()) 3847 return visitStoreToSwiftError(I); 3848 } 3849 } 3850 3851 SmallVector<EVT, 4> ValueVTs; 3852 SmallVector<uint64_t, 4> Offsets; 3853 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3854 SrcV->getType(), ValueVTs, &Offsets); 3855 unsigned NumValues = ValueVTs.size(); 3856 if (NumValues == 0) 3857 return; 3858 3859 // Get the lowered operands. Note that we do this after 3860 // checking if NumResults is zero, because with zero results 3861 // the operands won't have values in the map. 3862 SDValue Src = getValue(SrcV); 3863 SDValue Ptr = getValue(PtrV); 3864 3865 SDValue Root = getRoot(); 3866 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3867 SDLoc dl = getCurSDLoc(); 3868 EVT PtrVT = Ptr.getValueType(); 3869 unsigned Alignment = I.getAlignment(); 3870 AAMDNodes AAInfo; 3871 I.getAAMetadata(AAInfo); 3872 3873 auto MMOFlags = MachineMemOperand::MONone; 3874 if (I.isVolatile()) 3875 MMOFlags |= MachineMemOperand::MOVolatile; 3876 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3877 MMOFlags |= MachineMemOperand::MONonTemporal; 3878 MMOFlags |= TLI.getMMOFlags(I); 3879 3880 // An aggregate load cannot wrap around the address space, so offsets to its 3881 // parts don't wrap either. 3882 SDNodeFlags Flags; 3883 Flags.setNoUnsignedWrap(true); 3884 3885 unsigned ChainI = 0; 3886 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3887 // See visitLoad comments. 3888 if (ChainI == MaxParallelChains) { 3889 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3890 makeArrayRef(Chains.data(), ChainI)); 3891 Root = Chain; 3892 ChainI = 0; 3893 } 3894 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3895 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3896 SDValue St = DAG.getStore( 3897 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3898 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3899 Chains[ChainI] = St; 3900 } 3901 3902 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3903 makeArrayRef(Chains.data(), ChainI)); 3904 DAG.setRoot(StoreNode); 3905 } 3906 3907 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3908 bool IsCompressing) { 3909 SDLoc sdl = getCurSDLoc(); 3910 3911 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3912 unsigned& Alignment) { 3913 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3914 Src0 = I.getArgOperand(0); 3915 Ptr = I.getArgOperand(1); 3916 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3917 Mask = I.getArgOperand(3); 3918 }; 3919 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3920 unsigned& Alignment) { 3921 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3922 Src0 = I.getArgOperand(0); 3923 Ptr = I.getArgOperand(1); 3924 Mask = I.getArgOperand(2); 3925 Alignment = 0; 3926 }; 3927 3928 Value *PtrOperand, *MaskOperand, *Src0Operand; 3929 unsigned Alignment; 3930 if (IsCompressing) 3931 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3932 else 3933 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3934 3935 SDValue Ptr = getValue(PtrOperand); 3936 SDValue Src0 = getValue(Src0Operand); 3937 SDValue Mask = getValue(MaskOperand); 3938 3939 EVT VT = Src0.getValueType(); 3940 if (!Alignment) 3941 Alignment = DAG.getEVTAlignment(VT); 3942 3943 AAMDNodes AAInfo; 3944 I.getAAMetadata(AAInfo); 3945 3946 MachineMemOperand *MMO = 3947 DAG.getMachineFunction(). 3948 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3949 MachineMemOperand::MOStore, VT.getStoreSize(), 3950 Alignment, AAInfo); 3951 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3952 MMO, false /* Truncating */, 3953 IsCompressing); 3954 DAG.setRoot(StoreNode); 3955 setValue(&I, StoreNode); 3956 } 3957 3958 // Get a uniform base for the Gather/Scatter intrinsic. 3959 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3960 // We try to represent it as a base pointer + vector of indices. 3961 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3962 // The first operand of the GEP may be a single pointer or a vector of pointers 3963 // Example: 3964 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3965 // or 3966 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3967 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3968 // 3969 // When the first GEP operand is a single pointer - it is the uniform base we 3970 // are looking for. If first operand of the GEP is a splat vector - we 3971 // extract the splat value and use it as a uniform base. 3972 // In all other cases the function returns 'false'. 3973 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3974 SDValue &Scale, SelectionDAGBuilder* SDB) { 3975 SelectionDAG& DAG = SDB->DAG; 3976 LLVMContext &Context = *DAG.getContext(); 3977 3978 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3979 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3980 if (!GEP) 3981 return false; 3982 3983 const Value *GEPPtr = GEP->getPointerOperand(); 3984 if (!GEPPtr->getType()->isVectorTy()) 3985 Ptr = GEPPtr; 3986 else if (!(Ptr = getSplatValue(GEPPtr))) 3987 return false; 3988 3989 unsigned FinalIndex = GEP->getNumOperands() - 1; 3990 Value *IndexVal = GEP->getOperand(FinalIndex); 3991 3992 // Ensure all the other indices are 0. 3993 for (unsigned i = 1; i < FinalIndex; ++i) { 3994 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3995 if (!C || !C->isZero()) 3996 return false; 3997 } 3998 3999 // The operands of the GEP may be defined in another basic block. 4000 // In this case we'll not find nodes for the operands. 4001 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4002 return false; 4003 4004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4005 const DataLayout &DL = DAG.getDataLayout(); 4006 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4007 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4008 Base = SDB->getValue(Ptr); 4009 Index = SDB->getValue(IndexVal); 4010 4011 if (!Index.getValueType().isVector()) { 4012 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4013 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4014 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4015 } 4016 return true; 4017 } 4018 4019 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4020 SDLoc sdl = getCurSDLoc(); 4021 4022 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4023 const Value *Ptr = I.getArgOperand(1); 4024 SDValue Src0 = getValue(I.getArgOperand(0)); 4025 SDValue Mask = getValue(I.getArgOperand(3)); 4026 EVT VT = Src0.getValueType(); 4027 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4028 if (!Alignment) 4029 Alignment = DAG.getEVTAlignment(VT); 4030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4031 4032 AAMDNodes AAInfo; 4033 I.getAAMetadata(AAInfo); 4034 4035 SDValue Base; 4036 SDValue Index; 4037 SDValue Scale; 4038 const Value *BasePtr = Ptr; 4039 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4040 4041 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4042 MachineMemOperand *MMO = DAG.getMachineFunction(). 4043 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4044 MachineMemOperand::MOStore, VT.getStoreSize(), 4045 Alignment, AAInfo); 4046 if (!UniformBase) { 4047 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4048 Index = getValue(Ptr); 4049 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4050 } 4051 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4052 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4053 Ops, MMO); 4054 DAG.setRoot(Scatter); 4055 setValue(&I, Scatter); 4056 } 4057 4058 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4059 SDLoc sdl = getCurSDLoc(); 4060 4061 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4062 unsigned& Alignment) { 4063 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4064 Ptr = I.getArgOperand(0); 4065 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4066 Mask = I.getArgOperand(2); 4067 Src0 = I.getArgOperand(3); 4068 }; 4069 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4070 unsigned& Alignment) { 4071 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4072 Ptr = I.getArgOperand(0); 4073 Alignment = 0; 4074 Mask = I.getArgOperand(1); 4075 Src0 = I.getArgOperand(2); 4076 }; 4077 4078 Value *PtrOperand, *MaskOperand, *Src0Operand; 4079 unsigned Alignment; 4080 if (IsExpanding) 4081 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4082 else 4083 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4084 4085 SDValue Ptr = getValue(PtrOperand); 4086 SDValue Src0 = getValue(Src0Operand); 4087 SDValue Mask = getValue(MaskOperand); 4088 4089 EVT VT = Src0.getValueType(); 4090 if (!Alignment) 4091 Alignment = DAG.getEVTAlignment(VT); 4092 4093 AAMDNodes AAInfo; 4094 I.getAAMetadata(AAInfo); 4095 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4096 4097 // Do not serialize masked loads of constant memory with anything. 4098 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4099 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4100 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4101 4102 MachineMemOperand *MMO = 4103 DAG.getMachineFunction(). 4104 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4105 MachineMemOperand::MOLoad, VT.getStoreSize(), 4106 Alignment, AAInfo, Ranges); 4107 4108 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4109 ISD::NON_EXTLOAD, IsExpanding); 4110 if (AddToChain) 4111 PendingLoads.push_back(Load.getValue(1)); 4112 setValue(&I, Load); 4113 } 4114 4115 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4116 SDLoc sdl = getCurSDLoc(); 4117 4118 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4119 const Value *Ptr = I.getArgOperand(0); 4120 SDValue Src0 = getValue(I.getArgOperand(3)); 4121 SDValue Mask = getValue(I.getArgOperand(2)); 4122 4123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4124 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4125 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4126 if (!Alignment) 4127 Alignment = DAG.getEVTAlignment(VT); 4128 4129 AAMDNodes AAInfo; 4130 I.getAAMetadata(AAInfo); 4131 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4132 4133 SDValue Root = DAG.getRoot(); 4134 SDValue Base; 4135 SDValue Index; 4136 SDValue Scale; 4137 const Value *BasePtr = Ptr; 4138 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4139 bool ConstantMemory = false; 4140 if (UniformBase && 4141 AA && AA->pointsToConstantMemory(MemoryLocation( 4142 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4143 AAInfo))) { 4144 // Do not serialize (non-volatile) loads of constant memory with anything. 4145 Root = DAG.getEntryNode(); 4146 ConstantMemory = true; 4147 } 4148 4149 MachineMemOperand *MMO = 4150 DAG.getMachineFunction(). 4151 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4152 MachineMemOperand::MOLoad, VT.getStoreSize(), 4153 Alignment, AAInfo, Ranges); 4154 4155 if (!UniformBase) { 4156 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4157 Index = getValue(Ptr); 4158 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4159 } 4160 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4161 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4162 Ops, MMO); 4163 4164 SDValue OutChain = Gather.getValue(1); 4165 if (!ConstantMemory) 4166 PendingLoads.push_back(OutChain); 4167 setValue(&I, Gather); 4168 } 4169 4170 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4171 SDLoc dl = getCurSDLoc(); 4172 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4173 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4174 SyncScope::ID SSID = I.getSyncScopeID(); 4175 4176 SDValue InChain = getRoot(); 4177 4178 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4179 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4180 SDValue L = DAG.getAtomicCmpSwap( 4181 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4182 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4183 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4184 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4185 4186 SDValue OutChain = L.getValue(2); 4187 4188 setValue(&I, L); 4189 DAG.setRoot(OutChain); 4190 } 4191 4192 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4193 SDLoc dl = getCurSDLoc(); 4194 ISD::NodeType NT; 4195 switch (I.getOperation()) { 4196 default: llvm_unreachable("Unknown atomicrmw operation"); 4197 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4198 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4199 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4200 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4201 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4202 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4203 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4204 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4205 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4206 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4207 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4208 } 4209 AtomicOrdering Order = I.getOrdering(); 4210 SyncScope::ID SSID = I.getSyncScopeID(); 4211 4212 SDValue InChain = getRoot(); 4213 4214 SDValue L = 4215 DAG.getAtomic(NT, dl, 4216 getValue(I.getValOperand()).getSimpleValueType(), 4217 InChain, 4218 getValue(I.getPointerOperand()), 4219 getValue(I.getValOperand()), 4220 I.getPointerOperand(), 4221 /* Alignment=*/ 0, Order, SSID); 4222 4223 SDValue OutChain = L.getValue(1); 4224 4225 setValue(&I, L); 4226 DAG.setRoot(OutChain); 4227 } 4228 4229 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4230 SDLoc dl = getCurSDLoc(); 4231 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4232 SDValue Ops[3]; 4233 Ops[0] = getRoot(); 4234 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4235 TLI.getFenceOperandTy(DAG.getDataLayout())); 4236 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4237 TLI.getFenceOperandTy(DAG.getDataLayout())); 4238 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4239 } 4240 4241 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4242 SDLoc dl = getCurSDLoc(); 4243 AtomicOrdering Order = I.getOrdering(); 4244 SyncScope::ID SSID = I.getSyncScopeID(); 4245 4246 SDValue InChain = getRoot(); 4247 4248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4249 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4250 4251 if (!TLI.supportsUnalignedAtomics() && 4252 I.getAlignment() < VT.getStoreSize()) 4253 report_fatal_error("Cannot generate unaligned atomic load"); 4254 4255 MachineMemOperand *MMO = 4256 DAG.getMachineFunction(). 4257 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4258 MachineMemOperand::MOVolatile | 4259 MachineMemOperand::MOLoad, 4260 VT.getStoreSize(), 4261 I.getAlignment() ? I.getAlignment() : 4262 DAG.getEVTAlignment(VT), 4263 AAMDNodes(), nullptr, SSID, Order); 4264 4265 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4266 SDValue L = 4267 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4268 getValue(I.getPointerOperand()), MMO); 4269 4270 SDValue OutChain = L.getValue(1); 4271 4272 setValue(&I, L); 4273 DAG.setRoot(OutChain); 4274 } 4275 4276 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4277 SDLoc dl = getCurSDLoc(); 4278 4279 AtomicOrdering Order = I.getOrdering(); 4280 SyncScope::ID SSID = I.getSyncScopeID(); 4281 4282 SDValue InChain = getRoot(); 4283 4284 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4285 EVT VT = 4286 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4287 4288 if (I.getAlignment() < VT.getStoreSize()) 4289 report_fatal_error("Cannot generate unaligned atomic store"); 4290 4291 SDValue OutChain = 4292 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4293 InChain, 4294 getValue(I.getPointerOperand()), 4295 getValue(I.getValueOperand()), 4296 I.getPointerOperand(), I.getAlignment(), 4297 Order, SSID); 4298 4299 DAG.setRoot(OutChain); 4300 } 4301 4302 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4303 /// node. 4304 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4305 unsigned Intrinsic) { 4306 // Ignore the callsite's attributes. A specific call site may be marked with 4307 // readnone, but the lowering code will expect the chain based on the 4308 // definition. 4309 const Function *F = I.getCalledFunction(); 4310 bool HasChain = !F->doesNotAccessMemory(); 4311 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4312 4313 // Build the operand list. 4314 SmallVector<SDValue, 8> Ops; 4315 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4316 if (OnlyLoad) { 4317 // We don't need to serialize loads against other loads. 4318 Ops.push_back(DAG.getRoot()); 4319 } else { 4320 Ops.push_back(getRoot()); 4321 } 4322 } 4323 4324 // Info is set by getTgtMemInstrinsic 4325 TargetLowering::IntrinsicInfo Info; 4326 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4327 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4328 DAG.getMachineFunction(), 4329 Intrinsic); 4330 4331 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4332 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4333 Info.opc == ISD::INTRINSIC_W_CHAIN) 4334 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4335 TLI.getPointerTy(DAG.getDataLayout()))); 4336 4337 // Add all operands of the call to the operand list. 4338 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4339 SDValue Op = getValue(I.getArgOperand(i)); 4340 Ops.push_back(Op); 4341 } 4342 4343 SmallVector<EVT, 4> ValueVTs; 4344 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4345 4346 if (HasChain) 4347 ValueVTs.push_back(MVT::Other); 4348 4349 SDVTList VTs = DAG.getVTList(ValueVTs); 4350 4351 // Create the node. 4352 SDValue Result; 4353 if (IsTgtIntrinsic) { 4354 // This is target intrinsic that touches memory 4355 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4356 Ops, Info.memVT, 4357 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4358 Info.flags, Info.size); 4359 } else if (!HasChain) { 4360 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4361 } else if (!I.getType()->isVoidTy()) { 4362 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4363 } else { 4364 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4365 } 4366 4367 if (HasChain) { 4368 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4369 if (OnlyLoad) 4370 PendingLoads.push_back(Chain); 4371 else 4372 DAG.setRoot(Chain); 4373 } 4374 4375 if (!I.getType()->isVoidTy()) { 4376 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4377 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4378 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4379 } else 4380 Result = lowerRangeToAssertZExt(DAG, I, Result); 4381 4382 setValue(&I, Result); 4383 } 4384 } 4385 4386 /// GetSignificand - Get the significand and build it into a floating-point 4387 /// number with exponent of 1: 4388 /// 4389 /// Op = (Op & 0x007fffff) | 0x3f800000; 4390 /// 4391 /// where Op is the hexadecimal representation of floating point value. 4392 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4393 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4394 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4395 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4396 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4397 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4398 } 4399 4400 /// GetExponent - Get the exponent: 4401 /// 4402 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4403 /// 4404 /// where Op is the hexadecimal representation of floating point value. 4405 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4406 const TargetLowering &TLI, const SDLoc &dl) { 4407 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4408 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4409 SDValue t1 = DAG.getNode( 4410 ISD::SRL, dl, MVT::i32, t0, 4411 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4412 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4413 DAG.getConstant(127, dl, MVT::i32)); 4414 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4415 } 4416 4417 /// getF32Constant - Get 32-bit floating point constant. 4418 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4419 const SDLoc &dl) { 4420 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4421 MVT::f32); 4422 } 4423 4424 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4425 SelectionDAG &DAG) { 4426 // TODO: What fast-math-flags should be set on the floating-point nodes? 4427 4428 // IntegerPartOfX = ((int32_t)(t0); 4429 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4430 4431 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4432 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4433 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4434 4435 // IntegerPartOfX <<= 23; 4436 IntegerPartOfX = DAG.getNode( 4437 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4438 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4439 DAG.getDataLayout()))); 4440 4441 SDValue TwoToFractionalPartOfX; 4442 if (LimitFloatPrecision <= 6) { 4443 // For floating-point precision of 6: 4444 // 4445 // TwoToFractionalPartOfX = 4446 // 0.997535578f + 4447 // (0.735607626f + 0.252464424f * x) * x; 4448 // 4449 // error 0.0144103317, which is 6 bits 4450 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4451 getF32Constant(DAG, 0x3e814304, dl)); 4452 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4453 getF32Constant(DAG, 0x3f3c50c8, dl)); 4454 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4455 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4456 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4457 } else if (LimitFloatPrecision <= 12) { 4458 // For floating-point precision of 12: 4459 // 4460 // TwoToFractionalPartOfX = 4461 // 0.999892986f + 4462 // (0.696457318f + 4463 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4464 // 4465 // error 0.000107046256, which is 13 to 14 bits 4466 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4467 getF32Constant(DAG, 0x3da235e3, dl)); 4468 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4469 getF32Constant(DAG, 0x3e65b8f3, dl)); 4470 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4471 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4472 getF32Constant(DAG, 0x3f324b07, dl)); 4473 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4474 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4475 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4476 } else { // LimitFloatPrecision <= 18 4477 // For floating-point precision of 18: 4478 // 4479 // TwoToFractionalPartOfX = 4480 // 0.999999982f + 4481 // (0.693148872f + 4482 // (0.240227044f + 4483 // (0.554906021e-1f + 4484 // (0.961591928e-2f + 4485 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4486 // error 2.47208000*10^(-7), which is better than 18 bits 4487 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4488 getF32Constant(DAG, 0x3924b03e, dl)); 4489 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4490 getF32Constant(DAG, 0x3ab24b87, dl)); 4491 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4492 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4493 getF32Constant(DAG, 0x3c1d8c17, dl)); 4494 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4495 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4496 getF32Constant(DAG, 0x3d634a1d, dl)); 4497 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4498 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4499 getF32Constant(DAG, 0x3e75fe14, dl)); 4500 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4501 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4502 getF32Constant(DAG, 0x3f317234, dl)); 4503 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4504 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4505 getF32Constant(DAG, 0x3f800000, dl)); 4506 } 4507 4508 // Add the exponent into the result in integer domain. 4509 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4510 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4511 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4512 } 4513 4514 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4515 /// limited-precision mode. 4516 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4517 const TargetLowering &TLI) { 4518 if (Op.getValueType() == MVT::f32 && 4519 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4520 4521 // Put the exponent in the right bit position for later addition to the 4522 // final result: 4523 // 4524 // #define LOG2OFe 1.4426950f 4525 // t0 = Op * LOG2OFe 4526 4527 // TODO: What fast-math-flags should be set here? 4528 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4529 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4530 return getLimitedPrecisionExp2(t0, dl, DAG); 4531 } 4532 4533 // No special expansion. 4534 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4535 } 4536 4537 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4538 /// limited-precision mode. 4539 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4540 const TargetLowering &TLI) { 4541 // TODO: What fast-math-flags should be set on the floating-point nodes? 4542 4543 if (Op.getValueType() == MVT::f32 && 4544 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4545 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4546 4547 // Scale the exponent by log(2) [0.69314718f]. 4548 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4549 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4550 getF32Constant(DAG, 0x3f317218, dl)); 4551 4552 // Get the significand and build it into a floating-point number with 4553 // exponent of 1. 4554 SDValue X = GetSignificand(DAG, Op1, dl); 4555 4556 SDValue LogOfMantissa; 4557 if (LimitFloatPrecision <= 6) { 4558 // For floating-point precision of 6: 4559 // 4560 // LogofMantissa = 4561 // -1.1609546f + 4562 // (1.4034025f - 0.23903021f * x) * x; 4563 // 4564 // error 0.0034276066, which is better than 8 bits 4565 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4566 getF32Constant(DAG, 0xbe74c456, dl)); 4567 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4568 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4569 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4570 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4571 getF32Constant(DAG, 0x3f949a29, dl)); 4572 } else if (LimitFloatPrecision <= 12) { 4573 // For floating-point precision of 12: 4574 // 4575 // LogOfMantissa = 4576 // -1.7417939f + 4577 // (2.8212026f + 4578 // (-1.4699568f + 4579 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4580 // 4581 // error 0.000061011436, which is 14 bits 4582 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4583 getF32Constant(DAG, 0xbd67b6d6, dl)); 4584 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4585 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4586 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4587 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4588 getF32Constant(DAG, 0x3fbc278b, dl)); 4589 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4590 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4591 getF32Constant(DAG, 0x40348e95, dl)); 4592 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4593 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4594 getF32Constant(DAG, 0x3fdef31a, dl)); 4595 } else { // LimitFloatPrecision <= 18 4596 // For floating-point precision of 18: 4597 // 4598 // LogOfMantissa = 4599 // -2.1072184f + 4600 // (4.2372794f + 4601 // (-3.7029485f + 4602 // (2.2781945f + 4603 // (-0.87823314f + 4604 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4605 // 4606 // error 0.0000023660568, which is better than 18 bits 4607 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4608 getF32Constant(DAG, 0xbc91e5ac, dl)); 4609 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4610 getF32Constant(DAG, 0x3e4350aa, dl)); 4611 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4612 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4613 getF32Constant(DAG, 0x3f60d3e3, dl)); 4614 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4615 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4616 getF32Constant(DAG, 0x4011cdf0, dl)); 4617 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4618 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4619 getF32Constant(DAG, 0x406cfd1c, dl)); 4620 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4621 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4622 getF32Constant(DAG, 0x408797cb, dl)); 4623 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4624 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4625 getF32Constant(DAG, 0x4006dcab, dl)); 4626 } 4627 4628 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4629 } 4630 4631 // No special expansion. 4632 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4633 } 4634 4635 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4636 /// limited-precision mode. 4637 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4638 const TargetLowering &TLI) { 4639 // TODO: What fast-math-flags should be set on the floating-point nodes? 4640 4641 if (Op.getValueType() == MVT::f32 && 4642 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4643 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4644 4645 // Get the exponent. 4646 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4647 4648 // Get the significand and build it into a floating-point number with 4649 // exponent of 1. 4650 SDValue X = GetSignificand(DAG, Op1, dl); 4651 4652 // Different possible minimax approximations of significand in 4653 // floating-point for various degrees of accuracy over [1,2]. 4654 SDValue Log2ofMantissa; 4655 if (LimitFloatPrecision <= 6) { 4656 // For floating-point precision of 6: 4657 // 4658 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4659 // 4660 // error 0.0049451742, which is more than 7 bits 4661 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4662 getF32Constant(DAG, 0xbeb08fe0, dl)); 4663 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4664 getF32Constant(DAG, 0x40019463, dl)); 4665 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4666 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4667 getF32Constant(DAG, 0x3fd6633d, dl)); 4668 } else if (LimitFloatPrecision <= 12) { 4669 // For floating-point precision of 12: 4670 // 4671 // Log2ofMantissa = 4672 // -2.51285454f + 4673 // (4.07009056f + 4674 // (-2.12067489f + 4675 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4676 // 4677 // error 0.0000876136000, which is better than 13 bits 4678 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4679 getF32Constant(DAG, 0xbda7262e, dl)); 4680 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4681 getF32Constant(DAG, 0x3f25280b, dl)); 4682 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4683 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4684 getF32Constant(DAG, 0x4007b923, dl)); 4685 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4686 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4687 getF32Constant(DAG, 0x40823e2f, dl)); 4688 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4689 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4690 getF32Constant(DAG, 0x4020d29c, dl)); 4691 } else { // LimitFloatPrecision <= 18 4692 // For floating-point precision of 18: 4693 // 4694 // Log2ofMantissa = 4695 // -3.0400495f + 4696 // (6.1129976f + 4697 // (-5.3420409f + 4698 // (3.2865683f + 4699 // (-1.2669343f + 4700 // (0.27515199f - 4701 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4702 // 4703 // error 0.0000018516, which is better than 18 bits 4704 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4705 getF32Constant(DAG, 0xbcd2769e, dl)); 4706 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4707 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4708 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4709 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4710 getF32Constant(DAG, 0x3fa22ae7, dl)); 4711 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4712 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4713 getF32Constant(DAG, 0x40525723, dl)); 4714 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4715 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4716 getF32Constant(DAG, 0x40aaf200, dl)); 4717 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4718 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4719 getF32Constant(DAG, 0x40c39dad, dl)); 4720 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4721 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4722 getF32Constant(DAG, 0x4042902c, dl)); 4723 } 4724 4725 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4726 } 4727 4728 // No special expansion. 4729 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4730 } 4731 4732 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4733 /// limited-precision mode. 4734 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4735 const TargetLowering &TLI) { 4736 // TODO: What fast-math-flags should be set on the floating-point nodes? 4737 4738 if (Op.getValueType() == MVT::f32 && 4739 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4740 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4741 4742 // Scale the exponent by log10(2) [0.30102999f]. 4743 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4744 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4745 getF32Constant(DAG, 0x3e9a209a, dl)); 4746 4747 // Get the significand and build it into a floating-point number with 4748 // exponent of 1. 4749 SDValue X = GetSignificand(DAG, Op1, dl); 4750 4751 SDValue Log10ofMantissa; 4752 if (LimitFloatPrecision <= 6) { 4753 // For floating-point precision of 6: 4754 // 4755 // Log10ofMantissa = 4756 // -0.50419619f + 4757 // (0.60948995f - 0.10380950f * x) * x; 4758 // 4759 // error 0.0014886165, which is 6 bits 4760 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4761 getF32Constant(DAG, 0xbdd49a13, dl)); 4762 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4763 getF32Constant(DAG, 0x3f1c0789, dl)); 4764 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4765 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4766 getF32Constant(DAG, 0x3f011300, dl)); 4767 } else if (LimitFloatPrecision <= 12) { 4768 // For floating-point precision of 12: 4769 // 4770 // Log10ofMantissa = 4771 // -0.64831180f + 4772 // (0.91751397f + 4773 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4774 // 4775 // error 0.00019228036, which is better than 12 bits 4776 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4777 getF32Constant(DAG, 0x3d431f31, dl)); 4778 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4779 getF32Constant(DAG, 0x3ea21fb2, dl)); 4780 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4781 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4782 getF32Constant(DAG, 0x3f6ae232, dl)); 4783 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4784 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4785 getF32Constant(DAG, 0x3f25f7c3, dl)); 4786 } else { // LimitFloatPrecision <= 18 4787 // For floating-point precision of 18: 4788 // 4789 // Log10ofMantissa = 4790 // -0.84299375f + 4791 // (1.5327582f + 4792 // (-1.0688956f + 4793 // (0.49102474f + 4794 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4795 // 4796 // error 0.0000037995730, which is better than 18 bits 4797 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4798 getF32Constant(DAG, 0x3c5d51ce, dl)); 4799 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4800 getF32Constant(DAG, 0x3e00685a, dl)); 4801 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4802 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4803 getF32Constant(DAG, 0x3efb6798, dl)); 4804 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4805 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4806 getF32Constant(DAG, 0x3f88d192, dl)); 4807 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4808 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4809 getF32Constant(DAG, 0x3fc4316c, dl)); 4810 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4811 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4812 getF32Constant(DAG, 0x3f57ce70, dl)); 4813 } 4814 4815 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4816 } 4817 4818 // No special expansion. 4819 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4820 } 4821 4822 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4823 /// limited-precision mode. 4824 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4825 const TargetLowering &TLI) { 4826 if (Op.getValueType() == MVT::f32 && 4827 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4828 return getLimitedPrecisionExp2(Op, dl, DAG); 4829 4830 // No special expansion. 4831 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4832 } 4833 4834 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4835 /// limited-precision mode with x == 10.0f. 4836 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4837 SelectionDAG &DAG, const TargetLowering &TLI) { 4838 bool IsExp10 = false; 4839 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4840 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4841 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4842 APFloat Ten(10.0f); 4843 IsExp10 = LHSC->isExactlyValue(Ten); 4844 } 4845 } 4846 4847 // TODO: What fast-math-flags should be set on the FMUL node? 4848 if (IsExp10) { 4849 // Put the exponent in the right bit position for later addition to the 4850 // final result: 4851 // 4852 // #define LOG2OF10 3.3219281f 4853 // t0 = Op * LOG2OF10; 4854 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4855 getF32Constant(DAG, 0x40549a78, dl)); 4856 return getLimitedPrecisionExp2(t0, dl, DAG); 4857 } 4858 4859 // No special expansion. 4860 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4861 } 4862 4863 /// ExpandPowI - Expand a llvm.powi intrinsic. 4864 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4865 SelectionDAG &DAG) { 4866 // If RHS is a constant, we can expand this out to a multiplication tree, 4867 // otherwise we end up lowering to a call to __powidf2 (for example). When 4868 // optimizing for size, we only want to do this if the expansion would produce 4869 // a small number of multiplies, otherwise we do the full expansion. 4870 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4871 // Get the exponent as a positive value. 4872 unsigned Val = RHSC->getSExtValue(); 4873 if ((int)Val < 0) Val = -Val; 4874 4875 // powi(x, 0) -> 1.0 4876 if (Val == 0) 4877 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4878 4879 const Function &F = DAG.getMachineFunction().getFunction(); 4880 if (!F.optForSize() || 4881 // If optimizing for size, don't insert too many multiplies. 4882 // This inserts up to 5 multiplies. 4883 countPopulation(Val) + Log2_32(Val) < 7) { 4884 // We use the simple binary decomposition method to generate the multiply 4885 // sequence. There are more optimal ways to do this (for example, 4886 // powi(x,15) generates one more multiply than it should), but this has 4887 // the benefit of being both really simple and much better than a libcall. 4888 SDValue Res; // Logically starts equal to 1.0 4889 SDValue CurSquare = LHS; 4890 // TODO: Intrinsics should have fast-math-flags that propagate to these 4891 // nodes. 4892 while (Val) { 4893 if (Val & 1) { 4894 if (Res.getNode()) 4895 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4896 else 4897 Res = CurSquare; // 1.0*CurSquare. 4898 } 4899 4900 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4901 CurSquare, CurSquare); 4902 Val >>= 1; 4903 } 4904 4905 // If the original was negative, invert the result, producing 1/(x*x*x). 4906 if (RHSC->getSExtValue() < 0) 4907 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4908 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4909 return Res; 4910 } 4911 } 4912 4913 // Otherwise, expand to a libcall. 4914 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4915 } 4916 4917 // getUnderlyingArgReg - Find underlying register used for a truncated or 4918 // bitcasted argument. 4919 static unsigned getUnderlyingArgReg(const SDValue &N) { 4920 switch (N.getOpcode()) { 4921 case ISD::CopyFromReg: 4922 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4923 case ISD::BITCAST: 4924 case ISD::AssertZext: 4925 case ISD::AssertSext: 4926 case ISD::TRUNCATE: 4927 return getUnderlyingArgReg(N.getOperand(0)); 4928 default: 4929 return 0; 4930 } 4931 } 4932 4933 /// If the DbgValueInst is a dbg_value of a function argument, create the 4934 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4935 /// instruction selection, they will be inserted to the entry BB. 4936 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4937 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4938 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4939 const Argument *Arg = dyn_cast<Argument>(V); 4940 if (!Arg) 4941 return false; 4942 4943 MachineFunction &MF = DAG.getMachineFunction(); 4944 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4945 4946 bool IsIndirect = false; 4947 Optional<MachineOperand> Op; 4948 // Some arguments' frame index is recorded during argument lowering. 4949 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4950 if (FI != std::numeric_limits<int>::max()) 4951 Op = MachineOperand::CreateFI(FI); 4952 4953 if (!Op && N.getNode()) { 4954 unsigned Reg = getUnderlyingArgReg(N); 4955 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4956 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4957 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4958 if (PR) 4959 Reg = PR; 4960 } 4961 if (Reg) { 4962 Op = MachineOperand::CreateReg(Reg, false); 4963 IsIndirect = IsDbgDeclare; 4964 } 4965 } 4966 4967 if (!Op && N.getNode()) 4968 // Check if frame index is available. 4969 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4970 if (FrameIndexSDNode *FINode = 4971 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4972 Op = MachineOperand::CreateFI(FINode->getIndex()); 4973 4974 if (!Op) { 4975 // Check if ValueMap has reg number. 4976 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4977 if (VMI != FuncInfo.ValueMap.end()) { 4978 const auto &TLI = DAG.getTargetLoweringInfo(); 4979 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4980 V->getType(), getABIRegCopyCC(V)); 4981 if (RFV.occupiesMultipleRegs()) { 4982 unsigned Offset = 0; 4983 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4984 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4985 auto FragmentExpr = DIExpression::createFragmentExpression( 4986 Expr, Offset, RegAndSize.second); 4987 if (!FragmentExpr) 4988 continue; 4989 FuncInfo.ArgDbgValues.push_back( 4990 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4991 Op->getReg(), Variable, *FragmentExpr)); 4992 Offset += RegAndSize.second; 4993 } 4994 return true; 4995 } 4996 Op = MachineOperand::CreateReg(VMI->second, false); 4997 IsIndirect = IsDbgDeclare; 4998 } 4999 } 5000 5001 if (!Op) 5002 return false; 5003 5004 assert(Variable->isValidLocationForIntrinsic(DL) && 5005 "Expected inlined-at fields to agree"); 5006 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5007 FuncInfo.ArgDbgValues.push_back( 5008 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5009 *Op, Variable, Expr)); 5010 5011 return true; 5012 } 5013 5014 /// Return the appropriate SDDbgValue based on N. 5015 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5016 DILocalVariable *Variable, 5017 DIExpression *Expr, 5018 const DebugLoc &dl, 5019 unsigned DbgSDNodeOrder) { 5020 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5021 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5022 // stack slot locations. 5023 // 5024 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5025 // debug values here after optimization: 5026 // 5027 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5028 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5029 // 5030 // Both describe the direct values of their associated variables. 5031 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5032 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5033 } 5034 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5035 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5036 } 5037 5038 // VisualStudio defines setjmp as _setjmp 5039 #if defined(_MSC_VER) && defined(setjmp) && \ 5040 !defined(setjmp_undefined_for_msvc) 5041 # pragma push_macro("setjmp") 5042 # undef setjmp 5043 # define setjmp_undefined_for_msvc 5044 #endif 5045 5046 /// Lower the call to the specified intrinsic function. If we want to emit this 5047 /// as a call to a named external function, return the name. Otherwise, lower it 5048 /// and return null. 5049 const char * 5050 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5052 SDLoc sdl = getCurSDLoc(); 5053 DebugLoc dl = getCurDebugLoc(); 5054 SDValue Res; 5055 5056 switch (Intrinsic) { 5057 default: 5058 // By default, turn this into a target intrinsic node. 5059 visitTargetIntrinsic(I, Intrinsic); 5060 return nullptr; 5061 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5062 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5063 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5064 case Intrinsic::returnaddress: 5065 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5066 TLI.getPointerTy(DAG.getDataLayout()), 5067 getValue(I.getArgOperand(0)))); 5068 return nullptr; 5069 case Intrinsic::addressofreturnaddress: 5070 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5071 TLI.getPointerTy(DAG.getDataLayout()))); 5072 return nullptr; 5073 case Intrinsic::sponentry: 5074 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5075 TLI.getPointerTy(DAG.getDataLayout()))); 5076 return nullptr; 5077 case Intrinsic::frameaddress: 5078 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5079 TLI.getPointerTy(DAG.getDataLayout()), 5080 getValue(I.getArgOperand(0)))); 5081 return nullptr; 5082 case Intrinsic::read_register: { 5083 Value *Reg = I.getArgOperand(0); 5084 SDValue Chain = getRoot(); 5085 SDValue RegName = 5086 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5087 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5088 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5089 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5090 setValue(&I, Res); 5091 DAG.setRoot(Res.getValue(1)); 5092 return nullptr; 5093 } 5094 case Intrinsic::write_register: { 5095 Value *Reg = I.getArgOperand(0); 5096 Value *RegValue = I.getArgOperand(1); 5097 SDValue Chain = getRoot(); 5098 SDValue RegName = 5099 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5100 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5101 RegName, getValue(RegValue))); 5102 return nullptr; 5103 } 5104 case Intrinsic::setjmp: 5105 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5106 case Intrinsic::longjmp: 5107 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5108 case Intrinsic::memcpy: { 5109 const auto &MCI = cast<MemCpyInst>(I); 5110 SDValue Op1 = getValue(I.getArgOperand(0)); 5111 SDValue Op2 = getValue(I.getArgOperand(1)); 5112 SDValue Op3 = getValue(I.getArgOperand(2)); 5113 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5114 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5115 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5116 unsigned Align = MinAlign(DstAlign, SrcAlign); 5117 bool isVol = MCI.isVolatile(); 5118 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5119 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5120 // node. 5121 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5122 false, isTC, 5123 MachinePointerInfo(I.getArgOperand(0)), 5124 MachinePointerInfo(I.getArgOperand(1))); 5125 updateDAGForMaybeTailCall(MC); 5126 return nullptr; 5127 } 5128 case Intrinsic::memset: { 5129 const auto &MSI = cast<MemSetInst>(I); 5130 SDValue Op1 = getValue(I.getArgOperand(0)); 5131 SDValue Op2 = getValue(I.getArgOperand(1)); 5132 SDValue Op3 = getValue(I.getArgOperand(2)); 5133 // @llvm.memset defines 0 and 1 to both mean no alignment. 5134 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5135 bool isVol = MSI.isVolatile(); 5136 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5137 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5138 isTC, MachinePointerInfo(I.getArgOperand(0))); 5139 updateDAGForMaybeTailCall(MS); 5140 return nullptr; 5141 } 5142 case Intrinsic::memmove: { 5143 const auto &MMI = cast<MemMoveInst>(I); 5144 SDValue Op1 = getValue(I.getArgOperand(0)); 5145 SDValue Op2 = getValue(I.getArgOperand(1)); 5146 SDValue Op3 = getValue(I.getArgOperand(2)); 5147 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5148 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5149 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5150 unsigned Align = MinAlign(DstAlign, SrcAlign); 5151 bool isVol = MMI.isVolatile(); 5152 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5153 // FIXME: Support passing different dest/src alignments to the memmove DAG 5154 // node. 5155 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5156 isTC, MachinePointerInfo(I.getArgOperand(0)), 5157 MachinePointerInfo(I.getArgOperand(1))); 5158 updateDAGForMaybeTailCall(MM); 5159 return nullptr; 5160 } 5161 case Intrinsic::memcpy_element_unordered_atomic: { 5162 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5163 SDValue Dst = getValue(MI.getRawDest()); 5164 SDValue Src = getValue(MI.getRawSource()); 5165 SDValue Length = getValue(MI.getLength()); 5166 5167 unsigned DstAlign = MI.getDestAlignment(); 5168 unsigned SrcAlign = MI.getSourceAlignment(); 5169 Type *LengthTy = MI.getLength()->getType(); 5170 unsigned ElemSz = MI.getElementSizeInBytes(); 5171 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5172 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5173 SrcAlign, Length, LengthTy, ElemSz, isTC, 5174 MachinePointerInfo(MI.getRawDest()), 5175 MachinePointerInfo(MI.getRawSource())); 5176 updateDAGForMaybeTailCall(MC); 5177 return nullptr; 5178 } 5179 case Intrinsic::memmove_element_unordered_atomic: { 5180 auto &MI = cast<AtomicMemMoveInst>(I); 5181 SDValue Dst = getValue(MI.getRawDest()); 5182 SDValue Src = getValue(MI.getRawSource()); 5183 SDValue Length = getValue(MI.getLength()); 5184 5185 unsigned DstAlign = MI.getDestAlignment(); 5186 unsigned SrcAlign = MI.getSourceAlignment(); 5187 Type *LengthTy = MI.getLength()->getType(); 5188 unsigned ElemSz = MI.getElementSizeInBytes(); 5189 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5190 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5191 SrcAlign, Length, LengthTy, ElemSz, isTC, 5192 MachinePointerInfo(MI.getRawDest()), 5193 MachinePointerInfo(MI.getRawSource())); 5194 updateDAGForMaybeTailCall(MC); 5195 return nullptr; 5196 } 5197 case Intrinsic::memset_element_unordered_atomic: { 5198 auto &MI = cast<AtomicMemSetInst>(I); 5199 SDValue Dst = getValue(MI.getRawDest()); 5200 SDValue Val = getValue(MI.getValue()); 5201 SDValue Length = getValue(MI.getLength()); 5202 5203 unsigned DstAlign = MI.getDestAlignment(); 5204 Type *LengthTy = MI.getLength()->getType(); 5205 unsigned ElemSz = MI.getElementSizeInBytes(); 5206 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5207 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5208 LengthTy, ElemSz, isTC, 5209 MachinePointerInfo(MI.getRawDest())); 5210 updateDAGForMaybeTailCall(MC); 5211 return nullptr; 5212 } 5213 case Intrinsic::dbg_addr: 5214 case Intrinsic::dbg_declare: { 5215 const auto &DI = cast<DbgVariableIntrinsic>(I); 5216 DILocalVariable *Variable = DI.getVariable(); 5217 DIExpression *Expression = DI.getExpression(); 5218 dropDanglingDebugInfo(Variable, Expression); 5219 assert(Variable && "Missing variable"); 5220 5221 // Check if address has undef value. 5222 const Value *Address = DI.getVariableLocation(); 5223 if (!Address || isa<UndefValue>(Address) || 5224 (Address->use_empty() && !isa<Argument>(Address))) { 5225 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5226 return nullptr; 5227 } 5228 5229 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5230 5231 // Check if this variable can be described by a frame index, typically 5232 // either as a static alloca or a byval parameter. 5233 int FI = std::numeric_limits<int>::max(); 5234 if (const auto *AI = 5235 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5236 if (AI->isStaticAlloca()) { 5237 auto I = FuncInfo.StaticAllocaMap.find(AI); 5238 if (I != FuncInfo.StaticAllocaMap.end()) 5239 FI = I->second; 5240 } 5241 } else if (const auto *Arg = dyn_cast<Argument>( 5242 Address->stripInBoundsConstantOffsets())) { 5243 FI = FuncInfo.getArgumentFrameIndex(Arg); 5244 } 5245 5246 // llvm.dbg.addr is control dependent and always generates indirect 5247 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5248 // the MachineFunction variable table. 5249 if (FI != std::numeric_limits<int>::max()) { 5250 if (Intrinsic == Intrinsic::dbg_addr) { 5251 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5252 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5253 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5254 } 5255 return nullptr; 5256 } 5257 5258 SDValue &N = NodeMap[Address]; 5259 if (!N.getNode() && isa<Argument>(Address)) 5260 // Check unused arguments map. 5261 N = UnusedArgNodeMap[Address]; 5262 SDDbgValue *SDV; 5263 if (N.getNode()) { 5264 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5265 Address = BCI->getOperand(0); 5266 // Parameters are handled specially. 5267 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5268 if (isParameter && FINode) { 5269 // Byval parameter. We have a frame index at this point. 5270 SDV = 5271 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5272 /*IsIndirect*/ true, dl, SDNodeOrder); 5273 } else if (isa<Argument>(Address)) { 5274 // Address is an argument, so try to emit its dbg value using 5275 // virtual register info from the FuncInfo.ValueMap. 5276 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5277 return nullptr; 5278 } else { 5279 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5280 true, dl, SDNodeOrder); 5281 } 5282 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5283 } else { 5284 // If Address is an argument then try to emit its dbg value using 5285 // virtual register info from the FuncInfo.ValueMap. 5286 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5287 N)) { 5288 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5289 } 5290 } 5291 return nullptr; 5292 } 5293 case Intrinsic::dbg_label: { 5294 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5295 DILabel *Label = DI.getLabel(); 5296 assert(Label && "Missing label"); 5297 5298 SDDbgLabel *SDV; 5299 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5300 DAG.AddDbgLabel(SDV); 5301 return nullptr; 5302 } 5303 case Intrinsic::dbg_value: { 5304 const DbgValueInst &DI = cast<DbgValueInst>(I); 5305 assert(DI.getVariable() && "Missing variable"); 5306 5307 DILocalVariable *Variable = DI.getVariable(); 5308 DIExpression *Expression = DI.getExpression(); 5309 dropDanglingDebugInfo(Variable, Expression); 5310 const Value *V = DI.getValue(); 5311 if (!V) 5312 return nullptr; 5313 5314 SDDbgValue *SDV; 5315 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5316 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5317 DAG.AddDbgValue(SDV, nullptr, false); 5318 return nullptr; 5319 } 5320 5321 // Do not use getValue() in here; we don't want to generate code at 5322 // this point if it hasn't been done yet. 5323 SDValue N = NodeMap[V]; 5324 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5325 N = UnusedArgNodeMap[V]; 5326 if (N.getNode()) { 5327 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5328 return nullptr; 5329 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5330 DAG.AddDbgValue(SDV, N.getNode(), false); 5331 return nullptr; 5332 } 5333 5334 // PHI nodes have already been selected, so we should know which VReg that 5335 // is assigns to already. 5336 if (isa<PHINode>(V)) { 5337 auto VMI = FuncInfo.ValueMap.find(V); 5338 if (VMI != FuncInfo.ValueMap.end()) { 5339 unsigned Reg = VMI->second; 5340 // The PHI node may be split up into several MI PHI nodes (in 5341 // FunctionLoweringInfo::set). 5342 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5343 V->getType(), None); 5344 if (RFV.occupiesMultipleRegs()) { 5345 unsigned Offset = 0; 5346 unsigned BitsToDescribe = 0; 5347 if (auto VarSize = Variable->getSizeInBits()) 5348 BitsToDescribe = *VarSize; 5349 if (auto Fragment = Expression->getFragmentInfo()) 5350 BitsToDescribe = Fragment->SizeInBits; 5351 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5352 unsigned RegisterSize = RegAndSize.second; 5353 // Bail out if all bits are described already. 5354 if (Offset >= BitsToDescribe) 5355 break; 5356 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5357 ? BitsToDescribe - Offset 5358 : RegisterSize; 5359 auto FragmentExpr = DIExpression::createFragmentExpression( 5360 Expression, Offset, FragmentSize); 5361 if (!FragmentExpr) 5362 continue; 5363 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5364 false, dl, SDNodeOrder); 5365 DAG.AddDbgValue(SDV, nullptr, false); 5366 Offset += RegisterSize; 5367 } 5368 } else { 5369 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5370 SDNodeOrder); 5371 DAG.AddDbgValue(SDV, nullptr, false); 5372 } 5373 return nullptr; 5374 } 5375 } 5376 5377 // TODO: When we get here we will either drop the dbg.value completely, or 5378 // we try to move it forward by letting it dangle for awhile. So we should 5379 // probably add an extra DbgValue to the DAG here, with a reference to 5380 // "noreg", to indicate that we have lost the debug location for the 5381 // variable. 5382 5383 if (!V->use_empty() ) { 5384 // Do not call getValue(V) yet, as we don't want to generate code. 5385 // Remember it for later. 5386 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5387 return nullptr; 5388 } 5389 5390 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5391 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5392 return nullptr; 5393 } 5394 5395 case Intrinsic::eh_typeid_for: { 5396 // Find the type id for the given typeinfo. 5397 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5398 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5399 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5400 setValue(&I, Res); 5401 return nullptr; 5402 } 5403 5404 case Intrinsic::eh_return_i32: 5405 case Intrinsic::eh_return_i64: 5406 DAG.getMachineFunction().setCallsEHReturn(true); 5407 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5408 MVT::Other, 5409 getControlRoot(), 5410 getValue(I.getArgOperand(0)), 5411 getValue(I.getArgOperand(1)))); 5412 return nullptr; 5413 case Intrinsic::eh_unwind_init: 5414 DAG.getMachineFunction().setCallsUnwindInit(true); 5415 return nullptr; 5416 case Intrinsic::eh_dwarf_cfa: 5417 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5418 TLI.getPointerTy(DAG.getDataLayout()), 5419 getValue(I.getArgOperand(0)))); 5420 return nullptr; 5421 case Intrinsic::eh_sjlj_callsite: { 5422 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5423 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5424 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5425 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5426 5427 MMI.setCurrentCallSite(CI->getZExtValue()); 5428 return nullptr; 5429 } 5430 case Intrinsic::eh_sjlj_functioncontext: { 5431 // Get and store the index of the function context. 5432 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5433 AllocaInst *FnCtx = 5434 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5435 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5436 MFI.setFunctionContextIndex(FI); 5437 return nullptr; 5438 } 5439 case Intrinsic::eh_sjlj_setjmp: { 5440 SDValue Ops[2]; 5441 Ops[0] = getRoot(); 5442 Ops[1] = getValue(I.getArgOperand(0)); 5443 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5444 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5445 setValue(&I, Op.getValue(0)); 5446 DAG.setRoot(Op.getValue(1)); 5447 return nullptr; 5448 } 5449 case Intrinsic::eh_sjlj_longjmp: 5450 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5451 getRoot(), getValue(I.getArgOperand(0)))); 5452 return nullptr; 5453 case Intrinsic::eh_sjlj_setup_dispatch: 5454 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5455 getRoot())); 5456 return nullptr; 5457 case Intrinsic::masked_gather: 5458 visitMaskedGather(I); 5459 return nullptr; 5460 case Intrinsic::masked_load: 5461 visitMaskedLoad(I); 5462 return nullptr; 5463 case Intrinsic::masked_scatter: 5464 visitMaskedScatter(I); 5465 return nullptr; 5466 case Intrinsic::masked_store: 5467 visitMaskedStore(I); 5468 return nullptr; 5469 case Intrinsic::masked_expandload: 5470 visitMaskedLoad(I, true /* IsExpanding */); 5471 return nullptr; 5472 case Intrinsic::masked_compressstore: 5473 visitMaskedStore(I, true /* IsCompressing */); 5474 return nullptr; 5475 case Intrinsic::x86_mmx_pslli_w: 5476 case Intrinsic::x86_mmx_pslli_d: 5477 case Intrinsic::x86_mmx_pslli_q: 5478 case Intrinsic::x86_mmx_psrli_w: 5479 case Intrinsic::x86_mmx_psrli_d: 5480 case Intrinsic::x86_mmx_psrli_q: 5481 case Intrinsic::x86_mmx_psrai_w: 5482 case Intrinsic::x86_mmx_psrai_d: { 5483 SDValue ShAmt = getValue(I.getArgOperand(1)); 5484 if (isa<ConstantSDNode>(ShAmt)) { 5485 visitTargetIntrinsic(I, Intrinsic); 5486 return nullptr; 5487 } 5488 unsigned NewIntrinsic = 0; 5489 EVT ShAmtVT = MVT::v2i32; 5490 switch (Intrinsic) { 5491 case Intrinsic::x86_mmx_pslli_w: 5492 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5493 break; 5494 case Intrinsic::x86_mmx_pslli_d: 5495 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5496 break; 5497 case Intrinsic::x86_mmx_pslli_q: 5498 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5499 break; 5500 case Intrinsic::x86_mmx_psrli_w: 5501 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5502 break; 5503 case Intrinsic::x86_mmx_psrli_d: 5504 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5505 break; 5506 case Intrinsic::x86_mmx_psrli_q: 5507 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5508 break; 5509 case Intrinsic::x86_mmx_psrai_w: 5510 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5511 break; 5512 case Intrinsic::x86_mmx_psrai_d: 5513 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5514 break; 5515 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5516 } 5517 5518 // The vector shift intrinsics with scalars uses 32b shift amounts but 5519 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5520 // to be zero. 5521 // We must do this early because v2i32 is not a legal type. 5522 SDValue ShOps[2]; 5523 ShOps[0] = ShAmt; 5524 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5525 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5526 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5527 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5528 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5529 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5530 getValue(I.getArgOperand(0)), ShAmt); 5531 setValue(&I, Res); 5532 return nullptr; 5533 } 5534 case Intrinsic::powi: 5535 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5536 getValue(I.getArgOperand(1)), DAG)); 5537 return nullptr; 5538 case Intrinsic::log: 5539 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5540 return nullptr; 5541 case Intrinsic::log2: 5542 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5543 return nullptr; 5544 case Intrinsic::log10: 5545 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5546 return nullptr; 5547 case Intrinsic::exp: 5548 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5549 return nullptr; 5550 case Intrinsic::exp2: 5551 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5552 return nullptr; 5553 case Intrinsic::pow: 5554 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5555 getValue(I.getArgOperand(1)), DAG, TLI)); 5556 return nullptr; 5557 case Intrinsic::sqrt: 5558 case Intrinsic::fabs: 5559 case Intrinsic::sin: 5560 case Intrinsic::cos: 5561 case Intrinsic::floor: 5562 case Intrinsic::ceil: 5563 case Intrinsic::trunc: 5564 case Intrinsic::rint: 5565 case Intrinsic::nearbyint: 5566 case Intrinsic::round: 5567 case Intrinsic::canonicalize: { 5568 unsigned Opcode; 5569 switch (Intrinsic) { 5570 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5571 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5572 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5573 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5574 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5575 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5576 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5577 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5578 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5579 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5580 case Intrinsic::round: Opcode = ISD::FROUND; break; 5581 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5582 } 5583 5584 setValue(&I, DAG.getNode(Opcode, sdl, 5585 getValue(I.getArgOperand(0)).getValueType(), 5586 getValue(I.getArgOperand(0)))); 5587 return nullptr; 5588 } 5589 case Intrinsic::minnum: { 5590 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5591 unsigned Opc = 5592 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5593 ? ISD::FMINIMUM 5594 : ISD::FMINNUM; 5595 setValue(&I, DAG.getNode(Opc, sdl, VT, 5596 getValue(I.getArgOperand(0)), 5597 getValue(I.getArgOperand(1)))); 5598 return nullptr; 5599 } 5600 case Intrinsic::maxnum: { 5601 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5602 unsigned Opc = 5603 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5604 ? ISD::FMAXIMUM 5605 : ISD::FMAXNUM; 5606 setValue(&I, DAG.getNode(Opc, sdl, VT, 5607 getValue(I.getArgOperand(0)), 5608 getValue(I.getArgOperand(1)))); 5609 return nullptr; 5610 } 5611 case Intrinsic::minimum: 5612 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5613 getValue(I.getArgOperand(0)).getValueType(), 5614 getValue(I.getArgOperand(0)), 5615 getValue(I.getArgOperand(1)))); 5616 return nullptr; 5617 case Intrinsic::maximum: 5618 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5619 getValue(I.getArgOperand(0)).getValueType(), 5620 getValue(I.getArgOperand(0)), 5621 getValue(I.getArgOperand(1)))); 5622 return nullptr; 5623 case Intrinsic::copysign: 5624 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5625 getValue(I.getArgOperand(0)).getValueType(), 5626 getValue(I.getArgOperand(0)), 5627 getValue(I.getArgOperand(1)))); 5628 return nullptr; 5629 case Intrinsic::fma: 5630 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5631 getValue(I.getArgOperand(0)).getValueType(), 5632 getValue(I.getArgOperand(0)), 5633 getValue(I.getArgOperand(1)), 5634 getValue(I.getArgOperand(2)))); 5635 return nullptr; 5636 case Intrinsic::experimental_constrained_fadd: 5637 case Intrinsic::experimental_constrained_fsub: 5638 case Intrinsic::experimental_constrained_fmul: 5639 case Intrinsic::experimental_constrained_fdiv: 5640 case Intrinsic::experimental_constrained_frem: 5641 case Intrinsic::experimental_constrained_fma: 5642 case Intrinsic::experimental_constrained_sqrt: 5643 case Intrinsic::experimental_constrained_pow: 5644 case Intrinsic::experimental_constrained_powi: 5645 case Intrinsic::experimental_constrained_sin: 5646 case Intrinsic::experimental_constrained_cos: 5647 case Intrinsic::experimental_constrained_exp: 5648 case Intrinsic::experimental_constrained_exp2: 5649 case Intrinsic::experimental_constrained_log: 5650 case Intrinsic::experimental_constrained_log10: 5651 case Intrinsic::experimental_constrained_log2: 5652 case Intrinsic::experimental_constrained_rint: 5653 case Intrinsic::experimental_constrained_nearbyint: 5654 case Intrinsic::experimental_constrained_maxnum: 5655 case Intrinsic::experimental_constrained_minnum: 5656 case Intrinsic::experimental_constrained_ceil: 5657 case Intrinsic::experimental_constrained_floor: 5658 case Intrinsic::experimental_constrained_round: 5659 case Intrinsic::experimental_constrained_trunc: 5660 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5661 return nullptr; 5662 case Intrinsic::fmuladd: { 5663 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5664 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5665 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5666 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5667 getValue(I.getArgOperand(0)).getValueType(), 5668 getValue(I.getArgOperand(0)), 5669 getValue(I.getArgOperand(1)), 5670 getValue(I.getArgOperand(2)))); 5671 } else { 5672 // TODO: Intrinsic calls should have fast-math-flags. 5673 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5674 getValue(I.getArgOperand(0)).getValueType(), 5675 getValue(I.getArgOperand(0)), 5676 getValue(I.getArgOperand(1))); 5677 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5678 getValue(I.getArgOperand(0)).getValueType(), 5679 Mul, 5680 getValue(I.getArgOperand(2))); 5681 setValue(&I, Add); 5682 } 5683 return nullptr; 5684 } 5685 case Intrinsic::convert_to_fp16: 5686 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5687 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5688 getValue(I.getArgOperand(0)), 5689 DAG.getTargetConstant(0, sdl, 5690 MVT::i32)))); 5691 return nullptr; 5692 case Intrinsic::convert_from_fp16: 5693 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5694 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5695 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5696 getValue(I.getArgOperand(0))))); 5697 return nullptr; 5698 case Intrinsic::pcmarker: { 5699 SDValue Tmp = getValue(I.getArgOperand(0)); 5700 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5701 return nullptr; 5702 } 5703 case Intrinsic::readcyclecounter: { 5704 SDValue Op = getRoot(); 5705 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5706 DAG.getVTList(MVT::i64, MVT::Other), Op); 5707 setValue(&I, Res); 5708 DAG.setRoot(Res.getValue(1)); 5709 return nullptr; 5710 } 5711 case Intrinsic::bitreverse: 5712 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5713 getValue(I.getArgOperand(0)).getValueType(), 5714 getValue(I.getArgOperand(0)))); 5715 return nullptr; 5716 case Intrinsic::bswap: 5717 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5718 getValue(I.getArgOperand(0)).getValueType(), 5719 getValue(I.getArgOperand(0)))); 5720 return nullptr; 5721 case Intrinsic::cttz: { 5722 SDValue Arg = getValue(I.getArgOperand(0)); 5723 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5724 EVT Ty = Arg.getValueType(); 5725 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5726 sdl, Ty, Arg)); 5727 return nullptr; 5728 } 5729 case Intrinsic::ctlz: { 5730 SDValue Arg = getValue(I.getArgOperand(0)); 5731 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5732 EVT Ty = Arg.getValueType(); 5733 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5734 sdl, Ty, Arg)); 5735 return nullptr; 5736 } 5737 case Intrinsic::ctpop: { 5738 SDValue Arg = getValue(I.getArgOperand(0)); 5739 EVT Ty = Arg.getValueType(); 5740 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5741 return nullptr; 5742 } 5743 case Intrinsic::fshl: 5744 case Intrinsic::fshr: { 5745 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5746 SDValue X = getValue(I.getArgOperand(0)); 5747 SDValue Y = getValue(I.getArgOperand(1)); 5748 SDValue Z = getValue(I.getArgOperand(2)); 5749 EVT VT = X.getValueType(); 5750 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5751 SDValue Zero = DAG.getConstant(0, sdl, VT); 5752 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5753 5754 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 5755 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 5756 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 5757 return nullptr; 5758 } 5759 5760 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 5761 // avoid the select that is necessary in the general case to filter out 5762 // the 0-shift possibility that leads to UB. 5763 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 5764 // TODO: This should also be done if the operation is custom, but we have 5765 // to make sure targets are handling the modulo shift amount as expected. 5766 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 5767 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5768 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 5769 return nullptr; 5770 } 5771 5772 // Some targets only rotate one way. Try the opposite direction. 5773 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 5774 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5775 // Negate the shift amount because it is safe to ignore the high bits. 5776 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5777 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 5778 return nullptr; 5779 } 5780 5781 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 5782 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 5783 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5784 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5785 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 5786 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 5787 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 5788 return nullptr; 5789 } 5790 5791 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5792 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5793 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 5794 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5795 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5796 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5797 5798 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5799 // and that is undefined. We must compare and select to avoid UB. 5800 EVT CCVT = MVT::i1; 5801 if (VT.isVector()) 5802 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5803 5804 // For fshl, 0-shift returns the 1st arg (X). 5805 // For fshr, 0-shift returns the 2nd arg (Y). 5806 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5807 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 5808 return nullptr; 5809 } 5810 case Intrinsic::sadd_sat: { 5811 SDValue Op1 = getValue(I.getArgOperand(0)); 5812 SDValue Op2 = getValue(I.getArgOperand(1)); 5813 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 5814 return nullptr; 5815 } 5816 case Intrinsic::uadd_sat: { 5817 SDValue Op1 = getValue(I.getArgOperand(0)); 5818 SDValue Op2 = getValue(I.getArgOperand(1)); 5819 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 5820 return nullptr; 5821 } 5822 case Intrinsic::ssub_sat: { 5823 SDValue Op1 = getValue(I.getArgOperand(0)); 5824 SDValue Op2 = getValue(I.getArgOperand(1)); 5825 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 5826 return nullptr; 5827 } 5828 case Intrinsic::usub_sat: { 5829 SDValue Op1 = getValue(I.getArgOperand(0)); 5830 SDValue Op2 = getValue(I.getArgOperand(1)); 5831 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 5832 return nullptr; 5833 } 5834 case Intrinsic::stacksave: { 5835 SDValue Op = getRoot(); 5836 Res = DAG.getNode( 5837 ISD::STACKSAVE, sdl, 5838 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5839 setValue(&I, Res); 5840 DAG.setRoot(Res.getValue(1)); 5841 return nullptr; 5842 } 5843 case Intrinsic::stackrestore: 5844 Res = getValue(I.getArgOperand(0)); 5845 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5846 return nullptr; 5847 case Intrinsic::get_dynamic_area_offset: { 5848 SDValue Op = getRoot(); 5849 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5850 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5851 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5852 // target. 5853 if (PtrTy != ResTy) 5854 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5855 " intrinsic!"); 5856 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5857 Op); 5858 DAG.setRoot(Op); 5859 setValue(&I, Res); 5860 return nullptr; 5861 } 5862 case Intrinsic::stackguard: { 5863 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5864 MachineFunction &MF = DAG.getMachineFunction(); 5865 const Module &M = *MF.getFunction().getParent(); 5866 SDValue Chain = getRoot(); 5867 if (TLI.useLoadStackGuardNode()) { 5868 Res = getLoadStackGuard(DAG, sdl, Chain); 5869 } else { 5870 const Value *Global = TLI.getSDagStackGuard(M); 5871 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5872 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5873 MachinePointerInfo(Global, 0), Align, 5874 MachineMemOperand::MOVolatile); 5875 } 5876 if (TLI.useStackGuardXorFP()) 5877 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5878 DAG.setRoot(Chain); 5879 setValue(&I, Res); 5880 return nullptr; 5881 } 5882 case Intrinsic::stackprotector: { 5883 // Emit code into the DAG to store the stack guard onto the stack. 5884 MachineFunction &MF = DAG.getMachineFunction(); 5885 MachineFrameInfo &MFI = MF.getFrameInfo(); 5886 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5887 SDValue Src, Chain = getRoot(); 5888 5889 if (TLI.useLoadStackGuardNode()) 5890 Src = getLoadStackGuard(DAG, sdl, Chain); 5891 else 5892 Src = getValue(I.getArgOperand(0)); // The guard's value. 5893 5894 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5895 5896 int FI = FuncInfo.StaticAllocaMap[Slot]; 5897 MFI.setStackProtectorIndex(FI); 5898 5899 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5900 5901 // Store the stack protector onto the stack. 5902 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5903 DAG.getMachineFunction(), FI), 5904 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5905 setValue(&I, Res); 5906 DAG.setRoot(Res); 5907 return nullptr; 5908 } 5909 case Intrinsic::objectsize: { 5910 // If we don't know by now, we're never going to know. 5911 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5912 5913 assert(CI && "Non-constant type in __builtin_object_size?"); 5914 5915 SDValue Arg = getValue(I.getCalledValue()); 5916 EVT Ty = Arg.getValueType(); 5917 5918 if (CI->isZero()) 5919 Res = DAG.getConstant(-1ULL, sdl, Ty); 5920 else 5921 Res = DAG.getConstant(0, sdl, Ty); 5922 5923 setValue(&I, Res); 5924 return nullptr; 5925 } 5926 5927 case Intrinsic::is_constant: 5928 // If this wasn't constant-folded away by now, then it's not a 5929 // constant. 5930 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 5931 return nullptr; 5932 5933 case Intrinsic::annotation: 5934 case Intrinsic::ptr_annotation: 5935 case Intrinsic::launder_invariant_group: 5936 case Intrinsic::strip_invariant_group: 5937 // Drop the intrinsic, but forward the value 5938 setValue(&I, getValue(I.getOperand(0))); 5939 return nullptr; 5940 case Intrinsic::assume: 5941 case Intrinsic::var_annotation: 5942 case Intrinsic::sideeffect: 5943 // Discard annotate attributes, assumptions, and artificial side-effects. 5944 return nullptr; 5945 5946 case Intrinsic::codeview_annotation: { 5947 // Emit a label associated with this metadata. 5948 MachineFunction &MF = DAG.getMachineFunction(); 5949 MCSymbol *Label = 5950 MF.getMMI().getContext().createTempSymbol("annotation", true); 5951 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5952 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5953 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5954 DAG.setRoot(Res); 5955 return nullptr; 5956 } 5957 5958 case Intrinsic::init_trampoline: { 5959 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5960 5961 SDValue Ops[6]; 5962 Ops[0] = getRoot(); 5963 Ops[1] = getValue(I.getArgOperand(0)); 5964 Ops[2] = getValue(I.getArgOperand(1)); 5965 Ops[3] = getValue(I.getArgOperand(2)); 5966 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5967 Ops[5] = DAG.getSrcValue(F); 5968 5969 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5970 5971 DAG.setRoot(Res); 5972 return nullptr; 5973 } 5974 case Intrinsic::adjust_trampoline: 5975 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5976 TLI.getPointerTy(DAG.getDataLayout()), 5977 getValue(I.getArgOperand(0)))); 5978 return nullptr; 5979 case Intrinsic::gcroot: { 5980 assert(DAG.getMachineFunction().getFunction().hasGC() && 5981 "only valid in functions with gc specified, enforced by Verifier"); 5982 assert(GFI && "implied by previous"); 5983 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5984 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5985 5986 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5987 GFI->addStackRoot(FI->getIndex(), TypeMap); 5988 return nullptr; 5989 } 5990 case Intrinsic::gcread: 5991 case Intrinsic::gcwrite: 5992 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5993 case Intrinsic::flt_rounds: 5994 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5995 return nullptr; 5996 5997 case Intrinsic::expect: 5998 // Just replace __builtin_expect(exp, c) with EXP. 5999 setValue(&I, getValue(I.getArgOperand(0))); 6000 return nullptr; 6001 6002 case Intrinsic::debugtrap: 6003 case Intrinsic::trap: { 6004 StringRef TrapFuncName = 6005 I.getAttributes() 6006 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6007 .getValueAsString(); 6008 if (TrapFuncName.empty()) { 6009 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6010 ISD::TRAP : ISD::DEBUGTRAP; 6011 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6012 return nullptr; 6013 } 6014 TargetLowering::ArgListTy Args; 6015 6016 TargetLowering::CallLoweringInfo CLI(DAG); 6017 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6018 CallingConv::C, I.getType(), 6019 DAG.getExternalSymbol(TrapFuncName.data(), 6020 TLI.getPointerTy(DAG.getDataLayout())), 6021 std::move(Args)); 6022 6023 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6024 DAG.setRoot(Result.second); 6025 return nullptr; 6026 } 6027 6028 case Intrinsic::uadd_with_overflow: 6029 case Intrinsic::sadd_with_overflow: 6030 case Intrinsic::usub_with_overflow: 6031 case Intrinsic::ssub_with_overflow: 6032 case Intrinsic::umul_with_overflow: 6033 case Intrinsic::smul_with_overflow: { 6034 ISD::NodeType Op; 6035 switch (Intrinsic) { 6036 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6037 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6038 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6039 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6040 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6041 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6042 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6043 } 6044 SDValue Op1 = getValue(I.getArgOperand(0)); 6045 SDValue Op2 = getValue(I.getArgOperand(1)); 6046 6047 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 6048 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6049 return nullptr; 6050 } 6051 case Intrinsic::prefetch: { 6052 SDValue Ops[5]; 6053 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6054 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6055 Ops[0] = DAG.getRoot(); 6056 Ops[1] = getValue(I.getArgOperand(0)); 6057 Ops[2] = getValue(I.getArgOperand(1)); 6058 Ops[3] = getValue(I.getArgOperand(2)); 6059 Ops[4] = getValue(I.getArgOperand(3)); 6060 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6061 DAG.getVTList(MVT::Other), Ops, 6062 EVT::getIntegerVT(*Context, 8), 6063 MachinePointerInfo(I.getArgOperand(0)), 6064 0, /* align */ 6065 Flags); 6066 6067 // Chain the prefetch in parallell with any pending loads, to stay out of 6068 // the way of later optimizations. 6069 PendingLoads.push_back(Result); 6070 Result = getRoot(); 6071 DAG.setRoot(Result); 6072 return nullptr; 6073 } 6074 case Intrinsic::lifetime_start: 6075 case Intrinsic::lifetime_end: { 6076 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6077 // Stack coloring is not enabled in O0, discard region information. 6078 if (TM.getOptLevel() == CodeGenOpt::None) 6079 return nullptr; 6080 6081 SmallVector<Value *, 4> Allocas; 6082 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 6083 6084 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6085 E = Allocas.end(); Object != E; ++Object) { 6086 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6087 6088 // Could not find an Alloca. 6089 if (!LifetimeObject) 6090 continue; 6091 6092 // First check that the Alloca is static, otherwise it won't have a 6093 // valid frame index. 6094 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6095 if (SI == FuncInfo.StaticAllocaMap.end()) 6096 return nullptr; 6097 6098 int FI = SI->second; 6099 6100 SDValue Ops[2]; 6101 Ops[0] = getRoot(); 6102 Ops[1] = 6103 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6104 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6105 6106 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6107 DAG.setRoot(Res); 6108 } 6109 return nullptr; 6110 } 6111 case Intrinsic::invariant_start: 6112 // Discard region information. 6113 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6114 return nullptr; 6115 case Intrinsic::invariant_end: 6116 // Discard region information. 6117 return nullptr; 6118 case Intrinsic::clear_cache: 6119 return TLI.getClearCacheBuiltinName(); 6120 case Intrinsic::donothing: 6121 // ignore 6122 return nullptr; 6123 case Intrinsic::experimental_stackmap: 6124 visitStackmap(I); 6125 return nullptr; 6126 case Intrinsic::experimental_patchpoint_void: 6127 case Intrinsic::experimental_patchpoint_i64: 6128 visitPatchpoint(&I); 6129 return nullptr; 6130 case Intrinsic::experimental_gc_statepoint: 6131 LowerStatepoint(ImmutableStatepoint(&I)); 6132 return nullptr; 6133 case Intrinsic::experimental_gc_result: 6134 visitGCResult(cast<GCResultInst>(I)); 6135 return nullptr; 6136 case Intrinsic::experimental_gc_relocate: 6137 visitGCRelocate(cast<GCRelocateInst>(I)); 6138 return nullptr; 6139 case Intrinsic::instrprof_increment: 6140 llvm_unreachable("instrprof failed to lower an increment"); 6141 case Intrinsic::instrprof_value_profile: 6142 llvm_unreachable("instrprof failed to lower a value profiling call"); 6143 case Intrinsic::localescape: { 6144 MachineFunction &MF = DAG.getMachineFunction(); 6145 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6146 6147 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6148 // is the same on all targets. 6149 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6150 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6151 if (isa<ConstantPointerNull>(Arg)) 6152 continue; // Skip null pointers. They represent a hole in index space. 6153 AllocaInst *Slot = cast<AllocaInst>(Arg); 6154 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6155 "can only escape static allocas"); 6156 int FI = FuncInfo.StaticAllocaMap[Slot]; 6157 MCSymbol *FrameAllocSym = 6158 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6159 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6161 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6162 .addSym(FrameAllocSym) 6163 .addFrameIndex(FI); 6164 } 6165 6166 return nullptr; 6167 } 6168 6169 case Intrinsic::localrecover: { 6170 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6171 MachineFunction &MF = DAG.getMachineFunction(); 6172 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6173 6174 // Get the symbol that defines the frame offset. 6175 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6176 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6177 unsigned IdxVal = 6178 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6179 MCSymbol *FrameAllocSym = 6180 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6181 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6182 6183 // Create a MCSymbol for the label to avoid any target lowering 6184 // that would make this PC relative. 6185 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6186 SDValue OffsetVal = 6187 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6188 6189 // Add the offset to the FP. 6190 Value *FP = I.getArgOperand(1); 6191 SDValue FPVal = getValue(FP); 6192 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6193 setValue(&I, Add); 6194 6195 return nullptr; 6196 } 6197 6198 case Intrinsic::eh_exceptionpointer: 6199 case Intrinsic::eh_exceptioncode: { 6200 // Get the exception pointer vreg, copy from it, and resize it to fit. 6201 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6202 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6203 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6204 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6205 SDValue N = 6206 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6207 if (Intrinsic == Intrinsic::eh_exceptioncode) 6208 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6209 setValue(&I, N); 6210 return nullptr; 6211 } 6212 case Intrinsic::xray_customevent: { 6213 // Here we want to make sure that the intrinsic behaves as if it has a 6214 // specific calling convention, and only for x86_64. 6215 // FIXME: Support other platforms later. 6216 const auto &Triple = DAG.getTarget().getTargetTriple(); 6217 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6218 return nullptr; 6219 6220 SDLoc DL = getCurSDLoc(); 6221 SmallVector<SDValue, 8> Ops; 6222 6223 // We want to say that we always want the arguments in registers. 6224 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6225 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6226 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6227 SDValue Chain = getRoot(); 6228 Ops.push_back(LogEntryVal); 6229 Ops.push_back(StrSizeVal); 6230 Ops.push_back(Chain); 6231 6232 // We need to enforce the calling convention for the callsite, so that 6233 // argument ordering is enforced correctly, and that register allocation can 6234 // see that some registers may be assumed clobbered and have to preserve 6235 // them across calls to the intrinsic. 6236 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6237 DL, NodeTys, Ops); 6238 SDValue patchableNode = SDValue(MN, 0); 6239 DAG.setRoot(patchableNode); 6240 setValue(&I, patchableNode); 6241 return nullptr; 6242 } 6243 case Intrinsic::xray_typedevent: { 6244 // Here we want to make sure that the intrinsic behaves as if it has a 6245 // specific calling convention, and only for x86_64. 6246 // FIXME: Support other platforms later. 6247 const auto &Triple = DAG.getTarget().getTargetTriple(); 6248 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6249 return nullptr; 6250 6251 SDLoc DL = getCurSDLoc(); 6252 SmallVector<SDValue, 8> Ops; 6253 6254 // We want to say that we always want the arguments in registers. 6255 // It's unclear to me how manipulating the selection DAG here forces callers 6256 // to provide arguments in registers instead of on the stack. 6257 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6258 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6259 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6260 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6261 SDValue Chain = getRoot(); 6262 Ops.push_back(LogTypeId); 6263 Ops.push_back(LogEntryVal); 6264 Ops.push_back(StrSizeVal); 6265 Ops.push_back(Chain); 6266 6267 // We need to enforce the calling convention for the callsite, so that 6268 // argument ordering is enforced correctly, and that register allocation can 6269 // see that some registers may be assumed clobbered and have to preserve 6270 // them across calls to the intrinsic. 6271 MachineSDNode *MN = DAG.getMachineNode( 6272 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6273 SDValue patchableNode = SDValue(MN, 0); 6274 DAG.setRoot(patchableNode); 6275 setValue(&I, patchableNode); 6276 return nullptr; 6277 } 6278 case Intrinsic::experimental_deoptimize: 6279 LowerDeoptimizeCall(&I); 6280 return nullptr; 6281 6282 case Intrinsic::experimental_vector_reduce_fadd: 6283 case Intrinsic::experimental_vector_reduce_fmul: 6284 case Intrinsic::experimental_vector_reduce_add: 6285 case Intrinsic::experimental_vector_reduce_mul: 6286 case Intrinsic::experimental_vector_reduce_and: 6287 case Intrinsic::experimental_vector_reduce_or: 6288 case Intrinsic::experimental_vector_reduce_xor: 6289 case Intrinsic::experimental_vector_reduce_smax: 6290 case Intrinsic::experimental_vector_reduce_smin: 6291 case Intrinsic::experimental_vector_reduce_umax: 6292 case Intrinsic::experimental_vector_reduce_umin: 6293 case Intrinsic::experimental_vector_reduce_fmax: 6294 case Intrinsic::experimental_vector_reduce_fmin: 6295 visitVectorReduce(I, Intrinsic); 6296 return nullptr; 6297 6298 case Intrinsic::icall_branch_funnel: { 6299 SmallVector<SDValue, 16> Ops; 6300 Ops.push_back(DAG.getRoot()); 6301 Ops.push_back(getValue(I.getArgOperand(0))); 6302 6303 int64_t Offset; 6304 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6305 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6306 if (!Base) 6307 report_fatal_error( 6308 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6309 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6310 6311 struct BranchFunnelTarget { 6312 int64_t Offset; 6313 SDValue Target; 6314 }; 6315 SmallVector<BranchFunnelTarget, 8> Targets; 6316 6317 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6318 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6319 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6320 if (ElemBase != Base) 6321 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6322 "to the same GlobalValue"); 6323 6324 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6325 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6326 if (!GA) 6327 report_fatal_error( 6328 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6329 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6330 GA->getGlobal(), getCurSDLoc(), 6331 Val.getValueType(), GA->getOffset())}); 6332 } 6333 llvm::sort(Targets, 6334 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6335 return T1.Offset < T2.Offset; 6336 }); 6337 6338 for (auto &T : Targets) { 6339 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6340 Ops.push_back(T.Target); 6341 } 6342 6343 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6344 getCurSDLoc(), MVT::Other, Ops), 6345 0); 6346 DAG.setRoot(N); 6347 setValue(&I, N); 6348 HasTailCall = true; 6349 return nullptr; 6350 } 6351 6352 case Intrinsic::wasm_landingpad_index: 6353 // Information this intrinsic contained has been transferred to 6354 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6355 // delete it now. 6356 return nullptr; 6357 } 6358 } 6359 6360 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6361 const ConstrainedFPIntrinsic &FPI) { 6362 SDLoc sdl = getCurSDLoc(); 6363 unsigned Opcode; 6364 switch (FPI.getIntrinsicID()) { 6365 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6366 case Intrinsic::experimental_constrained_fadd: 6367 Opcode = ISD::STRICT_FADD; 6368 break; 6369 case Intrinsic::experimental_constrained_fsub: 6370 Opcode = ISD::STRICT_FSUB; 6371 break; 6372 case Intrinsic::experimental_constrained_fmul: 6373 Opcode = ISD::STRICT_FMUL; 6374 break; 6375 case Intrinsic::experimental_constrained_fdiv: 6376 Opcode = ISD::STRICT_FDIV; 6377 break; 6378 case Intrinsic::experimental_constrained_frem: 6379 Opcode = ISD::STRICT_FREM; 6380 break; 6381 case Intrinsic::experimental_constrained_fma: 6382 Opcode = ISD::STRICT_FMA; 6383 break; 6384 case Intrinsic::experimental_constrained_sqrt: 6385 Opcode = ISD::STRICT_FSQRT; 6386 break; 6387 case Intrinsic::experimental_constrained_pow: 6388 Opcode = ISD::STRICT_FPOW; 6389 break; 6390 case Intrinsic::experimental_constrained_powi: 6391 Opcode = ISD::STRICT_FPOWI; 6392 break; 6393 case Intrinsic::experimental_constrained_sin: 6394 Opcode = ISD::STRICT_FSIN; 6395 break; 6396 case Intrinsic::experimental_constrained_cos: 6397 Opcode = ISD::STRICT_FCOS; 6398 break; 6399 case Intrinsic::experimental_constrained_exp: 6400 Opcode = ISD::STRICT_FEXP; 6401 break; 6402 case Intrinsic::experimental_constrained_exp2: 6403 Opcode = ISD::STRICT_FEXP2; 6404 break; 6405 case Intrinsic::experimental_constrained_log: 6406 Opcode = ISD::STRICT_FLOG; 6407 break; 6408 case Intrinsic::experimental_constrained_log10: 6409 Opcode = ISD::STRICT_FLOG10; 6410 break; 6411 case Intrinsic::experimental_constrained_log2: 6412 Opcode = ISD::STRICT_FLOG2; 6413 break; 6414 case Intrinsic::experimental_constrained_rint: 6415 Opcode = ISD::STRICT_FRINT; 6416 break; 6417 case Intrinsic::experimental_constrained_nearbyint: 6418 Opcode = ISD::STRICT_FNEARBYINT; 6419 break; 6420 case Intrinsic::experimental_constrained_maxnum: 6421 Opcode = ISD::STRICT_FMAXNUM; 6422 break; 6423 case Intrinsic::experimental_constrained_minnum: 6424 Opcode = ISD::STRICT_FMINNUM; 6425 break; 6426 case Intrinsic::experimental_constrained_ceil: 6427 Opcode = ISD::STRICT_FCEIL; 6428 break; 6429 case Intrinsic::experimental_constrained_floor: 6430 Opcode = ISD::STRICT_FFLOOR; 6431 break; 6432 case Intrinsic::experimental_constrained_round: 6433 Opcode = ISD::STRICT_FROUND; 6434 break; 6435 case Intrinsic::experimental_constrained_trunc: 6436 Opcode = ISD::STRICT_FTRUNC; 6437 break; 6438 } 6439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6440 SDValue Chain = getRoot(); 6441 SmallVector<EVT, 4> ValueVTs; 6442 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6443 ValueVTs.push_back(MVT::Other); // Out chain 6444 6445 SDVTList VTs = DAG.getVTList(ValueVTs); 6446 SDValue Result; 6447 if (FPI.isUnaryOp()) 6448 Result = DAG.getNode(Opcode, sdl, VTs, 6449 { Chain, getValue(FPI.getArgOperand(0)) }); 6450 else if (FPI.isTernaryOp()) 6451 Result = DAG.getNode(Opcode, sdl, VTs, 6452 { Chain, getValue(FPI.getArgOperand(0)), 6453 getValue(FPI.getArgOperand(1)), 6454 getValue(FPI.getArgOperand(2)) }); 6455 else 6456 Result = DAG.getNode(Opcode, sdl, VTs, 6457 { Chain, getValue(FPI.getArgOperand(0)), 6458 getValue(FPI.getArgOperand(1)) }); 6459 6460 assert(Result.getNode()->getNumValues() == 2); 6461 SDValue OutChain = Result.getValue(1); 6462 DAG.setRoot(OutChain); 6463 SDValue FPResult = Result.getValue(0); 6464 setValue(&FPI, FPResult); 6465 } 6466 6467 std::pair<SDValue, SDValue> 6468 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6469 const BasicBlock *EHPadBB) { 6470 MachineFunction &MF = DAG.getMachineFunction(); 6471 MachineModuleInfo &MMI = MF.getMMI(); 6472 MCSymbol *BeginLabel = nullptr; 6473 6474 if (EHPadBB) { 6475 // Insert a label before the invoke call to mark the try range. This can be 6476 // used to detect deletion of the invoke via the MachineModuleInfo. 6477 BeginLabel = MMI.getContext().createTempSymbol(); 6478 6479 // For SjLj, keep track of which landing pads go with which invokes 6480 // so as to maintain the ordering of pads in the LSDA. 6481 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6482 if (CallSiteIndex) { 6483 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6484 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6485 6486 // Now that the call site is handled, stop tracking it. 6487 MMI.setCurrentCallSite(0); 6488 } 6489 6490 // Both PendingLoads and PendingExports must be flushed here; 6491 // this call might not return. 6492 (void)getRoot(); 6493 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6494 6495 CLI.setChain(getRoot()); 6496 } 6497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6498 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6499 6500 assert((CLI.IsTailCall || Result.second.getNode()) && 6501 "Non-null chain expected with non-tail call!"); 6502 assert((Result.second.getNode() || !Result.first.getNode()) && 6503 "Null value expected with tail call!"); 6504 6505 if (!Result.second.getNode()) { 6506 // As a special case, a null chain means that a tail call has been emitted 6507 // and the DAG root is already updated. 6508 HasTailCall = true; 6509 6510 // Since there's no actual continuation from this block, nothing can be 6511 // relying on us setting vregs for them. 6512 PendingExports.clear(); 6513 } else { 6514 DAG.setRoot(Result.second); 6515 } 6516 6517 if (EHPadBB) { 6518 // Insert a label at the end of the invoke call to mark the try range. This 6519 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6520 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6521 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6522 6523 // Inform MachineModuleInfo of range. 6524 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6525 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6526 // actually use outlined funclets and their LSDA info style. 6527 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6528 assert(CLI.CS); 6529 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6530 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6531 BeginLabel, EndLabel); 6532 } else if (!isScopedEHPersonality(Pers)) { 6533 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6534 } 6535 } 6536 6537 return Result; 6538 } 6539 6540 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6541 bool isTailCall, 6542 const BasicBlock *EHPadBB) { 6543 auto &DL = DAG.getDataLayout(); 6544 FunctionType *FTy = CS.getFunctionType(); 6545 Type *RetTy = CS.getType(); 6546 6547 TargetLowering::ArgListTy Args; 6548 Args.reserve(CS.arg_size()); 6549 6550 const Value *SwiftErrorVal = nullptr; 6551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6552 6553 // We can't tail call inside a function with a swifterror argument. Lowering 6554 // does not support this yet. It would have to move into the swifterror 6555 // register before the call. 6556 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6557 if (TLI.supportSwiftError() && 6558 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6559 isTailCall = false; 6560 6561 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6562 i != e; ++i) { 6563 TargetLowering::ArgListEntry Entry; 6564 const Value *V = *i; 6565 6566 // Skip empty types 6567 if (V->getType()->isEmptyTy()) 6568 continue; 6569 6570 SDValue ArgNode = getValue(V); 6571 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6572 6573 Entry.setAttributes(&CS, i - CS.arg_begin()); 6574 6575 // Use swifterror virtual register as input to the call. 6576 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6577 SwiftErrorVal = V; 6578 // We find the virtual register for the actual swifterror argument. 6579 // Instead of using the Value, we use the virtual register instead. 6580 Entry.Node = DAG.getRegister(FuncInfo 6581 .getOrCreateSwiftErrorVRegUseAt( 6582 CS.getInstruction(), FuncInfo.MBB, V) 6583 .first, 6584 EVT(TLI.getPointerTy(DL))); 6585 } 6586 6587 Args.push_back(Entry); 6588 6589 // If we have an explicit sret argument that is an Instruction, (i.e., it 6590 // might point to function-local memory), we can't meaningfully tail-call. 6591 if (Entry.IsSRet && isa<Instruction>(V)) 6592 isTailCall = false; 6593 } 6594 6595 // Check if target-independent constraints permit a tail call here. 6596 // Target-dependent constraints are checked within TLI->LowerCallTo. 6597 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6598 isTailCall = false; 6599 6600 // Disable tail calls if there is an swifterror argument. Targets have not 6601 // been updated to support tail calls. 6602 if (TLI.supportSwiftError() && SwiftErrorVal) 6603 isTailCall = false; 6604 6605 TargetLowering::CallLoweringInfo CLI(DAG); 6606 CLI.setDebugLoc(getCurSDLoc()) 6607 .setChain(getRoot()) 6608 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6609 .setTailCall(isTailCall) 6610 .setConvergent(CS.isConvergent()); 6611 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6612 6613 if (Result.first.getNode()) { 6614 const Instruction *Inst = CS.getInstruction(); 6615 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6616 setValue(Inst, Result.first); 6617 } 6618 6619 // The last element of CLI.InVals has the SDValue for swifterror return. 6620 // Here we copy it to a virtual register and update SwiftErrorMap for 6621 // book-keeping. 6622 if (SwiftErrorVal && TLI.supportSwiftError()) { 6623 // Get the last element of InVals. 6624 SDValue Src = CLI.InVals.back(); 6625 unsigned VReg; bool CreatedVReg; 6626 std::tie(VReg, CreatedVReg) = 6627 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6628 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6629 // We update the virtual register for the actual swifterror argument. 6630 if (CreatedVReg) 6631 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6632 DAG.setRoot(CopyNode); 6633 } 6634 } 6635 6636 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6637 SelectionDAGBuilder &Builder) { 6638 // Check to see if this load can be trivially constant folded, e.g. if the 6639 // input is from a string literal. 6640 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6641 // Cast pointer to the type we really want to load. 6642 Type *LoadTy = 6643 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6644 if (LoadVT.isVector()) 6645 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6646 6647 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6648 PointerType::getUnqual(LoadTy)); 6649 6650 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6651 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6652 return Builder.getValue(LoadCst); 6653 } 6654 6655 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6656 // still constant memory, the input chain can be the entry node. 6657 SDValue Root; 6658 bool ConstantMemory = false; 6659 6660 // Do not serialize (non-volatile) loads of constant memory with anything. 6661 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6662 Root = Builder.DAG.getEntryNode(); 6663 ConstantMemory = true; 6664 } else { 6665 // Do not serialize non-volatile loads against each other. 6666 Root = Builder.DAG.getRoot(); 6667 } 6668 6669 SDValue Ptr = Builder.getValue(PtrVal); 6670 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6671 Ptr, MachinePointerInfo(PtrVal), 6672 /* Alignment = */ 1); 6673 6674 if (!ConstantMemory) 6675 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6676 return LoadVal; 6677 } 6678 6679 /// Record the value for an instruction that produces an integer result, 6680 /// converting the type where necessary. 6681 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6682 SDValue Value, 6683 bool IsSigned) { 6684 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6685 I.getType(), true); 6686 if (IsSigned) 6687 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6688 else 6689 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6690 setValue(&I, Value); 6691 } 6692 6693 /// See if we can lower a memcmp call into an optimized form. If so, return 6694 /// true and lower it. Otherwise return false, and it will be lowered like a 6695 /// normal call. 6696 /// The caller already checked that \p I calls the appropriate LibFunc with a 6697 /// correct prototype. 6698 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6699 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6700 const Value *Size = I.getArgOperand(2); 6701 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6702 if (CSize && CSize->getZExtValue() == 0) { 6703 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6704 I.getType(), true); 6705 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6706 return true; 6707 } 6708 6709 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6710 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6711 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6712 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6713 if (Res.first.getNode()) { 6714 processIntegerCallValue(I, Res.first, true); 6715 PendingLoads.push_back(Res.second); 6716 return true; 6717 } 6718 6719 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6720 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6721 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6722 return false; 6723 6724 // If the target has a fast compare for the given size, it will return a 6725 // preferred load type for that size. Require that the load VT is legal and 6726 // that the target supports unaligned loads of that type. Otherwise, return 6727 // INVALID. 6728 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6730 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6731 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6732 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6733 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6734 // TODO: Check alignment of src and dest ptrs. 6735 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6736 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6737 if (!TLI.isTypeLegal(LVT) || 6738 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6739 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6740 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6741 } 6742 6743 return LVT; 6744 }; 6745 6746 // This turns into unaligned loads. We only do this if the target natively 6747 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6748 // we'll only produce a small number of byte loads. 6749 MVT LoadVT; 6750 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6751 switch (NumBitsToCompare) { 6752 default: 6753 return false; 6754 case 16: 6755 LoadVT = MVT::i16; 6756 break; 6757 case 32: 6758 LoadVT = MVT::i32; 6759 break; 6760 case 64: 6761 case 128: 6762 case 256: 6763 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6764 break; 6765 } 6766 6767 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6768 return false; 6769 6770 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6771 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6772 6773 // Bitcast to a wide integer type if the loads are vectors. 6774 if (LoadVT.isVector()) { 6775 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6776 LoadL = DAG.getBitcast(CmpVT, LoadL); 6777 LoadR = DAG.getBitcast(CmpVT, LoadR); 6778 } 6779 6780 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6781 processIntegerCallValue(I, Cmp, false); 6782 return true; 6783 } 6784 6785 /// See if we can lower a memchr call into an optimized form. If so, return 6786 /// true and lower it. Otherwise return false, and it will be lowered like a 6787 /// normal call. 6788 /// The caller already checked that \p I calls the appropriate LibFunc with a 6789 /// correct prototype. 6790 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6791 const Value *Src = I.getArgOperand(0); 6792 const Value *Char = I.getArgOperand(1); 6793 const Value *Length = I.getArgOperand(2); 6794 6795 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6796 std::pair<SDValue, SDValue> Res = 6797 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6798 getValue(Src), getValue(Char), getValue(Length), 6799 MachinePointerInfo(Src)); 6800 if (Res.first.getNode()) { 6801 setValue(&I, Res.first); 6802 PendingLoads.push_back(Res.second); 6803 return true; 6804 } 6805 6806 return false; 6807 } 6808 6809 /// See if we can lower a mempcpy call into an optimized form. If so, return 6810 /// true and lower it. Otherwise return false, and it will be lowered like a 6811 /// normal call. 6812 /// The caller already checked that \p I calls the appropriate LibFunc with a 6813 /// correct prototype. 6814 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6815 SDValue Dst = getValue(I.getArgOperand(0)); 6816 SDValue Src = getValue(I.getArgOperand(1)); 6817 SDValue Size = getValue(I.getArgOperand(2)); 6818 6819 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6820 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6821 unsigned Align = std::min(DstAlign, SrcAlign); 6822 if (Align == 0) // Alignment of one or both could not be inferred. 6823 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6824 6825 bool isVol = false; 6826 SDLoc sdl = getCurSDLoc(); 6827 6828 // In the mempcpy context we need to pass in a false value for isTailCall 6829 // because the return pointer needs to be adjusted by the size of 6830 // the copied memory. 6831 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6832 false, /*isTailCall=*/false, 6833 MachinePointerInfo(I.getArgOperand(0)), 6834 MachinePointerInfo(I.getArgOperand(1))); 6835 assert(MC.getNode() != nullptr && 6836 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6837 DAG.setRoot(MC); 6838 6839 // Check if Size needs to be truncated or extended. 6840 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6841 6842 // Adjust return pointer to point just past the last dst byte. 6843 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6844 Dst, Size); 6845 setValue(&I, DstPlusSize); 6846 return true; 6847 } 6848 6849 /// See if we can lower a strcpy call into an optimized form. If so, return 6850 /// true and lower it, otherwise return false and it will be lowered like a 6851 /// normal call. 6852 /// The caller already checked that \p I calls the appropriate LibFunc with a 6853 /// correct prototype. 6854 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6855 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6856 6857 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6858 std::pair<SDValue, SDValue> Res = 6859 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6860 getValue(Arg0), getValue(Arg1), 6861 MachinePointerInfo(Arg0), 6862 MachinePointerInfo(Arg1), isStpcpy); 6863 if (Res.first.getNode()) { 6864 setValue(&I, Res.first); 6865 DAG.setRoot(Res.second); 6866 return true; 6867 } 6868 6869 return false; 6870 } 6871 6872 /// See if we can lower a strcmp call into an optimized form. If so, return 6873 /// true and lower it, otherwise return false and it will be lowered like a 6874 /// normal call. 6875 /// The caller already checked that \p I calls the appropriate LibFunc with a 6876 /// correct prototype. 6877 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6878 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6879 6880 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6881 std::pair<SDValue, SDValue> Res = 6882 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6883 getValue(Arg0), getValue(Arg1), 6884 MachinePointerInfo(Arg0), 6885 MachinePointerInfo(Arg1)); 6886 if (Res.first.getNode()) { 6887 processIntegerCallValue(I, Res.first, true); 6888 PendingLoads.push_back(Res.second); 6889 return true; 6890 } 6891 6892 return false; 6893 } 6894 6895 /// See if we can lower a strlen call into an optimized form. If so, return 6896 /// true and lower it, otherwise return false and it will be lowered like a 6897 /// normal call. 6898 /// The caller already checked that \p I calls the appropriate LibFunc with a 6899 /// correct prototype. 6900 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6901 const Value *Arg0 = I.getArgOperand(0); 6902 6903 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6904 std::pair<SDValue, SDValue> Res = 6905 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6906 getValue(Arg0), MachinePointerInfo(Arg0)); 6907 if (Res.first.getNode()) { 6908 processIntegerCallValue(I, Res.first, false); 6909 PendingLoads.push_back(Res.second); 6910 return true; 6911 } 6912 6913 return false; 6914 } 6915 6916 /// See if we can lower a strnlen call into an optimized form. If so, return 6917 /// true and lower it, otherwise return false and it will be lowered like a 6918 /// normal call. 6919 /// The caller already checked that \p I calls the appropriate LibFunc with a 6920 /// correct prototype. 6921 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6922 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6923 6924 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6925 std::pair<SDValue, SDValue> Res = 6926 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6927 getValue(Arg0), getValue(Arg1), 6928 MachinePointerInfo(Arg0)); 6929 if (Res.first.getNode()) { 6930 processIntegerCallValue(I, Res.first, false); 6931 PendingLoads.push_back(Res.second); 6932 return true; 6933 } 6934 6935 return false; 6936 } 6937 6938 /// See if we can lower a unary floating-point operation into an SDNode with 6939 /// the specified Opcode. If so, return true and lower it, otherwise return 6940 /// false and it will be lowered like a normal call. 6941 /// The caller already checked that \p I calls the appropriate LibFunc with a 6942 /// correct prototype. 6943 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6944 unsigned Opcode) { 6945 // We already checked this call's prototype; verify it doesn't modify errno. 6946 if (!I.onlyReadsMemory()) 6947 return false; 6948 6949 SDValue Tmp = getValue(I.getArgOperand(0)); 6950 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6951 return true; 6952 } 6953 6954 /// See if we can lower a binary floating-point operation into an SDNode with 6955 /// the specified Opcode. If so, return true and lower it. Otherwise return 6956 /// false, and it will be lowered like a normal call. 6957 /// The caller already checked that \p I calls the appropriate LibFunc with a 6958 /// correct prototype. 6959 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6960 unsigned Opcode) { 6961 // We already checked this call's prototype; verify it doesn't modify errno. 6962 if (!I.onlyReadsMemory()) 6963 return false; 6964 6965 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6966 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6967 EVT VT = Tmp0.getValueType(); 6968 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6969 return true; 6970 } 6971 6972 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6973 // Handle inline assembly differently. 6974 if (isa<InlineAsm>(I.getCalledValue())) { 6975 visitInlineAsm(&I); 6976 return; 6977 } 6978 6979 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6980 computeUsesVAFloatArgument(I, MMI); 6981 6982 const char *RenameFn = nullptr; 6983 if (Function *F = I.getCalledFunction()) { 6984 if (F->isDeclaration()) { 6985 // Is this an LLVM intrinsic or a target-specific intrinsic? 6986 unsigned IID = F->getIntrinsicID(); 6987 if (!IID) 6988 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6989 IID = II->getIntrinsicID(F); 6990 6991 if (IID) { 6992 RenameFn = visitIntrinsicCall(I, IID); 6993 if (!RenameFn) 6994 return; 6995 } 6996 } 6997 6998 // Check for well-known libc/libm calls. If the function is internal, it 6999 // can't be a library call. Don't do the check if marked as nobuiltin for 7000 // some reason or the call site requires strict floating point semantics. 7001 LibFunc Func; 7002 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7003 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7004 LibInfo->hasOptimizedCodeGen(Func)) { 7005 switch (Func) { 7006 default: break; 7007 case LibFunc_copysign: 7008 case LibFunc_copysignf: 7009 case LibFunc_copysignl: 7010 // We already checked this call's prototype; verify it doesn't modify 7011 // errno. 7012 if (I.onlyReadsMemory()) { 7013 SDValue LHS = getValue(I.getArgOperand(0)); 7014 SDValue RHS = getValue(I.getArgOperand(1)); 7015 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7016 LHS.getValueType(), LHS, RHS)); 7017 return; 7018 } 7019 break; 7020 case LibFunc_fabs: 7021 case LibFunc_fabsf: 7022 case LibFunc_fabsl: 7023 if (visitUnaryFloatCall(I, ISD::FABS)) 7024 return; 7025 break; 7026 case LibFunc_fmin: 7027 case LibFunc_fminf: 7028 case LibFunc_fminl: 7029 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7030 return; 7031 break; 7032 case LibFunc_fmax: 7033 case LibFunc_fmaxf: 7034 case LibFunc_fmaxl: 7035 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7036 return; 7037 break; 7038 case LibFunc_sin: 7039 case LibFunc_sinf: 7040 case LibFunc_sinl: 7041 if (visitUnaryFloatCall(I, ISD::FSIN)) 7042 return; 7043 break; 7044 case LibFunc_cos: 7045 case LibFunc_cosf: 7046 case LibFunc_cosl: 7047 if (visitUnaryFloatCall(I, ISD::FCOS)) 7048 return; 7049 break; 7050 case LibFunc_sqrt: 7051 case LibFunc_sqrtf: 7052 case LibFunc_sqrtl: 7053 case LibFunc_sqrt_finite: 7054 case LibFunc_sqrtf_finite: 7055 case LibFunc_sqrtl_finite: 7056 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7057 return; 7058 break; 7059 case LibFunc_floor: 7060 case LibFunc_floorf: 7061 case LibFunc_floorl: 7062 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7063 return; 7064 break; 7065 case LibFunc_nearbyint: 7066 case LibFunc_nearbyintf: 7067 case LibFunc_nearbyintl: 7068 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7069 return; 7070 break; 7071 case LibFunc_ceil: 7072 case LibFunc_ceilf: 7073 case LibFunc_ceill: 7074 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7075 return; 7076 break; 7077 case LibFunc_rint: 7078 case LibFunc_rintf: 7079 case LibFunc_rintl: 7080 if (visitUnaryFloatCall(I, ISD::FRINT)) 7081 return; 7082 break; 7083 case LibFunc_round: 7084 case LibFunc_roundf: 7085 case LibFunc_roundl: 7086 if (visitUnaryFloatCall(I, ISD::FROUND)) 7087 return; 7088 break; 7089 case LibFunc_trunc: 7090 case LibFunc_truncf: 7091 case LibFunc_truncl: 7092 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7093 return; 7094 break; 7095 case LibFunc_log2: 7096 case LibFunc_log2f: 7097 case LibFunc_log2l: 7098 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7099 return; 7100 break; 7101 case LibFunc_exp2: 7102 case LibFunc_exp2f: 7103 case LibFunc_exp2l: 7104 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7105 return; 7106 break; 7107 case LibFunc_memcmp: 7108 if (visitMemCmpCall(I)) 7109 return; 7110 break; 7111 case LibFunc_mempcpy: 7112 if (visitMemPCpyCall(I)) 7113 return; 7114 break; 7115 case LibFunc_memchr: 7116 if (visitMemChrCall(I)) 7117 return; 7118 break; 7119 case LibFunc_strcpy: 7120 if (visitStrCpyCall(I, false)) 7121 return; 7122 break; 7123 case LibFunc_stpcpy: 7124 if (visitStrCpyCall(I, true)) 7125 return; 7126 break; 7127 case LibFunc_strcmp: 7128 if (visitStrCmpCall(I)) 7129 return; 7130 break; 7131 case LibFunc_strlen: 7132 if (visitStrLenCall(I)) 7133 return; 7134 break; 7135 case LibFunc_strnlen: 7136 if (visitStrNLenCall(I)) 7137 return; 7138 break; 7139 } 7140 } 7141 } 7142 7143 SDValue Callee; 7144 if (!RenameFn) 7145 Callee = getValue(I.getCalledValue()); 7146 else 7147 Callee = DAG.getExternalSymbol( 7148 RenameFn, 7149 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7150 7151 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7152 // have to do anything here to lower funclet bundles. 7153 assert(!I.hasOperandBundlesOtherThan( 7154 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7155 "Cannot lower calls with arbitrary operand bundles!"); 7156 7157 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7158 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7159 else 7160 // Check if we can potentially perform a tail call. More detailed checking 7161 // is be done within LowerCallTo, after more information about the call is 7162 // known. 7163 LowerCallTo(&I, Callee, I.isTailCall()); 7164 } 7165 7166 namespace { 7167 7168 /// AsmOperandInfo - This contains information for each constraint that we are 7169 /// lowering. 7170 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7171 public: 7172 /// CallOperand - If this is the result output operand or a clobber 7173 /// this is null, otherwise it is the incoming operand to the CallInst. 7174 /// This gets modified as the asm is processed. 7175 SDValue CallOperand; 7176 7177 /// AssignedRegs - If this is a register or register class operand, this 7178 /// contains the set of register corresponding to the operand. 7179 RegsForValue AssignedRegs; 7180 7181 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7182 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7183 } 7184 7185 /// Whether or not this operand accesses memory 7186 bool hasMemory(const TargetLowering &TLI) const { 7187 // Indirect operand accesses access memory. 7188 if (isIndirect) 7189 return true; 7190 7191 for (const auto &Code : Codes) 7192 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7193 return true; 7194 7195 return false; 7196 } 7197 7198 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7199 /// corresponds to. If there is no Value* for this operand, it returns 7200 /// MVT::Other. 7201 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7202 const DataLayout &DL) const { 7203 if (!CallOperandVal) return MVT::Other; 7204 7205 if (isa<BasicBlock>(CallOperandVal)) 7206 return TLI.getPointerTy(DL); 7207 7208 llvm::Type *OpTy = CallOperandVal->getType(); 7209 7210 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7211 // If this is an indirect operand, the operand is a pointer to the 7212 // accessed type. 7213 if (isIndirect) { 7214 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7215 if (!PtrTy) 7216 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7217 OpTy = PtrTy->getElementType(); 7218 } 7219 7220 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7221 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7222 if (STy->getNumElements() == 1) 7223 OpTy = STy->getElementType(0); 7224 7225 // If OpTy is not a single value, it may be a struct/union that we 7226 // can tile with integers. 7227 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7228 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7229 switch (BitSize) { 7230 default: break; 7231 case 1: 7232 case 8: 7233 case 16: 7234 case 32: 7235 case 64: 7236 case 128: 7237 OpTy = IntegerType::get(Context, BitSize); 7238 break; 7239 } 7240 } 7241 7242 return TLI.getValueType(DL, OpTy, true); 7243 } 7244 }; 7245 7246 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7247 7248 } // end anonymous namespace 7249 7250 /// Make sure that the output operand \p OpInfo and its corresponding input 7251 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7252 /// out). 7253 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7254 SDISelAsmOperandInfo &MatchingOpInfo, 7255 SelectionDAG &DAG) { 7256 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7257 return; 7258 7259 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7260 const auto &TLI = DAG.getTargetLoweringInfo(); 7261 7262 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7263 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7264 OpInfo.ConstraintVT); 7265 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7266 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7267 MatchingOpInfo.ConstraintVT); 7268 if ((OpInfo.ConstraintVT.isInteger() != 7269 MatchingOpInfo.ConstraintVT.isInteger()) || 7270 (MatchRC.second != InputRC.second)) { 7271 // FIXME: error out in a more elegant fashion 7272 report_fatal_error("Unsupported asm: input constraint" 7273 " with a matching output constraint of" 7274 " incompatible type!"); 7275 } 7276 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7277 } 7278 7279 /// Get a direct memory input to behave well as an indirect operand. 7280 /// This may introduce stores, hence the need for a \p Chain. 7281 /// \return The (possibly updated) chain. 7282 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7283 SDISelAsmOperandInfo &OpInfo, 7284 SelectionDAG &DAG) { 7285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7286 7287 // If we don't have an indirect input, put it in the constpool if we can, 7288 // otherwise spill it to a stack slot. 7289 // TODO: This isn't quite right. We need to handle these according to 7290 // the addressing mode that the constraint wants. Also, this may take 7291 // an additional register for the computation and we don't want that 7292 // either. 7293 7294 // If the operand is a float, integer, or vector constant, spill to a 7295 // constant pool entry to get its address. 7296 const Value *OpVal = OpInfo.CallOperandVal; 7297 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7298 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7299 OpInfo.CallOperand = DAG.getConstantPool( 7300 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7301 return Chain; 7302 } 7303 7304 // Otherwise, create a stack slot and emit a store to it before the asm. 7305 Type *Ty = OpVal->getType(); 7306 auto &DL = DAG.getDataLayout(); 7307 uint64_t TySize = DL.getTypeAllocSize(Ty); 7308 unsigned Align = DL.getPrefTypeAlignment(Ty); 7309 MachineFunction &MF = DAG.getMachineFunction(); 7310 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7311 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7312 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7313 MachinePointerInfo::getFixedStack(MF, SSFI)); 7314 OpInfo.CallOperand = StackSlot; 7315 7316 return Chain; 7317 } 7318 7319 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7320 /// specified operand. We prefer to assign virtual registers, to allow the 7321 /// register allocator to handle the assignment process. However, if the asm 7322 /// uses features that we can't model on machineinstrs, we have SDISel do the 7323 /// allocation. This produces generally horrible, but correct, code. 7324 /// 7325 /// OpInfo describes the operand 7326 /// RefOpInfo describes the matching operand if any, the operand otherwise 7327 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7328 const SDLoc &DL, SDISelAsmOperandInfo &OpInfo, 7329 SDISelAsmOperandInfo &RefOpInfo) { 7330 LLVMContext &Context = *DAG.getContext(); 7331 7332 MachineFunction &MF = DAG.getMachineFunction(); 7333 SmallVector<unsigned, 4> Regs; 7334 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7335 7336 // If this is a constraint for a single physreg, or a constraint for a 7337 // register class, find it. 7338 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7339 TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode, 7340 RefOpInfo.ConstraintVT); 7341 7342 unsigned NumRegs = 1; 7343 if (OpInfo.ConstraintVT != MVT::Other) { 7344 // If this is an FP operand in an integer register (or visa versa), or more 7345 // generally if the operand value disagrees with the register class we plan 7346 // to stick it in, fix the operand type. 7347 // 7348 // If this is an input value, the bitcast to the new type is done now. 7349 // Bitcast for output value is done at the end of visitInlineAsm(). 7350 if ((OpInfo.Type == InlineAsm::isOutput || 7351 OpInfo.Type == InlineAsm::isInput) && 7352 PhysReg.second && 7353 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7354 // Try to convert to the first EVT that the reg class contains. If the 7355 // types are identical size, use a bitcast to convert (e.g. two differing 7356 // vector types). Note: output bitcast is done at the end of 7357 // visitInlineAsm(). 7358 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7359 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7360 // Exclude indirect inputs while they are unsupported because the code 7361 // to perform the load is missing and thus OpInfo.CallOperand still 7362 // refers to the input address rather than the pointed-to value. 7363 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7364 OpInfo.CallOperand = 7365 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7366 OpInfo.ConstraintVT = RegVT; 7367 // If the operand is an FP value and we want it in integer registers, 7368 // use the corresponding integer type. This turns an f64 value into 7369 // i64, which can be passed with two i32 values on a 32-bit machine. 7370 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7371 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7372 if (OpInfo.Type == InlineAsm::isInput) 7373 OpInfo.CallOperand = 7374 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7375 OpInfo.ConstraintVT = RegVT; 7376 } 7377 } 7378 7379 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7380 } 7381 7382 // No need to allocate a matching input constraint since the constraint it's 7383 // matching to has already been allocated. 7384 if (OpInfo.isMatchingInputConstraint()) 7385 return; 7386 7387 MVT RegVT; 7388 EVT ValueVT = OpInfo.ConstraintVT; 7389 7390 // If this is a constraint for a specific physical register, like {r17}, 7391 // assign it now. 7392 if (unsigned AssignedReg = PhysReg.first) { 7393 const TargetRegisterClass *RC = PhysReg.second; 7394 if (OpInfo.ConstraintVT == MVT::Other) 7395 ValueVT = *TRI.legalclasstypes_begin(*RC); 7396 7397 // Get the actual register value type. This is important, because the user 7398 // may have asked for (e.g.) the AX register in i32 type. We need to 7399 // remember that AX is actually i16 to get the right extension. 7400 RegVT = *TRI.legalclasstypes_begin(*RC); 7401 7402 // This is an explicit reference to a physical register. 7403 Regs.push_back(AssignedReg); 7404 7405 // If this is an expanded reference, add the rest of the regs to Regs. 7406 if (NumRegs != 1) { 7407 TargetRegisterClass::iterator I = RC->begin(); 7408 for (; *I != AssignedReg; ++I) 7409 assert(I != RC->end() && "Didn't find reg!"); 7410 7411 // Already added the first reg. 7412 --NumRegs; ++I; 7413 for (; NumRegs; --NumRegs, ++I) { 7414 assert(I != RC->end() && "Ran out of registers to allocate!"); 7415 Regs.push_back(*I); 7416 } 7417 } 7418 7419 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7420 return; 7421 } 7422 7423 // Otherwise, if this was a reference to an LLVM register class, create vregs 7424 // for this reference. 7425 if (const TargetRegisterClass *RC = PhysReg.second) { 7426 RegVT = *TRI.legalclasstypes_begin(*RC); 7427 if (OpInfo.ConstraintVT == MVT::Other) 7428 ValueVT = RegVT; 7429 7430 // Create the appropriate number of virtual registers. 7431 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7432 for (; NumRegs; --NumRegs) 7433 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7434 7435 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7436 return; 7437 } 7438 7439 // Otherwise, we couldn't allocate enough registers for this. 7440 } 7441 7442 static unsigned 7443 findMatchingInlineAsmOperand(unsigned OperandNo, 7444 const std::vector<SDValue> &AsmNodeOperands) { 7445 // Scan until we find the definition we already emitted of this operand. 7446 unsigned CurOp = InlineAsm::Op_FirstOperand; 7447 for (; OperandNo; --OperandNo) { 7448 // Advance to the next operand. 7449 unsigned OpFlag = 7450 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7451 assert((InlineAsm::isRegDefKind(OpFlag) || 7452 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7453 InlineAsm::isMemKind(OpFlag)) && 7454 "Skipped past definitions?"); 7455 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7456 } 7457 return CurOp; 7458 } 7459 7460 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7461 /// \return true if it has succeeded, false otherwise 7462 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7463 MVT RegVT, SelectionDAG &DAG) { 7464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7465 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7466 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7467 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7468 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7469 else 7470 return false; 7471 } 7472 return true; 7473 } 7474 7475 namespace { 7476 7477 class ExtraFlags { 7478 unsigned Flags = 0; 7479 7480 public: 7481 explicit ExtraFlags(ImmutableCallSite CS) { 7482 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7483 if (IA->hasSideEffects()) 7484 Flags |= InlineAsm::Extra_HasSideEffects; 7485 if (IA->isAlignStack()) 7486 Flags |= InlineAsm::Extra_IsAlignStack; 7487 if (CS.isConvergent()) 7488 Flags |= InlineAsm::Extra_IsConvergent; 7489 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7490 } 7491 7492 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7493 // Ideally, we would only check against memory constraints. However, the 7494 // meaning of an Other constraint can be target-specific and we can't easily 7495 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7496 // for Other constraints as well. 7497 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7498 OpInfo.ConstraintType == TargetLowering::C_Other) { 7499 if (OpInfo.Type == InlineAsm::isInput) 7500 Flags |= InlineAsm::Extra_MayLoad; 7501 else if (OpInfo.Type == InlineAsm::isOutput) 7502 Flags |= InlineAsm::Extra_MayStore; 7503 else if (OpInfo.Type == InlineAsm::isClobber) 7504 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7505 } 7506 } 7507 7508 unsigned get() const { return Flags; } 7509 }; 7510 7511 } // end anonymous namespace 7512 7513 /// visitInlineAsm - Handle a call to an InlineAsm object. 7514 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7515 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7516 7517 /// ConstraintOperands - Information about all of the constraints. 7518 SDISelAsmOperandInfoVector ConstraintOperands; 7519 7520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7521 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7522 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7523 7524 bool hasMemory = false; 7525 7526 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7527 ExtraFlags ExtraInfo(CS); 7528 7529 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7530 unsigned ResNo = 0; // ResNo - The result number of the next output. 7531 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7532 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7533 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7534 7535 MVT OpVT = MVT::Other; 7536 7537 // Compute the value type for each operand. 7538 if (OpInfo.Type == InlineAsm::isInput || 7539 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7540 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7541 7542 // Process the call argument. BasicBlocks are labels, currently appearing 7543 // only in asm's. 7544 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7545 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7546 } else { 7547 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7548 } 7549 7550 OpVT = 7551 OpInfo 7552 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7553 .getSimpleVT(); 7554 } 7555 7556 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7557 // The return value of the call is this value. As such, there is no 7558 // corresponding argument. 7559 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7560 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7561 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7562 STy->getElementType(ResNo)); 7563 } else { 7564 assert(ResNo == 0 && "Asm only has one result!"); 7565 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7566 } 7567 ++ResNo; 7568 } 7569 7570 OpInfo.ConstraintVT = OpVT; 7571 7572 if (!hasMemory) 7573 hasMemory = OpInfo.hasMemory(TLI); 7574 7575 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7576 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7577 auto TargetConstraint = TargetConstraints[i]; 7578 7579 // Compute the constraint code and ConstraintType to use. 7580 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7581 7582 ExtraInfo.update(TargetConstraint); 7583 } 7584 7585 SDValue Chain, Flag; 7586 7587 // We won't need to flush pending loads if this asm doesn't touch 7588 // memory and is nonvolatile. 7589 if (hasMemory || IA->hasSideEffects()) 7590 Chain = getRoot(); 7591 else 7592 Chain = DAG.getRoot(); 7593 7594 // Second pass over the constraints: compute which constraint option to use 7595 // and assign registers to constraints that want a specific physreg. 7596 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7597 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7598 7599 // If this is an output operand with a matching input operand, look up the 7600 // matching input. If their types mismatch, e.g. one is an integer, the 7601 // other is floating point, or their sizes are different, flag it as an 7602 // error. 7603 if (OpInfo.hasMatchingInput()) { 7604 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7605 patchMatchingInput(OpInfo, Input, DAG); 7606 } 7607 7608 // Compute the constraint code and ConstraintType to use. 7609 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7610 7611 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7612 OpInfo.Type == InlineAsm::isClobber) 7613 continue; 7614 7615 // If this is a memory input, and if the operand is not indirect, do what we 7616 // need to provide an address for the memory input. 7617 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7618 !OpInfo.isIndirect) { 7619 assert((OpInfo.isMultipleAlternative || 7620 (OpInfo.Type == InlineAsm::isInput)) && 7621 "Can only indirectify direct input operands!"); 7622 7623 // Memory operands really want the address of the value. 7624 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7625 7626 // There is no longer a Value* corresponding to this operand. 7627 OpInfo.CallOperandVal = nullptr; 7628 7629 // It is now an indirect operand. 7630 OpInfo.isIndirect = true; 7631 } 7632 7633 // If this constraint is for a specific register, allocate it before 7634 // anything else. 7635 SDISelAsmOperandInfo &RefOpInfo = 7636 OpInfo.isMatchingInputConstraint() 7637 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7638 : ConstraintOperands[i]; 7639 if (RefOpInfo.ConstraintType == TargetLowering::C_Register) 7640 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7641 } 7642 7643 // Third pass - Loop over all of the operands, assigning virtual or physregs 7644 // to register class operands. 7645 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7646 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7647 SDISelAsmOperandInfo &RefOpInfo = 7648 OpInfo.isMatchingInputConstraint() 7649 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7650 : ConstraintOperands[i]; 7651 7652 // C_Register operands have already been allocated, Other/Memory don't need 7653 // to be. 7654 if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7655 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7656 } 7657 7658 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7659 std::vector<SDValue> AsmNodeOperands; 7660 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7661 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7662 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7663 7664 // If we have a !srcloc metadata node associated with it, we want to attach 7665 // this to the ultimately generated inline asm machineinstr. To do this, we 7666 // pass in the third operand as this (potentially null) inline asm MDNode. 7667 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7668 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7669 7670 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7671 // bits as operand 3. 7672 AsmNodeOperands.push_back(DAG.getTargetConstant( 7673 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7674 7675 // Loop over all of the inputs, copying the operand values into the 7676 // appropriate registers and processing the output regs. 7677 RegsForValue RetValRegs; 7678 7679 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7680 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7681 7682 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7683 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7684 7685 switch (OpInfo.Type) { 7686 case InlineAsm::isOutput: 7687 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7688 OpInfo.ConstraintType != TargetLowering::C_Register) { 7689 // Memory output, or 'other' output (e.g. 'X' constraint). 7690 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7691 7692 unsigned ConstraintID = 7693 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7694 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7695 "Failed to convert memory constraint code to constraint id."); 7696 7697 // Add information to the INLINEASM node to know about this output. 7698 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7699 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7700 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7701 MVT::i32)); 7702 AsmNodeOperands.push_back(OpInfo.CallOperand); 7703 break; 7704 } 7705 7706 // Otherwise, this is a register or register class output. 7707 7708 // Copy the output from the appropriate register. Find a register that 7709 // we can use. 7710 if (OpInfo.AssignedRegs.Regs.empty()) { 7711 emitInlineAsmError( 7712 CS, "couldn't allocate output register for constraint '" + 7713 Twine(OpInfo.ConstraintCode) + "'"); 7714 return; 7715 } 7716 7717 // If this is an indirect operand, store through the pointer after the 7718 // asm. 7719 if (OpInfo.isIndirect) { 7720 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7721 OpInfo.CallOperandVal)); 7722 } else { 7723 // This is the result value of the call. 7724 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7725 // Concatenate this output onto the outputs list. 7726 RetValRegs.append(OpInfo.AssignedRegs); 7727 } 7728 7729 // Add information to the INLINEASM node to know that this register is 7730 // set. 7731 OpInfo.AssignedRegs 7732 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7733 ? InlineAsm::Kind_RegDefEarlyClobber 7734 : InlineAsm::Kind_RegDef, 7735 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7736 break; 7737 7738 case InlineAsm::isInput: { 7739 SDValue InOperandVal = OpInfo.CallOperand; 7740 7741 if (OpInfo.isMatchingInputConstraint()) { 7742 // If this is required to match an output register we have already set, 7743 // just use its register. 7744 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7745 AsmNodeOperands); 7746 unsigned OpFlag = 7747 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7748 if (InlineAsm::isRegDefKind(OpFlag) || 7749 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7750 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7751 if (OpInfo.isIndirect) { 7752 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7753 emitInlineAsmError(CS, "inline asm not supported yet:" 7754 " don't know how to handle tied " 7755 "indirect register inputs"); 7756 return; 7757 } 7758 7759 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7760 SmallVector<unsigned, 4> Regs; 7761 7762 if (!createVirtualRegs(Regs, 7763 InlineAsm::getNumOperandRegisters(OpFlag), 7764 RegVT, DAG)) { 7765 emitInlineAsmError(CS, "inline asm error: This value type register " 7766 "class is not natively supported!"); 7767 return; 7768 } 7769 7770 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7771 7772 SDLoc dl = getCurSDLoc(); 7773 // Use the produced MatchedRegs object to 7774 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7775 CS.getInstruction()); 7776 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7777 true, OpInfo.getMatchedOperand(), dl, 7778 DAG, AsmNodeOperands); 7779 break; 7780 } 7781 7782 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7783 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7784 "Unexpected number of operands"); 7785 // Add information to the INLINEASM node to know about this input. 7786 // See InlineAsm.h isUseOperandTiedToDef. 7787 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7788 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7789 OpInfo.getMatchedOperand()); 7790 AsmNodeOperands.push_back(DAG.getTargetConstant( 7791 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7792 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7793 break; 7794 } 7795 7796 // Treat indirect 'X' constraint as memory. 7797 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7798 OpInfo.isIndirect) 7799 OpInfo.ConstraintType = TargetLowering::C_Memory; 7800 7801 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7802 std::vector<SDValue> Ops; 7803 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7804 Ops, DAG); 7805 if (Ops.empty()) { 7806 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7807 Twine(OpInfo.ConstraintCode) + "'"); 7808 return; 7809 } 7810 7811 // Add information to the INLINEASM node to know about this input. 7812 unsigned ResOpType = 7813 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7814 AsmNodeOperands.push_back(DAG.getTargetConstant( 7815 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7816 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7817 break; 7818 } 7819 7820 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7821 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7822 assert(InOperandVal.getValueType() == 7823 TLI.getPointerTy(DAG.getDataLayout()) && 7824 "Memory operands expect pointer values"); 7825 7826 unsigned ConstraintID = 7827 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7828 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7829 "Failed to convert memory constraint code to constraint id."); 7830 7831 // Add information to the INLINEASM node to know about this input. 7832 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7833 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7834 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7835 getCurSDLoc(), 7836 MVT::i32)); 7837 AsmNodeOperands.push_back(InOperandVal); 7838 break; 7839 } 7840 7841 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7842 OpInfo.ConstraintType == TargetLowering::C_Register) && 7843 "Unknown constraint type!"); 7844 7845 // TODO: Support this. 7846 if (OpInfo.isIndirect) { 7847 emitInlineAsmError( 7848 CS, "Don't know how to handle indirect register inputs yet " 7849 "for constraint '" + 7850 Twine(OpInfo.ConstraintCode) + "'"); 7851 return; 7852 } 7853 7854 // Copy the input into the appropriate registers. 7855 if (OpInfo.AssignedRegs.Regs.empty()) { 7856 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7857 Twine(OpInfo.ConstraintCode) + "'"); 7858 return; 7859 } 7860 7861 SDLoc dl = getCurSDLoc(); 7862 7863 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7864 Chain, &Flag, CS.getInstruction()); 7865 7866 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7867 dl, DAG, AsmNodeOperands); 7868 break; 7869 } 7870 case InlineAsm::isClobber: 7871 // Add the clobbered value to the operand list, so that the register 7872 // allocator is aware that the physreg got clobbered. 7873 if (!OpInfo.AssignedRegs.Regs.empty()) 7874 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7875 false, 0, getCurSDLoc(), DAG, 7876 AsmNodeOperands); 7877 break; 7878 } 7879 } 7880 7881 // Finish up input operands. Set the input chain and add the flag last. 7882 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7883 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7884 7885 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7886 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7887 Flag = Chain.getValue(1); 7888 7889 // If this asm returns a register value, copy the result from that register 7890 // and set it as the value of the call. 7891 if (!RetValRegs.Regs.empty()) { 7892 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7893 Chain, &Flag, CS.getInstruction()); 7894 7895 llvm::Type *CSResultType = CS.getType(); 7896 unsigned numRet; 7897 ArrayRef<Type *> ResultTypes; 7898 SmallVector<SDValue, 1> ResultValues(1); 7899 if (CSResultType->isSingleValueType()) { 7900 numRet = 1; 7901 ResultValues[0] = Val; 7902 ResultTypes = makeArrayRef(CSResultType); 7903 } else { 7904 numRet = CSResultType->getNumContainedTypes(); 7905 assert(Val->getNumOperands() == numRet && 7906 "Mismatch in number of output operands in asm result"); 7907 ResultTypes = CSResultType->subtypes(); 7908 ArrayRef<SDUse> ValueUses = Val->ops(); 7909 ResultValues.resize(numRet); 7910 std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(), 7911 [](const SDUse &u) -> SDValue { return u.get(); }); 7912 } 7913 SmallVector<EVT, 1> ResultVTs(numRet); 7914 for (unsigned i = 0; i < numRet; i++) { 7915 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]); 7916 SDValue Val = ResultValues[i]; 7917 assert(ResultTypes[i]->isSized() && "Unexpected unsized type"); 7918 // If the type of the inline asm call site return value is different but 7919 // has same size as the type of the asm output bitcast it. One example 7920 // of this is for vectors with different width / number of elements. 7921 // This can happen for register classes that can contain multiple 7922 // different value types. The preg or vreg allocated may not have the 7923 // same VT as was expected. 7924 // 7925 // This can also happen for a return value that disagrees with the 7926 // register class it is put in, eg. a double in a general-purpose 7927 // register on a 32-bit machine. 7928 if (ResultVT != Val.getValueType() && 7929 ResultVT.getSizeInBits() == Val.getValueSizeInBits()) 7930 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val); 7931 else if (ResultVT != Val.getValueType() && ResultVT.isInteger() && 7932 Val.getValueType().isInteger()) { 7933 // If a result value was tied to an input value, the computed result 7934 // may have a wider width than the expected result. Extract the 7935 // relevant portion. 7936 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val); 7937 } 7938 7939 assert(ResultVT == Val.getValueType() && "Asm result value mismatch!"); 7940 ResultVTs[i] = ResultVT; 7941 ResultValues[i] = Val; 7942 } 7943 7944 Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 7945 DAG.getVTList(ResultVTs), ResultValues); 7946 setValue(CS.getInstruction(), Val); 7947 // Don't need to use this as a chain in this case. 7948 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7949 return; 7950 } 7951 7952 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7953 7954 // Process indirect outputs, first output all of the flagged copies out of 7955 // physregs. 7956 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7957 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7958 const Value *Ptr = IndirectStoresToEmit[i].second; 7959 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7960 Chain, &Flag, IA); 7961 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7962 } 7963 7964 // Emit the non-flagged stores from the physregs. 7965 SmallVector<SDValue, 8> OutChains; 7966 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7967 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7968 getValue(StoresToEmit[i].second), 7969 MachinePointerInfo(StoresToEmit[i].second)); 7970 OutChains.push_back(Val); 7971 } 7972 7973 if (!OutChains.empty()) 7974 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7975 7976 DAG.setRoot(Chain); 7977 } 7978 7979 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7980 const Twine &Message) { 7981 LLVMContext &Ctx = *DAG.getContext(); 7982 Ctx.emitError(CS.getInstruction(), Message); 7983 7984 // Make sure we leave the DAG in a valid state 7985 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7986 SmallVector<EVT, 1> ValueVTs; 7987 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7988 7989 if (ValueVTs.empty()) 7990 return; 7991 7992 SmallVector<SDValue, 1> Ops; 7993 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7994 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7995 7996 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7997 } 7998 7999 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8000 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8001 MVT::Other, getRoot(), 8002 getValue(I.getArgOperand(0)), 8003 DAG.getSrcValue(I.getArgOperand(0)))); 8004 } 8005 8006 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8008 const DataLayout &DL = DAG.getDataLayout(); 8009 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8010 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8011 DAG.getSrcValue(I.getOperand(0)), 8012 DL.getABITypeAlignment(I.getType())); 8013 setValue(&I, V); 8014 DAG.setRoot(V.getValue(1)); 8015 } 8016 8017 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8018 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8019 MVT::Other, getRoot(), 8020 getValue(I.getArgOperand(0)), 8021 DAG.getSrcValue(I.getArgOperand(0)))); 8022 } 8023 8024 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8025 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8026 MVT::Other, getRoot(), 8027 getValue(I.getArgOperand(0)), 8028 getValue(I.getArgOperand(1)), 8029 DAG.getSrcValue(I.getArgOperand(0)), 8030 DAG.getSrcValue(I.getArgOperand(1)))); 8031 } 8032 8033 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8034 const Instruction &I, 8035 SDValue Op) { 8036 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8037 if (!Range) 8038 return Op; 8039 8040 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8041 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8042 return Op; 8043 8044 APInt Lo = CR.getUnsignedMin(); 8045 if (!Lo.isMinValue()) 8046 return Op; 8047 8048 APInt Hi = CR.getUnsignedMax(); 8049 unsigned Bits = std::max(Hi.getActiveBits(), 8050 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8051 8052 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8053 8054 SDLoc SL = getCurSDLoc(); 8055 8056 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8057 DAG.getValueType(SmallVT)); 8058 unsigned NumVals = Op.getNode()->getNumValues(); 8059 if (NumVals == 1) 8060 return ZExt; 8061 8062 SmallVector<SDValue, 4> Ops; 8063 8064 Ops.push_back(ZExt); 8065 for (unsigned I = 1; I != NumVals; ++I) 8066 Ops.push_back(Op.getValue(I)); 8067 8068 return DAG.getMergeValues(Ops, SL); 8069 } 8070 8071 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8072 /// the call being lowered. 8073 /// 8074 /// This is a helper for lowering intrinsics that follow a target calling 8075 /// convention or require stack pointer adjustment. Only a subset of the 8076 /// intrinsic's operands need to participate in the calling convention. 8077 void SelectionDAGBuilder::populateCallLoweringInfo( 8078 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 8079 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8080 bool IsPatchPoint) { 8081 TargetLowering::ArgListTy Args; 8082 Args.reserve(NumArgs); 8083 8084 // Populate the argument list. 8085 // Attributes for args start at offset 1, after the return attribute. 8086 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8087 ArgI != ArgE; ++ArgI) { 8088 const Value *V = CS->getOperand(ArgI); 8089 8090 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8091 8092 TargetLowering::ArgListEntry Entry; 8093 Entry.Node = getValue(V); 8094 Entry.Ty = V->getType(); 8095 Entry.setAttributes(&CS, ArgI); 8096 Args.push_back(Entry); 8097 } 8098 8099 CLI.setDebugLoc(getCurSDLoc()) 8100 .setChain(getRoot()) 8101 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 8102 .setDiscardResult(CS->use_empty()) 8103 .setIsPatchPoint(IsPatchPoint); 8104 } 8105 8106 /// Add a stack map intrinsic call's live variable operands to a stackmap 8107 /// or patchpoint target node's operand list. 8108 /// 8109 /// Constants are converted to TargetConstants purely as an optimization to 8110 /// avoid constant materialization and register allocation. 8111 /// 8112 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8113 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8114 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8115 /// address materialization and register allocation, but may also be required 8116 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8117 /// alloca in the entry block, then the runtime may assume that the alloca's 8118 /// StackMap location can be read immediately after compilation and that the 8119 /// location is valid at any point during execution (this is similar to the 8120 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8121 /// only available in a register, then the runtime would need to trap when 8122 /// execution reaches the StackMap in order to read the alloca's location. 8123 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8124 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8125 SelectionDAGBuilder &Builder) { 8126 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8127 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8128 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8129 Ops.push_back( 8130 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8131 Ops.push_back( 8132 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8133 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8134 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8135 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8136 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8137 } else 8138 Ops.push_back(OpVal); 8139 } 8140 } 8141 8142 /// Lower llvm.experimental.stackmap directly to its target opcode. 8143 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8144 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8145 // [live variables...]) 8146 8147 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8148 8149 SDValue Chain, InFlag, Callee, NullPtr; 8150 SmallVector<SDValue, 32> Ops; 8151 8152 SDLoc DL = getCurSDLoc(); 8153 Callee = getValue(CI.getCalledValue()); 8154 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8155 8156 // The stackmap intrinsic only records the live variables (the arguemnts 8157 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8158 // intrinsic, this won't be lowered to a function call. This means we don't 8159 // have to worry about calling conventions and target specific lowering code. 8160 // Instead we perform the call lowering right here. 8161 // 8162 // chain, flag = CALLSEQ_START(chain, 0, 0) 8163 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8164 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8165 // 8166 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8167 InFlag = Chain.getValue(1); 8168 8169 // Add the <id> and <numBytes> constants. 8170 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8171 Ops.push_back(DAG.getTargetConstant( 8172 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8173 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8174 Ops.push_back(DAG.getTargetConstant( 8175 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8176 MVT::i32)); 8177 8178 // Push live variables for the stack map. 8179 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8180 8181 // We are not pushing any register mask info here on the operands list, 8182 // because the stackmap doesn't clobber anything. 8183 8184 // Push the chain and the glue flag. 8185 Ops.push_back(Chain); 8186 Ops.push_back(InFlag); 8187 8188 // Create the STACKMAP node. 8189 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8190 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8191 Chain = SDValue(SM, 0); 8192 InFlag = Chain.getValue(1); 8193 8194 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8195 8196 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8197 8198 // Set the root to the target-lowered call chain. 8199 DAG.setRoot(Chain); 8200 8201 // Inform the Frame Information that we have a stackmap in this function. 8202 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8203 } 8204 8205 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8206 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8207 const BasicBlock *EHPadBB) { 8208 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8209 // i32 <numBytes>, 8210 // i8* <target>, 8211 // i32 <numArgs>, 8212 // [Args...], 8213 // [live variables...]) 8214 8215 CallingConv::ID CC = CS.getCallingConv(); 8216 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8217 bool HasDef = !CS->getType()->isVoidTy(); 8218 SDLoc dl = getCurSDLoc(); 8219 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8220 8221 // Handle immediate and symbolic callees. 8222 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8223 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8224 /*isTarget=*/true); 8225 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8226 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8227 SDLoc(SymbolicCallee), 8228 SymbolicCallee->getValueType(0)); 8229 8230 // Get the real number of arguments participating in the call <numArgs> 8231 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8232 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8233 8234 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8235 // Intrinsics include all meta-operands up to but not including CC. 8236 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8237 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8238 "Not enough arguments provided to the patchpoint intrinsic"); 8239 8240 // For AnyRegCC the arguments are lowered later on manually. 8241 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8242 Type *ReturnTy = 8243 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8244 8245 TargetLowering::CallLoweringInfo CLI(DAG); 8246 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8247 true); 8248 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8249 8250 SDNode *CallEnd = Result.second.getNode(); 8251 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8252 CallEnd = CallEnd->getOperand(0).getNode(); 8253 8254 /// Get a call instruction from the call sequence chain. 8255 /// Tail calls are not allowed. 8256 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8257 "Expected a callseq node."); 8258 SDNode *Call = CallEnd->getOperand(0).getNode(); 8259 bool HasGlue = Call->getGluedNode(); 8260 8261 // Replace the target specific call node with the patchable intrinsic. 8262 SmallVector<SDValue, 8> Ops; 8263 8264 // Add the <id> and <numBytes> constants. 8265 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8266 Ops.push_back(DAG.getTargetConstant( 8267 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8268 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8269 Ops.push_back(DAG.getTargetConstant( 8270 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8271 MVT::i32)); 8272 8273 // Add the callee. 8274 Ops.push_back(Callee); 8275 8276 // Adjust <numArgs> to account for any arguments that have been passed on the 8277 // stack instead. 8278 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8279 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8280 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8281 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8282 8283 // Add the calling convention 8284 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8285 8286 // Add the arguments we omitted previously. The register allocator should 8287 // place these in any free register. 8288 if (IsAnyRegCC) 8289 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8290 Ops.push_back(getValue(CS.getArgument(i))); 8291 8292 // Push the arguments from the call instruction up to the register mask. 8293 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8294 Ops.append(Call->op_begin() + 2, e); 8295 8296 // Push live variables for the stack map. 8297 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8298 8299 // Push the register mask info. 8300 if (HasGlue) 8301 Ops.push_back(*(Call->op_end()-2)); 8302 else 8303 Ops.push_back(*(Call->op_end()-1)); 8304 8305 // Push the chain (this is originally the first operand of the call, but 8306 // becomes now the last or second to last operand). 8307 Ops.push_back(*(Call->op_begin())); 8308 8309 // Push the glue flag (last operand). 8310 if (HasGlue) 8311 Ops.push_back(*(Call->op_end()-1)); 8312 8313 SDVTList NodeTys; 8314 if (IsAnyRegCC && HasDef) { 8315 // Create the return types based on the intrinsic definition 8316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8317 SmallVector<EVT, 3> ValueVTs; 8318 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8319 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8320 8321 // There is always a chain and a glue type at the end 8322 ValueVTs.push_back(MVT::Other); 8323 ValueVTs.push_back(MVT::Glue); 8324 NodeTys = DAG.getVTList(ValueVTs); 8325 } else 8326 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8327 8328 // Replace the target specific call node with a PATCHPOINT node. 8329 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8330 dl, NodeTys, Ops); 8331 8332 // Update the NodeMap. 8333 if (HasDef) { 8334 if (IsAnyRegCC) 8335 setValue(CS.getInstruction(), SDValue(MN, 0)); 8336 else 8337 setValue(CS.getInstruction(), Result.first); 8338 } 8339 8340 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8341 // call sequence. Furthermore the location of the chain and glue can change 8342 // when the AnyReg calling convention is used and the intrinsic returns a 8343 // value. 8344 if (IsAnyRegCC && HasDef) { 8345 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8346 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8347 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8348 } else 8349 DAG.ReplaceAllUsesWith(Call, MN); 8350 DAG.DeleteNode(Call); 8351 8352 // Inform the Frame Information that we have a patchpoint in this function. 8353 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8354 } 8355 8356 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8357 unsigned Intrinsic) { 8358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8359 SDValue Op1 = getValue(I.getArgOperand(0)); 8360 SDValue Op2; 8361 if (I.getNumArgOperands() > 1) 8362 Op2 = getValue(I.getArgOperand(1)); 8363 SDLoc dl = getCurSDLoc(); 8364 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8365 SDValue Res; 8366 FastMathFlags FMF; 8367 if (isa<FPMathOperator>(I)) 8368 FMF = I.getFastMathFlags(); 8369 8370 switch (Intrinsic) { 8371 case Intrinsic::experimental_vector_reduce_fadd: 8372 if (FMF.isFast()) 8373 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8374 else 8375 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8376 break; 8377 case Intrinsic::experimental_vector_reduce_fmul: 8378 if (FMF.isFast()) 8379 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8380 else 8381 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8382 break; 8383 case Intrinsic::experimental_vector_reduce_add: 8384 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8385 break; 8386 case Intrinsic::experimental_vector_reduce_mul: 8387 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8388 break; 8389 case Intrinsic::experimental_vector_reduce_and: 8390 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8391 break; 8392 case Intrinsic::experimental_vector_reduce_or: 8393 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8394 break; 8395 case Intrinsic::experimental_vector_reduce_xor: 8396 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8397 break; 8398 case Intrinsic::experimental_vector_reduce_smax: 8399 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8400 break; 8401 case Intrinsic::experimental_vector_reduce_smin: 8402 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8403 break; 8404 case Intrinsic::experimental_vector_reduce_umax: 8405 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8406 break; 8407 case Intrinsic::experimental_vector_reduce_umin: 8408 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8409 break; 8410 case Intrinsic::experimental_vector_reduce_fmax: 8411 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8412 break; 8413 case Intrinsic::experimental_vector_reduce_fmin: 8414 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8415 break; 8416 default: 8417 llvm_unreachable("Unhandled vector reduce intrinsic"); 8418 } 8419 setValue(&I, Res); 8420 } 8421 8422 /// Returns an AttributeList representing the attributes applied to the return 8423 /// value of the given call. 8424 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8425 SmallVector<Attribute::AttrKind, 2> Attrs; 8426 if (CLI.RetSExt) 8427 Attrs.push_back(Attribute::SExt); 8428 if (CLI.RetZExt) 8429 Attrs.push_back(Attribute::ZExt); 8430 if (CLI.IsInReg) 8431 Attrs.push_back(Attribute::InReg); 8432 8433 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8434 Attrs); 8435 } 8436 8437 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8438 /// implementation, which just calls LowerCall. 8439 /// FIXME: When all targets are 8440 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8441 std::pair<SDValue, SDValue> 8442 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8443 // Handle the incoming return values from the call. 8444 CLI.Ins.clear(); 8445 Type *OrigRetTy = CLI.RetTy; 8446 SmallVector<EVT, 4> RetTys; 8447 SmallVector<uint64_t, 4> Offsets; 8448 auto &DL = CLI.DAG.getDataLayout(); 8449 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8450 8451 if (CLI.IsPostTypeLegalization) { 8452 // If we are lowering a libcall after legalization, split the return type. 8453 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8454 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8455 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8456 EVT RetVT = OldRetTys[i]; 8457 uint64_t Offset = OldOffsets[i]; 8458 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8459 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8460 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8461 RetTys.append(NumRegs, RegisterVT); 8462 for (unsigned j = 0; j != NumRegs; ++j) 8463 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8464 } 8465 } 8466 8467 SmallVector<ISD::OutputArg, 4> Outs; 8468 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8469 8470 bool CanLowerReturn = 8471 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8472 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8473 8474 SDValue DemoteStackSlot; 8475 int DemoteStackIdx = -100; 8476 if (!CanLowerReturn) { 8477 // FIXME: equivalent assert? 8478 // assert(!CS.hasInAllocaArgument() && 8479 // "sret demotion is incompatible with inalloca"); 8480 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8481 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8482 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8483 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8484 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8485 DL.getAllocaAddrSpace()); 8486 8487 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8488 ArgListEntry Entry; 8489 Entry.Node = DemoteStackSlot; 8490 Entry.Ty = StackSlotPtrType; 8491 Entry.IsSExt = false; 8492 Entry.IsZExt = false; 8493 Entry.IsInReg = false; 8494 Entry.IsSRet = true; 8495 Entry.IsNest = false; 8496 Entry.IsByVal = false; 8497 Entry.IsReturned = false; 8498 Entry.IsSwiftSelf = false; 8499 Entry.IsSwiftError = false; 8500 Entry.Alignment = Align; 8501 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8502 CLI.NumFixedArgs += 1; 8503 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8504 8505 // sret demotion isn't compatible with tail-calls, since the sret argument 8506 // points into the callers stack frame. 8507 CLI.IsTailCall = false; 8508 } else { 8509 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8510 EVT VT = RetTys[I]; 8511 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8512 CLI.CallConv, VT); 8513 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8514 CLI.CallConv, VT); 8515 for (unsigned i = 0; i != NumRegs; ++i) { 8516 ISD::InputArg MyFlags; 8517 MyFlags.VT = RegisterVT; 8518 MyFlags.ArgVT = VT; 8519 MyFlags.Used = CLI.IsReturnValueUsed; 8520 if (CLI.RetSExt) 8521 MyFlags.Flags.setSExt(); 8522 if (CLI.RetZExt) 8523 MyFlags.Flags.setZExt(); 8524 if (CLI.IsInReg) 8525 MyFlags.Flags.setInReg(); 8526 CLI.Ins.push_back(MyFlags); 8527 } 8528 } 8529 } 8530 8531 // We push in swifterror return as the last element of CLI.Ins. 8532 ArgListTy &Args = CLI.getArgs(); 8533 if (supportSwiftError()) { 8534 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8535 if (Args[i].IsSwiftError) { 8536 ISD::InputArg MyFlags; 8537 MyFlags.VT = getPointerTy(DL); 8538 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8539 MyFlags.Flags.setSwiftError(); 8540 CLI.Ins.push_back(MyFlags); 8541 } 8542 } 8543 } 8544 8545 // Handle all of the outgoing arguments. 8546 CLI.Outs.clear(); 8547 CLI.OutVals.clear(); 8548 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8549 SmallVector<EVT, 4> ValueVTs; 8550 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8551 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8552 Type *FinalType = Args[i].Ty; 8553 if (Args[i].IsByVal) 8554 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8555 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8556 FinalType, CLI.CallConv, CLI.IsVarArg); 8557 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8558 ++Value) { 8559 EVT VT = ValueVTs[Value]; 8560 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8561 SDValue Op = SDValue(Args[i].Node.getNode(), 8562 Args[i].Node.getResNo() + Value); 8563 ISD::ArgFlagsTy Flags; 8564 8565 // Certain targets (such as MIPS), may have a different ABI alignment 8566 // for a type depending on the context. Give the target a chance to 8567 // specify the alignment it wants. 8568 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8569 8570 if (Args[i].IsZExt) 8571 Flags.setZExt(); 8572 if (Args[i].IsSExt) 8573 Flags.setSExt(); 8574 if (Args[i].IsInReg) { 8575 // If we are using vectorcall calling convention, a structure that is 8576 // passed InReg - is surely an HVA 8577 if (CLI.CallConv == CallingConv::X86_VectorCall && 8578 isa<StructType>(FinalType)) { 8579 // The first value of a structure is marked 8580 if (0 == Value) 8581 Flags.setHvaStart(); 8582 Flags.setHva(); 8583 } 8584 // Set InReg Flag 8585 Flags.setInReg(); 8586 } 8587 if (Args[i].IsSRet) 8588 Flags.setSRet(); 8589 if (Args[i].IsSwiftSelf) 8590 Flags.setSwiftSelf(); 8591 if (Args[i].IsSwiftError) 8592 Flags.setSwiftError(); 8593 if (Args[i].IsByVal) 8594 Flags.setByVal(); 8595 if (Args[i].IsInAlloca) { 8596 Flags.setInAlloca(); 8597 // Set the byval flag for CCAssignFn callbacks that don't know about 8598 // inalloca. This way we can know how many bytes we should've allocated 8599 // and how many bytes a callee cleanup function will pop. If we port 8600 // inalloca to more targets, we'll have to add custom inalloca handling 8601 // in the various CC lowering callbacks. 8602 Flags.setByVal(); 8603 } 8604 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8605 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8606 Type *ElementTy = Ty->getElementType(); 8607 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8608 // For ByVal, alignment should come from FE. BE will guess if this 8609 // info is not there but there are cases it cannot get right. 8610 unsigned FrameAlign; 8611 if (Args[i].Alignment) 8612 FrameAlign = Args[i].Alignment; 8613 else 8614 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8615 Flags.setByValAlign(FrameAlign); 8616 } 8617 if (Args[i].IsNest) 8618 Flags.setNest(); 8619 if (NeedsRegBlock) 8620 Flags.setInConsecutiveRegs(); 8621 Flags.setOrigAlign(OriginalAlignment); 8622 8623 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8624 CLI.CallConv, VT); 8625 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8626 CLI.CallConv, VT); 8627 SmallVector<SDValue, 4> Parts(NumParts); 8628 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8629 8630 if (Args[i].IsSExt) 8631 ExtendKind = ISD::SIGN_EXTEND; 8632 else if (Args[i].IsZExt) 8633 ExtendKind = ISD::ZERO_EXTEND; 8634 8635 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8636 // for now. 8637 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8638 CanLowerReturn) { 8639 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8640 "unexpected use of 'returned'"); 8641 // Before passing 'returned' to the target lowering code, ensure that 8642 // either the register MVT and the actual EVT are the same size or that 8643 // the return value and argument are extended in the same way; in these 8644 // cases it's safe to pass the argument register value unchanged as the 8645 // return register value (although it's at the target's option whether 8646 // to do so) 8647 // TODO: allow code generation to take advantage of partially preserved 8648 // registers rather than clobbering the entire register when the 8649 // parameter extension method is not compatible with the return 8650 // extension method 8651 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8652 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8653 CLI.RetZExt == Args[i].IsZExt)) 8654 Flags.setReturned(); 8655 } 8656 8657 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8658 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8659 8660 for (unsigned j = 0; j != NumParts; ++j) { 8661 // if it isn't first piece, alignment must be 1 8662 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8663 i < CLI.NumFixedArgs, 8664 i, j*Parts[j].getValueType().getStoreSize()); 8665 if (NumParts > 1 && j == 0) 8666 MyFlags.Flags.setSplit(); 8667 else if (j != 0) { 8668 MyFlags.Flags.setOrigAlign(1); 8669 if (j == NumParts - 1) 8670 MyFlags.Flags.setSplitEnd(); 8671 } 8672 8673 CLI.Outs.push_back(MyFlags); 8674 CLI.OutVals.push_back(Parts[j]); 8675 } 8676 8677 if (NeedsRegBlock && Value == NumValues - 1) 8678 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8679 } 8680 } 8681 8682 SmallVector<SDValue, 4> InVals; 8683 CLI.Chain = LowerCall(CLI, InVals); 8684 8685 // Update CLI.InVals to use outside of this function. 8686 CLI.InVals = InVals; 8687 8688 // Verify that the target's LowerCall behaved as expected. 8689 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8690 "LowerCall didn't return a valid chain!"); 8691 assert((!CLI.IsTailCall || InVals.empty()) && 8692 "LowerCall emitted a return value for a tail call!"); 8693 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8694 "LowerCall didn't emit the correct number of values!"); 8695 8696 // For a tail call, the return value is merely live-out and there aren't 8697 // any nodes in the DAG representing it. Return a special value to 8698 // indicate that a tail call has been emitted and no more Instructions 8699 // should be processed in the current block. 8700 if (CLI.IsTailCall) { 8701 CLI.DAG.setRoot(CLI.Chain); 8702 return std::make_pair(SDValue(), SDValue()); 8703 } 8704 8705 #ifndef NDEBUG 8706 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8707 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8708 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8709 "LowerCall emitted a value with the wrong type!"); 8710 } 8711 #endif 8712 8713 SmallVector<SDValue, 4> ReturnValues; 8714 if (!CanLowerReturn) { 8715 // The instruction result is the result of loading from the 8716 // hidden sret parameter. 8717 SmallVector<EVT, 1> PVTs; 8718 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8719 8720 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8721 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8722 EVT PtrVT = PVTs[0]; 8723 8724 unsigned NumValues = RetTys.size(); 8725 ReturnValues.resize(NumValues); 8726 SmallVector<SDValue, 4> Chains(NumValues); 8727 8728 // An aggregate return value cannot wrap around the address space, so 8729 // offsets to its parts don't wrap either. 8730 SDNodeFlags Flags; 8731 Flags.setNoUnsignedWrap(true); 8732 8733 for (unsigned i = 0; i < NumValues; ++i) { 8734 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8735 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8736 PtrVT), Flags); 8737 SDValue L = CLI.DAG.getLoad( 8738 RetTys[i], CLI.DL, CLI.Chain, Add, 8739 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8740 DemoteStackIdx, Offsets[i]), 8741 /* Alignment = */ 1); 8742 ReturnValues[i] = L; 8743 Chains[i] = L.getValue(1); 8744 } 8745 8746 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8747 } else { 8748 // Collect the legal value parts into potentially illegal values 8749 // that correspond to the original function's return values. 8750 Optional<ISD::NodeType> AssertOp; 8751 if (CLI.RetSExt) 8752 AssertOp = ISD::AssertSext; 8753 else if (CLI.RetZExt) 8754 AssertOp = ISD::AssertZext; 8755 unsigned CurReg = 0; 8756 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8757 EVT VT = RetTys[I]; 8758 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8759 CLI.CallConv, VT); 8760 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8761 CLI.CallConv, VT); 8762 8763 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8764 NumRegs, RegisterVT, VT, nullptr, 8765 CLI.CallConv, AssertOp)); 8766 CurReg += NumRegs; 8767 } 8768 8769 // For a function returning void, there is no return value. We can't create 8770 // such a node, so we just return a null return value in that case. In 8771 // that case, nothing will actually look at the value. 8772 if (ReturnValues.empty()) 8773 return std::make_pair(SDValue(), CLI.Chain); 8774 } 8775 8776 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8777 CLI.DAG.getVTList(RetTys), ReturnValues); 8778 return std::make_pair(Res, CLI.Chain); 8779 } 8780 8781 void TargetLowering::LowerOperationWrapper(SDNode *N, 8782 SmallVectorImpl<SDValue> &Results, 8783 SelectionDAG &DAG) const { 8784 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8785 Results.push_back(Res); 8786 } 8787 8788 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8789 llvm_unreachable("LowerOperation not implemented for this target!"); 8790 } 8791 8792 void 8793 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8794 SDValue Op = getNonRegisterValue(V); 8795 assert((Op.getOpcode() != ISD::CopyFromReg || 8796 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8797 "Copy from a reg to the same reg!"); 8798 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8799 8800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8801 // If this is an InlineAsm we have to match the registers required, not the 8802 // notional registers required by the type. 8803 8804 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 8805 None); // This is not an ABI copy. 8806 SDValue Chain = DAG.getEntryNode(); 8807 8808 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8809 FuncInfo.PreferredExtendType.end()) 8810 ? ISD::ANY_EXTEND 8811 : FuncInfo.PreferredExtendType[V]; 8812 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8813 PendingExports.push_back(Chain); 8814 } 8815 8816 #include "llvm/CodeGen/SelectionDAGISel.h" 8817 8818 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8819 /// entry block, return true. This includes arguments used by switches, since 8820 /// the switch may expand into multiple basic blocks. 8821 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8822 // With FastISel active, we may be splitting blocks, so force creation 8823 // of virtual registers for all non-dead arguments. 8824 if (FastISel) 8825 return A->use_empty(); 8826 8827 const BasicBlock &Entry = A->getParent()->front(); 8828 for (const User *U : A->users()) 8829 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8830 return false; // Use not in entry block. 8831 8832 return true; 8833 } 8834 8835 using ArgCopyElisionMapTy = 8836 DenseMap<const Argument *, 8837 std::pair<const AllocaInst *, const StoreInst *>>; 8838 8839 /// Scan the entry block of the function in FuncInfo for arguments that look 8840 /// like copies into a local alloca. Record any copied arguments in 8841 /// ArgCopyElisionCandidates. 8842 static void 8843 findArgumentCopyElisionCandidates(const DataLayout &DL, 8844 FunctionLoweringInfo *FuncInfo, 8845 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8846 // Record the state of every static alloca used in the entry block. Argument 8847 // allocas are all used in the entry block, so we need approximately as many 8848 // entries as we have arguments. 8849 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8850 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8851 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8852 StaticAllocas.reserve(NumArgs * 2); 8853 8854 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8855 if (!V) 8856 return nullptr; 8857 V = V->stripPointerCasts(); 8858 const auto *AI = dyn_cast<AllocaInst>(V); 8859 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8860 return nullptr; 8861 auto Iter = StaticAllocas.insert({AI, Unknown}); 8862 return &Iter.first->second; 8863 }; 8864 8865 // Look for stores of arguments to static allocas. Look through bitcasts and 8866 // GEPs to handle type coercions, as long as the alloca is fully initialized 8867 // by the store. Any non-store use of an alloca escapes it and any subsequent 8868 // unanalyzed store might write it. 8869 // FIXME: Handle structs initialized with multiple stores. 8870 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8871 // Look for stores, and handle non-store uses conservatively. 8872 const auto *SI = dyn_cast<StoreInst>(&I); 8873 if (!SI) { 8874 // We will look through cast uses, so ignore them completely. 8875 if (I.isCast()) 8876 continue; 8877 // Ignore debug info intrinsics, they don't escape or store to allocas. 8878 if (isa<DbgInfoIntrinsic>(I)) 8879 continue; 8880 // This is an unknown instruction. Assume it escapes or writes to all 8881 // static alloca operands. 8882 for (const Use &U : I.operands()) { 8883 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8884 *Info = StaticAllocaInfo::Clobbered; 8885 } 8886 continue; 8887 } 8888 8889 // If the stored value is a static alloca, mark it as escaped. 8890 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8891 *Info = StaticAllocaInfo::Clobbered; 8892 8893 // Check if the destination is a static alloca. 8894 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8895 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8896 if (!Info) 8897 continue; 8898 const AllocaInst *AI = cast<AllocaInst>(Dst); 8899 8900 // Skip allocas that have been initialized or clobbered. 8901 if (*Info != StaticAllocaInfo::Unknown) 8902 continue; 8903 8904 // Check if the stored value is an argument, and that this store fully 8905 // initializes the alloca. Don't elide copies from the same argument twice. 8906 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8907 const auto *Arg = dyn_cast<Argument>(Val); 8908 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8909 Arg->getType()->isEmptyTy() || 8910 DL.getTypeStoreSize(Arg->getType()) != 8911 DL.getTypeAllocSize(AI->getAllocatedType()) || 8912 ArgCopyElisionCandidates.count(Arg)) { 8913 *Info = StaticAllocaInfo::Clobbered; 8914 continue; 8915 } 8916 8917 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8918 << '\n'); 8919 8920 // Mark this alloca and store for argument copy elision. 8921 *Info = StaticAllocaInfo::Elidable; 8922 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8923 8924 // Stop scanning if we've seen all arguments. This will happen early in -O0 8925 // builds, which is useful, because -O0 builds have large entry blocks and 8926 // many allocas. 8927 if (ArgCopyElisionCandidates.size() == NumArgs) 8928 break; 8929 } 8930 } 8931 8932 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8933 /// ArgVal is a load from a suitable fixed stack object. 8934 static void tryToElideArgumentCopy( 8935 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8936 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8937 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8938 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8939 SDValue ArgVal, bool &ArgHasUses) { 8940 // Check if this is a load from a fixed stack object. 8941 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8942 if (!LNode) 8943 return; 8944 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8945 if (!FINode) 8946 return; 8947 8948 // Check that the fixed stack object is the right size and alignment. 8949 // Look at the alignment that the user wrote on the alloca instead of looking 8950 // at the stack object. 8951 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8952 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8953 const AllocaInst *AI = ArgCopyIter->second.first; 8954 int FixedIndex = FINode->getIndex(); 8955 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8956 int OldIndex = AllocaIndex; 8957 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8958 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8959 LLVM_DEBUG( 8960 dbgs() << " argument copy elision failed due to bad fixed stack " 8961 "object size\n"); 8962 return; 8963 } 8964 unsigned RequiredAlignment = AI->getAlignment(); 8965 if (!RequiredAlignment) { 8966 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8967 AI->getAllocatedType()); 8968 } 8969 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8970 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8971 "greater than stack argument alignment (" 8972 << RequiredAlignment << " vs " 8973 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8974 return; 8975 } 8976 8977 // Perform the elision. Delete the old stack object and replace its only use 8978 // in the variable info map. Mark the stack object as mutable. 8979 LLVM_DEBUG({ 8980 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8981 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8982 << '\n'; 8983 }); 8984 MFI.RemoveStackObject(OldIndex); 8985 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8986 AllocaIndex = FixedIndex; 8987 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8988 Chains.push_back(ArgVal.getValue(1)); 8989 8990 // Avoid emitting code for the store implementing the copy. 8991 const StoreInst *SI = ArgCopyIter->second.second; 8992 ElidedArgCopyInstrs.insert(SI); 8993 8994 // Check for uses of the argument again so that we can avoid exporting ArgVal 8995 // if it is't used by anything other than the store. 8996 for (const Value *U : Arg.users()) { 8997 if (U != SI) { 8998 ArgHasUses = true; 8999 break; 9000 } 9001 } 9002 } 9003 9004 void SelectionDAGISel::LowerArguments(const Function &F) { 9005 SelectionDAG &DAG = SDB->DAG; 9006 SDLoc dl = SDB->getCurSDLoc(); 9007 const DataLayout &DL = DAG.getDataLayout(); 9008 SmallVector<ISD::InputArg, 16> Ins; 9009 9010 if (!FuncInfo->CanLowerReturn) { 9011 // Put in an sret pointer parameter before all the other parameters. 9012 SmallVector<EVT, 1> ValueVTs; 9013 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9014 F.getReturnType()->getPointerTo( 9015 DAG.getDataLayout().getAllocaAddrSpace()), 9016 ValueVTs); 9017 9018 // NOTE: Assuming that a pointer will never break down to more than one VT 9019 // or one register. 9020 ISD::ArgFlagsTy Flags; 9021 Flags.setSRet(); 9022 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9023 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9024 ISD::InputArg::NoArgIndex, 0); 9025 Ins.push_back(RetArg); 9026 } 9027 9028 // Look for stores of arguments to static allocas. Mark such arguments with a 9029 // flag to ask the target to give us the memory location of that argument if 9030 // available. 9031 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9032 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9033 9034 // Set up the incoming argument description vector. 9035 for (const Argument &Arg : F.args()) { 9036 unsigned ArgNo = Arg.getArgNo(); 9037 SmallVector<EVT, 4> ValueVTs; 9038 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9039 bool isArgValueUsed = !Arg.use_empty(); 9040 unsigned PartBase = 0; 9041 Type *FinalType = Arg.getType(); 9042 if (Arg.hasAttribute(Attribute::ByVal)) 9043 FinalType = cast<PointerType>(FinalType)->getElementType(); 9044 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9045 FinalType, F.getCallingConv(), F.isVarArg()); 9046 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9047 Value != NumValues; ++Value) { 9048 EVT VT = ValueVTs[Value]; 9049 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9050 ISD::ArgFlagsTy Flags; 9051 9052 // Certain targets (such as MIPS), may have a different ABI alignment 9053 // for a type depending on the context. Give the target a chance to 9054 // specify the alignment it wants. 9055 unsigned OriginalAlignment = 9056 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9057 9058 if (Arg.hasAttribute(Attribute::ZExt)) 9059 Flags.setZExt(); 9060 if (Arg.hasAttribute(Attribute::SExt)) 9061 Flags.setSExt(); 9062 if (Arg.hasAttribute(Attribute::InReg)) { 9063 // If we are using vectorcall calling convention, a structure that is 9064 // passed InReg - is surely an HVA 9065 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9066 isa<StructType>(Arg.getType())) { 9067 // The first value of a structure is marked 9068 if (0 == Value) 9069 Flags.setHvaStart(); 9070 Flags.setHva(); 9071 } 9072 // Set InReg Flag 9073 Flags.setInReg(); 9074 } 9075 if (Arg.hasAttribute(Attribute::StructRet)) 9076 Flags.setSRet(); 9077 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9078 Flags.setSwiftSelf(); 9079 if (Arg.hasAttribute(Attribute::SwiftError)) 9080 Flags.setSwiftError(); 9081 if (Arg.hasAttribute(Attribute::ByVal)) 9082 Flags.setByVal(); 9083 if (Arg.hasAttribute(Attribute::InAlloca)) { 9084 Flags.setInAlloca(); 9085 // Set the byval flag for CCAssignFn callbacks that don't know about 9086 // inalloca. This way we can know how many bytes we should've allocated 9087 // and how many bytes a callee cleanup function will pop. If we port 9088 // inalloca to more targets, we'll have to add custom inalloca handling 9089 // in the various CC lowering callbacks. 9090 Flags.setByVal(); 9091 } 9092 if (F.getCallingConv() == CallingConv::X86_INTR) { 9093 // IA Interrupt passes frame (1st parameter) by value in the stack. 9094 if (ArgNo == 0) 9095 Flags.setByVal(); 9096 } 9097 if (Flags.isByVal() || Flags.isInAlloca()) { 9098 PointerType *Ty = cast<PointerType>(Arg.getType()); 9099 Type *ElementTy = Ty->getElementType(); 9100 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9101 // For ByVal, alignment should be passed from FE. BE will guess if 9102 // this info is not there but there are cases it cannot get right. 9103 unsigned FrameAlign; 9104 if (Arg.getParamAlignment()) 9105 FrameAlign = Arg.getParamAlignment(); 9106 else 9107 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9108 Flags.setByValAlign(FrameAlign); 9109 } 9110 if (Arg.hasAttribute(Attribute::Nest)) 9111 Flags.setNest(); 9112 if (NeedsRegBlock) 9113 Flags.setInConsecutiveRegs(); 9114 Flags.setOrigAlign(OriginalAlignment); 9115 if (ArgCopyElisionCandidates.count(&Arg)) 9116 Flags.setCopyElisionCandidate(); 9117 9118 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9119 *CurDAG->getContext(), F.getCallingConv(), VT); 9120 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9121 *CurDAG->getContext(), F.getCallingConv(), VT); 9122 for (unsigned i = 0; i != NumRegs; ++i) { 9123 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9124 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9125 if (NumRegs > 1 && i == 0) 9126 MyFlags.Flags.setSplit(); 9127 // if it isn't first piece, alignment must be 1 9128 else if (i > 0) { 9129 MyFlags.Flags.setOrigAlign(1); 9130 if (i == NumRegs - 1) 9131 MyFlags.Flags.setSplitEnd(); 9132 } 9133 Ins.push_back(MyFlags); 9134 } 9135 if (NeedsRegBlock && Value == NumValues - 1) 9136 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9137 PartBase += VT.getStoreSize(); 9138 } 9139 } 9140 9141 // Call the target to set up the argument values. 9142 SmallVector<SDValue, 8> InVals; 9143 SDValue NewRoot = TLI->LowerFormalArguments( 9144 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9145 9146 // Verify that the target's LowerFormalArguments behaved as expected. 9147 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9148 "LowerFormalArguments didn't return a valid chain!"); 9149 assert(InVals.size() == Ins.size() && 9150 "LowerFormalArguments didn't emit the correct number of values!"); 9151 LLVM_DEBUG({ 9152 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9153 assert(InVals[i].getNode() && 9154 "LowerFormalArguments emitted a null value!"); 9155 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9156 "LowerFormalArguments emitted a value with the wrong type!"); 9157 } 9158 }); 9159 9160 // Update the DAG with the new chain value resulting from argument lowering. 9161 DAG.setRoot(NewRoot); 9162 9163 // Set up the argument values. 9164 unsigned i = 0; 9165 if (!FuncInfo->CanLowerReturn) { 9166 // Create a virtual register for the sret pointer, and put in a copy 9167 // from the sret argument into it. 9168 SmallVector<EVT, 1> ValueVTs; 9169 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9170 F.getReturnType()->getPointerTo( 9171 DAG.getDataLayout().getAllocaAddrSpace()), 9172 ValueVTs); 9173 MVT VT = ValueVTs[0].getSimpleVT(); 9174 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9175 Optional<ISD::NodeType> AssertOp = None; 9176 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9177 nullptr, F.getCallingConv(), AssertOp); 9178 9179 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9180 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9181 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9182 FuncInfo->DemoteRegister = SRetReg; 9183 NewRoot = 9184 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9185 DAG.setRoot(NewRoot); 9186 9187 // i indexes lowered arguments. Bump it past the hidden sret argument. 9188 ++i; 9189 } 9190 9191 SmallVector<SDValue, 4> Chains; 9192 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9193 for (const Argument &Arg : F.args()) { 9194 SmallVector<SDValue, 4> ArgValues; 9195 SmallVector<EVT, 4> ValueVTs; 9196 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9197 unsigned NumValues = ValueVTs.size(); 9198 if (NumValues == 0) 9199 continue; 9200 9201 bool ArgHasUses = !Arg.use_empty(); 9202 9203 // Elide the copying store if the target loaded this argument from a 9204 // suitable fixed stack object. 9205 if (Ins[i].Flags.isCopyElisionCandidate()) { 9206 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9207 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9208 InVals[i], ArgHasUses); 9209 } 9210 9211 // If this argument is unused then remember its value. It is used to generate 9212 // debugging information. 9213 bool isSwiftErrorArg = 9214 TLI->supportSwiftError() && 9215 Arg.hasAttribute(Attribute::SwiftError); 9216 if (!ArgHasUses && !isSwiftErrorArg) { 9217 SDB->setUnusedArgValue(&Arg, InVals[i]); 9218 9219 // Also remember any frame index for use in FastISel. 9220 if (FrameIndexSDNode *FI = 9221 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9222 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9223 } 9224 9225 for (unsigned Val = 0; Val != NumValues; ++Val) { 9226 EVT VT = ValueVTs[Val]; 9227 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9228 F.getCallingConv(), VT); 9229 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9230 *CurDAG->getContext(), F.getCallingConv(), VT); 9231 9232 // Even an apparant 'unused' swifterror argument needs to be returned. So 9233 // we do generate a copy for it that can be used on return from the 9234 // function. 9235 if (ArgHasUses || isSwiftErrorArg) { 9236 Optional<ISD::NodeType> AssertOp; 9237 if (Arg.hasAttribute(Attribute::SExt)) 9238 AssertOp = ISD::AssertSext; 9239 else if (Arg.hasAttribute(Attribute::ZExt)) 9240 AssertOp = ISD::AssertZext; 9241 9242 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9243 PartVT, VT, nullptr, 9244 F.getCallingConv(), AssertOp)); 9245 } 9246 9247 i += NumParts; 9248 } 9249 9250 // We don't need to do anything else for unused arguments. 9251 if (ArgValues.empty()) 9252 continue; 9253 9254 // Note down frame index. 9255 if (FrameIndexSDNode *FI = 9256 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9257 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9258 9259 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9260 SDB->getCurSDLoc()); 9261 9262 SDB->setValue(&Arg, Res); 9263 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9264 // We want to associate the argument with the frame index, among 9265 // involved operands, that correspond to the lowest address. The 9266 // getCopyFromParts function, called earlier, is swapping the order of 9267 // the operands to BUILD_PAIR depending on endianness. The result of 9268 // that swapping is that the least significant bits of the argument will 9269 // be in the first operand of the BUILD_PAIR node, and the most 9270 // significant bits will be in the second operand. 9271 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9272 if (LoadSDNode *LNode = 9273 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9274 if (FrameIndexSDNode *FI = 9275 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9276 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9277 } 9278 9279 // Update the SwiftErrorVRegDefMap. 9280 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9281 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9282 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9283 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9284 FuncInfo->SwiftErrorArg, Reg); 9285 } 9286 9287 // If this argument is live outside of the entry block, insert a copy from 9288 // wherever we got it to the vreg that other BB's will reference it as. 9289 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9290 // If we can, though, try to skip creating an unnecessary vreg. 9291 // FIXME: This isn't very clean... it would be nice to make this more 9292 // general. It's also subtly incompatible with the hacks FastISel 9293 // uses with vregs. 9294 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9295 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9296 FuncInfo->ValueMap[&Arg] = Reg; 9297 continue; 9298 } 9299 } 9300 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9301 FuncInfo->InitializeRegForValue(&Arg); 9302 SDB->CopyToExportRegsIfNeeded(&Arg); 9303 } 9304 } 9305 9306 if (!Chains.empty()) { 9307 Chains.push_back(NewRoot); 9308 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9309 } 9310 9311 DAG.setRoot(NewRoot); 9312 9313 assert(i == InVals.size() && "Argument register count mismatch!"); 9314 9315 // If any argument copy elisions occurred and we have debug info, update the 9316 // stale frame indices used in the dbg.declare variable info table. 9317 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9318 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9319 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9320 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9321 if (I != ArgCopyElisionFrameIndexMap.end()) 9322 VI.Slot = I->second; 9323 } 9324 } 9325 9326 // Finally, if the target has anything special to do, allow it to do so. 9327 EmitFunctionEntryCode(); 9328 } 9329 9330 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9331 /// ensure constants are generated when needed. Remember the virtual registers 9332 /// that need to be added to the Machine PHI nodes as input. We cannot just 9333 /// directly add them, because expansion might result in multiple MBB's for one 9334 /// BB. As such, the start of the BB might correspond to a different MBB than 9335 /// the end. 9336 void 9337 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9338 const Instruction *TI = LLVMBB->getTerminator(); 9339 9340 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9341 9342 // Check PHI nodes in successors that expect a value to be available from this 9343 // block. 9344 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9345 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9346 if (!isa<PHINode>(SuccBB->begin())) continue; 9347 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9348 9349 // If this terminator has multiple identical successors (common for 9350 // switches), only handle each succ once. 9351 if (!SuccsHandled.insert(SuccMBB).second) 9352 continue; 9353 9354 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9355 9356 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9357 // nodes and Machine PHI nodes, but the incoming operands have not been 9358 // emitted yet. 9359 for (const PHINode &PN : SuccBB->phis()) { 9360 // Ignore dead phi's. 9361 if (PN.use_empty()) 9362 continue; 9363 9364 // Skip empty types 9365 if (PN.getType()->isEmptyTy()) 9366 continue; 9367 9368 unsigned Reg; 9369 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9370 9371 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9372 unsigned &RegOut = ConstantsOut[C]; 9373 if (RegOut == 0) { 9374 RegOut = FuncInfo.CreateRegs(C->getType()); 9375 CopyValueToVirtualRegister(C, RegOut); 9376 } 9377 Reg = RegOut; 9378 } else { 9379 DenseMap<const Value *, unsigned>::iterator I = 9380 FuncInfo.ValueMap.find(PHIOp); 9381 if (I != FuncInfo.ValueMap.end()) 9382 Reg = I->second; 9383 else { 9384 assert(isa<AllocaInst>(PHIOp) && 9385 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9386 "Didn't codegen value into a register!??"); 9387 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9388 CopyValueToVirtualRegister(PHIOp, Reg); 9389 } 9390 } 9391 9392 // Remember that this register needs to added to the machine PHI node as 9393 // the input for this MBB. 9394 SmallVector<EVT, 4> ValueVTs; 9395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9396 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9397 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9398 EVT VT = ValueVTs[vti]; 9399 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9400 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9401 FuncInfo.PHINodesToUpdate.push_back( 9402 std::make_pair(&*MBBI++, Reg + i)); 9403 Reg += NumRegisters; 9404 } 9405 } 9406 } 9407 9408 ConstantsOut.clear(); 9409 } 9410 9411 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9412 /// is 0. 9413 MachineBasicBlock * 9414 SelectionDAGBuilder::StackProtectorDescriptor:: 9415 AddSuccessorMBB(const BasicBlock *BB, 9416 MachineBasicBlock *ParentMBB, 9417 bool IsLikely, 9418 MachineBasicBlock *SuccMBB) { 9419 // If SuccBB has not been created yet, create it. 9420 if (!SuccMBB) { 9421 MachineFunction *MF = ParentMBB->getParent(); 9422 MachineFunction::iterator BBI(ParentMBB); 9423 SuccMBB = MF->CreateMachineBasicBlock(BB); 9424 MF->insert(++BBI, SuccMBB); 9425 } 9426 // Add it as a successor of ParentMBB. 9427 ParentMBB->addSuccessor( 9428 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9429 return SuccMBB; 9430 } 9431 9432 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9433 MachineFunction::iterator I(MBB); 9434 if (++I == FuncInfo.MF->end()) 9435 return nullptr; 9436 return &*I; 9437 } 9438 9439 /// During lowering new call nodes can be created (such as memset, etc.). 9440 /// Those will become new roots of the current DAG, but complications arise 9441 /// when they are tail calls. In such cases, the call lowering will update 9442 /// the root, but the builder still needs to know that a tail call has been 9443 /// lowered in order to avoid generating an additional return. 9444 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9445 // If the node is null, we do have a tail call. 9446 if (MaybeTC.getNode() != nullptr) 9447 DAG.setRoot(MaybeTC); 9448 else 9449 HasTailCall = true; 9450 } 9451 9452 uint64_t 9453 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9454 unsigned First, unsigned Last) const { 9455 assert(Last >= First); 9456 const APInt &LowCase = Clusters[First].Low->getValue(); 9457 const APInt &HighCase = Clusters[Last].High->getValue(); 9458 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9459 9460 // FIXME: A range of consecutive cases has 100% density, but only requires one 9461 // comparison to lower. We should discriminate against such consecutive ranges 9462 // in jump tables. 9463 9464 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9465 } 9466 9467 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9468 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9469 unsigned Last) const { 9470 assert(Last >= First); 9471 assert(TotalCases[Last] >= TotalCases[First]); 9472 uint64_t NumCases = 9473 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9474 return NumCases; 9475 } 9476 9477 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9478 unsigned First, unsigned Last, 9479 const SwitchInst *SI, 9480 MachineBasicBlock *DefaultMBB, 9481 CaseCluster &JTCluster) { 9482 assert(First <= Last); 9483 9484 auto Prob = BranchProbability::getZero(); 9485 unsigned NumCmps = 0; 9486 std::vector<MachineBasicBlock*> Table; 9487 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9488 9489 // Initialize probabilities in JTProbs. 9490 for (unsigned I = First; I <= Last; ++I) 9491 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9492 9493 for (unsigned I = First; I <= Last; ++I) { 9494 assert(Clusters[I].Kind == CC_Range); 9495 Prob += Clusters[I].Prob; 9496 const APInt &Low = Clusters[I].Low->getValue(); 9497 const APInt &High = Clusters[I].High->getValue(); 9498 NumCmps += (Low == High) ? 1 : 2; 9499 if (I != First) { 9500 // Fill the gap between this and the previous cluster. 9501 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9502 assert(PreviousHigh.slt(Low)); 9503 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9504 for (uint64_t J = 0; J < Gap; J++) 9505 Table.push_back(DefaultMBB); 9506 } 9507 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9508 for (uint64_t J = 0; J < ClusterSize; ++J) 9509 Table.push_back(Clusters[I].MBB); 9510 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9511 } 9512 9513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9514 unsigned NumDests = JTProbs.size(); 9515 if (TLI.isSuitableForBitTests( 9516 NumDests, NumCmps, Clusters[First].Low->getValue(), 9517 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9518 // Clusters[First..Last] should be lowered as bit tests instead. 9519 return false; 9520 } 9521 9522 // Create the MBB that will load from and jump through the table. 9523 // Note: We create it here, but it's not inserted into the function yet. 9524 MachineFunction *CurMF = FuncInfo.MF; 9525 MachineBasicBlock *JumpTableMBB = 9526 CurMF->CreateMachineBasicBlock(SI->getParent()); 9527 9528 // Add successors. Note: use table order for determinism. 9529 SmallPtrSet<MachineBasicBlock *, 8> Done; 9530 for (MachineBasicBlock *Succ : Table) { 9531 if (Done.count(Succ)) 9532 continue; 9533 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9534 Done.insert(Succ); 9535 } 9536 JumpTableMBB->normalizeSuccProbs(); 9537 9538 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9539 ->createJumpTableIndex(Table); 9540 9541 // Set up the jump table info. 9542 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9543 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9544 Clusters[Last].High->getValue(), SI->getCondition(), 9545 nullptr, false); 9546 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9547 9548 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9549 JTCases.size() - 1, Prob); 9550 return true; 9551 } 9552 9553 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9554 const SwitchInst *SI, 9555 MachineBasicBlock *DefaultMBB) { 9556 #ifndef NDEBUG 9557 // Clusters must be non-empty, sorted, and only contain Range clusters. 9558 assert(!Clusters.empty()); 9559 for (CaseCluster &C : Clusters) 9560 assert(C.Kind == CC_Range); 9561 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9562 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9563 #endif 9564 9565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9566 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9567 return; 9568 9569 const int64_t N = Clusters.size(); 9570 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9571 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9572 9573 if (N < 2 || N < MinJumpTableEntries) 9574 return; 9575 9576 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9577 SmallVector<unsigned, 8> TotalCases(N); 9578 for (unsigned i = 0; i < N; ++i) { 9579 const APInt &Hi = Clusters[i].High->getValue(); 9580 const APInt &Lo = Clusters[i].Low->getValue(); 9581 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9582 if (i != 0) 9583 TotalCases[i] += TotalCases[i - 1]; 9584 } 9585 9586 // Cheap case: the whole range may be suitable for jump table. 9587 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9588 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9589 assert(NumCases < UINT64_MAX / 100); 9590 assert(Range >= NumCases); 9591 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9592 CaseCluster JTCluster; 9593 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9594 Clusters[0] = JTCluster; 9595 Clusters.resize(1); 9596 return; 9597 } 9598 } 9599 9600 // The algorithm below is not suitable for -O0. 9601 if (TM.getOptLevel() == CodeGenOpt::None) 9602 return; 9603 9604 // Split Clusters into minimum number of dense partitions. The algorithm uses 9605 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9606 // for the Case Statement'" (1994), but builds the MinPartitions array in 9607 // reverse order to make it easier to reconstruct the partitions in ascending 9608 // order. In the choice between two optimal partitionings, it picks the one 9609 // which yields more jump tables. 9610 9611 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9612 SmallVector<unsigned, 8> MinPartitions(N); 9613 // LastElement[i] is the last element of the partition starting at i. 9614 SmallVector<unsigned, 8> LastElement(N); 9615 // PartitionsScore[i] is used to break ties when choosing between two 9616 // partitionings resulting in the same number of partitions. 9617 SmallVector<unsigned, 8> PartitionsScore(N); 9618 // For PartitionsScore, a small number of comparisons is considered as good as 9619 // a jump table and a single comparison is considered better than a jump 9620 // table. 9621 enum PartitionScores : unsigned { 9622 NoTable = 0, 9623 Table = 1, 9624 FewCases = 1, 9625 SingleCase = 2 9626 }; 9627 9628 // Base case: There is only one way to partition Clusters[N-1]. 9629 MinPartitions[N - 1] = 1; 9630 LastElement[N - 1] = N - 1; 9631 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9632 9633 // Note: loop indexes are signed to avoid underflow. 9634 for (int64_t i = N - 2; i >= 0; i--) { 9635 // Find optimal partitioning of Clusters[i..N-1]. 9636 // Baseline: Put Clusters[i] into a partition on its own. 9637 MinPartitions[i] = MinPartitions[i + 1] + 1; 9638 LastElement[i] = i; 9639 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9640 9641 // Search for a solution that results in fewer partitions. 9642 for (int64_t j = N - 1; j > i; j--) { 9643 // Try building a partition from Clusters[i..j]. 9644 uint64_t Range = getJumpTableRange(Clusters, i, j); 9645 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9646 assert(NumCases < UINT64_MAX / 100); 9647 assert(Range >= NumCases); 9648 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9649 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9650 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9651 int64_t NumEntries = j - i + 1; 9652 9653 if (NumEntries == 1) 9654 Score += PartitionScores::SingleCase; 9655 else if (NumEntries <= SmallNumberOfEntries) 9656 Score += PartitionScores::FewCases; 9657 else if (NumEntries >= MinJumpTableEntries) 9658 Score += PartitionScores::Table; 9659 9660 // If this leads to fewer partitions, or to the same number of 9661 // partitions with better score, it is a better partitioning. 9662 if (NumPartitions < MinPartitions[i] || 9663 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9664 MinPartitions[i] = NumPartitions; 9665 LastElement[i] = j; 9666 PartitionsScore[i] = Score; 9667 } 9668 } 9669 } 9670 } 9671 9672 // Iterate over the partitions, replacing some with jump tables in-place. 9673 unsigned DstIndex = 0; 9674 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9675 Last = LastElement[First]; 9676 assert(Last >= First); 9677 assert(DstIndex <= First); 9678 unsigned NumClusters = Last - First + 1; 9679 9680 CaseCluster JTCluster; 9681 if (NumClusters >= MinJumpTableEntries && 9682 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9683 Clusters[DstIndex++] = JTCluster; 9684 } else { 9685 for (unsigned I = First; I <= Last; ++I) 9686 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9687 } 9688 } 9689 Clusters.resize(DstIndex); 9690 } 9691 9692 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9693 unsigned First, unsigned Last, 9694 const SwitchInst *SI, 9695 CaseCluster &BTCluster) { 9696 assert(First <= Last); 9697 if (First == Last) 9698 return false; 9699 9700 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9701 unsigned NumCmps = 0; 9702 for (int64_t I = First; I <= Last; ++I) { 9703 assert(Clusters[I].Kind == CC_Range); 9704 Dests.set(Clusters[I].MBB->getNumber()); 9705 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9706 } 9707 unsigned NumDests = Dests.count(); 9708 9709 APInt Low = Clusters[First].Low->getValue(); 9710 APInt High = Clusters[Last].High->getValue(); 9711 assert(Low.slt(High)); 9712 9713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9714 const DataLayout &DL = DAG.getDataLayout(); 9715 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9716 return false; 9717 9718 APInt LowBound; 9719 APInt CmpRange; 9720 9721 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9722 assert(TLI.rangeFitsInWord(Low, High, DL) && 9723 "Case range must fit in bit mask!"); 9724 9725 // Check if the clusters cover a contiguous range such that no value in the 9726 // range will jump to the default statement. 9727 bool ContiguousRange = true; 9728 for (int64_t I = First + 1; I <= Last; ++I) { 9729 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9730 ContiguousRange = false; 9731 break; 9732 } 9733 } 9734 9735 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9736 // Optimize the case where all the case values fit in a word without having 9737 // to subtract minValue. In this case, we can optimize away the subtraction. 9738 LowBound = APInt::getNullValue(Low.getBitWidth()); 9739 CmpRange = High; 9740 ContiguousRange = false; 9741 } else { 9742 LowBound = Low; 9743 CmpRange = High - Low; 9744 } 9745 9746 CaseBitsVector CBV; 9747 auto TotalProb = BranchProbability::getZero(); 9748 for (unsigned i = First; i <= Last; ++i) { 9749 // Find the CaseBits for this destination. 9750 unsigned j; 9751 for (j = 0; j < CBV.size(); ++j) 9752 if (CBV[j].BB == Clusters[i].MBB) 9753 break; 9754 if (j == CBV.size()) 9755 CBV.push_back( 9756 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9757 CaseBits *CB = &CBV[j]; 9758 9759 // Update Mask, Bits and ExtraProb. 9760 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9761 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9762 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9763 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9764 CB->Bits += Hi - Lo + 1; 9765 CB->ExtraProb += Clusters[i].Prob; 9766 TotalProb += Clusters[i].Prob; 9767 } 9768 9769 BitTestInfo BTI; 9770 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 9771 // Sort by probability first, number of bits second, bit mask third. 9772 if (a.ExtraProb != b.ExtraProb) 9773 return a.ExtraProb > b.ExtraProb; 9774 if (a.Bits != b.Bits) 9775 return a.Bits > b.Bits; 9776 return a.Mask < b.Mask; 9777 }); 9778 9779 for (auto &CB : CBV) { 9780 MachineBasicBlock *BitTestBB = 9781 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9782 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9783 } 9784 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9785 SI->getCondition(), -1U, MVT::Other, false, 9786 ContiguousRange, nullptr, nullptr, std::move(BTI), 9787 TotalProb); 9788 9789 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9790 BitTestCases.size() - 1, TotalProb); 9791 return true; 9792 } 9793 9794 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9795 const SwitchInst *SI) { 9796 // Partition Clusters into as few subsets as possible, where each subset has a 9797 // range that fits in a machine word and has <= 3 unique destinations. 9798 9799 #ifndef NDEBUG 9800 // Clusters must be sorted and contain Range or JumpTable clusters. 9801 assert(!Clusters.empty()); 9802 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9803 for (const CaseCluster &C : Clusters) 9804 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9805 for (unsigned i = 1; i < Clusters.size(); ++i) 9806 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9807 #endif 9808 9809 // The algorithm below is not suitable for -O0. 9810 if (TM.getOptLevel() == CodeGenOpt::None) 9811 return; 9812 9813 // If target does not have legal shift left, do not emit bit tests at all. 9814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9815 const DataLayout &DL = DAG.getDataLayout(); 9816 9817 EVT PTy = TLI.getPointerTy(DL); 9818 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9819 return; 9820 9821 int BitWidth = PTy.getSizeInBits(); 9822 const int64_t N = Clusters.size(); 9823 9824 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9825 SmallVector<unsigned, 8> MinPartitions(N); 9826 // LastElement[i] is the last element of the partition starting at i. 9827 SmallVector<unsigned, 8> LastElement(N); 9828 9829 // FIXME: This might not be the best algorithm for finding bit test clusters. 9830 9831 // Base case: There is only one way to partition Clusters[N-1]. 9832 MinPartitions[N - 1] = 1; 9833 LastElement[N - 1] = N - 1; 9834 9835 // Note: loop indexes are signed to avoid underflow. 9836 for (int64_t i = N - 2; i >= 0; --i) { 9837 // Find optimal partitioning of Clusters[i..N-1]. 9838 // Baseline: Put Clusters[i] into a partition on its own. 9839 MinPartitions[i] = MinPartitions[i + 1] + 1; 9840 LastElement[i] = i; 9841 9842 // Search for a solution that results in fewer partitions. 9843 // Note: the search is limited by BitWidth, reducing time complexity. 9844 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9845 // Try building a partition from Clusters[i..j]. 9846 9847 // Check the range. 9848 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9849 Clusters[j].High->getValue(), DL)) 9850 continue; 9851 9852 // Check nbr of destinations and cluster types. 9853 // FIXME: This works, but doesn't seem very efficient. 9854 bool RangesOnly = true; 9855 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9856 for (int64_t k = i; k <= j; k++) { 9857 if (Clusters[k].Kind != CC_Range) { 9858 RangesOnly = false; 9859 break; 9860 } 9861 Dests.set(Clusters[k].MBB->getNumber()); 9862 } 9863 if (!RangesOnly || Dests.count() > 3) 9864 break; 9865 9866 // Check if it's a better partition. 9867 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9868 if (NumPartitions < MinPartitions[i]) { 9869 // Found a better partition. 9870 MinPartitions[i] = NumPartitions; 9871 LastElement[i] = j; 9872 } 9873 } 9874 } 9875 9876 // Iterate over the partitions, replacing with bit-test clusters in-place. 9877 unsigned DstIndex = 0; 9878 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9879 Last = LastElement[First]; 9880 assert(First <= Last); 9881 assert(DstIndex <= First); 9882 9883 CaseCluster BitTestCluster; 9884 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9885 Clusters[DstIndex++] = BitTestCluster; 9886 } else { 9887 size_t NumClusters = Last - First + 1; 9888 std::memmove(&Clusters[DstIndex], &Clusters[First], 9889 sizeof(Clusters[0]) * NumClusters); 9890 DstIndex += NumClusters; 9891 } 9892 } 9893 Clusters.resize(DstIndex); 9894 } 9895 9896 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9897 MachineBasicBlock *SwitchMBB, 9898 MachineBasicBlock *DefaultMBB) { 9899 MachineFunction *CurMF = FuncInfo.MF; 9900 MachineBasicBlock *NextMBB = nullptr; 9901 MachineFunction::iterator BBI(W.MBB); 9902 if (++BBI != FuncInfo.MF->end()) 9903 NextMBB = &*BBI; 9904 9905 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9906 9907 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9908 9909 if (Size == 2 && W.MBB == SwitchMBB) { 9910 // If any two of the cases has the same destination, and if one value 9911 // is the same as the other, but has one bit unset that the other has set, 9912 // use bit manipulation to do two compares at once. For example: 9913 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9914 // TODO: This could be extended to merge any 2 cases in switches with 3 9915 // cases. 9916 // TODO: Handle cases where W.CaseBB != SwitchBB. 9917 CaseCluster &Small = *W.FirstCluster; 9918 CaseCluster &Big = *W.LastCluster; 9919 9920 if (Small.Low == Small.High && Big.Low == Big.High && 9921 Small.MBB == Big.MBB) { 9922 const APInt &SmallValue = Small.Low->getValue(); 9923 const APInt &BigValue = Big.Low->getValue(); 9924 9925 // Check that there is only one bit different. 9926 APInt CommonBit = BigValue ^ SmallValue; 9927 if (CommonBit.isPowerOf2()) { 9928 SDValue CondLHS = getValue(Cond); 9929 EVT VT = CondLHS.getValueType(); 9930 SDLoc DL = getCurSDLoc(); 9931 9932 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9933 DAG.getConstant(CommonBit, DL, VT)); 9934 SDValue Cond = DAG.getSetCC( 9935 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9936 ISD::SETEQ); 9937 9938 // Update successor info. 9939 // Both Small and Big will jump to Small.BB, so we sum up the 9940 // probabilities. 9941 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9942 if (BPI) 9943 addSuccessorWithProb( 9944 SwitchMBB, DefaultMBB, 9945 // The default destination is the first successor in IR. 9946 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9947 else 9948 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9949 9950 // Insert the true branch. 9951 SDValue BrCond = 9952 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9953 DAG.getBasicBlock(Small.MBB)); 9954 // Insert the false branch. 9955 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9956 DAG.getBasicBlock(DefaultMBB)); 9957 9958 DAG.setRoot(BrCond); 9959 return; 9960 } 9961 } 9962 } 9963 9964 if (TM.getOptLevel() != CodeGenOpt::None) { 9965 // Here, we order cases by probability so the most likely case will be 9966 // checked first. However, two clusters can have the same probability in 9967 // which case their relative ordering is non-deterministic. So we use Low 9968 // as a tie-breaker as clusters are guaranteed to never overlap. 9969 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9970 [](const CaseCluster &a, const CaseCluster &b) { 9971 return a.Prob != b.Prob ? 9972 a.Prob > b.Prob : 9973 a.Low->getValue().slt(b.Low->getValue()); 9974 }); 9975 9976 // Rearrange the case blocks so that the last one falls through if possible 9977 // without changing the order of probabilities. 9978 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9979 --I; 9980 if (I->Prob > W.LastCluster->Prob) 9981 break; 9982 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9983 std::swap(*I, *W.LastCluster); 9984 break; 9985 } 9986 } 9987 } 9988 9989 // Compute total probability. 9990 BranchProbability DefaultProb = W.DefaultProb; 9991 BranchProbability UnhandledProbs = DefaultProb; 9992 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9993 UnhandledProbs += I->Prob; 9994 9995 MachineBasicBlock *CurMBB = W.MBB; 9996 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9997 MachineBasicBlock *Fallthrough; 9998 if (I == W.LastCluster) { 9999 // For the last cluster, fall through to the default destination. 10000 Fallthrough = DefaultMBB; 10001 } else { 10002 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10003 CurMF->insert(BBI, Fallthrough); 10004 // Put Cond in a virtual register to make it available from the new blocks. 10005 ExportFromCurrentBlock(Cond); 10006 } 10007 UnhandledProbs -= I->Prob; 10008 10009 switch (I->Kind) { 10010 case CC_JumpTable: { 10011 // FIXME: Optimize away range check based on pivot comparisons. 10012 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10013 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10014 10015 // The jump block hasn't been inserted yet; insert it here. 10016 MachineBasicBlock *JumpMBB = JT->MBB; 10017 CurMF->insert(BBI, JumpMBB); 10018 10019 auto JumpProb = I->Prob; 10020 auto FallthroughProb = UnhandledProbs; 10021 10022 // If the default statement is a target of the jump table, we evenly 10023 // distribute the default probability to successors of CurMBB. Also 10024 // update the probability on the edge from JumpMBB to Fallthrough. 10025 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10026 SE = JumpMBB->succ_end(); 10027 SI != SE; ++SI) { 10028 if (*SI == DefaultMBB) { 10029 JumpProb += DefaultProb / 2; 10030 FallthroughProb -= DefaultProb / 2; 10031 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10032 JumpMBB->normalizeSuccProbs(); 10033 break; 10034 } 10035 } 10036 10037 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10038 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10039 CurMBB->normalizeSuccProbs(); 10040 10041 // The jump table header will be inserted in our current block, do the 10042 // range check, and fall through to our fallthrough block. 10043 JTH->HeaderBB = CurMBB; 10044 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10045 10046 // If we're in the right place, emit the jump table header right now. 10047 if (CurMBB == SwitchMBB) { 10048 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10049 JTH->Emitted = true; 10050 } 10051 break; 10052 } 10053 case CC_BitTests: { 10054 // FIXME: Optimize away range check based on pivot comparisons. 10055 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10056 10057 // The bit test blocks haven't been inserted yet; insert them here. 10058 for (BitTestCase &BTC : BTB->Cases) 10059 CurMF->insert(BBI, BTC.ThisBB); 10060 10061 // Fill in fields of the BitTestBlock. 10062 BTB->Parent = CurMBB; 10063 BTB->Default = Fallthrough; 10064 10065 BTB->DefaultProb = UnhandledProbs; 10066 // If the cases in bit test don't form a contiguous range, we evenly 10067 // distribute the probability on the edge to Fallthrough to two 10068 // successors of CurMBB. 10069 if (!BTB->ContiguousRange) { 10070 BTB->Prob += DefaultProb / 2; 10071 BTB->DefaultProb -= DefaultProb / 2; 10072 } 10073 10074 // If we're in the right place, emit the bit test header right now. 10075 if (CurMBB == SwitchMBB) { 10076 visitBitTestHeader(*BTB, SwitchMBB); 10077 BTB->Emitted = true; 10078 } 10079 break; 10080 } 10081 case CC_Range: { 10082 const Value *RHS, *LHS, *MHS; 10083 ISD::CondCode CC; 10084 if (I->Low == I->High) { 10085 // Check Cond == I->Low. 10086 CC = ISD::SETEQ; 10087 LHS = Cond; 10088 RHS=I->Low; 10089 MHS = nullptr; 10090 } else { 10091 // Check I->Low <= Cond <= I->High. 10092 CC = ISD::SETLE; 10093 LHS = I->Low; 10094 MHS = Cond; 10095 RHS = I->High; 10096 } 10097 10098 // The false probability is the sum of all unhandled cases. 10099 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10100 getCurSDLoc(), I->Prob, UnhandledProbs); 10101 10102 if (CurMBB == SwitchMBB) 10103 visitSwitchCase(CB, SwitchMBB); 10104 else 10105 SwitchCases.push_back(CB); 10106 10107 break; 10108 } 10109 } 10110 CurMBB = Fallthrough; 10111 } 10112 } 10113 10114 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10115 CaseClusterIt First, 10116 CaseClusterIt Last) { 10117 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10118 if (X.Prob != CC.Prob) 10119 return X.Prob > CC.Prob; 10120 10121 // Ties are broken by comparing the case value. 10122 return X.Low->getValue().slt(CC.Low->getValue()); 10123 }); 10124 } 10125 10126 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10127 const SwitchWorkListItem &W, 10128 Value *Cond, 10129 MachineBasicBlock *SwitchMBB) { 10130 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10131 "Clusters not sorted?"); 10132 10133 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10134 10135 // Balance the tree based on branch probabilities to create a near-optimal (in 10136 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10137 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10138 CaseClusterIt LastLeft = W.FirstCluster; 10139 CaseClusterIt FirstRight = W.LastCluster; 10140 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10141 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10142 10143 // Move LastLeft and FirstRight towards each other from opposite directions to 10144 // find a partitioning of the clusters which balances the probability on both 10145 // sides. If LeftProb and RightProb are equal, alternate which side is 10146 // taken to ensure 0-probability nodes are distributed evenly. 10147 unsigned I = 0; 10148 while (LastLeft + 1 < FirstRight) { 10149 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10150 LeftProb += (++LastLeft)->Prob; 10151 else 10152 RightProb += (--FirstRight)->Prob; 10153 I++; 10154 } 10155 10156 while (true) { 10157 // Our binary search tree differs from a typical BST in that ours can have up 10158 // to three values in each leaf. The pivot selection above doesn't take that 10159 // into account, which means the tree might require more nodes and be less 10160 // efficient. We compensate for this here. 10161 10162 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10163 unsigned NumRight = W.LastCluster - FirstRight + 1; 10164 10165 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10166 // If one side has less than 3 clusters, and the other has more than 3, 10167 // consider taking a cluster from the other side. 10168 10169 if (NumLeft < NumRight) { 10170 // Consider moving the first cluster on the right to the left side. 10171 CaseCluster &CC = *FirstRight; 10172 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10173 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10174 if (LeftSideRank <= RightSideRank) { 10175 // Moving the cluster to the left does not demote it. 10176 ++LastLeft; 10177 ++FirstRight; 10178 continue; 10179 } 10180 } else { 10181 assert(NumRight < NumLeft); 10182 // Consider moving the last element on the left to the right side. 10183 CaseCluster &CC = *LastLeft; 10184 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10185 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10186 if (RightSideRank <= LeftSideRank) { 10187 // Moving the cluster to the right does not demot it. 10188 --LastLeft; 10189 --FirstRight; 10190 continue; 10191 } 10192 } 10193 } 10194 break; 10195 } 10196 10197 assert(LastLeft + 1 == FirstRight); 10198 assert(LastLeft >= W.FirstCluster); 10199 assert(FirstRight <= W.LastCluster); 10200 10201 // Use the first element on the right as pivot since we will make less-than 10202 // comparisons against it. 10203 CaseClusterIt PivotCluster = FirstRight; 10204 assert(PivotCluster > W.FirstCluster); 10205 assert(PivotCluster <= W.LastCluster); 10206 10207 CaseClusterIt FirstLeft = W.FirstCluster; 10208 CaseClusterIt LastRight = W.LastCluster; 10209 10210 const ConstantInt *Pivot = PivotCluster->Low; 10211 10212 // New blocks will be inserted immediately after the current one. 10213 MachineFunction::iterator BBI(W.MBB); 10214 ++BBI; 10215 10216 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10217 // we can branch to its destination directly if it's squeezed exactly in 10218 // between the known lower bound and Pivot - 1. 10219 MachineBasicBlock *LeftMBB; 10220 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10221 FirstLeft->Low == W.GE && 10222 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10223 LeftMBB = FirstLeft->MBB; 10224 } else { 10225 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10226 FuncInfo.MF->insert(BBI, LeftMBB); 10227 WorkList.push_back( 10228 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10229 // Put Cond in a virtual register to make it available from the new blocks. 10230 ExportFromCurrentBlock(Cond); 10231 } 10232 10233 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10234 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10235 // directly if RHS.High equals the current upper bound. 10236 MachineBasicBlock *RightMBB; 10237 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10238 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10239 RightMBB = FirstRight->MBB; 10240 } else { 10241 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10242 FuncInfo.MF->insert(BBI, RightMBB); 10243 WorkList.push_back( 10244 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10245 // Put Cond in a virtual register to make it available from the new blocks. 10246 ExportFromCurrentBlock(Cond); 10247 } 10248 10249 // Create the CaseBlock record that will be used to lower the branch. 10250 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10251 getCurSDLoc(), LeftProb, RightProb); 10252 10253 if (W.MBB == SwitchMBB) 10254 visitSwitchCase(CB, SwitchMBB); 10255 else 10256 SwitchCases.push_back(CB); 10257 } 10258 10259 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10260 // from the swith statement. 10261 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10262 BranchProbability PeeledCaseProb) { 10263 if (PeeledCaseProb == BranchProbability::getOne()) 10264 return BranchProbability::getZero(); 10265 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10266 10267 uint32_t Numerator = CaseProb.getNumerator(); 10268 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10269 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10270 } 10271 10272 // Try to peel the top probability case if it exceeds the threshold. 10273 // Return current MachineBasicBlock for the switch statement if the peeling 10274 // does not occur. 10275 // If the peeling is performed, return the newly created MachineBasicBlock 10276 // for the peeled switch statement. Also update Clusters to remove the peeled 10277 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10278 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10279 const SwitchInst &SI, CaseClusterVector &Clusters, 10280 BranchProbability &PeeledCaseProb) { 10281 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10282 // Don't perform if there is only one cluster or optimizing for size. 10283 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10284 TM.getOptLevel() == CodeGenOpt::None || 10285 SwitchMBB->getParent()->getFunction().optForMinSize()) 10286 return SwitchMBB; 10287 10288 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10289 unsigned PeeledCaseIndex = 0; 10290 bool SwitchPeeled = false; 10291 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10292 CaseCluster &CC = Clusters[Index]; 10293 if (CC.Prob < TopCaseProb) 10294 continue; 10295 TopCaseProb = CC.Prob; 10296 PeeledCaseIndex = Index; 10297 SwitchPeeled = true; 10298 } 10299 if (!SwitchPeeled) 10300 return SwitchMBB; 10301 10302 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10303 << TopCaseProb << "\n"); 10304 10305 // Record the MBB for the peeled switch statement. 10306 MachineFunction::iterator BBI(SwitchMBB); 10307 ++BBI; 10308 MachineBasicBlock *PeeledSwitchMBB = 10309 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10310 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10311 10312 ExportFromCurrentBlock(SI.getCondition()); 10313 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10314 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10315 nullptr, nullptr, TopCaseProb.getCompl()}; 10316 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10317 10318 Clusters.erase(PeeledCaseIt); 10319 for (CaseCluster &CC : Clusters) { 10320 LLVM_DEBUG( 10321 dbgs() << "Scale the probablity for one cluster, before scaling: " 10322 << CC.Prob << "\n"); 10323 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10324 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10325 } 10326 PeeledCaseProb = TopCaseProb; 10327 return PeeledSwitchMBB; 10328 } 10329 10330 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10331 // Extract cases from the switch. 10332 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10333 CaseClusterVector Clusters; 10334 Clusters.reserve(SI.getNumCases()); 10335 for (auto I : SI.cases()) { 10336 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10337 const ConstantInt *CaseVal = I.getCaseValue(); 10338 BranchProbability Prob = 10339 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10340 : BranchProbability(1, SI.getNumCases() + 1); 10341 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10342 } 10343 10344 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10345 10346 // Cluster adjacent cases with the same destination. We do this at all 10347 // optimization levels because it's cheap to do and will make codegen faster 10348 // if there are many clusters. 10349 sortAndRangeify(Clusters); 10350 10351 if (TM.getOptLevel() != CodeGenOpt::None) { 10352 // Replace an unreachable default with the most popular destination. 10353 // FIXME: Exploit unreachable default more aggressively. 10354 bool UnreachableDefault = 10355 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10356 if (UnreachableDefault && !Clusters.empty()) { 10357 DenseMap<const BasicBlock *, unsigned> Popularity; 10358 unsigned MaxPop = 0; 10359 const BasicBlock *MaxBB = nullptr; 10360 for (auto I : SI.cases()) { 10361 const BasicBlock *BB = I.getCaseSuccessor(); 10362 if (++Popularity[BB] > MaxPop) { 10363 MaxPop = Popularity[BB]; 10364 MaxBB = BB; 10365 } 10366 } 10367 // Set new default. 10368 assert(MaxPop > 0 && MaxBB); 10369 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10370 10371 // Remove cases that were pointing to the destination that is now the 10372 // default. 10373 CaseClusterVector New; 10374 New.reserve(Clusters.size()); 10375 for (CaseCluster &CC : Clusters) { 10376 if (CC.MBB != DefaultMBB) 10377 New.push_back(CC); 10378 } 10379 Clusters = std::move(New); 10380 } 10381 } 10382 10383 // The branch probablity of the peeled case. 10384 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10385 MachineBasicBlock *PeeledSwitchMBB = 10386 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10387 10388 // If there is only the default destination, jump there directly. 10389 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10390 if (Clusters.empty()) { 10391 assert(PeeledSwitchMBB == SwitchMBB); 10392 SwitchMBB->addSuccessor(DefaultMBB); 10393 if (DefaultMBB != NextBlock(SwitchMBB)) { 10394 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10395 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10396 } 10397 return; 10398 } 10399 10400 findJumpTables(Clusters, &SI, DefaultMBB); 10401 findBitTestClusters(Clusters, &SI); 10402 10403 LLVM_DEBUG({ 10404 dbgs() << "Case clusters: "; 10405 for (const CaseCluster &C : Clusters) { 10406 if (C.Kind == CC_JumpTable) 10407 dbgs() << "JT:"; 10408 if (C.Kind == CC_BitTests) 10409 dbgs() << "BT:"; 10410 10411 C.Low->getValue().print(dbgs(), true); 10412 if (C.Low != C.High) { 10413 dbgs() << '-'; 10414 C.High->getValue().print(dbgs(), true); 10415 } 10416 dbgs() << ' '; 10417 } 10418 dbgs() << '\n'; 10419 }); 10420 10421 assert(!Clusters.empty()); 10422 SwitchWorkList WorkList; 10423 CaseClusterIt First = Clusters.begin(); 10424 CaseClusterIt Last = Clusters.end() - 1; 10425 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10426 // Scale the branchprobability for DefaultMBB if the peel occurs and 10427 // DefaultMBB is not replaced. 10428 if (PeeledCaseProb != BranchProbability::getZero() && 10429 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10430 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10431 WorkList.push_back( 10432 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10433 10434 while (!WorkList.empty()) { 10435 SwitchWorkListItem W = WorkList.back(); 10436 WorkList.pop_back(); 10437 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10438 10439 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10440 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10441 // For optimized builds, lower large range as a balanced binary tree. 10442 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10443 continue; 10444 } 10445 10446 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10447 } 10448 } 10449