xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 17c7f703620f5c788322c45408236a04332e5c8b)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
616 RegsForValue::RegsForValue() {}
617 
618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
837       }
838     }
839   }
840 }
841 
842 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
843                                const TargetLibraryInfo *li) {
844   AA = &aa;
845   GFI = gfi;
846   LibInfo = li;
847   DL = &DAG.getDataLayout();
848   Context = DAG.getContext();
849   LPadToCallSiteMap.clear();
850 }
851 
852 /// clear - Clear out the current SelectionDAG and the associated
853 /// state and prepare this SelectionDAGBuilder object to be used
854 /// for a new block. This doesn't clear out information about
855 /// additional blocks that are needed to complete switch lowering
856 /// or PHI node updating; that information is cleared out as it is
857 /// consumed.
858 void SelectionDAGBuilder::clear() {
859   NodeMap.clear();
860   UnusedArgNodeMap.clear();
861   PendingLoads.clear();
862   PendingExports.clear();
863   CurInst = nullptr;
864   HasTailCall = false;
865   SDNodeOrder = LowestSDNodeOrder;
866   StatepointLowering.clear();
867 }
868 
869 /// clearDanglingDebugInfo - Clear the dangling debug information
870 /// map. This function is separated from the clear so that debug
871 /// information that is dangling in a basic block can be properly
872 /// resolved in a different basic block. This allows the
873 /// SelectionDAG to resolve dangling debug information attached
874 /// to PHI nodes.
875 void SelectionDAGBuilder::clearDanglingDebugInfo() {
876   DanglingDebugInfoMap.clear();
877 }
878 
879 /// getRoot - Return the current virtual root of the Selection DAG,
880 /// flushing any PendingLoad items. This must be done before emitting
881 /// a store or any other node that may need to be ordered after any
882 /// prior load instructions.
883 ///
884 SDValue SelectionDAGBuilder::getRoot() {
885   if (PendingLoads.empty())
886     return DAG.getRoot();
887 
888   if (PendingLoads.size() == 1) {
889     SDValue Root = PendingLoads[0];
890     DAG.setRoot(Root);
891     PendingLoads.clear();
892     return Root;
893   }
894 
895   // Otherwise, we have to make a token factor node.
896   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
897                              PendingLoads);
898   PendingLoads.clear();
899   DAG.setRoot(Root);
900   return Root;
901 }
902 
903 /// getControlRoot - Similar to getRoot, but instead of flushing all the
904 /// PendingLoad items, flush all the PendingExports items. It is necessary
905 /// to do this before emitting a terminator instruction.
906 ///
907 SDValue SelectionDAGBuilder::getControlRoot() {
908   SDValue Root = DAG.getRoot();
909 
910   if (PendingExports.empty())
911     return Root;
912 
913   // Turn all of the CopyToReg chains into one factored node.
914   if (Root.getOpcode() != ISD::EntryToken) {
915     unsigned i = 0, e = PendingExports.size();
916     for (; i != e; ++i) {
917       assert(PendingExports[i].getNode()->getNumOperands() > 1);
918       if (PendingExports[i].getNode()->getOperand(0) == Root)
919         break;  // Don't add the root if we already indirectly depend on it.
920     }
921 
922     if (i == e)
923       PendingExports.push_back(Root);
924   }
925 
926   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
927                      PendingExports);
928   PendingExports.clear();
929   DAG.setRoot(Root);
930   return Root;
931 }
932 
933 void SelectionDAGBuilder::visit(const Instruction &I) {
934   // Set up outgoing PHI node register values before emitting the terminator.
935   if (isa<TerminatorInst>(&I)) {
936     HandlePHINodesInSuccessorBlocks(I.getParent());
937   }
938 
939   ++SDNodeOrder;
940 
941   CurInst = &I;
942 
943   visit(I.getOpcode(), I);
944 
945   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
946       !isStatepoint(&I)) // statepoints handle their exports internally
947     CopyToExportRegsIfNeeded(&I);
948 
949   CurInst = nullptr;
950 }
951 
952 void SelectionDAGBuilder::visitPHI(const PHINode &) {
953   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
954 }
955 
956 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
957   // Note: this doesn't use InstVisitor, because it has to work with
958   // ConstantExpr's in addition to instructions.
959   switch (Opcode) {
960   default: llvm_unreachable("Unknown instruction type encountered!");
961     // Build the switch statement using the Instruction.def file.
962 #define HANDLE_INST(NUM, OPCODE, CLASS) \
963     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
964 #include "llvm/IR/Instruction.def"
965   }
966 }
967 
968 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
969 // generate the debug data structures now that we've seen its definition.
970 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
971                                                    SDValue Val) {
972   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
973   if (DDI.getDI()) {
974     const DbgValueInst *DI = DDI.getDI();
975     DebugLoc dl = DDI.getdl();
976     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
977     DILocalVariable *Variable = DI->getVariable();
978     DIExpression *Expr = DI->getExpression();
979     assert(Variable->isValidLocationForIntrinsic(dl) &&
980            "Expected inlined-at fields to agree");
981     uint64_t Offset = DI->getOffset();
982     SDDbgValue *SDV;
983     if (Val.getNode()) {
984       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
985                                     Val)) {
986         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
987         DAG.AddDbgValue(SDV, Val.getNode(), false);
988       }
989     } else
990       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
991     DanglingDebugInfoMap[V] = DanglingDebugInfo();
992   }
993 }
994 
995 /// getCopyFromRegs - If there was virtual register allocated for the value V
996 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
997 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
998   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
999   SDValue Result;
1000 
1001   if (It != FuncInfo.ValueMap.end()) {
1002     unsigned InReg = It->second;
1003     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1004                      DAG.getDataLayout(), InReg, Ty);
1005     SDValue Chain = DAG.getEntryNode();
1006     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1007     resolveDanglingDebugInfo(V, Result);
1008   }
1009 
1010   return Result;
1011 }
1012 
1013 /// getValue - Return an SDValue for the given Value.
1014 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1015   // If we already have an SDValue for this value, use it. It's important
1016   // to do this first, so that we don't create a CopyFromReg if we already
1017   // have a regular SDValue.
1018   SDValue &N = NodeMap[V];
1019   if (N.getNode()) return N;
1020 
1021   // If there's a virtual register allocated and initialized for this
1022   // value, use it.
1023   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1024     return copyFromReg;
1025 
1026   // Otherwise create a new SDValue and remember it.
1027   SDValue Val = getValueImpl(V);
1028   NodeMap[V] = Val;
1029   resolveDanglingDebugInfo(V, Val);
1030   return Val;
1031 }
1032 
1033 // Return true if SDValue exists for the given Value
1034 bool SelectionDAGBuilder::findValue(const Value *V) const {
1035   return (NodeMap.find(V) != NodeMap.end()) ||
1036     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1037 }
1038 
1039 /// getNonRegisterValue - Return an SDValue for the given Value, but
1040 /// don't look in FuncInfo.ValueMap for a virtual register.
1041 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1042   // If we already have an SDValue for this value, use it.
1043   SDValue &N = NodeMap[V];
1044   if (N.getNode()) {
1045     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1046       // Remove the debug location from the node as the node is about to be used
1047       // in a location which may differ from the original debug location.  This
1048       // is relevant to Constant and ConstantFP nodes because they can appear
1049       // as constant expressions inside PHI nodes.
1050       N->setDebugLoc(DebugLoc());
1051     }
1052     return N;
1053   }
1054 
1055   // Otherwise create a new SDValue and remember it.
1056   SDValue Val = getValueImpl(V);
1057   NodeMap[V] = Val;
1058   resolveDanglingDebugInfo(V, Val);
1059   return Val;
1060 }
1061 
1062 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1063 /// Create an SDValue for the given value.
1064 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1066 
1067   if (const Constant *C = dyn_cast<Constant>(V)) {
1068     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1069 
1070     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1071       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1072 
1073     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1074       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1075 
1076     if (isa<ConstantPointerNull>(C)) {
1077       unsigned AS = V->getType()->getPointerAddressSpace();
1078       return DAG.getConstant(0, getCurSDLoc(),
1079                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1080     }
1081 
1082     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1083       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1084 
1085     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1086       return DAG.getUNDEF(VT);
1087 
1088     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1089       visit(CE->getOpcode(), *CE);
1090       SDValue N1 = NodeMap[V];
1091       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1092       return N1;
1093     }
1094 
1095     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1096       SmallVector<SDValue, 4> Constants;
1097       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1098            OI != OE; ++OI) {
1099         SDNode *Val = getValue(*OI).getNode();
1100         // If the operand is an empty aggregate, there are no values.
1101         if (!Val) continue;
1102         // Add each leaf value from the operand to the Constants list
1103         // to form a flattened list of all the values.
1104         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1105           Constants.push_back(SDValue(Val, i));
1106       }
1107 
1108       return DAG.getMergeValues(Constants, getCurSDLoc());
1109     }
1110 
1111     if (const ConstantDataSequential *CDS =
1112           dyn_cast<ConstantDataSequential>(C)) {
1113       SmallVector<SDValue, 4> Ops;
1114       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1115         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1116         // Add each leaf value from the operand to the Constants list
1117         // to form a flattened list of all the values.
1118         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1119           Ops.push_back(SDValue(Val, i));
1120       }
1121 
1122       if (isa<ArrayType>(CDS->getType()))
1123         return DAG.getMergeValues(Ops, getCurSDLoc());
1124       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1125                                       VT, Ops);
1126     }
1127 
1128     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1129       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1130              "Unknown struct or array constant!");
1131 
1132       SmallVector<EVT, 4> ValueVTs;
1133       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1134       unsigned NumElts = ValueVTs.size();
1135       if (NumElts == 0)
1136         return SDValue(); // empty struct
1137       SmallVector<SDValue, 4> Constants(NumElts);
1138       for (unsigned i = 0; i != NumElts; ++i) {
1139         EVT EltVT = ValueVTs[i];
1140         if (isa<UndefValue>(C))
1141           Constants[i] = DAG.getUNDEF(EltVT);
1142         else if (EltVT.isFloatingPoint())
1143           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1144         else
1145           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1146       }
1147 
1148       return DAG.getMergeValues(Constants, getCurSDLoc());
1149     }
1150 
1151     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1152       return DAG.getBlockAddress(BA, VT);
1153 
1154     VectorType *VecTy = cast<VectorType>(V->getType());
1155     unsigned NumElements = VecTy->getNumElements();
1156 
1157     // Now that we know the number and type of the elements, get that number of
1158     // elements into the Ops array based on what kind of constant it is.
1159     SmallVector<SDValue, 16> Ops;
1160     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1161       for (unsigned i = 0; i != NumElements; ++i)
1162         Ops.push_back(getValue(CV->getOperand(i)));
1163     } else {
1164       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1165       EVT EltVT =
1166           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1167 
1168       SDValue Op;
1169       if (EltVT.isFloatingPoint())
1170         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1171       else
1172         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1173       Ops.assign(NumElements, Op);
1174     }
1175 
1176     // Create a BUILD_VECTOR node.
1177     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1178   }
1179 
1180   // If this is a static alloca, generate it as the frameindex instead of
1181   // computation.
1182   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1183     DenseMap<const AllocaInst*, int>::iterator SI =
1184       FuncInfo.StaticAllocaMap.find(AI);
1185     if (SI != FuncInfo.StaticAllocaMap.end())
1186       return DAG.getFrameIndex(SI->second,
1187                                TLI.getPointerTy(DAG.getDataLayout()));
1188   }
1189 
1190   // If this is an instruction which fast-isel has deferred, select it now.
1191   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1192     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1193     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1194                      Inst->getType());
1195     SDValue Chain = DAG.getEntryNode();
1196     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1197   }
1198 
1199   llvm_unreachable("Can't get register for value!");
1200 }
1201 
1202 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1203   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1204   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1205   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1206   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1207   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1208   if (IsMSVCCXX || IsCoreCLR)
1209     CatchPadMBB->setIsEHFuncletEntry();
1210 
1211   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1212 }
1213 
1214 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1215   // Update machine-CFG edge.
1216   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1217   FuncInfo.MBB->addSuccessor(TargetMBB);
1218 
1219   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1220   bool IsSEH = isAsynchronousEHPersonality(Pers);
1221   if (IsSEH) {
1222     // If this is not a fall-through branch or optimizations are switched off,
1223     // emit the branch.
1224     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1225         TM.getOptLevel() == CodeGenOpt::None)
1226       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1227                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1228     return;
1229   }
1230 
1231   // Figure out the funclet membership for the catchret's successor.
1232   // This will be used by the FuncletLayout pass to determine how to order the
1233   // BB's.
1234   // A 'catchret' returns to the outer scope's color.
1235   Value *ParentPad = I.getCatchSwitchParentPad();
1236   const BasicBlock *SuccessorColor;
1237   if (isa<ConstantTokenNone>(ParentPad))
1238     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1239   else
1240     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1241   assert(SuccessorColor && "No parent funclet for catchret!");
1242   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1243   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1244 
1245   // Create the terminator node.
1246   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1247                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1248                             DAG.getBasicBlock(SuccessorColorMBB));
1249   DAG.setRoot(Ret);
1250 }
1251 
1252 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1253   // Don't emit any special code for the cleanuppad instruction. It just marks
1254   // the start of a funclet.
1255   FuncInfo.MBB->setIsEHFuncletEntry();
1256   FuncInfo.MBB->setIsCleanupFuncletEntry();
1257 }
1258 
1259 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1260 /// many places it could ultimately go. In the IR, we have a single unwind
1261 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1262 /// This function skips over imaginary basic blocks that hold catchswitch
1263 /// instructions, and finds all the "real" machine
1264 /// basic block destinations. As those destinations may not be successors of
1265 /// EHPadBB, here we also calculate the edge probability to those destinations.
1266 /// The passed-in Prob is the edge probability to EHPadBB.
1267 static void findUnwindDestinations(
1268     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1269     BranchProbability Prob,
1270     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1271         &UnwindDests) {
1272   EHPersonality Personality =
1273     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1274   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1275   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1276 
1277   while (EHPadBB) {
1278     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1279     BasicBlock *NewEHPadBB = nullptr;
1280     if (isa<LandingPadInst>(Pad)) {
1281       // Stop on landingpads. They are not funclets.
1282       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1283       break;
1284     } else if (isa<CleanupPadInst>(Pad)) {
1285       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1286       // personalities.
1287       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1288       UnwindDests.back().first->setIsEHFuncletEntry();
1289       break;
1290     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1291       // Add the catchpad handlers to the possible destinations.
1292       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1293         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1294         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1295         if (IsMSVCCXX || IsCoreCLR)
1296           UnwindDests.back().first->setIsEHFuncletEntry();
1297       }
1298       NewEHPadBB = CatchSwitch->getUnwindDest();
1299     } else {
1300       continue;
1301     }
1302 
1303     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1304     if (BPI && NewEHPadBB)
1305       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1306     EHPadBB = NewEHPadBB;
1307   }
1308 }
1309 
1310 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1311   // Update successor info.
1312   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1313   auto UnwindDest = I.getUnwindDest();
1314   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1315   BranchProbability UnwindDestProb =
1316       (BPI && UnwindDest)
1317           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1318           : BranchProbability::getZero();
1319   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1320   for (auto &UnwindDest : UnwindDests) {
1321     UnwindDest.first->setIsEHPad();
1322     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1323   }
1324   FuncInfo.MBB->normalizeSuccProbs();
1325 
1326   // Create the terminator node.
1327   SDValue Ret =
1328       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1329   DAG.setRoot(Ret);
1330 }
1331 
1332 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1333   report_fatal_error("visitCatchSwitch not yet implemented!");
1334 }
1335 
1336 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1337   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1338   auto &DL = DAG.getDataLayout();
1339   SDValue Chain = getControlRoot();
1340   SmallVector<ISD::OutputArg, 8> Outs;
1341   SmallVector<SDValue, 8> OutVals;
1342 
1343   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1344   // lower
1345   //
1346   //   %val = call <ty> @llvm.experimental.deoptimize()
1347   //   ret <ty> %val
1348   //
1349   // differently.
1350   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1351     LowerDeoptimizingReturn();
1352     return;
1353   }
1354 
1355   if (!FuncInfo.CanLowerReturn) {
1356     unsigned DemoteReg = FuncInfo.DemoteRegister;
1357     const Function *F = I.getParent()->getParent();
1358 
1359     // Emit a store of the return value through the virtual register.
1360     // Leave Outs empty so that LowerReturn won't try to load return
1361     // registers the usual way.
1362     SmallVector<EVT, 1> PtrValueVTs;
1363     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1364                     PtrValueVTs);
1365 
1366     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1367                                         DemoteReg, PtrValueVTs[0]);
1368     SDValue RetOp = getValue(I.getOperand(0));
1369 
1370     SmallVector<EVT, 4> ValueVTs;
1371     SmallVector<uint64_t, 4> Offsets;
1372     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1373     unsigned NumValues = ValueVTs.size();
1374 
1375     // An aggregate return value cannot wrap around the address space, so
1376     // offsets to its parts don't wrap either.
1377     SDNodeFlags Flags;
1378     Flags.setNoUnsignedWrap(true);
1379 
1380     SmallVector<SDValue, 4> Chains(NumValues);
1381     for (unsigned i = 0; i != NumValues; ++i) {
1382       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1383                                 RetPtr.getValueType(), RetPtr,
1384                                 DAG.getIntPtrConstant(Offsets[i],
1385                                                       getCurSDLoc()),
1386                                 &Flags);
1387       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1388                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1389                                // FIXME: better loc info would be nice.
1390                                Add, MachinePointerInfo());
1391     }
1392 
1393     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1394                         MVT::Other, Chains);
1395   } else if (I.getNumOperands() != 0) {
1396     SmallVector<EVT, 4> ValueVTs;
1397     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1398     unsigned NumValues = ValueVTs.size();
1399     if (NumValues) {
1400       SDValue RetOp = getValue(I.getOperand(0));
1401 
1402       const Function *F = I.getParent()->getParent();
1403 
1404       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1405       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1406                                           Attribute::SExt))
1407         ExtendKind = ISD::SIGN_EXTEND;
1408       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1409                                                Attribute::ZExt))
1410         ExtendKind = ISD::ZERO_EXTEND;
1411 
1412       LLVMContext &Context = F->getContext();
1413       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1414                                                       Attribute::InReg);
1415 
1416       for (unsigned j = 0; j != NumValues; ++j) {
1417         EVT VT = ValueVTs[j];
1418 
1419         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1420           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1421 
1422         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1423         MVT PartVT = TLI.getRegisterType(Context, VT);
1424         SmallVector<SDValue, 4> Parts(NumParts);
1425         getCopyToParts(DAG, getCurSDLoc(),
1426                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1427                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1428 
1429         // 'inreg' on function refers to return value
1430         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1431         if (RetInReg)
1432           Flags.setInReg();
1433 
1434         // Propagate extension type if any
1435         if (ExtendKind == ISD::SIGN_EXTEND)
1436           Flags.setSExt();
1437         else if (ExtendKind == ISD::ZERO_EXTEND)
1438           Flags.setZExt();
1439 
1440         for (unsigned i = 0; i < NumParts; ++i) {
1441           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1442                                         VT, /*isfixed=*/true, 0, 0));
1443           OutVals.push_back(Parts[i]);
1444         }
1445       }
1446     }
1447   }
1448 
1449   // Push in swifterror virtual register as the last element of Outs. This makes
1450   // sure swifterror virtual register will be returned in the swifterror
1451   // physical register.
1452   const Function *F = I.getParent()->getParent();
1453   if (TLI.supportSwiftError() &&
1454       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1455     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1456     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1457     Flags.setSwiftError();
1458     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1459                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1460                                   true /*isfixed*/, 1 /*origidx*/,
1461                                   0 /*partOffs*/));
1462     // Create SDNode for the swifterror virtual register.
1463     OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(
1464                                           FuncInfo.MBB, FuncInfo.SwiftErrorArg),
1465                                       EVT(TLI.getPointerTy(DL))));
1466   }
1467 
1468   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1469   CallingConv::ID CallConv =
1470     DAG.getMachineFunction().getFunction()->getCallingConv();
1471   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1472       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1473 
1474   // Verify that the target's LowerReturn behaved as expected.
1475   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1476          "LowerReturn didn't return a valid chain!");
1477 
1478   // Update the DAG with the new chain value resulting from return lowering.
1479   DAG.setRoot(Chain);
1480 }
1481 
1482 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1483 /// created for it, emit nodes to copy the value into the virtual
1484 /// registers.
1485 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1486   // Skip empty types
1487   if (V->getType()->isEmptyTy())
1488     return;
1489 
1490   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1491   if (VMI != FuncInfo.ValueMap.end()) {
1492     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1493     CopyValueToVirtualRegister(V, VMI->second);
1494   }
1495 }
1496 
1497 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1498 /// the current basic block, add it to ValueMap now so that we'll get a
1499 /// CopyTo/FromReg.
1500 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1501   // No need to export constants.
1502   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1503 
1504   // Already exported?
1505   if (FuncInfo.isExportedInst(V)) return;
1506 
1507   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1508   CopyValueToVirtualRegister(V, Reg);
1509 }
1510 
1511 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1512                                                      const BasicBlock *FromBB) {
1513   // The operands of the setcc have to be in this block.  We don't know
1514   // how to export them from some other block.
1515   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1516     // Can export from current BB.
1517     if (VI->getParent() == FromBB)
1518       return true;
1519 
1520     // Is already exported, noop.
1521     return FuncInfo.isExportedInst(V);
1522   }
1523 
1524   // If this is an argument, we can export it if the BB is the entry block or
1525   // if it is already exported.
1526   if (isa<Argument>(V)) {
1527     if (FromBB == &FromBB->getParent()->getEntryBlock())
1528       return true;
1529 
1530     // Otherwise, can only export this if it is already exported.
1531     return FuncInfo.isExportedInst(V);
1532   }
1533 
1534   // Otherwise, constants can always be exported.
1535   return true;
1536 }
1537 
1538 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1539 BranchProbability
1540 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1541                                         const MachineBasicBlock *Dst) const {
1542   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1543   const BasicBlock *SrcBB = Src->getBasicBlock();
1544   const BasicBlock *DstBB = Dst->getBasicBlock();
1545   if (!BPI) {
1546     // If BPI is not available, set the default probability as 1 / N, where N is
1547     // the number of successors.
1548     auto SuccSize = std::max<uint32_t>(
1549         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1550     return BranchProbability(1, SuccSize);
1551   }
1552   return BPI->getEdgeProbability(SrcBB, DstBB);
1553 }
1554 
1555 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1556                                                MachineBasicBlock *Dst,
1557                                                BranchProbability Prob) {
1558   if (!FuncInfo.BPI)
1559     Src->addSuccessorWithoutProb(Dst);
1560   else {
1561     if (Prob.isUnknown())
1562       Prob = getEdgeProbability(Src, Dst);
1563     Src->addSuccessor(Dst, Prob);
1564   }
1565 }
1566 
1567 static bool InBlock(const Value *V, const BasicBlock *BB) {
1568   if (const Instruction *I = dyn_cast<Instruction>(V))
1569     return I->getParent() == BB;
1570   return true;
1571 }
1572 
1573 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1574 /// This function emits a branch and is used at the leaves of an OR or an
1575 /// AND operator tree.
1576 ///
1577 void
1578 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1579                                                   MachineBasicBlock *TBB,
1580                                                   MachineBasicBlock *FBB,
1581                                                   MachineBasicBlock *CurBB,
1582                                                   MachineBasicBlock *SwitchBB,
1583                                                   BranchProbability TProb,
1584                                                   BranchProbability FProb) {
1585   const BasicBlock *BB = CurBB->getBasicBlock();
1586 
1587   // If the leaf of the tree is a comparison, merge the condition into
1588   // the caseblock.
1589   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1590     // The operands of the cmp have to be in this block.  We don't know
1591     // how to export them from some other block.  If this is the first block
1592     // of the sequence, no exporting is needed.
1593     if (CurBB == SwitchBB ||
1594         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1595          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1596       ISD::CondCode Condition;
1597       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1598         Condition = getICmpCondCode(IC->getPredicate());
1599       } else {
1600         const FCmpInst *FC = cast<FCmpInst>(Cond);
1601         Condition = getFCmpCondCode(FC->getPredicate());
1602         if (TM.Options.NoNaNsFPMath)
1603           Condition = getFCmpCodeWithoutNaN(Condition);
1604       }
1605 
1606       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1607                    TBB, FBB, CurBB, TProb, FProb);
1608       SwitchCases.push_back(CB);
1609       return;
1610     }
1611   }
1612 
1613   // Create a CaseBlock record representing this branch.
1614   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1615                nullptr, TBB, FBB, CurBB, TProb, FProb);
1616   SwitchCases.push_back(CB);
1617 }
1618 
1619 /// FindMergedConditions - If Cond is an expression like
1620 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1621                                                MachineBasicBlock *TBB,
1622                                                MachineBasicBlock *FBB,
1623                                                MachineBasicBlock *CurBB,
1624                                                MachineBasicBlock *SwitchBB,
1625                                                Instruction::BinaryOps Opc,
1626                                                BranchProbability TProb,
1627                                                BranchProbability FProb) {
1628   // If this node is not part of the or/and tree, emit it as a branch.
1629   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1630   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1631       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1632       BOp->getParent() != CurBB->getBasicBlock() ||
1633       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1634       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1635     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1636                                  TProb, FProb);
1637     return;
1638   }
1639 
1640   //  Create TmpBB after CurBB.
1641   MachineFunction::iterator BBI(CurBB);
1642   MachineFunction &MF = DAG.getMachineFunction();
1643   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1644   CurBB->getParent()->insert(++BBI, TmpBB);
1645 
1646   if (Opc == Instruction::Or) {
1647     // Codegen X | Y as:
1648     // BB1:
1649     //   jmp_if_X TBB
1650     //   jmp TmpBB
1651     // TmpBB:
1652     //   jmp_if_Y TBB
1653     //   jmp FBB
1654     //
1655 
1656     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1657     // The requirement is that
1658     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1659     //     = TrueProb for original BB.
1660     // Assuming the original probabilities are A and B, one choice is to set
1661     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1662     // A/(1+B) and 2B/(1+B). This choice assumes that
1663     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1664     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1665     // TmpBB, but the math is more complicated.
1666 
1667     auto NewTrueProb = TProb / 2;
1668     auto NewFalseProb = TProb / 2 + FProb;
1669     // Emit the LHS condition.
1670     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1671                          NewTrueProb, NewFalseProb);
1672 
1673     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1674     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1675     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1676     // Emit the RHS condition into TmpBB.
1677     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1678                          Probs[0], Probs[1]);
1679   } else {
1680     assert(Opc == Instruction::And && "Unknown merge op!");
1681     // Codegen X & Y as:
1682     // BB1:
1683     //   jmp_if_X TmpBB
1684     //   jmp FBB
1685     // TmpBB:
1686     //   jmp_if_Y TBB
1687     //   jmp FBB
1688     //
1689     //  This requires creation of TmpBB after CurBB.
1690 
1691     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1692     // The requirement is that
1693     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1694     //     = FalseProb for original BB.
1695     // Assuming the original probabilities are A and B, one choice is to set
1696     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1697     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1698     // TrueProb for BB1 * FalseProb for TmpBB.
1699 
1700     auto NewTrueProb = TProb + FProb / 2;
1701     auto NewFalseProb = FProb / 2;
1702     // Emit the LHS condition.
1703     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1704                          NewTrueProb, NewFalseProb);
1705 
1706     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1707     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1708     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1709     // Emit the RHS condition into TmpBB.
1710     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1711                          Probs[0], Probs[1]);
1712   }
1713 }
1714 
1715 /// If the set of cases should be emitted as a series of branches, return true.
1716 /// If we should emit this as a bunch of and/or'd together conditions, return
1717 /// false.
1718 bool
1719 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1720   if (Cases.size() != 2) return true;
1721 
1722   // If this is two comparisons of the same values or'd or and'd together, they
1723   // will get folded into a single comparison, so don't emit two blocks.
1724   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1725        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1726       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1727        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1728     return false;
1729   }
1730 
1731   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1732   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1733   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1734       Cases[0].CC == Cases[1].CC &&
1735       isa<Constant>(Cases[0].CmpRHS) &&
1736       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1737     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1738       return false;
1739     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1740       return false;
1741   }
1742 
1743   return true;
1744 }
1745 
1746 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1747   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1748 
1749   // Update machine-CFG edges.
1750   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1751 
1752   if (I.isUnconditional()) {
1753     // Update machine-CFG edges.
1754     BrMBB->addSuccessor(Succ0MBB);
1755 
1756     // If this is not a fall-through branch or optimizations are switched off,
1757     // emit the branch.
1758     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1759       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1760                               MVT::Other, getControlRoot(),
1761                               DAG.getBasicBlock(Succ0MBB)));
1762 
1763     return;
1764   }
1765 
1766   // If this condition is one of the special cases we handle, do special stuff
1767   // now.
1768   const Value *CondVal = I.getCondition();
1769   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1770 
1771   // If this is a series of conditions that are or'd or and'd together, emit
1772   // this as a sequence of branches instead of setcc's with and/or operations.
1773   // As long as jumps are not expensive, this should improve performance.
1774   // For example, instead of something like:
1775   //     cmp A, B
1776   //     C = seteq
1777   //     cmp D, E
1778   //     F = setle
1779   //     or C, F
1780   //     jnz foo
1781   // Emit:
1782   //     cmp A, B
1783   //     je foo
1784   //     cmp D, E
1785   //     jle foo
1786   //
1787   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1788     Instruction::BinaryOps Opcode = BOp->getOpcode();
1789     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1790         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1791         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1792       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1793                            Opcode,
1794                            getEdgeProbability(BrMBB, Succ0MBB),
1795                            getEdgeProbability(BrMBB, Succ1MBB));
1796       // If the compares in later blocks need to use values not currently
1797       // exported from this block, export them now.  This block should always
1798       // be the first entry.
1799       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1800 
1801       // Allow some cases to be rejected.
1802       if (ShouldEmitAsBranches(SwitchCases)) {
1803         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1804           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1805           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1806         }
1807 
1808         // Emit the branch for this block.
1809         visitSwitchCase(SwitchCases[0], BrMBB);
1810         SwitchCases.erase(SwitchCases.begin());
1811         return;
1812       }
1813 
1814       // Okay, we decided not to do this, remove any inserted MBB's and clear
1815       // SwitchCases.
1816       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1817         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1818 
1819       SwitchCases.clear();
1820     }
1821   }
1822 
1823   // Create a CaseBlock record representing this branch.
1824   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1825                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1826 
1827   // Use visitSwitchCase to actually insert the fast branch sequence for this
1828   // cond branch.
1829   visitSwitchCase(CB, BrMBB);
1830 }
1831 
1832 /// visitSwitchCase - Emits the necessary code to represent a single node in
1833 /// the binary search tree resulting from lowering a switch instruction.
1834 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1835                                           MachineBasicBlock *SwitchBB) {
1836   SDValue Cond;
1837   SDValue CondLHS = getValue(CB.CmpLHS);
1838   SDLoc dl = getCurSDLoc();
1839 
1840   // Build the setcc now.
1841   if (!CB.CmpMHS) {
1842     // Fold "(X == true)" to X and "(X == false)" to !X to
1843     // handle common cases produced by branch lowering.
1844     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1845         CB.CC == ISD::SETEQ)
1846       Cond = CondLHS;
1847     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1848              CB.CC == ISD::SETEQ) {
1849       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1850       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1851     } else
1852       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1853   } else {
1854     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1855 
1856     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1857     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1858 
1859     SDValue CmpOp = getValue(CB.CmpMHS);
1860     EVT VT = CmpOp.getValueType();
1861 
1862     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1863       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1864                           ISD::SETLE);
1865     } else {
1866       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1867                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1868       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1869                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1870     }
1871   }
1872 
1873   // Update successor info
1874   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1875   // TrueBB and FalseBB are always different unless the incoming IR is
1876   // degenerate. This only happens when running llc on weird IR.
1877   if (CB.TrueBB != CB.FalseBB)
1878     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1879   SwitchBB->normalizeSuccProbs();
1880 
1881   // If the lhs block is the next block, invert the condition so that we can
1882   // fall through to the lhs instead of the rhs block.
1883   if (CB.TrueBB == NextBlock(SwitchBB)) {
1884     std::swap(CB.TrueBB, CB.FalseBB);
1885     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1886     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1887   }
1888 
1889   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1890                                MVT::Other, getControlRoot(), Cond,
1891                                DAG.getBasicBlock(CB.TrueBB));
1892 
1893   // Insert the false branch. Do this even if it's a fall through branch,
1894   // this makes it easier to do DAG optimizations which require inverting
1895   // the branch condition.
1896   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1897                        DAG.getBasicBlock(CB.FalseBB));
1898 
1899   DAG.setRoot(BrCond);
1900 }
1901 
1902 /// visitJumpTable - Emit JumpTable node in the current MBB
1903 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1904   // Emit the code for the jump table
1905   assert(JT.Reg != -1U && "Should lower JT Header first!");
1906   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1907   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1908                                      JT.Reg, PTy);
1909   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1910   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1911                                     MVT::Other, Index.getValue(1),
1912                                     Table, Index);
1913   DAG.setRoot(BrJumpTable);
1914 }
1915 
1916 /// visitJumpTableHeader - This function emits necessary code to produce index
1917 /// in the JumpTable from switch case.
1918 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1919                                                JumpTableHeader &JTH,
1920                                                MachineBasicBlock *SwitchBB) {
1921   SDLoc dl = getCurSDLoc();
1922 
1923   // Subtract the lowest switch case value from the value being switched on and
1924   // conditional branch to default mbb if the result is greater than the
1925   // difference between smallest and largest cases.
1926   SDValue SwitchOp = getValue(JTH.SValue);
1927   EVT VT = SwitchOp.getValueType();
1928   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1929                             DAG.getConstant(JTH.First, dl, VT));
1930 
1931   // The SDNode we just created, which holds the value being switched on minus
1932   // the smallest case value, needs to be copied to a virtual register so it
1933   // can be used as an index into the jump table in a subsequent basic block.
1934   // This value may be smaller or larger than the target's pointer type, and
1935   // therefore require extension or truncating.
1936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1937   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1938 
1939   unsigned JumpTableReg =
1940       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1941   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1942                                     JumpTableReg, SwitchOp);
1943   JT.Reg = JumpTableReg;
1944 
1945   // Emit the range check for the jump table, and branch to the default block
1946   // for the switch statement if the value being switched on exceeds the largest
1947   // case in the switch.
1948   SDValue CMP = DAG.getSetCC(
1949       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1950                                  Sub.getValueType()),
1951       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1952 
1953   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1954                                MVT::Other, CopyTo, CMP,
1955                                DAG.getBasicBlock(JT.Default));
1956 
1957   // Avoid emitting unnecessary branches to the next block.
1958   if (JT.MBB != NextBlock(SwitchBB))
1959     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1960                          DAG.getBasicBlock(JT.MBB));
1961 
1962   DAG.setRoot(BrCond);
1963 }
1964 
1965 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
1966 /// variable if there exists one.
1967 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
1968                                  SDValue &Chain) {
1969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1970   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1971   MachineFunction &MF = DAG.getMachineFunction();
1972   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
1973   MachineSDNode *Node =
1974       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
1975   if (Global) {
1976     MachinePointerInfo MPInfo(Global);
1977     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
1978     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1979                  MachineMemOperand::MODereferenceable;
1980     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
1981                                        DAG.getEVTAlignment(PtrTy));
1982     Node->setMemRefs(MemRefs, MemRefs + 1);
1983   }
1984   return SDValue(Node, 0);
1985 }
1986 
1987 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1988 /// tail spliced into a stack protector check success bb.
1989 ///
1990 /// For a high level explanation of how this fits into the stack protector
1991 /// generation see the comment on the declaration of class
1992 /// StackProtectorDescriptor.
1993 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1994                                                   MachineBasicBlock *ParentBB) {
1995 
1996   // First create the loads to the guard/stack slot for the comparison.
1997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1998   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1999 
2000   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2001   int FI = MFI.getStackProtectorIndex();
2002 
2003   SDValue Guard;
2004   SDLoc dl = getCurSDLoc();
2005   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2006   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2007   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2008 
2009   // Generate code to load the content of the guard slot.
2010   SDValue StackSlot = DAG.getLoad(
2011       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2012       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2013       MachineMemOperand::MOVolatile);
2014 
2015   // Retrieve guard check function, nullptr if instrumentation is inlined.
2016   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2017     // The target provides a guard check function to validate the guard value.
2018     // Generate a call to that function with the content of the guard slot as
2019     // argument.
2020     auto *Fn = cast<Function>(GuardCheck);
2021     FunctionType *FnTy = Fn->getFunctionType();
2022     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2023 
2024     TargetLowering::ArgListTy Args;
2025     TargetLowering::ArgListEntry Entry;
2026     Entry.Node = StackSlot;
2027     Entry.Ty = FnTy->getParamType(0);
2028     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2029       Entry.isInReg = true;
2030     Args.push_back(Entry);
2031 
2032     TargetLowering::CallLoweringInfo CLI(DAG);
2033     CLI.setDebugLoc(getCurSDLoc())
2034       .setChain(DAG.getEntryNode())
2035       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2036                  getValue(GuardCheck), std::move(Args));
2037 
2038     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2039     DAG.setRoot(Result.second);
2040     return;
2041   }
2042 
2043   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2044   // Otherwise, emit a volatile load to retrieve the stack guard value.
2045   SDValue Chain = DAG.getEntryNode();
2046   if (TLI.useLoadStackGuardNode()) {
2047     Guard = getLoadStackGuard(DAG, dl, Chain);
2048   } else {
2049     const Value *IRGuard = TLI.getSDagStackGuard(M);
2050     SDValue GuardPtr = getValue(IRGuard);
2051 
2052     Guard =
2053         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2054                     Align, MachineMemOperand::MOVolatile);
2055   }
2056 
2057   // Perform the comparison via a subtract/getsetcc.
2058   EVT VT = Guard.getValueType();
2059   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2060 
2061   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2062                                                         *DAG.getContext(),
2063                                                         Sub.getValueType()),
2064                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2065 
2066   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2067   // branch to failure MBB.
2068   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2069                                MVT::Other, StackSlot.getOperand(0),
2070                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2071   // Otherwise branch to success MBB.
2072   SDValue Br = DAG.getNode(ISD::BR, dl,
2073                            MVT::Other, BrCond,
2074                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2075 
2076   DAG.setRoot(Br);
2077 }
2078 
2079 /// Codegen the failure basic block for a stack protector check.
2080 ///
2081 /// A failure stack protector machine basic block consists simply of a call to
2082 /// __stack_chk_fail().
2083 ///
2084 /// For a high level explanation of how this fits into the stack protector
2085 /// generation see the comment on the declaration of class
2086 /// StackProtectorDescriptor.
2087 void
2088 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2090   SDValue Chain =
2091       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2092                       None, false, getCurSDLoc(), false, false).second;
2093   DAG.setRoot(Chain);
2094 }
2095 
2096 /// visitBitTestHeader - This function emits necessary code to produce value
2097 /// suitable for "bit tests"
2098 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2099                                              MachineBasicBlock *SwitchBB) {
2100   SDLoc dl = getCurSDLoc();
2101 
2102   // Subtract the minimum value
2103   SDValue SwitchOp = getValue(B.SValue);
2104   EVT VT = SwitchOp.getValueType();
2105   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2106                             DAG.getConstant(B.First, dl, VT));
2107 
2108   // Check range
2109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2110   SDValue RangeCmp = DAG.getSetCC(
2111       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2112                                  Sub.getValueType()),
2113       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2114 
2115   // Determine the type of the test operands.
2116   bool UsePtrType = false;
2117   if (!TLI.isTypeLegal(VT))
2118     UsePtrType = true;
2119   else {
2120     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2121       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2122         // Switch table case range are encoded into series of masks.
2123         // Just use pointer type, it's guaranteed to fit.
2124         UsePtrType = true;
2125         break;
2126       }
2127   }
2128   if (UsePtrType) {
2129     VT = TLI.getPointerTy(DAG.getDataLayout());
2130     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2131   }
2132 
2133   B.RegVT = VT.getSimpleVT();
2134   B.Reg = FuncInfo.CreateReg(B.RegVT);
2135   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2136 
2137   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2138 
2139   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2140   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2141   SwitchBB->normalizeSuccProbs();
2142 
2143   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2144                                 MVT::Other, CopyTo, RangeCmp,
2145                                 DAG.getBasicBlock(B.Default));
2146 
2147   // Avoid emitting unnecessary branches to the next block.
2148   if (MBB != NextBlock(SwitchBB))
2149     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2150                           DAG.getBasicBlock(MBB));
2151 
2152   DAG.setRoot(BrRange);
2153 }
2154 
2155 /// visitBitTestCase - this function produces one "bit test"
2156 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2157                                            MachineBasicBlock* NextMBB,
2158                                            BranchProbability BranchProbToNext,
2159                                            unsigned Reg,
2160                                            BitTestCase &B,
2161                                            MachineBasicBlock *SwitchBB) {
2162   SDLoc dl = getCurSDLoc();
2163   MVT VT = BB.RegVT;
2164   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2165   SDValue Cmp;
2166   unsigned PopCount = countPopulation(B.Mask);
2167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2168   if (PopCount == 1) {
2169     // Testing for a single bit; just compare the shift count with what it
2170     // would need to be to shift a 1 bit in that position.
2171     Cmp = DAG.getSetCC(
2172         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2173         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2174         ISD::SETEQ);
2175   } else if (PopCount == BB.Range) {
2176     // There is only one zero bit in the range, test for it directly.
2177     Cmp = DAG.getSetCC(
2178         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2179         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2180         ISD::SETNE);
2181   } else {
2182     // Make desired shift
2183     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2184                                     DAG.getConstant(1, dl, VT), ShiftOp);
2185 
2186     // Emit bit tests and jumps
2187     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2188                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2189     Cmp = DAG.getSetCC(
2190         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2191         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2192   }
2193 
2194   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2195   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2196   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2197   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2198   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2199   // one as they are relative probabilities (and thus work more like weights),
2200   // and hence we need to normalize them to let the sum of them become one.
2201   SwitchBB->normalizeSuccProbs();
2202 
2203   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2204                               MVT::Other, getControlRoot(),
2205                               Cmp, DAG.getBasicBlock(B.TargetBB));
2206 
2207   // Avoid emitting unnecessary branches to the next block.
2208   if (NextMBB != NextBlock(SwitchBB))
2209     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2210                         DAG.getBasicBlock(NextMBB));
2211 
2212   DAG.setRoot(BrAnd);
2213 }
2214 
2215 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2216   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2217 
2218   // Retrieve successors. Look through artificial IR level blocks like
2219   // catchswitch for successors.
2220   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2221   const BasicBlock *EHPadBB = I.getSuccessor(1);
2222 
2223   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2224   // have to do anything here to lower funclet bundles.
2225   assert(!I.hasOperandBundlesOtherThan(
2226              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2227          "Cannot lower invokes with arbitrary operand bundles yet!");
2228 
2229   const Value *Callee(I.getCalledValue());
2230   const Function *Fn = dyn_cast<Function>(Callee);
2231   if (isa<InlineAsm>(Callee))
2232     visitInlineAsm(&I);
2233   else if (Fn && Fn->isIntrinsic()) {
2234     switch (Fn->getIntrinsicID()) {
2235     default:
2236       llvm_unreachable("Cannot invoke this intrinsic");
2237     case Intrinsic::donothing:
2238       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2239       break;
2240     case Intrinsic::experimental_patchpoint_void:
2241     case Intrinsic::experimental_patchpoint_i64:
2242       visitPatchpoint(&I, EHPadBB);
2243       break;
2244     case Intrinsic::experimental_gc_statepoint:
2245       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2246       break;
2247     }
2248   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2249     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2250     // Eventually we will support lowering the @llvm.experimental.deoptimize
2251     // intrinsic, and right now there are no plans to support other intrinsics
2252     // with deopt state.
2253     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2254   } else {
2255     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2256   }
2257 
2258   // If the value of the invoke is used outside of its defining block, make it
2259   // available as a virtual register.
2260   // We already took care of the exported value for the statepoint instruction
2261   // during call to the LowerStatepoint.
2262   if (!isStatepoint(I)) {
2263     CopyToExportRegsIfNeeded(&I);
2264   }
2265 
2266   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2267   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2268   BranchProbability EHPadBBProb =
2269       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2270           : BranchProbability::getZero();
2271   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2272 
2273   // Update successor info.
2274   addSuccessorWithProb(InvokeMBB, Return);
2275   for (auto &UnwindDest : UnwindDests) {
2276     UnwindDest.first->setIsEHPad();
2277     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2278   }
2279   InvokeMBB->normalizeSuccProbs();
2280 
2281   // Drop into normal successor.
2282   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2283                           MVT::Other, getControlRoot(),
2284                           DAG.getBasicBlock(Return)));
2285 }
2286 
2287 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2288   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2289 }
2290 
2291 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2292   assert(FuncInfo.MBB->isEHPad() &&
2293          "Call to landingpad not in landing pad!");
2294 
2295   MachineBasicBlock *MBB = FuncInfo.MBB;
2296   addLandingPadInfo(LP, *MBB);
2297 
2298   // If there aren't registers to copy the values into (e.g., during SjLj
2299   // exceptions), then don't bother to create these DAG nodes.
2300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2301   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2302   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2303       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2304     return;
2305 
2306   // If landingpad's return type is token type, we don't create DAG nodes
2307   // for its exception pointer and selector value. The extraction of exception
2308   // pointer or selector value from token type landingpads is not currently
2309   // supported.
2310   if (LP.getType()->isTokenTy())
2311     return;
2312 
2313   SmallVector<EVT, 2> ValueVTs;
2314   SDLoc dl = getCurSDLoc();
2315   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2316   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2317 
2318   // Get the two live-in registers as SDValues. The physregs have already been
2319   // copied into virtual registers.
2320   SDValue Ops[2];
2321   if (FuncInfo.ExceptionPointerVirtReg) {
2322     Ops[0] = DAG.getZExtOrTrunc(
2323         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2324                            FuncInfo.ExceptionPointerVirtReg,
2325                            TLI.getPointerTy(DAG.getDataLayout())),
2326         dl, ValueVTs[0]);
2327   } else {
2328     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2329   }
2330   Ops[1] = DAG.getZExtOrTrunc(
2331       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2332                          FuncInfo.ExceptionSelectorVirtReg,
2333                          TLI.getPointerTy(DAG.getDataLayout())),
2334       dl, ValueVTs[1]);
2335 
2336   // Merge into one.
2337   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2338                             DAG.getVTList(ValueVTs), Ops);
2339   setValue(&LP, Res);
2340 }
2341 
2342 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2343 #ifndef NDEBUG
2344   for (const CaseCluster &CC : Clusters)
2345     assert(CC.Low == CC.High && "Input clusters must be single-case");
2346 #endif
2347 
2348   std::sort(Clusters.begin(), Clusters.end(),
2349             [](const CaseCluster &a, const CaseCluster &b) {
2350     return a.Low->getValue().slt(b.Low->getValue());
2351   });
2352 
2353   // Merge adjacent clusters with the same destination.
2354   const unsigned N = Clusters.size();
2355   unsigned DstIndex = 0;
2356   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2357     CaseCluster &CC = Clusters[SrcIndex];
2358     const ConstantInt *CaseVal = CC.Low;
2359     MachineBasicBlock *Succ = CC.MBB;
2360 
2361     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2362         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2363       // If this case has the same successor and is a neighbour, merge it into
2364       // the previous cluster.
2365       Clusters[DstIndex - 1].High = CaseVal;
2366       Clusters[DstIndex - 1].Prob += CC.Prob;
2367     } else {
2368       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2369                    sizeof(Clusters[SrcIndex]));
2370     }
2371   }
2372   Clusters.resize(DstIndex);
2373 }
2374 
2375 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2376                                            MachineBasicBlock *Last) {
2377   // Update JTCases.
2378   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2379     if (JTCases[i].first.HeaderBB == First)
2380       JTCases[i].first.HeaderBB = Last;
2381 
2382   // Update BitTestCases.
2383   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2384     if (BitTestCases[i].Parent == First)
2385       BitTestCases[i].Parent = Last;
2386 }
2387 
2388 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2389   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2390 
2391   // Update machine-CFG edges with unique successors.
2392   SmallSet<BasicBlock*, 32> Done;
2393   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2394     BasicBlock *BB = I.getSuccessor(i);
2395     bool Inserted = Done.insert(BB).second;
2396     if (!Inserted)
2397         continue;
2398 
2399     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2400     addSuccessorWithProb(IndirectBrMBB, Succ);
2401   }
2402   IndirectBrMBB->normalizeSuccProbs();
2403 
2404   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2405                           MVT::Other, getControlRoot(),
2406                           getValue(I.getAddress())));
2407 }
2408 
2409 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2410   if (DAG.getTarget().Options.TrapUnreachable)
2411     DAG.setRoot(
2412         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2413 }
2414 
2415 void SelectionDAGBuilder::visitFSub(const User &I) {
2416   // -0.0 - X --> fneg
2417   Type *Ty = I.getType();
2418   if (isa<Constant>(I.getOperand(0)) &&
2419       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2420     SDValue Op2 = getValue(I.getOperand(1));
2421     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2422                              Op2.getValueType(), Op2));
2423     return;
2424   }
2425 
2426   visitBinary(I, ISD::FSUB);
2427 }
2428 
2429 /// Checks if the given instruction performs a vector reduction, in which case
2430 /// we have the freedom to alter the elements in the result as long as the
2431 /// reduction of them stays unchanged.
2432 static bool isVectorReductionOp(const User *I) {
2433   const Instruction *Inst = dyn_cast<Instruction>(I);
2434   if (!Inst || !Inst->getType()->isVectorTy())
2435     return false;
2436 
2437   auto OpCode = Inst->getOpcode();
2438   switch (OpCode) {
2439   case Instruction::Add:
2440   case Instruction::Mul:
2441   case Instruction::And:
2442   case Instruction::Or:
2443   case Instruction::Xor:
2444     break;
2445   case Instruction::FAdd:
2446   case Instruction::FMul:
2447     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2448       if (FPOp->getFastMathFlags().unsafeAlgebra())
2449         break;
2450     LLVM_FALLTHROUGH;
2451   default:
2452     return false;
2453   }
2454 
2455   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2456   unsigned ElemNumToReduce = ElemNum;
2457 
2458   // Do DFS search on the def-use chain from the given instruction. We only
2459   // allow four kinds of operations during the search until we reach the
2460   // instruction that extracts the first element from the vector:
2461   //
2462   //   1. The reduction operation of the same opcode as the given instruction.
2463   //
2464   //   2. PHI node.
2465   //
2466   //   3. ShuffleVector instruction together with a reduction operation that
2467   //      does a partial reduction.
2468   //
2469   //   4. ExtractElement that extracts the first element from the vector, and we
2470   //      stop searching the def-use chain here.
2471   //
2472   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2473   // from 1-3 to the stack to continue the DFS. The given instruction is not
2474   // a reduction operation if we meet any other instructions other than those
2475   // listed above.
2476 
2477   SmallVector<const User *, 16> UsersToVisit{Inst};
2478   SmallPtrSet<const User *, 16> Visited;
2479   bool ReduxExtracted = false;
2480 
2481   while (!UsersToVisit.empty()) {
2482     auto User = UsersToVisit.back();
2483     UsersToVisit.pop_back();
2484     if (!Visited.insert(User).second)
2485       continue;
2486 
2487     for (const auto &U : User->users()) {
2488       auto Inst = dyn_cast<Instruction>(U);
2489       if (!Inst)
2490         return false;
2491 
2492       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2493         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2494           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2495             return false;
2496         UsersToVisit.push_back(U);
2497       } else if (const ShuffleVectorInst *ShufInst =
2498                      dyn_cast<ShuffleVectorInst>(U)) {
2499         // Detect the following pattern: A ShuffleVector instruction together
2500         // with a reduction that do partial reduction on the first and second
2501         // ElemNumToReduce / 2 elements, and store the result in
2502         // ElemNumToReduce / 2 elements in another vector.
2503 
2504         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2505         if (ResultElements < ElemNum)
2506           return false;
2507 
2508         if (ElemNumToReduce == 1)
2509           return false;
2510         if (!isa<UndefValue>(U->getOperand(1)))
2511           return false;
2512         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2513           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2514             return false;
2515         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2516           if (ShufInst->getMaskValue(i) != -1)
2517             return false;
2518 
2519         // There is only one user of this ShuffleVector instruction, which
2520         // must be a reduction operation.
2521         if (!U->hasOneUse())
2522           return false;
2523 
2524         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2525         if (!U2 || U2->getOpcode() != OpCode)
2526           return false;
2527 
2528         // Check operands of the reduction operation.
2529         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2530             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2531           UsersToVisit.push_back(U2);
2532           ElemNumToReduce /= 2;
2533         } else
2534           return false;
2535       } else if (isa<ExtractElementInst>(U)) {
2536         // At this moment we should have reduced all elements in the vector.
2537         if (ElemNumToReduce != 1)
2538           return false;
2539 
2540         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2541         if (!Val || Val->getZExtValue() != 0)
2542           return false;
2543 
2544         ReduxExtracted = true;
2545       } else
2546         return false;
2547     }
2548   }
2549   return ReduxExtracted;
2550 }
2551 
2552 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2553   SDValue Op1 = getValue(I.getOperand(0));
2554   SDValue Op2 = getValue(I.getOperand(1));
2555 
2556   bool nuw = false;
2557   bool nsw = false;
2558   bool exact = false;
2559   bool vec_redux = false;
2560   FastMathFlags FMF;
2561 
2562   if (const OverflowingBinaryOperator *OFBinOp =
2563           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2564     nuw = OFBinOp->hasNoUnsignedWrap();
2565     nsw = OFBinOp->hasNoSignedWrap();
2566   }
2567   if (const PossiblyExactOperator *ExactOp =
2568           dyn_cast<const PossiblyExactOperator>(&I))
2569     exact = ExactOp->isExact();
2570   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2571     FMF = FPOp->getFastMathFlags();
2572 
2573   if (isVectorReductionOp(&I)) {
2574     vec_redux = true;
2575     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2576   }
2577 
2578   SDNodeFlags Flags;
2579   Flags.setExact(exact);
2580   Flags.setNoSignedWrap(nsw);
2581   Flags.setNoUnsignedWrap(nuw);
2582   Flags.setVectorReduction(vec_redux);
2583   if (EnableFMFInDAG) {
2584     Flags.setAllowReciprocal(FMF.allowReciprocal());
2585     Flags.setNoInfs(FMF.noInfs());
2586     Flags.setNoNaNs(FMF.noNaNs());
2587     Flags.setNoSignedZeros(FMF.noSignedZeros());
2588     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2589   }
2590   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2591                                      Op1, Op2, &Flags);
2592   setValue(&I, BinNodeValue);
2593 }
2594 
2595 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2596   SDValue Op1 = getValue(I.getOperand(0));
2597   SDValue Op2 = getValue(I.getOperand(1));
2598 
2599   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2600       Op2.getValueType(), DAG.getDataLayout());
2601 
2602   // Coerce the shift amount to the right type if we can.
2603   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2604     unsigned ShiftSize = ShiftTy.getSizeInBits();
2605     unsigned Op2Size = Op2.getValueSizeInBits();
2606     SDLoc DL = getCurSDLoc();
2607 
2608     // If the operand is smaller than the shift count type, promote it.
2609     if (ShiftSize > Op2Size)
2610       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2611 
2612     // If the operand is larger than the shift count type but the shift
2613     // count type has enough bits to represent any shift value, truncate
2614     // it now. This is a common case and it exposes the truncate to
2615     // optimization early.
2616     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2617       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2618     // Otherwise we'll need to temporarily settle for some other convenient
2619     // type.  Type legalization will make adjustments once the shiftee is split.
2620     else
2621       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2622   }
2623 
2624   bool nuw = false;
2625   bool nsw = false;
2626   bool exact = false;
2627 
2628   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2629 
2630     if (const OverflowingBinaryOperator *OFBinOp =
2631             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2632       nuw = OFBinOp->hasNoUnsignedWrap();
2633       nsw = OFBinOp->hasNoSignedWrap();
2634     }
2635     if (const PossiblyExactOperator *ExactOp =
2636             dyn_cast<const PossiblyExactOperator>(&I))
2637       exact = ExactOp->isExact();
2638   }
2639   SDNodeFlags Flags;
2640   Flags.setExact(exact);
2641   Flags.setNoSignedWrap(nsw);
2642   Flags.setNoUnsignedWrap(nuw);
2643   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2644                             &Flags);
2645   setValue(&I, Res);
2646 }
2647 
2648 void SelectionDAGBuilder::visitSDiv(const User &I) {
2649   SDValue Op1 = getValue(I.getOperand(0));
2650   SDValue Op2 = getValue(I.getOperand(1));
2651 
2652   SDNodeFlags Flags;
2653   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2654                  cast<PossiblyExactOperator>(&I)->isExact());
2655   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2656                            Op2, &Flags));
2657 }
2658 
2659 void SelectionDAGBuilder::visitICmp(const User &I) {
2660   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2661   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2662     predicate = IC->getPredicate();
2663   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2664     predicate = ICmpInst::Predicate(IC->getPredicate());
2665   SDValue Op1 = getValue(I.getOperand(0));
2666   SDValue Op2 = getValue(I.getOperand(1));
2667   ISD::CondCode Opcode = getICmpCondCode(predicate);
2668 
2669   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2670                                                         I.getType());
2671   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2672 }
2673 
2674 void SelectionDAGBuilder::visitFCmp(const User &I) {
2675   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2676   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2677     predicate = FC->getPredicate();
2678   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2679     predicate = FCmpInst::Predicate(FC->getPredicate());
2680   SDValue Op1 = getValue(I.getOperand(0));
2681   SDValue Op2 = getValue(I.getOperand(1));
2682   ISD::CondCode Condition = getFCmpCondCode(predicate);
2683 
2684   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2685   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2686   // further optimization, but currently FMF is only applicable to binary nodes.
2687   if (TM.Options.NoNaNsFPMath)
2688     Condition = getFCmpCodeWithoutNaN(Condition);
2689   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2690                                                         I.getType());
2691   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2692 }
2693 
2694 // Check if the condition of the select has one use or two users that are both
2695 // selects with the same condition.
2696 static bool hasOnlySelectUsers(const Value *Cond) {
2697   return all_of(Cond->users(), [](const Value *V) {
2698     return isa<SelectInst>(V);
2699   });
2700 }
2701 
2702 void SelectionDAGBuilder::visitSelect(const User &I) {
2703   SmallVector<EVT, 4> ValueVTs;
2704   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2705                   ValueVTs);
2706   unsigned NumValues = ValueVTs.size();
2707   if (NumValues == 0) return;
2708 
2709   SmallVector<SDValue, 4> Values(NumValues);
2710   SDValue Cond     = getValue(I.getOperand(0));
2711   SDValue LHSVal   = getValue(I.getOperand(1));
2712   SDValue RHSVal   = getValue(I.getOperand(2));
2713   auto BaseOps = {Cond};
2714   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2715     ISD::VSELECT : ISD::SELECT;
2716 
2717   // Min/max matching is only viable if all output VTs are the same.
2718   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2719     EVT VT = ValueVTs[0];
2720     LLVMContext &Ctx = *DAG.getContext();
2721     auto &TLI = DAG.getTargetLoweringInfo();
2722 
2723     // We care about the legality of the operation after it has been type
2724     // legalized.
2725     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2726            VT != TLI.getTypeToTransformTo(Ctx, VT))
2727       VT = TLI.getTypeToTransformTo(Ctx, VT);
2728 
2729     // If the vselect is legal, assume we want to leave this as a vector setcc +
2730     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2731     // min/max is legal on the scalar type.
2732     bool UseScalarMinMax = VT.isVector() &&
2733       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2734 
2735     Value *LHS, *RHS;
2736     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2737     ISD::NodeType Opc = ISD::DELETED_NODE;
2738     switch (SPR.Flavor) {
2739     case SPF_UMAX:    Opc = ISD::UMAX; break;
2740     case SPF_UMIN:    Opc = ISD::UMIN; break;
2741     case SPF_SMAX:    Opc = ISD::SMAX; break;
2742     case SPF_SMIN:    Opc = ISD::SMIN; break;
2743     case SPF_FMINNUM:
2744       switch (SPR.NaNBehavior) {
2745       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2746       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2747       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2748       case SPNB_RETURNS_ANY: {
2749         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2750           Opc = ISD::FMINNUM;
2751         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2752           Opc = ISD::FMINNAN;
2753         else if (UseScalarMinMax)
2754           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2755             ISD::FMINNUM : ISD::FMINNAN;
2756         break;
2757       }
2758       }
2759       break;
2760     case SPF_FMAXNUM:
2761       switch (SPR.NaNBehavior) {
2762       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2763       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2764       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2765       case SPNB_RETURNS_ANY:
2766 
2767         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2768           Opc = ISD::FMAXNUM;
2769         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2770           Opc = ISD::FMAXNAN;
2771         else if (UseScalarMinMax)
2772           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2773             ISD::FMAXNUM : ISD::FMAXNAN;
2774         break;
2775       }
2776       break;
2777     default: break;
2778     }
2779 
2780     if (Opc != ISD::DELETED_NODE &&
2781         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2782          (UseScalarMinMax &&
2783           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2784         // If the underlying comparison instruction is used by any other
2785         // instruction, the consumed instructions won't be destroyed, so it is
2786         // not profitable to convert to a min/max.
2787         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2788       OpCode = Opc;
2789       LHSVal = getValue(LHS);
2790       RHSVal = getValue(RHS);
2791       BaseOps = {};
2792     }
2793   }
2794 
2795   for (unsigned i = 0; i != NumValues; ++i) {
2796     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2797     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2798     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2799     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2800                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2801                             Ops);
2802   }
2803 
2804   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2805                            DAG.getVTList(ValueVTs), Values));
2806 }
2807 
2808 void SelectionDAGBuilder::visitTrunc(const User &I) {
2809   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2810   SDValue N = getValue(I.getOperand(0));
2811   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2812                                                         I.getType());
2813   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2814 }
2815 
2816 void SelectionDAGBuilder::visitZExt(const User &I) {
2817   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2818   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2819   SDValue N = getValue(I.getOperand(0));
2820   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2821                                                         I.getType());
2822   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2823 }
2824 
2825 void SelectionDAGBuilder::visitSExt(const User &I) {
2826   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2827   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2828   SDValue N = getValue(I.getOperand(0));
2829   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2830                                                         I.getType());
2831   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2832 }
2833 
2834 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2835   // FPTrunc is never a no-op cast, no need to check
2836   SDValue N = getValue(I.getOperand(0));
2837   SDLoc dl = getCurSDLoc();
2838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2839   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2840   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2841                            DAG.getTargetConstant(
2842                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2843 }
2844 
2845 void SelectionDAGBuilder::visitFPExt(const User &I) {
2846   // FPExt is never a no-op cast, no need to check
2847   SDValue N = getValue(I.getOperand(0));
2848   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2849                                                         I.getType());
2850   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2851 }
2852 
2853 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2854   // FPToUI is never a no-op cast, no need to check
2855   SDValue N = getValue(I.getOperand(0));
2856   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2857                                                         I.getType());
2858   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2859 }
2860 
2861 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2862   // FPToSI is never a no-op cast, no need to check
2863   SDValue N = getValue(I.getOperand(0));
2864   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2865                                                         I.getType());
2866   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2867 }
2868 
2869 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2870   // UIToFP is never a no-op cast, no need to check
2871   SDValue N = getValue(I.getOperand(0));
2872   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2873                                                         I.getType());
2874   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2875 }
2876 
2877 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2878   // SIToFP is never a no-op cast, no need to check
2879   SDValue N = getValue(I.getOperand(0));
2880   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2881                                                         I.getType());
2882   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2883 }
2884 
2885 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2886   // What to do depends on the size of the integer and the size of the pointer.
2887   // We can either truncate, zero extend, or no-op, accordingly.
2888   SDValue N = getValue(I.getOperand(0));
2889   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2890                                                         I.getType());
2891   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2892 }
2893 
2894 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2895   // What to do depends on the size of the integer and the size of the pointer.
2896   // We can either truncate, zero extend, or no-op, accordingly.
2897   SDValue N = getValue(I.getOperand(0));
2898   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2899                                                         I.getType());
2900   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2901 }
2902 
2903 void SelectionDAGBuilder::visitBitCast(const User &I) {
2904   SDValue N = getValue(I.getOperand(0));
2905   SDLoc dl = getCurSDLoc();
2906   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2907                                                         I.getType());
2908 
2909   // BitCast assures us that source and destination are the same size so this is
2910   // either a BITCAST or a no-op.
2911   if (DestVT != N.getValueType())
2912     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2913                              DestVT, N)); // convert types.
2914   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2915   // might fold any kind of constant expression to an integer constant and that
2916   // is not what we are looking for. Only regcognize a bitcast of a genuine
2917   // constant integer as an opaque constant.
2918   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2919     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2920                                  /*isOpaque*/true));
2921   else
2922     setValue(&I, N);            // noop cast.
2923 }
2924 
2925 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2926   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2927   const Value *SV = I.getOperand(0);
2928   SDValue N = getValue(SV);
2929   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2930 
2931   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2932   unsigned DestAS = I.getType()->getPointerAddressSpace();
2933 
2934   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2935     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2936 
2937   setValue(&I, N);
2938 }
2939 
2940 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2942   SDValue InVec = getValue(I.getOperand(0));
2943   SDValue InVal = getValue(I.getOperand(1));
2944   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2945                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2946   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2947                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2948                            InVec, InVal, InIdx));
2949 }
2950 
2951 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2953   SDValue InVec = getValue(I.getOperand(0));
2954   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2955                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2956   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2957                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2958                            InVec, InIdx));
2959 }
2960 
2961 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2962   SDValue Src1 = getValue(I.getOperand(0));
2963   SDValue Src2 = getValue(I.getOperand(1));
2964   SDLoc DL = getCurSDLoc();
2965 
2966   SmallVector<int, 8> Mask;
2967   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2968   unsigned MaskNumElts = Mask.size();
2969 
2970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2971   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2972   EVT SrcVT = Src1.getValueType();
2973   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2974 
2975   if (SrcNumElts == MaskNumElts) {
2976     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
2977     return;
2978   }
2979 
2980   // Normalize the shuffle vector since mask and vector length don't match.
2981   if (SrcNumElts < MaskNumElts) {
2982     // Mask is longer than the source vectors. We can use concatenate vector to
2983     // make the mask and vectors lengths match.
2984 
2985     if (MaskNumElts % SrcNumElts == 0) {
2986       // Mask length is a multiple of the source vector length.
2987       // Check if the shuffle is some kind of concatenation of the input
2988       // vectors.
2989       unsigned NumConcat = MaskNumElts / SrcNumElts;
2990       bool IsConcat = true;
2991       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
2992       for (unsigned i = 0; i != MaskNumElts; ++i) {
2993         int Idx = Mask[i];
2994         if (Idx < 0)
2995           continue;
2996         // Ensure the indices in each SrcVT sized piece are sequential and that
2997         // the same source is used for the whole piece.
2998         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
2999             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3000              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3001           IsConcat = false;
3002           break;
3003         }
3004         // Remember which source this index came from.
3005         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3006       }
3007 
3008       // The shuffle is concatenating multiple vectors together. Just emit
3009       // a CONCAT_VECTORS operation.
3010       if (IsConcat) {
3011         SmallVector<SDValue, 8> ConcatOps;
3012         for (auto Src : ConcatSrcs) {
3013           if (Src < 0)
3014             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3015           else if (Src == 0)
3016             ConcatOps.push_back(Src1);
3017           else
3018             ConcatOps.push_back(Src2);
3019         }
3020         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3021         return;
3022       }
3023     }
3024 
3025     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3026     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3027     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3028                                     PaddedMaskNumElts);
3029 
3030     // Pad both vectors with undefs to make them the same length as the mask.
3031     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3032 
3033     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3034     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3035     MOps1[0] = Src1;
3036     MOps2[0] = Src2;
3037 
3038     Src1 = Src1.isUndef()
3039                ? DAG.getUNDEF(PaddedVT)
3040                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3041     Src2 = Src2.isUndef()
3042                ? DAG.getUNDEF(PaddedVT)
3043                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3044 
3045     // Readjust mask for new input vector length.
3046     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3047     for (unsigned i = 0; i != MaskNumElts; ++i) {
3048       int Idx = Mask[i];
3049       if (Idx >= (int)SrcNumElts)
3050         Idx -= SrcNumElts - PaddedMaskNumElts;
3051       MappedOps[i] = Idx;
3052     }
3053 
3054     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3055 
3056     // If the concatenated vector was padded, extract a subvector with the
3057     // correct number of elements.
3058     if (MaskNumElts != PaddedMaskNumElts)
3059       Result = DAG.getNode(
3060           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3061           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3062 
3063     setValue(&I, Result);
3064     return;
3065   }
3066 
3067   if (SrcNumElts > MaskNumElts) {
3068     // Analyze the access pattern of the vector to see if we can extract
3069     // two subvectors and do the shuffle. The analysis is done by calculating
3070     // the range of elements the mask access on both vectors.
3071     int MinRange[2] = { static_cast<int>(SrcNumElts),
3072                         static_cast<int>(SrcNumElts)};
3073     int MaxRange[2] = {-1, -1};
3074 
3075     for (unsigned i = 0; i != MaskNumElts; ++i) {
3076       int Idx = Mask[i];
3077       unsigned Input = 0;
3078       if (Idx < 0)
3079         continue;
3080 
3081       if (Idx >= (int)SrcNumElts) {
3082         Input = 1;
3083         Idx -= SrcNumElts;
3084       }
3085       if (Idx > MaxRange[Input])
3086         MaxRange[Input] = Idx;
3087       if (Idx < MinRange[Input])
3088         MinRange[Input] = Idx;
3089     }
3090 
3091     // Check if the access is smaller than the vector size and can we find
3092     // a reasonable extract index.
3093     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3094                                    // Extract.
3095     int StartIdx[2];  // StartIdx to extract from
3096     for (unsigned Input = 0; Input < 2; ++Input) {
3097       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3098         RangeUse[Input] = 0; // Unused
3099         StartIdx[Input] = 0;
3100         continue;
3101       }
3102 
3103       // Find a good start index that is a multiple of the mask length. Then
3104       // see if the rest of the elements are in range.
3105       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3106       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3107           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3108         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3109     }
3110 
3111     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3112       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3113       return;
3114     }
3115     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3116       // Extract appropriate subvector and generate a vector shuffle
3117       for (unsigned Input = 0; Input < 2; ++Input) {
3118         SDValue &Src = Input == 0 ? Src1 : Src2;
3119         if (RangeUse[Input] == 0)
3120           Src = DAG.getUNDEF(VT);
3121         else {
3122           Src = DAG.getNode(
3123               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3124               DAG.getConstant(StartIdx[Input], DL,
3125                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3126         }
3127       }
3128 
3129       // Calculate new mask.
3130       SmallVector<int, 8> MappedOps;
3131       for (unsigned i = 0; i != MaskNumElts; ++i) {
3132         int Idx = Mask[i];
3133         if (Idx >= 0) {
3134           if (Idx < (int)SrcNumElts)
3135             Idx -= StartIdx[0];
3136           else
3137             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3138         }
3139         MappedOps.push_back(Idx);
3140       }
3141 
3142       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3143       return;
3144     }
3145   }
3146 
3147   // We can't use either concat vectors or extract subvectors so fall back to
3148   // replacing the shuffle with extract and build vector.
3149   // to insert and build vector.
3150   EVT EltVT = VT.getVectorElementType();
3151   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3152   SmallVector<SDValue,8> Ops;
3153   for (unsigned i = 0; i != MaskNumElts; ++i) {
3154     int Idx = Mask[i];
3155     SDValue Res;
3156 
3157     if (Idx < 0) {
3158       Res = DAG.getUNDEF(EltVT);
3159     } else {
3160       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3161       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3162 
3163       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3164                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3165     }
3166 
3167     Ops.push_back(Res);
3168   }
3169 
3170   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
3171 }
3172 
3173 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3174   const Value *Op0 = I.getOperand(0);
3175   const Value *Op1 = I.getOperand(1);
3176   Type *AggTy = I.getType();
3177   Type *ValTy = Op1->getType();
3178   bool IntoUndef = isa<UndefValue>(Op0);
3179   bool FromUndef = isa<UndefValue>(Op1);
3180 
3181   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3182 
3183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3184   SmallVector<EVT, 4> AggValueVTs;
3185   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3186   SmallVector<EVT, 4> ValValueVTs;
3187   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3188 
3189   unsigned NumAggValues = AggValueVTs.size();
3190   unsigned NumValValues = ValValueVTs.size();
3191   SmallVector<SDValue, 4> Values(NumAggValues);
3192 
3193   // Ignore an insertvalue that produces an empty object
3194   if (!NumAggValues) {
3195     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3196     return;
3197   }
3198 
3199   SDValue Agg = getValue(Op0);
3200   unsigned i = 0;
3201   // Copy the beginning value(s) from the original aggregate.
3202   for (; i != LinearIndex; ++i)
3203     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3204                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3205   // Copy values from the inserted value(s).
3206   if (NumValValues) {
3207     SDValue Val = getValue(Op1);
3208     for (; i != LinearIndex + NumValValues; ++i)
3209       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3210                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3211   }
3212   // Copy remaining value(s) from the original aggregate.
3213   for (; i != NumAggValues; ++i)
3214     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3215                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3216 
3217   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3218                            DAG.getVTList(AggValueVTs), Values));
3219 }
3220 
3221 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3222   const Value *Op0 = I.getOperand(0);
3223   Type *AggTy = Op0->getType();
3224   Type *ValTy = I.getType();
3225   bool OutOfUndef = isa<UndefValue>(Op0);
3226 
3227   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3228 
3229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3230   SmallVector<EVT, 4> ValValueVTs;
3231   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3232 
3233   unsigned NumValValues = ValValueVTs.size();
3234 
3235   // Ignore a extractvalue that produces an empty object
3236   if (!NumValValues) {
3237     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3238     return;
3239   }
3240 
3241   SmallVector<SDValue, 4> Values(NumValValues);
3242 
3243   SDValue Agg = getValue(Op0);
3244   // Copy out the selected value(s).
3245   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3246     Values[i - LinearIndex] =
3247       OutOfUndef ?
3248         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3249         SDValue(Agg.getNode(), Agg.getResNo() + i);
3250 
3251   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3252                            DAG.getVTList(ValValueVTs), Values));
3253 }
3254 
3255 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3256   Value *Op0 = I.getOperand(0);
3257   // Note that the pointer operand may be a vector of pointers. Take the scalar
3258   // element which holds a pointer.
3259   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3260   SDValue N = getValue(Op0);
3261   SDLoc dl = getCurSDLoc();
3262 
3263   // Normalize Vector GEP - all scalar operands should be converted to the
3264   // splat vector.
3265   unsigned VectorWidth = I.getType()->isVectorTy() ?
3266     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3267 
3268   if (VectorWidth && !N.getValueType().isVector()) {
3269     LLVMContext &Context = *DAG.getContext();
3270     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3271     N = DAG.getSplatBuildVector(VT, dl, N);
3272   }
3273 
3274   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3275        GTI != E; ++GTI) {
3276     const Value *Idx = GTI.getOperand();
3277     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3278       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3279       if (Field) {
3280         // N = N + Offset
3281         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3282 
3283         // In an inbouds GEP with an offset that is nonnegative even when
3284         // interpreted as signed, assume there is no unsigned overflow.
3285         SDNodeFlags Flags;
3286         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3287           Flags.setNoUnsignedWrap(true);
3288 
3289         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3290                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3291       }
3292     } else {
3293       MVT PtrTy =
3294           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3295       unsigned PtrSize = PtrTy.getSizeInBits();
3296       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3297 
3298       // If this is a scalar constant or a splat vector of constants,
3299       // handle it quickly.
3300       const auto *CI = dyn_cast<ConstantInt>(Idx);
3301       if (!CI && isa<ConstantDataVector>(Idx) &&
3302           cast<ConstantDataVector>(Idx)->getSplatValue())
3303         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3304 
3305       if (CI) {
3306         if (CI->isZero())
3307           continue;
3308         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3309         LLVMContext &Context = *DAG.getContext();
3310         SDValue OffsVal = VectorWidth ?
3311           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3312           DAG.getConstant(Offs, dl, PtrTy);
3313 
3314         // In an inbouds GEP with an offset that is nonnegative even when
3315         // interpreted as signed, assume there is no unsigned overflow.
3316         SDNodeFlags Flags;
3317         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3318           Flags.setNoUnsignedWrap(true);
3319 
3320         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3321         continue;
3322       }
3323 
3324       // N = N + Idx * ElementSize;
3325       SDValue IdxN = getValue(Idx);
3326 
3327       if (!IdxN.getValueType().isVector() && VectorWidth) {
3328         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3329         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3330       }
3331 
3332       // If the index is smaller or larger than intptr_t, truncate or extend
3333       // it.
3334       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3335 
3336       // If this is a multiply by a power of two, turn it into a shl
3337       // immediately.  This is a very common case.
3338       if (ElementSize != 1) {
3339         if (ElementSize.isPowerOf2()) {
3340           unsigned Amt = ElementSize.logBase2();
3341           IdxN = DAG.getNode(ISD::SHL, dl,
3342                              N.getValueType(), IdxN,
3343                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3344         } else {
3345           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3346           IdxN = DAG.getNode(ISD::MUL, dl,
3347                              N.getValueType(), IdxN, Scale);
3348         }
3349       }
3350 
3351       N = DAG.getNode(ISD::ADD, dl,
3352                       N.getValueType(), N, IdxN);
3353     }
3354   }
3355 
3356   setValue(&I, N);
3357 }
3358 
3359 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3360   // If this is a fixed sized alloca in the entry block of the function,
3361   // allocate it statically on the stack.
3362   if (FuncInfo.StaticAllocaMap.count(&I))
3363     return;   // getValue will auto-populate this.
3364 
3365   SDLoc dl = getCurSDLoc();
3366   Type *Ty = I.getAllocatedType();
3367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3368   auto &DL = DAG.getDataLayout();
3369   uint64_t TySize = DL.getTypeAllocSize(Ty);
3370   unsigned Align =
3371       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3372 
3373   SDValue AllocSize = getValue(I.getArraySize());
3374 
3375   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3376   if (AllocSize.getValueType() != IntPtr)
3377     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3378 
3379   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3380                           AllocSize,
3381                           DAG.getConstant(TySize, dl, IntPtr));
3382 
3383   // Handle alignment.  If the requested alignment is less than or equal to
3384   // the stack alignment, ignore it.  If the size is greater than or equal to
3385   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3386   unsigned StackAlign =
3387       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3388   if (Align <= StackAlign)
3389     Align = 0;
3390 
3391   // Round the size of the allocation up to the stack alignment size
3392   // by add SA-1 to the size. This doesn't overflow because we're computing
3393   // an address inside an alloca.
3394   SDNodeFlags Flags;
3395   Flags.setNoUnsignedWrap(true);
3396   AllocSize = DAG.getNode(ISD::ADD, dl,
3397                           AllocSize.getValueType(), AllocSize,
3398                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3399 
3400   // Mask out the low bits for alignment purposes.
3401   AllocSize = DAG.getNode(ISD::AND, dl,
3402                           AllocSize.getValueType(), AllocSize,
3403                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3404                                                 dl));
3405 
3406   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3407   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3408   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3409   setValue(&I, DSA);
3410   DAG.setRoot(DSA.getValue(1));
3411 
3412   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3413 }
3414 
3415 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3416   if (I.isAtomic())
3417     return visitAtomicLoad(I);
3418 
3419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3420   const Value *SV = I.getOperand(0);
3421   if (TLI.supportSwiftError()) {
3422     // Swifterror values can come from either a function parameter with
3423     // swifterror attribute or an alloca with swifterror attribute.
3424     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3425       if (Arg->hasSwiftErrorAttr())
3426         return visitLoadFromSwiftError(I);
3427     }
3428 
3429     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3430       if (Alloca->isSwiftError())
3431         return visitLoadFromSwiftError(I);
3432     }
3433   }
3434 
3435   SDValue Ptr = getValue(SV);
3436 
3437   Type *Ty = I.getType();
3438 
3439   bool isVolatile = I.isVolatile();
3440   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3441   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3442   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3443   unsigned Alignment = I.getAlignment();
3444 
3445   AAMDNodes AAInfo;
3446   I.getAAMetadata(AAInfo);
3447   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3448 
3449   SmallVector<EVT, 4> ValueVTs;
3450   SmallVector<uint64_t, 4> Offsets;
3451   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3452   unsigned NumValues = ValueVTs.size();
3453   if (NumValues == 0)
3454     return;
3455 
3456   SDValue Root;
3457   bool ConstantMemory = false;
3458   if (isVolatile || NumValues > MaxParallelChains)
3459     // Serialize volatile loads with other side effects.
3460     Root = getRoot();
3461   else if (AA->pointsToConstantMemory(MemoryLocation(
3462                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3463     // Do not serialize (non-volatile) loads of constant memory with anything.
3464     Root = DAG.getEntryNode();
3465     ConstantMemory = true;
3466   } else {
3467     // Do not serialize non-volatile loads against each other.
3468     Root = DAG.getRoot();
3469   }
3470 
3471   SDLoc dl = getCurSDLoc();
3472 
3473   if (isVolatile)
3474     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3475 
3476   // An aggregate load cannot wrap around the address space, so offsets to its
3477   // parts don't wrap either.
3478   SDNodeFlags Flags;
3479   Flags.setNoUnsignedWrap(true);
3480 
3481   SmallVector<SDValue, 4> Values(NumValues);
3482   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3483   EVT PtrVT = Ptr.getValueType();
3484   unsigned ChainI = 0;
3485   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3486     // Serializing loads here may result in excessive register pressure, and
3487     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3488     // could recover a bit by hoisting nodes upward in the chain by recognizing
3489     // they are side-effect free or do not alias. The optimizer should really
3490     // avoid this case by converting large object/array copies to llvm.memcpy
3491     // (MaxParallelChains should always remain as failsafe).
3492     if (ChainI == MaxParallelChains) {
3493       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3494       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3495                                   makeArrayRef(Chains.data(), ChainI));
3496       Root = Chain;
3497       ChainI = 0;
3498     }
3499     SDValue A = DAG.getNode(ISD::ADD, dl,
3500                             PtrVT, Ptr,
3501                             DAG.getConstant(Offsets[i], dl, PtrVT),
3502                             &Flags);
3503     auto MMOFlags = MachineMemOperand::MONone;
3504     if (isVolatile)
3505       MMOFlags |= MachineMemOperand::MOVolatile;
3506     if (isNonTemporal)
3507       MMOFlags |= MachineMemOperand::MONonTemporal;
3508     if (isInvariant)
3509       MMOFlags |= MachineMemOperand::MOInvariant;
3510     if (isDereferenceable)
3511       MMOFlags |= MachineMemOperand::MODereferenceable;
3512 
3513     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3514                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3515                             MMOFlags, AAInfo, Ranges);
3516 
3517     Values[i] = L;
3518     Chains[ChainI] = L.getValue(1);
3519   }
3520 
3521   if (!ConstantMemory) {
3522     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3523                                 makeArrayRef(Chains.data(), ChainI));
3524     if (isVolatile)
3525       DAG.setRoot(Chain);
3526     else
3527       PendingLoads.push_back(Chain);
3528   }
3529 
3530   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3531                            DAG.getVTList(ValueVTs), Values));
3532 }
3533 
3534 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3536   assert(TLI.supportSwiftError() &&
3537          "call visitStoreToSwiftError when backend supports swifterror");
3538 
3539   SmallVector<EVT, 4> ValueVTs;
3540   SmallVector<uint64_t, 4> Offsets;
3541   const Value *SrcV = I.getOperand(0);
3542   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3543                   SrcV->getType(), ValueVTs, &Offsets);
3544   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3545          "expect a single EVT for swifterror");
3546 
3547   SDValue Src = getValue(SrcV);
3548   // Create a virtual register, then update the virtual register.
3549   auto &DL = DAG.getDataLayout();
3550   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3551   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3552   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3553   // Chain can be getRoot or getControlRoot.
3554   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3555                                       SDValue(Src.getNode(), Src.getResNo()));
3556   DAG.setRoot(CopyNode);
3557   FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3558 }
3559 
3560 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3561   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3562          "call visitLoadFromSwiftError when backend supports swifterror");
3563 
3564   assert(!I.isVolatile() &&
3565          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3566          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3567          "Support volatile, non temporal, invariant for load_from_swift_error");
3568 
3569   const Value *SV = I.getOperand(0);
3570   Type *Ty = I.getType();
3571   AAMDNodes AAInfo;
3572   I.getAAMetadata(AAInfo);
3573   assert(!AA->pointsToConstantMemory(MemoryLocation(
3574              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3575          "load_from_swift_error should not be constant memory");
3576 
3577   SmallVector<EVT, 4> ValueVTs;
3578   SmallVector<uint64_t, 4> Offsets;
3579   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3580                   ValueVTs, &Offsets);
3581   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3582          "expect a single EVT for swifterror");
3583 
3584   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3585   SDValue L = DAG.getCopyFromReg(
3586       getRoot(), getCurSDLoc(),
3587       FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]);
3588 
3589   setValue(&I, L);
3590 }
3591 
3592 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3593   if (I.isAtomic())
3594     return visitAtomicStore(I);
3595 
3596   const Value *SrcV = I.getOperand(0);
3597   const Value *PtrV = I.getOperand(1);
3598 
3599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3600   if (TLI.supportSwiftError()) {
3601     // Swifterror values can come from either a function parameter with
3602     // swifterror attribute or an alloca with swifterror attribute.
3603     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3604       if (Arg->hasSwiftErrorAttr())
3605         return visitStoreToSwiftError(I);
3606     }
3607 
3608     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3609       if (Alloca->isSwiftError())
3610         return visitStoreToSwiftError(I);
3611     }
3612   }
3613 
3614   SmallVector<EVT, 4> ValueVTs;
3615   SmallVector<uint64_t, 4> Offsets;
3616   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3617                   SrcV->getType(), ValueVTs, &Offsets);
3618   unsigned NumValues = ValueVTs.size();
3619   if (NumValues == 0)
3620     return;
3621 
3622   // Get the lowered operands. Note that we do this after
3623   // checking if NumResults is zero, because with zero results
3624   // the operands won't have values in the map.
3625   SDValue Src = getValue(SrcV);
3626   SDValue Ptr = getValue(PtrV);
3627 
3628   SDValue Root = getRoot();
3629   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3630   SDLoc dl = getCurSDLoc();
3631   EVT PtrVT = Ptr.getValueType();
3632   unsigned Alignment = I.getAlignment();
3633   AAMDNodes AAInfo;
3634   I.getAAMetadata(AAInfo);
3635 
3636   auto MMOFlags = MachineMemOperand::MONone;
3637   if (I.isVolatile())
3638     MMOFlags |= MachineMemOperand::MOVolatile;
3639   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3640     MMOFlags |= MachineMemOperand::MONonTemporal;
3641 
3642   // An aggregate load cannot wrap around the address space, so offsets to its
3643   // parts don't wrap either.
3644   SDNodeFlags Flags;
3645   Flags.setNoUnsignedWrap(true);
3646 
3647   unsigned ChainI = 0;
3648   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3649     // See visitLoad comments.
3650     if (ChainI == MaxParallelChains) {
3651       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3652                                   makeArrayRef(Chains.data(), ChainI));
3653       Root = Chain;
3654       ChainI = 0;
3655     }
3656     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3657                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3658     SDValue St = DAG.getStore(
3659         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3660         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3661     Chains[ChainI] = St;
3662   }
3663 
3664   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3665                                   makeArrayRef(Chains.data(), ChainI));
3666   DAG.setRoot(StoreNode);
3667 }
3668 
3669 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3670                                            bool IsCompressing) {
3671   SDLoc sdl = getCurSDLoc();
3672 
3673   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3674                            unsigned& Alignment) {
3675     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3676     Src0 = I.getArgOperand(0);
3677     Ptr = I.getArgOperand(1);
3678     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3679     Mask = I.getArgOperand(3);
3680   };
3681   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3682                            unsigned& Alignment) {
3683     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3684     Src0 = I.getArgOperand(0);
3685     Ptr = I.getArgOperand(1);
3686     Mask = I.getArgOperand(2);
3687     Alignment = 0;
3688   };
3689 
3690   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3691   unsigned Alignment;
3692   if (IsCompressing)
3693     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3694   else
3695     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3696 
3697   SDValue Ptr = getValue(PtrOperand);
3698   SDValue Src0 = getValue(Src0Operand);
3699   SDValue Mask = getValue(MaskOperand);
3700 
3701   EVT VT = Src0.getValueType();
3702   if (!Alignment)
3703     Alignment = DAG.getEVTAlignment(VT);
3704 
3705   AAMDNodes AAInfo;
3706   I.getAAMetadata(AAInfo);
3707 
3708   MachineMemOperand *MMO =
3709     DAG.getMachineFunction().
3710     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3711                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3712                           Alignment, AAInfo);
3713   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3714                                          MMO, false /* Truncating */,
3715                                          IsCompressing);
3716   DAG.setRoot(StoreNode);
3717   setValue(&I, StoreNode);
3718 }
3719 
3720 // Get a uniform base for the Gather/Scatter intrinsic.
3721 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3722 // We try to represent it as a base pointer + vector of indices.
3723 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3724 // The first operand of the GEP may be a single pointer or a vector of pointers
3725 // Example:
3726 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3727 //  or
3728 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3729 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3730 //
3731 // When the first GEP operand is a single pointer - it is the uniform base we
3732 // are looking for. If first operand of the GEP is a splat vector - we
3733 // extract the spalt value and use it as a uniform base.
3734 // In all other cases the function returns 'false'.
3735 //
3736 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3737                            SelectionDAGBuilder* SDB) {
3738 
3739   SelectionDAG& DAG = SDB->DAG;
3740   LLVMContext &Context = *DAG.getContext();
3741 
3742   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3743   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3744   if (!GEP || GEP->getNumOperands() > 2)
3745     return false;
3746 
3747   const Value *GEPPtr = GEP->getPointerOperand();
3748   if (!GEPPtr->getType()->isVectorTy())
3749     Ptr = GEPPtr;
3750   else if (!(Ptr = getSplatValue(GEPPtr)))
3751     return false;
3752 
3753   Value *IndexVal = GEP->getOperand(1);
3754 
3755   // The operands of the GEP may be defined in another basic block.
3756   // In this case we'll not find nodes for the operands.
3757   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3758     return false;
3759 
3760   Base = SDB->getValue(Ptr);
3761   Index = SDB->getValue(IndexVal);
3762 
3763   // Suppress sign extension.
3764   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3765     if (SDB->findValue(Sext->getOperand(0))) {
3766       IndexVal = Sext->getOperand(0);
3767       Index = SDB->getValue(IndexVal);
3768     }
3769   }
3770   if (!Index.getValueType().isVector()) {
3771     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3772     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3773     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3774   }
3775   return true;
3776 }
3777 
3778 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3779   SDLoc sdl = getCurSDLoc();
3780 
3781   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3782   const Value *Ptr = I.getArgOperand(1);
3783   SDValue Src0 = getValue(I.getArgOperand(0));
3784   SDValue Mask = getValue(I.getArgOperand(3));
3785   EVT VT = Src0.getValueType();
3786   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3787   if (!Alignment)
3788     Alignment = DAG.getEVTAlignment(VT);
3789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3790 
3791   AAMDNodes AAInfo;
3792   I.getAAMetadata(AAInfo);
3793 
3794   SDValue Base;
3795   SDValue Index;
3796   const Value *BasePtr = Ptr;
3797   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3798 
3799   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3800   MachineMemOperand *MMO = DAG.getMachineFunction().
3801     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3802                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3803                          Alignment, AAInfo);
3804   if (!UniformBase) {
3805     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3806     Index = getValue(Ptr);
3807   }
3808   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3809   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3810                                          Ops, MMO);
3811   DAG.setRoot(Scatter);
3812   setValue(&I, Scatter);
3813 }
3814 
3815 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3816   SDLoc sdl = getCurSDLoc();
3817 
3818   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3819                            unsigned& Alignment) {
3820     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3821     Ptr = I.getArgOperand(0);
3822     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3823     Mask = I.getArgOperand(2);
3824     Src0 = I.getArgOperand(3);
3825   };
3826   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3827                            unsigned& Alignment) {
3828     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3829     Ptr = I.getArgOperand(0);
3830     Alignment = 0;
3831     Mask = I.getArgOperand(1);
3832     Src0 = I.getArgOperand(2);
3833   };
3834 
3835   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3836   unsigned Alignment;
3837   if (IsExpanding)
3838     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3839   else
3840     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3841 
3842   SDValue Ptr = getValue(PtrOperand);
3843   SDValue Src0 = getValue(Src0Operand);
3844   SDValue Mask = getValue(MaskOperand);
3845 
3846   EVT VT = Src0.getValueType();
3847   if (!Alignment)
3848     Alignment = DAG.getEVTAlignment(VT);
3849 
3850   AAMDNodes AAInfo;
3851   I.getAAMetadata(AAInfo);
3852   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3853 
3854   // Do not serialize masked loads of constant memory with anything.
3855   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3856       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3857   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3858 
3859   MachineMemOperand *MMO =
3860     DAG.getMachineFunction().
3861     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3862                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3863                           Alignment, AAInfo, Ranges);
3864 
3865   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3866                                    ISD::NON_EXTLOAD, IsExpanding);
3867   if (AddToChain) {
3868     SDValue OutChain = Load.getValue(1);
3869     DAG.setRoot(OutChain);
3870   }
3871   setValue(&I, Load);
3872 }
3873 
3874 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3875   SDLoc sdl = getCurSDLoc();
3876 
3877   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3878   const Value *Ptr = I.getArgOperand(0);
3879   SDValue Src0 = getValue(I.getArgOperand(3));
3880   SDValue Mask = getValue(I.getArgOperand(2));
3881 
3882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3883   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3884   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3885   if (!Alignment)
3886     Alignment = DAG.getEVTAlignment(VT);
3887 
3888   AAMDNodes AAInfo;
3889   I.getAAMetadata(AAInfo);
3890   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3891 
3892   SDValue Root = DAG.getRoot();
3893   SDValue Base;
3894   SDValue Index;
3895   const Value *BasePtr = Ptr;
3896   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3897   bool ConstantMemory = false;
3898   if (UniformBase &&
3899       AA->pointsToConstantMemory(MemoryLocation(
3900           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3901           AAInfo))) {
3902     // Do not serialize (non-volatile) loads of constant memory with anything.
3903     Root = DAG.getEntryNode();
3904     ConstantMemory = true;
3905   }
3906 
3907   MachineMemOperand *MMO =
3908     DAG.getMachineFunction().
3909     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3910                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3911                          Alignment, AAInfo, Ranges);
3912 
3913   if (!UniformBase) {
3914     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3915     Index = getValue(Ptr);
3916   }
3917   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3918   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3919                                        Ops, MMO);
3920 
3921   SDValue OutChain = Gather.getValue(1);
3922   if (!ConstantMemory)
3923     PendingLoads.push_back(OutChain);
3924   setValue(&I, Gather);
3925 }
3926 
3927 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3928   SDLoc dl = getCurSDLoc();
3929   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3930   AtomicOrdering FailureOrder = I.getFailureOrdering();
3931   SynchronizationScope Scope = I.getSynchScope();
3932 
3933   SDValue InChain = getRoot();
3934 
3935   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3936   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3937   SDValue L = DAG.getAtomicCmpSwap(
3938       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3939       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3940       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3941       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3942 
3943   SDValue OutChain = L.getValue(2);
3944 
3945   setValue(&I, L);
3946   DAG.setRoot(OutChain);
3947 }
3948 
3949 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3950   SDLoc dl = getCurSDLoc();
3951   ISD::NodeType NT;
3952   switch (I.getOperation()) {
3953   default: llvm_unreachable("Unknown atomicrmw operation");
3954   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3955   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3956   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3957   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3958   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3959   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3960   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3961   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3962   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3963   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3964   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3965   }
3966   AtomicOrdering Order = I.getOrdering();
3967   SynchronizationScope Scope = I.getSynchScope();
3968 
3969   SDValue InChain = getRoot();
3970 
3971   SDValue L =
3972     DAG.getAtomic(NT, dl,
3973                   getValue(I.getValOperand()).getSimpleValueType(),
3974                   InChain,
3975                   getValue(I.getPointerOperand()),
3976                   getValue(I.getValOperand()),
3977                   I.getPointerOperand(),
3978                   /* Alignment=*/ 0, Order, Scope);
3979 
3980   SDValue OutChain = L.getValue(1);
3981 
3982   setValue(&I, L);
3983   DAG.setRoot(OutChain);
3984 }
3985 
3986 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3987   SDLoc dl = getCurSDLoc();
3988   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3989   SDValue Ops[3];
3990   Ops[0] = getRoot();
3991   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3992                            TLI.getPointerTy(DAG.getDataLayout()));
3993   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3994                            TLI.getPointerTy(DAG.getDataLayout()));
3995   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3996 }
3997 
3998 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3999   SDLoc dl = getCurSDLoc();
4000   AtomicOrdering Order = I.getOrdering();
4001   SynchronizationScope Scope = I.getSynchScope();
4002 
4003   SDValue InChain = getRoot();
4004 
4005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4006   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4007 
4008   if (I.getAlignment() < VT.getSizeInBits() / 8)
4009     report_fatal_error("Cannot generate unaligned atomic load");
4010 
4011   MachineMemOperand *MMO =
4012       DAG.getMachineFunction().
4013       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4014                            MachineMemOperand::MOVolatile |
4015                            MachineMemOperand::MOLoad,
4016                            VT.getStoreSize(),
4017                            I.getAlignment() ? I.getAlignment() :
4018                                               DAG.getEVTAlignment(VT),
4019                            AAMDNodes(), nullptr, Scope, Order);
4020 
4021   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4022   SDValue L =
4023       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4024                     getValue(I.getPointerOperand()), MMO);
4025 
4026   SDValue OutChain = L.getValue(1);
4027 
4028   setValue(&I, L);
4029   DAG.setRoot(OutChain);
4030 }
4031 
4032 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4033   SDLoc dl = getCurSDLoc();
4034 
4035   AtomicOrdering Order = I.getOrdering();
4036   SynchronizationScope Scope = I.getSynchScope();
4037 
4038   SDValue InChain = getRoot();
4039 
4040   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4041   EVT VT =
4042       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4043 
4044   if (I.getAlignment() < VT.getSizeInBits() / 8)
4045     report_fatal_error("Cannot generate unaligned atomic store");
4046 
4047   SDValue OutChain =
4048     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4049                   InChain,
4050                   getValue(I.getPointerOperand()),
4051                   getValue(I.getValueOperand()),
4052                   I.getPointerOperand(), I.getAlignment(),
4053                   Order, Scope);
4054 
4055   DAG.setRoot(OutChain);
4056 }
4057 
4058 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4059 /// node.
4060 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4061                                                unsigned Intrinsic) {
4062   // Ignore the callsite's attributes. A specific call site may be marked with
4063   // readnone, but the lowering code will expect the chain based on the
4064   // definition.
4065   const Function *F = I.getCalledFunction();
4066   bool HasChain = !F->doesNotAccessMemory();
4067   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4068 
4069   // Build the operand list.
4070   SmallVector<SDValue, 8> Ops;
4071   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4072     if (OnlyLoad) {
4073       // We don't need to serialize loads against other loads.
4074       Ops.push_back(DAG.getRoot());
4075     } else {
4076       Ops.push_back(getRoot());
4077     }
4078   }
4079 
4080   // Info is set by getTgtMemInstrinsic
4081   TargetLowering::IntrinsicInfo Info;
4082   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4083   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4084 
4085   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4086   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4087       Info.opc == ISD::INTRINSIC_W_CHAIN)
4088     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4089                                         TLI.getPointerTy(DAG.getDataLayout())));
4090 
4091   // Add all operands of the call to the operand list.
4092   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4093     SDValue Op = getValue(I.getArgOperand(i));
4094     Ops.push_back(Op);
4095   }
4096 
4097   SmallVector<EVT, 4> ValueVTs;
4098   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4099 
4100   if (HasChain)
4101     ValueVTs.push_back(MVT::Other);
4102 
4103   SDVTList VTs = DAG.getVTList(ValueVTs);
4104 
4105   // Create the node.
4106   SDValue Result;
4107   if (IsTgtIntrinsic) {
4108     // This is target intrinsic that touches memory
4109     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4110                                      VTs, Ops, Info.memVT,
4111                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4112                                      Info.align, Info.vol,
4113                                      Info.readMem, Info.writeMem, Info.size);
4114   } else if (!HasChain) {
4115     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4116   } else if (!I.getType()->isVoidTy()) {
4117     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4118   } else {
4119     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4120   }
4121 
4122   if (HasChain) {
4123     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4124     if (OnlyLoad)
4125       PendingLoads.push_back(Chain);
4126     else
4127       DAG.setRoot(Chain);
4128   }
4129 
4130   if (!I.getType()->isVoidTy()) {
4131     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4132       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4133       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4134     } else
4135       Result = lowerRangeToAssertZExt(DAG, I, Result);
4136 
4137     setValue(&I, Result);
4138   }
4139 }
4140 
4141 /// GetSignificand - Get the significand and build it into a floating-point
4142 /// number with exponent of 1:
4143 ///
4144 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4145 ///
4146 /// where Op is the hexadecimal representation of floating point value.
4147 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4148   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4149                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4150   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4151                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4152   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4153 }
4154 
4155 /// GetExponent - Get the exponent:
4156 ///
4157 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4158 ///
4159 /// where Op is the hexadecimal representation of floating point value.
4160 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4161                            const TargetLowering &TLI, const SDLoc &dl) {
4162   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4163                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4164   SDValue t1 = DAG.getNode(
4165       ISD::SRL, dl, MVT::i32, t0,
4166       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4167   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4168                            DAG.getConstant(127, dl, MVT::i32));
4169   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4170 }
4171 
4172 /// getF32Constant - Get 32-bit floating point constant.
4173 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4174                               const SDLoc &dl) {
4175   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4176                            MVT::f32);
4177 }
4178 
4179 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4180                                        SelectionDAG &DAG) {
4181   // TODO: What fast-math-flags should be set on the floating-point nodes?
4182 
4183   //   IntegerPartOfX = ((int32_t)(t0);
4184   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4185 
4186   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4187   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4188   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4189 
4190   //   IntegerPartOfX <<= 23;
4191   IntegerPartOfX = DAG.getNode(
4192       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4193       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4194                                   DAG.getDataLayout())));
4195 
4196   SDValue TwoToFractionalPartOfX;
4197   if (LimitFloatPrecision <= 6) {
4198     // For floating-point precision of 6:
4199     //
4200     //   TwoToFractionalPartOfX =
4201     //     0.997535578f +
4202     //       (0.735607626f + 0.252464424f * x) * x;
4203     //
4204     // error 0.0144103317, which is 6 bits
4205     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4206                              getF32Constant(DAG, 0x3e814304, dl));
4207     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4208                              getF32Constant(DAG, 0x3f3c50c8, dl));
4209     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4210     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4211                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4212   } else if (LimitFloatPrecision <= 12) {
4213     // For floating-point precision of 12:
4214     //
4215     //   TwoToFractionalPartOfX =
4216     //     0.999892986f +
4217     //       (0.696457318f +
4218     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4219     //
4220     // error 0.000107046256, which is 13 to 14 bits
4221     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4222                              getF32Constant(DAG, 0x3da235e3, dl));
4223     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4224                              getF32Constant(DAG, 0x3e65b8f3, dl));
4225     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4226     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4227                              getF32Constant(DAG, 0x3f324b07, dl));
4228     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4229     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4230                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4231   } else { // LimitFloatPrecision <= 18
4232     // For floating-point precision of 18:
4233     //
4234     //   TwoToFractionalPartOfX =
4235     //     0.999999982f +
4236     //       (0.693148872f +
4237     //         (0.240227044f +
4238     //           (0.554906021e-1f +
4239     //             (0.961591928e-2f +
4240     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4241     // error 2.47208000*10^(-7), which is better than 18 bits
4242     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4243                              getF32Constant(DAG, 0x3924b03e, dl));
4244     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4245                              getF32Constant(DAG, 0x3ab24b87, dl));
4246     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4247     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4248                              getF32Constant(DAG, 0x3c1d8c17, dl));
4249     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4250     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4251                              getF32Constant(DAG, 0x3d634a1d, dl));
4252     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4253     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4254                              getF32Constant(DAG, 0x3e75fe14, dl));
4255     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4256     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4257                               getF32Constant(DAG, 0x3f317234, dl));
4258     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4259     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4260                                          getF32Constant(DAG, 0x3f800000, dl));
4261   }
4262 
4263   // Add the exponent into the result in integer domain.
4264   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4265   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4266                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4267 }
4268 
4269 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4270 /// limited-precision mode.
4271 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4272                          const TargetLowering &TLI) {
4273   if (Op.getValueType() == MVT::f32 &&
4274       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4275 
4276     // Put the exponent in the right bit position for later addition to the
4277     // final result:
4278     //
4279     //   #define LOG2OFe 1.4426950f
4280     //   t0 = Op * LOG2OFe
4281 
4282     // TODO: What fast-math-flags should be set here?
4283     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4284                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4285     return getLimitedPrecisionExp2(t0, dl, DAG);
4286   }
4287 
4288   // No special expansion.
4289   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4290 }
4291 
4292 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4293 /// limited-precision mode.
4294 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4295                          const TargetLowering &TLI) {
4296 
4297   // TODO: What fast-math-flags should be set on the floating-point nodes?
4298 
4299   if (Op.getValueType() == MVT::f32 &&
4300       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4301     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4302 
4303     // Scale the exponent by log(2) [0.69314718f].
4304     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4305     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4306                                         getF32Constant(DAG, 0x3f317218, dl));
4307 
4308     // Get the significand and build it into a floating-point number with
4309     // exponent of 1.
4310     SDValue X = GetSignificand(DAG, Op1, dl);
4311 
4312     SDValue LogOfMantissa;
4313     if (LimitFloatPrecision <= 6) {
4314       // For floating-point precision of 6:
4315       //
4316       //   LogofMantissa =
4317       //     -1.1609546f +
4318       //       (1.4034025f - 0.23903021f * x) * x;
4319       //
4320       // error 0.0034276066, which is better than 8 bits
4321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4322                                getF32Constant(DAG, 0xbe74c456, dl));
4323       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4324                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4326       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4327                                   getF32Constant(DAG, 0x3f949a29, dl));
4328     } else if (LimitFloatPrecision <= 12) {
4329       // For floating-point precision of 12:
4330       //
4331       //   LogOfMantissa =
4332       //     -1.7417939f +
4333       //       (2.8212026f +
4334       //         (-1.4699568f +
4335       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4336       //
4337       // error 0.000061011436, which is 14 bits
4338       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4339                                getF32Constant(DAG, 0xbd67b6d6, dl));
4340       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4341                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4342       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4343       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4344                                getF32Constant(DAG, 0x3fbc278b, dl));
4345       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4346       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4347                                getF32Constant(DAG, 0x40348e95, dl));
4348       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4349       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4350                                   getF32Constant(DAG, 0x3fdef31a, dl));
4351     } else { // LimitFloatPrecision <= 18
4352       // For floating-point precision of 18:
4353       //
4354       //   LogOfMantissa =
4355       //     -2.1072184f +
4356       //       (4.2372794f +
4357       //         (-3.7029485f +
4358       //           (2.2781945f +
4359       //             (-0.87823314f +
4360       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4361       //
4362       // error 0.0000023660568, which is better than 18 bits
4363       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4364                                getF32Constant(DAG, 0xbc91e5ac, dl));
4365       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4366                                getF32Constant(DAG, 0x3e4350aa, dl));
4367       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4368       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4369                                getF32Constant(DAG, 0x3f60d3e3, dl));
4370       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4371       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4372                                getF32Constant(DAG, 0x4011cdf0, dl));
4373       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4374       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4375                                getF32Constant(DAG, 0x406cfd1c, dl));
4376       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4377       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4378                                getF32Constant(DAG, 0x408797cb, dl));
4379       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4380       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4381                                   getF32Constant(DAG, 0x4006dcab, dl));
4382     }
4383 
4384     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4385   }
4386 
4387   // No special expansion.
4388   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4389 }
4390 
4391 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4392 /// limited-precision mode.
4393 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4394                           const TargetLowering &TLI) {
4395 
4396   // TODO: What fast-math-flags should be set on the floating-point nodes?
4397 
4398   if (Op.getValueType() == MVT::f32 &&
4399       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4400     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4401 
4402     // Get the exponent.
4403     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4404 
4405     // Get the significand and build it into a floating-point number with
4406     // exponent of 1.
4407     SDValue X = GetSignificand(DAG, Op1, dl);
4408 
4409     // Different possible minimax approximations of significand in
4410     // floating-point for various degrees of accuracy over [1,2].
4411     SDValue Log2ofMantissa;
4412     if (LimitFloatPrecision <= 6) {
4413       // For floating-point precision of 6:
4414       //
4415       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4416       //
4417       // error 0.0049451742, which is more than 7 bits
4418       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4419                                getF32Constant(DAG, 0xbeb08fe0, dl));
4420       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4421                                getF32Constant(DAG, 0x40019463, dl));
4422       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4423       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4424                                    getF32Constant(DAG, 0x3fd6633d, dl));
4425     } else if (LimitFloatPrecision <= 12) {
4426       // For floating-point precision of 12:
4427       //
4428       //   Log2ofMantissa =
4429       //     -2.51285454f +
4430       //       (4.07009056f +
4431       //         (-2.12067489f +
4432       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4433       //
4434       // error 0.0000876136000, which is better than 13 bits
4435       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4436                                getF32Constant(DAG, 0xbda7262e, dl));
4437       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4438                                getF32Constant(DAG, 0x3f25280b, dl));
4439       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4440       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4441                                getF32Constant(DAG, 0x4007b923, dl));
4442       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4443       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4444                                getF32Constant(DAG, 0x40823e2f, dl));
4445       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4446       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4447                                    getF32Constant(DAG, 0x4020d29c, dl));
4448     } else { // LimitFloatPrecision <= 18
4449       // For floating-point precision of 18:
4450       //
4451       //   Log2ofMantissa =
4452       //     -3.0400495f +
4453       //       (6.1129976f +
4454       //         (-5.3420409f +
4455       //           (3.2865683f +
4456       //             (-1.2669343f +
4457       //               (0.27515199f -
4458       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4459       //
4460       // error 0.0000018516, which is better than 18 bits
4461       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4462                                getF32Constant(DAG, 0xbcd2769e, dl));
4463       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4464                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4465       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4466       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4467                                getF32Constant(DAG, 0x3fa22ae7, dl));
4468       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4469       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4470                                getF32Constant(DAG, 0x40525723, dl));
4471       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4472       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4473                                getF32Constant(DAG, 0x40aaf200, dl));
4474       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4475       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4476                                getF32Constant(DAG, 0x40c39dad, dl));
4477       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4478       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4479                                    getF32Constant(DAG, 0x4042902c, dl));
4480     }
4481 
4482     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4483   }
4484 
4485   // No special expansion.
4486   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4487 }
4488 
4489 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4490 /// limited-precision mode.
4491 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4492                            const TargetLowering &TLI) {
4493 
4494   // TODO: What fast-math-flags should be set on the floating-point nodes?
4495 
4496   if (Op.getValueType() == MVT::f32 &&
4497       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4498     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4499 
4500     // Scale the exponent by log10(2) [0.30102999f].
4501     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4502     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4503                                         getF32Constant(DAG, 0x3e9a209a, dl));
4504 
4505     // Get the significand and build it into a floating-point number with
4506     // exponent of 1.
4507     SDValue X = GetSignificand(DAG, Op1, dl);
4508 
4509     SDValue Log10ofMantissa;
4510     if (LimitFloatPrecision <= 6) {
4511       // For floating-point precision of 6:
4512       //
4513       //   Log10ofMantissa =
4514       //     -0.50419619f +
4515       //       (0.60948995f - 0.10380950f * x) * x;
4516       //
4517       // error 0.0014886165, which is 6 bits
4518       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4519                                getF32Constant(DAG, 0xbdd49a13, dl));
4520       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4521                                getF32Constant(DAG, 0x3f1c0789, dl));
4522       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4523       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4524                                     getF32Constant(DAG, 0x3f011300, dl));
4525     } else if (LimitFloatPrecision <= 12) {
4526       // For floating-point precision of 12:
4527       //
4528       //   Log10ofMantissa =
4529       //     -0.64831180f +
4530       //       (0.91751397f +
4531       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4532       //
4533       // error 0.00019228036, which is better than 12 bits
4534       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4535                                getF32Constant(DAG, 0x3d431f31, dl));
4536       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4537                                getF32Constant(DAG, 0x3ea21fb2, dl));
4538       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4539       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4540                                getF32Constant(DAG, 0x3f6ae232, dl));
4541       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4542       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4543                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4544     } else { // LimitFloatPrecision <= 18
4545       // For floating-point precision of 18:
4546       //
4547       //   Log10ofMantissa =
4548       //     -0.84299375f +
4549       //       (1.5327582f +
4550       //         (-1.0688956f +
4551       //           (0.49102474f +
4552       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4553       //
4554       // error 0.0000037995730, which is better than 18 bits
4555       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4556                                getF32Constant(DAG, 0x3c5d51ce, dl));
4557       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4558                                getF32Constant(DAG, 0x3e00685a, dl));
4559       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4560       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4561                                getF32Constant(DAG, 0x3efb6798, dl));
4562       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4563       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4564                                getF32Constant(DAG, 0x3f88d192, dl));
4565       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4566       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4567                                getF32Constant(DAG, 0x3fc4316c, dl));
4568       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4569       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4570                                     getF32Constant(DAG, 0x3f57ce70, dl));
4571     }
4572 
4573     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4574   }
4575 
4576   // No special expansion.
4577   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4578 }
4579 
4580 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4581 /// limited-precision mode.
4582 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4583                           const TargetLowering &TLI) {
4584   if (Op.getValueType() == MVT::f32 &&
4585       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4586     return getLimitedPrecisionExp2(Op, dl, DAG);
4587 
4588   // No special expansion.
4589   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4590 }
4591 
4592 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4593 /// limited-precision mode with x == 10.0f.
4594 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4595                          SelectionDAG &DAG, const TargetLowering &TLI) {
4596   bool IsExp10 = false;
4597   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4598       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4599     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4600       APFloat Ten(10.0f);
4601       IsExp10 = LHSC->isExactlyValue(Ten);
4602     }
4603   }
4604 
4605   // TODO: What fast-math-flags should be set on the FMUL node?
4606   if (IsExp10) {
4607     // Put the exponent in the right bit position for later addition to the
4608     // final result:
4609     //
4610     //   #define LOG2OF10 3.3219281f
4611     //   t0 = Op * LOG2OF10;
4612     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4613                              getF32Constant(DAG, 0x40549a78, dl));
4614     return getLimitedPrecisionExp2(t0, dl, DAG);
4615   }
4616 
4617   // No special expansion.
4618   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4619 }
4620 
4621 
4622 /// ExpandPowI - Expand a llvm.powi intrinsic.
4623 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4624                           SelectionDAG &DAG) {
4625   // If RHS is a constant, we can expand this out to a multiplication tree,
4626   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4627   // optimizing for size, we only want to do this if the expansion would produce
4628   // a small number of multiplies, otherwise we do the full expansion.
4629   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4630     // Get the exponent as a positive value.
4631     unsigned Val = RHSC->getSExtValue();
4632     if ((int)Val < 0) Val = -Val;
4633 
4634     // powi(x, 0) -> 1.0
4635     if (Val == 0)
4636       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4637 
4638     const Function *F = DAG.getMachineFunction().getFunction();
4639     if (!F->optForSize() ||
4640         // If optimizing for size, don't insert too many multiplies.
4641         // This inserts up to 5 multiplies.
4642         countPopulation(Val) + Log2_32(Val) < 7) {
4643       // We use the simple binary decomposition method to generate the multiply
4644       // sequence.  There are more optimal ways to do this (for example,
4645       // powi(x,15) generates one more multiply than it should), but this has
4646       // the benefit of being both really simple and much better than a libcall.
4647       SDValue Res;  // Logically starts equal to 1.0
4648       SDValue CurSquare = LHS;
4649       // TODO: Intrinsics should have fast-math-flags that propagate to these
4650       // nodes.
4651       while (Val) {
4652         if (Val & 1) {
4653           if (Res.getNode())
4654             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4655           else
4656             Res = CurSquare;  // 1.0*CurSquare.
4657         }
4658 
4659         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4660                                 CurSquare, CurSquare);
4661         Val >>= 1;
4662       }
4663 
4664       // If the original was negative, invert the result, producing 1/(x*x*x).
4665       if (RHSC->getSExtValue() < 0)
4666         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4667                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4668       return Res;
4669     }
4670   }
4671 
4672   // Otherwise, expand to a libcall.
4673   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4674 }
4675 
4676 // getUnderlyingArgReg - Find underlying register used for a truncated or
4677 // bitcasted argument.
4678 static unsigned getUnderlyingArgReg(const SDValue &N) {
4679   switch (N.getOpcode()) {
4680   case ISD::CopyFromReg:
4681     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4682   case ISD::BITCAST:
4683   case ISD::AssertZext:
4684   case ISD::AssertSext:
4685   case ISD::TRUNCATE:
4686     return getUnderlyingArgReg(N.getOperand(0));
4687   default:
4688     return 0;
4689   }
4690 }
4691 
4692 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4693 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4694 /// At the end of instruction selection, they will be inserted to the entry BB.
4695 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4696     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4697     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4698   const Argument *Arg = dyn_cast<Argument>(V);
4699   if (!Arg)
4700     return false;
4701 
4702   MachineFunction &MF = DAG.getMachineFunction();
4703   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4704 
4705   // Ignore inlined function arguments here.
4706   //
4707   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4708   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4709     return false;
4710 
4711   Optional<MachineOperand> Op;
4712   // Some arguments' frame index is recorded during argument lowering.
4713   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4714     Op = MachineOperand::CreateFI(FI);
4715 
4716   if (!Op && N.getNode()) {
4717     unsigned Reg = getUnderlyingArgReg(N);
4718     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4719       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4720       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4721       if (PR)
4722         Reg = PR;
4723     }
4724     if (Reg)
4725       Op = MachineOperand::CreateReg(Reg, false);
4726   }
4727 
4728   if (!Op) {
4729     // Check if ValueMap has reg number.
4730     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4731     if (VMI != FuncInfo.ValueMap.end())
4732       Op = MachineOperand::CreateReg(VMI->second, false);
4733   }
4734 
4735   if (!Op && N.getNode())
4736     // Check if frame index is available.
4737     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4738       if (FrameIndexSDNode *FINode =
4739           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4740         Op = MachineOperand::CreateFI(FINode->getIndex());
4741 
4742   if (!Op)
4743     return false;
4744 
4745   assert(Variable->isValidLocationForIntrinsic(DL) &&
4746          "Expected inlined-at fields to agree");
4747   if (Op->isReg())
4748     FuncInfo.ArgDbgValues.push_back(
4749         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4750                 Op->getReg(), Offset, Variable, Expr));
4751   else
4752     FuncInfo.ArgDbgValues.push_back(
4753         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4754             .addOperand(*Op)
4755             .addImm(Offset)
4756             .addMetadata(Variable)
4757             .addMetadata(Expr));
4758 
4759   return true;
4760 }
4761 
4762 /// Return the appropriate SDDbgValue based on N.
4763 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4764                                              DILocalVariable *Variable,
4765                                              DIExpression *Expr, int64_t Offset,
4766                                              DebugLoc dl,
4767                                              unsigned DbgSDNodeOrder) {
4768   SDDbgValue *SDV;
4769   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4770   if (FISDN && Expr->startsWithDeref()) {
4771     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4772     // stack slot locations as such instead of as indirectly addressed
4773     // locations.
4774     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4775                                         Expr->elements_end());
4776     DIExpression *DerefedDIExpr =
4777         DIExpression::get(*DAG.getContext(), TrailingElements);
4778     int FI = FISDN->getIndex();
4779     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4780                                     DbgSDNodeOrder);
4781   } else {
4782     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4783                           Offset, dl, DbgSDNodeOrder);
4784   }
4785   return SDV;
4786 }
4787 
4788 // VisualStudio defines setjmp as _setjmp
4789 #if defined(_MSC_VER) && defined(setjmp) && \
4790                          !defined(setjmp_undefined_for_msvc)
4791 #  pragma push_macro("setjmp")
4792 #  undef setjmp
4793 #  define setjmp_undefined_for_msvc
4794 #endif
4795 
4796 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4797 /// we want to emit this as a call to a named external function, return the name
4798 /// otherwise lower it and return null.
4799 const char *
4800 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4801   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4802   SDLoc sdl = getCurSDLoc();
4803   DebugLoc dl = getCurDebugLoc();
4804   SDValue Res;
4805 
4806   switch (Intrinsic) {
4807   default:
4808     // By default, turn this into a target intrinsic node.
4809     visitTargetIntrinsic(I, Intrinsic);
4810     return nullptr;
4811   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4812   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4813   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4814   case Intrinsic::returnaddress:
4815     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4816                              TLI.getPointerTy(DAG.getDataLayout()),
4817                              getValue(I.getArgOperand(0))));
4818     return nullptr;
4819   case Intrinsic::addressofreturnaddress:
4820     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4821                              TLI.getPointerTy(DAG.getDataLayout())));
4822     return nullptr;
4823   case Intrinsic::frameaddress:
4824     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4825                              TLI.getPointerTy(DAG.getDataLayout()),
4826                              getValue(I.getArgOperand(0))));
4827     return nullptr;
4828   case Intrinsic::read_register: {
4829     Value *Reg = I.getArgOperand(0);
4830     SDValue Chain = getRoot();
4831     SDValue RegName =
4832         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4833     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4834     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4835       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4836     setValue(&I, Res);
4837     DAG.setRoot(Res.getValue(1));
4838     return nullptr;
4839   }
4840   case Intrinsic::write_register: {
4841     Value *Reg = I.getArgOperand(0);
4842     Value *RegValue = I.getArgOperand(1);
4843     SDValue Chain = getRoot();
4844     SDValue RegName =
4845         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4846     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4847                             RegName, getValue(RegValue)));
4848     return nullptr;
4849   }
4850   case Intrinsic::setjmp:
4851     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4852   case Intrinsic::longjmp:
4853     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4854   case Intrinsic::memcpy: {
4855     SDValue Op1 = getValue(I.getArgOperand(0));
4856     SDValue Op2 = getValue(I.getArgOperand(1));
4857     SDValue Op3 = getValue(I.getArgOperand(2));
4858     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4859     if (!Align)
4860       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4861     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4862     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4863     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4864                                false, isTC,
4865                                MachinePointerInfo(I.getArgOperand(0)),
4866                                MachinePointerInfo(I.getArgOperand(1)));
4867     updateDAGForMaybeTailCall(MC);
4868     return nullptr;
4869   }
4870   case Intrinsic::memset: {
4871     SDValue Op1 = getValue(I.getArgOperand(0));
4872     SDValue Op2 = getValue(I.getArgOperand(1));
4873     SDValue Op3 = getValue(I.getArgOperand(2));
4874     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4875     if (!Align)
4876       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4877     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4878     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4879     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4880                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4881     updateDAGForMaybeTailCall(MS);
4882     return nullptr;
4883   }
4884   case Intrinsic::memmove: {
4885     SDValue Op1 = getValue(I.getArgOperand(0));
4886     SDValue Op2 = getValue(I.getArgOperand(1));
4887     SDValue Op3 = getValue(I.getArgOperand(2));
4888     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4889     if (!Align)
4890       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4891     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4892     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4893     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4894                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4895                                 MachinePointerInfo(I.getArgOperand(1)));
4896     updateDAGForMaybeTailCall(MM);
4897     return nullptr;
4898   }
4899   case Intrinsic::dbg_declare: {
4900     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4901     DILocalVariable *Variable = DI.getVariable();
4902     DIExpression *Expression = DI.getExpression();
4903     const Value *Address = DI.getAddress();
4904     assert(Variable && "Missing variable");
4905     if (!Address) {
4906       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4907       return nullptr;
4908     }
4909 
4910     // Check if address has undef value.
4911     if (isa<UndefValue>(Address) ||
4912         (Address->use_empty() && !isa<Argument>(Address))) {
4913       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4914       return nullptr;
4915     }
4916 
4917     SDValue &N = NodeMap[Address];
4918     if (!N.getNode() && isa<Argument>(Address))
4919       // Check unused arguments map.
4920       N = UnusedArgNodeMap[Address];
4921     SDDbgValue *SDV;
4922     if (N.getNode()) {
4923       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4924         Address = BCI->getOperand(0);
4925       // Parameters are handled specially.
4926       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4927       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4928       if (isParameter && FINode) {
4929         // Byval parameter. We have a frame index at this point.
4930         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4931                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4932       } else if (isa<Argument>(Address)) {
4933         // Address is an argument, so try to emit its dbg value using
4934         // virtual register info from the FuncInfo.ValueMap.
4935         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4936                                  N);
4937         return nullptr;
4938       } else {
4939         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4940                               true, 0, dl, SDNodeOrder);
4941       }
4942       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4943     } else {
4944       // If Address is an argument then try to emit its dbg value using
4945       // virtual register info from the FuncInfo.ValueMap.
4946       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4947                                     N)) {
4948         // If variable is pinned by a alloca in dominating bb then
4949         // use StaticAllocaMap.
4950         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4951           if (AI->getParent() != DI.getParent()) {
4952             DenseMap<const AllocaInst*, int>::iterator SI =
4953               FuncInfo.StaticAllocaMap.find(AI);
4954             if (SI != FuncInfo.StaticAllocaMap.end()) {
4955               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4956                                               0, dl, SDNodeOrder);
4957               DAG.AddDbgValue(SDV, nullptr, false);
4958               return nullptr;
4959             }
4960           }
4961         }
4962         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4963       }
4964     }
4965     return nullptr;
4966   }
4967   case Intrinsic::dbg_value: {
4968     const DbgValueInst &DI = cast<DbgValueInst>(I);
4969     assert(DI.getVariable() && "Missing variable");
4970 
4971     DILocalVariable *Variable = DI.getVariable();
4972     DIExpression *Expression = DI.getExpression();
4973     uint64_t Offset = DI.getOffset();
4974     const Value *V = DI.getValue();
4975     if (!V)
4976       return nullptr;
4977 
4978     SDDbgValue *SDV;
4979     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4980       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4981                                     SDNodeOrder);
4982       DAG.AddDbgValue(SDV, nullptr, false);
4983     } else {
4984       // Do not use getValue() in here; we don't want to generate code at
4985       // this point if it hasn't been done yet.
4986       SDValue N = NodeMap[V];
4987       if (!N.getNode() && isa<Argument>(V))
4988         // Check unused arguments map.
4989         N = UnusedArgNodeMap[V];
4990       if (N.getNode()) {
4991         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4992                                       false, N)) {
4993           SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
4994           DAG.AddDbgValue(SDV, N.getNode(), false);
4995         }
4996       } else if (!V->use_empty() ) {
4997         // Do not call getValue(V) yet, as we don't want to generate code.
4998         // Remember it for later.
4999         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5000         DanglingDebugInfoMap[V] = DDI;
5001       } else {
5002         // We may expand this to cover more cases.  One case where we have no
5003         // data available is an unreferenced parameter.
5004         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5005       }
5006     }
5007 
5008     // Build a debug info table entry.
5009     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
5010       V = BCI->getOperand(0);
5011     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
5012     // Don't handle byval struct arguments or VLAs, for example.
5013     if (!AI) {
5014       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5015       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5016       return nullptr;
5017     }
5018     DenseMap<const AllocaInst*, int>::iterator SI =
5019       FuncInfo.StaticAllocaMap.find(AI);
5020     if (SI == FuncInfo.StaticAllocaMap.end())
5021       return nullptr; // VLAs.
5022     return nullptr;
5023   }
5024 
5025   case Intrinsic::eh_typeid_for: {
5026     // Find the type id for the given typeinfo.
5027     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5028     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5029     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5030     setValue(&I, Res);
5031     return nullptr;
5032   }
5033 
5034   case Intrinsic::eh_return_i32:
5035   case Intrinsic::eh_return_i64:
5036     DAG.getMachineFunction().setCallsEHReturn(true);
5037     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5038                             MVT::Other,
5039                             getControlRoot(),
5040                             getValue(I.getArgOperand(0)),
5041                             getValue(I.getArgOperand(1))));
5042     return nullptr;
5043   case Intrinsic::eh_unwind_init:
5044     DAG.getMachineFunction().setCallsUnwindInit(true);
5045     return nullptr;
5046   case Intrinsic::eh_dwarf_cfa: {
5047     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5048                              TLI.getPointerTy(DAG.getDataLayout()),
5049                              getValue(I.getArgOperand(0))));
5050     return nullptr;
5051   }
5052   case Intrinsic::eh_sjlj_callsite: {
5053     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5054     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5055     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5056     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5057 
5058     MMI.setCurrentCallSite(CI->getZExtValue());
5059     return nullptr;
5060   }
5061   case Intrinsic::eh_sjlj_functioncontext: {
5062     // Get and store the index of the function context.
5063     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5064     AllocaInst *FnCtx =
5065       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5066     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5067     MFI.setFunctionContextIndex(FI);
5068     return nullptr;
5069   }
5070   case Intrinsic::eh_sjlj_setjmp: {
5071     SDValue Ops[2];
5072     Ops[0] = getRoot();
5073     Ops[1] = getValue(I.getArgOperand(0));
5074     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5075                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5076     setValue(&I, Op.getValue(0));
5077     DAG.setRoot(Op.getValue(1));
5078     return nullptr;
5079   }
5080   case Intrinsic::eh_sjlj_longjmp: {
5081     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5082                             getRoot(), getValue(I.getArgOperand(0))));
5083     return nullptr;
5084   }
5085   case Intrinsic::eh_sjlj_setup_dispatch: {
5086     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5087                             getRoot()));
5088     return nullptr;
5089   }
5090 
5091   case Intrinsic::masked_gather:
5092     visitMaskedGather(I);
5093     return nullptr;
5094   case Intrinsic::masked_load:
5095     visitMaskedLoad(I);
5096     return nullptr;
5097   case Intrinsic::masked_scatter:
5098     visitMaskedScatter(I);
5099     return nullptr;
5100   case Intrinsic::masked_store:
5101     visitMaskedStore(I);
5102     return nullptr;
5103   case Intrinsic::masked_expandload:
5104     visitMaskedLoad(I, true /* IsExpanding */);
5105     return nullptr;
5106   case Intrinsic::masked_compressstore:
5107     visitMaskedStore(I, true /* IsCompressing */);
5108     return nullptr;
5109   case Intrinsic::x86_mmx_pslli_w:
5110   case Intrinsic::x86_mmx_pslli_d:
5111   case Intrinsic::x86_mmx_pslli_q:
5112   case Intrinsic::x86_mmx_psrli_w:
5113   case Intrinsic::x86_mmx_psrli_d:
5114   case Intrinsic::x86_mmx_psrli_q:
5115   case Intrinsic::x86_mmx_psrai_w:
5116   case Intrinsic::x86_mmx_psrai_d: {
5117     SDValue ShAmt = getValue(I.getArgOperand(1));
5118     if (isa<ConstantSDNode>(ShAmt)) {
5119       visitTargetIntrinsic(I, Intrinsic);
5120       return nullptr;
5121     }
5122     unsigned NewIntrinsic = 0;
5123     EVT ShAmtVT = MVT::v2i32;
5124     switch (Intrinsic) {
5125     case Intrinsic::x86_mmx_pslli_w:
5126       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5127       break;
5128     case Intrinsic::x86_mmx_pslli_d:
5129       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5130       break;
5131     case Intrinsic::x86_mmx_pslli_q:
5132       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5133       break;
5134     case Intrinsic::x86_mmx_psrli_w:
5135       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5136       break;
5137     case Intrinsic::x86_mmx_psrli_d:
5138       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5139       break;
5140     case Intrinsic::x86_mmx_psrli_q:
5141       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5142       break;
5143     case Intrinsic::x86_mmx_psrai_w:
5144       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5145       break;
5146     case Intrinsic::x86_mmx_psrai_d:
5147       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5148       break;
5149     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5150     }
5151 
5152     // The vector shift intrinsics with scalars uses 32b shift amounts but
5153     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5154     // to be zero.
5155     // We must do this early because v2i32 is not a legal type.
5156     SDValue ShOps[2];
5157     ShOps[0] = ShAmt;
5158     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5159     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5160     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5161     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5162     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5163                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5164                        getValue(I.getArgOperand(0)), ShAmt);
5165     setValue(&I, Res);
5166     return nullptr;
5167   }
5168   case Intrinsic::convertff:
5169   case Intrinsic::convertfsi:
5170   case Intrinsic::convertfui:
5171   case Intrinsic::convertsif:
5172   case Intrinsic::convertuif:
5173   case Intrinsic::convertss:
5174   case Intrinsic::convertsu:
5175   case Intrinsic::convertus:
5176   case Intrinsic::convertuu: {
5177     ISD::CvtCode Code = ISD::CVT_INVALID;
5178     switch (Intrinsic) {
5179     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5180     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5181     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5182     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5183     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5184     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5185     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5186     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5187     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5188     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5189     }
5190     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5191     const Value *Op1 = I.getArgOperand(0);
5192     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5193                                DAG.getValueType(DestVT),
5194                                DAG.getValueType(getValue(Op1).getValueType()),
5195                                getValue(I.getArgOperand(1)),
5196                                getValue(I.getArgOperand(2)),
5197                                Code);
5198     setValue(&I, Res);
5199     return nullptr;
5200   }
5201   case Intrinsic::powi:
5202     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5203                             getValue(I.getArgOperand(1)), DAG));
5204     return nullptr;
5205   case Intrinsic::log:
5206     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5207     return nullptr;
5208   case Intrinsic::log2:
5209     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5210     return nullptr;
5211   case Intrinsic::log10:
5212     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5213     return nullptr;
5214   case Intrinsic::exp:
5215     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5216     return nullptr;
5217   case Intrinsic::exp2:
5218     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5219     return nullptr;
5220   case Intrinsic::pow:
5221     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5222                            getValue(I.getArgOperand(1)), DAG, TLI));
5223     return nullptr;
5224   case Intrinsic::sqrt:
5225   case Intrinsic::fabs:
5226   case Intrinsic::sin:
5227   case Intrinsic::cos:
5228   case Intrinsic::floor:
5229   case Intrinsic::ceil:
5230   case Intrinsic::trunc:
5231   case Intrinsic::rint:
5232   case Intrinsic::nearbyint:
5233   case Intrinsic::round:
5234   case Intrinsic::canonicalize: {
5235     unsigned Opcode;
5236     switch (Intrinsic) {
5237     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5238     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5239     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5240     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5241     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5242     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5243     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5244     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5245     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5246     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5247     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5248     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5249     }
5250 
5251     setValue(&I, DAG.getNode(Opcode, sdl,
5252                              getValue(I.getArgOperand(0)).getValueType(),
5253                              getValue(I.getArgOperand(0))));
5254     return nullptr;
5255   }
5256   case Intrinsic::minnum: {
5257     auto VT = getValue(I.getArgOperand(0)).getValueType();
5258     unsigned Opc =
5259         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5260             ? ISD::FMINNAN
5261             : ISD::FMINNUM;
5262     setValue(&I, DAG.getNode(Opc, sdl, VT,
5263                              getValue(I.getArgOperand(0)),
5264                              getValue(I.getArgOperand(1))));
5265     return nullptr;
5266   }
5267   case Intrinsic::maxnum: {
5268     auto VT = getValue(I.getArgOperand(0)).getValueType();
5269     unsigned Opc =
5270         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5271             ? ISD::FMAXNAN
5272             : ISD::FMAXNUM;
5273     setValue(&I, DAG.getNode(Opc, sdl, VT,
5274                              getValue(I.getArgOperand(0)),
5275                              getValue(I.getArgOperand(1))));
5276     return nullptr;
5277   }
5278   case Intrinsic::copysign:
5279     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5280                              getValue(I.getArgOperand(0)).getValueType(),
5281                              getValue(I.getArgOperand(0)),
5282                              getValue(I.getArgOperand(1))));
5283     return nullptr;
5284   case Intrinsic::fma:
5285     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5286                              getValue(I.getArgOperand(0)).getValueType(),
5287                              getValue(I.getArgOperand(0)),
5288                              getValue(I.getArgOperand(1)),
5289                              getValue(I.getArgOperand(2))));
5290     return nullptr;
5291   case Intrinsic::fmuladd: {
5292     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5293     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5294         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5295       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5296                                getValue(I.getArgOperand(0)).getValueType(),
5297                                getValue(I.getArgOperand(0)),
5298                                getValue(I.getArgOperand(1)),
5299                                getValue(I.getArgOperand(2))));
5300     } else {
5301       // TODO: Intrinsic calls should have fast-math-flags.
5302       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5303                                 getValue(I.getArgOperand(0)).getValueType(),
5304                                 getValue(I.getArgOperand(0)),
5305                                 getValue(I.getArgOperand(1)));
5306       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5307                                 getValue(I.getArgOperand(0)).getValueType(),
5308                                 Mul,
5309                                 getValue(I.getArgOperand(2)));
5310       setValue(&I, Add);
5311     }
5312     return nullptr;
5313   }
5314   case Intrinsic::convert_to_fp16:
5315     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5316                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5317                                          getValue(I.getArgOperand(0)),
5318                                          DAG.getTargetConstant(0, sdl,
5319                                                                MVT::i32))));
5320     return nullptr;
5321   case Intrinsic::convert_from_fp16:
5322     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5323                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5324                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5325                                          getValue(I.getArgOperand(0)))));
5326     return nullptr;
5327   case Intrinsic::pcmarker: {
5328     SDValue Tmp = getValue(I.getArgOperand(0));
5329     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5330     return nullptr;
5331   }
5332   case Intrinsic::readcyclecounter: {
5333     SDValue Op = getRoot();
5334     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5335                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5336     setValue(&I, Res);
5337     DAG.setRoot(Res.getValue(1));
5338     return nullptr;
5339   }
5340   case Intrinsic::bitreverse:
5341     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5342                              getValue(I.getArgOperand(0)).getValueType(),
5343                              getValue(I.getArgOperand(0))));
5344     return nullptr;
5345   case Intrinsic::bswap:
5346     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5347                              getValue(I.getArgOperand(0)).getValueType(),
5348                              getValue(I.getArgOperand(0))));
5349     return nullptr;
5350   case Intrinsic::cttz: {
5351     SDValue Arg = getValue(I.getArgOperand(0));
5352     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5353     EVT Ty = Arg.getValueType();
5354     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5355                              sdl, Ty, Arg));
5356     return nullptr;
5357   }
5358   case Intrinsic::ctlz: {
5359     SDValue Arg = getValue(I.getArgOperand(0));
5360     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5361     EVT Ty = Arg.getValueType();
5362     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5363                              sdl, Ty, Arg));
5364     return nullptr;
5365   }
5366   case Intrinsic::ctpop: {
5367     SDValue Arg = getValue(I.getArgOperand(0));
5368     EVT Ty = Arg.getValueType();
5369     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5370     return nullptr;
5371   }
5372   case Intrinsic::stacksave: {
5373     SDValue Op = getRoot();
5374     Res = DAG.getNode(
5375         ISD::STACKSAVE, sdl,
5376         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5377     setValue(&I, Res);
5378     DAG.setRoot(Res.getValue(1));
5379     return nullptr;
5380   }
5381   case Intrinsic::stackrestore: {
5382     Res = getValue(I.getArgOperand(0));
5383     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5384     return nullptr;
5385   }
5386   case Intrinsic::get_dynamic_area_offset: {
5387     SDValue Op = getRoot();
5388     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5389     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5390     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5391     // target.
5392     if (PtrTy != ResTy)
5393       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5394                          " intrinsic!");
5395     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5396                       Op);
5397     DAG.setRoot(Op);
5398     setValue(&I, Res);
5399     return nullptr;
5400   }
5401   case Intrinsic::stackguard: {
5402     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5403     MachineFunction &MF = DAG.getMachineFunction();
5404     const Module &M = *MF.getFunction()->getParent();
5405     SDValue Chain = getRoot();
5406     if (TLI.useLoadStackGuardNode()) {
5407       Res = getLoadStackGuard(DAG, sdl, Chain);
5408     } else {
5409       const Value *Global = TLI.getSDagStackGuard(M);
5410       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5411       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5412                         MachinePointerInfo(Global, 0), Align,
5413                         MachineMemOperand::MOVolatile);
5414     }
5415     DAG.setRoot(Chain);
5416     setValue(&I, Res);
5417     return nullptr;
5418   }
5419   case Intrinsic::stackprotector: {
5420     // Emit code into the DAG to store the stack guard onto the stack.
5421     MachineFunction &MF = DAG.getMachineFunction();
5422     MachineFrameInfo &MFI = MF.getFrameInfo();
5423     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5424     SDValue Src, Chain = getRoot();
5425 
5426     if (TLI.useLoadStackGuardNode())
5427       Src = getLoadStackGuard(DAG, sdl, Chain);
5428     else
5429       Src = getValue(I.getArgOperand(0));   // The guard's value.
5430 
5431     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5432 
5433     int FI = FuncInfo.StaticAllocaMap[Slot];
5434     MFI.setStackProtectorIndex(FI);
5435 
5436     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5437 
5438     // Store the stack protector onto the stack.
5439     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5440                                                  DAG.getMachineFunction(), FI),
5441                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5442     setValue(&I, Res);
5443     DAG.setRoot(Res);
5444     return nullptr;
5445   }
5446   case Intrinsic::objectsize: {
5447     // If we don't know by now, we're never going to know.
5448     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5449 
5450     assert(CI && "Non-constant type in __builtin_object_size?");
5451 
5452     SDValue Arg = getValue(I.getCalledValue());
5453     EVT Ty = Arg.getValueType();
5454 
5455     if (CI->isZero())
5456       Res = DAG.getConstant(-1ULL, sdl, Ty);
5457     else
5458       Res = DAG.getConstant(0, sdl, Ty);
5459 
5460     setValue(&I, Res);
5461     return nullptr;
5462   }
5463   case Intrinsic::annotation:
5464   case Intrinsic::ptr_annotation:
5465   case Intrinsic::invariant_group_barrier:
5466     // Drop the intrinsic, but forward the value
5467     setValue(&I, getValue(I.getOperand(0)));
5468     return nullptr;
5469   case Intrinsic::assume:
5470   case Intrinsic::var_annotation:
5471     // Discard annotate attributes and assumptions
5472     return nullptr;
5473 
5474   case Intrinsic::init_trampoline: {
5475     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5476 
5477     SDValue Ops[6];
5478     Ops[0] = getRoot();
5479     Ops[1] = getValue(I.getArgOperand(0));
5480     Ops[2] = getValue(I.getArgOperand(1));
5481     Ops[3] = getValue(I.getArgOperand(2));
5482     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5483     Ops[5] = DAG.getSrcValue(F);
5484 
5485     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5486 
5487     DAG.setRoot(Res);
5488     return nullptr;
5489   }
5490   case Intrinsic::adjust_trampoline: {
5491     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5492                              TLI.getPointerTy(DAG.getDataLayout()),
5493                              getValue(I.getArgOperand(0))));
5494     return nullptr;
5495   }
5496   case Intrinsic::gcroot: {
5497     MachineFunction &MF = DAG.getMachineFunction();
5498     const Function *F = MF.getFunction();
5499     (void)F;
5500     assert(F->hasGC() &&
5501            "only valid in functions with gc specified, enforced by Verifier");
5502     assert(GFI && "implied by previous");
5503     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5504     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5505 
5506     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5507     GFI->addStackRoot(FI->getIndex(), TypeMap);
5508     return nullptr;
5509   }
5510   case Intrinsic::gcread:
5511   case Intrinsic::gcwrite:
5512     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5513   case Intrinsic::flt_rounds:
5514     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5515     return nullptr;
5516 
5517   case Intrinsic::expect: {
5518     // Just replace __builtin_expect(exp, c) with EXP.
5519     setValue(&I, getValue(I.getArgOperand(0)));
5520     return nullptr;
5521   }
5522 
5523   case Intrinsic::debugtrap:
5524   case Intrinsic::trap: {
5525     StringRef TrapFuncName =
5526         I.getAttributes()
5527             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5528             .getValueAsString();
5529     if (TrapFuncName.empty()) {
5530       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5531         ISD::TRAP : ISD::DEBUGTRAP;
5532       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5533       return nullptr;
5534     }
5535     TargetLowering::ArgListTy Args;
5536 
5537     TargetLowering::CallLoweringInfo CLI(DAG);
5538     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5539         CallingConv::C, I.getType(),
5540         DAG.getExternalSymbol(TrapFuncName.data(),
5541                               TLI.getPointerTy(DAG.getDataLayout())),
5542         std::move(Args));
5543 
5544     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5545     DAG.setRoot(Result.second);
5546     return nullptr;
5547   }
5548 
5549   case Intrinsic::uadd_with_overflow:
5550   case Intrinsic::sadd_with_overflow:
5551   case Intrinsic::usub_with_overflow:
5552   case Intrinsic::ssub_with_overflow:
5553   case Intrinsic::umul_with_overflow:
5554   case Intrinsic::smul_with_overflow: {
5555     ISD::NodeType Op;
5556     switch (Intrinsic) {
5557     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5558     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5559     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5560     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5561     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5562     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5563     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5564     }
5565     SDValue Op1 = getValue(I.getArgOperand(0));
5566     SDValue Op2 = getValue(I.getArgOperand(1));
5567 
5568     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5569     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5570     return nullptr;
5571   }
5572   case Intrinsic::prefetch: {
5573     SDValue Ops[5];
5574     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5575     Ops[0] = getRoot();
5576     Ops[1] = getValue(I.getArgOperand(0));
5577     Ops[2] = getValue(I.getArgOperand(1));
5578     Ops[3] = getValue(I.getArgOperand(2));
5579     Ops[4] = getValue(I.getArgOperand(3));
5580     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5581                                         DAG.getVTList(MVT::Other), Ops,
5582                                         EVT::getIntegerVT(*Context, 8),
5583                                         MachinePointerInfo(I.getArgOperand(0)),
5584                                         0, /* align */
5585                                         false, /* volatile */
5586                                         rw==0, /* read */
5587                                         rw==1)); /* write */
5588     return nullptr;
5589   }
5590   case Intrinsic::lifetime_start:
5591   case Intrinsic::lifetime_end: {
5592     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5593     // Stack coloring is not enabled in O0, discard region information.
5594     if (TM.getOptLevel() == CodeGenOpt::None)
5595       return nullptr;
5596 
5597     SmallVector<Value *, 4> Allocas;
5598     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5599 
5600     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5601            E = Allocas.end(); Object != E; ++Object) {
5602       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5603 
5604       // Could not find an Alloca.
5605       if (!LifetimeObject)
5606         continue;
5607 
5608       // First check that the Alloca is static, otherwise it won't have a
5609       // valid frame index.
5610       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5611       if (SI == FuncInfo.StaticAllocaMap.end())
5612         return nullptr;
5613 
5614       int FI = SI->second;
5615 
5616       SDValue Ops[2];
5617       Ops[0] = getRoot();
5618       Ops[1] =
5619           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5620       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5621 
5622       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5623       DAG.setRoot(Res);
5624     }
5625     return nullptr;
5626   }
5627   case Intrinsic::invariant_start:
5628     // Discard region information.
5629     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5630     return nullptr;
5631   case Intrinsic::invariant_end:
5632     // Discard region information.
5633     return nullptr;
5634   case Intrinsic::clear_cache:
5635     return TLI.getClearCacheBuiltinName();
5636   case Intrinsic::donothing:
5637     // ignore
5638     return nullptr;
5639   case Intrinsic::experimental_stackmap: {
5640     visitStackmap(I);
5641     return nullptr;
5642   }
5643   case Intrinsic::experimental_patchpoint_void:
5644   case Intrinsic::experimental_patchpoint_i64: {
5645     visitPatchpoint(&I);
5646     return nullptr;
5647   }
5648   case Intrinsic::experimental_gc_statepoint: {
5649     LowerStatepoint(ImmutableStatepoint(&I));
5650     return nullptr;
5651   }
5652   case Intrinsic::experimental_gc_result: {
5653     visitGCResult(cast<GCResultInst>(I));
5654     return nullptr;
5655   }
5656   case Intrinsic::experimental_gc_relocate: {
5657     visitGCRelocate(cast<GCRelocateInst>(I));
5658     return nullptr;
5659   }
5660   case Intrinsic::instrprof_increment:
5661     llvm_unreachable("instrprof failed to lower an increment");
5662   case Intrinsic::instrprof_value_profile:
5663     llvm_unreachable("instrprof failed to lower a value profiling call");
5664   case Intrinsic::localescape: {
5665     MachineFunction &MF = DAG.getMachineFunction();
5666     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5667 
5668     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5669     // is the same on all targets.
5670     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5671       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5672       if (isa<ConstantPointerNull>(Arg))
5673         continue; // Skip null pointers. They represent a hole in index space.
5674       AllocaInst *Slot = cast<AllocaInst>(Arg);
5675       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5676              "can only escape static allocas");
5677       int FI = FuncInfo.StaticAllocaMap[Slot];
5678       MCSymbol *FrameAllocSym =
5679           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5680               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5681       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5682               TII->get(TargetOpcode::LOCAL_ESCAPE))
5683           .addSym(FrameAllocSym)
5684           .addFrameIndex(FI);
5685     }
5686 
5687     return nullptr;
5688   }
5689 
5690   case Intrinsic::localrecover: {
5691     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5692     MachineFunction &MF = DAG.getMachineFunction();
5693     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5694 
5695     // Get the symbol that defines the frame offset.
5696     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5697     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5698     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5699     MCSymbol *FrameAllocSym =
5700         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5701             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5702 
5703     // Create a MCSymbol for the label to avoid any target lowering
5704     // that would make this PC relative.
5705     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5706     SDValue OffsetVal =
5707         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5708 
5709     // Add the offset to the FP.
5710     Value *FP = I.getArgOperand(1);
5711     SDValue FPVal = getValue(FP);
5712     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5713     setValue(&I, Add);
5714 
5715     return nullptr;
5716   }
5717 
5718   case Intrinsic::eh_exceptionpointer:
5719   case Intrinsic::eh_exceptioncode: {
5720     // Get the exception pointer vreg, copy from it, and resize it to fit.
5721     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5722     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5723     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5724     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5725     SDValue N =
5726         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5727     if (Intrinsic == Intrinsic::eh_exceptioncode)
5728       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5729     setValue(&I, N);
5730     return nullptr;
5731   }
5732 
5733   case Intrinsic::experimental_deoptimize:
5734     LowerDeoptimizeCall(&I);
5735     return nullptr;
5736   }
5737 }
5738 
5739 std::pair<SDValue, SDValue>
5740 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5741                                     const BasicBlock *EHPadBB) {
5742   MachineFunction &MF = DAG.getMachineFunction();
5743   MachineModuleInfo &MMI = MF.getMMI();
5744   MCSymbol *BeginLabel = nullptr;
5745 
5746   if (EHPadBB) {
5747     // Insert a label before the invoke call to mark the try range.  This can be
5748     // used to detect deletion of the invoke via the MachineModuleInfo.
5749     BeginLabel = MMI.getContext().createTempSymbol();
5750 
5751     // For SjLj, keep track of which landing pads go with which invokes
5752     // so as to maintain the ordering of pads in the LSDA.
5753     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5754     if (CallSiteIndex) {
5755       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5756       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5757 
5758       // Now that the call site is handled, stop tracking it.
5759       MMI.setCurrentCallSite(0);
5760     }
5761 
5762     // Both PendingLoads and PendingExports must be flushed here;
5763     // this call might not return.
5764     (void)getRoot();
5765     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5766 
5767     CLI.setChain(getRoot());
5768   }
5769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5770   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5771 
5772   assert((CLI.IsTailCall || Result.second.getNode()) &&
5773          "Non-null chain expected with non-tail call!");
5774   assert((Result.second.getNode() || !Result.first.getNode()) &&
5775          "Null value expected with tail call!");
5776 
5777   if (!Result.second.getNode()) {
5778     // As a special case, a null chain means that a tail call has been emitted
5779     // and the DAG root is already updated.
5780     HasTailCall = true;
5781 
5782     // Since there's no actual continuation from this block, nothing can be
5783     // relying on us setting vregs for them.
5784     PendingExports.clear();
5785   } else {
5786     DAG.setRoot(Result.second);
5787   }
5788 
5789   if (EHPadBB) {
5790     // Insert a label at the end of the invoke call to mark the try range.  This
5791     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5792     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5793     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5794 
5795     // Inform MachineModuleInfo of range.
5796     if (MF.hasEHFunclets()) {
5797       assert(CLI.CS);
5798       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5799       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5800                                 BeginLabel, EndLabel);
5801     } else {
5802       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5803     }
5804   }
5805 
5806   return Result;
5807 }
5808 
5809 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5810                                       bool isTailCall,
5811                                       const BasicBlock *EHPadBB) {
5812   auto &DL = DAG.getDataLayout();
5813   FunctionType *FTy = CS.getFunctionType();
5814   Type *RetTy = CS.getType();
5815 
5816   TargetLowering::ArgListTy Args;
5817   TargetLowering::ArgListEntry Entry;
5818   Args.reserve(CS.arg_size());
5819 
5820   const Value *SwiftErrorVal = nullptr;
5821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5822   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5823        i != e; ++i) {
5824     const Value *V = *i;
5825 
5826     // Skip empty types
5827     if (V->getType()->isEmptyTy())
5828       continue;
5829 
5830     SDValue ArgNode = getValue(V);
5831     Entry.Node = ArgNode; Entry.Ty = V->getType();
5832 
5833     // Skip the first return-type Attribute to get to params.
5834     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5835 
5836     // Use swifterror virtual register as input to the call.
5837     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5838       SwiftErrorVal = V;
5839       // We find the virtual register for the actual swifterror argument.
5840       // Instead of using the Value, we use the virtual register instead.
5841       Entry.Node =
5842           DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V),
5843                           EVT(TLI.getPointerTy(DL)));
5844     }
5845 
5846     Args.push_back(Entry);
5847 
5848     // If we have an explicit sret argument that is an Instruction, (i.e., it
5849     // might point to function-local memory), we can't meaningfully tail-call.
5850     if (Entry.isSRet && isa<Instruction>(V))
5851       isTailCall = false;
5852   }
5853 
5854   // Check if target-independent constraints permit a tail call here.
5855   // Target-dependent constraints are checked within TLI->LowerCallTo.
5856   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5857     isTailCall = false;
5858 
5859   // Disable tail calls if there is an swifterror argument. Targets have not
5860   // been updated to support tail calls.
5861   if (TLI.supportSwiftError() && SwiftErrorVal)
5862     isTailCall = false;
5863 
5864   TargetLowering::CallLoweringInfo CLI(DAG);
5865   CLI.setDebugLoc(getCurSDLoc())
5866       .setChain(getRoot())
5867       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5868       .setTailCall(isTailCall)
5869       .setConvergent(CS.isConvergent());
5870   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5871 
5872   if (Result.first.getNode()) {
5873     const Instruction *Inst = CS.getInstruction();
5874     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5875     setValue(Inst, Result.first);
5876   }
5877 
5878   // The last element of CLI.InVals has the SDValue for swifterror return.
5879   // Here we copy it to a virtual register and update SwiftErrorMap for
5880   // book-keeping.
5881   if (SwiftErrorVal && TLI.supportSwiftError()) {
5882     // Get the last element of InVals.
5883     SDValue Src = CLI.InVals.back();
5884     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5885     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5886     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5887     // We update the virtual register for the actual swifterror argument.
5888     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5889     DAG.setRoot(CopyNode);
5890   }
5891 }
5892 
5893 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5894 /// value is equal or not-equal to zero.
5895 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5896   for (const User *U : V->users()) {
5897     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5898       if (IC->isEquality())
5899         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5900           if (C->isNullValue())
5901             continue;
5902     // Unknown instruction.
5903     return false;
5904   }
5905   return true;
5906 }
5907 
5908 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5909                              Type *LoadTy,
5910                              SelectionDAGBuilder &Builder) {
5911 
5912   // Check to see if this load can be trivially constant folded, e.g. if the
5913   // input is from a string literal.
5914   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5915     // Cast pointer to the type we really want to load.
5916     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5917                                          PointerType::getUnqual(LoadTy));
5918 
5919     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5920             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5921       return Builder.getValue(LoadCst);
5922   }
5923 
5924   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5925   // still constant memory, the input chain can be the entry node.
5926   SDValue Root;
5927   bool ConstantMemory = false;
5928 
5929   // Do not serialize (non-volatile) loads of constant memory with anything.
5930   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5931     Root = Builder.DAG.getEntryNode();
5932     ConstantMemory = true;
5933   } else {
5934     // Do not serialize non-volatile loads against each other.
5935     Root = Builder.DAG.getRoot();
5936   }
5937 
5938   SDValue Ptr = Builder.getValue(PtrVal);
5939   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5940                                         Ptr, MachinePointerInfo(PtrVal),
5941                                         /* Alignment = */ 1);
5942 
5943   if (!ConstantMemory)
5944     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5945   return LoadVal;
5946 }
5947 
5948 /// processIntegerCallValue - Record the value for an instruction that
5949 /// produces an integer result, converting the type where necessary.
5950 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5951                                                   SDValue Value,
5952                                                   bool IsSigned) {
5953   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5954                                                     I.getType(), true);
5955   if (IsSigned)
5956     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5957   else
5958     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5959   setValue(&I, Value);
5960 }
5961 
5962 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5963 /// If so, return true and lower it, otherwise return false and it will be
5964 /// lowered like a normal call.
5965 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5966   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5967   if (I.getNumArgOperands() != 3)
5968     return false;
5969 
5970   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5971   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5972       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5973       !I.getType()->isIntegerTy())
5974     return false;
5975 
5976   const Value *Size = I.getArgOperand(2);
5977   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5978   if (CSize && CSize->getZExtValue() == 0) {
5979     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5980                                                           I.getType(), true);
5981     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5982     return true;
5983   }
5984 
5985   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5986   std::pair<SDValue, SDValue> Res =
5987     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5988                                 getValue(LHS), getValue(RHS), getValue(Size),
5989                                 MachinePointerInfo(LHS),
5990                                 MachinePointerInfo(RHS));
5991   if (Res.first.getNode()) {
5992     processIntegerCallValue(I, Res.first, true);
5993     PendingLoads.push_back(Res.second);
5994     return true;
5995   }
5996 
5997   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5998   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5999   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
6000     bool ActuallyDoIt = true;
6001     MVT LoadVT;
6002     Type *LoadTy;
6003     switch (CSize->getZExtValue()) {
6004     default:
6005       LoadVT = MVT::Other;
6006       LoadTy = nullptr;
6007       ActuallyDoIt = false;
6008       break;
6009     case 2:
6010       LoadVT = MVT::i16;
6011       LoadTy = Type::getInt16Ty(CSize->getContext());
6012       break;
6013     case 4:
6014       LoadVT = MVT::i32;
6015       LoadTy = Type::getInt32Ty(CSize->getContext());
6016       break;
6017     case 8:
6018       LoadVT = MVT::i64;
6019       LoadTy = Type::getInt64Ty(CSize->getContext());
6020       break;
6021         /*
6022     case 16:
6023       LoadVT = MVT::v4i32;
6024       LoadTy = Type::getInt32Ty(CSize->getContext());
6025       LoadTy = VectorType::get(LoadTy, 4);
6026       break;
6027          */
6028     }
6029 
6030     // This turns into unaligned loads.  We only do this if the target natively
6031     // supports the MVT we'll be loading or if it is small enough (<= 4) that
6032     // we'll only produce a small number of byte loads.
6033 
6034     // Require that we can find a legal MVT, and only do this if the target
6035     // supports unaligned loads of that type.  Expanding into byte loads would
6036     // bloat the code.
6037     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6038     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
6039       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6040       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6041       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6042       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6043       // TODO: Check alignment of src and dest ptrs.
6044       if (!TLI.isTypeLegal(LoadVT) ||
6045           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
6046           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
6047         ActuallyDoIt = false;
6048     }
6049 
6050     if (ActuallyDoIt) {
6051       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
6052       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
6053 
6054       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6055                                  ISD::SETNE);
6056       processIntegerCallValue(I, Res, false);
6057       return true;
6058     }
6059   }
6060 
6061 
6062   return false;
6063 }
6064 
6065 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6066 /// form.  If so, return true and lower it, otherwise return false and it
6067 /// will be lowered like a normal call.
6068 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6069   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6070   if (I.getNumArgOperands() != 3)
6071     return false;
6072 
6073   const Value *Src = I.getArgOperand(0);
6074   const Value *Char = I.getArgOperand(1);
6075   const Value *Length = I.getArgOperand(2);
6076   if (!Src->getType()->isPointerTy() ||
6077       !Char->getType()->isIntegerTy() ||
6078       !Length->getType()->isIntegerTy() ||
6079       !I.getType()->isPointerTy())
6080     return false;
6081 
6082   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6083   std::pair<SDValue, SDValue> Res =
6084     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6085                                 getValue(Src), getValue(Char), getValue(Length),
6086                                 MachinePointerInfo(Src));
6087   if (Res.first.getNode()) {
6088     setValue(&I, Res.first);
6089     PendingLoads.push_back(Res.second);
6090     return true;
6091   }
6092 
6093   return false;
6094 }
6095 
6096 ///
6097 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to
6098 /// to adjust the dst pointer by the size of the copied memory.
6099 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6100 
6101   // Verify argument count: void *mempcpy(void *, const void *, size_t)
6102   if (I.getNumArgOperands() != 3)
6103     return false;
6104 
6105   SDValue Dst = getValue(I.getArgOperand(0));
6106   SDValue Src = getValue(I.getArgOperand(1));
6107   SDValue Size = getValue(I.getArgOperand(2));
6108 
6109   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6110   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6111   unsigned Align = std::min(DstAlign, SrcAlign);
6112   if (Align == 0) // Alignment of one or both could not be inferred.
6113     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6114 
6115   bool isVol = false;
6116   SDLoc sdl = getCurSDLoc();
6117 
6118   // In the mempcpy context we need to pass in a false value for isTailCall
6119   // because the return pointer needs to be adjusted by the size of
6120   // the copied memory.
6121   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6122                              false, /*isTailCall=*/false,
6123                              MachinePointerInfo(I.getArgOperand(0)),
6124                              MachinePointerInfo(I.getArgOperand(1)));
6125   assert(MC.getNode() != nullptr &&
6126          "** memcpy should not be lowered as TailCall in mempcpy context **");
6127   DAG.setRoot(MC);
6128 
6129   // Check if Size needs to be truncated or extended.
6130   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6131 
6132   // Adjust return pointer to point just past the last dst byte.
6133   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6134                                     Dst, Size);
6135   setValue(&I, DstPlusSize);
6136   return true;
6137 }
6138 
6139 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6140 /// optimized form.  If so, return true and lower it, otherwise return false
6141 /// and it will be lowered like a normal call.
6142 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6143   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6144   if (I.getNumArgOperands() != 2)
6145     return false;
6146 
6147   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6148   if (!Arg0->getType()->isPointerTy() ||
6149       !Arg1->getType()->isPointerTy() ||
6150       !I.getType()->isPointerTy())
6151     return false;
6152 
6153   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6154   std::pair<SDValue, SDValue> Res =
6155     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6156                                 getValue(Arg0), getValue(Arg1),
6157                                 MachinePointerInfo(Arg0),
6158                                 MachinePointerInfo(Arg1), isStpcpy);
6159   if (Res.first.getNode()) {
6160     setValue(&I, Res.first);
6161     DAG.setRoot(Res.second);
6162     return true;
6163   }
6164 
6165   return false;
6166 }
6167 
6168 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6169 /// If so, return true and lower it, otherwise return false and it will be
6170 /// lowered like a normal call.
6171 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6172   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6173   if (I.getNumArgOperands() != 2)
6174     return false;
6175 
6176   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6177   if (!Arg0->getType()->isPointerTy() ||
6178       !Arg1->getType()->isPointerTy() ||
6179       !I.getType()->isIntegerTy())
6180     return false;
6181 
6182   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6183   std::pair<SDValue, SDValue> Res =
6184     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6185                                 getValue(Arg0), getValue(Arg1),
6186                                 MachinePointerInfo(Arg0),
6187                                 MachinePointerInfo(Arg1));
6188   if (Res.first.getNode()) {
6189     processIntegerCallValue(I, Res.first, true);
6190     PendingLoads.push_back(Res.second);
6191     return true;
6192   }
6193 
6194   return false;
6195 }
6196 
6197 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6198 /// form.  If so, return true and lower it, otherwise return false and it
6199 /// will be lowered like a normal call.
6200 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6201   // Verify that the prototype makes sense.  size_t strlen(char *)
6202   if (I.getNumArgOperands() != 1)
6203     return false;
6204 
6205   const Value *Arg0 = I.getArgOperand(0);
6206   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6207     return false;
6208 
6209   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6210   std::pair<SDValue, SDValue> Res =
6211     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6212                                 getValue(Arg0), MachinePointerInfo(Arg0));
6213   if (Res.first.getNode()) {
6214     processIntegerCallValue(I, Res.first, false);
6215     PendingLoads.push_back(Res.second);
6216     return true;
6217   }
6218 
6219   return false;
6220 }
6221 
6222 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6223 /// form.  If so, return true and lower it, otherwise return false and it
6224 /// will be lowered like a normal call.
6225 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6226   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6227   if (I.getNumArgOperands() != 2)
6228     return false;
6229 
6230   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6231   if (!Arg0->getType()->isPointerTy() ||
6232       !Arg1->getType()->isIntegerTy() ||
6233       !I.getType()->isIntegerTy())
6234     return false;
6235 
6236   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6237   std::pair<SDValue, SDValue> Res =
6238     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6239                                  getValue(Arg0), getValue(Arg1),
6240                                  MachinePointerInfo(Arg0));
6241   if (Res.first.getNode()) {
6242     processIntegerCallValue(I, Res.first, false);
6243     PendingLoads.push_back(Res.second);
6244     return true;
6245   }
6246 
6247   return false;
6248 }
6249 
6250 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6251 /// operation (as expected), translate it to an SDNode with the specified opcode
6252 /// and return true.
6253 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6254                                               unsigned Opcode) {
6255   // Sanity check that it really is a unary floating-point call.
6256   if (I.getNumArgOperands() != 1 ||
6257       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6258       I.getType() != I.getArgOperand(0)->getType() ||
6259       !I.onlyReadsMemory())
6260     return false;
6261 
6262   SDValue Tmp = getValue(I.getArgOperand(0));
6263   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6264   return true;
6265 }
6266 
6267 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6268 /// operation (as expected), translate it to an SDNode with the specified opcode
6269 /// and return true.
6270 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6271                                                unsigned Opcode) {
6272   // Sanity check that it really is a binary floating-point call.
6273   if (I.getNumArgOperands() != 2 ||
6274       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6275       I.getType() != I.getArgOperand(0)->getType() ||
6276       I.getType() != I.getArgOperand(1)->getType() ||
6277       !I.onlyReadsMemory())
6278     return false;
6279 
6280   SDValue Tmp0 = getValue(I.getArgOperand(0));
6281   SDValue Tmp1 = getValue(I.getArgOperand(1));
6282   EVT VT = Tmp0.getValueType();
6283   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6284   return true;
6285 }
6286 
6287 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6288   // Handle inline assembly differently.
6289   if (isa<InlineAsm>(I.getCalledValue())) {
6290     visitInlineAsm(&I);
6291     return;
6292   }
6293 
6294   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6295   computeUsesVAFloatArgument(I, MMI);
6296 
6297   const char *RenameFn = nullptr;
6298   if (Function *F = I.getCalledFunction()) {
6299     if (F->isDeclaration()) {
6300       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6301         if (unsigned IID = II->getIntrinsicID(F)) {
6302           RenameFn = visitIntrinsicCall(I, IID);
6303           if (!RenameFn)
6304             return;
6305         }
6306       }
6307       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6308         RenameFn = visitIntrinsicCall(I, IID);
6309         if (!RenameFn)
6310           return;
6311       }
6312     }
6313 
6314     // Check for well-known libc/libm calls.  If the function is internal, it
6315     // can't be a library call.  Don't do the check if marked as nobuiltin for
6316     // some reason.
6317     LibFunc::Func Func;
6318     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6319         LibInfo->getLibFunc(F->getName(), Func) &&
6320         LibInfo->hasOptimizedCodeGen(Func)) {
6321       switch (Func) {
6322       default: break;
6323       case LibFunc::copysign:
6324       case LibFunc::copysignf:
6325       case LibFunc::copysignl:
6326         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6327             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6328             I.getType() == I.getArgOperand(0)->getType() &&
6329             I.getType() == I.getArgOperand(1)->getType() &&
6330             I.onlyReadsMemory()) {
6331           SDValue LHS = getValue(I.getArgOperand(0));
6332           SDValue RHS = getValue(I.getArgOperand(1));
6333           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6334                                    LHS.getValueType(), LHS, RHS));
6335           return;
6336         }
6337         break;
6338       case LibFunc::fabs:
6339       case LibFunc::fabsf:
6340       case LibFunc::fabsl:
6341         if (visitUnaryFloatCall(I, ISD::FABS))
6342           return;
6343         break;
6344       case LibFunc::fmin:
6345       case LibFunc::fminf:
6346       case LibFunc::fminl:
6347         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6348           return;
6349         break;
6350       case LibFunc::fmax:
6351       case LibFunc::fmaxf:
6352       case LibFunc::fmaxl:
6353         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6354           return;
6355         break;
6356       case LibFunc::sin:
6357       case LibFunc::sinf:
6358       case LibFunc::sinl:
6359         if (visitUnaryFloatCall(I, ISD::FSIN))
6360           return;
6361         break;
6362       case LibFunc::cos:
6363       case LibFunc::cosf:
6364       case LibFunc::cosl:
6365         if (visitUnaryFloatCall(I, ISD::FCOS))
6366           return;
6367         break;
6368       case LibFunc::sqrt:
6369       case LibFunc::sqrtf:
6370       case LibFunc::sqrtl:
6371       case LibFunc::sqrt_finite:
6372       case LibFunc::sqrtf_finite:
6373       case LibFunc::sqrtl_finite:
6374         if (visitUnaryFloatCall(I, ISD::FSQRT))
6375           return;
6376         break;
6377       case LibFunc::floor:
6378       case LibFunc::floorf:
6379       case LibFunc::floorl:
6380         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6381           return;
6382         break;
6383       case LibFunc::nearbyint:
6384       case LibFunc::nearbyintf:
6385       case LibFunc::nearbyintl:
6386         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6387           return;
6388         break;
6389       case LibFunc::ceil:
6390       case LibFunc::ceilf:
6391       case LibFunc::ceill:
6392         if (visitUnaryFloatCall(I, ISD::FCEIL))
6393           return;
6394         break;
6395       case LibFunc::rint:
6396       case LibFunc::rintf:
6397       case LibFunc::rintl:
6398         if (visitUnaryFloatCall(I, ISD::FRINT))
6399           return;
6400         break;
6401       case LibFunc::round:
6402       case LibFunc::roundf:
6403       case LibFunc::roundl:
6404         if (visitUnaryFloatCall(I, ISD::FROUND))
6405           return;
6406         break;
6407       case LibFunc::trunc:
6408       case LibFunc::truncf:
6409       case LibFunc::truncl:
6410         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6411           return;
6412         break;
6413       case LibFunc::log2:
6414       case LibFunc::log2f:
6415       case LibFunc::log2l:
6416         if (visitUnaryFloatCall(I, ISD::FLOG2))
6417           return;
6418         break;
6419       case LibFunc::exp2:
6420       case LibFunc::exp2f:
6421       case LibFunc::exp2l:
6422         if (visitUnaryFloatCall(I, ISD::FEXP2))
6423           return;
6424         break;
6425       case LibFunc::memcmp:
6426         if (visitMemCmpCall(I))
6427           return;
6428         break;
6429       case LibFunc::mempcpy:
6430         if (visitMemPCpyCall(I))
6431           return;
6432         break;
6433       case LibFunc::memchr:
6434         if (visitMemChrCall(I))
6435           return;
6436         break;
6437       case LibFunc::strcpy:
6438         if (visitStrCpyCall(I, false))
6439           return;
6440         break;
6441       case LibFunc::stpcpy:
6442         if (visitStrCpyCall(I, true))
6443           return;
6444         break;
6445       case LibFunc::strcmp:
6446         if (visitStrCmpCall(I))
6447           return;
6448         break;
6449       case LibFunc::strlen:
6450         if (visitStrLenCall(I))
6451           return;
6452         break;
6453       case LibFunc::strnlen:
6454         if (visitStrNLenCall(I))
6455           return;
6456         break;
6457       }
6458     }
6459   }
6460 
6461   SDValue Callee;
6462   if (!RenameFn)
6463     Callee = getValue(I.getCalledValue());
6464   else
6465     Callee = DAG.getExternalSymbol(
6466         RenameFn,
6467         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6468 
6469   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6470   // have to do anything here to lower funclet bundles.
6471   assert(!I.hasOperandBundlesOtherThan(
6472              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6473          "Cannot lower calls with arbitrary operand bundles!");
6474 
6475   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6476     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6477   else
6478     // Check if we can potentially perform a tail call. More detailed checking
6479     // is be done within LowerCallTo, after more information about the call is
6480     // known.
6481     LowerCallTo(&I, Callee, I.isTailCall());
6482 }
6483 
6484 namespace {
6485 
6486 /// AsmOperandInfo - This contains information for each constraint that we are
6487 /// lowering.
6488 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6489 public:
6490   /// CallOperand - If this is the result output operand or a clobber
6491   /// this is null, otherwise it is the incoming operand to the CallInst.
6492   /// This gets modified as the asm is processed.
6493   SDValue CallOperand;
6494 
6495   /// AssignedRegs - If this is a register or register class operand, this
6496   /// contains the set of register corresponding to the operand.
6497   RegsForValue AssignedRegs;
6498 
6499   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6500     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6501   }
6502 
6503   /// Whether or not this operand accesses memory
6504   bool hasMemory(const TargetLowering &TLI) const {
6505     // Indirect operand accesses access memory.
6506     if (isIndirect)
6507       return true;
6508 
6509     for (const auto &Code : Codes)
6510       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6511         return true;
6512 
6513     return false;
6514   }
6515 
6516   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6517   /// corresponds to.  If there is no Value* for this operand, it returns
6518   /// MVT::Other.
6519   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6520                            const DataLayout &DL) const {
6521     if (!CallOperandVal) return MVT::Other;
6522 
6523     if (isa<BasicBlock>(CallOperandVal))
6524       return TLI.getPointerTy(DL);
6525 
6526     llvm::Type *OpTy = CallOperandVal->getType();
6527 
6528     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6529     // If this is an indirect operand, the operand is a pointer to the
6530     // accessed type.
6531     if (isIndirect) {
6532       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6533       if (!PtrTy)
6534         report_fatal_error("Indirect operand for inline asm not a pointer!");
6535       OpTy = PtrTy->getElementType();
6536     }
6537 
6538     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6539     if (StructType *STy = dyn_cast<StructType>(OpTy))
6540       if (STy->getNumElements() == 1)
6541         OpTy = STy->getElementType(0);
6542 
6543     // If OpTy is not a single value, it may be a struct/union that we
6544     // can tile with integers.
6545     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6546       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6547       switch (BitSize) {
6548       default: break;
6549       case 1:
6550       case 8:
6551       case 16:
6552       case 32:
6553       case 64:
6554       case 128:
6555         OpTy = IntegerType::get(Context, BitSize);
6556         break;
6557       }
6558     }
6559 
6560     return TLI.getValueType(DL, OpTy, true);
6561   }
6562 };
6563 
6564 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6565 
6566 } // end anonymous namespace
6567 
6568 /// Make sure that the output operand \p OpInfo and its corresponding input
6569 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6570 /// out).
6571 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6572                                SDISelAsmOperandInfo &MatchingOpInfo,
6573                                SelectionDAG &DAG) {
6574   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6575     return;
6576 
6577   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6578   const auto &TLI = DAG.getTargetLoweringInfo();
6579 
6580   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6581       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6582                                        OpInfo.ConstraintVT);
6583   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6584       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6585                                        MatchingOpInfo.ConstraintVT);
6586   if ((OpInfo.ConstraintVT.isInteger() !=
6587        MatchingOpInfo.ConstraintVT.isInteger()) ||
6588       (MatchRC.second != InputRC.second)) {
6589     // FIXME: error out in a more elegant fashion
6590     report_fatal_error("Unsupported asm: input constraint"
6591                        " with a matching output constraint of"
6592                        " incompatible type!");
6593   }
6594   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6595 }
6596 
6597 /// Get a direct memory input to behave well as an indirect operand.
6598 /// This may introduce stores, hence the need for a \p Chain.
6599 /// \return The (possibly updated) chain.
6600 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6601                                         SDISelAsmOperandInfo &OpInfo,
6602                                         SelectionDAG &DAG) {
6603   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6604 
6605   // If we don't have an indirect input, put it in the constpool if we can,
6606   // otherwise spill it to a stack slot.
6607   // TODO: This isn't quite right. We need to handle these according to
6608   // the addressing mode that the constraint wants. Also, this may take
6609   // an additional register for the computation and we don't want that
6610   // either.
6611 
6612   // If the operand is a float, integer, or vector constant, spill to a
6613   // constant pool entry to get its address.
6614   const Value *OpVal = OpInfo.CallOperandVal;
6615   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6616       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6617     OpInfo.CallOperand = DAG.getConstantPool(
6618         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6619     return Chain;
6620   }
6621 
6622   // Otherwise, create a stack slot and emit a store to it before the asm.
6623   Type *Ty = OpVal->getType();
6624   auto &DL = DAG.getDataLayout();
6625   uint64_t TySize = DL.getTypeAllocSize(Ty);
6626   unsigned Align = DL.getPrefTypeAlignment(Ty);
6627   MachineFunction &MF = DAG.getMachineFunction();
6628   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6629   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
6630   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6631                        MachinePointerInfo::getFixedStack(MF, SSFI));
6632   OpInfo.CallOperand = StackSlot;
6633 
6634   return Chain;
6635 }
6636 
6637 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6638 /// specified operand.  We prefer to assign virtual registers, to allow the
6639 /// register allocator to handle the assignment process.  However, if the asm
6640 /// uses features that we can't model on machineinstrs, we have SDISel do the
6641 /// allocation.  This produces generally horrible, but correct, code.
6642 ///
6643 ///   OpInfo describes the operand.
6644 ///
6645 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6646                                  const SDLoc &DL,
6647                                  SDISelAsmOperandInfo &OpInfo) {
6648   LLVMContext &Context = *DAG.getContext();
6649 
6650   MachineFunction &MF = DAG.getMachineFunction();
6651   SmallVector<unsigned, 4> Regs;
6652 
6653   // If this is a constraint for a single physreg, or a constraint for a
6654   // register class, find it.
6655   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6656       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6657                                        OpInfo.ConstraintCode,
6658                                        OpInfo.ConstraintVT);
6659 
6660   unsigned NumRegs = 1;
6661   if (OpInfo.ConstraintVT != MVT::Other) {
6662     // If this is a FP input in an integer register (or visa versa) insert a bit
6663     // cast of the input value.  More generally, handle any case where the input
6664     // value disagrees with the register class we plan to stick this in.
6665     if (OpInfo.Type == InlineAsm::isInput &&
6666         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6667       // Try to convert to the first EVT that the reg class contains.  If the
6668       // types are identical size, use a bitcast to convert (e.g. two differing
6669       // vector types).
6670       MVT RegVT = *PhysReg.second->vt_begin();
6671       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6672         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6673                                          RegVT, OpInfo.CallOperand);
6674         OpInfo.ConstraintVT = RegVT;
6675       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6676         // If the input is a FP value and we want it in FP registers, do a
6677         // bitcast to the corresponding integer type.  This turns an f64 value
6678         // into i64, which can be passed with two i32 values on a 32-bit
6679         // machine.
6680         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6681         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6682                                          RegVT, OpInfo.CallOperand);
6683         OpInfo.ConstraintVT = RegVT;
6684       }
6685     }
6686 
6687     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6688   }
6689 
6690   MVT RegVT;
6691   EVT ValueVT = OpInfo.ConstraintVT;
6692 
6693   // If this is a constraint for a specific physical register, like {r17},
6694   // assign it now.
6695   if (unsigned AssignedReg = PhysReg.first) {
6696     const TargetRegisterClass *RC = PhysReg.second;
6697     if (OpInfo.ConstraintVT == MVT::Other)
6698       ValueVT = *RC->vt_begin();
6699 
6700     // Get the actual register value type.  This is important, because the user
6701     // may have asked for (e.g.) the AX register in i32 type.  We need to
6702     // remember that AX is actually i16 to get the right extension.
6703     RegVT = *RC->vt_begin();
6704 
6705     // This is a explicit reference to a physical register.
6706     Regs.push_back(AssignedReg);
6707 
6708     // If this is an expanded reference, add the rest of the regs to Regs.
6709     if (NumRegs != 1) {
6710       TargetRegisterClass::iterator I = RC->begin();
6711       for (; *I != AssignedReg; ++I)
6712         assert(I != RC->end() && "Didn't find reg!");
6713 
6714       // Already added the first reg.
6715       --NumRegs; ++I;
6716       for (; NumRegs; --NumRegs, ++I) {
6717         assert(I != RC->end() && "Ran out of registers to allocate!");
6718         Regs.push_back(*I);
6719       }
6720     }
6721 
6722     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6723     return;
6724   }
6725 
6726   // Otherwise, if this was a reference to an LLVM register class, create vregs
6727   // for this reference.
6728   if (const TargetRegisterClass *RC = PhysReg.second) {
6729     RegVT = *RC->vt_begin();
6730     if (OpInfo.ConstraintVT == MVT::Other)
6731       ValueVT = RegVT;
6732 
6733     // Create the appropriate number of virtual registers.
6734     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6735     for (; NumRegs; --NumRegs)
6736       Regs.push_back(RegInfo.createVirtualRegister(RC));
6737 
6738     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6739     return;
6740   }
6741 
6742   // Otherwise, we couldn't allocate enough registers for this.
6743 }
6744 
6745 static unsigned
6746 findMatchingInlineAsmOperand(unsigned OperandNo,
6747                              const std::vector<SDValue> &AsmNodeOperands) {
6748   // Scan until we find the definition we already emitted of this operand.
6749   unsigned CurOp = InlineAsm::Op_FirstOperand;
6750   for (; OperandNo; --OperandNo) {
6751     // Advance to the next operand.
6752     unsigned OpFlag =
6753         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6754     assert((InlineAsm::isRegDefKind(OpFlag) ||
6755             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6756             InlineAsm::isMemKind(OpFlag)) &&
6757            "Skipped past definitions?");
6758     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6759   }
6760   return CurOp;
6761 }
6762 
6763 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6764 /// \return true if it has succeeded, false otherwise
6765 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6766                               MVT RegVT, SelectionDAG &DAG) {
6767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6768   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6769   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6770     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6771       Regs.push_back(RegInfo.createVirtualRegister(RC));
6772     else
6773       return false;
6774   }
6775   return true;
6776 }
6777 
6778 class ExtraFlags {
6779   unsigned Flags = 0;
6780 
6781 public:
6782   explicit ExtraFlags(ImmutableCallSite CS) {
6783     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6784     if (IA->hasSideEffects())
6785       Flags |= InlineAsm::Extra_HasSideEffects;
6786     if (IA->isAlignStack())
6787       Flags |= InlineAsm::Extra_IsAlignStack;
6788     if (CS.isConvergent())
6789       Flags |= InlineAsm::Extra_IsConvergent;
6790     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6791   }
6792 
6793   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6794     // Ideally, we would only check against memory constraints.  However, the
6795     // meaning of an Other constraint can be target-specific and we can't easily
6796     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6797     // for Other constraints as well.
6798     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6799         OpInfo.ConstraintType == TargetLowering::C_Other) {
6800       if (OpInfo.Type == InlineAsm::isInput)
6801         Flags |= InlineAsm::Extra_MayLoad;
6802       else if (OpInfo.Type == InlineAsm::isOutput)
6803         Flags |= InlineAsm::Extra_MayStore;
6804       else if (OpInfo.Type == InlineAsm::isClobber)
6805         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6806     }
6807   }
6808 
6809   unsigned get() const { return Flags; }
6810 };
6811 
6812 /// visitInlineAsm - Handle a call to an InlineAsm object.
6813 ///
6814 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6815   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6816 
6817   /// ConstraintOperands - Information about all of the constraints.
6818   SDISelAsmOperandInfoVector ConstraintOperands;
6819 
6820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6821   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6822       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6823 
6824   bool hasMemory = false;
6825 
6826   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6827   ExtraFlags ExtraInfo(CS);
6828 
6829   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6830   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6831   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6832     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6833     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6834 
6835     MVT OpVT = MVT::Other;
6836 
6837     // Compute the value type for each operand.
6838     if (OpInfo.Type == InlineAsm::isInput ||
6839         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6840       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6841 
6842       // Process the call argument. BasicBlocks are labels, currently appearing
6843       // only in asm's.
6844       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6845         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6846       } else {
6847         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6848       }
6849 
6850       OpVT =
6851           OpInfo
6852               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6853               .getSimpleVT();
6854     }
6855 
6856     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6857       // The return value of the call is this value.  As such, there is no
6858       // corresponding argument.
6859       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6860       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6861         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6862                                       STy->getElementType(ResNo));
6863       } else {
6864         assert(ResNo == 0 && "Asm only has one result!");
6865         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6866       }
6867       ++ResNo;
6868     }
6869 
6870     OpInfo.ConstraintVT = OpVT;
6871 
6872     if (!hasMemory)
6873       hasMemory = OpInfo.hasMemory(TLI);
6874 
6875     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6876     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6877     auto TargetConstraint = TargetConstraints[i];
6878 
6879     // Compute the constraint code and ConstraintType to use.
6880     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6881 
6882     ExtraInfo.update(TargetConstraint);
6883   }
6884 
6885   SDValue Chain, Flag;
6886 
6887   // We won't need to flush pending loads if this asm doesn't touch
6888   // memory and is nonvolatile.
6889   if (hasMemory || IA->hasSideEffects())
6890     Chain = getRoot();
6891   else
6892     Chain = DAG.getRoot();
6893 
6894   // Second pass over the constraints: compute which constraint option to use
6895   // and assign registers to constraints that want a specific physreg.
6896   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6897     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6898 
6899     // If this is an output operand with a matching input operand, look up the
6900     // matching input. If their types mismatch, e.g. one is an integer, the
6901     // other is floating point, or their sizes are different, flag it as an
6902     // error.
6903     if (OpInfo.hasMatchingInput()) {
6904       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6905       patchMatchingInput(OpInfo, Input, DAG);
6906     }
6907 
6908     // Compute the constraint code and ConstraintType to use.
6909     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6910 
6911     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6912         OpInfo.Type == InlineAsm::isClobber)
6913       continue;
6914 
6915     // If this is a memory input, and if the operand is not indirect, do what we
6916     // need to to provide an address for the memory input.
6917     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6918         !OpInfo.isIndirect) {
6919       assert((OpInfo.isMultipleAlternative ||
6920               (OpInfo.Type == InlineAsm::isInput)) &&
6921              "Can only indirectify direct input operands!");
6922 
6923       // Memory operands really want the address of the value.
6924       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6925 
6926       // There is no longer a Value* corresponding to this operand.
6927       OpInfo.CallOperandVal = nullptr;
6928 
6929       // It is now an indirect operand.
6930       OpInfo.isIndirect = true;
6931     }
6932 
6933     // If this constraint is for a specific register, allocate it before
6934     // anything else.
6935     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6936       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6937   }
6938 
6939   // Third pass - Loop over all of the operands, assigning virtual or physregs
6940   // to register class operands.
6941   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6942     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6943 
6944     // C_Register operands have already been allocated, Other/Memory don't need
6945     // to be.
6946     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6947       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6948   }
6949 
6950   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6951   std::vector<SDValue> AsmNodeOperands;
6952   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6953   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6954       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6955 
6956   // If we have a !srcloc metadata node associated with it, we want to attach
6957   // this to the ultimately generated inline asm machineinstr.  To do this, we
6958   // pass in the third operand as this (potentially null) inline asm MDNode.
6959   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6960   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6961 
6962   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6963   // bits as operand 3.
6964   AsmNodeOperands.push_back(DAG.getTargetConstant(
6965       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6966 
6967   // Loop over all of the inputs, copying the operand values into the
6968   // appropriate registers and processing the output regs.
6969   RegsForValue RetValRegs;
6970 
6971   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6972   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6973 
6974   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6975     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6976 
6977     switch (OpInfo.Type) {
6978     case InlineAsm::isOutput: {
6979       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6980           OpInfo.ConstraintType != TargetLowering::C_Register) {
6981         // Memory output, or 'other' output (e.g. 'X' constraint).
6982         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6983 
6984         unsigned ConstraintID =
6985             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6986         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6987                "Failed to convert memory constraint code to constraint id.");
6988 
6989         // Add information to the INLINEASM node to know about this output.
6990         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6991         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6992         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6993                                                         MVT::i32));
6994         AsmNodeOperands.push_back(OpInfo.CallOperand);
6995         break;
6996       }
6997 
6998       // Otherwise, this is a register or register class output.
6999 
7000       // Copy the output from the appropriate register.  Find a register that
7001       // we can use.
7002       if (OpInfo.AssignedRegs.Regs.empty()) {
7003         emitInlineAsmError(
7004             CS, "couldn't allocate output register for constraint '" +
7005                     Twine(OpInfo.ConstraintCode) + "'");
7006         return;
7007       }
7008 
7009       // If this is an indirect operand, store through the pointer after the
7010       // asm.
7011       if (OpInfo.isIndirect) {
7012         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7013                                                       OpInfo.CallOperandVal));
7014       } else {
7015         // This is the result value of the call.
7016         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7017         // Concatenate this output onto the outputs list.
7018         RetValRegs.append(OpInfo.AssignedRegs);
7019       }
7020 
7021       // Add information to the INLINEASM node to know that this register is
7022       // set.
7023       OpInfo.AssignedRegs
7024           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7025                                     ? InlineAsm::Kind_RegDefEarlyClobber
7026                                     : InlineAsm::Kind_RegDef,
7027                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7028       break;
7029     }
7030     case InlineAsm::isInput: {
7031       SDValue InOperandVal = OpInfo.CallOperand;
7032 
7033       if (OpInfo.isMatchingInputConstraint()) {
7034         // If this is required to match an output register we have already set,
7035         // just use its register.
7036         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7037                                                   AsmNodeOperands);
7038         unsigned OpFlag =
7039           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7040         if (InlineAsm::isRegDefKind(OpFlag) ||
7041             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7042           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7043           if (OpInfo.isIndirect) {
7044             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7045             emitInlineAsmError(CS, "inline asm not supported yet:"
7046                                    " don't know how to handle tied "
7047                                    "indirect register inputs");
7048             return;
7049           }
7050 
7051           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7052           SmallVector<unsigned, 4> Regs;
7053 
7054           if (!createVirtualRegs(Regs,
7055                                  InlineAsm::getNumOperandRegisters(OpFlag),
7056                                  RegVT, DAG)) {
7057             emitInlineAsmError(CS, "inline asm error: This value type register "
7058                                    "class is not natively supported!");
7059             return;
7060           }
7061 
7062           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7063 
7064           SDLoc dl = getCurSDLoc();
7065           // Use the produced MatchedRegs object to
7066           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7067                                     Chain, &Flag, CS.getInstruction());
7068           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7069                                            true, OpInfo.getMatchedOperand(), dl,
7070                                            DAG, AsmNodeOperands);
7071           break;
7072         }
7073 
7074         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7075         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7076                "Unexpected number of operands");
7077         // Add information to the INLINEASM node to know about this input.
7078         // See InlineAsm.h isUseOperandTiedToDef.
7079         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7080         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7081                                                     OpInfo.getMatchedOperand());
7082         AsmNodeOperands.push_back(DAG.getTargetConstant(
7083             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7084         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7085         break;
7086       }
7087 
7088       // Treat indirect 'X' constraint as memory.
7089       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7090           OpInfo.isIndirect)
7091         OpInfo.ConstraintType = TargetLowering::C_Memory;
7092 
7093       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7094         std::vector<SDValue> Ops;
7095         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7096                                           Ops, DAG);
7097         if (Ops.empty()) {
7098           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7099                                      Twine(OpInfo.ConstraintCode) + "'");
7100           return;
7101         }
7102 
7103         // Add information to the INLINEASM node to know about this input.
7104         unsigned ResOpType =
7105           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7106         AsmNodeOperands.push_back(DAG.getTargetConstant(
7107             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7108         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7109         break;
7110       }
7111 
7112       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7113         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7114         assert(InOperandVal.getValueType() ==
7115                    TLI.getPointerTy(DAG.getDataLayout()) &&
7116                "Memory operands expect pointer values");
7117 
7118         unsigned ConstraintID =
7119             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7120         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7121                "Failed to convert memory constraint code to constraint id.");
7122 
7123         // Add information to the INLINEASM node to know about this input.
7124         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7125         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7126         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7127                                                         getCurSDLoc(),
7128                                                         MVT::i32));
7129         AsmNodeOperands.push_back(InOperandVal);
7130         break;
7131       }
7132 
7133       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7134               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7135              "Unknown constraint type!");
7136 
7137       // TODO: Support this.
7138       if (OpInfo.isIndirect) {
7139         emitInlineAsmError(
7140             CS, "Don't know how to handle indirect register inputs yet "
7141                 "for constraint '" +
7142                     Twine(OpInfo.ConstraintCode) + "'");
7143         return;
7144       }
7145 
7146       // Copy the input into the appropriate registers.
7147       if (OpInfo.AssignedRegs.Regs.empty()) {
7148         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7149                                    Twine(OpInfo.ConstraintCode) + "'");
7150         return;
7151       }
7152 
7153       SDLoc dl = getCurSDLoc();
7154 
7155       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7156                                         Chain, &Flag, CS.getInstruction());
7157 
7158       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7159                                                dl, DAG, AsmNodeOperands);
7160       break;
7161     }
7162     case InlineAsm::isClobber: {
7163       // Add the clobbered value to the operand list, so that the register
7164       // allocator is aware that the physreg got clobbered.
7165       if (!OpInfo.AssignedRegs.Regs.empty())
7166         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7167                                                  false, 0, getCurSDLoc(), DAG,
7168                                                  AsmNodeOperands);
7169       break;
7170     }
7171     }
7172   }
7173 
7174   // Finish up input operands.  Set the input chain and add the flag last.
7175   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7176   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7177 
7178   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7179                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7180   Flag = Chain.getValue(1);
7181 
7182   // If this asm returns a register value, copy the result from that register
7183   // and set it as the value of the call.
7184   if (!RetValRegs.Regs.empty()) {
7185     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7186                                              Chain, &Flag, CS.getInstruction());
7187 
7188     // FIXME: Why don't we do this for inline asms with MRVs?
7189     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7190       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7191 
7192       // If any of the results of the inline asm is a vector, it may have the
7193       // wrong width/num elts.  This can happen for register classes that can
7194       // contain multiple different value types.  The preg or vreg allocated may
7195       // not have the same VT as was expected.  Convert it to the right type
7196       // with bit_convert.
7197       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7198         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7199                           ResultType, Val);
7200 
7201       } else if (ResultType != Val.getValueType() &&
7202                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7203         // If a result value was tied to an input value, the computed result may
7204         // have a wider width than the expected result.  Extract the relevant
7205         // portion.
7206         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7207       }
7208 
7209       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7210     }
7211 
7212     setValue(CS.getInstruction(), Val);
7213     // Don't need to use this as a chain in this case.
7214     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7215       return;
7216   }
7217 
7218   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7219 
7220   // Process indirect outputs, first output all of the flagged copies out of
7221   // physregs.
7222   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7223     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7224     const Value *Ptr = IndirectStoresToEmit[i].second;
7225     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7226                                              Chain, &Flag, IA);
7227     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7228   }
7229 
7230   // Emit the non-flagged stores from the physregs.
7231   SmallVector<SDValue, 8> OutChains;
7232   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7233     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7234                                getValue(StoresToEmit[i].second),
7235                                MachinePointerInfo(StoresToEmit[i].second));
7236     OutChains.push_back(Val);
7237   }
7238 
7239   if (!OutChains.empty())
7240     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7241 
7242   DAG.setRoot(Chain);
7243 }
7244 
7245 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7246                                              const Twine &Message) {
7247   LLVMContext &Ctx = *DAG.getContext();
7248   Ctx.emitError(CS.getInstruction(), Message);
7249 
7250   // Make sure we leave the DAG in a valid state
7251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7252   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7253   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7254 }
7255 
7256 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7257   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7258                           MVT::Other, getRoot(),
7259                           getValue(I.getArgOperand(0)),
7260                           DAG.getSrcValue(I.getArgOperand(0))));
7261 }
7262 
7263 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7265   const DataLayout &DL = DAG.getDataLayout();
7266   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7267                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7268                            DAG.getSrcValue(I.getOperand(0)),
7269                            DL.getABITypeAlignment(I.getType()));
7270   setValue(&I, V);
7271   DAG.setRoot(V.getValue(1));
7272 }
7273 
7274 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7275   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7276                           MVT::Other, getRoot(),
7277                           getValue(I.getArgOperand(0)),
7278                           DAG.getSrcValue(I.getArgOperand(0))));
7279 }
7280 
7281 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7282   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7283                           MVT::Other, getRoot(),
7284                           getValue(I.getArgOperand(0)),
7285                           getValue(I.getArgOperand(1)),
7286                           DAG.getSrcValue(I.getArgOperand(0)),
7287                           DAG.getSrcValue(I.getArgOperand(1))));
7288 }
7289 
7290 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7291                                                     const Instruction &I,
7292                                                     SDValue Op) {
7293   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7294   if (!Range)
7295     return Op;
7296 
7297   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7298   if (!Lo->isNullValue())
7299     return Op;
7300 
7301   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7302   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7303 
7304   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7305 
7306   SDLoc SL = getCurSDLoc();
7307 
7308   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7309                              Op, DAG.getValueType(SmallVT));
7310   unsigned NumVals = Op.getNode()->getNumValues();
7311   if (NumVals == 1)
7312     return ZExt;
7313 
7314   SmallVector<SDValue, 4> Ops;
7315 
7316   Ops.push_back(ZExt);
7317   for (unsigned I = 1; I != NumVals; ++I)
7318     Ops.push_back(Op.getValue(I));
7319 
7320   return DAG.getMergeValues(Ops, SL);
7321 }
7322 
7323 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7324 /// the call being lowered.
7325 ///
7326 /// This is a helper for lowering intrinsics that follow a target calling
7327 /// convention or require stack pointer adjustment. Only a subset of the
7328 /// intrinsic's operands need to participate in the calling convention.
7329 void SelectionDAGBuilder::populateCallLoweringInfo(
7330     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7331     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7332     bool IsPatchPoint) {
7333   TargetLowering::ArgListTy Args;
7334   Args.reserve(NumArgs);
7335 
7336   // Populate the argument list.
7337   // Attributes for args start at offset 1, after the return attribute.
7338   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7339        ArgI != ArgE; ++ArgI) {
7340     const Value *V = CS->getOperand(ArgI);
7341 
7342     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7343 
7344     TargetLowering::ArgListEntry Entry;
7345     Entry.Node = getValue(V);
7346     Entry.Ty = V->getType();
7347     Entry.setAttributes(&CS, AttrI);
7348     Args.push_back(Entry);
7349   }
7350 
7351   CLI.setDebugLoc(getCurSDLoc())
7352       .setChain(getRoot())
7353       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7354       .setDiscardResult(CS->use_empty())
7355       .setIsPatchPoint(IsPatchPoint);
7356 }
7357 
7358 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7359 /// or patchpoint target node's operand list.
7360 ///
7361 /// Constants are converted to TargetConstants purely as an optimization to
7362 /// avoid constant materialization and register allocation.
7363 ///
7364 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7365 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7366 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7367 /// address materialization and register allocation, but may also be required
7368 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7369 /// alloca in the entry block, then the runtime may assume that the alloca's
7370 /// StackMap location can be read immediately after compilation and that the
7371 /// location is valid at any point during execution (this is similar to the
7372 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7373 /// only available in a register, then the runtime would need to trap when
7374 /// execution reaches the StackMap in order to read the alloca's location.
7375 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7376                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7377                                 SelectionDAGBuilder &Builder) {
7378   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7379     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7380     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7381       Ops.push_back(
7382         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7383       Ops.push_back(
7384         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7385     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7386       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7387       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7388           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7389     } else
7390       Ops.push_back(OpVal);
7391   }
7392 }
7393 
7394 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7395 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7396   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7397   //                                  [live variables...])
7398 
7399   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7400 
7401   SDValue Chain, InFlag, Callee, NullPtr;
7402   SmallVector<SDValue, 32> Ops;
7403 
7404   SDLoc DL = getCurSDLoc();
7405   Callee = getValue(CI.getCalledValue());
7406   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7407 
7408   // The stackmap intrinsic only records the live variables (the arguemnts
7409   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7410   // intrinsic, this won't be lowered to a function call. This means we don't
7411   // have to worry about calling conventions and target specific lowering code.
7412   // Instead we perform the call lowering right here.
7413   //
7414   // chain, flag = CALLSEQ_START(chain, 0)
7415   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7416   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7417   //
7418   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7419   InFlag = Chain.getValue(1);
7420 
7421   // Add the <id> and <numBytes> constants.
7422   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7423   Ops.push_back(DAG.getTargetConstant(
7424                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7425   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7426   Ops.push_back(DAG.getTargetConstant(
7427                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7428                   MVT::i32));
7429 
7430   // Push live variables for the stack map.
7431   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7432 
7433   // We are not pushing any register mask info here on the operands list,
7434   // because the stackmap doesn't clobber anything.
7435 
7436   // Push the chain and the glue flag.
7437   Ops.push_back(Chain);
7438   Ops.push_back(InFlag);
7439 
7440   // Create the STACKMAP node.
7441   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7442   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7443   Chain = SDValue(SM, 0);
7444   InFlag = Chain.getValue(1);
7445 
7446   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7447 
7448   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7449 
7450   // Set the root to the target-lowered call chain.
7451   DAG.setRoot(Chain);
7452 
7453   // Inform the Frame Information that we have a stackmap in this function.
7454   FuncInfo.MF->getFrameInfo().setHasStackMap();
7455 }
7456 
7457 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7458 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7459                                           const BasicBlock *EHPadBB) {
7460   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7461   //                                                 i32 <numBytes>,
7462   //                                                 i8* <target>,
7463   //                                                 i32 <numArgs>,
7464   //                                                 [Args...],
7465   //                                                 [live variables...])
7466 
7467   CallingConv::ID CC = CS.getCallingConv();
7468   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7469   bool HasDef = !CS->getType()->isVoidTy();
7470   SDLoc dl = getCurSDLoc();
7471   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7472 
7473   // Handle immediate and symbolic callees.
7474   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7475     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7476                                    /*isTarget=*/true);
7477   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7478     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7479                                          SDLoc(SymbolicCallee),
7480                                          SymbolicCallee->getValueType(0));
7481 
7482   // Get the real number of arguments participating in the call <numArgs>
7483   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7484   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7485 
7486   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7487   // Intrinsics include all meta-operands up to but not including CC.
7488   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7489   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7490          "Not enough arguments provided to the patchpoint intrinsic");
7491 
7492   // For AnyRegCC the arguments are lowered later on manually.
7493   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7494   Type *ReturnTy =
7495     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7496 
7497   TargetLowering::CallLoweringInfo CLI(DAG);
7498   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7499                            true);
7500   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7501 
7502   SDNode *CallEnd = Result.second.getNode();
7503   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7504     CallEnd = CallEnd->getOperand(0).getNode();
7505 
7506   /// Get a call instruction from the call sequence chain.
7507   /// Tail calls are not allowed.
7508   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7509          "Expected a callseq node.");
7510   SDNode *Call = CallEnd->getOperand(0).getNode();
7511   bool HasGlue = Call->getGluedNode();
7512 
7513   // Replace the target specific call node with the patchable intrinsic.
7514   SmallVector<SDValue, 8> Ops;
7515 
7516   // Add the <id> and <numBytes> constants.
7517   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7518   Ops.push_back(DAG.getTargetConstant(
7519                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7520   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7521   Ops.push_back(DAG.getTargetConstant(
7522                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7523                   MVT::i32));
7524 
7525   // Add the callee.
7526   Ops.push_back(Callee);
7527 
7528   // Adjust <numArgs> to account for any arguments that have been passed on the
7529   // stack instead.
7530   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7531   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7532   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7533   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7534 
7535   // Add the calling convention
7536   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7537 
7538   // Add the arguments we omitted previously. The register allocator should
7539   // place these in any free register.
7540   if (IsAnyRegCC)
7541     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7542       Ops.push_back(getValue(CS.getArgument(i)));
7543 
7544   // Push the arguments from the call instruction up to the register mask.
7545   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7546   Ops.append(Call->op_begin() + 2, e);
7547 
7548   // Push live variables for the stack map.
7549   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7550 
7551   // Push the register mask info.
7552   if (HasGlue)
7553     Ops.push_back(*(Call->op_end()-2));
7554   else
7555     Ops.push_back(*(Call->op_end()-1));
7556 
7557   // Push the chain (this is originally the first operand of the call, but
7558   // becomes now the last or second to last operand).
7559   Ops.push_back(*(Call->op_begin()));
7560 
7561   // Push the glue flag (last operand).
7562   if (HasGlue)
7563     Ops.push_back(*(Call->op_end()-1));
7564 
7565   SDVTList NodeTys;
7566   if (IsAnyRegCC && HasDef) {
7567     // Create the return types based on the intrinsic definition
7568     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7569     SmallVector<EVT, 3> ValueVTs;
7570     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7571     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7572 
7573     // There is always a chain and a glue type at the end
7574     ValueVTs.push_back(MVT::Other);
7575     ValueVTs.push_back(MVT::Glue);
7576     NodeTys = DAG.getVTList(ValueVTs);
7577   } else
7578     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7579 
7580   // Replace the target specific call node with a PATCHPOINT node.
7581   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7582                                          dl, NodeTys, Ops);
7583 
7584   // Update the NodeMap.
7585   if (HasDef) {
7586     if (IsAnyRegCC)
7587       setValue(CS.getInstruction(), SDValue(MN, 0));
7588     else
7589       setValue(CS.getInstruction(), Result.first);
7590   }
7591 
7592   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7593   // call sequence. Furthermore the location of the chain and glue can change
7594   // when the AnyReg calling convention is used and the intrinsic returns a
7595   // value.
7596   if (IsAnyRegCC && HasDef) {
7597     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7598     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7599     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7600   } else
7601     DAG.ReplaceAllUsesWith(Call, MN);
7602   DAG.DeleteNode(Call);
7603 
7604   // Inform the Frame Information that we have a patchpoint in this function.
7605   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7606 }
7607 
7608 /// Returns an AttributeSet representing the attributes applied to the return
7609 /// value of the given call.
7610 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7611   SmallVector<Attribute::AttrKind, 2> Attrs;
7612   if (CLI.RetSExt)
7613     Attrs.push_back(Attribute::SExt);
7614   if (CLI.RetZExt)
7615     Attrs.push_back(Attribute::ZExt);
7616   if (CLI.IsInReg)
7617     Attrs.push_back(Attribute::InReg);
7618 
7619   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7620                            Attrs);
7621 }
7622 
7623 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7624 /// implementation, which just calls LowerCall.
7625 /// FIXME: When all targets are
7626 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7627 std::pair<SDValue, SDValue>
7628 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7629   // Handle the incoming return values from the call.
7630   CLI.Ins.clear();
7631   Type *OrigRetTy = CLI.RetTy;
7632   SmallVector<EVT, 4> RetTys;
7633   SmallVector<uint64_t, 4> Offsets;
7634   auto &DL = CLI.DAG.getDataLayout();
7635   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7636 
7637   SmallVector<ISD::OutputArg, 4> Outs;
7638   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7639 
7640   bool CanLowerReturn =
7641       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7642                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7643 
7644   SDValue DemoteStackSlot;
7645   int DemoteStackIdx = -100;
7646   if (!CanLowerReturn) {
7647     // FIXME: equivalent assert?
7648     // assert(!CS.hasInAllocaArgument() &&
7649     //        "sret demotion is incompatible with inalloca");
7650     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7651     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7652     MachineFunction &MF = CLI.DAG.getMachineFunction();
7653     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7654     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7655 
7656     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7657     ArgListEntry Entry;
7658     Entry.Node = DemoteStackSlot;
7659     Entry.Ty = StackSlotPtrType;
7660     Entry.isSExt = false;
7661     Entry.isZExt = false;
7662     Entry.isInReg = false;
7663     Entry.isSRet = true;
7664     Entry.isNest = false;
7665     Entry.isByVal = false;
7666     Entry.isReturned = false;
7667     Entry.isSwiftSelf = false;
7668     Entry.isSwiftError = false;
7669     Entry.Alignment = Align;
7670     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7671     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7672 
7673     // sret demotion isn't compatible with tail-calls, since the sret argument
7674     // points into the callers stack frame.
7675     CLI.IsTailCall = false;
7676   } else {
7677     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7678       EVT VT = RetTys[I];
7679       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7680       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7681       for (unsigned i = 0; i != NumRegs; ++i) {
7682         ISD::InputArg MyFlags;
7683         MyFlags.VT = RegisterVT;
7684         MyFlags.ArgVT = VT;
7685         MyFlags.Used = CLI.IsReturnValueUsed;
7686         if (CLI.RetSExt)
7687           MyFlags.Flags.setSExt();
7688         if (CLI.RetZExt)
7689           MyFlags.Flags.setZExt();
7690         if (CLI.IsInReg)
7691           MyFlags.Flags.setInReg();
7692         CLI.Ins.push_back(MyFlags);
7693       }
7694     }
7695   }
7696 
7697   // We push in swifterror return as the last element of CLI.Ins.
7698   ArgListTy &Args = CLI.getArgs();
7699   if (supportSwiftError()) {
7700     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7701       if (Args[i].isSwiftError) {
7702         ISD::InputArg MyFlags;
7703         MyFlags.VT = getPointerTy(DL);
7704         MyFlags.ArgVT = EVT(getPointerTy(DL));
7705         MyFlags.Flags.setSwiftError();
7706         CLI.Ins.push_back(MyFlags);
7707       }
7708     }
7709   }
7710 
7711   // Handle all of the outgoing arguments.
7712   CLI.Outs.clear();
7713   CLI.OutVals.clear();
7714   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7715     SmallVector<EVT, 4> ValueVTs;
7716     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7717     Type *FinalType = Args[i].Ty;
7718     if (Args[i].isByVal)
7719       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7720     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7721         FinalType, CLI.CallConv, CLI.IsVarArg);
7722     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7723          ++Value) {
7724       EVT VT = ValueVTs[Value];
7725       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7726       SDValue Op = SDValue(Args[i].Node.getNode(),
7727                            Args[i].Node.getResNo() + Value);
7728       ISD::ArgFlagsTy Flags;
7729       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7730 
7731       if (Args[i].isZExt)
7732         Flags.setZExt();
7733       if (Args[i].isSExt)
7734         Flags.setSExt();
7735       if (Args[i].isInReg)
7736         Flags.setInReg();
7737       if (Args[i].isSRet)
7738         Flags.setSRet();
7739       if (Args[i].isSwiftSelf)
7740         Flags.setSwiftSelf();
7741       if (Args[i].isSwiftError)
7742         Flags.setSwiftError();
7743       if (Args[i].isByVal)
7744         Flags.setByVal();
7745       if (Args[i].isInAlloca) {
7746         Flags.setInAlloca();
7747         // Set the byval flag for CCAssignFn callbacks that don't know about
7748         // inalloca.  This way we can know how many bytes we should've allocated
7749         // and how many bytes a callee cleanup function will pop.  If we port
7750         // inalloca to more targets, we'll have to add custom inalloca handling
7751         // in the various CC lowering callbacks.
7752         Flags.setByVal();
7753       }
7754       if (Args[i].isByVal || Args[i].isInAlloca) {
7755         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7756         Type *ElementTy = Ty->getElementType();
7757         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7758         // For ByVal, alignment should come from FE.  BE will guess if this
7759         // info is not there but there are cases it cannot get right.
7760         unsigned FrameAlign;
7761         if (Args[i].Alignment)
7762           FrameAlign = Args[i].Alignment;
7763         else
7764           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7765         Flags.setByValAlign(FrameAlign);
7766       }
7767       if (Args[i].isNest)
7768         Flags.setNest();
7769       if (NeedsRegBlock)
7770         Flags.setInConsecutiveRegs();
7771       Flags.setOrigAlign(OriginalAlignment);
7772 
7773       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7774       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7775       SmallVector<SDValue, 4> Parts(NumParts);
7776       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7777 
7778       if (Args[i].isSExt)
7779         ExtendKind = ISD::SIGN_EXTEND;
7780       else if (Args[i].isZExt)
7781         ExtendKind = ISD::ZERO_EXTEND;
7782 
7783       // Conservatively only handle 'returned' on non-vectors for now
7784       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7785         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7786                "unexpected use of 'returned'");
7787         // Before passing 'returned' to the target lowering code, ensure that
7788         // either the register MVT and the actual EVT are the same size or that
7789         // the return value and argument are extended in the same way; in these
7790         // cases it's safe to pass the argument register value unchanged as the
7791         // return register value (although it's at the target's option whether
7792         // to do so)
7793         // TODO: allow code generation to take advantage of partially preserved
7794         // registers rather than clobbering the entire register when the
7795         // parameter extension method is not compatible with the return
7796         // extension method
7797         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7798             (ExtendKind != ISD::ANY_EXTEND &&
7799              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7800         Flags.setReturned();
7801       }
7802 
7803       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7804                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7805 
7806       for (unsigned j = 0; j != NumParts; ++j) {
7807         // if it isn't first piece, alignment must be 1
7808         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7809                                i < CLI.NumFixedArgs,
7810                                i, j*Parts[j].getValueType().getStoreSize());
7811         if (NumParts > 1 && j == 0)
7812           MyFlags.Flags.setSplit();
7813         else if (j != 0) {
7814           MyFlags.Flags.setOrigAlign(1);
7815           if (j == NumParts - 1)
7816             MyFlags.Flags.setSplitEnd();
7817         }
7818 
7819         CLI.Outs.push_back(MyFlags);
7820         CLI.OutVals.push_back(Parts[j]);
7821       }
7822 
7823       if (NeedsRegBlock && Value == NumValues - 1)
7824         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7825     }
7826   }
7827 
7828   SmallVector<SDValue, 4> InVals;
7829   CLI.Chain = LowerCall(CLI, InVals);
7830 
7831   // Update CLI.InVals to use outside of this function.
7832   CLI.InVals = InVals;
7833 
7834   // Verify that the target's LowerCall behaved as expected.
7835   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7836          "LowerCall didn't return a valid chain!");
7837   assert((!CLI.IsTailCall || InVals.empty()) &&
7838          "LowerCall emitted a return value for a tail call!");
7839   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7840          "LowerCall didn't emit the correct number of values!");
7841 
7842   // For a tail call, the return value is merely live-out and there aren't
7843   // any nodes in the DAG representing it. Return a special value to
7844   // indicate that a tail call has been emitted and no more Instructions
7845   // should be processed in the current block.
7846   if (CLI.IsTailCall) {
7847     CLI.DAG.setRoot(CLI.Chain);
7848     return std::make_pair(SDValue(), SDValue());
7849   }
7850 
7851 #ifndef NDEBUG
7852   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7853     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7854     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7855            "LowerCall emitted a value with the wrong type!");
7856   }
7857 #endif
7858 
7859   SmallVector<SDValue, 4> ReturnValues;
7860   if (!CanLowerReturn) {
7861     // The instruction result is the result of loading from the
7862     // hidden sret parameter.
7863     SmallVector<EVT, 1> PVTs;
7864     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7865 
7866     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7867     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7868     EVT PtrVT = PVTs[0];
7869 
7870     unsigned NumValues = RetTys.size();
7871     ReturnValues.resize(NumValues);
7872     SmallVector<SDValue, 4> Chains(NumValues);
7873 
7874     // An aggregate return value cannot wrap around the address space, so
7875     // offsets to its parts don't wrap either.
7876     SDNodeFlags Flags;
7877     Flags.setNoUnsignedWrap(true);
7878 
7879     for (unsigned i = 0; i < NumValues; ++i) {
7880       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7881                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7882                                                         PtrVT), &Flags);
7883       SDValue L = CLI.DAG.getLoad(
7884           RetTys[i], CLI.DL, CLI.Chain, Add,
7885           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7886                                             DemoteStackIdx, Offsets[i]),
7887           /* Alignment = */ 1);
7888       ReturnValues[i] = L;
7889       Chains[i] = L.getValue(1);
7890     }
7891 
7892     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7893   } else {
7894     // Collect the legal value parts into potentially illegal values
7895     // that correspond to the original function's return values.
7896     Optional<ISD::NodeType> AssertOp;
7897     if (CLI.RetSExt)
7898       AssertOp = ISD::AssertSext;
7899     else if (CLI.RetZExt)
7900       AssertOp = ISD::AssertZext;
7901     unsigned CurReg = 0;
7902     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7903       EVT VT = RetTys[I];
7904       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7905       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7906 
7907       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7908                                               NumRegs, RegisterVT, VT, nullptr,
7909                                               AssertOp));
7910       CurReg += NumRegs;
7911     }
7912 
7913     // For a function returning void, there is no return value. We can't create
7914     // such a node, so we just return a null return value in that case. In
7915     // that case, nothing will actually look at the value.
7916     if (ReturnValues.empty())
7917       return std::make_pair(SDValue(), CLI.Chain);
7918   }
7919 
7920   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7921                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7922   return std::make_pair(Res, CLI.Chain);
7923 }
7924 
7925 void TargetLowering::LowerOperationWrapper(SDNode *N,
7926                                            SmallVectorImpl<SDValue> &Results,
7927                                            SelectionDAG &DAG) const {
7928   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7929     Results.push_back(Res);
7930 }
7931 
7932 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7933   llvm_unreachable("LowerOperation not implemented for this target!");
7934 }
7935 
7936 void
7937 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7938   SDValue Op = getNonRegisterValue(V);
7939   assert((Op.getOpcode() != ISD::CopyFromReg ||
7940           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7941          "Copy from a reg to the same reg!");
7942   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7943 
7944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7945   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7946                    V->getType());
7947   SDValue Chain = DAG.getEntryNode();
7948 
7949   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7950                               FuncInfo.PreferredExtendType.end())
7951                                  ? ISD::ANY_EXTEND
7952                                  : FuncInfo.PreferredExtendType[V];
7953   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7954   PendingExports.push_back(Chain);
7955 }
7956 
7957 #include "llvm/CodeGen/SelectionDAGISel.h"
7958 
7959 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7960 /// entry block, return true.  This includes arguments used by switches, since
7961 /// the switch may expand into multiple basic blocks.
7962 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7963   // With FastISel active, we may be splitting blocks, so force creation
7964   // of virtual registers for all non-dead arguments.
7965   if (FastISel)
7966     return A->use_empty();
7967 
7968   const BasicBlock &Entry = A->getParent()->front();
7969   for (const User *U : A->users())
7970     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7971       return false;  // Use not in entry block.
7972 
7973   return true;
7974 }
7975 
7976 void SelectionDAGISel::LowerArguments(const Function &F) {
7977   SelectionDAG &DAG = SDB->DAG;
7978   SDLoc dl = SDB->getCurSDLoc();
7979   const DataLayout &DL = DAG.getDataLayout();
7980   SmallVector<ISD::InputArg, 16> Ins;
7981 
7982   if (!FuncInfo->CanLowerReturn) {
7983     // Put in an sret pointer parameter before all the other parameters.
7984     SmallVector<EVT, 1> ValueVTs;
7985     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7986                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7987 
7988     // NOTE: Assuming that a pointer will never break down to more than one VT
7989     // or one register.
7990     ISD::ArgFlagsTy Flags;
7991     Flags.setSRet();
7992     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7993     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7994                          ISD::InputArg::NoArgIndex, 0);
7995     Ins.push_back(RetArg);
7996   }
7997 
7998   // Set up the incoming argument description vector.
7999   unsigned Idx = 1;
8000   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
8001        I != E; ++I, ++Idx) {
8002     SmallVector<EVT, 4> ValueVTs;
8003     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8004     bool isArgValueUsed = !I->use_empty();
8005     unsigned PartBase = 0;
8006     Type *FinalType = I->getType();
8007     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8008       FinalType = cast<PointerType>(FinalType)->getElementType();
8009     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8010         FinalType, F.getCallingConv(), F.isVarArg());
8011     for (unsigned Value = 0, NumValues = ValueVTs.size();
8012          Value != NumValues; ++Value) {
8013       EVT VT = ValueVTs[Value];
8014       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8015       ISD::ArgFlagsTy Flags;
8016       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
8017 
8018       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8019         Flags.setZExt();
8020       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8021         Flags.setSExt();
8022       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
8023         Flags.setInReg();
8024       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
8025         Flags.setSRet();
8026       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
8027         Flags.setSwiftSelf();
8028       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
8029         Flags.setSwiftError();
8030       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8031         Flags.setByVal();
8032       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
8033         Flags.setInAlloca();
8034         // Set the byval flag for CCAssignFn callbacks that don't know about
8035         // inalloca.  This way we can know how many bytes we should've allocated
8036         // and how many bytes a callee cleanup function will pop.  If we port
8037         // inalloca to more targets, we'll have to add custom inalloca handling
8038         // in the various CC lowering callbacks.
8039         Flags.setByVal();
8040       }
8041       if (F.getCallingConv() == CallingConv::X86_INTR) {
8042         // IA Interrupt passes frame (1st parameter) by value in the stack.
8043         if (Idx == 1)
8044           Flags.setByVal();
8045       }
8046       if (Flags.isByVal() || Flags.isInAlloca()) {
8047         PointerType *Ty = cast<PointerType>(I->getType());
8048         Type *ElementTy = Ty->getElementType();
8049         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8050         // For ByVal, alignment should be passed from FE.  BE will guess if
8051         // this info is not there but there are cases it cannot get right.
8052         unsigned FrameAlign;
8053         if (F.getParamAlignment(Idx))
8054           FrameAlign = F.getParamAlignment(Idx);
8055         else
8056           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8057         Flags.setByValAlign(FrameAlign);
8058       }
8059       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
8060         Flags.setNest();
8061       if (NeedsRegBlock)
8062         Flags.setInConsecutiveRegs();
8063       Flags.setOrigAlign(OriginalAlignment);
8064 
8065       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8066       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8067       for (unsigned i = 0; i != NumRegs; ++i) {
8068         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8069                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
8070         if (NumRegs > 1 && i == 0)
8071           MyFlags.Flags.setSplit();
8072         // if it isn't first piece, alignment must be 1
8073         else if (i > 0) {
8074           MyFlags.Flags.setOrigAlign(1);
8075           if (i == NumRegs - 1)
8076             MyFlags.Flags.setSplitEnd();
8077         }
8078         Ins.push_back(MyFlags);
8079       }
8080       if (NeedsRegBlock && Value == NumValues - 1)
8081         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8082       PartBase += VT.getStoreSize();
8083     }
8084   }
8085 
8086   // Call the target to set up the argument values.
8087   SmallVector<SDValue, 8> InVals;
8088   SDValue NewRoot = TLI->LowerFormalArguments(
8089       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8090 
8091   // Verify that the target's LowerFormalArguments behaved as expected.
8092   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8093          "LowerFormalArguments didn't return a valid chain!");
8094   assert(InVals.size() == Ins.size() &&
8095          "LowerFormalArguments didn't emit the correct number of values!");
8096   DEBUG({
8097       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8098         assert(InVals[i].getNode() &&
8099                "LowerFormalArguments emitted a null value!");
8100         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8101                "LowerFormalArguments emitted a value with the wrong type!");
8102       }
8103     });
8104 
8105   // Update the DAG with the new chain value resulting from argument lowering.
8106   DAG.setRoot(NewRoot);
8107 
8108   // Set up the argument values.
8109   unsigned i = 0;
8110   Idx = 1;
8111   if (!FuncInfo->CanLowerReturn) {
8112     // Create a virtual register for the sret pointer, and put in a copy
8113     // from the sret argument into it.
8114     SmallVector<EVT, 1> ValueVTs;
8115     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8116                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8117     MVT VT = ValueVTs[0].getSimpleVT();
8118     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8119     Optional<ISD::NodeType> AssertOp = None;
8120     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8121                                         RegVT, VT, nullptr, AssertOp);
8122 
8123     MachineFunction& MF = SDB->DAG.getMachineFunction();
8124     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8125     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8126     FuncInfo->DemoteRegister = SRetReg;
8127     NewRoot =
8128         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8129     DAG.setRoot(NewRoot);
8130 
8131     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8132     // Idx indexes LLVM arguments.  Don't touch it.
8133     ++i;
8134   }
8135 
8136   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
8137       ++I, ++Idx) {
8138     SmallVector<SDValue, 4> ArgValues;
8139     SmallVector<EVT, 4> ValueVTs;
8140     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8141     unsigned NumValues = ValueVTs.size();
8142 
8143     // If this argument is unused then remember its value. It is used to generate
8144     // debugging information.
8145     bool isSwiftErrorArg =
8146         TLI->supportSwiftError() &&
8147         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError);
8148     if (I->use_empty() && NumValues && !isSwiftErrorArg) {
8149       SDB->setUnusedArgValue(&*I, InVals[i]);
8150 
8151       // Also remember any frame index for use in FastISel.
8152       if (FrameIndexSDNode *FI =
8153           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8154         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8155     }
8156 
8157     for (unsigned Val = 0; Val != NumValues; ++Val) {
8158       EVT VT = ValueVTs[Val];
8159       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8160       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8161 
8162       // Even an apparant 'unused' swifterror argument needs to be returned. So
8163       // we do generate a copy for it that can be used on return from the
8164       // function.
8165       if (!I->use_empty() || isSwiftErrorArg) {
8166         Optional<ISD::NodeType> AssertOp;
8167         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8168           AssertOp = ISD::AssertSext;
8169         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8170           AssertOp = ISD::AssertZext;
8171 
8172         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8173                                              NumParts, PartVT, VT,
8174                                              nullptr, AssertOp));
8175       }
8176 
8177       i += NumParts;
8178     }
8179 
8180     // We don't need to do anything else for unused arguments.
8181     if (ArgValues.empty())
8182       continue;
8183 
8184     // Note down frame index.
8185     if (FrameIndexSDNode *FI =
8186         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8187       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8188 
8189     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8190                                      SDB->getCurSDLoc());
8191 
8192     SDB->setValue(&*I, Res);
8193     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8194       if (LoadSDNode *LNode =
8195           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8196         if (FrameIndexSDNode *FI =
8197             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8198         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8199     }
8200 
8201     // Update the SwiftErrorVRegDefMap.
8202     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8203       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8204       if (TargetRegisterInfo::isVirtualRegister(Reg))
8205         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8206                                            FuncInfo->SwiftErrorArg, Reg);
8207     }
8208 
8209     // If this argument is live outside of the entry block, insert a copy from
8210     // wherever we got it to the vreg that other BB's will reference it as.
8211     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8212       // If we can, though, try to skip creating an unnecessary vreg.
8213       // FIXME: This isn't very clean... it would be nice to make this more
8214       // general.  It's also subtly incompatible with the hacks FastISel
8215       // uses with vregs.
8216       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8217       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8218         FuncInfo->ValueMap[&*I] = Reg;
8219         continue;
8220       }
8221     }
8222     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8223       FuncInfo->InitializeRegForValue(&*I);
8224       SDB->CopyToExportRegsIfNeeded(&*I);
8225     }
8226   }
8227 
8228   assert(i == InVals.size() && "Argument register count mismatch!");
8229 
8230   // Finally, if the target has anything special to do, allow it to do so.
8231   EmitFunctionEntryCode();
8232 }
8233 
8234 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8235 /// ensure constants are generated when needed.  Remember the virtual registers
8236 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8237 /// directly add them, because expansion might result in multiple MBB's for one
8238 /// BB.  As such, the start of the BB might correspond to a different MBB than
8239 /// the end.
8240 ///
8241 void
8242 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8243   const TerminatorInst *TI = LLVMBB->getTerminator();
8244 
8245   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8246 
8247   // Check PHI nodes in successors that expect a value to be available from this
8248   // block.
8249   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8250     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8251     if (!isa<PHINode>(SuccBB->begin())) continue;
8252     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8253 
8254     // If this terminator has multiple identical successors (common for
8255     // switches), only handle each succ once.
8256     if (!SuccsHandled.insert(SuccMBB).second)
8257       continue;
8258 
8259     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8260 
8261     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8262     // nodes and Machine PHI nodes, but the incoming operands have not been
8263     // emitted yet.
8264     for (BasicBlock::const_iterator I = SuccBB->begin();
8265          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8266       // Ignore dead phi's.
8267       if (PN->use_empty()) continue;
8268 
8269       // Skip empty types
8270       if (PN->getType()->isEmptyTy())
8271         continue;
8272 
8273       unsigned Reg;
8274       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8275 
8276       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8277         unsigned &RegOut = ConstantsOut[C];
8278         if (RegOut == 0) {
8279           RegOut = FuncInfo.CreateRegs(C->getType());
8280           CopyValueToVirtualRegister(C, RegOut);
8281         }
8282         Reg = RegOut;
8283       } else {
8284         DenseMap<const Value *, unsigned>::iterator I =
8285           FuncInfo.ValueMap.find(PHIOp);
8286         if (I != FuncInfo.ValueMap.end())
8287           Reg = I->second;
8288         else {
8289           assert(isa<AllocaInst>(PHIOp) &&
8290                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8291                  "Didn't codegen value into a register!??");
8292           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8293           CopyValueToVirtualRegister(PHIOp, Reg);
8294         }
8295       }
8296 
8297       // Remember that this register needs to added to the machine PHI node as
8298       // the input for this MBB.
8299       SmallVector<EVT, 4> ValueVTs;
8300       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8301       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8302       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8303         EVT VT = ValueVTs[vti];
8304         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8305         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8306           FuncInfo.PHINodesToUpdate.push_back(
8307               std::make_pair(&*MBBI++, Reg + i));
8308         Reg += NumRegisters;
8309       }
8310     }
8311   }
8312 
8313   ConstantsOut.clear();
8314 }
8315 
8316 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8317 /// is 0.
8318 MachineBasicBlock *
8319 SelectionDAGBuilder::StackProtectorDescriptor::
8320 AddSuccessorMBB(const BasicBlock *BB,
8321                 MachineBasicBlock *ParentMBB,
8322                 bool IsLikely,
8323                 MachineBasicBlock *SuccMBB) {
8324   // If SuccBB has not been created yet, create it.
8325   if (!SuccMBB) {
8326     MachineFunction *MF = ParentMBB->getParent();
8327     MachineFunction::iterator BBI(ParentMBB);
8328     SuccMBB = MF->CreateMachineBasicBlock(BB);
8329     MF->insert(++BBI, SuccMBB);
8330   }
8331   // Add it as a successor of ParentMBB.
8332   ParentMBB->addSuccessor(
8333       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8334   return SuccMBB;
8335 }
8336 
8337 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8338   MachineFunction::iterator I(MBB);
8339   if (++I == FuncInfo.MF->end())
8340     return nullptr;
8341   return &*I;
8342 }
8343 
8344 /// During lowering new call nodes can be created (such as memset, etc.).
8345 /// Those will become new roots of the current DAG, but complications arise
8346 /// when they are tail calls. In such cases, the call lowering will update
8347 /// the root, but the builder still needs to know that a tail call has been
8348 /// lowered in order to avoid generating an additional return.
8349 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8350   // If the node is null, we do have a tail call.
8351   if (MaybeTC.getNode() != nullptr)
8352     DAG.setRoot(MaybeTC);
8353   else
8354     HasTailCall = true;
8355 }
8356 
8357 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8358                                   const SmallVectorImpl<unsigned> &TotalCases,
8359                                   unsigned First, unsigned Last,
8360                                   unsigned Density) const {
8361   assert(Last >= First);
8362   assert(TotalCases[Last] >= TotalCases[First]);
8363 
8364   const APInt &LowCase = Clusters[First].Low->getValue();
8365   const APInt &HighCase = Clusters[Last].High->getValue();
8366   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8367 
8368   // FIXME: A range of consecutive cases has 100% density, but only requires one
8369   // comparison to lower. We should discriminate against such consecutive ranges
8370   // in jump tables.
8371 
8372   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8373   uint64_t Range = Diff + 1;
8374 
8375   uint64_t NumCases =
8376       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8377 
8378   assert(NumCases < UINT64_MAX / 100);
8379   assert(Range >= NumCases);
8380 
8381   return NumCases * 100 >= Range * Density;
8382 }
8383 
8384 static inline bool areJTsAllowed(const TargetLowering &TLI,
8385                                  const SwitchInst *SI) {
8386   const Function *Fn = SI->getParent()->getParent();
8387   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8388     return false;
8389 
8390   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8391          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8392 }
8393 
8394 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8395                                          unsigned First, unsigned Last,
8396                                          const SwitchInst *SI,
8397                                          MachineBasicBlock *DefaultMBB,
8398                                          CaseCluster &JTCluster) {
8399   assert(First <= Last);
8400 
8401   auto Prob = BranchProbability::getZero();
8402   unsigned NumCmps = 0;
8403   std::vector<MachineBasicBlock*> Table;
8404   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8405 
8406   // Initialize probabilities in JTProbs.
8407   for (unsigned I = First; I <= Last; ++I)
8408     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8409 
8410   for (unsigned I = First; I <= Last; ++I) {
8411     assert(Clusters[I].Kind == CC_Range);
8412     Prob += Clusters[I].Prob;
8413     const APInt &Low = Clusters[I].Low->getValue();
8414     const APInt &High = Clusters[I].High->getValue();
8415     NumCmps += (Low == High) ? 1 : 2;
8416     if (I != First) {
8417       // Fill the gap between this and the previous cluster.
8418       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8419       assert(PreviousHigh.slt(Low));
8420       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8421       for (uint64_t J = 0; J < Gap; J++)
8422         Table.push_back(DefaultMBB);
8423     }
8424     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8425     for (uint64_t J = 0; J < ClusterSize; ++J)
8426       Table.push_back(Clusters[I].MBB);
8427     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8428   }
8429 
8430   unsigned NumDests = JTProbs.size();
8431   if (isSuitableForBitTests(NumDests, NumCmps,
8432                             Clusters[First].Low->getValue(),
8433                             Clusters[Last].High->getValue())) {
8434     // Clusters[First..Last] should be lowered as bit tests instead.
8435     return false;
8436   }
8437 
8438   // Create the MBB that will load from and jump through the table.
8439   // Note: We create it here, but it's not inserted into the function yet.
8440   MachineFunction *CurMF = FuncInfo.MF;
8441   MachineBasicBlock *JumpTableMBB =
8442       CurMF->CreateMachineBasicBlock(SI->getParent());
8443 
8444   // Add successors. Note: use table order for determinism.
8445   SmallPtrSet<MachineBasicBlock *, 8> Done;
8446   for (MachineBasicBlock *Succ : Table) {
8447     if (Done.count(Succ))
8448       continue;
8449     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8450     Done.insert(Succ);
8451   }
8452   JumpTableMBB->normalizeSuccProbs();
8453 
8454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8455   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8456                      ->createJumpTableIndex(Table);
8457 
8458   // Set up the jump table info.
8459   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8460   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8461                       Clusters[Last].High->getValue(), SI->getCondition(),
8462                       nullptr, false);
8463   JTCases.emplace_back(std::move(JTH), std::move(JT));
8464 
8465   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8466                                      JTCases.size() - 1, Prob);
8467   return true;
8468 }
8469 
8470 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8471                                          const SwitchInst *SI,
8472                                          MachineBasicBlock *DefaultMBB) {
8473 #ifndef NDEBUG
8474   // Clusters must be non-empty, sorted, and only contain Range clusters.
8475   assert(!Clusters.empty());
8476   for (CaseCluster &C : Clusters)
8477     assert(C.Kind == CC_Range);
8478   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8479     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8480 #endif
8481 
8482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8483   if (!areJTsAllowed(TLI, SI))
8484     return;
8485 
8486   const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize();
8487 
8488   const int64_t N = Clusters.size();
8489   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8490   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
8491   const unsigned MaxJumpTableSize =
8492                    OptForSize || TLI.getMaximumJumpTableSize() == 0
8493                    ? UINT_MAX : TLI.getMaximumJumpTableSize();
8494 
8495   if (N < 2 || N < MinJumpTableEntries)
8496     return;
8497 
8498   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8499   SmallVector<unsigned, 8> TotalCases(N);
8500   for (unsigned i = 0; i < N; ++i) {
8501     const APInt &Hi = Clusters[i].High->getValue();
8502     const APInt &Lo = Clusters[i].Low->getValue();
8503     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8504     if (i != 0)
8505       TotalCases[i] += TotalCases[i - 1];
8506   }
8507 
8508   const unsigned MinDensity =
8509     OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
8510 
8511   // Cheap case: the whole range may be suitable for jump table.
8512   unsigned JumpTableSize = (Clusters[N - 1].High->getValue() -
8513                             Clusters[0].Low->getValue())
8514                            .getLimitedValue(UINT_MAX - 1) + 1;
8515   if (JumpTableSize <= MaxJumpTableSize &&
8516       isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) {
8517     CaseCluster JTCluster;
8518     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8519       Clusters[0] = JTCluster;
8520       Clusters.resize(1);
8521       return;
8522     }
8523   }
8524 
8525   // The algorithm below is not suitable for -O0.
8526   if (TM.getOptLevel() == CodeGenOpt::None)
8527     return;
8528 
8529   // Split Clusters into minimum number of dense partitions. The algorithm uses
8530   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8531   // for the Case Statement'" (1994), but builds the MinPartitions array in
8532   // reverse order to make it easier to reconstruct the partitions in ascending
8533   // order. In the choice between two optimal partitionings, it picks the one
8534   // which yields more jump tables.
8535 
8536   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8537   SmallVector<unsigned, 8> MinPartitions(N);
8538   // LastElement[i] is the last element of the partition starting at i.
8539   SmallVector<unsigned, 8> LastElement(N);
8540   // PartitionsScore[i] is used to break ties when choosing between two
8541   // partitionings resulting in the same number of partitions.
8542   SmallVector<unsigned, 8> PartitionsScore(N);
8543   // For PartitionsScore, a small number of comparisons is considered as good as
8544   // a jump table and a single comparison is considered better than a jump
8545   // table.
8546   enum PartitionScores : unsigned {
8547     NoTable = 0,
8548     Table = 1,
8549     FewCases = 1,
8550     SingleCase = 2
8551   };
8552 
8553   // Base case: There is only one way to partition Clusters[N-1].
8554   MinPartitions[N - 1] = 1;
8555   LastElement[N - 1] = N - 1;
8556   PartitionsScore[N - 1] = PartitionScores::SingleCase;
8557 
8558   // Note: loop indexes are signed to avoid underflow.
8559   for (int64_t i = N - 2; i >= 0; i--) {
8560     // Find optimal partitioning of Clusters[i..N-1].
8561     // Baseline: Put Clusters[i] into a partition on its own.
8562     MinPartitions[i] = MinPartitions[i + 1] + 1;
8563     LastElement[i] = i;
8564     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
8565 
8566     // Search for a solution that results in fewer partitions.
8567     for (int64_t j = N - 1; j > i; j--) {
8568       // Try building a partition from Clusters[i..j].
8569       JumpTableSize = (Clusters[j].High->getValue() -
8570                        Clusters[i].Low->getValue())
8571                       .getLimitedValue(UINT_MAX - 1) + 1;
8572       if (JumpTableSize <= MaxJumpTableSize &&
8573           isDense(Clusters, TotalCases, i, j, MinDensity)) {
8574         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8575         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
8576         int64_t NumEntries = j - i + 1;
8577 
8578         if (NumEntries == 1)
8579           Score += PartitionScores::SingleCase;
8580         else if (NumEntries <= SmallNumberOfEntries)
8581           Score += PartitionScores::FewCases;
8582         else if (NumEntries >= MinJumpTableEntries)
8583           Score += PartitionScores::Table;
8584 
8585         // If this leads to fewer partitions, or to the same number of
8586         // partitions with better score, it is a better partitioning.
8587         if (NumPartitions < MinPartitions[i] ||
8588             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
8589           MinPartitions[i] = NumPartitions;
8590           LastElement[i] = j;
8591           PartitionsScore[i] = Score;
8592         }
8593       }
8594     }
8595   }
8596 
8597   // Iterate over the partitions, replacing some with jump tables in-place.
8598   unsigned DstIndex = 0;
8599   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8600     Last = LastElement[First];
8601     assert(Last >= First);
8602     assert(DstIndex <= First);
8603     unsigned NumClusters = Last - First + 1;
8604 
8605     CaseCluster JTCluster;
8606     if (NumClusters >= MinJumpTableEntries &&
8607         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8608       Clusters[DstIndex++] = JTCluster;
8609     } else {
8610       for (unsigned I = First; I <= Last; ++I)
8611         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8612     }
8613   }
8614   Clusters.resize(DstIndex);
8615 }
8616 
8617 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8618   // FIXME: Using the pointer type doesn't seem ideal.
8619   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8620   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8621   return Range <= BW;
8622 }
8623 
8624 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8625                                                 unsigned NumCmps,
8626                                                 const APInt &Low,
8627                                                 const APInt &High) {
8628   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8629   // range of cases both require only one branch to lower. Just looking at the
8630   // number of clusters and destinations should be enough to decide whether to
8631   // build bit tests.
8632 
8633   // To lower a range with bit tests, the range must fit the bitwidth of a
8634   // machine word.
8635   if (!rangeFitsInWord(Low, High))
8636     return false;
8637 
8638   // Decide whether it's profitable to lower this range with bit tests. Each
8639   // destination requires a bit test and branch, and there is an overall range
8640   // check branch. For a small number of clusters, separate comparisons might be
8641   // cheaper, and for many destinations, splitting the range might be better.
8642   return (NumDests == 1 && NumCmps >= 3) ||
8643          (NumDests == 2 && NumCmps >= 5) ||
8644          (NumDests == 3 && NumCmps >= 6);
8645 }
8646 
8647 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8648                                         unsigned First, unsigned Last,
8649                                         const SwitchInst *SI,
8650                                         CaseCluster &BTCluster) {
8651   assert(First <= Last);
8652   if (First == Last)
8653     return false;
8654 
8655   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8656   unsigned NumCmps = 0;
8657   for (int64_t I = First; I <= Last; ++I) {
8658     assert(Clusters[I].Kind == CC_Range);
8659     Dests.set(Clusters[I].MBB->getNumber());
8660     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8661   }
8662   unsigned NumDests = Dests.count();
8663 
8664   APInt Low = Clusters[First].Low->getValue();
8665   APInt High = Clusters[Last].High->getValue();
8666   assert(Low.slt(High));
8667 
8668   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8669     return false;
8670 
8671   APInt LowBound;
8672   APInt CmpRange;
8673 
8674   const int BitWidth = DAG.getTargetLoweringInfo()
8675                            .getPointerTy(DAG.getDataLayout())
8676                            .getSizeInBits();
8677   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8678 
8679   // Check if the clusters cover a contiguous range such that no value in the
8680   // range will jump to the default statement.
8681   bool ContiguousRange = true;
8682   for (int64_t I = First + 1; I <= Last; ++I) {
8683     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8684       ContiguousRange = false;
8685       break;
8686     }
8687   }
8688 
8689   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8690     // Optimize the case where all the case values fit in a word without having
8691     // to subtract minValue. In this case, we can optimize away the subtraction.
8692     LowBound = APInt::getNullValue(Low.getBitWidth());
8693     CmpRange = High;
8694     ContiguousRange = false;
8695   } else {
8696     LowBound = Low;
8697     CmpRange = High - Low;
8698   }
8699 
8700   CaseBitsVector CBV;
8701   auto TotalProb = BranchProbability::getZero();
8702   for (unsigned i = First; i <= Last; ++i) {
8703     // Find the CaseBits for this destination.
8704     unsigned j;
8705     for (j = 0; j < CBV.size(); ++j)
8706       if (CBV[j].BB == Clusters[i].MBB)
8707         break;
8708     if (j == CBV.size())
8709       CBV.push_back(
8710           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8711     CaseBits *CB = &CBV[j];
8712 
8713     // Update Mask, Bits and ExtraProb.
8714     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8715     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8716     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8717     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8718     CB->Bits += Hi - Lo + 1;
8719     CB->ExtraProb += Clusters[i].Prob;
8720     TotalProb += Clusters[i].Prob;
8721   }
8722 
8723   BitTestInfo BTI;
8724   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8725     // Sort by probability first, number of bits second.
8726     if (a.ExtraProb != b.ExtraProb)
8727       return a.ExtraProb > b.ExtraProb;
8728     return a.Bits > b.Bits;
8729   });
8730 
8731   for (auto &CB : CBV) {
8732     MachineBasicBlock *BitTestBB =
8733         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8734     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8735   }
8736   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8737                             SI->getCondition(), -1U, MVT::Other, false,
8738                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8739                             TotalProb);
8740 
8741   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8742                                     BitTestCases.size() - 1, TotalProb);
8743   return true;
8744 }
8745 
8746 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8747                                               const SwitchInst *SI) {
8748 // Partition Clusters into as few subsets as possible, where each subset has a
8749 // range that fits in a machine word and has <= 3 unique destinations.
8750 
8751 #ifndef NDEBUG
8752   // Clusters must be sorted and contain Range or JumpTable clusters.
8753   assert(!Clusters.empty());
8754   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8755   for (const CaseCluster &C : Clusters)
8756     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8757   for (unsigned i = 1; i < Clusters.size(); ++i)
8758     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8759 #endif
8760 
8761   // The algorithm below is not suitable for -O0.
8762   if (TM.getOptLevel() == CodeGenOpt::None)
8763     return;
8764 
8765   // If target does not have legal shift left, do not emit bit tests at all.
8766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8767   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8768   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8769     return;
8770 
8771   int BitWidth = PTy.getSizeInBits();
8772   const int64_t N = Clusters.size();
8773 
8774   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8775   SmallVector<unsigned, 8> MinPartitions(N);
8776   // LastElement[i] is the last element of the partition starting at i.
8777   SmallVector<unsigned, 8> LastElement(N);
8778 
8779   // FIXME: This might not be the best algorithm for finding bit test clusters.
8780 
8781   // Base case: There is only one way to partition Clusters[N-1].
8782   MinPartitions[N - 1] = 1;
8783   LastElement[N - 1] = N - 1;
8784 
8785   // Note: loop indexes are signed to avoid underflow.
8786   for (int64_t i = N - 2; i >= 0; --i) {
8787     // Find optimal partitioning of Clusters[i..N-1].
8788     // Baseline: Put Clusters[i] into a partition on its own.
8789     MinPartitions[i] = MinPartitions[i + 1] + 1;
8790     LastElement[i] = i;
8791 
8792     // Search for a solution that results in fewer partitions.
8793     // Note: the search is limited by BitWidth, reducing time complexity.
8794     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8795       // Try building a partition from Clusters[i..j].
8796 
8797       // Check the range.
8798       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8799                            Clusters[j].High->getValue()))
8800         continue;
8801 
8802       // Check nbr of destinations and cluster types.
8803       // FIXME: This works, but doesn't seem very efficient.
8804       bool RangesOnly = true;
8805       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8806       for (int64_t k = i; k <= j; k++) {
8807         if (Clusters[k].Kind != CC_Range) {
8808           RangesOnly = false;
8809           break;
8810         }
8811         Dests.set(Clusters[k].MBB->getNumber());
8812       }
8813       if (!RangesOnly || Dests.count() > 3)
8814         break;
8815 
8816       // Check if it's a better partition.
8817       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8818       if (NumPartitions < MinPartitions[i]) {
8819         // Found a better partition.
8820         MinPartitions[i] = NumPartitions;
8821         LastElement[i] = j;
8822       }
8823     }
8824   }
8825 
8826   // Iterate over the partitions, replacing with bit-test clusters in-place.
8827   unsigned DstIndex = 0;
8828   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8829     Last = LastElement[First];
8830     assert(First <= Last);
8831     assert(DstIndex <= First);
8832 
8833     CaseCluster BitTestCluster;
8834     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8835       Clusters[DstIndex++] = BitTestCluster;
8836     } else {
8837       size_t NumClusters = Last - First + 1;
8838       std::memmove(&Clusters[DstIndex], &Clusters[First],
8839                    sizeof(Clusters[0]) * NumClusters);
8840       DstIndex += NumClusters;
8841     }
8842   }
8843   Clusters.resize(DstIndex);
8844 }
8845 
8846 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8847                                         MachineBasicBlock *SwitchMBB,
8848                                         MachineBasicBlock *DefaultMBB) {
8849   MachineFunction *CurMF = FuncInfo.MF;
8850   MachineBasicBlock *NextMBB = nullptr;
8851   MachineFunction::iterator BBI(W.MBB);
8852   if (++BBI != FuncInfo.MF->end())
8853     NextMBB = &*BBI;
8854 
8855   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8856 
8857   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8858 
8859   if (Size == 2 && W.MBB == SwitchMBB) {
8860     // If any two of the cases has the same destination, and if one value
8861     // is the same as the other, but has one bit unset that the other has set,
8862     // use bit manipulation to do two compares at once.  For example:
8863     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8864     // TODO: This could be extended to merge any 2 cases in switches with 3
8865     // cases.
8866     // TODO: Handle cases where W.CaseBB != SwitchBB.
8867     CaseCluster &Small = *W.FirstCluster;
8868     CaseCluster &Big = *W.LastCluster;
8869 
8870     if (Small.Low == Small.High && Big.Low == Big.High &&
8871         Small.MBB == Big.MBB) {
8872       const APInt &SmallValue = Small.Low->getValue();
8873       const APInt &BigValue = Big.Low->getValue();
8874 
8875       // Check that there is only one bit different.
8876       APInt CommonBit = BigValue ^ SmallValue;
8877       if (CommonBit.isPowerOf2()) {
8878         SDValue CondLHS = getValue(Cond);
8879         EVT VT = CondLHS.getValueType();
8880         SDLoc DL = getCurSDLoc();
8881 
8882         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8883                                  DAG.getConstant(CommonBit, DL, VT));
8884         SDValue Cond = DAG.getSetCC(
8885             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8886             ISD::SETEQ);
8887 
8888         // Update successor info.
8889         // Both Small and Big will jump to Small.BB, so we sum up the
8890         // probabilities.
8891         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8892         if (BPI)
8893           addSuccessorWithProb(
8894               SwitchMBB, DefaultMBB,
8895               // The default destination is the first successor in IR.
8896               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8897         else
8898           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8899 
8900         // Insert the true branch.
8901         SDValue BrCond =
8902             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8903                         DAG.getBasicBlock(Small.MBB));
8904         // Insert the false branch.
8905         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8906                              DAG.getBasicBlock(DefaultMBB));
8907 
8908         DAG.setRoot(BrCond);
8909         return;
8910       }
8911     }
8912   }
8913 
8914   if (TM.getOptLevel() != CodeGenOpt::None) {
8915     // Order cases by probability so the most likely case will be checked first.
8916     std::sort(W.FirstCluster, W.LastCluster + 1,
8917               [](const CaseCluster &a, const CaseCluster &b) {
8918       return a.Prob > b.Prob;
8919     });
8920 
8921     // Rearrange the case blocks so that the last one falls through if possible
8922     // without without changing the order of probabilities.
8923     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8924       --I;
8925       if (I->Prob > W.LastCluster->Prob)
8926         break;
8927       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8928         std::swap(*I, *W.LastCluster);
8929         break;
8930       }
8931     }
8932   }
8933 
8934   // Compute total probability.
8935   BranchProbability DefaultProb = W.DefaultProb;
8936   BranchProbability UnhandledProbs = DefaultProb;
8937   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8938     UnhandledProbs += I->Prob;
8939 
8940   MachineBasicBlock *CurMBB = W.MBB;
8941   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8942     MachineBasicBlock *Fallthrough;
8943     if (I == W.LastCluster) {
8944       // For the last cluster, fall through to the default destination.
8945       Fallthrough = DefaultMBB;
8946     } else {
8947       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8948       CurMF->insert(BBI, Fallthrough);
8949       // Put Cond in a virtual register to make it available from the new blocks.
8950       ExportFromCurrentBlock(Cond);
8951     }
8952     UnhandledProbs -= I->Prob;
8953 
8954     switch (I->Kind) {
8955       case CC_JumpTable: {
8956         // FIXME: Optimize away range check based on pivot comparisons.
8957         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8958         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8959 
8960         // The jump block hasn't been inserted yet; insert it here.
8961         MachineBasicBlock *JumpMBB = JT->MBB;
8962         CurMF->insert(BBI, JumpMBB);
8963 
8964         auto JumpProb = I->Prob;
8965         auto FallthroughProb = UnhandledProbs;
8966 
8967         // If the default statement is a target of the jump table, we evenly
8968         // distribute the default probability to successors of CurMBB. Also
8969         // update the probability on the edge from JumpMBB to Fallthrough.
8970         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8971                                               SE = JumpMBB->succ_end();
8972              SI != SE; ++SI) {
8973           if (*SI == DefaultMBB) {
8974             JumpProb += DefaultProb / 2;
8975             FallthroughProb -= DefaultProb / 2;
8976             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8977             JumpMBB->normalizeSuccProbs();
8978             break;
8979           }
8980         }
8981 
8982         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8983         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8984         CurMBB->normalizeSuccProbs();
8985 
8986         // The jump table header will be inserted in our current block, do the
8987         // range check, and fall through to our fallthrough block.
8988         JTH->HeaderBB = CurMBB;
8989         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8990 
8991         // If we're in the right place, emit the jump table header right now.
8992         if (CurMBB == SwitchMBB) {
8993           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8994           JTH->Emitted = true;
8995         }
8996         break;
8997       }
8998       case CC_BitTests: {
8999         // FIXME: Optimize away range check based on pivot comparisons.
9000         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9001 
9002         // The bit test blocks haven't been inserted yet; insert them here.
9003         for (BitTestCase &BTC : BTB->Cases)
9004           CurMF->insert(BBI, BTC.ThisBB);
9005 
9006         // Fill in fields of the BitTestBlock.
9007         BTB->Parent = CurMBB;
9008         BTB->Default = Fallthrough;
9009 
9010         BTB->DefaultProb = UnhandledProbs;
9011         // If the cases in bit test don't form a contiguous range, we evenly
9012         // distribute the probability on the edge to Fallthrough to two
9013         // successors of CurMBB.
9014         if (!BTB->ContiguousRange) {
9015           BTB->Prob += DefaultProb / 2;
9016           BTB->DefaultProb -= DefaultProb / 2;
9017         }
9018 
9019         // If we're in the right place, emit the bit test header right now.
9020         if (CurMBB == SwitchMBB) {
9021           visitBitTestHeader(*BTB, SwitchMBB);
9022           BTB->Emitted = true;
9023         }
9024         break;
9025       }
9026       case CC_Range: {
9027         const Value *RHS, *LHS, *MHS;
9028         ISD::CondCode CC;
9029         if (I->Low == I->High) {
9030           // Check Cond == I->Low.
9031           CC = ISD::SETEQ;
9032           LHS = Cond;
9033           RHS=I->Low;
9034           MHS = nullptr;
9035         } else {
9036           // Check I->Low <= Cond <= I->High.
9037           CC = ISD::SETLE;
9038           LHS = I->Low;
9039           MHS = Cond;
9040           RHS = I->High;
9041         }
9042 
9043         // The false probability is the sum of all unhandled cases.
9044         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
9045                      UnhandledProbs);
9046 
9047         if (CurMBB == SwitchMBB)
9048           visitSwitchCase(CB, SwitchMBB);
9049         else
9050           SwitchCases.push_back(CB);
9051 
9052         break;
9053       }
9054     }
9055     CurMBB = Fallthrough;
9056   }
9057 }
9058 
9059 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9060                                               CaseClusterIt First,
9061                                               CaseClusterIt Last) {
9062   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9063     if (X.Prob != CC.Prob)
9064       return X.Prob > CC.Prob;
9065 
9066     // Ties are broken by comparing the case value.
9067     return X.Low->getValue().slt(CC.Low->getValue());
9068   });
9069 }
9070 
9071 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9072                                         const SwitchWorkListItem &W,
9073                                         Value *Cond,
9074                                         MachineBasicBlock *SwitchMBB) {
9075   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9076          "Clusters not sorted?");
9077 
9078   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9079 
9080   // Balance the tree based on branch probabilities to create a near-optimal (in
9081   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9082   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9083   CaseClusterIt LastLeft = W.FirstCluster;
9084   CaseClusterIt FirstRight = W.LastCluster;
9085   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9086   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9087 
9088   // Move LastLeft and FirstRight towards each other from opposite directions to
9089   // find a partitioning of the clusters which balances the probability on both
9090   // sides. If LeftProb and RightProb are equal, alternate which side is
9091   // taken to ensure 0-probability nodes are distributed evenly.
9092   unsigned I = 0;
9093   while (LastLeft + 1 < FirstRight) {
9094     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9095       LeftProb += (++LastLeft)->Prob;
9096     else
9097       RightProb += (--FirstRight)->Prob;
9098     I++;
9099   }
9100 
9101   for (;;) {
9102     // Our binary search tree differs from a typical BST in that ours can have up
9103     // to three values in each leaf. The pivot selection above doesn't take that
9104     // into account, which means the tree might require more nodes and be less
9105     // efficient. We compensate for this here.
9106 
9107     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9108     unsigned NumRight = W.LastCluster - FirstRight + 1;
9109 
9110     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9111       // If one side has less than 3 clusters, and the other has more than 3,
9112       // consider taking a cluster from the other side.
9113 
9114       if (NumLeft < NumRight) {
9115         // Consider moving the first cluster on the right to the left side.
9116         CaseCluster &CC = *FirstRight;
9117         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9118         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9119         if (LeftSideRank <= RightSideRank) {
9120           // Moving the cluster to the left does not demote it.
9121           ++LastLeft;
9122           ++FirstRight;
9123           continue;
9124         }
9125       } else {
9126         assert(NumRight < NumLeft);
9127         // Consider moving the last element on the left to the right side.
9128         CaseCluster &CC = *LastLeft;
9129         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9130         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9131         if (RightSideRank <= LeftSideRank) {
9132           // Moving the cluster to the right does not demot it.
9133           --LastLeft;
9134           --FirstRight;
9135           continue;
9136         }
9137       }
9138     }
9139     break;
9140   }
9141 
9142   assert(LastLeft + 1 == FirstRight);
9143   assert(LastLeft >= W.FirstCluster);
9144   assert(FirstRight <= W.LastCluster);
9145 
9146   // Use the first element on the right as pivot since we will make less-than
9147   // comparisons against it.
9148   CaseClusterIt PivotCluster = FirstRight;
9149   assert(PivotCluster > W.FirstCluster);
9150   assert(PivotCluster <= W.LastCluster);
9151 
9152   CaseClusterIt FirstLeft = W.FirstCluster;
9153   CaseClusterIt LastRight = W.LastCluster;
9154 
9155   const ConstantInt *Pivot = PivotCluster->Low;
9156 
9157   // New blocks will be inserted immediately after the current one.
9158   MachineFunction::iterator BBI(W.MBB);
9159   ++BBI;
9160 
9161   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9162   // we can branch to its destination directly if it's squeezed exactly in
9163   // between the known lower bound and Pivot - 1.
9164   MachineBasicBlock *LeftMBB;
9165   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9166       FirstLeft->Low == W.GE &&
9167       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9168     LeftMBB = FirstLeft->MBB;
9169   } else {
9170     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9171     FuncInfo.MF->insert(BBI, LeftMBB);
9172     WorkList.push_back(
9173         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9174     // Put Cond in a virtual register to make it available from the new blocks.
9175     ExportFromCurrentBlock(Cond);
9176   }
9177 
9178   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9179   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9180   // directly if RHS.High equals the current upper bound.
9181   MachineBasicBlock *RightMBB;
9182   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9183       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9184     RightMBB = FirstRight->MBB;
9185   } else {
9186     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9187     FuncInfo.MF->insert(BBI, RightMBB);
9188     WorkList.push_back(
9189         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9190     // Put Cond in a virtual register to make it available from the new blocks.
9191     ExportFromCurrentBlock(Cond);
9192   }
9193 
9194   // Create the CaseBlock record that will be used to lower the branch.
9195   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9196                LeftProb, RightProb);
9197 
9198   if (W.MBB == SwitchMBB)
9199     visitSwitchCase(CB, SwitchMBB);
9200   else
9201     SwitchCases.push_back(CB);
9202 }
9203 
9204 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9205   // Extract cases from the switch.
9206   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9207   CaseClusterVector Clusters;
9208   Clusters.reserve(SI.getNumCases());
9209   for (auto I : SI.cases()) {
9210     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9211     const ConstantInt *CaseVal = I.getCaseValue();
9212     BranchProbability Prob =
9213         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9214             : BranchProbability(1, SI.getNumCases() + 1);
9215     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9216   }
9217 
9218   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9219 
9220   // Cluster adjacent cases with the same destination. We do this at all
9221   // optimization levels because it's cheap to do and will make codegen faster
9222   // if there are many clusters.
9223   sortAndRangeify(Clusters);
9224 
9225   if (TM.getOptLevel() != CodeGenOpt::None) {
9226     // Replace an unreachable default with the most popular destination.
9227     // FIXME: Exploit unreachable default more aggressively.
9228     bool UnreachableDefault =
9229         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9230     if (UnreachableDefault && !Clusters.empty()) {
9231       DenseMap<const BasicBlock *, unsigned> Popularity;
9232       unsigned MaxPop = 0;
9233       const BasicBlock *MaxBB = nullptr;
9234       for (auto I : SI.cases()) {
9235         const BasicBlock *BB = I.getCaseSuccessor();
9236         if (++Popularity[BB] > MaxPop) {
9237           MaxPop = Popularity[BB];
9238           MaxBB = BB;
9239         }
9240       }
9241       // Set new default.
9242       assert(MaxPop > 0 && MaxBB);
9243       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9244 
9245       // Remove cases that were pointing to the destination that is now the
9246       // default.
9247       CaseClusterVector New;
9248       New.reserve(Clusters.size());
9249       for (CaseCluster &CC : Clusters) {
9250         if (CC.MBB != DefaultMBB)
9251           New.push_back(CC);
9252       }
9253       Clusters = std::move(New);
9254     }
9255   }
9256 
9257   // If there is only the default destination, jump there directly.
9258   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9259   if (Clusters.empty()) {
9260     SwitchMBB->addSuccessor(DefaultMBB);
9261     if (DefaultMBB != NextBlock(SwitchMBB)) {
9262       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9263                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9264     }
9265     return;
9266   }
9267 
9268   findJumpTables(Clusters, &SI, DefaultMBB);
9269   findBitTestClusters(Clusters, &SI);
9270 
9271   DEBUG({
9272     dbgs() << "Case clusters: ";
9273     for (const CaseCluster &C : Clusters) {
9274       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9275       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9276 
9277       C.Low->getValue().print(dbgs(), true);
9278       if (C.Low != C.High) {
9279         dbgs() << '-';
9280         C.High->getValue().print(dbgs(), true);
9281       }
9282       dbgs() << ' ';
9283     }
9284     dbgs() << '\n';
9285   });
9286 
9287   assert(!Clusters.empty());
9288   SwitchWorkList WorkList;
9289   CaseClusterIt First = Clusters.begin();
9290   CaseClusterIt Last = Clusters.end() - 1;
9291   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9292   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9293 
9294   while (!WorkList.empty()) {
9295     SwitchWorkListItem W = WorkList.back();
9296     WorkList.pop_back();
9297     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9298 
9299     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9300         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9301       // For optimized builds, lower large range as a balanced binary tree.
9302       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9303       continue;
9304     }
9305 
9306     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9307   }
9308 }
9309